xref: /dflybsd-src/sys/dev/netif/fxp/if_fxp.c (revision af340cf5e2f48cbc9da0b5ac2ee3f23129ffc068)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.30 2005/05/31 08:19:04 joerg Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 		/* #include <sys/mutex.h> */
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/if.h>
46 #include <net/ifq_var.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #ifdef NS
51 #include <netns/ns.h>
52 #include <netns/ns_if.h>
53 #endif
54 
55 #include <net/bpf.h>
56 #include <sys/sockio.h>
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 #include <vm/vm.h>		/* for vtophys */
66 #include <vm/pmap.h>		/* for vtophys */
67 
68 #include <net/if_types.h>
69 #include <net/vlan/if_vlan_var.h>
70 
71 #include <bus/pci/pcivar.h>
72 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
73 
74 #include "../mii_layer/mii.h"
75 #include "../mii_layer/miivar.h"
76 
77 #include "if_fxpreg.h"
78 #include "if_fxpvar.h"
79 #include "rcvbundl.h"
80 
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	int16_t		revid;		/* -1 matches anything */
140 	char 		*name;
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
151      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
152      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
162      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
167      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
168      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
169 	 { 0x1064,  -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
170      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
171      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
172      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
173      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
174      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
175      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
176      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
177      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
178      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
179      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
180      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
181      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
182      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
183      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
184      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
185      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
186      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
187      { 0,	-1,	NULL },
188 };
189 
190 static int		fxp_probe(device_t dev);
191 static int		fxp_attach(device_t dev);
192 static int		fxp_detach(device_t dev);
193 static int		fxp_shutdown(device_t dev);
194 static int		fxp_suspend(device_t dev);
195 static int		fxp_resume(device_t dev);
196 
197 static void		fxp_intr(void *xsc);
198 static void		fxp_intr_body(struct fxp_softc *sc,
199 				u_int8_t statack, int count);
200 
201 static void 		fxp_init(void *xsc);
202 static void 		fxp_tick(void *xsc);
203 static void		fxp_powerstate_d0(device_t dev);
204 static void 		fxp_start(struct ifnet *ifp);
205 static void		fxp_stop(struct fxp_softc *sc);
206 static void 		fxp_release(struct fxp_softc *sc);
207 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
208 			    caddr_t data, struct ucred *);
209 static void 		fxp_watchdog(struct ifnet *ifp);
210 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
211 static int		fxp_mc_addrs(struct fxp_softc *sc);
212 static void		fxp_mc_setup(struct fxp_softc *sc);
213 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
214 			    int autosize);
215 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
216 			    u_int16_t data);
217 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
218 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
219 			    int offset, int words);
220 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
221 			    int offset, int words);
222 static int		fxp_ifmedia_upd(struct ifnet *ifp);
223 static void		fxp_ifmedia_sts(struct ifnet *ifp,
224 			    struct ifmediareq *ifmr);
225 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
226 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
227 			    struct ifmediareq *ifmr);
228 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
229 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
230 			    int value);
231 static void		fxp_load_ucode(struct fxp_softc *sc);
232 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
233 			    int low, int high);
234 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
235 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
236 #ifdef DEVICE_POLLING
237 static poll_handler_t fxp_poll;
238 #endif
239 
240 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
241 			    volatile u_int32_t *dst);
242 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
243 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
244 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
245 			    struct fxp_softc *sc);
246 
247 static device_method_t fxp_methods[] = {
248 	/* Device interface */
249 	DEVMETHOD(device_probe,		fxp_probe),
250 	DEVMETHOD(device_attach,	fxp_attach),
251 	DEVMETHOD(device_detach,	fxp_detach),
252 	DEVMETHOD(device_shutdown,	fxp_shutdown),
253 	DEVMETHOD(device_suspend,	fxp_suspend),
254 	DEVMETHOD(device_resume,	fxp_resume),
255 
256 	/* MII interface */
257 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
258 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
259 
260 	{ 0, 0 }
261 };
262 
263 static driver_t fxp_driver = {
264 	"fxp",
265 	fxp_methods,
266 	sizeof(struct fxp_softc),
267 };
268 
269 static devclass_t fxp_devclass;
270 
271 DECLARE_DUMMY_MODULE(if_fxp);
272 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
273 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
274 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
275 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
276 
277 static int fxp_rnr;
278 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
279 
280 /*
281  * Inline function to copy a 16-bit aligned 32-bit quantity.
282  */
283 static __inline void
284 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
285 {
286 #ifdef __i386__
287 	*dst = *src;
288 #else
289 	volatile u_int16_t *a = (volatile u_int16_t *)src;
290 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
291 
292 	b[0] = a[0];
293 	b[1] = a[1];
294 #endif
295 }
296 
297 /*
298  * Wait for the previous command to be accepted (but not necessarily
299  * completed).
300  */
301 static __inline void
302 fxp_scb_wait(struct fxp_softc *sc)
303 {
304 	int i = 10000;
305 
306 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
307 		DELAY(2);
308 	if (i == 0)
309 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
310 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
311 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
312 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
313 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
314 }
315 
316 static __inline void
317 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
318 {
319 
320 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
321 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
322 		fxp_scb_wait(sc);
323 	}
324 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
325 }
326 
327 static __inline void
328 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
329 {
330 	int i = 10000;
331 
332 	while (!(*status & FXP_CB_STATUS_C) && --i)
333 		DELAY(2);
334 	if (i == 0)
335 		device_printf(sc->dev, "DMA timeout\n");
336 }
337 
338 /*
339  * Return identification string if this is device is ours.
340  */
341 static int
342 fxp_probe(device_t dev)
343 {
344 	u_int16_t devid;
345 	u_int8_t revid;
346 	struct fxp_ident *ident;
347 
348 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
349 		devid = pci_get_device(dev);
350 		revid = pci_get_revid(dev);
351 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
352 			if (ident->devid == devid &&
353 			    (ident->revid == revid || ident->revid == -1)) {
354 				device_set_desc(dev, ident->name);
355 				return (0);
356 			}
357 		}
358 	}
359 	return (ENXIO);
360 }
361 
362 static void
363 fxp_powerstate_d0(device_t dev)
364 {
365 	u_int32_t iobase, membase, irq;
366 
367 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
368 		/* Save important PCI config data. */
369 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
370 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
371 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
372 
373 		/* Reset the power state. */
374 		device_printf(dev, "chip is in D%d power mode "
375 		    "-- setting to D0\n", pci_get_powerstate(dev));
376 
377 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
378 
379 		/* Restore PCI config data. */
380 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
381 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
382 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
383 	}
384 }
385 
386 static int
387 fxp_attach(device_t dev)
388 {
389 	int error = 0;
390 	struct fxp_softc *sc = device_get_softc(dev);
391 	struct ifnet *ifp;
392 	u_int32_t val;
393 	u_int16_t data;
394 	int i, rid, m1, m2, prefer_iomap;
395 	int s;
396 
397 	bzero(sc, sizeof(*sc));
398 	sc->dev = dev;
399 	callout_init(&sc->fxp_stat_timer);
400 	sysctl_ctx_init(&sc->sysctl_ctx);
401 
402 	s = splimp();
403 
404 	/*
405 	 * Enable bus mastering. Enable memory space too, in case
406 	 * BIOS/Prom forgot about it.
407 	 */
408 	pci_enable_busmaster(dev);
409 	pci_enable_io(dev, SYS_RES_MEMORY);
410 	val = pci_read_config(dev, PCIR_COMMAND, 2);
411 
412 	fxp_powerstate_d0(dev);
413 
414 	/*
415 	 * Figure out which we should try first - memory mapping or i/o mapping?
