xref: /dflybsd-src/sys/dev/netif/fxp/if_fxp.c (revision be2f29ea826754c93f8d3b3d12a446637bfb0692)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.52 2008/05/25 09:44:31 sephe Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include "opt_polling.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/interrupt.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 #include <sys/thread2.h>
47 
48 #include <net/if.h>
49 #include <net/ifq_var.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #ifdef NS
54 #include <netns/ns.h>
55 #include <netns/ns_if.h>
56 #endif
57 
58 #include <net/bpf.h>
59 #include <sys/sockio.h>
60 #include <sys/bus.h>
61 #include <sys/rman.h>
62 
63 #include <net/ethernet.h>
64 #include <net/if_arp.h>
65 
66 #include <vm/vm.h>		/* for vtophys */
67 #include <vm/pmap.h>		/* for vtophys */
68 
69 #include <net/if_types.h>
70 #include <net/vlan/if_vlan_var.h>
71 
72 #include <bus/pci/pcivar.h>
73 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
74 
75 #include "../mii_layer/mii.h"
76 #include "../mii_layer/miivar.h"
77 
78 #include "if_fxpreg.h"
79 #include "if_fxpvar.h"
80 #include "rcvbundl.h"
81 
82 #include "miibus_if.h"
83 
84 /*
85  * NOTE!  On the Alpha, we have an alignment constraint.  The
86  * card DMAs the packet immediately following the RFA.  However,
87  * the first thing in the packet is a 14-byte Ethernet header.
88  * This means that the packet is misaligned.  To compensate,
89  * we actually offset the RFA 2 bytes into the cluster.  This
90  * alignes the packet after the Ethernet header at a 32-bit
91  * boundary.  HOWEVER!  This means that the RFA is misaligned!
92  */
93 #define	RFA_ALIGNMENT_FUDGE	2
94 
95 /*
96  * Set initial transmit threshold at 64 (512 bytes). This is
97  * increased by 64 (512 bytes) at a time, to maximum of 192
98  * (1536 bytes), if an underrun occurs.
99  */
100 static int tx_threshold = 64;
101 
102 /*
103  * The configuration byte map has several undefined fields which
104  * must be one or must be zero.  Set up a template for these bits
105  * only, (assuming a 82557 chip) leaving the actual configuration
106  * to fxp_init.
107  *
108  * See struct fxp_cb_config for the bit definitions.
109  */
110 static u_char fxp_cb_config_template[] = {
111 	0x0, 0x0,		/* cb_status */
112 	0x0, 0x0,		/* cb_command */
113 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
114 	0x0,	/*  0 */
115 	0x0,	/*  1 */
116 	0x0,	/*  2 */
117 	0x0,	/*  3 */
118 	0x0,	/*  4 */
119 	0x0,	/*  5 */
120 	0x32,	/*  6 */
121 	0x0,	/*  7 */
122 	0x0,	/*  8 */
123 	0x0,	/*  9 */
124 	0x6,	/* 10 */
125 	0x0,	/* 11 */
126 	0x0,	/* 12 */
127 	0x0,	/* 13 */
128 	0xf2,	/* 14 */
129 	0x48,	/* 15 */
130 	0x0,	/* 16 */
131 	0x40,	/* 17 */
132 	0xf0,	/* 18 */
133 	0x0,	/* 19 */
134 	0x3f,	/* 20 */
135 	0x5	/* 21 */
136 };
137 
138 struct fxp_ident {
139 	u_int16_t	devid;
140 	int16_t		revid;		/* -1 matches anything */
141 	char 		*name;
142 };
143 
144 /*
145  * Claim various Intel PCI device identifiers for this driver.  The
146  * sub-vendor and sub-device field are extensively used to identify
147  * particular variants, but we don't currently differentiate between
148  * them.
149  */
150 static struct fxp_ident fxp_ident_table[] = {
151      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
152      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
153      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
162      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
163      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
164      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
165      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
168      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
169      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
170      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
171      { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
172      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
173      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
174      { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
175      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
176      { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
177      { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
178      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
179      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
180      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
181      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
182      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
183      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
184      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
185      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
186      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
187      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
188      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
189      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
190      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
191      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
192      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
193      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
194      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
195      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
196      { 0,	-1,	NULL },
197 };
198 
199 static int		fxp_probe(device_t dev);
200 static int		fxp_attach(device_t dev);
201 static int		fxp_detach(device_t dev);
202 static int		fxp_shutdown(device_t dev);
203 static int		fxp_suspend(device_t dev);
204 static int		fxp_resume(device_t dev);
205 
206 static void		fxp_intr(void *xsc);
207 static void		fxp_intr_body(struct fxp_softc *sc,
208 				u_int8_t statack, int count);
209 
210 static void 		fxp_init(void *xsc);
211 static void 		fxp_tick(void *xsc);
212 static void		fxp_powerstate_d0(device_t dev);
213 static void 		fxp_start(struct ifnet *ifp);
214 static void		fxp_stop(struct fxp_softc *sc);
215 static void 		fxp_release(device_t dev);
216 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
217 			    caddr_t data, struct ucred *);
218 static void 		fxp_watchdog(struct ifnet *ifp);
219 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
220 static int		fxp_mc_addrs(struct fxp_softc *sc);
221 static void		fxp_mc_setup(struct fxp_softc *sc);
222 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
223 			    int autosize);
224 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
225 			    u_int16_t data);
226 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
227 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
228 			    int offset, int words);
229 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
230 			    int offset, int words);
231 static int		fxp_ifmedia_upd(struct ifnet *ifp);
232 static void		fxp_ifmedia_sts(struct ifnet *ifp,
233 			    struct ifmediareq *ifmr);
234 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
235 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
236 			    struct ifmediareq *ifmr);
237 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
238 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
239 			    int value);
240 static void		fxp_load_ucode(struct fxp_softc *sc);
241 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
242 			    int low, int high);
243 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
244 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
245 #ifdef DEVICE_POLLING
246 static poll_handler_t fxp_poll;
247 #endif
248 
249 static void		fxp_lwcopy(volatile u_int32_t *src,
250 			    volatile u_int32_t *dst);
251 static void 		fxp_scb_wait(struct fxp_softc *sc);
252 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
253 static void		fxp_dma_wait(volatile u_int16_t *status,
254 			    struct fxp_softc *sc);
255 
256 static device_method_t fxp_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		fxp_probe),
259 	DEVMETHOD(device_attach,	fxp_attach),
260 	DEVMETHOD(device_detach,	fxp_detach),
261 	DEVMETHOD(device_shutdown,	fxp_shutdown),
262 	DEVMETHOD(device_suspend,	fxp_suspend),
263 	DEVMETHOD(device_resume,	fxp_resume),
264 
265 	/* MII interface */
266 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268 
269 	{ 0, 0 }
270 };
271 
272 static driver_t fxp_driver = {
273 	"fxp",
274 	fxp_methods,
275 	sizeof(struct fxp_softc),
276 };
277 
278 static devclass_t fxp_devclass;
279 
280 DECLARE_DUMMY_MODULE(if_fxp);
281 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
282 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
283 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
284 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
285 
286 static int fxp_rnr;
287 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
288 
289 /*
290  * Copy a 16-bit aligned 32-bit quantity.
291  */
292 static void
293 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
294 {
295 #ifdef __i386__
296 	*dst = *src;
297 #else
298 	volatile u_int16_t *a = (volatile u_int16_t *)src;
299 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
300 
301 	b[0] = a[0];
302 	b[1] = a[1];
303 #endif
304 }
305 
306 /*
307  * Wait for the previous command to be accepted (but not necessarily
308  * completed).
309  */
310 static void
311 fxp_scb_wait(struct fxp_softc *sc)
312 {
313 	int i = 10000;
314 
315 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
316 		DELAY(2);
317 	if (i == 0) {
318 		if_printf(&sc->arpcom.ac_if,
319 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
320 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
321 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
322 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
323 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
324 	}
325 }
326 
327 static void
328 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
329 {
330 
331 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
332 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
333 		fxp_scb_wait(sc);
334 	}
335 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
336 }
337 
338 static void
339 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
340 {
341 	int i = 10000;
342 
343 	while (!(*status & FXP_CB_STATUS_C) && --i)
344 		DELAY(2);
345 	if (i == 0)
346 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
347 }
348 
349 /*
350  * Return identification string if this is device is ours.
