xref: /dflybsd-src/sys/dev/netif/fxp/if_fxp.c (revision 46f25451c42b030e52cf0c2581efedf2034a93b0)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.11 2004/04/16 14:21:57 joerg Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 		/* #include <sys/mutex.h> */
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 
49 #ifdef NS
50 #include <netns/ns.h>
51 #include <netns/ns_if.h>
52 #endif
53 
54 #include <net/bpf.h>
55 #include <sys/sockio.h>
56 #include <sys/bus.h>
57 #include <machine/bus.h>
58 #include <sys/rman.h>
59 #include <machine/resource.h>
60 
61 #include <net/ethernet.h>
62 #include <net/if_arp.h>
63 
64 #include <vm/vm.h>		/* for vtophys */
65 #include <vm/pmap.h>		/* for vtophys */
66 #include <machine/clock.h>	/* for DELAY */
67 
68 #include <net/if_types.h>
69 #include <net/vlan/if_vlan_var.h>
70 
71 #include <bus/pci/pcivar.h>
72 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
73 
74 #include "../mii_layer/mii.h"
75 #include "../mii_layer/miivar.h"
76 
77 #include "if_fxpreg.h"
78 #include "if_fxpvar.h"
79 #include "rcvbundl.h"
80 
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	int16_t		revid;		/* -1 matches anything */
140 	char 		*name;
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
151      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
152      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
162      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
167      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
168      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
169      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
170      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
171      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
172      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
173      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
174      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
175      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
176      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
177      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
178      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
179      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
180      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
181      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
182      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
183      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
184      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
185      { 0,	-1,	NULL },
186 };
187 
188 static int		fxp_probe(device_t dev);
189 static int		fxp_attach(device_t dev);
190 static int		fxp_detach(device_t dev);
191 static int		fxp_shutdown(device_t dev);
192 static int		fxp_suspend(device_t dev);
193 static int		fxp_resume(device_t dev);
194 
195 static void		fxp_intr(void *xsc);
196 static void		fxp_intr_body(struct fxp_softc *sc,
197 				u_int8_t statack, int count);
198 
199 static void 		fxp_init(void *xsc);
200 static void 		fxp_tick(void *xsc);
201 static void		fxp_powerstate_d0(device_t dev);
202 static void 		fxp_start(struct ifnet *ifp);
203 static void		fxp_stop(struct fxp_softc *sc);
204 static void 		fxp_release(struct fxp_softc *sc);
205 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
206 			    caddr_t data, struct ucred *);
207 static void 		fxp_watchdog(struct ifnet *ifp);
208 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
209 static int		fxp_mc_addrs(struct fxp_softc *sc);
210 static void		fxp_mc_setup(struct fxp_softc *sc);
211 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
212 			    int autosize);
213 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
214 			    u_int16_t data);
215 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
216 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
217 			    int offset, int words);
218 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
219 			    int offset, int words);
220 static int		fxp_ifmedia_upd(struct ifnet *ifp);
221 static void		fxp_ifmedia_sts(struct ifnet *ifp,
222 			    struct ifmediareq *ifmr);
223 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
224 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
225 			    struct ifmediareq *ifmr);
226 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
227 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
228 			    int value);
229 static void		fxp_load_ucode(struct fxp_softc *sc);
230 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
231 			    int low, int high);
232 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
233 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
234 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
235 			    volatile u_int32_t *dst);
236 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
237 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
238 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
239 			    struct fxp_softc *sc);
240 
241 static device_method_t fxp_methods[] = {
242 	/* Device interface */
243 	DEVMETHOD(device_probe,		fxp_probe),
244 	DEVMETHOD(device_attach,	fxp_attach),
245 	DEVMETHOD(device_detach,	fxp_detach),
246 	DEVMETHOD(device_shutdown,	fxp_shutdown),
247 	DEVMETHOD(device_suspend,	fxp_suspend),
248 	DEVMETHOD(device_resume,	fxp_resume),
249 
250 	/* MII interface */
251 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
252 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
253 
254 	{ 0, 0 }
255 };
256 
257 static driver_t fxp_driver = {
258 	"fxp",
259 	fxp_methods,
260 	sizeof(struct fxp_softc),
261 };
262 
263 static devclass_t fxp_devclass;
264 
265 DECLARE_DUMMY_MODULE(if_fxp);
266 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
267 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
268 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
269 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
270 
271 static int fxp_rnr;
272 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
273 
274 /*
275  * Inline function to copy a 16-bit aligned 32-bit quantity.
276  */
277 static __inline void
278 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
279 {
280 #ifdef __i386__
281 	*dst = *src;
282 #else
283 	volatile u_int16_t *a = (volatile u_int16_t *)src;
284 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
285 
286 	b[0] = a[0];
287 	b[1] = a[1];
288 #endif
289 }
290 
291 /*
292  * Wait for the previous command to be accepted (but not necessarily
293  * completed).
294  */
295 static __inline void
296 fxp_scb_wait(struct fxp_softc *sc)
297 {
298 	int i = 10000;
299 
300 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
301 		DELAY(2);
302 	if (i == 0)
303 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
304 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
305 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
306 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
307 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
308 }
309 
310 static __inline void
311 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
312 {
313 
314 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
315 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
316 		fxp_scb_wait(sc);
317 	}
318 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
319 }
320 
321 static __inline void
322 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
323 {
324 	int i = 10000;
325 
326 	while (!(*status & FXP_CB_STATUS_C) && --i)
327 		DELAY(2);
328 	if (i == 0)
329 		device_printf(sc->dev, "DMA timeout\n");
330 }
331 
332 /*
333  * Return identification string if this is device is ours.
334  */
335 static int
336 fxp_probe(device_t dev)
337 {
338 	u_int16_t devid;
339 	u_int8_t revid;
340 	struct fxp_ident *ident;
341 
342 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
343 		devid = pci_get_device(dev);
344 		revid = pci_get_revid(dev);
345 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
346 			if (ident->devid == devid &&
347 			    (ident->revid == revid || ident->revid == -1)) {
348 				device_set_desc(dev, ident->name);
349 				return (0);
350 			}
351 		}
352 	}
353 	return (ENXIO);
354 }
355 
356 static void
357 fxp_powerstate_d0(device_t dev)
358 {
359 #if defined(__DragonFly__) || __FreeBSD_version >= 430002
360 	u_int32_t iobase, membase, irq;
361 
362 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
363 		/* Save important PCI config data. */
364 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
365 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
366 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
367 
368 		/* Reset the power state. */
369 		device_printf(dev, "chip is in D%d power mode "
370 		    "-- setting to D0\n", pci_get_powerstate(dev));
371 
372 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
373 
374 		/* Restore PCI config data. */
375 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
376 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
377 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
378 	}
379 #endif
380 }
381 
382 static int
383 fxp_attach(device_t dev)
384 {
385 	int error = 0;
386 	struct fxp_softc *sc = device_get_softc(dev);
387 	struct ifnet *ifp;
388 	u_int32_t val;
389 	u_int16_t data;
390 	int i, rid, m1, m2, prefer_iomap;
391 	int s;
392 
393 	bzero(sc, sizeof(*sc));
394 	sc->dev = dev;
395 	callout_handle_init(&sc->stat_ch);
396 	sysctl_ctx_init(&sc->sysctl_ctx);
397 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
398 
399 	s = splimp();
400 
401 	/*
402 	 * Enable bus mastering. Enable memory space too, in case
403 	 * BIOS/Prom forgot about it.
404 	 */
405 	val = pci_read_config(dev, PCIR_COMMAND, 2);
406 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
407 	pci_write_config(dev, PCIR_COMMAND, val, 2);
408 	val = pci_read_config(dev, PCIR_COMMAND, 2);
409 
410 	fxp_powerstate_d0(dev);
411 
412 	/*
413 	 * Figure out which we should try first - memory mapping or i/o mapping?