416 	 * We default to memory mapping. Then we accept an override from the
417 	 * command line. Then we check to see which one is enabled.
418 	 */
419 	m1 = PCIM_CMD_MEMEN;
420 	m2 = PCIM_CMD_PORTEN;
421 	prefer_iomap = 0;
422 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
423 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
424 		m1 = PCIM_CMD_PORTEN;
425 		m2 = PCIM_CMD_MEMEN;
426 	}
427 
428 	if (val & m1) {
429 		sc->rtp =
430 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
431 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
432 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
433 		    RF_ACTIVE);
434 	}
435 	if (sc->mem == NULL && (val & m2)) {
436 		sc->rtp =
437 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
438 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
439 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
440             	    RF_ACTIVE);
441 	}
442 
443 	if (!sc->mem) {
444 		device_printf(dev, "could not map device registers\n");
445 		error = ENXIO;
446 		goto fail;
447         }
448 	if (bootverbose) {
449 		device_printf(dev, "using %s space register mapping\n",
450 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
451 	}
452 
453 	sc->sc_st = rman_get_bustag(sc->mem);
454 	sc->sc_sh = rman_get_bushandle(sc->mem);
455 
456 	/*
457 	 * Allocate our interrupt.
458 	 */
459 	rid = 0;
460 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
461 	    RF_SHAREABLE | RF_ACTIVE);
462 	if (sc->irq == NULL) {
463 		device_printf(dev, "could not map interrupt\n");
464 		error = ENXIO;
465 		goto fail;
466 	}
467 
468 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
469 			       fxp_intr, sc, &sc->ih, NULL);
470 	if (error) {
471 		device_printf(dev, "could not setup irq\n");
472 		goto fail;
473 	}
474 
475 	/*
476 	 * Reset to a stable state.
477 	 */
478 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
479 	DELAY(10);
480 
481 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
482 	    M_DEVBUF, M_WAITOK | M_ZERO);
483 
484 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
485 	    M_WAITOK | M_ZERO);
486 
487 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
488 
489 	/*
490 	 * Pre-allocate our receive buffers.
491 	 */
492 	for (i = 0; i < FXP_NRFABUFS; i++) {
493 		if (fxp_add_rfabuf(sc, NULL) != 0) {
494 			goto failmem;
495 		}
496 	}
497 
498 	/*
499 	 * Find out how large of an SEEPROM we have.
500 	 */
501 	fxp_autosize_eeprom(sc);
502 
503 	/*
504 	 * Determine whether we must use the 503 serial interface.
505 	 */
506 	fxp_read_eeprom(sc, &data, 6, 1);
507 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
508 	    (data & FXP_PHY_SERIAL_ONLY))
509 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
510 
511 	/*
512 	 * Create the sysctl tree
513 	 */
514 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
515 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
516 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
517 	if (sc->sysctl_tree == NULL)
518 		goto fail;
519 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
520 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
521 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
522 	    "FXP driver receive interrupt microcode bundling delay");
523 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
524 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
525 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
526 	    "FXP driver receive interrupt microcode bundle size limit");
527 
528 	/*
529 	 * Pull in device tunables.
530 	 */
531 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
532 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
533 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
534 	    "int_delay", &sc->tunable_int_delay);
535 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
536 	    "bundle_max", &sc->tunable_bundle_max);
537 
538 	/*
539 	 * Find out the chip revision; lump all 82557 revs together.
540 	 */
541 	fxp_read_eeprom(sc, &data, 5, 1);
542 	if ((data >> 8) == 1)
543 		sc->revision = FXP_REV_82557;
544 	else
545 		sc->revision = pci_get_revid(dev);
546 
547 	/*
548 	 * Enable workarounds for certain chip revision deficiencies.
549 	 *
550 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
551 	 * some systems based a normal 82559 design, have a defect where
552 	 * the chip can cause a PCI protocol violation if it receives
553 	 * a CU_RESUME command when it is entering the IDLE state.  The
554 	 * workaround is to disable Dynamic Standby Mode, so the chip never
555 	 * deasserts CLKRUN#, and always remains in an active state.
556 	 *
557 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
558 	 */
559 	i = pci_get_device(dev);
560 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
561 	    sc->revision >= FXP_REV_82559_A0) {
562 		fxp_read_eeprom(sc, &data, 10, 1);
563 		if (data & 0x02) {			/* STB enable */
564 			u_int16_t cksum;
565 			int i;
566 
567 			device_printf(dev,
568 			    "Disabling dynamic standby mode in EEPROM\n");
569 			data &= ~0x02;
570 			fxp_write_eeprom(sc, &data, 10, 1);
571 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
572 			cksum = 0;
573 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
574 				fxp_read_eeprom(sc, &data, i, 1);
575 				cksum += data;
576 			}
577 			i = (1 << sc->eeprom_size) - 1;
578 			cksum = 0xBABA - cksum;
579 			fxp_read_eeprom(sc, &data, i, 1);
580 			fxp_write_eeprom(sc, &cksum, i, 1);
581 			device_printf(dev,
582 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
583 			    i, data, cksum);
584 #if 1
585 			/*
586 			 * If the user elects to continue, try the software
587 			 * workaround, as it is better than nothing.
588 			 */
589 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
590 #endif
591 		}
592 	}
593 
594 	/*
595 	 * If we are not a 82557 chip, we can enable extended features.
596 	 */
597 	if (sc->revision != FXP_REV_82557) {
598 		/*
599 		 * If MWI is enabled in the PCI configuration, and there
600 		 * is a valid cacheline size (8 or 16 dwords), then tell
601 		 * the board to turn on MWI.
602 		 */
603 		if (val & PCIM_CMD_MWRICEN &&
604 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
605 			sc->flags |= FXP_FLAG_MWI_ENABLE;
606 
607 		/* turn on the extended TxCB feature */
608 		sc->flags |= FXP_FLAG_EXT_TXCB;
609 
610 		/* enable reception of long frames for VLAN */
611 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
612 	}
613 
614 	/*
615 	 * Read MAC address.
616 	 */
617 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
618 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
619 		device_printf(dev, "10Mbps");
620 	if (bootverbose) {
621 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
622 		    pci_get_vendor(dev), pci_get_device(dev),
623 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
624 		    pci_get_revid(dev));
625 		fxp_read_eeprom(sc, &data, 10, 1);
626 		device_printf(dev, "Dynamic Standby mode is %s\n",
627 		    data & 0x02 ? "enabled" : "disabled");
628 	}
629 
630 	/*
631 	 * If this is only a 10Mbps device, then there is no MII, and
632 	 * the PHY will use a serial interface instead.
633 	 *
634 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
635 	 * doesn't have a programming interface of any sort.  The
636 	 * media is sensed automatically based on how the link partner
637 	 * is configured.  This is, in essence, manual configuration.
638 	 */
639 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
640 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
641 		    fxp_serial_ifmedia_sts);
642 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
643 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
644 	} else {
645 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
646 		    fxp_ifmedia_sts)) {
647 	                device_printf(dev, "MII without any PHY!\n");
648 			error = ENXIO;
649 			goto fail;
650 		}
651 	}
652 
653 	ifp = &sc->arpcom.ac_if;
654 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
655 	ifp->if_baudrate = 100000000;
656 	ifp->if_init = fxp_init;
657 	ifp->if_softc = sc;
658 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
659 	ifp->if_ioctl = fxp_ioctl;
660 	ifp->if_start = fxp_start;
661 #ifdef DEVICE_POLLING
662 	ifp->if_poll = fxp_poll;
663 #endif
664 	ifp->if_watchdog = fxp_watchdog;
665 
666 	/*
667 	 * Attach the interface.
668 	 */
669 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
670 
671 	/*
672 	 * Tell the upper layer(s) we support long frames.