351  */
352 static int
353 fxp_probe(device_t dev)
354 {
355 	u_int16_t devid;
356 	u_int8_t revid;
357 	struct fxp_ident *ident;
358 
359 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
360 		devid = pci_get_device(dev);
361 		revid = pci_get_revid(dev);
362 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
363 			if (ident->devid == devid &&
364 			    (ident->revid == revid || ident->revid == -1)) {
365 				device_set_desc(dev, ident->name);
366 				return (0);
367 			}
368 		}
369 	}
370 	return (ENXIO);
371 }
372 
373 static void
374 fxp_powerstate_d0(device_t dev)
375 {
376 	u_int32_t iobase, membase, irq;
377 
378 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
379 		/* Save important PCI config data. */
380 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
381 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
382 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
383 
384 		/* Reset the power state. */
385 		device_printf(dev, "chip is in D%d power mode "
386 		    "-- setting to D0\n", pci_get_powerstate(dev));
387 
388 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
389 
390 		/* Restore PCI config data. */
391 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
392 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
393 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
394 	}
395 }
396 
397 static int
398 fxp_attach(device_t dev)
399 {
400 	int error = 0;
401 	struct fxp_softc *sc = device_get_softc(dev);
402 	struct ifnet *ifp;
403 	u_int32_t val;
404 	u_int16_t data;
405 	int i, rid, m1, m2, prefer_iomap;
406 
407 	callout_init(&sc->fxp_stat_timer);
408 	sysctl_ctx_init(&sc->sysctl_ctx);
409 
410 	/*
411 	 * Enable bus mastering. Enable memory space too, in case
412 	 * BIOS/Prom forgot about it.
413 	 */
414 	pci_enable_busmaster(dev);
415 	pci_enable_io(dev, SYS_RES_MEMORY);
416 	val = pci_read_config(dev, PCIR_COMMAND, 2);
417 
418 	fxp_powerstate_d0(dev);
419 
420 	/*
421 	 * Figure out which we should try first - memory mapping or i/o mapping?
422 	 * We default to memory mapping. Then we accept an override from the
423 	 * command line. Then we check to see which one is enabled.
424 	 */
425 	m1 = PCIM_CMD_MEMEN;
426 	m2 = PCIM_CMD_PORTEN;
427 	prefer_iomap = 0;
428 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
429 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
430 		m1 = PCIM_CMD_PORTEN;
431 		m2 = PCIM_CMD_MEMEN;
432 	}
433 
434 	if (val & m1) {
435 		sc->rtp =
436 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
437 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
438 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
439 		    RF_ACTIVE);
440 	}
441 	if (sc->mem == NULL && (val & m2)) {
442 		sc->rtp =
443 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
444 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
445 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
446             	    RF_ACTIVE);
447 	}
448 
449 	if (!sc->mem) {
450 		device_printf(dev, "could not map device registers\n");
451 		error = ENXIO;
452 		goto fail;
453         }
454 	if (bootverbose) {
455 		device_printf(dev, "using %s space register mapping\n",
456 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
457 	}
458 
459 	sc->sc_st = rman_get_bustag(sc->mem);
460 	sc->sc_sh = rman_get_bushandle(sc->mem);
461 
462 	/*
463 	 * Allocate our interrupt.
464 	 */
465 	rid = 0;
466 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
467 	    RF_SHAREABLE | RF_ACTIVE);
468 	if (sc->irq == NULL) {
469 		device_printf(dev, "could not map interrupt\n");
470 		error = ENXIO;
471 		goto fail;
472 	}
473 
474 	/*
475 	 * Reset to a stable state.
476 	 */
477 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
478 	DELAY(10);
479 
480 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
481 	    M_DEVBUF, M_WAITOK | M_ZERO);
482 
483 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
484 	    M_WAITOK | M_ZERO);
485 
486 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
487 
488 	/*
489 	 * Pre-allocate our receive buffers.
490 	 */
491 	for (i = 0; i < FXP_NRFABUFS; i++) {
492 		if (fxp_add_rfabuf(sc, NULL) != 0) {
493 			goto failmem;
494 		}
495 	}
496 
497 	/*
498 	 * Find out how large of an SEEPROM we have.
499 	 */
500 	fxp_autosize_eeprom(sc);
501 
502 	/*
503 	 * Determine whether we must use the 503 serial interface.
504 	 */
505 	fxp_read_eeprom(sc, &data, 6, 1);
506 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
507 	    (data & FXP_PHY_SERIAL_ONLY))
508 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
509 
510 	/*
511 	 * Create the sysctl tree
512 	 */
513 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
514 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
515 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
516 	if (sc->sysctl_tree == NULL)
517 		goto fail;
518 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
519 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
520 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
521 	    "FXP driver receive interrupt microcode bundling delay");
522 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
523 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
524 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
525 	    "FXP driver receive interrupt microcode bundle size limit");
526 
527 	/*
528 	 * Pull in device tunables.
529 	 */
530 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
531 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
532 	resource_int_value(device_get_name(dev), device_get_unit(dev),
533 	    "int_delay", &sc->tunable_int_delay);
534 	resource_int_value(device_get_name(dev), device_get_unit(dev),
535 	    "bundle_max", &sc->tunable_bundle_max);
536 
537 	/*
538 	 * Find out the chip revision; lump all 82557 revs together.
539 	 */
540 	fxp_read_eeprom(sc, &data, 5, 1);
541 	if ((data >> 8) == 1)
542 		sc->revision = FXP_REV_82557;
543 	else
544 		sc->revision = pci_get_revid(dev);
545 
546 	/*
547 	 * Enable workarounds for certain chip revision deficiencies.
548 	 *
549 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
550 	 * some systems based a normal 82559 design, have a defect where
551 	 * the chip can cause a PCI protocol violation if it receives
552 	 * a CU_RESUME command when it is entering the IDLE state.  The
553 	 * workaround is to disable Dynamic Standby Mode, so the chip never
554 	 * deasserts CLKRUN#, and always remains in an active state.
555 	 *
556 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
557 	 */
558 	i = pci_get_device(dev);
559 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
560 	    sc->revision >= FXP_REV_82559_A0) {
561 		fxp_read_eeprom(sc, &data, 10, 1);
562 		if (data & 0x02) {			/* STB enable */
563 			u_int16_t cksum;
564 			int i;
565 
566 			device_printf(dev,
567 			    "Disabling dynamic standby mode in EEPROM\n");
568 			data &= ~0x02;
569 			fxp_write_eeprom(sc, &data, 10, 1);
570 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
571 			cksum = 0;
572 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
573 				fxp_read_eeprom(sc, &data, i, 1);
574 				cksum += data;
575 			}
576 			i = (1 << sc->eeprom_size) - 1;
577 			cksum = 0xBABA - cksum;
578 			fxp_read_eeprom(sc, &data, i, 1);
579 			fxp_write_eeprom(sc, &cksum, i, 1);
580 			device_printf(dev,
581 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
582 			    i, data, cksum);
583 #if 1
584 			/*
585 			 * If the user elects to continue, try the software
586 			 * workaround, as it is better than nothing.
587 			 */
588 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
589 #endif
590 		}
591 	}
592 
593 	/*
594 	 * If we are not a 82557 chip, we can enable extended features.
595 	 */
596 	if (sc->revision != FXP_REV_82557) {
597 		/*
598 		 * If MWI is enabled in the PCI configuration, and there
599 		 * is a valid cacheline size (8 or 16 dwords), then tell
600 		 * the board to turn on MWI.
601 		 */
602 		if (val & PCIM_CMD_MWRICEN &&
603 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
604 			sc->flags |= FXP_FLAG_MWI_ENABLE;
605 
606 		/* turn on the extended TxCB feature */
607 		sc->flags |= FXP_FLAG_EXT_TXCB;
608 
609 		/* enable reception of long frames for VLAN */
610 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
611 	}
612 
613 	/*
614 	 * Read MAC address.