414 	 * We default to memory mapping. Then we accept an override from the
415 	 * command line. Then we check to see which one is enabled.
416 	 */
417 	m1 = PCIM_CMD_MEMEN;
418 	m2 = PCIM_CMD_PORTEN;
419 	prefer_iomap = 0;
420 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
421 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
422 		m1 = PCIM_CMD_PORTEN;
423 		m2 = PCIM_CMD_MEMEN;
424 	}
425 
426 	if (val & m1) {
427 		sc->rtp =
428 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
429 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
430 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
431 	                                     0, ~0, 1, RF_ACTIVE);
432 	}
433 	if (sc->mem == NULL && (val & m2)) {
434 		sc->rtp =
435 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
436 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
437 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
438                                             0, ~0, 1, RF_ACTIVE);
439 	}
440 
441 	if (!sc->mem) {
442 		device_printf(dev, "could not map device registers\n");
443 		error = ENXIO;
444 		goto fail;
445         }
446 	if (bootverbose) {
447 		device_printf(dev, "using %s space register mapping\n",
448 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
449 	}
450 
451 	sc->sc_st = rman_get_bustag(sc->mem);
452 	sc->sc_sh = rman_get_bushandle(sc->mem);
453 
454 	/*
455 	 * Allocate our interrupt.
456 	 */
457 	rid = 0;
458 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
459 				 RF_SHAREABLE | RF_ACTIVE);
460 	if (sc->irq == NULL) {
461 		device_printf(dev, "could not map interrupt\n");
462 		error = ENXIO;
463 		goto fail;
464 	}
465 
466 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
467 			       fxp_intr, sc, &sc->ih);
468 	if (error) {
469 		device_printf(dev, "could not setup irq\n");
470 		goto fail;
471 	}
472 
473 	/*
474 	 * Reset to a stable state.
475 	 */
476 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
477 	DELAY(10);
478 
479 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
480 	    M_DEVBUF, M_WAITOK | M_ZERO);
481 
482 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
483 	    M_WAITOK | M_ZERO);
484 
485 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
486 
487 	/*
488 	 * Pre-allocate our receive buffers.
489 	 */
490 	for (i = 0; i < FXP_NRFABUFS; i++) {
491 		if (fxp_add_rfabuf(sc, NULL) != 0) {
492 			goto failmem;
493 		}
494 	}
495 
496 	/*
497 	 * Find out how large of an SEEPROM we have.
498 	 */
499 	fxp_autosize_eeprom(sc);
500 
501 	/*
502 	 * Determine whether we must use the 503 serial interface.
503 	 */
504 	fxp_read_eeprom(sc, &data, 6, 1);
505 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
506 	    (data & FXP_PHY_SERIAL_ONLY))
507 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
508 
509 	/*
510 	 * Create the sysctl tree
511 	 */
512 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
513 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
514 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
515 	if (sc->sysctl_tree == NULL)
516 		goto fail;
517 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
518 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
519 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
520 	    "FXP driver receive interrupt microcode bundling delay");
521 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
522 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
523 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
524 	    "FXP driver receive interrupt microcode bundle size limit");
525 
526 	/*
527 	 * Pull in device tunables.
528 	 */
529 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
530 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
531 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
532 	    "int_delay", &sc->tunable_int_delay);
533 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
534 	    "bundle_max", &sc->tunable_bundle_max);
535 
536 	/*
537 	 * Find out the chip revision; lump all 82557 revs together.
538 	 */
539 	fxp_read_eeprom(sc, &data, 5, 1);
540 	if ((data >> 8) == 1)
541 		sc->revision = FXP_REV_82557;
542 	else
543 		sc->revision = pci_get_revid(dev);
544 
545 	/*
546 	 * Enable workarounds for certain chip revision deficiencies.
547 	 *
548 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
549 	 * some systems based a normal 82559 design, have a defect where
550 	 * the chip can cause a PCI protocol violation if it receives
551 	 * a CU_RESUME command when it is entering the IDLE state.  The
552 	 * workaround is to disable Dynamic Standby Mode, so the chip never
553 	 * deasserts CLKRUN#, and always remains in an active state.
554 	 *
555 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
556 	 */
557 	i = pci_get_device(dev);
558 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
559 	    sc->revision >= FXP_REV_82559_A0) {
560 		fxp_read_eeprom(sc, &data, 10, 1);
561 		if (data & 0x02) {			/* STB enable */
562 			u_int16_t cksum;
563 			int i;
564 
565 			device_printf(dev,
566 			    "Disabling dynamic standby mode in EEPROM\n");
567 			data &= ~0x02;
568 			fxp_write_eeprom(sc, &data, 10, 1);
569 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
570 			cksum = 0;
571 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
572 				fxp_read_eeprom(sc, &data, i, 1);
573 				cksum += data;
574 			}
575 			i = (1 << sc->eeprom_size) - 1;
576 			cksum = 0xBABA - cksum;
577 			fxp_read_eeprom(sc, &data, i, 1);
578 			fxp_write_eeprom(sc, &cksum, i, 1);
579 			device_printf(dev,
580 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
581 			    i, data, cksum);
582 #if 1
583 			/*
584 			 * If the user elects to continue, try the software
585 			 * workaround, as it is better than nothing.
586 			 */
587 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
588 #endif
589 		}
590 	}
591 
592 	/*
593 	 * If we are not a 82557 chip, we can enable extended features.
594 	 */
595 	if (sc->revision != FXP_REV_82557) {
596 		/*
597 		 * If MWI is enabled in the PCI configuration, and there
598 		 * is a valid cacheline size (8 or 16 dwords), then tell
599 		 * the board to turn on MWI.
600 		 */
601 		if (val & PCIM_CMD_MWRICEN &&
602 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
603 			sc->flags |= FXP_FLAG_MWI_ENABLE;
604 
605 		/* turn on the extended TxCB feature */
606 		sc->flags |= FXP_FLAG_EXT_TXCB;
607 
608 		/* enable reception of long frames for VLAN */
609 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
610 	}
611 
612 	/*
613 	 * Read MAC address.
614 	 */
615 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
616 	device_printf(dev, "Ethernet address %6D%s\n",
617 	    sc->arpcom.ac_enaddr, ":",
618 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
619 	if (bootverbose) {
620 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
621 		    pci_get_vendor(dev), pci_get_device(dev),
622 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
623 		    pci_get_revid(dev));
624 		fxp_read_eeprom(sc, &data, 10, 1);
625 		device_printf(dev, "Dynamic Standby mode is %s\n",
626 		    data & 0x02 ? "enabled" : "disabled");
627 	}
628 
629 	/*
630 	 * If this is only a 10Mbps device, then there is no MII, and
631 	 * the PHY will use a serial interface instead.
632 	 *
633 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
634 	 * doesn't have a programming interface of any sort.  The
635 	 * media is sensed automatically based on how the link partner
636 	 * is configured.  This is, in essence, manual configuration.
637 	 */
638 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
639 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
640 		    fxp_serial_ifmedia_sts);
641 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
642 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
643 	} else {
644 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
645 		    fxp_ifmedia_sts)) {
646 	                device_printf(dev, "MII without any PHY!\n");
647 			error = ENXIO;
648 			goto fail;
649 		}
650 	}
651 
652 	ifp = &sc->arpcom.ac_if;
653 	if_initname(ifp, "fxp", device_get_unit(dev));
654 	ifp->if_output = ether_output;
655 	ifp->if_baudrate = 100000000;
656 	ifp->if_init = fxp_init;
657 	ifp->if_softc = sc;
658 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
659 	ifp->if_ioctl = fxp_ioctl;
660 	ifp->if_start = fxp_start;
661 	ifp->if_watchdog = fxp_watchdog;
662 
663 	/*
664 	 * Attach the interface.
