1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $ 29 * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.11 2004/04/16 14:21:57 joerg Exp $ 30 */ 31 32 /* 33 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 34 */ 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/mbuf.h> 39 #include <sys/malloc.h> 40 /* #include <sys/mutex.h> */ 41 #include <sys/kernel.h> 42 #include <sys/socket.h> 43 #include <sys/sysctl.h> 44 45 #include <net/if.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 49 #ifdef NS 50 #include <netns/ns.h> 51 #include <netns/ns_if.h> 52 #endif 53 54 #include <net/bpf.h> 55 #include <sys/sockio.h> 56 #include <sys/bus.h> 57 #include <machine/bus.h> 58 #include <sys/rman.h> 59 #include <machine/resource.h> 60 61 #include <net/ethernet.h> 62 #include <net/if_arp.h> 63 64 #include <vm/vm.h> /* for vtophys */ 65 #include <vm/pmap.h> /* for vtophys */ 66 #include <machine/clock.h> /* for DELAY */ 67 68 #include <net/if_types.h> 69 #include <net/vlan/if_vlan_var.h> 70 71 #include <bus/pci/pcivar.h> 72 #include <bus/pci/pcireg.h> /* for PCIM_CMD_xxx */ 73 74 #include "../mii_layer/mii.h" 75 #include "../mii_layer/miivar.h" 76 77 #include "if_fxpreg.h" 78 #include "if_fxpvar.h" 79 #include "rcvbundl.h" 80 81 #include "miibus_if.h" 82 83 /* 84 * NOTE! On the Alpha, we have an alignment constraint. The 85 * card DMAs the packet immediately following the RFA. However, 86 * the first thing in the packet is a 14-byte Ethernet header. 87 * This means that the packet is misaligned. To compensate, 88 * we actually offset the RFA 2 bytes into the cluster. This 89 * alignes the packet after the Ethernet header at a 32-bit 90 * boundary. HOWEVER! This means that the RFA is misaligned! 91 */ 92 #define RFA_ALIGNMENT_FUDGE 2 93 94 /* 95 * Set initial transmit threshold at 64 (512 bytes). This is 96 * increased by 64 (512 bytes) at a time, to maximum of 192 97 * (1536 bytes), if an underrun occurs. 98 */ 99 static int tx_threshold = 64; 100 101 /* 102 * The configuration byte map has several undefined fields which 103 * must be one or must be zero. Set up a template for these bits 104 * only, (assuming a 82557 chip) leaving the actual configuration 105 * to fxp_init. 106 * 107 * See struct fxp_cb_config for the bit definitions. 108 */ 109 static u_char fxp_cb_config_template[] = { 110 0x0, 0x0, /* cb_status */ 111 0x0, 0x0, /* cb_command */ 112 0x0, 0x0, 0x0, 0x0, /* link_addr */ 113 0x0, /* 0 */ 114 0x0, /* 1 */ 115 0x0, /* 2 */ 116 0x0, /* 3 */ 117 0x0, /* 4 */ 118 0x0, /* 5 */ 119 0x32, /* 6 */ 120 0x0, /* 7 */ 121 0x0, /* 8 */ 122 0x0, /* 9 */ 123 0x6, /* 10 */ 124 0x0, /* 11 */ 125 0x0, /* 12 */ 126 0x0, /* 13 */ 127 0xf2, /* 14 */ 128 0x48, /* 15 */ 129 0x0, /* 16 */ 130 0x40, /* 17 */ 131 0xf0, /* 18 */ 132 0x0, /* 19 */ 133 0x3f, /* 20 */ 134 0x5 /* 21 */ 135 }; 136 137 struct fxp_ident { 138 u_int16_t devid; 139 int16_t revid; /* -1 matches anything */ 140 char *name; 141 }; 142 143 /* 144 * Claim various Intel PCI device identifiers for this driver. The 145 * sub-vendor and sub-device field are extensively used to identify 146 * particular variants, but we don't currently differentiate between 147 * them. 148 */ 149 static struct fxp_ident fxp_ident_table[] = { 150 { 0x1029, -1, "Intel 82559 PCI/CardBus Pro/100" }, 151 { 0x1030, -1, "Intel 82559 Pro/100 Ethernet" }, 152 { 0x1031, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 153 { 0x1032, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 154 { 0x1033, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 155 { 0x1034, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 156 { 0x1035, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 157 { 0x1036, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 158 { 0x1037, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 159 { 0x1038, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 160 { 0x1039, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 161 { 0x103A, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 162 { 0x103B, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 163 { 0x103C, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 164 { 0x103D, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 165 { 0x103E, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 166 { 0x1050, -1, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, 167 { 0x1059, -1, "Intel 82551QM Pro/100 M Mobile Connection" }, 168 { 0x1209, -1, "Intel 82559ER Embedded 10/100 Ethernet" }, 169 { 0x1229, 0x01, "Intel 82557 Pro/100 Ethernet" }, 170 { 0x1229, 0x02, "Intel 82557 Pro/100 Ethernet" }, 171 { 0x1229, 0x03, "Intel 82557 Pro/100 Ethernet" }, 172 { 0x1229, 0x04, "Intel 82558 Pro/100 Ethernet" }, 173 { 0x1229, 0x05, "Intel 82558 Pro/100 Ethernet" }, 174 { 0x1229, 0x06, "Intel 82559 Pro/100 Ethernet" }, 175 { 0x1229, 0x07, "Intel 82559 Pro/100 Ethernet" }, 176 { 0x1229, 0x08, "Intel 82559 Pro/100 Ethernet" }, 177 { 0x1229, 0x09, "Intel 82559ER Pro/100 Ethernet" }, 178 { 0x1229, 0x0c, "Intel 82550 Pro/100 Ethernet" }, 179 { 0x1229, 0x0d, "Intel 82550 Pro/100 Ethernet" }, 180 { 0x1229, 0x0e, "Intel 82550 Pro/100 Ethernet" }, 181 { 0x1229, 0x0f, "Intel 82551 Pro/100 Ethernet" }, 182 { 0x1229, 0x10, "Intel 82551 Pro/100 Ethernet" }, 183 { 0x1229, -1, "Intel 82557/8/9 Pro/100 Ethernet" }, 184 { 0x2449, -1, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 185 { 0, -1, NULL }, 186 }; 187 188 static int fxp_probe(device_t dev); 189 static int fxp_attach(device_t dev); 190 static int fxp_detach(device_t dev); 191 static int fxp_shutdown(device_t dev); 192 static int fxp_suspend(device_t dev); 193 static int fxp_resume(device_t dev); 194 195 static void fxp_intr(void *xsc); 196 static void fxp_intr_body(struct fxp_softc *sc, 197 u_int8_t statack, int count); 198 199 static void fxp_init(void *xsc); 200 static void fxp_tick(void *xsc); 201 static void fxp_powerstate_d0(device_t dev); 202 static void fxp_start(struct ifnet *ifp); 203 static void fxp_stop(struct fxp_softc *sc); 204 static void fxp_release(struct fxp_softc *sc); 205 static int fxp_ioctl(struct ifnet *ifp, u_long command, 206 caddr_t data, struct ucred *); 207 static void fxp_watchdog(struct ifnet *ifp); 208 static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm); 209 static int fxp_mc_addrs(struct fxp_softc *sc); 210 static void fxp_mc_setup(struct fxp_softc *sc); 211 static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 212 int autosize); 213 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 214 u_int16_t data); 215 static void fxp_autosize_eeprom(struct fxp_softc *sc); 216 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 217 int offset, int words); 218 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 219 int offset, int words); 220 static int fxp_ifmedia_upd(struct ifnet *ifp); 221 static void fxp_ifmedia_sts(struct ifnet *ifp, 222 struct ifmediareq *ifmr); 223 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 224 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 225 struct ifmediareq *ifmr); 226 static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg); 227 static void fxp_miibus_writereg(device_t dev, int phy, int reg, 228 int value); 229 static void fxp_load_ucode(struct fxp_softc *sc); 230 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 231 int low, int high); 232 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 233 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 234 static __inline void fxp_lwcopy(volatile u_int32_t *src, 235 volatile u_int32_t *dst); 236 static __inline void fxp_scb_wait(struct fxp_softc *sc); 237 static __inline void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 238 static __inline void fxp_dma_wait(volatile u_int16_t *status, 239 struct fxp_softc *sc); 240 241 static device_method_t fxp_methods[] = { 242 /* Device interface */ 243 DEVMETHOD(device_probe, fxp_probe), 244 DEVMETHOD(device_attach, fxp_attach), 245 DEVMETHOD(device_detach, fxp_detach), 246 DEVMETHOD(device_shutdown, fxp_shutdown), 247 DEVMETHOD(device_suspend, fxp_suspend), 248 DEVMETHOD(device_resume, fxp_resume), 249 250 /* MII interface */ 251 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 252 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 253 254 { 0, 0 } 255 }; 256 257 static driver_t fxp_driver = { 258 "fxp", 259 fxp_methods, 260 sizeof(struct fxp_softc), 261 }; 262 263 static devclass_t fxp_devclass; 264 265 DECLARE_DUMMY_MODULE(if_fxp); 266 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1); 267 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0); 268 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0); 269 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0); 270 271 static int fxp_rnr; 272 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events"); 273 274 /* 275 * Inline function to copy a 16-bit aligned 32-bit quantity. 276 */ 277 static __inline void 278 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst) 279 { 280 #ifdef __i386__ 281 *dst = *src; 282 #else 283 volatile u_int16_t *a = (volatile u_int16_t *)src; 284 volatile u_int16_t *b = (volatile u_int16_t *)dst; 285 286 b[0] = a[0]; 287 b[1] = a[1]; 288 #endif 289 } 290 291 /* 292 * Wait for the previous command to be accepted (but not necessarily 293 * completed). 