673 	 */
674 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
675 
676 	/*
677 	 * Let the system queue as many packets as we have available
678 	 * TX descriptors.
679 	 */
680 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
681 	ifq_set_ready(&ifp->if_snd);
682 
683 	splx(s);
684 	return (0);
685 
686 failmem:
687 	device_printf(dev, "Failed to malloc memory\n");
688 	error = ENOMEM;
689 fail:
690 	splx(s);
691 	fxp_release(sc);
692 	return (error);
693 }
694 
695 /*
696  * release all resources
697  */
698 static void
699 fxp_release(struct fxp_softc *sc)
700 {
701 
702 	bus_generic_detach(sc->dev);
703 	if (sc->miibus)
704 		device_delete_child(sc->dev, sc->miibus);
705 
706 	if (sc->cbl_base)
707 		free(sc->cbl_base, M_DEVBUF);
708 	if (sc->fxp_stats)
709 		free(sc->fxp_stats, M_DEVBUF);
710 	if (sc->mcsp)
711 		free(sc->mcsp, M_DEVBUF);
712 	if (sc->rfa_headm)
713 		m_freem(sc->rfa_headm);
714 
715 	if (sc->ih)
716 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
717 	if (sc->irq)
718 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
719 	if (sc->mem)
720 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
721 
722         sysctl_ctx_free(&sc->sysctl_ctx);
723 }
724 
725 /*
726  * Detach interface.
727  */
728 static int
729 fxp_detach(device_t dev)
730 {
731 	struct fxp_softc *sc = device_get_softc(dev);
732 	int s;
733 
734 	/* disable interrupts */
735 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
736 
737 	s = splimp();
738 
739 	/*
740 	 * Stop DMA and drop transmit queue.
741 	 */
742 	fxp_stop(sc);
743 
744 	/*
745 	 * Close down routes etc.
746 	 */
747 	ether_ifdetach(&sc->arpcom.ac_if);
748 
749 	/*
750 	 * Free all media structures.
751 	 */
752 	ifmedia_removeall(&sc->sc_media);
753 
754 	splx(s);
755 
756 	/* Release our allocated resources. */
757 	fxp_release(sc);
758 
759 	return (0);
760 }
761 
762 /*
763  * Device shutdown routine. Called at system shutdown after sync. The
764  * main purpose of this routine is to shut off receiver DMA so that
765  * kernel memory doesn't get clobbered during warmboot.
766  */
767 static int
768 fxp_shutdown(device_t dev)
769 {
770 	/*
771 	 * Make sure that DMA is disabled prior to reboot. Not doing
772 	 * do could allow DMA to corrupt kernel memory during the
773 	 * reboot before the driver initializes.
774 	 */
775 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
776 	return (0);
777 }
778 
779 /*
780  * Device suspend routine.  Stop the interface and save some PCI
781  * settings in case the BIOS doesn't restore them properly on
782  * resume.
783  */
784 static int
785 fxp_suspend(device_t dev)
786 {
787 	struct fxp_softc *sc = device_get_softc(dev);
788 	int i, s;
789 
790 	s = splimp();
791 
792 	fxp_stop(sc);
793 
794 	for (i = 0; i < 5; i++)
795 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
796 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
797 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
798 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
799 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
800 
801 	sc->suspended = 1;
802 
803 	splx(s);
804 	return (0);
805 }
806 
807 /*
808  * Device resume routine.  Restore some PCI settings in case the BIOS
809  * doesn't, re-enable busmastering, and restart the interface if
810  * appropriate.
811  */
812 static int
813 fxp_resume(device_t dev)
814 {
815 	struct fxp_softc *sc = device_get_softc(dev);
816 	struct ifnet *ifp = &sc->arpcom.ac_if;
817 	int i, s;
818 
819 	s = splimp();
820 
821 	fxp_powerstate_d0(dev);
822 
823 	/* better way to do this? */
824 	for (i = 0; i < 5; i++)
825 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
826 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
827 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
828 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
829 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
830 
831 	/* reenable busmastering and memory space */
832 	pci_enable_busmaster(dev);
833 	pci_enable_io(dev, SYS_RES_MEMORY);
834 
835 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
836 	DELAY(10);
837 
838 	/* reinitialize interface if necessary */
839 	if (ifp->if_flags & IFF_UP)
840 		fxp_init(sc);
841 
842 	sc->suspended = 0;
843 
844 	splx(s);
845 	return (0);
846 }
847 
848 static void
849 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
850 {
851 	u_int16_t reg;
852 	int x;
853 
854 	/*
855 	 * Shift in data.
856 	 */
857 	for (x = 1 << (length - 1); x; x >>= 1) {
858 		if (data & x)
859 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
860 		else
861 			reg = FXP_EEPROM_EECS;
862 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
863 		DELAY(1);
864 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
865 		DELAY(1);
866 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
867 		DELAY(1);
868 	}
869 }
870 
871 /*
872  * Read from the serial EEPROM. Basically, you manually shift in
873  * the read opcode (one bit at a time) and then shift in the address,
874  * and then you shift out the data (all of this one bit at a time).
875  * The word size is 16 bits, so you have to provide the address for
876  * every 16 bits of data.
877  */
878 static u_int16_t
879 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
880 {
881 	u_int16_t reg, data;
882 	int x;
883 
884 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
885 	/*
886 	 * Shift in read opcode.
887 	 */
888 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
889 	/*
890 	 * Shift in address.
891 	 */
892 	data = 0;
893 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
894 		if (offset & x)
895 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
896 		else
897 			reg = FXP_EEPROM_EECS;
898 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
899 		DELAY(1);
900 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
901 		DELAY(1);
902 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
903 		DELAY(1);
904 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
905 		data++;
906 		if (autosize && reg == 0) {
907 			sc->eeprom_size = data;
908 			break;
909 		}
910 	}
911 	/*
912 	 * Shift out data.
913 	 */
914 	data = 0;
915 	reg = FXP_EEPROM_EECS;
916 	for (x = 1 << 15; x; x >>= 1) {
917 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
918 		DELAY(1);
919 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
920 			data |= x;
921 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
922 		DELAY(1);
923 	}
924 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
925 	DELAY(1);
926 
927 	return (data);
928 }
929 
930 static void
931 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
932 {
933 	int i;
934 
935 	/*
936 	 * Erase/write enable.
937 	 */
938 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
939 	fxp_eeprom_shiftin(sc, 0x4, 3);
940 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
941 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
942 	DELAY(1);
943 	/*
944 	 * Shift in write opcode, address, data.
945 	 */
946 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
947 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
948 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
949 	fxp_eeprom_shiftin(sc, data, 16);
950 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
951 	DELAY(1);
952 	/*
953 	 * Wait for EEPROM to finish up.
954 	 */
955 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
956 	DELAY(1);
957 	for (i = 0; i < 1000; i++) {
958 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
959 			break;
960 		DELAY(50);
961 	}
962 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
963 	DELAY(1);
964 	/*
965 	 * Erase/write disable.
966 	 */
967 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
968 	fxp_eeprom_shiftin(sc, 0x4, 3);
969 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
970 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
971 	DELAY(1);
972 }
973 
974 /*
975  * From NetBSD:
976  *
977  * Figure out EEPROM size.
978  *
979  * 559's can have either 64-word or 256-word EEPROMs, the 558
980  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
981  * talks about the existance of 16 to 256 word EEPROMs.
982  *
983  * The only known sizes are 64 and 256, where the 256 version is used
984  * by CardBus cards to store CIS information.