665 	 */
666 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
667 
668 	/*
669 	 * Tell the upper layer(s) we support long frames.
670 	 */
671 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
672 
673 	/*
674 	 * Let the system queue as many packets as we have available
675 	 * TX descriptors.
676 	 */
677 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
678 
679 	splx(s);
680 	return (0);
681 
682 failmem:
683 	device_printf(dev, "Failed to malloc memory\n");
684 	error = ENOMEM;
685 fail:
686 	splx(s);
687 	fxp_release(sc);
688 	return (error);
689 }
690 
691 /*
692  * release all resources
693  */
694 static void
695 fxp_release(struct fxp_softc *sc)
696 {
697 
698 	bus_generic_detach(sc->dev);
699 	if (sc->miibus)
700 		device_delete_child(sc->dev, sc->miibus);
701 
702 	if (sc->cbl_base)
703 		free(sc->cbl_base, M_DEVBUF);
704 	if (sc->fxp_stats)
705 		free(sc->fxp_stats, M_DEVBUF);
706 	if (sc->mcsp)
707 		free(sc->mcsp, M_DEVBUF);
708 	if (sc->rfa_headm)
709 		m_freem(sc->rfa_headm);
710 
711 	if (sc->ih)
712 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
713 	if (sc->irq)
714 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
715 	if (sc->mem)
716 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
717 
718         sysctl_ctx_free(&sc->sysctl_ctx);
719 
720 	mtx_destroy(&sc->sc_mtx);
721 }
722 
723 /*
724  * Detach interface.
725  */
726 static int
727 fxp_detach(device_t dev)
728 {
729 	struct fxp_softc *sc = device_get_softc(dev);
730 	int s;
731 
732 	/* disable interrupts */
733 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
734 
735 	s = splimp();
736 
737 	/*
738 	 * Stop DMA and drop transmit queue.
739 	 */
740 	fxp_stop(sc);
741 
742 	/*
743 	 * Close down routes etc.
744 	 */
745 	ether_ifdetach(&sc->arpcom.ac_if);
746 
747 	/*
748 	 * Free all media structures.
749 	 */
750 	ifmedia_removeall(&sc->sc_media);
751 
752 	splx(s);
753 
754 	/* Release our allocated resources. */
755 	fxp_release(sc);
756 
757 	return (0);
758 }
759 
760 /*
761  * Device shutdown routine. Called at system shutdown after sync. The
762  * main purpose of this routine is to shut off receiver DMA so that
763  * kernel memory doesn't get clobbered during warmboot.
764  */
765 static int
766 fxp_shutdown(device_t dev)
767 {
768 	/*
769 	 * Make sure that DMA is disabled prior to reboot. Not doing
770 	 * do could allow DMA to corrupt kernel memory during the
771 	 * reboot before the driver initializes.
772 	 */
773 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
774 	return (0);
775 }
776 
777 /*
778  * Device suspend routine.  Stop the interface and save some PCI
779  * settings in case the BIOS doesn't restore them properly on
780  * resume.
781  */
782 static int
783 fxp_suspend(device_t dev)
784 {
785 	struct fxp_softc *sc = device_get_softc(dev);
786 	int i, s;
787 
788 	s = splimp();
789 
790 	fxp_stop(sc);
791 
792 	for (i = 0; i < 5; i++)
793 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
794 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
795 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
796 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
797 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
798 
799 	sc->suspended = 1;
800 
801 	splx(s);
802 	return (0);
803 }
804 
805 /*
806  * Device resume routine.  Restore some PCI settings in case the BIOS
807  * doesn't, re-enable busmastering, and restart the interface if
808  * appropriate.
809  */
810 static int
811 fxp_resume(device_t dev)
812 {
813 	struct fxp_softc *sc = device_get_softc(dev);
814 	struct ifnet *ifp = &sc->sc_if;
815 	u_int16_t pci_command;
816 	int i, s;
817 
818 	s = splimp();
819 
820 	fxp_powerstate_d0(dev);
821 
822 	/* better way to do this? */
823 	for (i = 0; i < 5; i++)
824 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
825 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
826 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
827 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
828 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
829 
830 	/* reenable busmastering */
831 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
832 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
833 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
834 
835 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
836 	DELAY(10);
837 
838 	/* reinitialize interface if necessary */
839 	if (ifp->if_flags & IFF_UP)
840 		fxp_init(sc);
841 
842 	sc->suspended = 0;
843 
844 	splx(s);
845 	return (0);
846 }
847 
848 static void
849 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
850 {
851 	u_int16_t reg;
852 	int x;
853 
854 	/*
855 	 * Shift in data.
856 	 */
857 	for (x = 1 << (length - 1); x; x >>= 1) {
858 		if (data & x)
859 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
860 		else
861 			reg = FXP_EEPROM_EECS;
862 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
863 		DELAY(1);
864 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
865 		DELAY(1);
866 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
867 		DELAY(1);
868 	}
869 }
870 
871 /*
872  * Read from the serial EEPROM. Basically, you manually shift in
873  * the read opcode (one bit at a time) and then shift in the address,
874  * and then you shift out the data (all of this one bit at a time).
875  * The word size is 16 bits, so you have to provide the address for
876  * every 16 bits of data.
877  */
878 static u_int16_t
879 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
880 {
881 	u_int16_t reg, data;
882 	int x;
883 
884 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
885 	/*
886 	 * Shift in read opcode.
887 	 */
888 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
889 	/*
890 	 * Shift in address.
891 	 */
892 	data = 0;
893 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
894 		if (offset & x)
895 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
896 		else
897 			reg = FXP_EEPROM_EECS;
898 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
899 		DELAY(1);
900 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
901 		DELAY(1);
902 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
903 		DELAY(1);
904 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
905 		data++;
906 		if (autosize && reg == 0) {
907 			sc->eeprom_size = data;
908 			break;
909 		}
910 	}
911 	/*
912 	 * Shift out data.
913 	 */
914 	data = 0;
915 	reg = FXP_EEPROM_EECS;
916 	for (x = 1 << 15; x; x >>= 1) {
917 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
918 		DELAY(1);
919 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
920 			data |= x;
921 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
922 		DELAY(1);
923 	}
924 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
925 	DELAY(1);
926 
927 	return (data);
928 }
929 
930 static void
931 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
932 {
933 	int i;
934 
935 	/*
936 	 * Erase/write enable.
937 	 */
938 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
939 	fxp_eeprom_shiftin(sc, 0x4, 3);
940 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
941 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
942 	DELAY(1);
943 	/*
944 	 * Shift in write opcode, address, data.
945 	 */
946 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
947 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
948 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
949 	fxp_eeprom_shiftin(sc, data, 16);
950 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
951 	DELAY(1);
952 	/*
953 	 * Wait for EEPROM to finish up.
954 	 */
955 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
956 	DELAY(1);
957 	for (i = 0; i < 1000; i++) {
958 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
959 			break;
960 		DELAY(50);
961 	}
962 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
963 	DELAY(1);
964 	/*
965 	 * Erase/write disable.
966 	 */
967 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
968 	fxp_eeprom_shiftin(sc, 0x4, 3);
969 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
970 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
971 	DELAY(1);
972 }
973 
974 /*
975  * From NetBSD:
976  *
977  * Figure out EEPROM size.
978  *
979  * 559's can have either 64-word or 256-word EEPROMs, the 558
980  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
981  * talks about the existance of 16 to 256 word EEPROMs.
982  *
983  * The only known sizes are 64 and 256, where the 256 version is used
984  * by CardBus cards to store CIS information.
985  *
986  * The address is shifted in msb-to-lsb, and after the last
987  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
988  * after which follows the actual data. We try to detect this zero, by
989  * probing the data-out bit in the EEPROM control register just after
990  * having shifted in a bit. If the bit is zero, we assume we've
991  * shifted enough address bits. The data-out should be tri-state,
992  * before this, which should translate to a logical one.