294 */ 295 static __inline void 296 fxp_scb_wait(struct fxp_softc *sc) 297 { 298 int i = 10000; 299 300 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 301 DELAY(2); 302 if (i == 0) 303 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 304 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 305 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 306 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), 307 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL)); 308 } 309 310 static __inline void 311 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 312 { 313 314 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 315 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 316 fxp_scb_wait(sc); 317 } 318 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 319 } 320 321 static __inline void 322 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc) 323 { 324 int i = 10000; 325 326 while (!(*status & FXP_CB_STATUS_C) && --i) 327 DELAY(2); 328 if (i == 0) 329 device_printf(sc->dev, "DMA timeout\n"); 330 } 331 332 /* 333 * Return identification string if this is device is ours. 334 */ 335 static int 336 fxp_probe(device_t dev) 337 { 338 u_int16_t devid; 339 u_int8_t revid; 340 struct fxp_ident *ident; 341 342 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 343 devid = pci_get_device(dev); 344 revid = pci_get_revid(dev); 345 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 346 if (ident->devid == devid && 347 (ident->revid == revid || ident->revid == -1)) { 348 device_set_desc(dev, ident->name); 349 return (0); 350 } 351 } 352 } 353 return (ENXIO); 354 } 355 356 static void 357 fxp_powerstate_d0(device_t dev) 358 { 359 #if defined(__DragonFly__) || __FreeBSD_version >= 430002 360 u_int32_t iobase, membase, irq; 361 362 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 363 /* Save important PCI config data. */ 364 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4); 365 membase = pci_read_config(dev, FXP_PCI_MMBA, 4); 366 irq = pci_read_config(dev, PCIR_INTLINE, 4); 367 368 /* Reset the power state. */ 369 device_printf(dev, "chip is in D%d power mode " 370 "-- setting to D0\n", pci_get_powerstate(dev)); 371 372 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 373 374 /* Restore PCI config data. */ 375 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4); 376 pci_write_config(dev, FXP_PCI_MMBA, membase, 4); 377 pci_write_config(dev, PCIR_INTLINE, irq, 4); 378 } 379 #endif 380 } 381 382 static int 383 fxp_attach(device_t dev) 384 { 385 int error = 0; 386 struct fxp_softc *sc = device_get_softc(dev); 387 struct ifnet *ifp; 388 u_int32_t val; 389 u_int16_t data; 390 int i, rid, m1, m2, prefer_iomap; 391 int s; 392 393 bzero(sc, sizeof(*sc)); 394 sc->dev = dev; 395 callout_handle_init(&sc->stat_ch); 396 sysctl_ctx_init(&sc->sysctl_ctx); 397 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE); 398 399 s = splimp(); 400 401 /* 402 * Enable bus mastering. Enable memory space too, in case 403 * BIOS/Prom forgot about it. 404 */ 405 val = pci_read_config(dev, PCIR_COMMAND, 2); 406 val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 407 pci_write_config(dev, PCIR_COMMAND, val, 2); 408 val = pci_read_config(dev, PCIR_COMMAND, 2); 409 410 fxp_powerstate_d0(dev); 411 412 /* 413 * Figure out which we should try first - memory mapping or i/o mapping? 414 * We default to memory mapping. Then we accept an override from the 415 * command line. Then we check to see which one is enabled. 416 */ 417 m1 = PCIM_CMD_MEMEN; 418 m2 = PCIM_CMD_PORTEN; 419 prefer_iomap = 0; 420 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 421 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) { 422 m1 = PCIM_CMD_PORTEN; 423 m2 = PCIM_CMD_MEMEN; 424 } 425 426 if (val & m1) { 427 sc->rtp = 428 (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 429 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 430 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 431 0, ~0, 1, RF_ACTIVE); 432 } 433 if (sc->mem == NULL && (val & m2)) { 434 sc->rtp = 435 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 436 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 437 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 438 0, ~0, 1, RF_ACTIVE); 439 } 440 441 if (!sc->mem) { 442 device_printf(dev, "could not map device registers\n"); 443 error = ENXIO; 444 goto fail; 445 } 446 if (bootverbose) { 447 device_printf(dev, "using %s space register mapping\n", 448 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O"); 449 } 450 451 sc->sc_st = rman_get_bustag(sc->mem); 452 sc->sc_sh = rman_get_bushandle(sc->mem); 453 454 /* 455 * Allocate our interrupt. 