985  *
986  * The address is shifted in msb-to-lsb, and after the last
987  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
988  * after which follows the actual data. We try to detect this zero, by
989  * probing the data-out bit in the EEPROM control register just after
990  * having shifted in a bit. If the bit is zero, we assume we've
991  * shifted enough address bits. The data-out should be tri-state,
992  * before this, which should translate to a logical one.
993  */
994 static void
995 fxp_autosize_eeprom(struct fxp_softc *sc)
996 {
997 
998 	/* guess maximum size of 256 words */
999 	sc->eeprom_size = 8;
1000 
1001 	/* autosize */
1002 	(void) fxp_eeprom_getword(sc, 0, 1);
1003 }
1004 
1005 static void
1006 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; i < words; i++)
1011 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1012 }
1013 
1014 static void
1015 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1016 {
1017 	int i;
1018 
1019 	for (i = 0; i < words; i++)
1020 		fxp_eeprom_putword(sc, offset + i, data[i]);
1021 }
1022 
1023 /*
1024  * Start packet transmission on the interface.
1025  */
1026 static void
1027 fxp_start(struct ifnet *ifp)
1028 {
1029 	struct fxp_softc *sc = ifp->if_softc;
1030 	struct fxp_cb_tx *txp;
1031 
1032 	/*
1033 	 * See if we need to suspend xmit until the multicast filter
1034 	 * has been reprogrammed (which can only be done at the head
1035 	 * of the command chain).
1036 	 */
1037 	if (sc->need_mcsetup) {
1038 		return;
1039 	}
1040 
1041 	txp = NULL;
1042 
1043 	/*
1044 	 * We're finished if there is nothing more to add to the list or if
1045 	 * we're all filled up with buffers to transmit.
1046 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1047 	 *       a NOP command when needed.
1048 	 */
1049 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1050 		struct mbuf *m, *mb_head;
1051 		int segment, ntries = 0;
1052 
1053 		/*
1054 		 * Grab a packet to transmit. The packet is dequeued,
1055 		 * once we are sure that we have enough free descriptors.
1056 		 */
1057 		mb_head = ifq_poll(&ifp->if_snd);
1058 		if (mb_head == NULL)
1059 			break;
1060 
1061 		/*
1062 		 * Get pointer to next available tx desc.
1063 		 */
1064 		txp = sc->cbl_last->next;
1065 
1066 		/*
1067 		 * Go through each of the mbufs in the chain and initialize
1068 		 * the transmit buffer descriptors with the physical address
1069 		 * and size of the mbuf.
1070 		 */
1071 tbdinit:
1072 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1073 			if (m->m_len != 0) {
1074 				if (segment == FXP_NTXSEG)
1075 					break;
1076 				txp->tbd[segment].tb_addr =
1077 				    vtophys(mtod(m, vm_offset_t));
1078 				txp->tbd[segment].tb_size = m->m_len;
1079 				segment++;
1080 			}
1081 		}
1082 		if (m != NULL) {
1083 			struct mbuf *mn;
1084 
1085 			/*
1086 			 * We ran out of segments. We have to recopy this
1087 			 * mbuf chain first. Bail out if we can't get the
1088 			 * new buffers.
1089 			 */
1090 			if (ntries > 0)
1091 				break;
1092 			mn = m_dup(mb_head, MB_DONTWAIT);
1093 			if (mn == NULL)
1094 				break;
1095 			 /* We can transmit the packet, dequeue it. */
1096 			mb_head = ifq_dequeue(&ifp->if_snd);
1097 			m_freem(mb_head);
1098 			mb_head = mn;
1099 			ntries = 1;
1100 			goto tbdinit;
1101 		} else {
1102 			/* Nothing to worry about, just dequeue. */
1103 			mb_head = ifq_dequeue(&ifp->if_snd);
1104 		}
1105 
1106 		txp->tbd_number = segment;
1107 		txp->mb_head = mb_head;
1108 		txp->cb_status = 0;
1109 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1110 			txp->cb_command =
1111 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1112 			    FXP_CB_COMMAND_S;
1113 		} else {
1114 			txp->cb_command =
1115 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1116 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1117 			/*
1118 			 * Set a 5 second timer just in case we don't hear
1119 			 * from the card again.
1120 			 */
1121 			ifp->if_timer = 5;
1122 		}
1123 		txp->tx_threshold = tx_threshold;
1124 
1125 		/*
1126 		 * Advance the end of list forward.
1127 		 */
1128 
1129 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1130 		sc->cbl_last = txp;
1131 
1132 		/*
1133 		 * Advance the beginning of the list forward if there are
1134 		 * no other packets queued (when nothing is queued, cbl_first
1135 		 * sits on the last TxCB that was sent out).
1136 		 */
1137 		if (sc->tx_queued == 0)
1138 			sc->cbl_first = txp;
1139 
1140 		sc->tx_queued++;
1141 
1142 		BPF_MTAP(ifp, mb_head);
1143 	}
1144 
1145 	/*
1146 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1147 	 * going again if suspended.
1148 	 */
1149 	if (txp != NULL) {
1150 		fxp_scb_wait(sc);
1151 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1152 	}
1153 }
1154 
1155 #ifdef DEVICE_POLLING
1156 
1157 static void
1158 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1159 {
1160 	struct fxp_softc *sc = ifp->if_softc;
1161 	u_int8_t statack;
1162 
1163 	switch(cmd) {
1164 	case POLL_REGISTER:
1165 		/* disable interrupts */
1166 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1167 		break;
1168 	case POLL_DEREGISTER:
1169 		/* enable interrupts */
1170 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1171 		break;
1172 	default:
1173 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1174 			  FXP_SCB_STATACK_FR;
1175 		if (cmd == POLL_AND_CHECK_STATUS) {
1176 			u_int8_t tmp;
1177 
1178 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1179 			if (tmp == 0xff || tmp == 0)
1180 				return; /* nothing to do */
1181 			tmp &= ~statack;
1182 			/* ack what we can */
1183 			if (tmp != 0)
1184 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1185 			statack |= tmp;
1186 		}
1187 		fxp_intr_body(sc, statack, count);
1188 		break;
1189 	}
1190 }
1191 
1192 #endif /* DEVICE_POLLING */
1193 
1194 /*
1195  * Process interface interrupts.
1196  */
1197 static void
1198 fxp_intr(void *xsc)
1199 {
1200 	struct fxp_softc *sc = xsc;
1201 	u_int8_t statack;
1202 
1203 	if (sc->suspended) {
1204 		return;
1205 	}
1206 
1207 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1208 		/*
1209 		 * It should not be possible to have all bits set; the
1210 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1211 		 * all bits are set, this may indicate that the card has
1212 		 * been physically ejected, so ignore it.
1213 		 */
1214 		if (statack == 0xff)
1215 			return;
1216 
1217 		/*
1218 		 * First ACK all the interrupts in this pass.
1219 		 */
1220 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1221 		fxp_intr_body(sc, statack, -1);
1222 	}
1223 }
1224 
1225 static void
1226 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1227 {
1228 	struct ifnet *ifp = &sc->arpcom.ac_if;
1229 	struct mbuf *m;
1230 	struct fxp_rfa *rfa;
1231 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1232 
1233 	if (rnr)
1234 		fxp_rnr++;
1235 #ifdef DEVICE_POLLING
1236 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1237 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1238 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1239 		rnr = 1;
1240 	}
1241 #endif
1242 
1243 	/*
1244 	 * Free any finished transmit mbuf chains.
1245 	 *
1246 	 * Handle the CNA event likt a CXTNO event. It used to
1247 	 * be that this event (control unit not ready) was not
1248 	 * encountered, but it is now with the SMPng modifications.