993  */
994 static void
995 fxp_autosize_eeprom(struct fxp_softc *sc)
996 {
997 
998 	/* guess maximum size of 256 words */
999 	sc->eeprom_size = 8;
1000 
1001 	/* autosize */
1002 	(void) fxp_eeprom_getword(sc, 0, 1);
1003 }
1004 
1005 static void
1006 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; i < words; i++)
1011 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1012 }
1013 
1014 static void
1015 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1016 {
1017 	int i;
1018 
1019 	for (i = 0; i < words; i++)
1020 		fxp_eeprom_putword(sc, offset + i, data[i]);
1021 }
1022 
1023 /*
1024  * Start packet transmission on the interface.
1025  */
1026 static void
1027 fxp_start(struct ifnet *ifp)
1028 {
1029 	struct fxp_softc *sc = ifp->if_softc;
1030 	struct fxp_cb_tx *txp;
1031 
1032 	/*
1033 	 * See if we need to suspend xmit until the multicast filter
1034 	 * has been reprogrammed (which can only be done at the head
1035 	 * of the command chain).
1036 	 */
1037 	if (sc->need_mcsetup) {
1038 		return;
1039 	}
1040 
1041 	txp = NULL;
1042 
1043 	/*
1044 	 * We're finished if there is nothing more to add to the list or if
1045 	 * we're all filled up with buffers to transmit.
1046 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1047 	 *       a NOP command when needed.
1048 	 */
1049 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1050 		struct mbuf *m, *mb_head;
1051 		int segment;
1052 
1053 		/*
1054 		 * Grab a packet to transmit.
1055 		 */
1056 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1057 
1058 		/*
1059 		 * Get pointer to next available tx desc.
1060 		 */
1061 		txp = sc->cbl_last->next;
1062 
1063 		/*
1064 		 * Go through each of the mbufs in the chain and initialize
1065 		 * the transmit buffer descriptors with the physical address
1066 		 * and size of the mbuf.
1067 		 */
1068 tbdinit:
1069 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1070 			if (m->m_len != 0) {
1071 				if (segment == FXP_NTXSEG)
1072 					break;
1073 				txp->tbd[segment].tb_addr =
1074 				    vtophys(mtod(m, vm_offset_t));
1075 				txp->tbd[segment].tb_size = m->m_len;
1076 				segment++;
1077 			}
1078 		}
1079 		if (m != NULL) {
1080 			struct mbuf *mn;
1081 
1082 			/*
1083 			 * We ran out of segments. We have to recopy this
1084 			 * mbuf chain first. Bail out if we can't get the
1085 			 * new buffers.
1086 			 */
1087 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1088 			if (mn == NULL) {
1089 				m_freem(mb_head);
1090 				break;
1091 			}
1092 			if (mb_head->m_pkthdr.len > MHLEN) {
1093 				MCLGET(mn, M_DONTWAIT);
1094 				if ((mn->m_flags & M_EXT) == 0) {
1095 					m_freem(mn);
1096 					m_freem(mb_head);
1097 					break;
1098 				}
1099 			}
1100 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1101 			    mtod(mn, caddr_t));
1102 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1103 			m_freem(mb_head);
1104 			mb_head = mn;
1105 			goto tbdinit;
1106 		}
1107 
1108 		txp->tbd_number = segment;
1109 		txp->mb_head = mb_head;
1110 		txp->cb_status = 0;
1111 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1112 			txp->cb_command =
1113 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1114 			    FXP_CB_COMMAND_S;
1115 		} else {
1116 			txp->cb_command =
1117 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1118 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1119 			/*
1120 			 * Set a 5 second timer just in case we don't hear
1121 			 * from the card again.
1122 			 */
1123 			ifp->if_timer = 5;
1124 		}
1125 		txp->tx_threshold = tx_threshold;
1126 
1127 		/*
1128 		 * Advance the end of list forward.
1129 		 */
1130 
1131 #ifdef __alpha__
1132 		/*
1133 		 * On platforms which can't access memory in 16-bit
1134 		 * granularities, we must prevent the card from DMA'ing
1135 		 * up the status while we update the command field.
1136 		 * This could cause us to overwrite the completion status.
1137 		 */
1138 		atomic_clear_short(&sc->cbl_last->cb_command,
1139 		    FXP_CB_COMMAND_S);
1140 #else
1141 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1142 #endif /*__alpha__*/
1143 		sc->cbl_last = txp;
1144 
1145 		/*
1146 		 * Advance the beginning of the list forward if there are
1147 		 * no other packets queued (when nothing is queued, cbl_first
1148 		 * sits on the last TxCB that was sent out).
1149 		 */
1150 		if (sc->tx_queued == 0)
1151 			sc->cbl_first = txp;
1152 
1153 		sc->tx_queued++;
1154 
1155 		/*
1156 		 * Pass packet to bpf if there is a listener.
1157 		 */
1158 		if (ifp->if_bpf)
1159 			bpf_mtap(ifp, mb_head);
1160 	}
1161 
1162 	/*
1163 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1164 	 * going again if suspended.
1165 	 */
1166 	if (txp != NULL) {
1167 		fxp_scb_wait(sc);
1168 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1169 	}
1170 }
1171 
1172 #ifdef DEVICE_POLLING
1173 static poll_handler_t fxp_poll;
1174 
1175 static void
1176 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1177 {
1178 	struct fxp_softc *sc = ifp->if_softc;
1179 	u_int8_t statack;
1180 
1181 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1182 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1183 		return;
1184 	}
1185 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1186 	    FXP_SCB_STATACK_FR;
1187 	if (cmd == POLL_AND_CHECK_STATUS) {
1188 		u_int8_t tmp;
1189 
1190 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1191 		if (tmp == 0xff || tmp == 0)
1192 			return; /* nothing to do */
1193 		tmp &= ~statack;
1194 		/* ack what we can */
1195 		if (tmp != 0)
1196 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1197 		statack |= tmp;
1198 	}
1199 	fxp_intr_body(sc, statack, count);
1200 }
1201 #endif /* DEVICE_POLLING */
1202 
1203 /*
1204  * Process interface interrupts.
1205  */
1206 static void
1207 fxp_intr(void *xsc)
1208 {
1209 	struct fxp_softc *sc = xsc;
1210 	u_int8_t statack;
1211 
1212 #ifdef DEVICE_POLLING
1213 	struct ifnet *ifp = &sc->sc_if;
1214 
1215 	if (ifp->if_flags & IFF_POLLING)
1216 		return;
1217 	if (ether_poll_register(fxp_poll, ifp)) {
1218 		/* disable interrupts */
1219 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1220 		fxp_poll(ifp, 0, 1);
1221 		return;
1222 	}
1223 #endif
1224 
1225 	if (sc->suspended) {
1226 		return;
1227 	}
1228 
1229 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1230 		/*
1231 		 * It should not be possible to have all bits set; the
1232 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1233 		 * all bits are set, this may indicate that the card has
1234 		 * been physically ejected, so ignore it.
1235 		 */
1236 		if (statack == 0xff)
1237 			return;
1238 
1239 		/*
1240 		 * First ACK all the interrupts in this pass.
1241 		 */
1242 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1243 		fxp_intr_body(sc, statack, -1);
1244 	}
1245 }
1246 
1247 static void
1248 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1249 {
1250 	struct ifnet *ifp = &sc->sc_if;
1251 	struct mbuf *m;
1252 	struct fxp_rfa *rfa;
1253 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1254 
1255 	if (rnr)
1256 		fxp_rnr++;
1257 #ifdef DEVICE_POLLING
1258 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1259 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1260 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1261 		rnr = 1;
1262 	}
1263 #endif
1264 
1265 	/*
1266 	 * Free any finished transmit mbuf chains.
