xref: /dflybsd-src/sys/dev/netif/fxp/if_fxp.c (revision 8cae915b2e68331237f3adae4fada2ced7313573)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.46 2006/09/23 01:59:16 sephe Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include "opt_polling.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 #include <sys/thread2.h>
46 
47 #include <net/if.h>
48 #include <net/ifq_var.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #ifdef NS
53 #include <netns/ns.h>
54 #include <netns/ns_if.h>
55 #endif
56 
57 #include <net/bpf.h>
58 #include <sys/sockio.h>
59 #include <sys/bus.h>
60 #include <machine/bus.h>
61 #include <sys/rman.h>
62 #include <machine/resource.h>
63 
64 #include <net/ethernet.h>
65 #include <net/if_arp.h>
66 
67 #include <vm/vm.h>		/* for vtophys */
68 #include <vm/pmap.h>		/* for vtophys */
69 
70 #include <net/if_types.h>
71 #include <net/vlan/if_vlan_var.h>
72 
73 #include <bus/pci/pcivar.h>
74 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include "../mii_layer/mii.h"
77 #include "../mii_layer/miivar.h"
78 
79 #include "if_fxpreg.h"
80 #include "if_fxpvar.h"
81 #include "rcvbundl.h"
82 
83 #include "miibus_if.h"
84 
85 /*
86  * NOTE!  On the Alpha, we have an alignment constraint.  The
87  * card DMAs the packet immediately following the RFA.  However,
88  * the first thing in the packet is a 14-byte Ethernet header.
89  * This means that the packet is misaligned.  To compensate,
90  * we actually offset the RFA 2 bytes into the cluster.  This
91  * alignes the packet after the Ethernet header at a 32-bit
92  * boundary.  HOWEVER!  This means that the RFA is misaligned!
93  */
94 #define	RFA_ALIGNMENT_FUDGE	2
95 
96 /*
97  * Set initial transmit threshold at 64 (512 bytes). This is
98  * increased by 64 (512 bytes) at a time, to maximum of 192
99  * (1536 bytes), if an underrun occurs.
100  */
101 static int tx_threshold = 64;
102 
103 /*
104  * The configuration byte map has several undefined fields which
105  * must be one or must be zero.  Set up a template for these bits
106  * only, (assuming a 82557 chip) leaving the actual configuration
107  * to fxp_init.
108  *
109  * See struct fxp_cb_config for the bit definitions.
110  */
111 static u_char fxp_cb_config_template[] = {
112 	0x0, 0x0,		/* cb_status */
113 	0x0, 0x0,		/* cb_command */
114 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
115 	0x0,	/*  0 */
116 	0x0,	/*  1 */
117 	0x0,	/*  2 */
118 	0x0,	/*  3 */
119 	0x0,	/*  4 */
120 	0x0,	/*  5 */
121 	0x32,	/*  6 */
122 	0x0,	/*  7 */
123 	0x0,	/*  8 */
124 	0x0,	/*  9 */
125 	0x6,	/* 10 */
126 	0x0,	/* 11 */
127 	0x0,	/* 12 */
128 	0x0,	/* 13 */
129 	0xf2,	/* 14 */
130 	0x48,	/* 15 */
131 	0x0,	/* 16 */
132 	0x40,	/* 17 */
133 	0xf0,	/* 18 */
134 	0x0,	/* 19 */
135 	0x3f,	/* 20 */
136 	0x5	/* 21 */
137 };
138 
139 struct fxp_ident {
140 	u_int16_t	devid;
141 	int16_t		revid;		/* -1 matches anything */
142 	char 		*name;
143 };
144 
145 /*
146  * Claim various Intel PCI device identifiers for this driver.  The
147  * sub-vendor and sub-device field are extensively used to identify
148  * particular variants, but we don't currently differentiate between
149  * them.
150  */
151 static struct fxp_ident fxp_ident_table[] = {
152      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
153      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
154      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
156      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
158      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
163      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
165      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
166      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
167      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
169      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
170      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
171      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
172      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
173      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
174      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
175      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
176      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
177      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
178      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
179      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
180      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
181      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
182      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
183      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
184      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
185      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
186      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
187      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
188      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
189      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
190      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
191      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
192      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
193      { 0,	-1,	NULL },
194 };
195 
196 static int		fxp_probe(device_t dev);
197 static int		fxp_attach(device_t dev);
198 static int		fxp_detach(device_t dev);
199 static int		fxp_shutdown(device_t dev);
200 static int		fxp_suspend(device_t dev);
201 static int		fxp_resume(device_t dev);
202 
203 static void		fxp_intr(void *xsc);
204 static void		fxp_intr_body(struct fxp_softc *sc,
205 				u_int8_t statack, int count);
206 
207 static void 		fxp_init(void *xsc);
208 static void 		fxp_tick(void *xsc);
209 static void		fxp_powerstate_d0(device_t dev);
210 static void 		fxp_start(struct ifnet *ifp);
211 static void		fxp_stop(struct fxp_softc *sc);
212 static void 		fxp_release(device_t dev);
213 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
214 			    caddr_t data, struct ucred *);
215 static void 		fxp_watchdog(struct ifnet *ifp);
216 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
217 static int		fxp_mc_addrs(struct fxp_softc *sc);
218 static void		fxp_mc_setup(struct fxp_softc *sc);
219 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
220 			    int autosize);
221 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
222 			    u_int16_t data);
223 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
224 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
225 			    int offset, int words);
226 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
227 			    int offset, int words);
228 static int		fxp_ifmedia_upd(struct ifnet *ifp);
229 static void		fxp_ifmedia_sts(struct ifnet *ifp,
230 			    struct ifmediareq *ifmr);
231 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
232 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
233 			    struct ifmediareq *ifmr);
234 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
235 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
236 			    int value);
237 static void		fxp_load_ucode(struct fxp_softc *sc);
238 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
239 			    int low, int high);
240 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
241 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
242 #ifdef DEVICE_POLLING
243 static poll_handler_t fxp_poll;
244 #endif
245 
246 static void		fxp_lwcopy(volatile u_int32_t *src,
247 			    volatile u_int32_t *dst);
248 static void 		fxp_scb_wait(struct fxp_softc *sc);
249 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
250 static void		fxp_dma_wait(volatile u_int16_t *status,
251 			    struct fxp_softc *sc);
252 
253 static device_method_t fxp_methods[] = {
254 	/* Device interface */
255 	DEVMETHOD(device_probe,		fxp_probe),
256 	DEVMETHOD(device_attach,	fxp_attach),
257 	DEVMETHOD(device_detach,	fxp_detach),
258 	DEVMETHOD(device_shutdown,	fxp_shutdown),
259 	DEVMETHOD(device_suspend,	fxp_suspend),
260 	DEVMETHOD(device_resume,	fxp_resume),
261 
262 	/* MII interface */
263 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
264 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
265 
266 	{ 0, 0 }
267 };
268 
269 static driver_t fxp_driver = {
270 	"fxp",
271 	fxp_methods,
272 	sizeof(struct fxp_softc),
273 };
274 
275 static devclass_t fxp_devclass;
276 
277 DECLARE_DUMMY_MODULE(if_fxp);
278 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
279 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
280 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
281 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
282 
283 static int fxp_rnr;
284 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
285 
286 /*
287  * Copy a 16-bit aligned 32-bit quantity.
288  */
289 static void
290 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
291 {
292 #ifdef __i386__
293 	*dst = *src;
294 #else
295 	volatile u_int16_t *a = (volatile u_int16_t *)src;
296 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
297 
298 	b[0] = a[0];
299 	b[1] = a[1];
300 #endif
301 }
302 
303 /*
304  * Wait for the previous command to be accepted (but not necessarily
305  * completed).