1249 	 * The exact sequence of events that occur when the interface
1250 	 * is brought up are different now, and if this event
1251 	 * goes unhandled, the configuration/rxfilter setup sequence
1252 	 * can stall for several seconds. The result is that no
1253 	 * packets go out onto the wire for about 5 to 10 seconds
1254 	 * after the interface is ifconfig'ed for the first time.
1255 	 */
1256 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1257 		struct fxp_cb_tx *txp;
1258 
1259 		for (txp = sc->cbl_first; sc->tx_queued &&
1260 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1261 		    txp = txp->next) {
1262 			if ((m = txp->mb_head) != NULL) {
1263 				txp->mb_head = NULL;
1264 				sc->tx_queued--;
1265 				m_freem(m);
1266 			} else {
1267 				sc->tx_queued--;
1268 			}
1269 		}
1270 		sc->cbl_first = txp;
1271 		ifp->if_timer = 0;
1272 		if (sc->tx_queued == 0) {
1273 			if (sc->need_mcsetup)
1274 				fxp_mc_setup(sc);
1275 		}
1276 		/*
1277 		 * Try to start more packets transmitting.
1278 		 */
1279 		if (!ifq_is_empty(&ifp->if_snd))
1280 			(*ifp->if_start)(ifp);
1281 	}
1282 
1283 	/*
1284 	 * Just return if nothing happened on the receive side.
1285 	 */
1286 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1287 		return;
1288 
1289 	/*
1290 	 * Process receiver interrupts. If a no-resource (RNR)
1291 	 * condition exists, get whatever packets we can and
1292 	 * re-start the receiver.
1293 	 *
1294 	 * When using polling, we do not process the list to completion,
1295 	 * so when we get an RNR interrupt we must defer the restart
1296 	 * until we hit the last buffer with the C bit set.
1297 	 * If we run out of cycles and rfa_headm has the C bit set,
1298 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1299 	 * that the info will be used in the subsequent polling cycle.
1300 	 */
1301 	for (;;) {
1302 		m = sc->rfa_headm;
1303 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1304 		    RFA_ALIGNMENT_FUDGE);
1305 
1306 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1307 		if (count >= 0 && count-- == 0) {
1308 			if (rnr) {
1309 				/* Defer RNR processing until the next time. */
1310 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1311 				rnr = 0;
1312 			}
1313 			break;
1314 		}
1315 #endif /* DEVICE_POLLING */
1316 
1317 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1318 			break;
1319 
1320 		/*
1321 		 * Remove first packet from the chain.
1322 		 */
1323 		sc->rfa_headm = m->m_next;
1324 		m->m_next = NULL;
1325 
1326 		/*
1327 		 * Add a new buffer to the receive chain.
1328 		 * If this fails, the old buffer is recycled
1329 		 * instead.
1330 		 */
1331 		if (fxp_add_rfabuf(sc, m) == 0) {
1332 			int total_len;
1333 
1334 			/*
1335 			 * Fetch packet length (the top 2 bits of
1336 			 * actual_size are flags set by the controller
1337 			 * upon completion), and drop the packet in case
1338 			 * of bogus length or CRC errors.
1339 			 */
1340 			total_len = rfa->actual_size & 0x3fff;
1341 			if (total_len < sizeof(struct ether_header) ||
1342 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1343 				sizeof(struct fxp_rfa) ||
1344 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1345 				m_freem(m);
1346 				continue;
1347 			}
1348 			m->m_pkthdr.len = m->m_len = total_len;
1349 			(*ifp->if_input)(ifp, m);
1350 		}
1351 	}
1352 	if (rnr) {
1353 		fxp_scb_wait(sc);
1354 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1355 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1356 		    RFA_ALIGNMENT_FUDGE);
1357 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1358 	}
1359 }
1360 
1361 /*
1362  * Update packet in/out/collision statistics. The i82557 doesn't
1363  * allow you to access these counters without doing a fairly
1364  * expensive DMA to get _all_ of the statistics it maintains, so
1365  * we do this operation here only once per second. The statistics
1366  * counters in the kernel are updated from the previous dump-stats
1367  * DMA and then a new dump-stats DMA is started. The on-chip
1368  * counters are zeroed when the DMA completes. If we can't start
1369  * the DMA immediately, we don't wait - we just prepare to read
1370  * them again next time.
1371  */
1372 static void
1373 fxp_tick(void *xsc)
1374 {
1375 	struct fxp_softc *sc = xsc;
1376 	struct ifnet *ifp = &sc->arpcom.ac_if;
1377 	struct fxp_stats *sp = sc->fxp_stats;
1378 	struct fxp_cb_tx *txp;
1379 	struct mbuf *m;
1380 	int s;
1381 
1382 	ifp->if_opackets += sp->tx_good;
1383 	ifp->if_collisions += sp->tx_total_collisions;
1384 	if (sp->rx_good) {
1385 		ifp->if_ipackets += sp->rx_good;
1386 		sc->rx_idle_secs = 0;
1387 	} else {
1388 		/*
1389 		 * Receiver's been idle for another second.
1390 		 */
1391 		sc->rx_idle_secs++;
1392 	}
1393 	ifp->if_ierrors +=
1394 	    sp->rx_crc_errors +
1395 	    sp->rx_alignment_errors +
1396 	    sp->rx_rnr_errors +
1397 	    sp->rx_overrun_errors;
1398 	/*
1399 	 * If any transmit underruns occured, bump up the transmit
1400 	 * threshold by another 512 bytes (64 * 8).
1401 	 */
1402 	if (sp->tx_underruns) {
1403 		ifp->if_oerrors += sp->tx_underruns;
1404 		if (tx_threshold < 192)
1405 			tx_threshold += 64;
1406 	}
1407 	s = splimp();
1408 	/*
1409 	 * Release any xmit buffers that have completed DMA. This isn't
1410 	 * strictly necessary to do here, but it's advantagous for mbufs
1411 	 * with external storage to be released in a timely manner rather
1412 	 * than being defered for a potentially long time. This limits
1413 	 * the delay to a maximum of one second.
1414 	 */
1415 	for (txp = sc->cbl_first; sc->tx_queued &&
1416 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1417 	    txp = txp->next) {
1418 		if ((m = txp->mb_head) != NULL) {
1419 			txp->mb_head = NULL;
1420 			sc->tx_queued--;
1421 			m_freem(m);
1422 		} else {
1423 			sc->tx_queued--;
1424 		}
1425 	}
1426 	sc->cbl_first = txp;
1427 	/*
1428 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1429 	 * then assume the receiver has locked up and attempt to clear
1430 	 * the condition by reprogramming the multicast filter. This is
1431 	 * a work-around for a bug in the 82557 where the receiver locks
1432 	 * up if it gets certain types of garbage in the syncronization
1433 	 * bits prior to the packet header. This bug is supposed to only
1434 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1435 	 * mode as well (perhaps due to a 10/100 speed transition).
1436 	 */
1437 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1438 		sc->rx_idle_secs = 0;
1439 		fxp_mc_setup(sc);
1440 	}
1441 	/*
1442 	 * If there is no pending command, start another stats
1443 	 * dump. Otherwise punt for now.
1444 	 */
1445 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1446 		/*
1447 		 * Start another stats dump.
1448 		 */
1449 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1450 	} else {
1451 		/*
1452 		 * A previous command is still waiting to be accepted.
1453 		 * Just zero our copy of the stats and wait for the
1454 		 * next timer event to update them.
1455 		 */
1456 		sp->tx_good = 0;
1457 		sp->tx_underruns = 0;
1458 		sp->tx_total_collisions = 0;
1459 
1460 		sp->rx_good = 0;
1461 		sp->rx_crc_errors = 0;
1462 		sp->rx_alignment_errors = 0;
1463 		sp->rx_rnr_errors = 0;
1464 		sp->rx_overrun_errors = 0;
1465 	}
1466 	if (sc->miibus != NULL)
1467 		mii_tick(device_get_softc(sc->miibus));
1468 	splx(s);
1469 	/*
1470 	 * Schedule another timeout one second from now.