1267 	 *
1268 	 * Handle the CNA event likt a CXTNO event. It used to
1269 	 * be that this event (control unit not ready) was not
1270 	 * encountered, but it is now with the SMPng modifications.
1271 	 * The exact sequence of events that occur when the interface
1272 	 * is brought up are different now, and if this event
1273 	 * goes unhandled, the configuration/rxfilter setup sequence
1274 	 * can stall for several seconds. The result is that no
1275 	 * packets go out onto the wire for about 5 to 10 seconds
1276 	 * after the interface is ifconfig'ed for the first time.
1277 	 */
1278 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1279 		struct fxp_cb_tx *txp;
1280 
1281 		for (txp = sc->cbl_first; sc->tx_queued &&
1282 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1283 		    txp = txp->next) {
1284 			if (txp->mb_head != NULL) {
1285 				m_freem(txp->mb_head);
1286 				txp->mb_head = NULL;
1287 			}
1288 			sc->tx_queued--;
1289 		}
1290 		sc->cbl_first = txp;
1291 		ifp->if_timer = 0;
1292 		if (sc->tx_queued == 0) {
1293 			if (sc->need_mcsetup)
1294 				fxp_mc_setup(sc);
1295 		}
1296 		/*
1297 		 * Try to start more packets transmitting.
1298 		 */
1299 		if (ifp->if_snd.ifq_head != NULL)
1300 			fxp_start(ifp);
1301 	}
1302 
1303 	/*
1304 	 * Just return if nothing happened on the receive side.
1305 	 */
1306 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1307 		return;
1308 
1309 	/*
1310 	 * Process receiver interrupts. If a no-resource (RNR)
1311 	 * condition exists, get whatever packets we can and
1312 	 * re-start the receiver.
1313 	 *
1314 	 * When using polling, we do not process the list to completion,
1315 	 * so when we get an RNR interrupt we must defer the restart
1316 	 * until we hit the last buffer with the C bit set.
1317 	 * If we run out of cycles and rfa_headm has the C bit set,
1318 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1319 	 * that the info will be used in the subsequent polling cycle.
1320 	 */
1321 	for (;;) {
1322 		m = sc->rfa_headm;
1323 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1324 		    RFA_ALIGNMENT_FUDGE);
1325 
1326 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1327 		if (count >= 0 && count-- == 0) {
1328 			if (rnr) {
1329 				/* Defer RNR processing until the next time. */
1330 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1331 				rnr = 0;
1332 			}
1333 			break;
1334 		}
1335 #endif /* DEVICE_POLLING */
1336 
1337 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1338 			break;
1339 
1340 		/*
1341 		 * Remove first packet from the chain.
1342 		 */
1343 		sc->rfa_headm = m->m_next;
1344 		m->m_next = NULL;
1345 
1346 		/*
1347 		 * Add a new buffer to the receive chain.
1348 		 * If this fails, the old buffer is recycled
1349 		 * instead.
1350 		 */
1351 		if (fxp_add_rfabuf(sc, m) == 0) {
1352 			int total_len;
1353 
1354 			/*
1355 			 * Fetch packet length (the top 2 bits of
1356 			 * actual_size are flags set by the controller
1357 			 * upon completion), and drop the packet in case
1358 			 * of bogus length or CRC errors.
1359 			 */
1360 			total_len = rfa->actual_size & 0x3fff;
1361 			if (total_len < sizeof(struct ether_header) ||
1362 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1363 				sizeof(struct fxp_rfa) ||
1364 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1365 				m_freem(m);
1366 				continue;
1367 			}
1368 			m->m_pkthdr.len = m->m_len = total_len;
1369 			ether_input(ifp, NULL, m);
1370 		}
1371 	}
1372 	if (rnr) {
1373 		fxp_scb_wait(sc);
1374 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1375 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1376 		    RFA_ALIGNMENT_FUDGE);
1377 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1378 	}
1379 }
1380 
1381 /*
1382  * Update packet in/out/collision statistics. The i82557 doesn't
1383  * allow you to access these counters without doing a fairly
1384  * expensive DMA to get _all_ of the statistics it maintains, so
1385  * we do this operation here only once per second. The statistics
1386  * counters in the kernel are updated from the previous dump-stats
1387  * DMA and then a new dump-stats DMA is started. The on-chip
1388  * counters are zeroed when the DMA completes. If we can't start
1389  * the DMA immediately, we don't wait - we just prepare to read
1390  * them again next time.
1391  */
1392 static void
1393 fxp_tick(void *xsc)
1394 {
1395 	struct fxp_softc *sc = xsc;
1396 	struct ifnet *ifp = &sc->sc_if;
1397 	struct fxp_stats *sp = sc->fxp_stats;
1398 	struct fxp_cb_tx *txp;
1399 	int s;
1400 
1401 	ifp->if_opackets += sp->tx_good;
1402 	ifp->if_collisions += sp->tx_total_collisions;
1403 	if (sp->rx_good) {
1404 		ifp->if_ipackets += sp->rx_good;
1405 		sc->rx_idle_secs = 0;
1406 	} else {
1407 		/*
1408 		 * Receiver's been idle for another second.
1409 		 */
1410 		sc->rx_idle_secs++;
1411 	}
1412 	ifp->if_ierrors +=
1413 	    sp->rx_crc_errors +
1414 	    sp->rx_alignment_errors +
1415 	    sp->rx_rnr_errors +
1416 	    sp->rx_overrun_errors;
1417 	/*
1418 	 * If any transmit underruns occured, bump up the transmit
1419 	 * threshold by another 512 bytes (64 * 8).
1420 	 */
1421 	if (sp->tx_underruns) {
1422 		ifp->if_oerrors += sp->tx_underruns;
1423 		if (tx_threshold < 192)
1424 			tx_threshold += 64;
1425 	}
1426 	s = splimp();
1427 	/*
1428 	 * Release any xmit buffers that have completed DMA. This isn't
1429 	 * strictly necessary to do here, but it's advantagous for mbufs
1430 	 * with external storage to be released in a timely manner rather
1431 	 * than being defered for a potentially long time. This limits
1432 	 * the delay to a maximum of one second.
1433 	 */
1434 	for (txp = sc->cbl_first; sc->tx_queued &&
1435 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1436 	    txp = txp->next) {
1437 		if (txp->mb_head != NULL) {
1438 			m_freem(txp->mb_head);
1439 			txp->mb_head = NULL;
1440 		}
1441 		sc->tx_queued--;
1442 	}
1443 	sc->cbl_first = txp;
1444 	/*
1445 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1446 	 * then assume the receiver has locked up and attempt to clear
1447 	 * the condition by reprogramming the multicast filter. This is
1448 	 * a work-around for a bug in the 82557 where the receiver locks
1449 	 * up if it gets certain types of garbage in the syncronization
1450 	 * bits prior to the packet header. This bug is supposed to only
1451 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1452 	 * mode as well (perhaps due to a 10/100 speed transition).
1453 	 */
1454 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1455 		sc->rx_idle_secs = 0;
1456 		fxp_mc_setup(sc);
1457 	}
1458 	/*
1459 	 * If there is no pending command, start another stats
1460 	 * dump. Otherwise punt for now.
1461 	 */
1462 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1463 		/*
1464 		 * Start another stats dump.
1465 		 */
1466 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1467 	} else {
1468 		/*
1469 		 * A previous command is still waiting to be accepted.
1470 		 * Just zero our copy of the stats and wait for the
1471 		 * next timer event to update them.
1472 		 */
1473 		sp->tx_good = 0;
1474 		sp->tx_underruns = 0;
1475 		sp->tx_total_collisions = 0;
1476 
1477 		sp->rx_good = 0;
1478 		sp->rx_crc_errors = 0;
1479 		sp->rx_alignment_errors = 0;
1480 		sp->rx_rnr_errors = 0;
1481 		sp->rx_overrun_errors = 0;
1482 	}
1483 	if (sc->miibus != NULL)
1484 		mii_tick(device_get_softc(sc->miibus));
1485 	splx(s);
1486 	/*
1487 	 * Schedule another timeout one second from now.