306  */
307 static void
308 fxp_scb_wait(struct fxp_softc *sc)
309 {
310 	int i = 10000;
311 
312 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
313 		DELAY(2);
314 	if (i == 0) {
315 		if_printf(&sc->arpcom.ac_if,
316 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
317 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
318 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
319 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
320 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
321 	}
322 }
323 
324 static void
325 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
326 {
327 
328 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
329 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
330 		fxp_scb_wait(sc);
331 	}
332 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
333 }
334 
335 static void
336 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
337 {
338 	int i = 10000;
339 
340 	while (!(*status & FXP_CB_STATUS_C) && --i)
341 		DELAY(2);
342 	if (i == 0)
343 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
344 }
345 
346 /*
347  * Return identification string if this is device is ours.
348  */
349 static int
350 fxp_probe(device_t dev)
351 {
352 	u_int16_t devid;
353 	u_int8_t revid;
354 	struct fxp_ident *ident;
355 
356 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
357 		devid = pci_get_device(dev);
358 		revid = pci_get_revid(dev);
359 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
360 			if (ident->devid == devid &&
361 			    (ident->revid == revid || ident->revid == -1)) {
362 				device_set_desc(dev, ident->name);
363 				return (0);
364 			}
365 		}
366 	}
367 	return (ENXIO);
368 }
369 
370 static void
371 fxp_powerstate_d0(device_t dev)
372 {
373 	u_int32_t iobase, membase, irq;
374 
375 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
376 		/* Save important PCI config data. */
377 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
378 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
379 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
380 
381 		/* Reset the power state. */
382 		device_printf(dev, "chip is in D%d power mode "
383 		    "-- setting to D0\n", pci_get_powerstate(dev));
384 
385 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
386 
387 		/* Restore PCI config data. */
388 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
389 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
390 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
391 	}
392 }
393 
394 static int
395 fxp_attach(device_t dev)
396 {
397 	int error = 0;
398 	struct fxp_softc *sc = device_get_softc(dev);
399 	struct ifnet *ifp;
400 	u_int32_t val;
401 	u_int16_t data;
402 	int i, rid, m1, m2, prefer_iomap;
403 
404 	callout_init(&sc->fxp_stat_timer);
405 	sysctl_ctx_init(&sc->sysctl_ctx);
406 
407 	/*
408 	 * Enable bus mastering. Enable memory space too, in case
409 	 * BIOS/Prom forgot about it.
410 	 */
411 	pci_enable_busmaster(dev);
412 	pci_enable_io(dev, SYS_RES_MEMORY);
413 	val = pci_read_config(dev, PCIR_COMMAND, 2);
414 
415 	fxp_powerstate_d0(dev);
416 
417 	/*
418 	 * Figure out which we should try first - memory mapping or i/o mapping?
419 	 * We default to memory mapping. Then we accept an override from the
420 	 * command line. Then we check to see which one is enabled.
421 	 */
422 	m1 = PCIM_CMD_MEMEN;
423 	m2 = PCIM_CMD_PORTEN;
424 	prefer_iomap = 0;
425 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
426 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
427 		m1 = PCIM_CMD_PORTEN;
428 		m2 = PCIM_CMD_MEMEN;
429 	}
430 
431 	if (val & m1) {
432 		sc->rtp =
433 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
434 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
435 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
436 		    RF_ACTIVE);
437 	}
438 	if (sc->mem == NULL && (val & m2)) {
439 		sc->rtp =
440 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
441 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
442 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
443             	    RF_ACTIVE);
444 	}
445 
446 	if (!sc->mem) {
447 		device_printf(dev, "could not map device registers\n");
448 		error = ENXIO;
449 		goto fail;
450         }
451 	if (bootverbose) {
452 		device_printf(dev, "using %s space register mapping\n",
453 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
454 	}
455 
456 	sc->sc_st = rman_get_bustag(sc->mem);
457 	sc->sc_sh = rman_get_bushandle(sc->mem);
458 
459 	/*
460 	 * Allocate our interrupt.
461 	 */
462 	rid = 0;
463 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
464 	    RF_SHAREABLE | RF_ACTIVE);
465 	if (sc->irq == NULL) {
466 		device_printf(dev, "could not map interrupt\n");
467 		error = ENXIO;
468 		goto fail;
469 	}
470 
471 	/*
472 	 * Reset to a stable state.
473 	 */
474 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
475 	DELAY(10);
476 
477 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
478 	    M_DEVBUF, M_WAITOK | M_ZERO);
479 
480 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
481 	    M_WAITOK | M_ZERO);
482 
483 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
484 
485 	/*
486 	 * Pre-allocate our receive buffers.
487 	 */
488 	for (i = 0; i < FXP_NRFABUFS; i++) {
489 		if (fxp_add_rfabuf(sc, NULL) != 0) {
490 			goto failmem;
491 		}
492 	}
493 
494 	/*
495 	 * Find out how large of an SEEPROM we have.
496 	 */
497 	fxp_autosize_eeprom(sc);
498 
499 	/*
500 	 * Determine whether we must use the 503 serial interface.
501 	 */
502 	fxp_read_eeprom(sc, &data, 6, 1);
503 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
504 	    (data & FXP_PHY_SERIAL_ONLY))
505 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
506 
507 	/*
508 	 * Create the sysctl tree
509 	 */
510 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
511 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
512 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
513 	if (sc->sysctl_tree == NULL)
514 		goto fail;
515 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
516 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
517 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
518 	    "FXP driver receive interrupt microcode bundling delay");
519 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
520 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
521 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
522 	    "FXP driver receive interrupt microcode bundle size limit");
523 
524 	/*
525 	 * Pull in device tunables.
526 	 */
527 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
528 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
529 	resource_int_value(device_get_name(dev), device_get_unit(dev),
530 	    "int_delay", &sc->tunable_int_delay);
531 	resource_int_value(device_get_name(dev), device_get_unit(dev),
532 	    "bundle_max", &sc->tunable_bundle_max);
533 
534 	/*
535 	 * Find out the chip revision; lump all 82557 revs together.
536 	 */
537 	fxp_read_eeprom(sc, &data, 5, 1);
538 	if ((data >> 8) == 1)
539 		sc->revision = FXP_REV_82557;
540 	else
541 		sc->revision = pci_get_revid(dev);
542 
543 	/*
544 	 * Enable workarounds for certain chip revision deficiencies.
545 	 *
546 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
547 	 * some systems based a normal 82559 design, have a defect where
548 	 * the chip can cause a PCI protocol violation if it receives
549 	 * a CU_RESUME command when it is entering the IDLE state.  The
550 	 * workaround is to disable Dynamic Standby Mode, so the chip never
551 	 * deasserts CLKRUN#, and always remains in an active state.
552 	 *
553 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
554 	 */
555 	i = pci_get_device(dev);
556 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
557 	    sc->revision >= FXP_REV_82559_A0) {
558 		fxp_read_eeprom(sc, &data, 10, 1);
559 		if (data & 0x02) {			/* STB enable */
560 			u_int16_t cksum;
561 			int i;
562 
563 			device_printf(dev,
564 			    "Disabling dynamic standby mode in EEPROM\n");
565 			data &= ~0x02;
566 			fxp_write_eeprom(sc, &data, 10, 1);
567 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
568 			cksum = 0;
569 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
570 				fxp_read_eeprom(sc, &data, i, 1);
571 				cksum += data;
572 			}
573 			i = (1 << sc->eeprom_size) - 1;
574 			cksum = 0xBABA - cksum;
575 			fxp_read_eeprom(sc, &data, i, 1);
576 			fxp_write_eeprom(sc, &cksum, i, 1);
577 			device_printf(dev,
578 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
579 			    i, data, cksum);
580 #if 1
581 			/*
582 			 * If the user elects to continue, try the software
583 			 * workaround, as it is better than nothing.
584 			 */
585 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
586 #endif
587 		}
588 	}
589 
590 	/*
591 	 * If we are not a 82557 chip, we can enable extended features.
592 	 */
593 	if (sc->revision != FXP_REV_82557) {
594 		/*
595 		 * If MWI is enabled in the PCI configuration, and there
596 		 * is a valid cacheline size (8 or 16 dwords), then tell
597 		 * the board to turn on MWI.