615 	 */
616 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
617 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
618 		device_printf(dev, "10Mbps\n");
619 	if (bootverbose) {
620 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
621 		    pci_get_vendor(dev), pci_get_device(dev),
622 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
623 		    pci_get_revid(dev));
624 		fxp_read_eeprom(sc, &data, 10, 1);
625 		device_printf(dev, "Dynamic Standby mode is %s\n",
626 		    data & 0x02 ? "enabled" : "disabled");
627 	}
628 
629 	/*
630 	 * If this is only a 10Mbps device, then there is no MII, and
631 	 * the PHY will use a serial interface instead.
632 	 *
633 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
634 	 * doesn't have a programming interface of any sort.  The
635 	 * media is sensed automatically based on how the link partner
636 	 * is configured.  This is, in essence, manual configuration.
637 	 */
638 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
639 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
640 		    fxp_serial_ifmedia_sts);
641 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
642 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
643 	} else {
644 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
645 		    fxp_ifmedia_sts)) {
646 	                device_printf(dev, "MII without any PHY!\n");
647 			error = ENXIO;
648 			goto fail;
649 		}
650 	}
651 
652 	ifp = &sc->arpcom.ac_if;
653 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
654 	ifp->if_baudrate = 100000000;
655 	ifp->if_init = fxp_init;
656 	ifp->if_softc = sc;
657 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
658 	ifp->if_ioctl = fxp_ioctl;
659 	ifp->if_start = fxp_start;
660 #ifdef DEVICE_POLLING
661 	ifp->if_poll = fxp_poll;
662 #endif
663 	ifp->if_watchdog = fxp_watchdog;
664 
665 	/*
666 	 * Attach the interface.
667 	 */
668 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
669 
670 	/*
671 	 * Tell the upper layer(s) we support long frames.
672 	 */
673 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
674 
675 	/*
676 	 * Let the system queue as many packets as we have available
677 	 * TX descriptors.
678 	 */
679 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
680 	ifq_set_ready(&ifp->if_snd);
681 
682 	error = bus_setup_intr(dev, sc->irq, INTR_NETSAFE,
683 			       fxp_intr, sc, &sc->ih,
684 			       ifp->if_serializer);
685 	if (error) {
686 		ether_ifdetach(ifp);
687 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
688 			ifmedia_removeall(&sc->sc_media);
689 		device_printf(dev, "could not setup irq\n");
690 		goto fail;
691 	}
692 
693 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->irq));
694 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
695 
696 	return (0);
697 
698 failmem:
699 	device_printf(dev, "Failed to malloc memory\n");
700 	error = ENOMEM;
701 fail:
702 	fxp_release(dev);
703 	return (error);
704 }
705 
706 /*
707  * release all resources
708  */
709 static void
710 fxp_release(device_t dev)
711 {
712 	struct fxp_softc *sc = device_get_softc(dev);
713 
714 	if (sc->miibus)
715 		device_delete_child(dev, sc->miibus);
716 	bus_generic_detach(dev);
717 
718 	if (sc->cbl_base)
719 		kfree(sc->cbl_base, M_DEVBUF);
720 	if (sc->fxp_stats)
721 		kfree(sc->fxp_stats, M_DEVBUF);
722 	if (sc->mcsp)
723 		kfree(sc->mcsp, M_DEVBUF);
724 	if (sc->rfa_headm)
725 		m_freem(sc->rfa_headm);
726 
727 	if (sc->irq)
728 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
729 	if (sc->mem)
730 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
731 
732         sysctl_ctx_free(&sc->sysctl_ctx);
733 }
734 
735 /*
736  * Detach interface.
737  */
738 static int
739 fxp_detach(device_t dev)
740 {
741 	struct fxp_softc *sc = device_get_softc(dev);
742 
743 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
744 
745 	/*
746 	 * Stop DMA and drop transmit queue.
747 	 */
748 	fxp_stop(sc);
749 
750 	/*
751 	 * Disable interrupts.
752 	 *
753 	 * NOTE: This should be done after fxp_stop(), because software
754 	 * resetting in fxp_stop() may leave interrupts turned on.
755 	 */
756 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
757 
758 	/*
759 	 * Free all media structures.
760 	 */
761 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
762 		ifmedia_removeall(&sc->sc_media);
763 
764 	if (sc->ih)
765 		bus_teardown_intr(dev, sc->irq, sc->ih);
766 
767 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
768 
769 	/*
770 	 * Close down routes etc.
771 	 */
772 	ether_ifdetach(&sc->arpcom.ac_if);
773 
774 	/* Release our allocated resources. */
775 	fxp_release(dev);
776 
777 	return (0);
778 }
779 
780 /*
781  * Device shutdown routine. Called at system shutdown after sync. The
782  * main purpose of this routine is to shut off receiver DMA so that
783  * kernel memory doesn't get clobbered during warmboot.
784  */
785 static int
786 fxp_shutdown(device_t dev)
787 {
788 	/*
789 	 * Make sure that DMA is disabled prior to reboot. Not doing
790 	 * do could allow DMA to corrupt kernel memory during the
791 	 * reboot before the driver initializes.
792 	 */
793 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
794 	return (0);
795 }
796 
797 /*
798  * Device suspend routine.  Stop the interface and save some PCI
799  * settings in case the BIOS doesn't restore them properly on
800  * resume.
801  */
802 static int
803 fxp_suspend(device_t dev)
804 {
805 	struct fxp_softc *sc = device_get_softc(dev);
806 	int i;
807 
808 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
809 
810 	fxp_stop(sc);
811 
812 	for (i = 0; i < 5; i++)
813 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
814 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
815 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
816 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
817 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
818 
819 	sc->suspended = 1;
820 
821 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
822 	return (0);
823 }
824 
825 /*
826  * Device resume routine.  Restore some PCI settings in case the BIOS
827  * doesn't, re-enable busmastering, and restart the interface if
828  * appropriate.
829  */
830 static int
831 fxp_resume(device_t dev)
832 {
833 	struct fxp_softc *sc = device_get_softc(dev);
834 	struct ifnet *ifp = &sc->arpcom.ac_if;
835 	int i;
836 
837 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
838 
839 	fxp_powerstate_d0(dev);
840 
841 	/* better way to do this? */
842 	for (i = 0; i < 5; i++)
843 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
844 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
845 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
846 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
847 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
848 
849 	/* reenable busmastering and memory space */
850 	pci_enable_busmaster(dev);
851 	pci_enable_io(dev, SYS_RES_MEMORY);
852 
853 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
854 	DELAY(10);
855 
856 	/* reinitialize interface if necessary */
857 	if (ifp->if_flags & IFF_UP)
858 		fxp_init(sc);
859 
860 	sc->suspended = 0;
861 
862 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
863 	return (0);
864 }
865 
866 static void
867 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
868 {
869 	u_int16_t reg;
870 	int x;
871 
872 	/*
873 	 * Shift in data.
874 	 */
875 	for (x = 1 << (length - 1); x; x >>= 1) {
876 		if (data & x)
877 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
878 		else
879 			reg = FXP_EEPROM_EECS;
880 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
881 		DELAY(1);
882 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
883 		DELAY(1);
884 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
885 		DELAY(1);
886 	}
887 }
888 
889 /*
890  * Read from the serial EEPROM. Basically, you manually shift in
891  * the read opcode (one bit at a time) and then shift in the address,
892  * and then you shift out the data (all of this one bit at a time).
893  * The word size is 16 bits, so you have to provide the address for
894  * every 16 bits of data.
895  */
896 static u_int16_t
897 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
898 {
899 	u_int16_t reg, data;
900 	int x;
901 
902 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
903 	/*
904 	 * Shift in read opcode.
905 	 */
906 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
907 	/*
908 	 * Shift in address.
909 	 */
910 	data = 0;
911 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
912 		if (offset & x)
913 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
914 		else
915 			reg = FXP_EEPROM_EECS;
916 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
917 		DELAY(1);
918 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
919 		DELAY(1);
920 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
921 		DELAY(1);
922 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
923 		data++;
924 		if (autosize && reg == 0) {
925 			sc->eeprom_size = data;
926 			break;
927 		}
928 	}
929 	/*
930 	 * Shift out data.
