xref: /dflybsd-src/sys/dev/netif/fxp/if_fxp.c (revision c81df1a69ed5f83d645494a48368663885f44af6)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.32 2005/05/31 08:27:47 joerg Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 		/* #include <sys/mutex.h> */
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/if.h>
46 #include <net/ifq_var.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #ifdef NS
51 #include <netns/ns.h>
52 #include <netns/ns_if.h>
53 #endif
54 
55 #include <net/bpf.h>
56 #include <sys/sockio.h>
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 #include <vm/vm.h>		/* for vtophys */
66 #include <vm/pmap.h>		/* for vtophys */
67 
68 #include <net/if_types.h>
69 #include <net/vlan/if_vlan_var.h>
70 
71 #include <bus/pci/pcivar.h>
72 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
73 
74 #include "../mii_layer/mii.h"
75 #include "../mii_layer/miivar.h"
76 
77 #include "if_fxpreg.h"
78 #include "if_fxpvar.h"
79 #include "rcvbundl.h"
80 
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	int16_t		revid;		/* -1 matches anything */
140 	char 		*name;
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
151      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
152      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
162      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
167      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
168      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
169 	 { 0x1064,  -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
170      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
171      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
172      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
173      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
174      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
175      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
176      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
177      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
178      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
179      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
180      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
181      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
182      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
183      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
184      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
185      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
186      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
187      { 0,	-1,	NULL },
188 };
189 
190 static int		fxp_probe(device_t dev);
191 static int		fxp_attach(device_t dev);
192 static int		fxp_detach(device_t dev);
193 static int		fxp_shutdown(device_t dev);
194 static int		fxp_suspend(device_t dev);
195 static int		fxp_resume(device_t dev);
196 
197 static void		fxp_intr(void *xsc);
198 static void		fxp_intr_body(struct fxp_softc *sc,
199 				u_int8_t statack, int count);
200 
201 static void 		fxp_init(void *xsc);
202 static void 		fxp_tick(void *xsc);
203 static void		fxp_powerstate_d0(device_t dev);
204 static void 		fxp_start(struct ifnet *ifp);
205 static void		fxp_stop(struct fxp_softc *sc);
206 static void 		fxp_release(device_t dev);
207 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
208 			    caddr_t data, struct ucred *);
209 static void 		fxp_watchdog(struct ifnet *ifp);
210 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
211 static int		fxp_mc_addrs(struct fxp_softc *sc);
212 static void		fxp_mc_setup(struct fxp_softc *sc);
213 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
214 			    int autosize);
215 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
216 			    u_int16_t data);
217 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
218 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
219 			    int offset, int words);
220 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
221 			    int offset, int words);
222 static int		fxp_ifmedia_upd(struct ifnet *ifp);
223 static void		fxp_ifmedia_sts(struct ifnet *ifp,
224 			    struct ifmediareq *ifmr);
225 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
226 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
227 			    struct ifmediareq *ifmr);
228 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
229 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
230 			    int value);
231 static void		fxp_load_ucode(struct fxp_softc *sc);
232 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
233 			    int low, int high);
234 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
235 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
236 #ifdef DEVICE_POLLING
237 static poll_handler_t fxp_poll;
238 #endif
239 
240 static void		fxp_lwcopy(volatile u_int32_t *src,
241 			    volatile u_int32_t *dst);
242 static void 		fxp_scb_wait(struct fxp_softc *sc);
243 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
244 static void		fxp_dma_wait(volatile u_int16_t *status,
245 			    struct fxp_softc *sc);
246 
247 static device_method_t fxp_methods[] = {
248 	/* Device interface */
249 	DEVMETHOD(device_probe,		fxp_probe),
250 	DEVMETHOD(device_attach,	fxp_attach),
251 	DEVMETHOD(device_detach,	fxp_detach),
252 	DEVMETHOD(device_shutdown,	fxp_shutdown),
253 	DEVMETHOD(device_suspend,	fxp_suspend),
254 	DEVMETHOD(device_resume,	fxp_resume),
255 
256 	/* MII interface */
257 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
258 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
259 
260 	{ 0, 0 }
261 };
262 
263 static driver_t fxp_driver = {
264 	"fxp",
265 	fxp_methods,
266 	sizeof(struct fxp_softc),
267 };
268 
269 static devclass_t fxp_devclass;
270 
271 DECLARE_DUMMY_MODULE(if_fxp);
272 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
273 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
274 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
275 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
276 
277 static int fxp_rnr;
278 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
279 
280 /*
281  * Copy a 16-bit aligned 32-bit quantity.
282  */
283 static void
284 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
285 {
286 #ifdef __i386__
287 	*dst = *src;
288 #else
289 	volatile u_int16_t *a = (volatile u_int16_t *)src;
290 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
291 
292 	b[0] = a[0];
293 	b[1] = a[1];
294 #endif
295 }
296 
297 /*
298  * Wait for the previous command to be accepted (but not necessarily
299  * completed).
300  */
301 static void
302 fxp_scb_wait(struct fxp_softc *sc)
303 {
304 	int i = 10000;
305 
306 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
307 		DELAY(2);
308 	if (i == 0) {
309 		if_printf(&sc->arpcom.ac_if,
310 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
311 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
312 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
313 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
314 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
315 	}
316 }
317 
318 static void
319 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
320 {
321 
322 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
323 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
324 		fxp_scb_wait(sc);
325 	}
326 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
327 }
328 
329 static void
330 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
331 {
332 	int i = 10000;
333 
334 	while (!(*status & FXP_CB_STATUS_C) && --i)
335 		DELAY(2);
336 	if (i == 0)
337 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
338 }
339 
340 /*
341  * Return identification string if this is device is ours.
342  */
343 static int
344 fxp_probe(device_t dev)
345 {
346 	u_int16_t devid;
347 	u_int8_t revid;
348 	struct fxp_ident *ident;
349 
350 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
351 		devid = pci_get_device(dev);
352 		revid = pci_get_revid(dev);
353 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
354 			if (ident->devid == devid &&
355 			    (ident->revid == revid || ident->revid == -1)) {
356 				device_set_desc(dev, ident->name);
357 				return (0);
358 			}
359 		}
360 	}
361 	return (ENXIO);
362 }
363 
364 static void
365 fxp_powerstate_d0(device_t dev)
366 {
367 	u_int32_t iobase, membase, irq;
368 
369 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
370 		/* Save important PCI config data. */
371 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
372 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
373 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
374 
375 		/* Reset the power state. */
376 		device_printf(dev, "chip is in D%d power mode "
377 		    "-- setting to D0\n", pci_get_powerstate(dev));
378 
379 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
380 
381 		/* Restore PCI config data. */
382 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
383 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
384 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
385 	}
386 }
387 
388 static int
389 fxp_attach(device_t dev)
390 {
391 	int error = 0;
392 	struct fxp_softc *sc = device_get_softc(dev);
393 	struct ifnet *ifp;
394 	u_int32_t val;
395 	u_int16_t data;
396 	int i, rid, m1, m2, prefer_iomap;
397 	int s;
398 
399 	bzero(sc, sizeof(*sc));
400 	callout_init(&sc->fxp_stat_timer);
401 	sysctl_ctx_init(&sc->sysctl_ctx);
402 
403 	s = splimp();
404 
405 	/*
406 	 * Enable bus mastering. Enable memory space too, in case
407 	 * BIOS/Prom forgot about it.
408 	 */
409 	pci_enable_busmaster(dev);
410 	pci_enable_io(dev, SYS_RES_MEMORY);
411 	val = pci_read_config(dev, PCIR_COMMAND, 2);
412 
413 	fxp_powerstate_d0(dev);
414 
415 	/*
416 	 * Figure out which we should try first - memory mapping or i/o mapping?