598 		 */
599 		if (val & PCIM_CMD_MWRICEN &&
600 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
601 			sc->flags |= FXP_FLAG_MWI_ENABLE;
602 
603 		/* turn on the extended TxCB feature */
604 		sc->flags |= FXP_FLAG_EXT_TXCB;
605 
606 		/* enable reception of long frames for VLAN */
607 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
608 	}
609 
610 	/*
611 	 * Read MAC address.
612 	 */
613 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
614 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
615 		device_printf(dev, "10Mbps\n");
616 	if (bootverbose) {
617 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
618 		    pci_get_vendor(dev), pci_get_device(dev),
619 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
620 		    pci_get_revid(dev));
621 		fxp_read_eeprom(sc, &data, 10, 1);
622 		device_printf(dev, "Dynamic Standby mode is %s\n",
623 		    data & 0x02 ? "enabled" : "disabled");
624 	}
625 
626 	/*
627 	 * If this is only a 10Mbps device, then there is no MII, and
628 	 * the PHY will use a serial interface instead.
629 	 *
630 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
631 	 * doesn't have a programming interface of any sort.  The
632 	 * media is sensed automatically based on how the link partner
633 	 * is configured.  This is, in essence, manual configuration.
634 	 */
635 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
636 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
637 		    fxp_serial_ifmedia_sts);
638 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
639 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
640 	} else {
641 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
642 		    fxp_ifmedia_sts)) {
643 	                device_printf(dev, "MII without any PHY!\n");
644 			error = ENXIO;
645 			goto fail;
646 		}
647 	}
648 
649 	ifp = &sc->arpcom.ac_if;
650 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
651 	ifp->if_baudrate = 100000000;
652 	ifp->if_init = fxp_init;
653 	ifp->if_softc = sc;
654 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
655 	ifp->if_ioctl = fxp_ioctl;
656 	ifp->if_start = fxp_start;
657 #ifdef DEVICE_POLLING
658 	ifp->if_poll = fxp_poll;
659 #endif
660 	ifp->if_watchdog = fxp_watchdog;
661 
662 	/*
663 	 * Attach the interface.
664 	 */
665 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
666 
667 	/*
668 	 * Tell the upper layer(s) we support long frames.
669 	 */
670 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
671 
672 	/*
673 	 * Let the system queue as many packets as we have available
674 	 * TX descriptors.
675 	 */
676 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
677 	ifq_set_ready(&ifp->if_snd);
678 
679 	error = bus_setup_intr(dev, sc->irq, INTR_NETSAFE,
680 			       fxp_intr, sc, &sc->ih,
681 			       ifp->if_serializer);
682 	if (error) {
683 		ether_ifdetach(ifp);
684 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
685 			ifmedia_removeall(&sc->sc_media);
686 		device_printf(dev, "could not setup irq\n");
687 		goto fail;
688 	}
689 
690 	return (0);
691 
692 failmem:
693 	device_printf(dev, "Failed to malloc memory\n");
694 	error = ENOMEM;
695 fail:
696 	fxp_release(dev);
697 	return (error);
698 }
699 
700 /*
701  * release all resources
702  */
703 static void
704 fxp_release(device_t dev)
705 {
706 	struct fxp_softc *sc = device_get_softc(dev);
707 
708 	if (sc->miibus)
709 		device_delete_child(dev, sc->miibus);
710 	bus_generic_detach(dev);
711 
712 	if (sc->cbl_base)
713 		kfree(sc->cbl_base, M_DEVBUF);
714 	if (sc->fxp_stats)
715 		kfree(sc->fxp_stats, M_DEVBUF);
716 	if (sc->mcsp)
717 		kfree(sc->mcsp, M_DEVBUF);
718 	if (sc->rfa_headm)
719 		m_freem(sc->rfa_headm);
720 
721 	if (sc->irq)
722 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
723 	if (sc->mem)
724 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
725 
726         sysctl_ctx_free(&sc->sysctl_ctx);
727 }
728 
729 /*
730  * Detach interface.
731  */
732 static int
733 fxp_detach(device_t dev)
734 {
735 	struct fxp_softc *sc = device_get_softc(dev);
736 
737 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
738 
739 	/*
740 	 * Stop DMA and drop transmit queue.
741 	 */
742 	fxp_stop(sc);
743 
744 	/*
745 	 * Disable interrupts.
746 	 *
747 	 * NOTE: This should be done after fxp_stop(), because software
748 	 * resetting in fxp_stop() may leave interrupts turned on.
749 	 */
750 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
751 
752 	/*
753 	 * Free all media structures.
754 	 */
755 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
756 		ifmedia_removeall(&sc->sc_media);
757 
758 	if (sc->ih)
759 		bus_teardown_intr(dev, sc->irq, sc->ih);
760 
761 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
762 
763 	/*
764 	 * Close down routes etc.
765 	 */
766 	ether_ifdetach(&sc->arpcom.ac_if);
767 
768 	/* Release our allocated resources. */
769 	fxp_release(dev);
770 
771 	return (0);
772 }
773 
774 /*
775  * Device shutdown routine. Called at system shutdown after sync. The
776  * main purpose of this routine is to shut off receiver DMA so that
777  * kernel memory doesn't get clobbered during warmboot.
778  */
779 static int
780 fxp_shutdown(device_t dev)
781 {
782 	/*
783 	 * Make sure that DMA is disabled prior to reboot. Not doing
784 	 * do could allow DMA to corrupt kernel memory during the
785 	 * reboot before the driver initializes.
786 	 */
787 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
788 	return (0);
789 }
790 
791 /*
792  * Device suspend routine.  Stop the interface and save some PCI
793  * settings in case the BIOS doesn't restore them properly on
794  * resume.
795  */
796 static int
797 fxp_suspend(device_t dev)
798 {
799 	struct fxp_softc *sc = device_get_softc(dev);
800 	int i;
801 
802 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
803 
804 	fxp_stop(sc);
805 
806 	for (i = 0; i < 5; i++)
807 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
808 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
809 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
810 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
811 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
812 
813 	sc->suspended = 1;
814 
815 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
816 	return (0);
817 }
818 
819 /*
820  * Device resume routine.  Restore some PCI settings in case the BIOS
821  * doesn't, re-enable busmastering, and restart the interface if
822  * appropriate.
823  */
824 static int
825 fxp_resume(device_t dev)
826 {
827 	struct fxp_softc *sc = device_get_softc(dev);
828 	struct ifnet *ifp = &sc->arpcom.ac_if;
829 	int i;
830 
831 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
832 
833 	fxp_powerstate_d0(dev);
834 
835 	/* better way to do this? */
836 	for (i = 0; i < 5; i++)
837 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
838 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
839 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
840 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
841 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
842 
843 	/* reenable busmastering and memory space */
844 	pci_enable_busmaster(dev);
845 	pci_enable_io(dev, SYS_RES_MEMORY);
846 
847 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
848 	DELAY(10);
849 
850 	/* reinitialize interface if necessary */
851 	if (ifp->if_flags & IFF_UP)
852 		fxp_init(sc);
853 
854 	sc->suspended = 0;
855 
856 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
857 	return (0);
858 }
859 
860 static void
861 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
862 {
863 	u_int16_t reg;
864 	int x;
865 
866 	/*
867 	 * Shift in data.
868 	 */
869 	for (x = 1 << (length - 1); x; x >>= 1) {
870 		if (data & x)
871 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
872 		else
873 			reg = FXP_EEPROM_EECS;
874 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
875 		DELAY(1);
876 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
877 		DELAY(1);
878 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
879 		DELAY(1);
880 	}
881 }
882 
883 /*
884  * Read from the serial EEPROM. Basically, you manually shift in
885  * the read opcode (one bit at a time) and then shift in the address,
886  * and then you shift out the data (all of this one bit at a time).
887  * The word size is 16 bits, so you have to provide the address for
888  * every 16 bits of data.
889  */
890 static u_int16_t
891 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
892 {
893 	u_int16_t reg, data;
894 	int x;
895 
896 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
897 	/*
898 	 * Shift in read opcode.
899 	 */
900 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
901 	/*
902 	 * Shift in address.