931 	 */
932 	data = 0;
933 	reg = FXP_EEPROM_EECS;
934 	for (x = 1 << 15; x; x >>= 1) {
935 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
936 		DELAY(1);
937 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
938 			data |= x;
939 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
940 		DELAY(1);
941 	}
942 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
943 	DELAY(1);
944 
945 	return (data);
946 }
947 
948 static void
949 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
950 {
951 	int i;
952 
953 	/*
954 	 * Erase/write enable.
955 	 */
956 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
957 	fxp_eeprom_shiftin(sc, 0x4, 3);
958 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
959 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
960 	DELAY(1);
961 	/*
962 	 * Shift in write opcode, address, data.
963 	 */
964 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
965 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
966 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
967 	fxp_eeprom_shiftin(sc, data, 16);
968 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
969 	DELAY(1);
970 	/*
971 	 * Wait for EEPROM to finish up.
972 	 */
973 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
974 	DELAY(1);
975 	for (i = 0; i < 1000; i++) {
976 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
977 			break;
978 		DELAY(50);
979 	}
980 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
981 	DELAY(1);
982 	/*
983 	 * Erase/write disable.
984 	 */
985 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
986 	fxp_eeprom_shiftin(sc, 0x4, 3);
987 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
988 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
989 	DELAY(1);
990 }
991 
992 /*
993  * From NetBSD:
994  *
995  * Figure out EEPROM size.
996  *
997  * 559's can have either 64-word or 256-word EEPROMs, the 558
998  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
999  * talks about the existance of 16 to 256 word EEPROMs.
1000  *
1001  * The only known sizes are 64 and 256, where the 256 version is used
1002  * by CardBus cards to store CIS information.
1003  *
1004  * The address is shifted in msb-to-lsb, and after the last
1005  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1006  * after which follows the actual data. We try to detect this zero, by
1007  * probing the data-out bit in the EEPROM control register just after
1008  * having shifted in a bit. If the bit is zero, we assume we've
1009  * shifted enough address bits. The data-out should be tri-state,
1010  * before this, which should translate to a logical one.
1011  */
1012 static void
1013 fxp_autosize_eeprom(struct fxp_softc *sc)
1014 {
1015 
1016 	/* guess maximum size of 256 words */
1017 	sc->eeprom_size = 8;
1018 
1019 	/* autosize */
1020 	fxp_eeprom_getword(sc, 0, 1);
1021 }
1022 
1023 static void
1024 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1025 {
1026 	int i;
1027 
1028 	for (i = 0; i < words; i++)
1029 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1030 }
1031 
1032 static void
1033 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1034 {
1035 	int i;
1036 
1037 	for (i = 0; i < words; i++)
1038 		fxp_eeprom_putword(sc, offset + i, data[i]);
1039 }
1040 
1041 /*
1042  * Start packet transmission on the interface.
1043  */
1044 static void
1045 fxp_start(struct ifnet *ifp)
1046 {
1047 	struct fxp_softc *sc = ifp->if_softc;
1048 	struct fxp_cb_tx *txp;
1049 
1050 	/*
1051 	 * See if we need to suspend xmit until the multicast filter
1052 	 * has been reprogrammed (which can only be done at the head
1053 	 * of the command chain).
1054 	 */
1055 	if (sc->need_mcsetup) {
1056 		ifq_purge(&ifp->if_snd);
1057 		return;
1058 	}
1059 
1060 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1061 		return;
1062 
1063 	txp = NULL;
1064 
1065 	/*
1066 	 * We're finished if there is nothing more to add to the list or if
1067 	 * we're all filled up with buffers to transmit.
1068 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1069 	 *       a NOP command when needed.
1070 	 */
1071 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1072 		struct mbuf *m, *mb_head;
1073 		int segment, ntries = 0;
1074 
1075 		/*
1076 		 * Grab a packet to transmit.
1077 		 */
1078 		mb_head = ifq_dequeue(&ifp->if_snd, NULL);
1079 		if (mb_head == NULL)
1080 			break;
1081 tbdinit:
1082 		/*
1083 		 * Make sure that the packet fits into one TX desc
1084 		 */
1085 		segment = 0;
1086 		for (m = mb_head; m != NULL; m = m->m_next) {
1087 			if (m->m_len != 0) {
1088 				++segment;
1089 				if (segment >= FXP_NTXSEG)
1090 					break;
1091 			}
1092 		}
1093 		if (segment >= FXP_NTXSEG) {
1094 			struct mbuf *mn;
1095 
1096 			if (ntries) {
1097 				/*
1098 				 * Packet is excessively fragmented,
1099 				 * and will never fit into one TX
1100 				 * desc.  Give it up.
1101 				 */
1102 				m_freem(mb_head);
1103 				ifp->if_oerrors++;
1104 				continue;
1105 			}
1106 
1107 			mn = m_dup(mb_head, MB_DONTWAIT);
1108 			if (mn == NULL) {
1109 				m_freem(mb_head);
1110 				ifp->if_oerrors++;
1111 				continue;
1112 			}
1113 
1114 			m_freem(mb_head);
1115 			mb_head = mn;
1116 			ntries = 1;
1117 			goto tbdinit;
1118 		}
1119 
1120 		/*
1121 		 * Get pointer to next available tx desc.
1122 		 */
1123 		txp = sc->cbl_last->next;
1124 
1125 		/*
1126 		 * Go through each of the mbufs in the chain and initialize
1127 		 * the transmit buffer descriptors with the physical address
1128 		 * and size of the mbuf.
1129 		 */
1130 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1131 			if (m->m_len != 0) {
1132 				KKASSERT(segment < FXP_NTXSEG);
1133 
1134 				txp->tbd[segment].tb_addr =
1135 				    vtophys(mtod(m, vm_offset_t));
1136 				txp->tbd[segment].tb_size = m->m_len;
1137 				segment++;
1138 			}
1139 		}
1140 		KKASSERT(m == NULL);
1141 
1142 		txp->tbd_number = segment;
1143 		txp->mb_head = mb_head;
1144 		txp->cb_status = 0;
1145 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1146 			txp->cb_command =
1147 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1148 			    FXP_CB_COMMAND_S;
1149 		} else {
1150 			txp->cb_command =
1151 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1152 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1153 		}
1154 		txp->tx_threshold = tx_threshold;
1155 
1156 		/*
1157 		 * Advance the end of list forward.
1158 		 */
1159 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1160 		sc->cbl_last = txp;
1161 
1162 		/*
1163 		 * Advance the beginning of the list forward if there are
1164 		 * no other packets queued (when nothing is queued, cbl_first
1165 		 * sits on the last TxCB that was sent out).
1166 		 */
1167 		if (sc->tx_queued == 0)
1168 			sc->cbl_first = txp;
1169 
1170 		sc->tx_queued++;
1171 		/*
1172 		 * Set a 5 second timer just in case we don't hear
1173 		 * from the card again.
1174 		 */
1175 		ifp->if_timer = 5;
1176 
1177 		BPF_MTAP(ifp, mb_head);
1178 	}
1179 
1180 	if (sc->tx_queued >= FXP_NTXCB - 1)
1181 		ifp->if_flags |= IFF_OACTIVE;
1182 
1183 	/*
1184 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1185 	 * going again if suspended.
1186 	 */
1187 	if (txp != NULL) {
1188 		fxp_scb_wait(sc);
1189 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1190 	}
1191 }
1192 
1193 #ifdef DEVICE_POLLING
1194 
1195 static void
1196 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1197 {
1198 	struct fxp_softc *sc = ifp->if_softc;
1199 	u_int8_t statack;
1200 
1201 	switch(cmd) {
1202 	case POLL_REGISTER:
1203 		/* disable interrupts */
1204 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1205 		break;
1206 	case POLL_DEREGISTER:
1207 		/* enable interrupts */
1208 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1209 		break;
1210 	default:
1211 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1212 			  FXP_SCB_STATACK_FR;
1213 		if (cmd == POLL_AND_CHECK_STATUS) {
1214 			u_int8_t tmp;
1215 
1216 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1217 			if (tmp == 0xff || tmp == 0)
1218 				return; /* nothing to do */
1219 			tmp &= ~statack;
1220 			/* ack what we can */
1221 			if (tmp != 0)
1222 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1223 			statack |= tmp;
1224 		}
1225 		fxp_intr_body(sc, statack, count);
1226 		break;
1227 	}
1228 }
1229 
1230 #endif /* DEVICE_POLLING */
1231 
1232 /*
1233  * Process interface interrupts.