417 	 * We default to memory mapping. Then we accept an override from the
418 	 * command line. Then we check to see which one is enabled.
419 	 */
420 	m1 = PCIM_CMD_MEMEN;
421 	m2 = PCIM_CMD_PORTEN;
422 	prefer_iomap = 0;
423 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
424 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
425 		m1 = PCIM_CMD_PORTEN;
426 		m2 = PCIM_CMD_MEMEN;
427 	}
428 
429 	if (val & m1) {
430 		sc->rtp =
431 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
432 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
433 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
434 		    RF_ACTIVE);
435 	}
436 	if (sc->mem == NULL && (val & m2)) {
437 		sc->rtp =
438 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
439 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
440 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
441             	    RF_ACTIVE);
442 	}
443 
444 	if (!sc->mem) {
445 		device_printf(dev, "could not map device registers\n");
446 		error = ENXIO;
447 		goto fail;
448         }
449 	if (bootverbose) {
450 		device_printf(dev, "using %s space register mapping\n",
451 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
452 	}
453 
454 	sc->sc_st = rman_get_bustag(sc->mem);
455 	sc->sc_sh = rman_get_bushandle(sc->mem);
456 
457 	/*
458 	 * Allocate our interrupt.
459 	 */
460 	rid = 0;
461 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
462 	    RF_SHAREABLE | RF_ACTIVE);
463 	if (sc->irq == NULL) {
464 		device_printf(dev, "could not map interrupt\n");
465 		error = ENXIO;
466 		goto fail;
467 	}
468 
469 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
470 			       fxp_intr, sc, &sc->ih, NULL);
471 	if (error) {
472 		device_printf(dev, "could not setup irq\n");
473 		goto fail;
474 	}
475 
476 	/*
477 	 * Reset to a stable state.
478 	 */
479 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
480 	DELAY(10);
481 
482 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
483 	    M_DEVBUF, M_WAITOK | M_ZERO);
484 
485 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
486 	    M_WAITOK | M_ZERO);
487 
488 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
489 
490 	/*
491 	 * Pre-allocate our receive buffers.
492 	 */
493 	for (i = 0; i < FXP_NRFABUFS; i++) {
494 		if (fxp_add_rfabuf(sc, NULL) != 0) {
495 			goto failmem;
496 		}
497 	}
498 
499 	/*
500 	 * Find out how large of an SEEPROM we have.
501 	 */
502 	fxp_autosize_eeprom(sc);
503 
504 	/*
505 	 * Determine whether we must use the 503 serial interface.
506 	 */
507 	fxp_read_eeprom(sc, &data, 6, 1);
508 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
509 	    (data & FXP_PHY_SERIAL_ONLY))
510 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
511 
512 	/*
513 	 * Create the sysctl tree
514 	 */
515 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
516 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
517 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
518 	if (sc->sysctl_tree == NULL)
519 		goto fail;
520 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
521 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
522 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
523 	    "FXP driver receive interrupt microcode bundling delay");
524 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
525 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
526 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
527 	    "FXP driver receive interrupt microcode bundle size limit");
528 
529 	/*
530 	 * Pull in device tunables.
531 	 */
532 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
533 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
534 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
535 	    "int_delay", &sc->tunable_int_delay);
536 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
537 	    "bundle_max", &sc->tunable_bundle_max);
538 
539 	/*
540 	 * Find out the chip revision; lump all 82557 revs together.
541 	 */
542 	fxp_read_eeprom(sc, &data, 5, 1);
543 	if ((data >> 8) == 1)
544 		sc->revision = FXP_REV_82557;
545 	else
546 		sc->revision = pci_get_revid(dev);
547 
548 	/*
549 	 * Enable workarounds for certain chip revision deficiencies.
550 	 *
551 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
552 	 * some systems based a normal 82559 design, have a defect where
553 	 * the chip can cause a PCI protocol violation if it receives
554 	 * a CU_RESUME command when it is entering the IDLE state.  The
555 	 * workaround is to disable Dynamic Standby Mode, so the chip never
556 	 * deasserts CLKRUN#, and always remains in an active state.
557 	 *
558 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
559 	 */
560 	i = pci_get_device(dev);
561 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
562 	    sc->revision >= FXP_REV_82559_A0) {
563 		fxp_read_eeprom(sc, &data, 10, 1);
564 		if (data & 0x02) {			/* STB enable */
565 			u_int16_t cksum;
566 			int i;
567 
568 			device_printf(dev,
569 			    "Disabling dynamic standby mode in EEPROM\n");
570 			data &= ~0x02;
571 			fxp_write_eeprom(sc, &data, 10, 1);
572 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
573 			cksum = 0;
574 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
575 				fxp_read_eeprom(sc, &data, i, 1);
576 				cksum += data;
577 			}
578 			i = (1 << sc->eeprom_size) - 1;
579 			cksum = 0xBABA - cksum;
580 			fxp_read_eeprom(sc, &data, i, 1);
581 			fxp_write_eeprom(sc, &cksum, i, 1);
582 			device_printf(dev,
583 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
584 			    i, data, cksum);
585 #if 1
586 			/*
587 			 * If the user elects to continue, try the software
588 			 * workaround, as it is better than nothing.
589 			 */
590 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
591 #endif
592 		}
593 	}
594 
595 	/*
596 	 * If we are not a 82557 chip, we can enable extended features.
597 	 */
598 	if (sc->revision != FXP_REV_82557) {
599 		/*
600 		 * If MWI is enabled in the PCI configuration, and there
601 		 * is a valid cacheline size (8 or 16 dwords), then tell
602 		 * the board to turn on MWI.
603 		 */
604 		if (val & PCIM_CMD_MWRICEN &&
605 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
606 			sc->flags |= FXP_FLAG_MWI_ENABLE;
607 
608 		/* turn on the extended TxCB feature */
609 		sc->flags |= FXP_FLAG_EXT_TXCB;
610 
611 		/* enable reception of long frames for VLAN */
612 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
613 	}
614 
615 	/*
616 	 * Read MAC address.
617 	 */
618 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
619 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
620 		device_printf(dev, "10Mbps\n");
621 	if (bootverbose) {
622 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
623 		    pci_get_vendor(dev), pci_get_device(dev),
624 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
625 		    pci_get_revid(dev));
626 		fxp_read_eeprom(sc, &data, 10, 1);
627 		device_printf(dev, "Dynamic Standby mode is %s\n",
628 		    data & 0x02 ? "enabled" : "disabled");
629 	}
630 
631 	/*
632 	 * If this is only a 10Mbps device, then there is no MII, and
633 	 * the PHY will use a serial interface instead.
634 	 *
635 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
636 	 * doesn't have a programming interface of any sort.  The
637 	 * media is sensed automatically based on how the link partner
638 	 * is configured.  This is, in essence, manual configuration.
639 	 */
640 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
641 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
642 		    fxp_serial_ifmedia_sts);
643 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
644 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
645 	} else {
646 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
647 		    fxp_ifmedia_sts)) {
648 	                device_printf(dev, "MII without any PHY!\n");
649 			error = ENXIO;
650 			goto fail;
651 		}
652 	}
653 
654 	ifp = &sc->arpcom.ac_if;
655 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
656 	ifp->if_baudrate = 100000000;
657 	ifp->if_init = fxp_init;
658 	ifp->if_softc = sc;
659 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
660 	ifp->if_ioctl = fxp_ioctl;
661 	ifp->if_start = fxp_start;
662 #ifdef DEVICE_POLLING
663 	ifp->if_poll = fxp_poll;
664 #endif
665 	ifp->if_watchdog = fxp_watchdog;
666 
667 	/*
668 	 * Attach the interface.