903 	 */
904 	data = 0;
905 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
906 		if (offset & x)
907 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
908 		else
909 			reg = FXP_EEPROM_EECS;
910 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
911 		DELAY(1);
912 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
913 		DELAY(1);
914 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
915 		DELAY(1);
916 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
917 		data++;
918 		if (autosize && reg == 0) {
919 			sc->eeprom_size = data;
920 			break;
921 		}
922 	}
923 	/*
924 	 * Shift out data.
925 	 */
926 	data = 0;
927 	reg = FXP_EEPROM_EECS;
928 	for (x = 1 << 15; x; x >>= 1) {
929 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
930 		DELAY(1);
931 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
932 			data |= x;
933 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
934 		DELAY(1);
935 	}
936 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
937 	DELAY(1);
938 
939 	return (data);
940 }
941 
942 static void
943 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
944 {
945 	int i;
946 
947 	/*
948 	 * Erase/write enable.
949 	 */
950 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
951 	fxp_eeprom_shiftin(sc, 0x4, 3);
952 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
953 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
954 	DELAY(1);
955 	/*
956 	 * Shift in write opcode, address, data.
957 	 */
958 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
959 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
960 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
961 	fxp_eeprom_shiftin(sc, data, 16);
962 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
963 	DELAY(1);
964 	/*
965 	 * Wait for EEPROM to finish up.
966 	 */
967 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
968 	DELAY(1);
969 	for (i = 0; i < 1000; i++) {
970 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
971 			break;
972 		DELAY(50);
973 	}
974 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
975 	DELAY(1);
976 	/*
977 	 * Erase/write disable.
978 	 */
979 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
980 	fxp_eeprom_shiftin(sc, 0x4, 3);
981 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
982 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
983 	DELAY(1);
984 }
985 
986 /*
987  * From NetBSD:
988  *
989  * Figure out EEPROM size.
990  *
991  * 559's can have either 64-word or 256-word EEPROMs, the 558
992  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
993  * talks about the existance of 16 to 256 word EEPROMs.
994  *
995  * The only known sizes are 64 and 256, where the 256 version is used
996  * by CardBus cards to store CIS information.
997  *
998  * The address is shifted in msb-to-lsb, and after the last
999  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1000  * after which follows the actual data. We try to detect this zero, by
1001  * probing the data-out bit in the EEPROM control register just after
1002  * having shifted in a bit. If the bit is zero, we assume we've
1003  * shifted enough address bits. The data-out should be tri-state,
1004  * before this, which should translate to a logical one.
1005  */
1006 static void
1007 fxp_autosize_eeprom(struct fxp_softc *sc)
1008 {
1009 
1010 	/* guess maximum size of 256 words */
1011 	sc->eeprom_size = 8;
1012 
1013 	/* autosize */
1014 	fxp_eeprom_getword(sc, 0, 1);
1015 }
1016 
1017 static void
1018 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1019 {
1020 	int i;
1021 
1022 	for (i = 0; i < words; i++)
1023 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1024 }
1025 
1026 static void
1027 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1028 {
1029 	int i;
1030 
1031 	for (i = 0; i < words; i++)
1032 		fxp_eeprom_putword(sc, offset + i, data[i]);
1033 }
1034 
1035 /*
1036  * Start packet transmission on the interface.
1037  */
1038 static void
1039 fxp_start(struct ifnet *ifp)
1040 {
1041 	struct fxp_softc *sc = ifp->if_softc;
1042 	struct fxp_cb_tx *txp;
1043 
1044 	/*
1045 	 * See if we need to suspend xmit until the multicast filter
1046 	 * has been reprogrammed (which can only be done at the head
1047 	 * of the command chain).
1048 	 */
1049 	if (sc->need_mcsetup) {
1050 		return;
1051 	}
1052 
1053 	txp = NULL;
1054 
1055 	/*
1056 	 * We're finished if there is nothing more to add to the list or if
1057 	 * we're all filled up with buffers to transmit.
1058 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1059 	 *       a NOP command when needed.
1060 	 */
1061 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1062 		struct mbuf *m, *mb_head;
1063 		int segment, ntries = 0;
1064 
1065 		/*
1066 		 * Grab a packet to transmit. The packet is dequeued,
1067 		 * once we are sure that we have enough free descriptors.
1068 		 */
1069 		mb_head = ifq_poll(&ifp->if_snd);
1070 		if (mb_head == NULL)
1071 			break;
1072 
1073 		/*
1074 		 * Get pointer to next available tx desc.
1075 		 */
1076 		txp = sc->cbl_last->next;
1077 
1078 		/*
1079 		 * Go through each of the mbufs in the chain and initialize
1080 		 * the transmit buffer descriptors with the physical address
1081 		 * and size of the mbuf.
1082 		 */
1083 tbdinit:
1084 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1085 			if (m->m_len != 0) {
1086 				if (segment == FXP_NTXSEG)
1087 					break;
1088 				txp->tbd[segment].tb_addr =
1089 				    vtophys(mtod(m, vm_offset_t));
1090 				txp->tbd[segment].tb_size = m->m_len;
1091 				segment++;
1092 			}
1093 		}
1094 		if (m != NULL) {
1095 			struct mbuf *mn;
1096 
1097 			/*
1098 			 * We ran out of segments. We have to recopy this
1099 			 * mbuf chain first. Bail out if we can't get the
1100 			 * new buffers.
1101 			 */
1102 			if (ntries > 0)
1103 				break;
1104 			mn = m_dup(mb_head, MB_DONTWAIT);
1105 			if (mn == NULL)
1106 				break;
1107 			 /* We can transmit the packet, dequeue it. */
1108 			ifq_dequeue(&ifp->if_snd, mb_head);
1109 			m_freem(mb_head);
1110 			mb_head = mn;
1111 			ntries = 1;
1112 			goto tbdinit;
1113 		} else {
1114 			/* Nothing to worry about, just dequeue. */
1115 			ifq_dequeue(&ifp->if_snd, mb_head);
1116 		}
1117 
1118 		txp->tbd_number = segment;
1119 		txp->mb_head = mb_head;
1120 		txp->cb_status = 0;
1121 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1122 			txp->cb_command =
1123 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1124 			    FXP_CB_COMMAND_S;
1125 		} else {
1126 			txp->cb_command =
1127 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1128 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1129 			/*
1130 			 * Set a 5 second timer just in case we don't hear
1131 			 * from the card again.
1132 			 */
1133 			ifp->if_timer = 5;
1134 		}
1135 		txp->tx_threshold = tx_threshold;
1136 
1137 		/*
1138 		 * Advance the end of list forward.
1139 		 */
1140 
1141 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1142 		sc->cbl_last = txp;
1143 
1144 		/*
1145 		 * Advance the beginning of the list forward if there are
1146 		 * no other packets queued (when nothing is queued, cbl_first
1147 		 * sits on the last TxCB that was sent out).
1148 		 */
1149 		if (sc->tx_queued == 0)
1150 			sc->cbl_first = txp;
1151 
1152 		sc->tx_queued++;
1153 
1154 		BPF_MTAP(ifp, mb_head);
1155 	}
1156 
1157 	/*
1158 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1159 	 * going again if suspended.
1160 	 */
1161 	if (txp != NULL) {
1162 		fxp_scb_wait(sc);
1163 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1164 	}
1165 }
1166 
1167 #ifdef DEVICE_POLLING
1168 
1169 static void
1170 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1171 {
1172 	struct fxp_softc *sc = ifp->if_softc;
1173 	u_int8_t statack;
1174 
1175 	switch(cmd) {
1176 	case POLL_REGISTER:
1177 		/* disable interrupts */
1178 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1179 		break;
1180 	case POLL_DEREGISTER:
1181 		/* enable interrupts */
1182 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1183 		break;
1184 	default:
1185 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1186 			  FXP_SCB_STATACK_FR;
1187 		if (cmd == POLL_AND_CHECK_STATUS) {
1188 			u_int8_t tmp;
1189 
1190 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1191 			if (tmp == 0xff || tmp == 0)
1192 				return; /* nothing to do */
1193 			tmp &= ~statack;
1194 			/* ack what we can */
1195 			if (tmp != 0)
1196 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1197 			statack |= tmp;
1198 		}
1199 		fxp_intr_body(sc, statack, count);
1200 		break;
1201 	}
1202 }
1203 
1204 #endif /* DEVICE_POLLING */
1205 
1206 /*
1207  * Process interface interrupts.