1234  */
1235 static void
1236 fxp_intr(void *xsc)
1237 {
1238 	struct fxp_softc *sc = xsc;
1239 	u_int8_t statack;
1240 
1241 	if (sc->suspended) {
1242 		return;
1243 	}
1244 
1245 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1246 		/*
1247 		 * It should not be possible to have all bits set; the
1248 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1249 		 * all bits are set, this may indicate that the card has
1250 		 * been physically ejected, so ignore it.
1251 		 */
1252 		if (statack == 0xff)
1253 			return;
1254 
1255 		/*
1256 		 * First ACK all the interrupts in this pass.
1257 		 */
1258 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1259 		fxp_intr_body(sc, statack, -1);
1260 	}
1261 }
1262 
1263 static void
1264 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1265 {
1266 	struct ifnet *ifp = &sc->arpcom.ac_if;
1267 	struct mbuf *m;
1268 	struct fxp_rfa *rfa;
1269 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1270 
1271 	if (rnr)
1272 		fxp_rnr++;
1273 #ifdef DEVICE_POLLING
1274 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1275 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1276 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1277 		rnr = 1;
1278 	}
1279 #endif
1280 
1281 	/*
1282 	 * Free any finished transmit mbuf chains.
1283 	 *
1284 	 * Handle the CNA event likt a CXTNO event. It used to
1285 	 * be that this event (control unit not ready) was not
1286 	 * encountered, but it is now with the SMPng modifications.
1287 	 * The exact sequence of events that occur when the interface
1288 	 * is brought up are different now, and if this event
1289 	 * goes unhandled, the configuration/rxfilter setup sequence
1290 	 * can stall for several seconds. The result is that no
1291 	 * packets go out onto the wire for about 5 to 10 seconds
1292 	 * after the interface is ifconfig'ed for the first time.
1293 	 */
1294 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1295 		struct fxp_cb_tx *txp;
1296 		int old_queued;
1297 
1298 		old_queued = sc->tx_queued;
1299 		for (txp = sc->cbl_first; sc->tx_queued &&
1300 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1301 		    txp = txp->next) {
1302 			if ((m = txp->mb_head) != NULL) {
1303 				txp->mb_head = NULL;
1304 				sc->tx_queued--;
1305 				m_freem(m);
1306 			} else {
1307 				sc->tx_queued--;
1308 			}
1309 		}
1310 		sc->cbl_first = txp;
1311 
1312 		if (old_queued > sc->tx_queued)
1313 			ifp->if_flags &= ~IFF_OACTIVE;
1314 
1315 		if (sc->tx_queued == 0) {
1316 			ifp->if_timer = 0;
1317 			if (sc->need_mcsetup)
1318 				fxp_mc_setup(sc);
1319 		}
1320 
1321 		/*
1322 		 * Try to start more packets transmitting.
1323 		 */
1324 		if (!ifq_is_empty(&ifp->if_snd))
1325 			if_devstart(ifp);
1326 	}
1327 
1328 	/*
1329 	 * Just return if nothing happened on the receive side.
1330 	 */
1331 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1332 		return;
1333 
1334 	/*
1335 	 * Process receiver interrupts. If a no-resource (RNR)
1336 	 * condition exists, get whatever packets we can and
1337 	 * re-start the receiver.
1338 	 *
1339 	 * When using polling, we do not process the list to completion,
1340 	 * so when we get an RNR interrupt we must defer the restart
1341 	 * until we hit the last buffer with the C bit set.
1342 	 * If we run out of cycles and rfa_headm has the C bit set,
1343 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1344 	 * that the info will be used in the subsequent polling cycle.
1345 	 */
1346 	for (;;) {
1347 		m = sc->rfa_headm;
1348 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1349 		    RFA_ALIGNMENT_FUDGE);
1350 
1351 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1352 		if (count >= 0 && count-- == 0) {
1353 			if (rnr) {
1354 				/* Defer RNR processing until the next time. */
1355 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1356 				rnr = 0;
1357 			}
1358 			break;
1359 		}
1360 #endif /* DEVICE_POLLING */
1361 
1362 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1363 			break;
1364 
1365 		/*
1366 		 * Remove first packet from the chain.
1367 		 */
1368 		sc->rfa_headm = m->m_next;
1369 		m->m_next = NULL;
1370 
1371 		/*
1372 		 * Add a new buffer to the receive chain.
1373 		 * If this fails, the old buffer is recycled
1374 		 * instead.
1375 		 */
1376 		if (fxp_add_rfabuf(sc, m) == 0) {
1377 			int total_len;
1378 
1379 			/*
1380 			 * Fetch packet length (the top 2 bits of
1381 			 * actual_size are flags set by the controller
1382 			 * upon completion), and drop the packet in case
1383 			 * of bogus length or CRC errors.
1384 			 */
1385 			total_len = rfa->actual_size & 0x3fff;
1386 			if (total_len < sizeof(struct ether_header) ||
1387 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1388 				sizeof(struct fxp_rfa) ||
1389 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1390 				m_freem(m);
1391 				continue;
1392 			}
1393 			m->m_pkthdr.len = m->m_len = total_len;
1394 			ifp->if_input(ifp, m);
1395 		}
1396 	}
1397 	if (rnr) {
1398 		fxp_scb_wait(sc);
1399 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1400 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1401 		    RFA_ALIGNMENT_FUDGE);
1402 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1403 	}
1404 }
1405 
1406 /*
1407  * Update packet in/out/collision statistics. The i82557 doesn't
1408  * allow you to access these counters without doing a fairly
1409  * expensive DMA to get _all_ of the statistics it maintains, so
1410  * we do this operation here only once per second. The statistics
1411  * counters in the kernel are updated from the previous dump-stats
1412  * DMA and then a new dump-stats DMA is started. The on-chip
1413  * counters are zeroed when the DMA completes. If we can't start
1414  * the DMA immediately, we don't wait - we just prepare to read
1415  * them again next time.
1416  */
1417 static void
1418 fxp_tick(void *xsc)
1419 {
1420 	struct fxp_softc *sc = xsc;
1421 	struct ifnet *ifp = &sc->arpcom.ac_if;
1422 	struct fxp_stats *sp = sc->fxp_stats;
1423 	struct fxp_cb_tx *txp;
1424 	struct mbuf *m;
1425 	int old_queued;
1426 
1427 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1428 
1429 	ifp->if_opackets += sp->tx_good;
1430 	ifp->if_collisions += sp->tx_total_collisions;
1431 	if (sp->rx_good) {
1432 		ifp->if_ipackets += sp->rx_good;
1433 		sc->rx_idle_secs = 0;
1434 	} else {
1435 		/*
1436 		 * Receiver's been idle for another second.
1437 		 */
1438 		sc->rx_idle_secs++;
1439 	}
1440 	ifp->if_ierrors +=
1441 	    sp->rx_crc_errors +
1442 	    sp->rx_alignment_errors +
1443 	    sp->rx_rnr_errors +
1444 	    sp->rx_overrun_errors;
1445 	/*
1446 	 * If any transmit underruns occured, bump up the transmit
1447 	 * threshold by another 512 bytes (64 * 8).
1448 	 */
1449 	if (sp->tx_underruns) {
1450 		ifp->if_oerrors += sp->tx_underruns;
1451 		if (tx_threshold < 192)
1452 			tx_threshold += 64;
1453 	}
1454 
1455 	/*
1456 	 * Release any xmit buffers that have completed DMA. This isn't
1457 	 * strictly necessary to do here, but it's advantagous for mbufs
1458 	 * with external storage to be released in a timely manner rather
1459 	 * than being defered for a potentially long time. This limits
1460 	 * the delay to a maximum of one second.