1488 	 */
1489 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1490 }
1491 
1492 /*
1493  * Stop the interface. Cancels the statistics updater and resets
1494  * the interface.
1495  */
1496 static void
1497 fxp_stop(struct fxp_softc *sc)
1498 {
1499 	struct ifnet *ifp = &sc->sc_if;
1500 	struct fxp_cb_tx *txp;
1501 	int i;
1502 
1503 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1504 	ifp->if_timer = 0;
1505 
1506 #ifdef DEVICE_POLLING
1507 	ether_poll_deregister(ifp);
1508 #endif
1509 	/*
1510 	 * Cancel stats updater.
1511 	 */
1512 	untimeout(fxp_tick, sc, sc->stat_ch);
1513 
1514 	/*
1515 	 * Issue software reset, which also unloads the microcode.
1516 	 */
1517 	sc->flags &= ~FXP_FLAG_UCODE;
1518 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1519 	DELAY(50);
1520 
1521 	/*
1522 	 * Release any xmit buffers.
1523 	 */
1524 	txp = sc->cbl_base;
1525 	if (txp != NULL) {
1526 		for (i = 0; i < FXP_NTXCB; i++) {
1527 			if (txp[i].mb_head != NULL) {
1528 				m_freem(txp[i].mb_head);
1529 				txp[i].mb_head = NULL;
1530 			}
1531 		}
1532 	}
1533 	sc->tx_queued = 0;
1534 
1535 	/*
1536 	 * Free all the receive buffers then reallocate/reinitialize
1537 	 */
1538 	if (sc->rfa_headm != NULL)
1539 		m_freem(sc->rfa_headm);
1540 	sc->rfa_headm = NULL;
1541 	sc->rfa_tailm = NULL;
1542 	for (i = 0; i < FXP_NRFABUFS; i++) {
1543 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1544 			/*
1545 			 * This "can't happen" - we're at splimp()
1546 			 * and we just freed all the buffers we need
1547 			 * above.
1548 			 */
1549 			panic("fxp_stop: no buffers!");
1550 		}
1551 	}
1552 }
1553 
1554 /*
1555  * Watchdog/transmission transmit timeout handler. Called when a
1556  * transmission is started on the interface, but no interrupt is
1557  * received before the timeout. This usually indicates that the
1558  * card has wedged for some reason.
1559  */
1560 static void
1561 fxp_watchdog(struct ifnet *ifp)
1562 {
1563 	struct fxp_softc *sc = ifp->if_softc;
1564 
1565 	device_printf(sc->dev, "device timeout\n");
1566 	ifp->if_oerrors++;
1567 
1568 	fxp_init(sc);
1569 }
1570 
1571 static void
1572 fxp_init(void *xsc)
1573 {
1574 	struct fxp_softc *sc = xsc;
1575 	struct ifnet *ifp = &sc->sc_if;
1576 	struct fxp_cb_config *cbp;
1577 	struct fxp_cb_ias *cb_ias;
1578 	struct fxp_cb_tx *txp;
1579 	struct fxp_cb_mcs *mcsp;
1580 	int i, prm, s;
1581 
1582 	s = splimp();
1583 	/*
1584 	 * Cancel any pending I/O
1585 	 */
1586 	fxp_stop(sc);
1587 
1588 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1589 
1590 	/*
1591 	 * Initialize base of CBL and RFA memory. Loading with zero
1592 	 * sets it up for regular linear addressing.
1593 	 */
1594 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1595 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1596 
1597 	fxp_scb_wait(sc);
1598 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1599 
1600 	/*
1601 	 * Initialize base of dump-stats buffer.
1602 	 */
1603 	fxp_scb_wait(sc);
1604 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1605 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1606 
1607 	/*
1608 	 * Attempt to load microcode if requested.
1609 	 */
1610 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1611 		fxp_load_ucode(sc);
1612 
1613 	/*
1614 	 * Initialize the multicast address list.
1615 	 */
1616 	if (fxp_mc_addrs(sc)) {
1617 		mcsp = sc->mcsp;
1618 		mcsp->cb_status = 0;
1619 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1620 		mcsp->link_addr = -1;
1621 		/*
1622 	 	 * Start the multicast setup command.
1623 		 */
1624 		fxp_scb_wait(sc);
1625 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1626 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1627 		/* ...and wait for it to complete. */
1628 		fxp_dma_wait(&mcsp->cb_status, sc);
1629 	}
1630 
1631 	/*
1632 	 * We temporarily use memory that contains the TxCB list to
1633 	 * construct the config CB. The TxCB list memory is rebuilt
1634 	 * later.
1635 	 */
1636 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1637 
1638 	/*
1639 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1640 	 * zero and must be one bits in this structure and this is the easiest
1641 	 * way to initialize them all to proper values.
1642 	 */
1643 	bcopy(fxp_cb_config_template,
1644 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1645 		sizeof(fxp_cb_config_template));
1646 
1647 	cbp->cb_status =	0;
1648 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1649 	cbp->link_addr =	-1;	/* (no) next command */
1650 	cbp->byte_count =	22;	/* (22) bytes to config */
1651 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1652 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1653 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1654 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1655 	cbp->type_enable =	0;	/* actually reserved */
1656 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1657 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1658 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1659 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1660 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1661 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1662 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1663 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1664 	cbp->ci_int =		1;	/* interrupt on CU idle */
1665 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1666 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1667 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1668 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1669 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1670 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1671 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1672 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1673 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1674 	cbp->csma_dis =		0;	/* (don't) disable link */
1675 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1676 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1677 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1678 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1679 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1680 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1681 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1682 	cbp->loopback =		0;	/* (don't) loopback */
1683 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1684 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1685 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1686 	cbp->promiscuous =	prm;	/* promiscuous mode */
1687 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1688 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1689 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1690 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1691 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1692 
1693 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1694 	cbp->padding =		1;	/* (do) pad short tx packets */
1695 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1696 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1697 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1698 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1699 					/* must set wake_en in PMCSR also */
1700 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1701 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1702 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1703 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1704 
1705 	if (sc->revision == FXP_REV_82557) {
1706 		/*
1707 		 * The 82557 has no hardware flow control, the values
1708 		 * below are the defaults for the chip.
1709 		 */
1710 		cbp->fc_delay_lsb =	0;
1711 		cbp->fc_delay_msb =	0x40;
1712 		cbp->pri_fc_thresh =	3;
1713 		cbp->tx_fc_dis =	0;
1714 		cbp->rx_fc_restop =	0;
1715 		cbp->rx_fc_restart =	0;
1716 		cbp->fc_filter =	0;
1717 		cbp->pri_fc_loc =	1;
1718 	} else {
1719 		cbp->fc_delay_lsb =	0x1f;
1720 		cbp->fc_delay_msb =	0x01;
1721 		cbp->pri_fc_thresh =	3;
1722 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1723 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1724 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1725 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1726 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1727 	}
1728 
1729 	/*
1730 	 * Start the config command/DMA.
1731 	 */
1732 	fxp_scb_wait(sc);
1733 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1734 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1735 	/* ...and wait for it to complete. */
1736 	fxp_dma_wait(&cbp->cb_status, sc);
1737 
1738 	/*
1739 	 * Now initialize the station address. Temporarily use the TxCB
1740 	 * memory area like we did above for the config CB.
1741 	 */
1742 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1743 	cb_ias->cb_status = 0;
1744 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1745 	cb_ias->link_addr = -1;
1746 	bcopy(sc->arpcom.ac_enaddr,
1747 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1748 	    sizeof(sc->arpcom.ac_enaddr));
1749 
1750 	/*
1751 	 * Start the IAS (Individual Address Setup) command/DMA.