1208  */
1209 static void
1210 fxp_intr(void *xsc)
1211 {
1212 	struct fxp_softc *sc = xsc;
1213 	u_int8_t statack;
1214 
1215 	if (sc->suspended) {
1216 		return;
1217 	}
1218 
1219 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1220 		/*
1221 		 * It should not be possible to have all bits set; the
1222 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1223 		 * all bits are set, this may indicate that the card has
1224 		 * been physically ejected, so ignore it.
1225 		 */
1226 		if (statack == 0xff)
1227 			return;
1228 
1229 		/*
1230 		 * First ACK all the interrupts in this pass.
1231 		 */
1232 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1233 		fxp_intr_body(sc, statack, -1);
1234 	}
1235 }
1236 
1237 static void
1238 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1239 {
1240 	struct ifnet *ifp = &sc->arpcom.ac_if;
1241 	struct mbuf *m;
1242 	struct fxp_rfa *rfa;
1243 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1244 
1245 	if (rnr)
1246 		fxp_rnr++;
1247 #ifdef DEVICE_POLLING
1248 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1249 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1250 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1251 		rnr = 1;
1252 	}
1253 #endif
1254 
1255 	/*
1256 	 * Free any finished transmit mbuf chains.
1257 	 *
1258 	 * Handle the CNA event likt a CXTNO event. It used to
1259 	 * be that this event (control unit not ready) was not
1260 	 * encountered, but it is now with the SMPng modifications.
1261 	 * The exact sequence of events that occur when the interface
1262 	 * is brought up are different now, and if this event
1263 	 * goes unhandled, the configuration/rxfilter setup sequence
1264 	 * can stall for several seconds. The result is that no
1265 	 * packets go out onto the wire for about 5 to 10 seconds
1266 	 * after the interface is ifconfig'ed for the first time.
1267 	 */
1268 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1269 		struct fxp_cb_tx *txp;
1270 
1271 		for (txp = sc->cbl_first; sc->tx_queued &&
1272 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1273 		    txp = txp->next) {
1274 			if ((m = txp->mb_head) != NULL) {
1275 				txp->mb_head = NULL;
1276 				sc->tx_queued--;
1277 				m_freem(m);
1278 			} else {
1279 				sc->tx_queued--;
1280 			}
1281 		}
1282 		sc->cbl_first = txp;
1283 		ifp->if_timer = 0;
1284 		if (sc->tx_queued == 0) {
1285 			if (sc->need_mcsetup)
1286 				fxp_mc_setup(sc);
1287 		}
1288 		/*
1289 		 * Try to start more packets transmitting.
1290 		 */
1291 		if (!ifq_is_empty(&ifp->if_snd))
1292 			(*ifp->if_start)(ifp);
1293 	}
1294 
1295 	/*
1296 	 * Just return if nothing happened on the receive side.
1297 	 */
1298 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1299 		return;
1300 
1301 	/*
1302 	 * Process receiver interrupts. If a no-resource (RNR)
1303 	 * condition exists, get whatever packets we can and
1304 	 * re-start the receiver.
1305 	 *
1306 	 * When using polling, we do not process the list to completion,
1307 	 * so when we get an RNR interrupt we must defer the restart
1308 	 * until we hit the last buffer with the C bit set.
1309 	 * If we run out of cycles and rfa_headm has the C bit set,
1310 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1311 	 * that the info will be used in the subsequent polling cycle.
1312 	 */
1313 	for (;;) {
1314 		m = sc->rfa_headm;
1315 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1316 		    RFA_ALIGNMENT_FUDGE);
1317 
1318 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1319 		if (count >= 0 && count-- == 0) {
1320 			if (rnr) {
1321 				/* Defer RNR processing until the next time. */
1322 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1323 				rnr = 0;
1324 			}
1325 			break;
1326 		}
1327 #endif /* DEVICE_POLLING */
1328 
1329 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1330 			break;
1331 
1332 		/*
1333 		 * Remove first packet from the chain.
1334 		 */
1335 		sc->rfa_headm = m->m_next;
1336 		m->m_next = NULL;
1337 
1338 		/*
1339 		 * Add a new buffer to the receive chain.
1340 		 * If this fails, the old buffer is recycled
1341 		 * instead.
1342 		 */
1343 		if (fxp_add_rfabuf(sc, m) == 0) {
1344 			int total_len;
1345 
1346 			/*
1347 			 * Fetch packet length (the top 2 bits of
1348 			 * actual_size are flags set by the controller
1349 			 * upon completion), and drop the packet in case
1350 			 * of bogus length or CRC errors.
1351 			 */
1352 			total_len = rfa->actual_size & 0x3fff;
1353 			if (total_len < sizeof(struct ether_header) ||
1354 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1355 				sizeof(struct fxp_rfa) ||
1356 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1357 				m_freem(m);
1358 				continue;
1359 			}
1360 			m->m_pkthdr.len = m->m_len = total_len;
1361 			ifp->if_input(ifp, m);
1362 		}
1363 	}
1364 	if (rnr) {
1365 		fxp_scb_wait(sc);
1366 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1367 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1368 		    RFA_ALIGNMENT_FUDGE);
1369 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1370 	}
1371 }
1372 
1373 /*
1374  * Update packet in/out/collision statistics. The i82557 doesn't
1375  * allow you to access these counters without doing a fairly
1376  * expensive DMA to get _all_ of the statistics it maintains, so
1377  * we do this operation here only once per second. The statistics
1378  * counters in the kernel are updated from the previous dump-stats
1379  * DMA and then a new dump-stats DMA is started. The on-chip
1380  * counters are zeroed when the DMA completes. If we can't start
1381  * the DMA immediately, we don't wait - we just prepare to read
1382  * them again next time.
1383  */
1384 static void
1385 fxp_tick(void *xsc)
1386 {
1387 	struct fxp_softc *sc = xsc;
1388 	struct ifnet *ifp = &sc->arpcom.ac_if;
1389 	struct fxp_stats *sp = sc->fxp_stats;
1390 	struct fxp_cb_tx *txp;
1391 	struct mbuf *m;
1392 
1393 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1394 
1395 	ifp->if_opackets += sp->tx_good;
1396 	ifp->if_collisions += sp->tx_total_collisions;
1397 	if (sp->rx_good) {
1398 		ifp->if_ipackets += sp->rx_good;
1399 		sc->rx_idle_secs = 0;
1400 	} else {
1401 		/*
1402 		 * Receiver's been idle for another second.
1403 		 */
1404 		sc->rx_idle_secs++;
1405 	}
1406 	ifp->if_ierrors +=
1407 	    sp->rx_crc_errors +
1408 	    sp->rx_alignment_errors +
1409 	    sp->rx_rnr_errors +
1410 	    sp->rx_overrun_errors;
1411 	/*
1412 	 * If any transmit underruns occured, bump up the transmit
1413 	 * threshold by another 512 bytes (64 * 8).
1414 	 */
1415 	if (sp->tx_underruns) {
1416 		ifp->if_oerrors += sp->tx_underruns;
1417 		if (tx_threshold < 192)
1418 			tx_threshold += 64;
1419 	}
1420 
1421 	/*
1422 	 * Release any xmit buffers that have completed DMA. This isn't
1423 	 * strictly necessary to do here, but it's advantagous for mbufs
1424 	 * with external storage to be released in a timely manner rather
1425 	 * than being defered for a potentially long time. This limits
1426 	 * the delay to a maximum of one second.
1427 	 */
1428 	for (txp = sc->cbl_first; sc->tx_queued &&
1429 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1430 	    txp = txp->next) {
1431 		if ((m = txp->mb_head) != NULL) {
1432 			txp->mb_head = NULL;
1433 			sc->tx_queued--;
1434 			m_freem(m);
1435 		} else {
1436 			sc->tx_queued--;
1437 		}
1438 	}
1439 	sc->cbl_first = txp;
1440 	/*
1441 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1442 	 * then assume the receiver has locked up and attempt to clear
1443 	 * the condition by reprogramming the multicast filter. This is
1444 	 * a work-around for a bug in the 82557 where the receiver locks
1445 	 * up if it gets certain types of garbage in the syncronization
1446 	 * bits prior to the packet header. This bug is supposed to only
1447 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1448 	 * mode as well (perhaps due to a 10/100 speed transition).