669 	 */
670 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
671 
672 	/*
673 	 * Tell the upper layer(s) we support long frames.
674 	 */
675 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
676 
677 	/*
678 	 * Let the system queue as many packets as we have available
679 	 * TX descriptors.
680 	 */
681 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
682 	ifq_set_ready(&ifp->if_snd);
683 
684 	splx(s);
685 	return (0);
686 
687 failmem:
688 	device_printf(dev, "Failed to malloc memory\n");
689 	error = ENOMEM;
690 fail:
691 	splx(s);
692 	fxp_release(dev);
693 	return (error);
694 }
695 
696 /*
697  * release all resources
698  */
699 static void
700 fxp_release(device_t dev)
701 {
702 	struct fxp_softc *sc;
703 
704 	sc = device_get_softc(dev);
705 	bus_generic_detach(dev);
706 	if (sc->miibus)
707 		device_delete_child(dev, sc->miibus);
708 
709 	if (sc->cbl_base)
710 		free(sc->cbl_base, M_DEVBUF);
711 	if (sc->fxp_stats)
712 		free(sc->fxp_stats, M_DEVBUF);
713 	if (sc->mcsp)
714 		free(sc->mcsp, M_DEVBUF);
715 	if (sc->rfa_headm)
716 		m_freem(sc->rfa_headm);
717 
718 	if (sc->ih)
719 		bus_teardown_intr(dev, sc->irq, sc->ih);
720 	if (sc->irq)
721 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
722 	if (sc->mem)
723 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
724 
725         sysctl_ctx_free(&sc->sysctl_ctx);
726 }
727 
728 /*
729  * Detach interface.
730  */
731 static int
732 fxp_detach(device_t dev)
733 {
734 	struct fxp_softc *sc = device_get_softc(dev);
735 	int s;
736 
737 	/* disable interrupts */
738 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
739 
740 	s = splimp();
741 
742 	/*
743 	 * Stop DMA and drop transmit queue.
744 	 */
745 	fxp_stop(sc);
746 
747 	/*
748 	 * Close down routes etc.
749 	 */
750 	ether_ifdetach(&sc->arpcom.ac_if);
751 
752 	/*
753 	 * Free all media structures.
754 	 */
755 	ifmedia_removeall(&sc->sc_media);
756 
757 	splx(s);
758 
759 	/* Release our allocated resources. */
760 	fxp_release(dev);
761 
762 	return (0);
763 }
764 
765 /*
766  * Device shutdown routine. Called at system shutdown after sync. The
767  * main purpose of this routine is to shut off receiver DMA so that
768  * kernel memory doesn't get clobbered during warmboot.
769  */
770 static int
771 fxp_shutdown(device_t dev)
772 {
773 	/*
774 	 * Make sure that DMA is disabled prior to reboot. Not doing
775 	 * do could allow DMA to corrupt kernel memory during the
776 	 * reboot before the driver initializes.
777 	 */
778 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
779 	return (0);
780 }
781 
782 /*
783  * Device suspend routine.  Stop the interface and save some PCI
784  * settings in case the BIOS doesn't restore them properly on
785  * resume.
786  */
787 static int
788 fxp_suspend(device_t dev)
789 {
790 	struct fxp_softc *sc = device_get_softc(dev);
791 	int i, s;
792 
793 	s = splimp();
794 
795 	fxp_stop(sc);
796 
797 	for (i = 0; i < 5; i++)
798 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
799 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
800 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
801 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
802 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
803 
804 	sc->suspended = 1;
805 
806 	splx(s);
807 	return (0);
808 }
809 
810 /*
811  * Device resume routine.  Restore some PCI settings in case the BIOS
812  * doesn't, re-enable busmastering, and restart the interface if
813  * appropriate.
814  */
815 static int
816 fxp_resume(device_t dev)
817 {
818 	struct fxp_softc *sc = device_get_softc(dev);
819 	struct ifnet *ifp = &sc->arpcom.ac_if;
820 	int i, s;
821 
822 	s = splimp();
823 
824 	fxp_powerstate_d0(dev);
825 
826 	/* better way to do this? */
827 	for (i = 0; i < 5; i++)
828 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
829 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
830 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
831 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
832 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
833 
834 	/* reenable busmastering and memory space */
835 	pci_enable_busmaster(dev);
836 	pci_enable_io(dev, SYS_RES_MEMORY);
837 
838 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
839 	DELAY(10);
840 
841 	/* reinitialize interface if necessary */
842 	if (ifp->if_flags & IFF_UP)
843 		fxp_init(sc);
844 
845 	sc->suspended = 0;
846 
847 	splx(s);
848 	return (0);
849 }
850 
851 static void
852 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
853 {
854 	u_int16_t reg;
855 	int x;
856 
857 	/*
858 	 * Shift in data.
859 	 */
860 	for (x = 1 << (length - 1); x; x >>= 1) {
861 		if (data & x)
862 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
863 		else
864 			reg = FXP_EEPROM_EECS;
865 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
866 		DELAY(1);
867 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
868 		DELAY(1);
869 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
870 		DELAY(1);
871 	}
872 }
873 
874 /*
875  * Read from the serial EEPROM. Basically, you manually shift in
876  * the read opcode (one bit at a time) and then shift in the address,
877  * and then you shift out the data (all of this one bit at a time).
878  * The word size is 16 bits, so you have to provide the address for
879  * every 16 bits of data.
880  */
881 static u_int16_t
882 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
883 {
884 	u_int16_t reg, data;
885 	int x;
886 
887 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
888 	/*
889 	 * Shift in read opcode.
890 	 */
891 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
892 	/*
893 	 * Shift in address.
894 	 */
895 	data = 0;
896 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
897 		if (offset & x)
898 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
899 		else
900 			reg = FXP_EEPROM_EECS;
901 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
902 		DELAY(1);
903 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
904 		DELAY(1);
905 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
906 		DELAY(1);
907 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
908 		data++;
909 		if (autosize && reg == 0) {
910 			sc->eeprom_size = data;
911 			break;
912 		}
913 	}
914 	/*
915 	 * Shift out data.
916 	 */
917 	data = 0;
918 	reg = FXP_EEPROM_EECS;
919 	for (x = 1 << 15; x; x >>= 1) {
920 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
921 		DELAY(1);
922 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
923 			data |= x;
924 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
925 		DELAY(1);
926 	}
927 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
928 	DELAY(1);
929 
930 	return (data);
931 }
932 
933 static void
934 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
935 {
936 	int i;
937 
938 	/*
939 	 * Erase/write enable.
940 	 */
941 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
942 	fxp_eeprom_shiftin(sc, 0x4, 3);
943 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
944 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
945 	DELAY(1);
946 	/*
947 	 * Shift in write opcode, address, data.
948 	 */
949 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
950 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
951 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
952 	fxp_eeprom_shiftin(sc, data, 16);
953 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
954 	DELAY(1);
955 	/*
956 	 * Wait for EEPROM to finish up.
957 	 */
958 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
959 	DELAY(1);
960 	for (i = 0; i < 1000; i++) {
961 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
962 			break;
963 		DELAY(50);
964 	}
965 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
966 	DELAY(1);
967 	/*
968 	 * Erase/write disable.
969 	 */
970 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
971 	fxp_eeprom_shiftin(sc, 0x4, 3);
972 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
973 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
974 	DELAY(1);
975 }
976 
977 /*
978  * From NetBSD:
979  *
980  * Figure out EEPROM size.
981  *
982  * 559's can have either 64-word or 256-word EEPROMs, the 558
983  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
984  * talks about the existance of 16 to 256 word EEPROMs.
985  *
986  * The only known sizes are 64 and 256, where the 256 version is used
987  * by CardBus cards to store CIS information.