1461 	 */
1462 	old_queued = sc->tx_queued;
1463 	for (txp = sc->cbl_first; sc->tx_queued &&
1464 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1465 	    txp = txp->next) {
1466 		if ((m = txp->mb_head) != NULL) {
1467 			txp->mb_head = NULL;
1468 			sc->tx_queued--;
1469 			m_freem(m);
1470 		} else {
1471 			sc->tx_queued--;
1472 		}
1473 	}
1474 	sc->cbl_first = txp;
1475 
1476 	if (old_queued > sc->tx_queued)
1477 		ifp->if_flags &= ~IFF_OACTIVE;
1478 	if (sc->tx_queued == 0)
1479 		ifp->if_timer = 0;
1480 
1481 	/*
1482 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1483 	 * then assume the receiver has locked up and attempt to clear
1484 	 * the condition by reprogramming the multicast filter. This is
1485 	 * a work-around for a bug in the 82557 where the receiver locks
1486 	 * up if it gets certain types of garbage in the syncronization
1487 	 * bits prior to the packet header. This bug is supposed to only
1488 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1489 	 * mode as well (perhaps due to a 10/100 speed transition).
1490 	 */
1491 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1492 		sc->rx_idle_secs = 0;
1493 		fxp_mc_setup(sc);
1494 	}
1495 	/*
1496 	 * If there is no pending command, start another stats
1497 	 * dump. Otherwise punt for now.
1498 	 */
1499 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1500 		/*
1501 		 * Start another stats dump.
1502 		 */
1503 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1504 	} else {
1505 		/*
1506 		 * A previous command is still waiting to be accepted.
1507 		 * Just zero our copy of the stats and wait for the
1508 		 * next timer event to update them.
1509 		 */
1510 		sp->tx_good = 0;
1511 		sp->tx_underruns = 0;
1512 		sp->tx_total_collisions = 0;
1513 
1514 		sp->rx_good = 0;
1515 		sp->rx_crc_errors = 0;
1516 		sp->rx_alignment_errors = 0;
1517 		sp->rx_rnr_errors = 0;
1518 		sp->rx_overrun_errors = 0;
1519 	}
1520 	if (sc->miibus != NULL)
1521 		mii_tick(device_get_softc(sc->miibus));
1522 	/*
1523 	 * Schedule another timeout one second from now.
1524 	 */
1525 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1526 
1527 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1528 }
1529 
1530 /*
1531  * Stop the interface. Cancels the statistics updater and resets
1532  * the interface.
1533  */
1534 static void
1535 fxp_stop(struct fxp_softc *sc)
1536 {
1537 	struct ifnet *ifp = &sc->arpcom.ac_if;
1538 	struct fxp_cb_tx *txp;
1539 	int i;
1540 
1541 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1542 	ifp->if_timer = 0;
1543 
1544 	/*
1545 	 * Cancel stats updater.
1546 	 */
1547 	callout_stop(&sc->fxp_stat_timer);
1548 
1549 	/*
1550 	 * Issue software reset, which also unloads the microcode.
1551 	 */
1552 	sc->flags &= ~FXP_FLAG_UCODE;
1553 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1554 	DELAY(50);
1555 
1556 	/*
1557 	 * Release any xmit buffers.
1558 	 */
1559 	txp = sc->cbl_base;
1560 	if (txp != NULL) {
1561 		for (i = 0; i < FXP_NTXCB; i++) {
1562 			if (txp[i].mb_head != NULL) {
1563 				m_freem(txp[i].mb_head);
1564 				txp[i].mb_head = NULL;
1565 			}
1566 		}
1567 	}
1568 	sc->tx_queued = 0;
1569 
1570 	/*
1571 	 * Free all the receive buffers then reallocate/reinitialize
1572 	 */
1573 	if (sc->rfa_headm != NULL)
1574 		m_freem(sc->rfa_headm);
1575 	sc->rfa_headm = NULL;
1576 	sc->rfa_tailm = NULL;
1577 	for (i = 0; i < FXP_NRFABUFS; i++) {
1578 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1579 			/*
1580 			 * This "can't happen" - we're at splimp()
1581 			 * and we just freed all the buffers we need
1582 			 * above.
1583 			 */
1584 			panic("fxp_stop: no buffers!");
1585 		}
1586 	}
1587 }
1588 
1589 /*
1590  * Watchdog/transmission transmit timeout handler. Called when a
1591  * transmission is started on the interface, but no interrupt is
1592  * received before the timeout. This usually indicates that the
1593  * card has wedged for some reason.
1594  */
1595 static void
1596 fxp_watchdog(struct ifnet *ifp)
1597 {
1598 	if_printf(ifp, "device timeout\n");
1599 	ifp->if_oerrors++;
1600 	fxp_init(ifp->if_softc);
1601 }
1602 
1603 static void
1604 fxp_init(void *xsc)
1605 {
1606 	struct fxp_softc *sc = xsc;
1607 	struct ifnet *ifp = &sc->arpcom.ac_if;
1608 	struct fxp_cb_config *cbp;
1609 	struct fxp_cb_ias *cb_ias;
1610 	struct fxp_cb_tx *txp;
1611 	struct fxp_cb_mcs *mcsp;
1612 	int i, prm;
1613 
1614 	/*
1615 	 * Cancel any pending I/O
1616 	 */
1617 	fxp_stop(sc);
1618 
1619 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1620 
1621 	/*
1622 	 * Initialize base of CBL and RFA memory. Loading with zero
1623 	 * sets it up for regular linear addressing.
1624 	 */
1625 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1626 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1627 
1628 	fxp_scb_wait(sc);
1629 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1630 
1631 	/*
1632 	 * Initialize base of dump-stats buffer.
1633 	 */
1634 	fxp_scb_wait(sc);
1635 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1636 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1637 
1638 	/*
1639 	 * Attempt to load microcode if requested.
1640 	 */
1641 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1642 		fxp_load_ucode(sc);
1643 
1644 	/*
1645 	 * Initialize the multicast address list.
1646 	 */
1647 	if (fxp_mc_addrs(sc)) {
1648 		mcsp = sc->mcsp;
1649 		mcsp->cb_status = 0;
1650 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1651 		mcsp->link_addr = -1;
1652 		/*
1653 	 	 * Start the multicast setup command.
1654 		 */
1655 		fxp_scb_wait(sc);
1656 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1657 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1658 		/* ...and wait for it to complete. */
1659 		fxp_dma_wait(&mcsp->cb_status, sc);
1660 	}
1661 
1662 	/*
1663 	 * We temporarily use memory that contains the TxCB list to
1664 	 * construct the config CB. The TxCB list memory is rebuilt
1665 	 * later.
1666 	 */
1667 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1668 
1669 	/*
1670 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1671 	 * zero and must be one bits in this structure and this is the easiest
1672 	 * way to initialize them all to proper values.
1673 	 */
1674 	bcopy(fxp_cb_config_template,
1675 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1676 		sizeof(fxp_cb_config_template));
1677 
1678 	cbp->cb_status =	0;
1679 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1680 	cbp->link_addr =	-1;	/* (no) next command */
1681 	cbp->byte_count =	22;	/* (22) bytes to config */
1682 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1683 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1684 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1685 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1686 	cbp->type_enable =	0;	/* actually reserved */
1687 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1688 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1689 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1690 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1691 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1692 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1693 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1694 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1695 	cbp->ci_int =		1;	/* interrupt on CU idle */
1696 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1697 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1698 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1699 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1700 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1701 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1702 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1703 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1704 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1705 	cbp->csma_dis =		0;	/* (don't) disable link */
1706 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1707 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1708 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1709 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1710 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1711 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1712 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1713 	cbp->loopback =		0;	/* (don't) loopback */
1714 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1715 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1716 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1717 	cbp->promiscuous =	prm;	/* promiscuous mode */
1718 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1719 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1720 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1721 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1722 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1723 
1724 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1725 	cbp->padding =		1;	/* (do) pad short tx packets */
1726 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1727 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1728 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1729 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1730 					/* must set wake_en in PMCSR also */
1731 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1732 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1733 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1734 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1735 
1736 	if (sc->revision == FXP_REV_82557) {
1737 		/*
1738 		 * The 82557 has no hardware flow control, the values
1739 		 * below are the defaults for the chip.