1449 	 */
1450 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1451 		sc->rx_idle_secs = 0;
1452 		fxp_mc_setup(sc);
1453 	}
1454 	/*
1455 	 * If there is no pending command, start another stats
1456 	 * dump. Otherwise punt for now.
1457 	 */
1458 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1459 		/*
1460 		 * Start another stats dump.
1461 		 */
1462 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1463 	} else {
1464 		/*
1465 		 * A previous command is still waiting to be accepted.
1466 		 * Just zero our copy of the stats and wait for the
1467 		 * next timer event to update them.
1468 		 */
1469 		sp->tx_good = 0;
1470 		sp->tx_underruns = 0;
1471 		sp->tx_total_collisions = 0;
1472 
1473 		sp->rx_good = 0;
1474 		sp->rx_crc_errors = 0;
1475 		sp->rx_alignment_errors = 0;
1476 		sp->rx_rnr_errors = 0;
1477 		sp->rx_overrun_errors = 0;
1478 	}
1479 	if (sc->miibus != NULL)
1480 		mii_tick(device_get_softc(sc->miibus));
1481 	/*
1482 	 * Schedule another timeout one second from now.
1483 	 */
1484 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1485 
1486 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1487 }
1488 
1489 /*
1490  * Stop the interface. Cancels the statistics updater and resets
1491  * the interface.
1492  */
1493 static void
1494 fxp_stop(struct fxp_softc *sc)
1495 {
1496 	struct ifnet *ifp = &sc->arpcom.ac_if;
1497 	struct fxp_cb_tx *txp;
1498 	int i;
1499 
1500 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1501 	ifp->if_timer = 0;
1502 
1503 	/*
1504 	 * Cancel stats updater.
1505 	 */
1506 	callout_stop(&sc->fxp_stat_timer);
1507 
1508 	/*
1509 	 * Issue software reset, which also unloads the microcode.
1510 	 */
1511 	sc->flags &= ~FXP_FLAG_UCODE;
1512 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1513 	DELAY(50);
1514 
1515 	/*
1516 	 * Release any xmit buffers.
1517 	 */
1518 	txp = sc->cbl_base;
1519 	if (txp != NULL) {
1520 		for (i = 0; i < FXP_NTXCB; i++) {
1521 			if (txp[i].mb_head != NULL) {
1522 				m_freem(txp[i].mb_head);
1523 				txp[i].mb_head = NULL;
1524 			}
1525 		}
1526 	}
1527 	sc->tx_queued = 0;
1528 
1529 	/*
1530 	 * Free all the receive buffers then reallocate/reinitialize
1531 	 */
1532 	if (sc->rfa_headm != NULL)
1533 		m_freem(sc->rfa_headm);
1534 	sc->rfa_headm = NULL;
1535 	sc->rfa_tailm = NULL;
1536 	for (i = 0; i < FXP_NRFABUFS; i++) {
1537 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1538 			/*
1539 			 * This "can't happen" - we're at splimp()
1540 			 * and we just freed all the buffers we need
1541 			 * above.
1542 			 */
1543 			panic("fxp_stop: no buffers!");
1544 		}
1545 	}
1546 }
1547 
1548 /*
1549  * Watchdog/transmission transmit timeout handler. Called when a
1550  * transmission is started on the interface, but no interrupt is
1551  * received before the timeout. This usually indicates that the
1552  * card has wedged for some reason.
1553  */
1554 static void
1555 fxp_watchdog(struct ifnet *ifp)
1556 {
1557 	if_printf(ifp, "device timeout\n");
1558 	ifp->if_oerrors++;
1559 	fxp_init(ifp->if_softc);
1560 }
1561 
1562 static void
1563 fxp_init(void *xsc)
1564 {
1565 	struct fxp_softc *sc = xsc;
1566 	struct ifnet *ifp = &sc->arpcom.ac_if;
1567 	struct fxp_cb_config *cbp;
1568 	struct fxp_cb_ias *cb_ias;
1569 	struct fxp_cb_tx *txp;
1570 	struct fxp_cb_mcs *mcsp;
1571 	int i, prm;
1572 
1573 	/*
1574 	 * Cancel any pending I/O
1575 	 */
1576 	fxp_stop(sc);
1577 
1578 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1579 
1580 	/*
1581 	 * Initialize base of CBL and RFA memory. Loading with zero
1582 	 * sets it up for regular linear addressing.
1583 	 */
1584 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1585 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1586 
1587 	fxp_scb_wait(sc);
1588 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1589 
1590 	/*
1591 	 * Initialize base of dump-stats buffer.
1592 	 */
1593 	fxp_scb_wait(sc);
1594 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1595 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1596 
1597 	/*
1598 	 * Attempt to load microcode if requested.
1599 	 */
1600 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1601 		fxp_load_ucode(sc);
1602 
1603 	/*
1604 	 * Initialize the multicast address list.
1605 	 */
1606 	if (fxp_mc_addrs(sc)) {
1607 		mcsp = sc->mcsp;
1608 		mcsp->cb_status = 0;
1609 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1610 		mcsp->link_addr = -1;
1611 		/*
1612 	 	 * Start the multicast setup command.
1613 		 */
1614 		fxp_scb_wait(sc);
1615 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1616 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1617 		/* ...and wait for it to complete. */
1618 		fxp_dma_wait(&mcsp->cb_status, sc);
1619 	}
1620 
1621 	/*
1622 	 * We temporarily use memory that contains the TxCB list to
1623 	 * construct the config CB. The TxCB list memory is rebuilt
1624 	 * later.
1625 	 */
1626 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1627 
1628 	/*
1629 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1630 	 * zero and must be one bits in this structure and this is the easiest
1631 	 * way to initialize them all to proper values.
1632 	 */
1633 	bcopy(fxp_cb_config_template,
1634 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1635 		sizeof(fxp_cb_config_template));
1636 
1637 	cbp->cb_status =	0;
1638 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1639 	cbp->link_addr =	-1;	/* (no) next command */
1640 	cbp->byte_count =	22;	/* (22) bytes to config */
1641 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1642 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1643 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1644 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1645 	cbp->type_enable =	0;	/* actually reserved */
1646 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1647 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1648 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1649 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1650 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1651 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1652 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1653 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1654 	cbp->ci_int =		1;	/* interrupt on CU idle */
1655 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1656 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1657 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1658 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1659 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1660 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1661 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1662 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1663 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1664 	cbp->csma_dis =		0;	/* (don't) disable link */
1665 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1666 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1667 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1668 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1669 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1670 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1671 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1672 	cbp->loopback =		0;	/* (don't) loopback */
1673 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1674 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1675 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1676 	cbp->promiscuous =	prm;	/* promiscuous mode */
1677 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1678 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1679 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1680 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1681 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1682 
1683 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1684 	cbp->padding =		1;	/* (do) pad short tx packets */
1685 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1686 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1687 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1688 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1689 					/* must set wake_en in PMCSR also */
1690 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1691 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1692 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1693 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1694 
1695 	if (sc->revision == FXP_REV_82557) {
1696 		/*
1697 		 * The 82557 has no hardware flow control, the values
1698 		 * below are the defaults for the chip.
1699 		 */
1700 		cbp->fc_delay_lsb =	0;
1701 		cbp->fc_delay_msb =	0x40;
1702 		cbp->pri_fc_thresh =	3;
1703 		cbp->tx_fc_dis =	0;
1704 		cbp->rx_fc_restop =	0;
1705 		cbp->rx_fc_restart =	0;
1706 		cbp->fc_filter =	0;
1707 		cbp->pri_fc_loc =	1;
1708 	} else {
1709 		cbp->fc_delay_lsb =	0x1f;
1710 		cbp->fc_delay_msb =	0x01;
1711 		cbp->pri_fc_thresh =	3;
1712 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1713 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1714 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1715 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1716 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1717 	}
1718 
1719 	/*
1720 	 * Start the config command/DMA.