988  *
989  * The address is shifted in msb-to-lsb, and after the last
990  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
991  * after which follows the actual data. We try to detect this zero, by
992  * probing the data-out bit in the EEPROM control register just after
993  * having shifted in a bit. If the bit is zero, we assume we've
994  * shifted enough address bits. The data-out should be tri-state,
995  * before this, which should translate to a logical one.
996  */
997 static void
998 fxp_autosize_eeprom(struct fxp_softc *sc)
999 {
1000 
1001 	/* guess maximum size of 256 words */
1002 	sc->eeprom_size = 8;
1003 
1004 	/* autosize */
1005 	(void) fxp_eeprom_getword(sc, 0, 1);
1006 }
1007 
1008 static void
1009 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1010 {
1011 	int i;
1012 
1013 	for (i = 0; i < words; i++)
1014 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1015 }
1016 
1017 static void
1018 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1019 {
1020 	int i;
1021 
1022 	for (i = 0; i < words; i++)
1023 		fxp_eeprom_putword(sc, offset + i, data[i]);
1024 }
1025 
1026 /*
1027  * Start packet transmission on the interface.
1028  */
1029 static void
1030 fxp_start(struct ifnet *ifp)
1031 {
1032 	struct fxp_softc *sc = ifp->if_softc;
1033 	struct fxp_cb_tx *txp;
1034 
1035 	/*
1036 	 * See if we need to suspend xmit until the multicast filter
1037 	 * has been reprogrammed (which can only be done at the head
1038 	 * of the command chain).
1039 	 */
1040 	if (sc->need_mcsetup) {
1041 		return;
1042 	}
1043 
1044 	txp = NULL;
1045 
1046 	/*
1047 	 * We're finished if there is nothing more to add to the list or if
1048 	 * we're all filled up with buffers to transmit.
1049 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1050 	 *       a NOP command when needed.
1051 	 */
1052 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1053 		struct mbuf *m, *mb_head;
1054 		int segment, ntries = 0;
1055 
1056 		/*
1057 		 * Grab a packet to transmit. The packet is dequeued,
1058 		 * once we are sure that we have enough free descriptors.
1059 		 */
1060 		mb_head = ifq_poll(&ifp->if_snd);
1061 		if (mb_head == NULL)
1062 			break;
1063 
1064 		/*
1065 		 * Get pointer to next available tx desc.
1066 		 */
1067 		txp = sc->cbl_last->next;
1068 
1069 		/*
1070 		 * Go through each of the mbufs in the chain and initialize
1071 		 * the transmit buffer descriptors with the physical address
1072 		 * and size of the mbuf.
1073 		 */
1074 tbdinit:
1075 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1076 			if (m->m_len != 0) {
1077 				if (segment == FXP_NTXSEG)
1078 					break;
1079 				txp->tbd[segment].tb_addr =
1080 				    vtophys(mtod(m, vm_offset_t));
1081 				txp->tbd[segment].tb_size = m->m_len;
1082 				segment++;
1083 			}
1084 		}
1085 		if (m != NULL) {
1086 			struct mbuf *mn;
1087 
1088 			/*
1089 			 * We ran out of segments. We have to recopy this
1090 			 * mbuf chain first. Bail out if we can't get the
1091 			 * new buffers.
1092 			 */
1093 			if (ntries > 0)
1094 				break;
1095 			mn = m_dup(mb_head, MB_DONTWAIT);
1096 			if (mn == NULL)
1097 				break;
1098 			 /* We can transmit the packet, dequeue it. */
1099 			mb_head = ifq_dequeue(&ifp->if_snd);
1100 			m_freem(mb_head);
1101 			mb_head = mn;
1102 			ntries = 1;
1103 			goto tbdinit;
1104 		} else {
1105 			/* Nothing to worry about, just dequeue. */
1106 			mb_head = ifq_dequeue(&ifp->if_snd);
1107 		}
1108 
1109 		txp->tbd_number = segment;
1110 		txp->mb_head = mb_head;
1111 		txp->cb_status = 0;
1112 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1113 			txp->cb_command =
1114 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1115 			    FXP_CB_COMMAND_S;
1116 		} else {
1117 			txp->cb_command =
1118 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1119 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1120 			/*
1121 			 * Set a 5 second timer just in case we don't hear
1122 			 * from the card again.
1123 			 */
1124 			ifp->if_timer = 5;
1125 		}
1126 		txp->tx_threshold = tx_threshold;
1127 
1128 		/*
1129 		 * Advance the end of list forward.
1130 		 */
1131 
1132 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1133 		sc->cbl_last = txp;
1134 
1135 		/*
1136 		 * Advance the beginning of the list forward if there are
1137 		 * no other packets queued (when nothing is queued, cbl_first
1138 		 * sits on the last TxCB that was sent out).
1139 		 */
1140 		if (sc->tx_queued == 0)
1141 			sc->cbl_first = txp;
1142 
1143 		sc->tx_queued++;
1144 
1145 		BPF_MTAP(ifp, mb_head);
1146 	}
1147 
1148 	/*
1149 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1150 	 * going again if suspended.
1151 	 */
1152 	if (txp != NULL) {
1153 		fxp_scb_wait(sc);
1154 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1155 	}
1156 }
1157 
1158 #ifdef DEVICE_POLLING
1159 
1160 static void
1161 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1162 {
1163 	struct fxp_softc *sc = ifp->if_softc;
1164 	u_int8_t statack;
1165 
1166 	switch(cmd) {
1167 	case POLL_REGISTER:
1168 		/* disable interrupts */
1169 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1170 		break;
1171 	case POLL_DEREGISTER:
1172 		/* enable interrupts */
1173 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1174 		break;
1175 	default:
1176 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1177 			  FXP_SCB_STATACK_FR;
1178 		if (cmd == POLL_AND_CHECK_STATUS) {
1179 			u_int8_t tmp;
1180 
1181 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1182 			if (tmp == 0xff || tmp == 0)
1183 				return; /* nothing to do */
1184 			tmp &= ~statack;
1185 			/* ack what we can */
1186 			if (tmp != 0)
1187 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1188 			statack |= tmp;
1189 		}
1190 		fxp_intr_body(sc, statack, count);
1191 		break;
1192 	}
1193 }
1194 
1195 #endif /* DEVICE_POLLING */
1196 
1197 /*
1198  * Process interface interrupts.
1199  */
1200 static void
1201 fxp_intr(void *xsc)
1202 {
1203 	struct fxp_softc *sc = xsc;
1204 	u_int8_t statack;
1205 
1206 	if (sc->suspended) {
1207 		return;
1208 	}
1209 
1210 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1211 		/*
1212 		 * It should not be possible to have all bits set; the
1213 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1214 		 * all bits are set, this may indicate that the card has
1215 		 * been physically ejected, so ignore it.
1216 		 */
1217 		if (statack == 0xff)
1218 			return;
1219 
1220 		/*
1221 		 * First ACK all the interrupts in this pass.
1222 		 */
1223 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1224 		fxp_intr_body(sc, statack, -1);
1225 	}
1226 }
1227 
1228 static void
1229 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1230 {
1231 	struct ifnet *ifp = &sc->arpcom.ac_if;
1232 	struct mbuf *m;
1233 	struct fxp_rfa *rfa;
1234 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1235 
1236 	if (rnr)
1237 		fxp_rnr++;
1238 #ifdef DEVICE_POLLING
1239 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1240 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1241 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1242 		rnr = 1;
1243 	}
1244 #endif
1245 
1246 	/*
1247 	 * Free any finished transmit mbuf chains.
1248 	 *
1249 	 * Handle the CNA event likt a CXTNO event. It used to
1250 	 * be that this event (control unit not ready) was not
1251 	 * encountered, but it is now with the SMPng modifications.