1752 	 */
1753 	fxp_scb_wait(sc);
1754 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1755 	/* ...and wait for it to complete. */
1756 	fxp_dma_wait(&cb_ias->cb_status, sc);
1757 
1758 	/*
1759 	 * Initialize transmit control block (TxCB) list.
1760 	 */
1761 
1762 	txp = sc->cbl_base;
1763 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1764 	for (i = 0; i < FXP_NTXCB; i++) {
1765 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1766 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1767 		txp[i].link_addr =
1768 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1769 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1770 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1771 		else
1772 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1773 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1774 	}
1775 	/*
1776 	 * Set the suspend flag on the first TxCB and start the control
1777 	 * unit. It will execute the NOP and then suspend.
1778 	 */
1779 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1780 	sc->cbl_first = sc->cbl_last = txp;
1781 	sc->tx_queued = 1;
1782 
1783 	fxp_scb_wait(sc);
1784 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1785 
1786 	/*
1787 	 * Initialize receiver buffer area - RFA.
1788 	 */
1789 	fxp_scb_wait(sc);
1790 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1791 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1792 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1793 
1794 	/*
1795 	 * Set current media.
1796 	 */
1797 	if (sc->miibus != NULL)
1798 		mii_mediachg(device_get_softc(sc->miibus));
1799 
1800 	ifp->if_flags |= IFF_RUNNING;
1801 	ifp->if_flags &= ~IFF_OACTIVE;
1802 
1803 	/*
1804 	 * Enable interrupts.
1805 	 */
1806 #ifdef DEVICE_POLLING
1807 	/*
1808 	 * ... but only do that if we are not polling. And because (presumably)
1809 	 * the default is interrupts on, we need to disable them explicitly!
1810 	 */
1811 	if ( ifp->if_flags & IFF_POLLING )
1812 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1813 	else
1814 #endif /* DEVICE_POLLING */
1815 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1816 	splx(s);
1817 
1818 	/*
1819 	 * Start stats updater.
1820 	 */
1821 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1822 }
1823 
1824 static int
1825 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1826 {
1827 
1828 	return (0);
1829 }
1830 
1831 static void
1832 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1833 {
1834 
1835 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1836 }
1837 
1838 /*
1839  * Change media according to request.
1840  */
1841 static int
1842 fxp_ifmedia_upd(struct ifnet *ifp)
1843 {
1844 	struct fxp_softc *sc = ifp->if_softc;
1845 	struct mii_data *mii;
1846 
1847 	mii = device_get_softc(sc->miibus);
1848 	mii_mediachg(mii);
1849 	return (0);
1850 }
1851 
1852 /*
1853  * Notify the world which media we're using.
1854  */
1855 static void
1856 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1857 {
1858 	struct fxp_softc *sc = ifp->if_softc;
1859 	struct mii_data *mii;
1860 
1861 	mii = device_get_softc(sc->miibus);
1862 	mii_pollstat(mii);
1863 	ifmr->ifm_active = mii->mii_media_active;
1864 	ifmr->ifm_status = mii->mii_media_status;
1865 
1866 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1867 		sc->cu_resume_bug = 1;
1868 	else
1869 		sc->cu_resume_bug = 0;
1870 }
1871 
1872 /*
1873  * Add a buffer to the end of the RFA buffer list.
1874  * Return 0 if successful, 1 for failure. A failure results in
1875  * adding the 'oldm' (if non-NULL) on to the end of the list -
1876  * tossing out its old contents and recycling it.
1877  * The RFA struct is stuck at the beginning of mbuf cluster and the
1878  * data pointer is fixed up to point just past it.
1879  */
1880 static int
1881 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1882 {
1883 	u_int32_t v;
1884 	struct mbuf *m;
1885 	struct fxp_rfa *rfa, *p_rfa;
1886 
1887 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1888 	if (m == NULL) { /* try to recycle the old mbuf instead */
1889 		if (oldm == NULL)
1890 			return 1;
1891 		m = oldm;
1892 		m->m_data = m->m_ext.ext_buf;
1893 	}
1894 
1895 	/*
1896 	 * Move the data pointer up so that the incoming data packet
1897 	 * will be 32-bit aligned.
1898 	 */
1899 	m->m_data += RFA_ALIGNMENT_FUDGE;
1900 
1901 	/*
1902 	 * Get a pointer to the base of the mbuf cluster and move
1903 	 * data start past it.
1904 	 */
1905 	rfa = mtod(m, struct fxp_rfa *);
1906 	m->m_data += sizeof(struct fxp_rfa);
1907 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1908 
1909 	/*
1910 	 * Initialize the rest of the RFA.  Note that since the RFA
1911 	 * is misaligned, we cannot store values directly.  Instead,
1912 	 * we use an optimized, inline copy.
1913 	 */
1914 
1915 	rfa->rfa_status = 0;
1916 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1917 	rfa->actual_size = 0;
1918 
1919 	v = -1;
1920 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1921 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1922 
1923 	/*
1924 	 * If there are other buffers already on the list, attach this
1925 	 * one to the end by fixing up the tail to point to this one.
1926 	 */
1927 	if (sc->rfa_headm != NULL) {
1928 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1929 		    RFA_ALIGNMENT_FUDGE);
1930 		sc->rfa_tailm->m_next = m;
1931 		v = vtophys(rfa);
1932 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1933 		p_rfa->rfa_control = 0;
1934 	} else {
1935 		sc->rfa_headm = m;
1936 	}
1937 	sc->rfa_tailm = m;
1938 
1939 	return (m == oldm);
1940 }
1941 
1942 static volatile int
1943 fxp_miibus_readreg(device_t dev, int phy, int reg)
1944 {
1945 	struct fxp_softc *sc = device_get_softc(dev);
1946 	int count = 10000;
1947 	int value;
1948 
1949 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1950 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1951 
1952 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1953 	    && count--)
1954 		DELAY(10);
1955 
1956 	if (count <= 0)
1957 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1958 
1959 	return (value & 0xffff);
1960 }
1961 
1962 static void
1963 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1964 {
1965 	struct fxp_softc *sc = device_get_softc(dev);
1966 	int count = 10000;
1967 
1968 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1969 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1970 	    (value & 0xffff));
1971 
1972 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1973 	    count--)
1974 		DELAY(10);
1975 
1976 	if (count <= 0)
1977 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1978 }
1979 
1980 static int
1981 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1982 {
1983 	struct fxp_softc *sc = ifp->if_softc;
1984 	struct ifreq *ifr = (struct ifreq *)data;
1985 	struct mii_data *mii;
1986 	int s, error = 0;
1987 
1988 	s = splimp();
1989 
1990 	switch (command) {
1991 	case SIOCSIFADDR:
1992 	case SIOCGIFADDR:
1993 	case SIOCSIFMTU:
1994 		error = ether_ioctl(ifp, command, data);
1995 		break;
1996 
1997 	case SIOCSIFFLAGS:
1998 		if (ifp->if_flags & IFF_ALLMULTI)
1999 			sc->flags |= FXP_FLAG_ALL_MCAST;
2000 		else
2001 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2002 
2003 		/*
2004 		 * If interface is marked up and not running, then start it.
2005 		 * If it is marked down and running, stop it.
2006 		 * XXX If it's up then re-initialize it. This is so flags
2007 		 * such as IFF_PROMISC are handled.
2008 		 */
2009 		if (ifp->if_flags & IFF_UP) {
2010 			fxp_init(sc);
2011 		} else {
2012 			if (ifp->if_flags & IFF_RUNNING)
2013 				fxp_stop(sc);
2014 		}
2015 		break;
2016 
2017 	case SIOCADDMULTI:
2018 	case SIOCDELMULTI:
2019 		if (ifp->if_flags & IFF_ALLMULTI)
2020 			sc->flags |= FXP_FLAG_ALL_MCAST;
2021 		else
2022 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2023 		/*
2024 		 * Multicast list has changed; set the hardware filter
2025 		 * accordingly.