1721 	 */
1722 	fxp_scb_wait(sc);
1723 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1724 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1725 	/* ...and wait for it to complete. */
1726 	fxp_dma_wait(&cbp->cb_status, sc);
1727 
1728 	/*
1729 	 * Now initialize the station address. Temporarily use the TxCB
1730 	 * memory area like we did above for the config CB.
1731 	 */
1732 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1733 	cb_ias->cb_status = 0;
1734 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1735 	cb_ias->link_addr = -1;
1736 	bcopy(sc->arpcom.ac_enaddr,
1737 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1738 	    sizeof(sc->arpcom.ac_enaddr));
1739 
1740 	/*
1741 	 * Start the IAS (Individual Address Setup) command/DMA.
1742 	 */
1743 	fxp_scb_wait(sc);
1744 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1745 	/* ...and wait for it to complete. */
1746 	fxp_dma_wait(&cb_ias->cb_status, sc);
1747 
1748 	/*
1749 	 * Initialize transmit control block (TxCB) list.
1750 	 */
1751 
1752 	txp = sc->cbl_base;
1753 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1754 	for (i = 0; i < FXP_NTXCB; i++) {
1755 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1756 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1757 		txp[i].link_addr =
1758 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1759 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1760 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1761 		else
1762 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1763 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1764 	}
1765 	/*
1766 	 * Set the suspend flag on the first TxCB and start the control
1767 	 * unit. It will execute the NOP and then suspend.
1768 	 */
1769 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1770 	sc->cbl_first = sc->cbl_last = txp;
1771 	sc->tx_queued = 1;
1772 
1773 	fxp_scb_wait(sc);
1774 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1775 
1776 	/*
1777 	 * Initialize receiver buffer area - RFA.
1778 	 */
1779 	fxp_scb_wait(sc);
1780 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1781 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1782 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1783 
1784 	/*
1785 	 * Set current media.
1786 	 */
1787 	if (sc->miibus != NULL)
1788 		mii_mediachg(device_get_softc(sc->miibus));
1789 
1790 	ifp->if_flags |= IFF_RUNNING;
1791 	ifp->if_flags &= ~IFF_OACTIVE;
1792 
1793 	/*
1794 	 * Enable interrupts.
1795 	 */
1796 #ifdef DEVICE_POLLING
1797 	/*
1798 	 * ... but only do that if we are not polling. And because (presumably)
1799 	 * the default is interrupts on, we need to disable them explicitly!
1800 	 */
1801 	if ( ifp->if_flags & IFF_POLLING )
1802 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1803 	else
1804 #endif /* DEVICE_POLLING */
1805 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1806 
1807 	/*
1808 	 * Start stats updater.
1809 	 */
1810 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1811 }
1812 
1813 static int
1814 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1815 {
1816 
1817 	return (0);
1818 }
1819 
1820 static void
1821 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1822 {
1823 
1824 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1825 }
1826 
1827 /*
1828  * Change media according to request.
1829  */
1830 static int
1831 fxp_ifmedia_upd(struct ifnet *ifp)
1832 {
1833 	struct fxp_softc *sc = ifp->if_softc;
1834 	struct mii_data *mii;
1835 
1836 	mii = device_get_softc(sc->miibus);
1837 	mii_mediachg(mii);
1838 	return (0);
1839 }
1840 
1841 /*
1842  * Notify the world which media we're using.
1843  */
1844 static void
1845 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1846 {
1847 	struct fxp_softc *sc = ifp->if_softc;
1848 	struct mii_data *mii;
1849 
1850 	mii = device_get_softc(sc->miibus);
1851 	mii_pollstat(mii);
1852 	ifmr->ifm_active = mii->mii_media_active;
1853 	ifmr->ifm_status = mii->mii_media_status;
1854 
1855 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1856 		sc->cu_resume_bug = 1;
1857 	else
1858 		sc->cu_resume_bug = 0;
1859 }
1860 
1861 /*
1862  * Add a buffer to the end of the RFA buffer list.
1863  * Return 0 if successful, 1 for failure. A failure results in
1864  * adding the 'oldm' (if non-NULL) on to the end of the list -
1865  * tossing out its old contents and recycling it.
1866  * The RFA struct is stuck at the beginning of mbuf cluster and the
1867  * data pointer is fixed up to point just past it.
1868  */
1869 static int
1870 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1871 {
1872 	u_int32_t v;
1873 	struct mbuf *m;
1874 	struct fxp_rfa *rfa, *p_rfa;
1875 
1876 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1877 	if (m == NULL) { /* try to recycle the old mbuf instead */
1878 		if (oldm == NULL)
1879 			return 1;
1880 		m = oldm;
1881 		m->m_data = m->m_ext.ext_buf;
1882 	}
1883 
1884 	/*
1885 	 * Move the data pointer up so that the incoming data packet
1886 	 * will be 32-bit aligned.
1887 	 */
1888 	m->m_data += RFA_ALIGNMENT_FUDGE;
1889 
1890 	/*
1891 	 * Get a pointer to the base of the mbuf cluster and move
1892 	 * data start past it.
1893 	 */
1894 	rfa = mtod(m, struct fxp_rfa *);
1895 	m->m_data += sizeof(struct fxp_rfa);
1896 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1897 
1898 	/*
1899 	 * Initialize the rest of the RFA.  Note that since the RFA
1900 	 * is misaligned, we cannot store values directly.  Instead,
1901 	 * we use an optimized, inline copy.
1902 	 */
1903 
1904 	rfa->rfa_status = 0;
1905 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1906 	rfa->actual_size = 0;
1907 
1908 	v = -1;
1909 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1910 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1911 
1912 	/*
1913 	 * If there are other buffers already on the list, attach this
1914 	 * one to the end by fixing up the tail to point to this one.
1915 	 */
1916 	if (sc->rfa_headm != NULL) {
1917 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1918 		    RFA_ALIGNMENT_FUDGE);
1919 		sc->rfa_tailm->m_next = m;
1920 		v = vtophys(rfa);
1921 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1922 		p_rfa->rfa_control = 0;
1923 	} else {
1924 		sc->rfa_headm = m;
1925 	}
1926 	sc->rfa_tailm = m;
1927 
1928 	return (m == oldm);
1929 }
1930 
1931 static volatile int
1932 fxp_miibus_readreg(device_t dev, int phy, int reg)
1933 {
1934 	struct fxp_softc *sc = device_get_softc(dev);
1935 	int count = 10000;
1936 	int value;
1937 
1938 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1939 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1940 
1941 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1942 	    && count--)
1943 		DELAY(10);
1944 
1945 	if (count <= 0)
1946 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1947 
1948 	return (value & 0xffff);
1949 }
1950 
1951 static void
1952 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1953 {
1954 	struct fxp_softc *sc = device_get_softc(dev);
1955 	int count = 10000;
1956 
1957 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1958 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1959 	    (value & 0xffff));
1960 
1961 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1962 	    count--)
1963 		DELAY(10);
1964 
1965 	if (count <= 0)
1966 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1967 }
1968 
1969 static int
1970 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1971 {
1972 	struct fxp_softc *sc = ifp->if_softc;
1973 	struct ifreq *ifr = (struct ifreq *)data;
1974 	struct mii_data *mii;
1975 	int error = 0;
1976 
1977 	switch (command) {
1978 
1979 	case SIOCSIFFLAGS:
1980 		if (ifp->if_flags & IFF_ALLMULTI)
1981 			sc->flags |= FXP_FLAG_ALL_MCAST;
1982 		else
1983 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1984 
1985 		/*
1986 		 * If interface is marked up and not running, then start it.
1987 		 * If it is marked down and running, stop it.
1988 		 * XXX If it's up then re-initialize it. This is so flags
1989 		 * such as IFF_PROMISC are handled.