1252 	 * The exact sequence of events that occur when the interface
1253 	 * is brought up are different now, and if this event
1254 	 * goes unhandled, the configuration/rxfilter setup sequence
1255 	 * can stall for several seconds. The result is that no
1256 	 * packets go out onto the wire for about 5 to 10 seconds
1257 	 * after the interface is ifconfig'ed for the first time.
1258 	 */
1259 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1260 		struct fxp_cb_tx *txp;
1261 
1262 		for (txp = sc->cbl_first; sc->tx_queued &&
1263 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1264 		    txp = txp->next) {
1265 			if ((m = txp->mb_head) != NULL) {
1266 				txp->mb_head = NULL;
1267 				sc->tx_queued--;
1268 				m_freem(m);
1269 			} else {
1270 				sc->tx_queued--;
1271 			}
1272 		}
1273 		sc->cbl_first = txp;
1274 		ifp->if_timer = 0;
1275 		if (sc->tx_queued == 0) {
1276 			if (sc->need_mcsetup)
1277 				fxp_mc_setup(sc);
1278 		}
1279 		/*
1280 		 * Try to start more packets transmitting.
1281 		 */
1282 		if (!ifq_is_empty(&ifp->if_snd))
1283 			(*ifp->if_start)(ifp);
1284 	}
1285 
1286 	/*
1287 	 * Just return if nothing happened on the receive side.
1288 	 */
1289 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1290 		return;
1291 
1292 	/*
1293 	 * Process receiver interrupts. If a no-resource (RNR)
1294 	 * condition exists, get whatever packets we can and
1295 	 * re-start the receiver.
1296 	 *
1297 	 * When using polling, we do not process the list to completion,
1298 	 * so when we get an RNR interrupt we must defer the restart
1299 	 * until we hit the last buffer with the C bit set.
1300 	 * If we run out of cycles and rfa_headm has the C bit set,
1301 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1302 	 * that the info will be used in the subsequent polling cycle.
1303 	 */
1304 	for (;;) {
1305 		m = sc->rfa_headm;
1306 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1307 		    RFA_ALIGNMENT_FUDGE);
1308 
1309 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1310 		if (count >= 0 && count-- == 0) {
1311 			if (rnr) {
1312 				/* Defer RNR processing until the next time. */
1313 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1314 				rnr = 0;
1315 			}
1316 			break;
1317 		}
1318 #endif /* DEVICE_POLLING */
1319 
1320 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1321 			break;
1322 
1323 		/*
1324 		 * Remove first packet from the chain.
1325 		 */
1326 		sc->rfa_headm = m->m_next;
1327 		m->m_next = NULL;
1328 
1329 		/*
1330 		 * Add a new buffer to the receive chain.
1331 		 * If this fails, the old buffer is recycled
1332 		 * instead.
1333 		 */
1334 		if (fxp_add_rfabuf(sc, m) == 0) {
1335 			int total_len;
1336 
1337 			/*
1338 			 * Fetch packet length (the top 2 bits of
1339 			 * actual_size are flags set by the controller
1340 			 * upon completion), and drop the packet in case
1341 			 * of bogus length or CRC errors.
1342 			 */
1343 			total_len = rfa->actual_size & 0x3fff;
1344 			if (total_len < sizeof(struct ether_header) ||
1345 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1346 				sizeof(struct fxp_rfa) ||
1347 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1348 				m_freem(m);
1349 				continue;
1350 			}
1351 			m->m_pkthdr.len = m->m_len = total_len;
1352 			(*ifp->if_input)(ifp, m);
1353 		}
1354 	}
1355 	if (rnr) {
1356 		fxp_scb_wait(sc);
1357 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1358 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1359 		    RFA_ALIGNMENT_FUDGE);
1360 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1361 	}
1362 }
1363 
1364 /*
1365  * Update packet in/out/collision statistics. The i82557 doesn't
1366  * allow you to access these counters without doing a fairly
1367  * expensive DMA to get _all_ of the statistics it maintains, so
1368  * we do this operation here only once per second. The statistics
1369  * counters in the kernel are updated from the previous dump-stats
1370  * DMA and then a new dump-stats DMA is started. The on-chip
1371  * counters are zeroed when the DMA completes. If we can't start
1372  * the DMA immediately, we don't wait - we just prepare to read
1373  * them again next time.
1374  */
1375 static void
1376 fxp_tick(void *xsc)
1377 {
1378 	struct fxp_softc *sc = xsc;
1379 	struct ifnet *ifp = &sc->arpcom.ac_if;
1380 	struct fxp_stats *sp = sc->fxp_stats;
1381 	struct fxp_cb_tx *txp;
1382 	struct mbuf *m;
1383 	int s;
1384 
1385 	ifp->if_opackets += sp->tx_good;
1386 	ifp->if_collisions += sp->tx_total_collisions;
1387 	if (sp->rx_good) {
1388 		ifp->if_ipackets += sp->rx_good;
1389 		sc->rx_idle_secs = 0;
1390 	} else {
1391 		/*
1392 		 * Receiver's been idle for another second.
1393 		 */
1394 		sc->rx_idle_secs++;
1395 	}
1396 	ifp->if_ierrors +=
1397 	    sp->rx_crc_errors +
1398 	    sp->rx_alignment_errors +
1399 	    sp->rx_rnr_errors +
1400 	    sp->rx_overrun_errors;
1401 	/*
1402 	 * If any transmit underruns occured, bump up the transmit
1403 	 * threshold by another 512 bytes (64 * 8).
1404 	 */
1405 	if (sp->tx_underruns) {
1406 		ifp->if_oerrors += sp->tx_underruns;
1407 		if (tx_threshold < 192)
1408 			tx_threshold += 64;
1409 	}
1410 	s = splimp();
1411 	/*
1412 	 * Release any xmit buffers that have completed DMA. This isn't
1413 	 * strictly necessary to do here, but it's advantagous for mbufs
1414 	 * with external storage to be released in a timely manner rather
1415 	 * than being defered for a potentially long time. This limits
1416 	 * the delay to a maximum of one second.
1417 	 */
1418 	for (txp = sc->cbl_first; sc->tx_queued &&
1419 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1420 	    txp = txp->next) {
1421 		if ((m = txp->mb_head) != NULL) {
1422 			txp->mb_head = NULL;
1423 			sc->tx_queued--;
1424 			m_freem(m);
1425 		} else {
1426 			sc->tx_queued--;
1427 		}
1428 	}
1429 	sc->cbl_first = txp;
1430 	/*
1431 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1432 	 * then assume the receiver has locked up and attempt to clear
1433 	 * the condition by reprogramming the multicast filter. This is
1434 	 * a work-around for a bug in the 82557 where the receiver locks
1435 	 * up if it gets certain types of garbage in the syncronization
1436 	 * bits prior to the packet header. This bug is supposed to only
1437 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1438 	 * mode as well (perhaps due to a 10/100 speed transition).
1439 	 */
1440 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1441 		sc->rx_idle_secs = 0;
1442 		fxp_mc_setup(sc);
1443 	}
1444 	/*
1445 	 * If there is no pending command, start another stats
1446 	 * dump. Otherwise punt for now.
1447 	 */
1448 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1449 		/*
1450 		 * Start another stats dump.
1451 		 */
1452 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1453 	} else {
1454 		/*
1455 		 * A previous command is still waiting to be accepted.
1456 		 * Just zero our copy of the stats and wait for the
1457 		 * next timer event to update them.