1740 		 */
1741 		cbp->fc_delay_lsb =	0;
1742 		cbp->fc_delay_msb =	0x40;
1743 		cbp->pri_fc_thresh =	3;
1744 		cbp->tx_fc_dis =	0;
1745 		cbp->rx_fc_restop =	0;
1746 		cbp->rx_fc_restart =	0;
1747 		cbp->fc_filter =	0;
1748 		cbp->pri_fc_loc =	1;
1749 	} else {
1750 		cbp->fc_delay_lsb =	0x1f;
1751 		cbp->fc_delay_msb =	0x01;
1752 		cbp->pri_fc_thresh =	3;
1753 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1754 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1755 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1756 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1757 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1758 	}
1759 
1760 	/*
1761 	 * Start the config command/DMA.
1762 	 */
1763 	fxp_scb_wait(sc);
1764 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1765 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1766 	/* ...and wait for it to complete. */
1767 	fxp_dma_wait(&cbp->cb_status, sc);
1768 
1769 	/*
1770 	 * Now initialize the station address. Temporarily use the TxCB
1771 	 * memory area like we did above for the config CB.
1772 	 */
1773 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1774 	cb_ias->cb_status = 0;
1775 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1776 	cb_ias->link_addr = -1;
1777 	bcopy(sc->arpcom.ac_enaddr,
1778 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1779 	    sizeof(sc->arpcom.ac_enaddr));
1780 
1781 	/*
1782 	 * Start the IAS (Individual Address Setup) command/DMA.
1783 	 */
1784 	fxp_scb_wait(sc);
1785 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1786 	/* ...and wait for it to complete. */
1787 	fxp_dma_wait(&cb_ias->cb_status, sc);
1788 
1789 	/*
1790 	 * Initialize transmit control block (TxCB) list.
1791 	 */
1792 
1793 	txp = sc->cbl_base;
1794 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1795 	for (i = 0; i < FXP_NTXCB; i++) {
1796 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1797 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1798 		txp[i].link_addr =
1799 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1800 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1801 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1802 		else
1803 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1804 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1805 	}
1806 	/*
1807 	 * Set the suspend flag on the first TxCB and start the control
1808 	 * unit. It will execute the NOP and then suspend.
1809 	 */
1810 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1811 	sc->cbl_first = sc->cbl_last = txp;
1812 	sc->tx_queued = 1;
1813 	/* XXX set if_timer? */
1814 
1815 	fxp_scb_wait(sc);
1816 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1817 
1818 	/*
1819 	 * Initialize receiver buffer area - RFA.
1820 	 */
1821 	fxp_scb_wait(sc);
1822 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1823 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1824 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1825 
1826 	/*
1827 	 * Set current media.
1828 	 */
1829 	if (sc->miibus != NULL)
1830 		mii_mediachg(device_get_softc(sc->miibus));
1831 
1832 	ifp->if_flags |= IFF_RUNNING;
1833 	ifp->if_flags &= ~IFF_OACTIVE;
1834 
1835 	/*
1836 	 * Enable interrupts.
1837 	 */
1838 #ifdef DEVICE_POLLING
1839 	/*
1840 	 * ... but only do that if we are not polling. And because (presumably)
1841 	 * the default is interrupts on, we need to disable them explicitly!
1842 	 */
1843 	if ( ifp->if_flags & IFF_POLLING )
1844 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1845 	else
1846 #endif /* DEVICE_POLLING */
1847 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1848 
1849 	/*
1850 	 * Start stats updater.
1851 	 */
1852 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1853 }
1854 
1855 static int
1856 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1857 {
1858 
1859 	return (0);
1860 }
1861 
1862 static void
1863 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1864 {
1865 
1866 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1867 }
1868 
1869 /*
1870  * Change media according to request.
1871  */
1872 static int
1873 fxp_ifmedia_upd(struct ifnet *ifp)
1874 {
1875 	struct fxp_softc *sc = ifp->if_softc;
1876 	struct mii_data *mii;
1877 
1878 	mii = device_get_softc(sc->miibus);
1879 	mii_mediachg(mii);
1880 	return (0);
1881 }
1882 
1883 /*
1884  * Notify the world which media we're using.
1885  */
1886 static void
1887 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1888 {
1889 	struct fxp_softc *sc = ifp->if_softc;
1890 	struct mii_data *mii;
1891 
1892 	mii = device_get_softc(sc->miibus);
1893 	mii_pollstat(mii);
1894 	ifmr->ifm_active = mii->mii_media_active;
1895 	ifmr->ifm_status = mii->mii_media_status;
1896 
1897 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1898 		sc->cu_resume_bug = 1;
1899 	else
1900 		sc->cu_resume_bug = 0;
1901 }
1902 
1903 /*
1904  * Add a buffer to the end of the RFA buffer list.
1905  * Return 0 if successful, 1 for failure. A failure results in
1906  * adding the 'oldm' (if non-NULL) on to the end of the list -
1907  * tossing out its old contents and recycling it.
1908  * The RFA struct is stuck at the beginning of mbuf cluster and the
1909  * data pointer is fixed up to point just past it.
1910  */
1911 static int
1912 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1913 {
1914 	u_int32_t v;
1915 	struct mbuf *m;
1916 	struct fxp_rfa *rfa, *p_rfa;
1917 
1918 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1919 	if (m == NULL) { /* try to recycle the old mbuf instead */
1920 		if (oldm == NULL)
1921 			return 1;
1922 		m = oldm;
1923 		m->m_data = m->m_ext.ext_buf;
1924 	}
1925 
1926 	/*
1927 	 * Move the data pointer up so that the incoming data packet
1928 	 * will be 32-bit aligned.
1929 	 */
1930 	m->m_data += RFA_ALIGNMENT_FUDGE;
1931 
1932 	/*
1933 	 * Get a pointer to the base of the mbuf cluster and move
1934 	 * data start past it.
1935 	 */
1936 	rfa = mtod(m, struct fxp_rfa *);
1937 	m->m_data += sizeof(struct fxp_rfa);
1938 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1939 
1940 	/*
1941 	 * Initialize the rest of the RFA.  Note that since the RFA
1942 	 * is misaligned, we cannot store values directly.  Instead,
1943 	 * we use an optimized, inline copy.
1944 	 */
1945 
1946 	rfa->rfa_status = 0;
1947 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1948 	rfa->actual_size = 0;
1949 
1950 	v = -1;
1951 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1952 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1953 
1954 	/*
1955 	 * If there are other buffers already on the list, attach this
1956 	 * one to the end by fixing up the tail to point to this one.
1957 	 */
1958 	if (sc->rfa_headm != NULL) {
1959 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1960 		    RFA_ALIGNMENT_FUDGE);
1961 		sc->rfa_tailm->m_next = m;
1962 		v = vtophys(rfa);
1963 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1964 		p_rfa->rfa_control = 0;
1965 	} else {
1966 		sc->rfa_headm = m;
1967 	}
1968 	sc->rfa_tailm = m;
1969 
1970 	return (m == oldm);
1971 }
1972 
1973 static int
1974 fxp_miibus_readreg(device_t dev, int phy, int reg)
1975 {
1976 	struct fxp_softc *sc = device_get_softc(dev);
1977 	int count = 10000;
1978 	int value;
1979 
1980 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1981 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1982 
1983 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1984 	    && count--)
1985 		DELAY(10);
1986 
1987 	if (count <= 0)
1988 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1989 
1990 	return (value & 0xffff);
1991 }
1992 
1993 static void
1994 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1995 {
1996 	struct fxp_softc *sc = device_get_softc(dev);
1997 	int count = 10000;
1998 
1999 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2000 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2001 	    (value & 0xffff));
2002 
2003 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2004 	    count--)
2005 		DELAY(10);
2006 
2007 	if (count <= 0)
2008 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2009 }
2010 
2011 static int
2012 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2013 {
2014 	struct fxp_softc *sc = ifp->if_softc;
2015 	struct ifreq *ifr = (struct ifreq *)data;
2016 	struct mii_data *mii;
2017 	int error = 0;
2018 
2019 	switch (command) {
2020 
2021 	case SIOCSIFFLAGS:
2022 		if (ifp->if_flags & IFF_ALLMULTI)
2023 			sc->flags |= FXP_FLAG_ALL_MCAST;
2024 		else
2025 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2026 
2027 		/*
2028 		 * If interface is marked up and not running, then start it.
2029 		 * If it is marked down and running, stop it.
2030 		 * XXX If it's up then re-initialize it. This is so flags
2031 		 * such as IFF_PROMISC are handled.