1471 	 */
1472 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1473 }
1474 
1475 /*
1476  * Stop the interface. Cancels the statistics updater and resets
1477  * the interface.
1478  */
1479 static void
1480 fxp_stop(struct fxp_softc *sc)
1481 {
1482 	struct ifnet *ifp = &sc->arpcom.ac_if;
1483 	struct fxp_cb_tx *txp;
1484 	int i;
1485 
1486 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1487 	ifp->if_timer = 0;
1488 
1489 	/*
1490 	 * Cancel stats updater.
1491 	 */
1492 	callout_stop(&sc->fxp_stat_timer);
1493 
1494 	/*
1495 	 * Issue software reset, which also unloads the microcode.
1496 	 */
1497 	sc->flags &= ~FXP_FLAG_UCODE;
1498 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1499 	DELAY(50);
1500 
1501 	/*
1502 	 * Release any xmit buffers.
1503 	 */
1504 	txp = sc->cbl_base;
1505 	if (txp != NULL) {
1506 		for (i = 0; i < FXP_NTXCB; i++) {
1507 			if (txp[i].mb_head != NULL) {
1508 				m_freem(txp[i].mb_head);
1509 				txp[i].mb_head = NULL;
1510 			}
1511 		}
1512 	}
1513 	sc->tx_queued = 0;
1514 
1515 	/*
1516 	 * Free all the receive buffers then reallocate/reinitialize
1517 	 */
1518 	if (sc->rfa_headm != NULL)
1519 		m_freem(sc->rfa_headm);
1520 	sc->rfa_headm = NULL;
1521 	sc->rfa_tailm = NULL;
1522 	for (i = 0; i < FXP_NRFABUFS; i++) {
1523 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1524 			/*
1525 			 * This "can't happen" - we're at splimp()
1526 			 * and we just freed all the buffers we need
1527 			 * above.
1528 			 */
1529 			panic("fxp_stop: no buffers!");
1530 		}
1531 	}
1532 }
1533 
1534 /*
1535  * Watchdog/transmission transmit timeout handler. Called when a
1536  * transmission is started on the interface, but no interrupt is
1537  * received before the timeout. This usually indicates that the
1538  * card has wedged for some reason.
1539  */
1540 static void
1541 fxp_watchdog(struct ifnet *ifp)
1542 {
1543 	if_printf(ifp, "device timeout\n");
1544 	ifp->if_oerrors++;
1545 	fxp_init(ifp->if_softc);
1546 }
1547 
1548 static void
1549 fxp_init(void *xsc)
1550 {
1551 	struct fxp_softc *sc = xsc;
1552 	struct ifnet *ifp = &sc->arpcom.ac_if;
1553 	struct fxp_cb_config *cbp;
1554 	struct fxp_cb_ias *cb_ias;
1555 	struct fxp_cb_tx *txp;
1556 	struct fxp_cb_mcs *mcsp;
1557 	int i, prm, s;
1558 
1559 	s = splimp();
1560 	/*
1561 	 * Cancel any pending I/O
1562 	 */
1563 	fxp_stop(sc);
1564 
1565 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1566 
1567 	/*
1568 	 * Initialize base of CBL and RFA memory. Loading with zero
1569 	 * sets it up for regular linear addressing.
1570 	 */
1571 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1572 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1573 
1574 	fxp_scb_wait(sc);
1575 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1576 
1577 	/*
1578 	 * Initialize base of dump-stats buffer.
1579 	 */
1580 	fxp_scb_wait(sc);
1581 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1582 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1583 
1584 	/*
1585 	 * Attempt to load microcode if requested.
1586 	 */
1587 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1588 		fxp_load_ucode(sc);
1589 
1590 	/*
1591 	 * Initialize the multicast address list.
1592 	 */
1593 	if (fxp_mc_addrs(sc)) {
1594 		mcsp = sc->mcsp;
1595 		mcsp->cb_status = 0;
1596 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1597 		mcsp->link_addr = -1;
1598 		/*
1599 	 	 * Start the multicast setup command.
1600 		 */
1601 		fxp_scb_wait(sc);
1602 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1603 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1604 		/* ...and wait for it to complete. */
1605 		fxp_dma_wait(&mcsp->cb_status, sc);
1606 	}
1607 
1608 	/*
1609 	 * We temporarily use memory that contains the TxCB list to
1610 	 * construct the config CB. The TxCB list memory is rebuilt
1611 	 * later.
1612 	 */
1613 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1614 
1615 	/*
1616 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1617 	 * zero and must be one bits in this structure and this is the easiest
1618 	 * way to initialize them all to proper values.
1619 	 */
1620 	bcopy(fxp_cb_config_template,
1621 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1622 		sizeof(fxp_cb_config_template));
1623 
1624 	cbp->cb_status =	0;
1625 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1626 	cbp->link_addr =	-1;	/* (no) next command */
1627 	cbp->byte_count =	22;	/* (22) bytes to config */
1628 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1629 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1630 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1631 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1632 	cbp->type_enable =	0;	/* actually reserved */
1633 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1634 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1635 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1636 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1637 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1638 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1639 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1640 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1641 	cbp->ci_int =		1;	/* interrupt on CU idle */
1642 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1643 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1644 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1645 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1646 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1647 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1648 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1649 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1650 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1651 	cbp->csma_dis =		0;	/* (don't) disable link */
1652 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1653 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1654 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1655 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1656 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1657 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1658 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1659 	cbp->loopback =		0;	/* (don't) loopback */
1660 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1661 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1662 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1663 	cbp->promiscuous =	prm;	/* promiscuous mode */
1664 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1665 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1666 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1667 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1668 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1669 
1670 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1671 	cbp->padding =		1;	/* (do) pad short tx packets */
1672 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1673 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1674 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1675 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1676 					/* must set wake_en in PMCSR also */
1677 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1678 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1679 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1680 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1681 
1682 	if (sc->revision == FXP_REV_82557) {
1683 		/*
1684 		 * The 82557 has no hardware flow control, the values
1685 		 * below are the defaults for the chip.
1686 		 */
1687 		cbp->fc_delay_lsb =	0;
1688 		cbp->fc_delay_msb =	0x40;
1689 		cbp->pri_fc_thresh =	3;
1690 		cbp->tx_fc_dis =	0;
1691 		cbp->rx_fc_restop =	0;
1692 		cbp->rx_fc_restart =	0;
1693 		cbp->fc_filter =	0;
1694 		cbp->pri_fc_loc =	1;
1695 	} else {
1696 		cbp->fc_delay_lsb =	0x1f;
1697 		cbp->fc_delay_msb =	0x01;
1698 		cbp->pri_fc_thresh =	3;
1699 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1700 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1701 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1702 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1703 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1704 	}
1705 
1706 	/*
1707 	 * Start the config command/DMA.
1708 	 */
1709 	fxp_scb_wait(sc);
1710 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1711 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1712 	/* ...and wait for it to complete. */
1713 	fxp_dma_wait(&cbp->cb_status, sc);
1714 
1715 	/*
1716 	 * Now initialize the station address. Temporarily use the TxCB
1717 	 * memory area like we did above for the config CB.
1718 	 */
1719 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1720 	cb_ias->cb_status = 0;
1721 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1722 	cb_ias->link_addr = -1;
1723 	bcopy(sc->arpcom.ac_enaddr,
1724 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1725 	    sizeof(sc->arpcom.ac_enaddr));
1726 
1727 	/*
1728 	 * Start the IAS (Individual Address Setup) command/DMA.