1458 		 */
1459 		sp->tx_good = 0;
1460 		sp->tx_underruns = 0;
1461 		sp->tx_total_collisions = 0;
1462 
1463 		sp->rx_good = 0;
1464 		sp->rx_crc_errors = 0;
1465 		sp->rx_alignment_errors = 0;
1466 		sp->rx_rnr_errors = 0;
1467 		sp->rx_overrun_errors = 0;
1468 	}
1469 	if (sc->miibus != NULL)
1470 		mii_tick(device_get_softc(sc->miibus));
1471 	splx(s);
1472 	/*
1473 	 * Schedule another timeout one second from now.
1474 	 */
1475 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1476 }
1477 
1478 /*
1479  * Stop the interface. Cancels the statistics updater and resets
1480  * the interface.
1481  */
1482 static void
1483 fxp_stop(struct fxp_softc *sc)
1484 {
1485 	struct ifnet *ifp = &sc->arpcom.ac_if;
1486 	struct fxp_cb_tx *txp;
1487 	int i;
1488 
1489 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1490 	ifp->if_timer = 0;
1491 
1492 	/*
1493 	 * Cancel stats updater.
1494 	 */
1495 	callout_stop(&sc->fxp_stat_timer);
1496 
1497 	/*
1498 	 * Issue software reset, which also unloads the microcode.
1499 	 */
1500 	sc->flags &= ~FXP_FLAG_UCODE;
1501 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1502 	DELAY(50);
1503 
1504 	/*
1505 	 * Release any xmit buffers.
1506 	 */
1507 	txp = sc->cbl_base;
1508 	if (txp != NULL) {
1509 		for (i = 0; i < FXP_NTXCB; i++) {
1510 			if (txp[i].mb_head != NULL) {
1511 				m_freem(txp[i].mb_head);
1512 				txp[i].mb_head = NULL;
1513 			}
1514 		}
1515 	}
1516 	sc->tx_queued = 0;
1517 
1518 	/*
1519 	 * Free all the receive buffers then reallocate/reinitialize
1520 	 */
1521 	if (sc->rfa_headm != NULL)
1522 		m_freem(sc->rfa_headm);
1523 	sc->rfa_headm = NULL;
1524 	sc->rfa_tailm = NULL;
1525 	for (i = 0; i < FXP_NRFABUFS; i++) {
1526 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1527 			/*
1528 			 * This "can't happen" - we're at splimp()
1529 			 * and we just freed all the buffers we need
1530 			 * above.
1531 			 */
1532 			panic("fxp_stop: no buffers!");
1533 		}
1534 	}
1535 }
1536 
1537 /*
1538  * Watchdog/transmission transmit timeout handler. Called when a
1539  * transmission is started on the interface, but no interrupt is
1540  * received before the timeout. This usually indicates that the
1541  * card has wedged for some reason.
1542  */
1543 static void
1544 fxp_watchdog(struct ifnet *ifp)
1545 {
1546 	if_printf(ifp, "device timeout\n");
1547 	ifp->if_oerrors++;
1548 	fxp_init(ifp->if_softc);
1549 }
1550 
1551 static void
1552 fxp_init(void *xsc)
1553 {
1554 	struct fxp_softc *sc = xsc;
1555 	struct ifnet *ifp = &sc->arpcom.ac_if;
1556 	struct fxp_cb_config *cbp;
1557 	struct fxp_cb_ias *cb_ias;
1558 	struct fxp_cb_tx *txp;
1559 	struct fxp_cb_mcs *mcsp;
1560 	int i, prm, s;
1561 
1562 	s = splimp();
1563 	/*
1564 	 * Cancel any pending I/O
1565 	 */
1566 	fxp_stop(sc);
1567 
1568 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1569 
1570 	/*
1571 	 * Initialize base of CBL and RFA memory. Loading with zero
1572 	 * sets it up for regular linear addressing.
1573 	 */
1574 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1575 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1576 
1577 	fxp_scb_wait(sc);
1578 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1579 
1580 	/*
1581 	 * Initialize base of dump-stats buffer.
1582 	 */
1583 	fxp_scb_wait(sc);
1584 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1585 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1586 
1587 	/*
1588 	 * Attempt to load microcode if requested.
1589 	 */
1590 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1591 		fxp_load_ucode(sc);
1592 
1593 	/*
1594 	 * Initialize the multicast address list.
1595 	 */
1596 	if (fxp_mc_addrs(sc)) {
1597 		mcsp = sc->mcsp;
1598 		mcsp->cb_status = 0;
1599 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1600 		mcsp->link_addr = -1;
1601 		/*
1602 	 	 * Start the multicast setup command.
1603 		 */
1604 		fxp_scb_wait(sc);
1605 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1606 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1607 		/* ...and wait for it to complete. */
1608 		fxp_dma_wait(&mcsp->cb_status, sc);
1609 	}
1610 
1611 	/*
1612 	 * We temporarily use memory that contains the TxCB list to
1613 	 * construct the config CB. The TxCB list memory is rebuilt
1614 	 * later.
1615 	 */
1616 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1617 
1618 	/*
1619 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1620 	 * zero and must be one bits in this structure and this is the easiest
1621 	 * way to initialize them all to proper values.
1622 	 */
1623 	bcopy(fxp_cb_config_template,
1624 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1625 		sizeof(fxp_cb_config_template));
1626 
1627 	cbp->cb_status =	0;
1628 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1629 	cbp->link_addr =	-1;	/* (no) next command */
1630 	cbp->byte_count =	22;	/* (22) bytes to config */
1631 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1632 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1633 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1634 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1635 	cbp->type_enable =	0;	/* actually reserved */
1636 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1637 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1638 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1639 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1640 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1641 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1642 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1643 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1644 	cbp->ci_int =		1;	/* interrupt on CU idle */
1645 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1646 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1647 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1648 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1649 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1650 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1651 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1652 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1653 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1654 	cbp->csma_dis =		0;	/* (don't) disable link */
1655 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1656 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1657 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1658 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1659 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1660 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1661 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1662 	cbp->loopback =		0;	/* (don't) loopback */
1663 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1664 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1665 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1666 	cbp->promiscuous =	prm;	/* promiscuous mode */
1667 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1668 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1669 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1670 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1671 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1672 
1673 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1674 	cbp->padding =		1;	/* (do) pad short tx packets */
1675 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1676 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1677 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1678 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1679 					/* must set wake_en in PMCSR also */
1680 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1681 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1682 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1683 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1684 
1685 	if (sc->revision == FXP_REV_82557) {
1686 		/*
1687 		 * The 82557 has no hardware flow control, the values
1688 		 * below are the defaults for the chip.
1689 		 */
1690 		cbp->fc_delay_lsb =	0;
1691 		cbp->fc_delay_msb =	0x40;
1692 		cbp->pri_fc_thresh =	3;
1693 		cbp->tx_fc_dis =	0;
1694 		cbp->rx_fc_restop =	0;
1695 		cbp->rx_fc_restart =	0;
1696 		cbp->fc_filter =	0;
1697 		cbp->pri_fc_loc =	1;
1698 	} else {
1699 		cbp->fc_delay_lsb =	0x1f;
1700 		cbp->fc_delay_msb =	0x01;
1701 		cbp->pri_fc_thresh =	3;
1702 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1703 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1704 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1705 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1706 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1707 	}
1708 
1709 	/*
1710 	 * Start the config command/DMA.
1711 	 */
1712 	fxp_scb_wait(sc);
1713 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1714 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1715 	/* ...and wait for it to complete. */
1716 	fxp_dma_wait(&cbp->cb_status, sc);
1717 
1718 	/*
1719 	 * Now initialize the station address. Temporarily use the TxCB
1720 	 * memory area like we did above for the config CB.
1721 	 */
1722 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1723 	cb_ias->cb_status = 0;
1724 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1725 	cb_ias->link_addr = -1;
1726 	bcopy(sc->arpcom.ac_enaddr,
1727 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1728 	    sizeof(sc->arpcom.ac_enaddr));
1729 
1730 	/*
1731 	 * Start the IAS (Individual Address Setup) command/DMA.