2032 		 */
2033 		if (ifp->if_flags & IFF_UP) {
2034 			fxp_init(sc);
2035 		} else {
2036 			if (ifp->if_flags & IFF_RUNNING)
2037 				fxp_stop(sc);
2038 		}
2039 		break;
2040 
2041 	case SIOCADDMULTI:
2042 	case SIOCDELMULTI:
2043 		if (ifp->if_flags & IFF_ALLMULTI)
2044 			sc->flags |= FXP_FLAG_ALL_MCAST;
2045 		else
2046 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2047 		/*
2048 		 * Multicast list has changed; set the hardware filter
2049 		 * accordingly.
2050 		 */
2051 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2052 			fxp_mc_setup(sc);
2053 		/*
2054 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2055 		 * again rather than else {}.
2056 		 */
2057 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2058 			fxp_init(sc);
2059 		error = 0;
2060 		break;
2061 
2062 	case SIOCSIFMEDIA:
2063 	case SIOCGIFMEDIA:
2064 		if (sc->miibus != NULL) {
2065 			mii = device_get_softc(sc->miibus);
2066                         error = ifmedia_ioctl(ifp, ifr,
2067                             &mii->mii_media, command);
2068 		} else {
2069                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2070 		}
2071 		break;
2072 
2073 	default:
2074 		error = ether_ioctl(ifp, command, data);
2075 		break;
2076 	}
2077 	return (error);
2078 }
2079 
2080 /*
2081  * Fill in the multicast address list and return number of entries.
2082  */
2083 static int
2084 fxp_mc_addrs(struct fxp_softc *sc)
2085 {
2086 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2087 	struct ifnet *ifp = &sc->arpcom.ac_if;
2088 	struct ifmultiaddr *ifma;
2089 	int nmcasts;
2090 
2091 	nmcasts = 0;
2092 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2093 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2094 			if (ifma->ifma_addr->sa_family != AF_LINK)
2095 				continue;
2096 			if (nmcasts >= MAXMCADDR) {
2097 				sc->flags |= FXP_FLAG_ALL_MCAST;
2098 				nmcasts = 0;
2099 				break;
2100 			}
2101 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2102 			    (void *)(uintptr_t)(volatile void *)
2103 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2104 			nmcasts++;
2105 		}
2106 	}
2107 	mcsp->mc_cnt = nmcasts * 6;
2108 	return (nmcasts);
2109 }
2110 
2111 /*
2112  * Program the multicast filter.
2113  *
2114  * We have an artificial restriction that the multicast setup command
2115  * must be the first command in the chain, so we take steps to ensure
2116  * this. By requiring this, it allows us to keep up the performance of
2117  * the pre-initialized command ring (esp. link pointers) by not actually
2118  * inserting the mcsetup command in the ring - i.e. its link pointer
2119  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2120  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2121  * lead into the regular TxCB ring when it completes.
2122  *
2123  * This function must be called at splimp.
2124  */
2125 static void
2126 fxp_mc_setup(struct fxp_softc *sc)
2127 {
2128 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2129 	struct ifnet *ifp = &sc->arpcom.ac_if;
2130 	int count;
2131 
2132 	/*
2133 	 * If there are queued commands, we must wait until they are all
2134 	 * completed. If we are already waiting, then add a NOP command
2135 	 * with interrupt option so that we're notified when all commands
2136 	 * have been completed - fxp_start() ensures that no additional
2137 	 * TX commands will be added when need_mcsetup is true.
2138 	 */
2139 	if (sc->tx_queued) {
2140 		struct fxp_cb_tx *txp;
2141 
2142 		/*
2143 		 * need_mcsetup will be true if we are already waiting for the
2144 		 * NOP command to be completed (see below). In this case, bail.
2145 		 */
2146 		if (sc->need_mcsetup)
2147 			return;
2148 		sc->need_mcsetup = 1;
2149 
2150 		/*
2151 		 * Add a NOP command with interrupt so that we are notified
2152 		 * when all TX commands have been processed.
2153 		 */
2154 		txp = sc->cbl_last->next;
2155 		txp->mb_head = NULL;
2156 		txp->cb_status = 0;
2157 		txp->cb_command = FXP_CB_COMMAND_NOP |
2158 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2159 		/*
2160 		 * Advance the end of list forward.
2161 		 */
2162 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2163 		sc->cbl_last = txp;
2164 		sc->tx_queued++;
2165 		/*
2166 		 * Issue a resume in case the CU has just suspended.
2167 		 */
2168 		fxp_scb_wait(sc);
2169 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2170 		/*
2171 		 * Set a 5 second timer just in case we don't hear from the
2172 		 * card again.
2173 		 */
2174 		ifp->if_timer = 5;
2175 
2176 		return;
2177 	}
2178 	sc->need_mcsetup = 0;
2179 
2180 	/*
2181 	 * Initialize multicast setup descriptor.
2182 	 */
2183 	mcsp->next = sc->cbl_base;
2184 	mcsp->mb_head = NULL;
2185 	mcsp->cb_status = 0;
2186 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2187 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2188 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2189 	fxp_mc_addrs(sc);
2190 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2191 	sc->tx_queued = 1;
2192 
2193 	/*
2194 	 * Wait until command unit is not active. This should never
2195 	 * be the case when nothing is queued, but make sure anyway.
2196 	 */
2197 	count = 100;
2198 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2199 	    FXP_SCB_CUS_ACTIVE && --count)
2200 		DELAY(10);
2201 	if (count == 0) {
2202 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2203 		return;
2204 	}
2205 
2206 	/*
2207 	 * Start the multicast setup command.
2208 	 */
2209 	fxp_scb_wait(sc);
2210 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2211 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2212 
2213 	ifp->if_timer = 2;
2214 	return;
2215 }
2216 
2217 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2218 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2219 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2220 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2221 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2222 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2223 
2224 #define UCODE(x)	x, sizeof(x)
2225 
2226 struct ucode {
2227 	u_int32_t	revision;
2228 	u_int32_t	*ucode;
2229 	int		length;
2230 	u_short		int_delay_offset;
2231 	u_short		bundle_max_offset;
2232 } ucode_table[] = {
2233 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2234 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2235 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2236 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2237 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2238 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2239 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2240 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2241 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2242 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2243 	{ 0, NULL, 0, 0, 0 }
2244 };
2245 
2246 static void
2247 fxp_load_ucode(struct fxp_softc *sc)
2248 {
2249 	struct ucode *uc;
2250 	struct fxp_cb_ucode *cbp;
2251 
2252 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2253 		if (sc->revision == uc->revision)
2254 			break;
2255 	if (uc->ucode == NULL)
2256 		return;
2257 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2258 	cbp->cb_status = 0;
2259 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2260 	cbp->link_addr = -1;    	/* (no) next command */
2261 	memcpy(cbp->ucode, uc->ucode, uc->length);
2262 	if (uc->int_delay_offset)
2263 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2264 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2265 	if (uc->bundle_max_offset)
2266 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2267 		    sc->tunable_bundle_max;
2268 	/*
2269 	 * Download the ucode to the chip.
2270 	 */
2271 	fxp_scb_wait(sc);
2272 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2273 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2274 	/* ...and wait for it to complete. */
2275 	fxp_dma_wait(&cbp->cb_status, sc);
2276 	if_printf(&sc->arpcom.ac_if,
2277 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2278 	    sc->tunable_int_delay,
2279 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2280 	sc->flags |= FXP_FLAG_UCODE;
2281 }
2282 
2283 static int
2284 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2285 {
2286 	int error, value;
2287 
2288 	value = *(int *)arg1;
2289 	error = sysctl_handle_int(oidp, &value, 0, req);
2290 	if (error || !req->newptr)
2291 		return (error);
2292 	if (value < low || value > high)
2293 		return (EINVAL);
2294 	*(int *)arg1 = value;
2295 	return (0);
2296 }
2297 
2298 /*
2299  * Interrupt delay is expressed in microseconds, a multiplier is used
2300  * to convert this to the appropriate clock ticks before using.
2301  */
2302 static int
2303 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2304 {
2305 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2306 }
2307 
2308 static int
2309 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2310 {
2311 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2312 }
2313