1729 	 */
1730 	fxp_scb_wait(sc);
1731 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1732 	/* ...and wait for it to complete. */
1733 	fxp_dma_wait(&cb_ias->cb_status, sc);
1734 
1735 	/*
1736 	 * Initialize transmit control block (TxCB) list.
1737 	 */
1738 
1739 	txp = sc->cbl_base;
1740 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1741 	for (i = 0; i < FXP_NTXCB; i++) {
1742 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1743 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1744 		txp[i].link_addr =
1745 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1746 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1747 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1748 		else
1749 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1750 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1751 	}
1752 	/*
1753 	 * Set the suspend flag on the first TxCB and start the control
1754 	 * unit. It will execute the NOP and then suspend.
1755 	 */
1756 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1757 	sc->cbl_first = sc->cbl_last = txp;
1758 	sc->tx_queued = 1;
1759 
1760 	fxp_scb_wait(sc);
1761 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1762 
1763 	/*
1764 	 * Initialize receiver buffer area - RFA.
1765 	 */
1766 	fxp_scb_wait(sc);
1767 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1768 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1769 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1770 
1771 	/*
1772 	 * Set current media.
1773 	 */
1774 	if (sc->miibus != NULL)
1775 		mii_mediachg(device_get_softc(sc->miibus));
1776 
1777 	ifp->if_flags |= IFF_RUNNING;
1778 	ifp->if_flags &= ~IFF_OACTIVE;
1779 
1780 	/*
1781 	 * Enable interrupts.
1782 	 */
1783 #ifdef DEVICE_POLLING
1784 	/*
1785 	 * ... but only do that if we are not polling. And because (presumably)
1786 	 * the default is interrupts on, we need to disable them explicitly!
1787 	 */
1788 	if ( ifp->if_flags & IFF_POLLING )
1789 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1790 	else
1791 #endif /* DEVICE_POLLING */
1792 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1793 	splx(s);
1794 
1795 	/*
1796 	 * Start stats updater.
1797 	 */
1798 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1799 }
1800 
1801 static int
1802 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1803 {
1804 
1805 	return (0);
1806 }
1807 
1808 static void
1809 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1810 {
1811 
1812 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1813 }
1814 
1815 /*
1816  * Change media according to request.
1817  */
1818 static int
1819 fxp_ifmedia_upd(struct ifnet *ifp)
1820 {
1821 	struct fxp_softc *sc = ifp->if_softc;
1822 	struct mii_data *mii;
1823 
1824 	mii = device_get_softc(sc->miibus);
1825 	mii_mediachg(mii);
1826 	return (0);
1827 }
1828 
1829 /*
1830  * Notify the world which media we're using.
1831  */
1832 static void
1833 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1834 {
1835 	struct fxp_softc *sc = ifp->if_softc;
1836 	struct mii_data *mii;
1837 
1838 	mii = device_get_softc(sc->miibus);
1839 	mii_pollstat(mii);
1840 	ifmr->ifm_active = mii->mii_media_active;
1841 	ifmr->ifm_status = mii->mii_media_status;
1842 
1843 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1844 		sc->cu_resume_bug = 1;
1845 	else
1846 		sc->cu_resume_bug = 0;
1847 }
1848 
1849 /*
1850  * Add a buffer to the end of the RFA buffer list.
1851  * Return 0 if successful, 1 for failure. A failure results in
1852  * adding the 'oldm' (if non-NULL) on to the end of the list -
1853  * tossing out its old contents and recycling it.
1854  * The RFA struct is stuck at the beginning of mbuf cluster and the
1855  * data pointer is fixed up to point just past it.
1856  */
1857 static int
1858 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1859 {
1860 	u_int32_t v;
1861 	struct mbuf *m;
1862 	struct fxp_rfa *rfa, *p_rfa;
1863 
1864 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1865 	if (m == NULL) { /* try to recycle the old mbuf instead */
1866 		if (oldm == NULL)
1867 			return 1;
1868 		m = oldm;
1869 		m->m_data = m->m_ext.ext_buf;
1870 	}
1871 
1872 	/*
1873 	 * Move the data pointer up so that the incoming data packet
1874 	 * will be 32-bit aligned.
1875 	 */
1876 	m->m_data += RFA_ALIGNMENT_FUDGE;
1877 
1878 	/*
1879 	 * Get a pointer to the base of the mbuf cluster and move
1880 	 * data start past it.
1881 	 */
1882 	rfa = mtod(m, struct fxp_rfa *);
1883 	m->m_data += sizeof(struct fxp_rfa);
1884 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1885 
1886 	/*
1887 	 * Initialize the rest of the RFA.  Note that since the RFA
1888 	 * is misaligned, we cannot store values directly.  Instead,
1889 	 * we use an optimized, inline copy.
1890 	 */
1891 
1892 	rfa->rfa_status = 0;
1893 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1894 	rfa->actual_size = 0;
1895 
1896 	v = -1;
1897 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1898 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1899 
1900 	/*
1901 	 * If there are other buffers already on the list, attach this
1902 	 * one to the end by fixing up the tail to point to this one.
1903 	 */
1904 	if (sc->rfa_headm != NULL) {
1905 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1906 		    RFA_ALIGNMENT_FUDGE);
1907 		sc->rfa_tailm->m_next = m;
1908 		v = vtophys(rfa);
1909 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1910 		p_rfa->rfa_control = 0;
1911 	} else {
1912 		sc->rfa_headm = m;
1913 	}
1914 	sc->rfa_tailm = m;
1915 
1916 	return (m == oldm);
1917 }
1918 
1919 static volatile int
1920 fxp_miibus_readreg(device_t dev, int phy, int reg)
1921 {
1922 	struct fxp_softc *sc = device_get_softc(dev);
1923 	int count = 10000;
1924 	int value;
1925 
1926 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1927 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1928 
1929 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1930 	    && count--)
1931 		DELAY(10);
1932 
1933 	if (count <= 0)
1934 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1935 
1936 	return (value & 0xffff);
1937 }
1938 
1939 static void
1940 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1941 {
1942 	struct fxp_softc *sc = device_get_softc(dev);
1943 	int count = 10000;
1944 
1945 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1946 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1947 	    (value & 0xffff));
1948 
1949 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1950 	    count--)
1951 		DELAY(10);
1952 
1953 	if (count <= 0)
1954 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1955 }
1956 
1957 static int
1958 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1959 {
1960 	struct fxp_softc *sc = ifp->if_softc;
1961 	struct ifreq *ifr = (struct ifreq *)data;
1962 	struct mii_data *mii;
1963 	int s, error = 0;
1964 
1965 	s = splimp();
1966 
1967 	switch (command) {
1968 
1969 	case SIOCSIFFLAGS:
1970 		if (ifp->if_flags & IFF_ALLMULTI)
1971 			sc->flags |= FXP_FLAG_ALL_MCAST;
1972 		else
1973 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1974 
1975 		/*
1976 		 * If interface is marked up and not running, then start it.
1977 		 * If it is marked down and running, stop it.
1978 		 * XXX If it's up then re-initialize it. This is so flags
1979 		 * such as IFF_PROMISC are handled.
1980 		 */
1981 		if (ifp->if_flags & IFF_UP) {
1982 			fxp_init(sc);
1983 		} else {
1984 			if (ifp->if_flags & IFF_RUNNING)
1985 				fxp_stop(sc);
1986 		}
1987 		break;
1988 
1989 	case SIOCADDMULTI:
1990 	case SIOCDELMULTI:
1991 		if (ifp->if_flags & IFF_ALLMULTI)
1992 			sc->flags |= FXP_FLAG_ALL_MCAST;
1993 		else
1994 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1995 		/*
1996 		 * Multicast list has changed; set the hardware filter
1997 		 * accordingly.