1732 	 */
1733 	fxp_scb_wait(sc);
1734 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1735 	/* ...and wait for it to complete. */
1736 	fxp_dma_wait(&cb_ias->cb_status, sc);
1737 
1738 	/*
1739 	 * Initialize transmit control block (TxCB) list.
1740 	 */
1741 
1742 	txp = sc->cbl_base;
1743 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1744 	for (i = 0; i < FXP_NTXCB; i++) {
1745 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1746 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1747 		txp[i].link_addr =
1748 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1749 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1750 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1751 		else
1752 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1753 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1754 	}
1755 	/*
1756 	 * Set the suspend flag on the first TxCB and start the control
1757 	 * unit. It will execute the NOP and then suspend.
1758 	 */
1759 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1760 	sc->cbl_first = sc->cbl_last = txp;
1761 	sc->tx_queued = 1;
1762 
1763 	fxp_scb_wait(sc);
1764 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1765 
1766 	/*
1767 	 * Initialize receiver buffer area - RFA.
1768 	 */
1769 	fxp_scb_wait(sc);
1770 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1771 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1772 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1773 
1774 	/*
1775 	 * Set current media.
1776 	 */
1777 	if (sc->miibus != NULL)
1778 		mii_mediachg(device_get_softc(sc->miibus));
1779 
1780 	ifp->if_flags |= IFF_RUNNING;
1781 	ifp->if_flags &= ~IFF_OACTIVE;
1782 
1783 	/*
1784 	 * Enable interrupts.
1785 	 */
1786 #ifdef DEVICE_POLLING
1787 	/*
1788 	 * ... but only do that if we are not polling. And because (presumably)
1789 	 * the default is interrupts on, we need to disable them explicitly!
1790 	 */
1791 	if ( ifp->if_flags & IFF_POLLING )
1792 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1793 	else
1794 #endif /* DEVICE_POLLING */
1795 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1796 	splx(s);
1797 
1798 	/*
1799 	 * Start stats updater.
1800 	 */
1801 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1802 }
1803 
1804 static int
1805 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1806 {
1807 
1808 	return (0);
1809 }
1810 
1811 static void
1812 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1813 {
1814 
1815 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1816 }
1817 
1818 /*
1819  * Change media according to request.
1820  */
1821 static int
1822 fxp_ifmedia_upd(struct ifnet *ifp)
1823 {
1824 	struct fxp_softc *sc = ifp->if_softc;
1825 	struct mii_data *mii;
1826 
1827 	mii = device_get_softc(sc->miibus);
1828 	mii_mediachg(mii);
1829 	return (0);
1830 }
1831 
1832 /*
1833  * Notify the world which media we're using.
1834  */
1835 static void
1836 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1837 {
1838 	struct fxp_softc *sc = ifp->if_softc;
1839 	struct mii_data *mii;
1840 
1841 	mii = device_get_softc(sc->miibus);
1842 	mii_pollstat(mii);
1843 	ifmr->ifm_active = mii->mii_media_active;
1844 	ifmr->ifm_status = mii->mii_media_status;
1845 
1846 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1847 		sc->cu_resume_bug = 1;
1848 	else
1849 		sc->cu_resume_bug = 0;
1850 }
1851 
1852 /*
1853  * Add a buffer to the end of the RFA buffer list.
1854  * Return 0 if successful, 1 for failure. A failure results in
1855  * adding the 'oldm' (if non-NULL) on to the end of the list -
1856  * tossing out its old contents and recycling it.
1857  * The RFA struct is stuck at the beginning of mbuf cluster and the
1858  * data pointer is fixed up to point just past it.
1859  */
1860 static int
1861 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1862 {
1863 	u_int32_t v;
1864 	struct mbuf *m;
1865 	struct fxp_rfa *rfa, *p_rfa;
1866 
1867 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1868 	if (m == NULL) { /* try to recycle the old mbuf instead */
1869 		if (oldm == NULL)
1870 			return 1;
1871 		m = oldm;
1872 		m->m_data = m->m_ext.ext_buf;
1873 	}
1874 
1875 	/*
1876 	 * Move the data pointer up so that the incoming data packet
1877 	 * will be 32-bit aligned.
1878 	 */
1879 	m->m_data += RFA_ALIGNMENT_FUDGE;
1880 
1881 	/*
1882 	 * Get a pointer to the base of the mbuf cluster and move
1883 	 * data start past it.
1884 	 */
1885 	rfa = mtod(m, struct fxp_rfa *);
1886 	m->m_data += sizeof(struct fxp_rfa);
1887 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1888 
1889 	/*
1890 	 * Initialize the rest of the RFA.  Note that since the RFA
1891 	 * is misaligned, we cannot store values directly.  Instead,
1892 	 * we use an optimized, inline copy.
1893 	 */
1894 
1895 	rfa->rfa_status = 0;
1896 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1897 	rfa->actual_size = 0;
1898 
1899 	v = -1;
1900 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1901 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1902 
1903 	/*
1904 	 * If there are other buffers already on the list, attach this
1905 	 * one to the end by fixing up the tail to point to this one.
1906 	 */
1907 	if (sc->rfa_headm != NULL) {
1908 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1909 		    RFA_ALIGNMENT_FUDGE);
1910 		sc->rfa_tailm->m_next = m;
1911 		v = vtophys(rfa);
1912 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1913 		p_rfa->rfa_control = 0;
1914 	} else {
1915 		sc->rfa_headm = m;
1916 	}
1917 	sc->rfa_tailm = m;
1918 
1919 	return (m == oldm);
1920 }
1921 
1922 static volatile int
1923 fxp_miibus_readreg(device_t dev, int phy, int reg)
1924 {
1925 	struct fxp_softc *sc = device_get_softc(dev);
1926 	int count = 10000;
1927 	int value;
1928 
1929 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1930 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1931 
1932 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1933 	    && count--)
1934 		DELAY(10);
1935 
1936 	if (count <= 0)
1937 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1938 
1939 	return (value & 0xffff);
1940 }
1941 
1942 static void
1943 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1944 {
1945 	struct fxp_softc *sc = device_get_softc(dev);
1946 	int count = 10000;
1947 
1948 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1949 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1950 	    (value & 0xffff));
1951 
1952 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1953 	    count--)
1954 		DELAY(10);
1955 
1956 	if (count <= 0)
1957 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1958 }
1959 
1960 static int
1961 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1962 {
1963 	struct fxp_softc *sc = ifp->if_softc;
1964 	struct ifreq *ifr = (struct ifreq *)data;
1965 	struct mii_data *mii;
1966 	int s, error = 0;
1967 
1968 	s = splimp();
1969 
1970 	switch (command) {
1971 
1972 	case SIOCSIFFLAGS:
1973 		if (ifp->if_flags & IFF_ALLMULTI)
1974 			sc->flags |= FXP_FLAG_ALL_MCAST;
1975 		else
1976 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1977 
1978 		/*
1979 		 * If interface is marked up and not running, then start it.
1980 		 * If it is marked down and running, stop it.
1981 		 * XXX If it's up then re-initialize it. This is so flags
1982 		 * such as IFF_PROMISC are handled.
1983 		 */
1984 		if (ifp->if_flags & IFF_UP) {
1985 			fxp_init(sc);
1986 		} else {
1987 			if (ifp->if_flags & IFF_RUNNING)
1988 				fxp_stop(sc);
1989 		}
1990 		break;
1991 
1992 	case SIOCADDMULTI:
1993 	case SIOCDELMULTI:
1994 		if (ifp->if_flags & IFF_ALLMULTI)
1995 			sc->flags |= FXP_FLAG_ALL_MCAST;
1996 		else
1997 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1998 		/*
1999 		 * Multicast list has changed; set the hardware filter
2000 		 * accordingly.