1990 		 */
1991 		if (ifp->if_flags & IFF_UP) {
1992 			fxp_init(sc);
1993 		} else {
1994 			if (ifp->if_flags & IFF_RUNNING)
1995 				fxp_stop(sc);
1996 		}
1997 		break;
1998 
1999 	case SIOCADDMULTI:
2000 	case SIOCDELMULTI:
2001 		if (ifp->if_flags & IFF_ALLMULTI)
2002 			sc->flags |= FXP_FLAG_ALL_MCAST;
2003 		else
2004 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2005 		/*
2006 		 * Multicast list has changed; set the hardware filter
2007 		 * accordingly.
2008 		 */
2009 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2010 			fxp_mc_setup(sc);
2011 		/*
2012 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2013 		 * again rather than else {}.
2014 		 */
2015 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2016 			fxp_init(sc);
2017 		error = 0;
2018 		break;
2019 
2020 	case SIOCSIFMEDIA:
2021 	case SIOCGIFMEDIA:
2022 		if (sc->miibus != NULL) {
2023 			mii = device_get_softc(sc->miibus);
2024                         error = ifmedia_ioctl(ifp, ifr,
2025                             &mii->mii_media, command);
2026 		} else {
2027                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2028 		}
2029 		break;
2030 
2031 	default:
2032 		error = ether_ioctl(ifp, command, data);
2033 		break;
2034 	}
2035 	return (error);
2036 }
2037 
2038 /*
2039  * Fill in the multicast address list and return number of entries.
2040  */
2041 static int
2042 fxp_mc_addrs(struct fxp_softc *sc)
2043 {
2044 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2045 	struct ifnet *ifp = &sc->arpcom.ac_if;
2046 	struct ifmultiaddr *ifma;
2047 	int nmcasts;
2048 
2049 	nmcasts = 0;
2050 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2051 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2052 			if (ifma->ifma_addr->sa_family != AF_LINK)
2053 				continue;
2054 			if (nmcasts >= MAXMCADDR) {
2055 				sc->flags |= FXP_FLAG_ALL_MCAST;
2056 				nmcasts = 0;
2057 				break;
2058 			}
2059 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2060 			    (void *)(uintptr_t)(volatile void *)
2061 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2062 			nmcasts++;
2063 		}
2064 	}
2065 	mcsp->mc_cnt = nmcasts * 6;
2066 	return (nmcasts);
2067 }
2068 
2069 /*
2070  * Program the multicast filter.
2071  *
2072  * We have an artificial restriction that the multicast setup command
2073  * must be the first command in the chain, so we take steps to ensure
2074  * this. By requiring this, it allows us to keep up the performance of
2075  * the pre-initialized command ring (esp. link pointers) by not actually
2076  * inserting the mcsetup command in the ring - i.e. its link pointer
2077  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2078  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2079  * lead into the regular TxCB ring when it completes.
2080  *
2081  * This function must be called at splimp.
2082  */
2083 static void
2084 fxp_mc_setup(struct fxp_softc *sc)
2085 {
2086 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2087 	struct ifnet *ifp = &sc->arpcom.ac_if;
2088 	int count;
2089 
2090 	/*
2091 	 * If there are queued commands, we must wait until they are all
2092 	 * completed. If we are already waiting, then add a NOP command
2093 	 * with interrupt option so that we're notified when all commands
2094 	 * have been completed - fxp_start() ensures that no additional
2095 	 * TX commands will be added when need_mcsetup is true.
2096 	 */
2097 	if (sc->tx_queued) {
2098 		struct fxp_cb_tx *txp;
2099 
2100 		/*
2101 		 * need_mcsetup will be true if we are already waiting for the
2102 		 * NOP command to be completed (see below). In this case, bail.
2103 		 */
2104 		if (sc->need_mcsetup)
2105 			return;
2106 		sc->need_mcsetup = 1;
2107 
2108 		/*
2109 		 * Add a NOP command with interrupt so that we are notified
2110 		 * when all TX commands have been processed.
2111 		 */
2112 		txp = sc->cbl_last->next;
2113 		txp->mb_head = NULL;
2114 		txp->cb_status = 0;
2115 		txp->cb_command = FXP_CB_COMMAND_NOP |
2116 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2117 		/*
2118 		 * Advance the end of list forward.
2119 		 */
2120 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2121 		sc->cbl_last = txp;
2122 		sc->tx_queued++;
2123 		/*
2124 		 * Issue a resume in case the CU has just suspended.
2125 		 */
2126 		fxp_scb_wait(sc);
2127 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2128 		/*
2129 		 * Set a 5 second timer just in case we don't hear from the
2130 		 * card again.
2131 		 */
2132 		ifp->if_timer = 5;
2133 
2134 		return;
2135 	}
2136 	sc->need_mcsetup = 0;
2137 
2138 	/*
2139 	 * Initialize multicast setup descriptor.
2140 	 */
2141 	mcsp->next = sc->cbl_base;
2142 	mcsp->mb_head = NULL;
2143 	mcsp->cb_status = 0;
2144 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2145 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2146 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2147 	fxp_mc_addrs(sc);
2148 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2149 	sc->tx_queued = 1;
2150 
2151 	/*
2152 	 * Wait until command unit is not active. This should never
2153 	 * be the case when nothing is queued, but make sure anyway.
2154 	 */
2155 	count = 100;
2156 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2157 	    FXP_SCB_CUS_ACTIVE && --count)
2158 		DELAY(10);
2159 	if (count == 0) {
2160 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2161 		return;
2162 	}
2163 
2164 	/*
2165 	 * Start the multicast setup command.
2166 	 */
2167 	fxp_scb_wait(sc);
2168 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2169 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2170 
2171 	ifp->if_timer = 2;
2172 	return;
2173 }
2174 
2175 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2176 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2177 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2178 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2179 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2180 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2181 
2182 #define UCODE(x)	x, sizeof(x)
2183 
2184 struct ucode {
2185 	u_int32_t	revision;
2186 	u_int32_t	*ucode;
2187 	int		length;
2188 	u_short		int_delay_offset;
2189 	u_short		bundle_max_offset;
2190 } ucode_table[] = {
2191 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2192 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2193 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2194 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2195 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2196 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2197 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2198 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2199 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2200 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2201 	{ 0, NULL, 0, 0, 0 }
2202 };
2203 
2204 static void
2205 fxp_load_ucode(struct fxp_softc *sc)
2206 {
2207 	struct ucode *uc;
2208 	struct fxp_cb_ucode *cbp;
2209 
2210 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2211 		if (sc->revision == uc->revision)
2212 			break;
2213 	if (uc->ucode == NULL)
2214 		return;
2215 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2216 	cbp->cb_status = 0;
2217 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2218 	cbp->link_addr = -1;    	/* (no) next command */
2219 	memcpy(cbp->ucode, uc->ucode, uc->length);
2220 	if (uc->int_delay_offset)
2221 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2222 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2223 	if (uc->bundle_max_offset)
2224 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2225 		    sc->tunable_bundle_max;
2226 	/*
2227 	 * Download the ucode to the chip.
2228 	 */
2229 	fxp_scb_wait(sc);
2230 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2231 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2232 	/* ...and wait for it to complete. */
2233 	fxp_dma_wait(&cbp->cb_status, sc);
2234 	if_printf(&sc->arpcom.ac_if,
2235 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2236 	    sc->tunable_int_delay,
2237 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2238 	sc->flags |= FXP_FLAG_UCODE;
2239 }
2240 
2241 static int
2242 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2243 {
2244 	int error, value;
2245 
2246 	value = *(int *)arg1;
2247 	error = sysctl_handle_int(oidp, &value, 0, req);
2248 	if (error || !req->newptr)
2249 		return (error);
2250 	if (value < low || value > high)
2251 		return (EINVAL);
2252 	*(int *)arg1 = value;
2253 	return (0);
2254 }
2255 
2256 /*
2257  * Interrupt delay is expressed in microseconds, a multiplier is used
2258  * to convert this to the appropriate clock ticks before using.
2259  */
2260 static int
2261 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2262 {
2263 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2264 }
2265 
2266 static int
2267 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2268 {
2269 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2270 }
2271