1998 		 */
1999 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2000 			fxp_mc_setup(sc);
2001 		/*
2002 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2003 		 * again rather than else {}.
2004 		 */
2005 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2006 			fxp_init(sc);
2007 		error = 0;
2008 		break;
2009 
2010 	case SIOCSIFMEDIA:
2011 	case SIOCGIFMEDIA:
2012 		if (sc->miibus != NULL) {
2013 			mii = device_get_softc(sc->miibus);
2014                         error = ifmedia_ioctl(ifp, ifr,
2015                             &mii->mii_media, command);
2016 		} else {
2017                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2018 		}
2019 		break;
2020 
2021 	default:
2022 		error = ether_ioctl(ifp, command, data);
2023 		break;
2024 	}
2025 	splx(s);
2026 	return (error);
2027 }
2028 
2029 /*
2030  * Fill in the multicast address list and return number of entries.
2031  */
2032 static int
2033 fxp_mc_addrs(struct fxp_softc *sc)
2034 {
2035 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2036 	struct ifnet *ifp = &sc->arpcom.ac_if;
2037 	struct ifmultiaddr *ifma;
2038 	int nmcasts;
2039 
2040 	nmcasts = 0;
2041 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2042 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2043 			if (ifma->ifma_addr->sa_family != AF_LINK)
2044 				continue;
2045 			if (nmcasts >= MAXMCADDR) {
2046 				sc->flags |= FXP_FLAG_ALL_MCAST;
2047 				nmcasts = 0;
2048 				break;
2049 			}
2050 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2051 			    (void *)(uintptr_t)(volatile void *)
2052 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2053 			nmcasts++;
2054 		}
2055 	}
2056 	mcsp->mc_cnt = nmcasts * 6;
2057 	return (nmcasts);
2058 }
2059 
2060 /*
2061  * Program the multicast filter.
2062  *
2063  * We have an artificial restriction that the multicast setup command
2064  * must be the first command in the chain, so we take steps to ensure
2065  * this. By requiring this, it allows us to keep up the performance of
2066  * the pre-initialized command ring (esp. link pointers) by not actually
2067  * inserting the mcsetup command in the ring - i.e. its link pointer
2068  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2069  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2070  * lead into the regular TxCB ring when it completes.
2071  *
2072  * This function must be called at splimp.
2073  */
2074 static void
2075 fxp_mc_setup(struct fxp_softc *sc)
2076 {
2077 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2078 	struct ifnet *ifp = &sc->arpcom.ac_if;
2079 	int count;
2080 
2081 	/*
2082 	 * If there are queued commands, we must wait until they are all
2083 	 * completed. If we are already waiting, then add a NOP command
2084 	 * with interrupt option so that we're notified when all commands
2085 	 * have been completed - fxp_start() ensures that no additional
2086 	 * TX commands will be added when need_mcsetup is true.
2087 	 */
2088 	if (sc->tx_queued) {
2089 		struct fxp_cb_tx *txp;
2090 
2091 		/*
2092 		 * need_mcsetup will be true if we are already waiting for the
2093 		 * NOP command to be completed (see below). In this case, bail.
2094 		 */
2095 		if (sc->need_mcsetup)
2096 			return;
2097 		sc->need_mcsetup = 1;
2098 
2099 		/*
2100 		 * Add a NOP command with interrupt so that we are notified
2101 		 * when all TX commands have been processed.
2102 		 */
2103 		txp = sc->cbl_last->next;
2104 		txp->mb_head = NULL;
2105 		txp->cb_status = 0;
2106 		txp->cb_command = FXP_CB_COMMAND_NOP |
2107 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2108 		/*
2109 		 * Advance the end of list forward.
2110 		 */
2111 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2112 		sc->cbl_last = txp;
2113 		sc->tx_queued++;
2114 		/*
2115 		 * Issue a resume in case the CU has just suspended.
2116 		 */
2117 		fxp_scb_wait(sc);
2118 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2119 		/*
2120 		 * Set a 5 second timer just in case we don't hear from the
2121 		 * card again.
2122 		 */
2123 		ifp->if_timer = 5;
2124 
2125 		return;
2126 	}
2127 	sc->need_mcsetup = 0;
2128 
2129 	/*
2130 	 * Initialize multicast setup descriptor.
2131 	 */
2132 	mcsp->next = sc->cbl_base;
2133 	mcsp->mb_head = NULL;
2134 	mcsp->cb_status = 0;
2135 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2136 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2137 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2138 	(void) fxp_mc_addrs(sc);
2139 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2140 	sc->tx_queued = 1;
2141 
2142 	/*
2143 	 * Wait until command unit is not active. This should never
2144 	 * be the case when nothing is queued, but make sure anyway.
2145 	 */
2146 	count = 100;
2147 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2148 	    FXP_SCB_CUS_ACTIVE && --count)
2149 		DELAY(10);
2150 	if (count == 0) {
2151 		device_printf(sc->dev, "command queue timeout\n");
2152 		return;
2153 	}
2154 
2155 	/*
2156 	 * Start the multicast setup command.
2157 	 */
2158 	fxp_scb_wait(sc);
2159 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2160 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2161 
2162 	ifp->if_timer = 2;
2163 	return;
2164 }
2165 
2166 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2167 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2168 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2169 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2170 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2171 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2172 
2173 #define UCODE(x)	x, sizeof(x)
2174 
2175 struct ucode {
2176 	u_int32_t	revision;
2177 	u_int32_t	*ucode;
2178 	int		length;
2179 	u_short		int_delay_offset;
2180 	u_short		bundle_max_offset;
2181 } ucode_table[] = {
2182 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2183 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2184 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2185 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2186 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2187 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2188 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2189 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2190 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2191 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2192 	{ 0, NULL, 0, 0, 0 }
2193 };
2194 
2195 static void
2196 fxp_load_ucode(struct fxp_softc *sc)
2197 {
2198 	struct ucode *uc;
2199 	struct fxp_cb_ucode *cbp;
2200 
2201 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2202 		if (sc->revision == uc->revision)
2203 			break;
2204 	if (uc->ucode == NULL)
2205 		return;
2206 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2207 	cbp->cb_status = 0;
2208 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2209 	cbp->link_addr = -1;    	/* (no) next command */
2210 	memcpy(cbp->ucode, uc->ucode, uc->length);
2211 	if (uc->int_delay_offset)
2212 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2213 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2214 	if (uc->bundle_max_offset)
2215 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2216 		    sc->tunable_bundle_max;
2217 	/*
2218 	 * Download the ucode to the chip.
2219 	 */
2220 	fxp_scb_wait(sc);
2221 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2222 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2223 	/* ...and wait for it to complete. */
2224 	fxp_dma_wait(&cbp->cb_status, sc);
2225 	device_printf(sc->dev,
2226 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2227 	    sc->tunable_int_delay,
2228 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2229 	sc->flags |= FXP_FLAG_UCODE;
2230 }
2231 
2232 static int
2233 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2234 {
2235 	int error, value;
2236 
2237 	value = *(int *)arg1;
2238 	error = sysctl_handle_int(oidp, &value, 0, req);
2239 	if (error || !req->newptr)
2240 		return (error);
2241 	if (value < low || value > high)
2242 		return (EINVAL);
2243 	*(int *)arg1 = value;
2244 	return (0);
2245 }
2246 
2247 /*
2248  * Interrupt delay is expressed in microseconds, a multiplier is used
2249  * to convert this to the appropriate clock ticks before using.
2250  */
2251 static int
2252 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2253 {
2254 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2255 }
2256 
2257 static int
2258 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2259 {
2260 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2261 }
2262