2001 		 */
2002 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2003 			fxp_mc_setup(sc);
2004 		/*
2005 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2006 		 * again rather than else {}.
2007 		 */
2008 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2009 			fxp_init(sc);
2010 		error = 0;
2011 		break;
2012 
2013 	case SIOCSIFMEDIA:
2014 	case SIOCGIFMEDIA:
2015 		if (sc->miibus != NULL) {
2016 			mii = device_get_softc(sc->miibus);
2017                         error = ifmedia_ioctl(ifp, ifr,
2018                             &mii->mii_media, command);
2019 		} else {
2020                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2021 		}
2022 		break;
2023 
2024 	default:
2025 		error = ether_ioctl(ifp, command, data);
2026 		break;
2027 	}
2028 	splx(s);
2029 	return (error);
2030 }
2031 
2032 /*
2033  * Fill in the multicast address list and return number of entries.
2034  */
2035 static int
2036 fxp_mc_addrs(struct fxp_softc *sc)
2037 {
2038 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2039 	struct ifnet *ifp = &sc->arpcom.ac_if;
2040 	struct ifmultiaddr *ifma;
2041 	int nmcasts;
2042 
2043 	nmcasts = 0;
2044 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2045 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2046 			if (ifma->ifma_addr->sa_family != AF_LINK)
2047 				continue;
2048 			if (nmcasts >= MAXMCADDR) {
2049 				sc->flags |= FXP_FLAG_ALL_MCAST;
2050 				nmcasts = 0;
2051 				break;
2052 			}
2053 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2054 			    (void *)(uintptr_t)(volatile void *)
2055 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2056 			nmcasts++;
2057 		}
2058 	}
2059 	mcsp->mc_cnt = nmcasts * 6;
2060 	return (nmcasts);
2061 }
2062 
2063 /*
2064  * Program the multicast filter.
2065  *
2066  * We have an artificial restriction that the multicast setup command
2067  * must be the first command in the chain, so we take steps to ensure
2068  * this. By requiring this, it allows us to keep up the performance of
2069  * the pre-initialized command ring (esp. link pointers) by not actually
2070  * inserting the mcsetup command in the ring - i.e. its link pointer
2071  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2072  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2073  * lead into the regular TxCB ring when it completes.
2074  *
2075  * This function must be called at splimp.
2076  */
2077 static void
2078 fxp_mc_setup(struct fxp_softc *sc)
2079 {
2080 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2081 	struct ifnet *ifp = &sc->arpcom.ac_if;
2082 	int count;
2083 
2084 	/*
2085 	 * If there are queued commands, we must wait until they are all
2086 	 * completed. If we are already waiting, then add a NOP command
2087 	 * with interrupt option so that we're notified when all commands
2088 	 * have been completed - fxp_start() ensures that no additional
2089 	 * TX commands will be added when need_mcsetup is true.
2090 	 */
2091 	if (sc->tx_queued) {
2092 		struct fxp_cb_tx *txp;
2093 
2094 		/*
2095 		 * need_mcsetup will be true if we are already waiting for the
2096 		 * NOP command to be completed (see below). In this case, bail.
2097 		 */
2098 		if (sc->need_mcsetup)
2099 			return;
2100 		sc->need_mcsetup = 1;
2101 
2102 		/*
2103 		 * Add a NOP command with interrupt so that we are notified
2104 		 * when all TX commands have been processed.
2105 		 */
2106 		txp = sc->cbl_last->next;
2107 		txp->mb_head = NULL;
2108 		txp->cb_status = 0;
2109 		txp->cb_command = FXP_CB_COMMAND_NOP |
2110 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2111 		/*
2112 		 * Advance the end of list forward.
2113 		 */
2114 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2115 		sc->cbl_last = txp;
2116 		sc->tx_queued++;
2117 		/*
2118 		 * Issue a resume in case the CU has just suspended.
2119 		 */
2120 		fxp_scb_wait(sc);
2121 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2122 		/*
2123 		 * Set a 5 second timer just in case we don't hear from the
2124 		 * card again.
2125 		 */
2126 		ifp->if_timer = 5;
2127 
2128 		return;
2129 	}
2130 	sc->need_mcsetup = 0;
2131 
2132 	/*
2133 	 * Initialize multicast setup descriptor.
2134 	 */
2135 	mcsp->next = sc->cbl_base;
2136 	mcsp->mb_head = NULL;
2137 	mcsp->cb_status = 0;
2138 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2139 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2140 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2141 	(void) fxp_mc_addrs(sc);
2142 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2143 	sc->tx_queued = 1;
2144 
2145 	/*
2146 	 * Wait until command unit is not active. This should never
2147 	 * be the case when nothing is queued, but make sure anyway.
2148 	 */
2149 	count = 100;
2150 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2151 	    FXP_SCB_CUS_ACTIVE && --count)
2152 		DELAY(10);
2153 	if (count == 0) {
2154 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2155 		return;
2156 	}
2157 
2158 	/*
2159 	 * Start the multicast setup command.
2160 	 */
2161 	fxp_scb_wait(sc);
2162 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2163 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2164 
2165 	ifp->if_timer = 2;
2166 	return;
2167 }
2168 
2169 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2170 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2171 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2172 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2173 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2174 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2175 
2176 #define UCODE(x)	x, sizeof(x)
2177 
2178 struct ucode {
2179 	u_int32_t	revision;
2180 	u_int32_t	*ucode;
2181 	int		length;
2182 	u_short		int_delay_offset;
2183 	u_short		bundle_max_offset;
2184 } ucode_table[] = {
2185 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2186 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2187 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2188 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2189 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2190 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2191 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2192 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2193 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2194 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2195 	{ 0, NULL, 0, 0, 0 }
2196 };
2197 
2198 static void
2199 fxp_load_ucode(struct fxp_softc *sc)
2200 {
2201 	struct ucode *uc;
2202 	struct fxp_cb_ucode *cbp;
2203 
2204 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2205 		if (sc->revision == uc->revision)
2206 			break;
2207 	if (uc->ucode == NULL)
2208 		return;
2209 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2210 	cbp->cb_status = 0;
2211 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2212 	cbp->link_addr = -1;    	/* (no) next command */
2213 	memcpy(cbp->ucode, uc->ucode, uc->length);
2214 	if (uc->int_delay_offset)
2215 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2216 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2217 	if (uc->bundle_max_offset)
2218 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2219 		    sc->tunable_bundle_max;
2220 	/*
2221 	 * Download the ucode to the chip.
2222 	 */
2223 	fxp_scb_wait(sc);
2224 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2225 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2226 	/* ...and wait for it to complete. */
2227 	fxp_dma_wait(&cbp->cb_status, sc);
2228 	if_printf(&sc->arpcom.ac_if,
2229 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2230 	    sc->tunable_int_delay,
2231 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2232 	sc->flags |= FXP_FLAG_UCODE;
2233 }
2234 
2235 static int
2236 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2237 {
2238 	int error, value;
2239 
2240 	value = *(int *)arg1;
2241 	error = sysctl_handle_int(oidp, &value, 0, req);
2242 	if (error || !req->newptr)
2243 		return (error);
2244 	if (value < low || value > high)
2245 		return (EINVAL);
2246 	*(int *)arg1 = value;
2247 	return (0);
2248 }
2249 
2250 /*
2251  * Interrupt delay is expressed in microseconds, a multiplier is used
2252  * to convert this to the appropriate clock ticks before using.
2253  */
2254 static int
2255 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2256 {
2257 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2258 }
2259 
2260 static int
2261 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2262 {
2263 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2264 }
2265