2026 		 */
2027 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2028 			fxp_mc_setup(sc);
2029 		/*
2030 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2031 		 * again rather than else {}.
2032 		 */
2033 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2034 			fxp_init(sc);
2035 		error = 0;
2036 		break;
2037 
2038 	case SIOCSIFMEDIA:
2039 	case SIOCGIFMEDIA:
2040 		if (sc->miibus != NULL) {
2041 			mii = device_get_softc(sc->miibus);
2042                         error = ifmedia_ioctl(ifp, ifr,
2043                             &mii->mii_media, command);
2044 		} else {
2045                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2046 		}
2047 		break;
2048 
2049 	default:
2050 		error = EINVAL;
2051 	}
2052 	splx(s);
2053 	return (error);
2054 }
2055 
2056 /*
2057  * Fill in the multicast address list and return number of entries.
2058  */
2059 static int
2060 fxp_mc_addrs(struct fxp_softc *sc)
2061 {
2062 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2063 	struct ifnet *ifp = &sc->sc_if;
2064 	struct ifmultiaddr *ifma;
2065 	int nmcasts;
2066 
2067 	nmcasts = 0;
2068 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2069 #if defined(__DragonFly__) || __FreeBSD_version < 500000
2070 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2071 #else
2072 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2073 #endif
2074 			if (ifma->ifma_addr->sa_family != AF_LINK)
2075 				continue;
2076 			if (nmcasts >= MAXMCADDR) {
2077 				sc->flags |= FXP_FLAG_ALL_MCAST;
2078 				nmcasts = 0;
2079 				break;
2080 			}
2081 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2082 			    (void *)(uintptr_t)(volatile void *)
2083 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2084 			nmcasts++;
2085 		}
2086 	}
2087 	mcsp->mc_cnt = nmcasts * 6;
2088 	return (nmcasts);
2089 }
2090 
2091 /*
2092  * Program the multicast filter.
2093  *
2094  * We have an artificial restriction that the multicast setup command
2095  * must be the first command in the chain, so we take steps to ensure
2096  * this. By requiring this, it allows us to keep up the performance of
2097  * the pre-initialized command ring (esp. link pointers) by not actually
2098  * inserting the mcsetup command in the ring - i.e. its link pointer
2099  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2100  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2101  * lead into the regular TxCB ring when it completes.
2102  *
2103  * This function must be called at splimp.
2104  */
2105 static void
2106 fxp_mc_setup(struct fxp_softc *sc)
2107 {
2108 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2109 	struct ifnet *ifp = &sc->sc_if;
2110 	int count;
2111 
2112 	/*
2113 	 * If there are queued commands, we must wait until they are all
2114 	 * completed. If we are already waiting, then add a NOP command
2115 	 * with interrupt option so that we're notified when all commands
2116 	 * have been completed - fxp_start() ensures that no additional
2117 	 * TX commands will be added when need_mcsetup is true.
2118 	 */
2119 	if (sc->tx_queued) {
2120 		struct fxp_cb_tx *txp;
2121 
2122 		/*
2123 		 * need_mcsetup will be true if we are already waiting for the
2124 		 * NOP command to be completed (see below). In this case, bail.
2125 		 */
2126 		if (sc->need_mcsetup)
2127 			return;
2128 		sc->need_mcsetup = 1;
2129 
2130 		/*
2131 		 * Add a NOP command with interrupt so that we are notified
2132 		 * when all TX commands have been processed.
2133 		 */
2134 		txp = sc->cbl_last->next;
2135 		txp->mb_head = NULL;
2136 		txp->cb_status = 0;
2137 		txp->cb_command = FXP_CB_COMMAND_NOP |
2138 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2139 		/*
2140 		 * Advance the end of list forward.
2141 		 */
2142 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2143 		sc->cbl_last = txp;
2144 		sc->tx_queued++;
2145 		/*
2146 		 * Issue a resume in case the CU has just suspended.
2147 		 */
2148 		fxp_scb_wait(sc);
2149 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2150 		/*
2151 		 * Set a 5 second timer just in case we don't hear from the
2152 		 * card again.
2153 		 */
2154 		ifp->if_timer = 5;
2155 
2156 		return;
2157 	}
2158 	sc->need_mcsetup = 0;
2159 
2160 	/*
2161 	 * Initialize multicast setup descriptor.
2162 	 */
2163 	mcsp->next = sc->cbl_base;
2164 	mcsp->mb_head = NULL;
2165 	mcsp->cb_status = 0;
2166 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2167 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2168 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2169 	(void) fxp_mc_addrs(sc);
2170 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2171 	sc->tx_queued = 1;
2172 
2173 	/*
2174 	 * Wait until command unit is not active. This should never
2175 	 * be the case when nothing is queued, but make sure anyway.
2176 	 */
2177 	count = 100;
2178 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2179 	    FXP_SCB_CUS_ACTIVE && --count)
2180 		DELAY(10);
2181 	if (count == 0) {
2182 		device_printf(sc->dev, "command queue timeout\n");
2183 		return;
2184 	}
2185 
2186 	/*
2187 	 * Start the multicast setup command.
2188 	 */
2189 	fxp_scb_wait(sc);
2190 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2191 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2192 
2193 	ifp->if_timer = 2;
2194 	return;
2195 }
2196 
2197 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2198 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2199 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2200 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2201 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2202 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2203 
2204 #define UCODE(x)	x, sizeof(x)
2205 
2206 struct ucode {
2207 	u_int32_t	revision;
2208 	u_int32_t	*ucode;
2209 	int		length;
2210 	u_short		int_delay_offset;
2211 	u_short		bundle_max_offset;
2212 } ucode_table[] = {
2213 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2214 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2215 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2216 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2217 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2218 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2219 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2220 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2221 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2222 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2223 	{ 0, NULL, 0, 0, 0 }
2224 };
2225 
2226 static void
2227 fxp_load_ucode(struct fxp_softc *sc)
2228 {
2229 	struct ucode *uc;
2230 	struct fxp_cb_ucode *cbp;
2231 
2232 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2233 		if (sc->revision == uc->revision)
2234 			break;
2235 	if (uc->ucode == NULL)
2236 		return;
2237 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2238 	cbp->cb_status = 0;
2239 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2240 	cbp->link_addr = -1;    	/* (no) next command */
2241 	memcpy(cbp->ucode, uc->ucode, uc->length);
2242 	if (uc->int_delay_offset)
2243 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2244 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2245 	if (uc->bundle_max_offset)
2246 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2247 		    sc->tunable_bundle_max;
2248 	/*
2249 	 * Download the ucode to the chip.
2250 	 */
2251 	fxp_scb_wait(sc);
2252 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2253 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2254 	/* ...and wait for it to complete. */
2255 	fxp_dma_wait(&cbp->cb_status, sc);
2256 	device_printf(sc->dev,
2257 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2258 	    sc->tunable_int_delay,
2259 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2260 	sc->flags |= FXP_FLAG_UCODE;
2261 }
2262 
2263 static int
2264 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2265 {
2266 	int error, value;
2267 
2268 	value = *(int *)arg1;
2269 	error = sysctl_handle_int(oidp, &value, 0, req);
2270 	if (error || !req->newptr)
2271 		return (error);
2272 	if (value < low || value > high)
2273 		return (EINVAL);
2274 	*(int *)arg1 = value;
2275 	return (0);
2276 }
2277 
2278 /*
2279  * Interrupt delay is expressed in microseconds, a multiplier is used
2280  * to convert this to the appropriate clock ticks before using.
2281  */
2282 static int
2283 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2284 {
2285 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2286 }
2287 
2288 static int
2289 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2290 {
2291 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2292 }
2293