456 */ 457 rid = 0; 458 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 459 RF_SHAREABLE | RF_ACTIVE); 460 if (sc->irq == NULL) { 461 device_printf(dev, "could not map interrupt\n"); 462 error = ENXIO; 463 goto fail; 464 } 465 466 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET, 467 fxp_intr, sc, &sc->ih); 468 if (error) { 469 device_printf(dev, "could not setup irq\n"); 470 goto fail; 471 } 472 473 /* 474 * Reset to a stable state. 475 */ 476 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 477 DELAY(10); 478 479 sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB, 480 M_DEVBUF, M_WAITOK | M_ZERO); 481 482 sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, 483 M_WAITOK | M_ZERO); 484 485 sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK); 486 487 /* 488 * Pre-allocate our receive buffers. 489 */ 490 for (i = 0; i < FXP_NRFABUFS; i++) { 491 if (fxp_add_rfabuf(sc, NULL) != 0) { 492 goto failmem; 493 } 494 } 495 496 /* 497 * Find out how large of an SEEPROM we have. 498 */ 499 fxp_autosize_eeprom(sc); 500 501 /* 502 * Determine whether we must use the 503 serial interface. 503 */ 504 fxp_read_eeprom(sc, &data, 6, 1); 505 if ((data & FXP_PHY_DEVICE_MASK) != 0 && 506 (data & FXP_PHY_SERIAL_ONLY)) 507 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 508 509 /* 510 * Create the sysctl tree 511 */ 512 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 513 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 514 device_get_nameunit(dev), CTLFLAG_RD, 0, ""); 515 if (sc->sysctl_tree == NULL) 516 goto fail; 517 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 518 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 519 &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I", 520 "FXP driver receive interrupt microcode bundling delay"); 521 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 522 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 523 &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I", 524 "FXP driver receive interrupt microcode bundle size limit"); 525 526 /* 527 * Pull in device tunables. 528 */ 529 sc->tunable_int_delay = TUNABLE_INT_DELAY; 530 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 531 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 532 "int_delay", &sc->tunable_int_delay); 533 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 534 "bundle_max", &sc->tunable_bundle_max); 535 536 /* 537 * Find out the chip revision; lump all 82557 revs together. 538 */ 539 fxp_read_eeprom(sc, &data, 5, 1); 540 if ((data >> 8) == 1) 541 sc->revision = FXP_REV_82557; 542 else 543 sc->revision = pci_get_revid(dev); 544 545 /* 546 * Enable workarounds for certain chip revision deficiencies. 547 * 548 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 549 * some systems based a normal 82559 design, have a defect where 550 * the chip can cause a PCI protocol violation if it receives 551 * a CU_RESUME command when it is entering the IDLE state. The 552 * workaround is to disable Dynamic Standby Mode, so the chip never 553 * deasserts CLKRUN#, and always remains in an active state. 554 * 555 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 556 */ 557 i = pci_get_device(dev); 558 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) || 559 sc->revision >= FXP_REV_82559_A0) { 560 fxp_read_eeprom(sc, &data, 10, 1); 561 if (data & 0x02) { /* STB enable */ 562 u_int16_t cksum; 563 int i; 564 565 device_printf(dev, 566 "Disabling dynamic standby mode in EEPROM\n"); 567 data &= ~0x02; 568 fxp_write_eeprom(sc, &data, 10, 1); 569 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 570 cksum = 0; 571 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { 572 fxp_read_eeprom(sc, &data, i, 1); 573 cksum += data; 574 } 575 i = (1 << sc->eeprom_size) - 1; 576 cksum = 0xBABA - cksum; 577 fxp_read_eeprom(sc, &data, i, 1); 578 fxp_write_eeprom(sc, &cksum, i, 1); 579 device_printf(dev, 580 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 581 i, data, cksum); 582 #if 1 583 /* 584 * If the user elects to continue, try the software 585 * workaround, as it is better than nothing. 586 */ 587 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 588 #endif 589 } 590 } 591 592 /* 593 * If we are not a 82557 chip, we can enable extended features. 594 */ 595 if (sc->revision != FXP_REV_82557) { 596 /* 597 * If MWI is enabled in the PCI configuration, and there 598 * is a valid cacheline size (8 or 16 dwords), then tell 599 * the board to turn on MWI. 600 */ 601 if (val & PCIM_CMD_MWRICEN && 602 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 603 sc->flags |= FXP_FLAG_MWI_ENABLE; 604 605 /* turn on the extended TxCB feature */ 606 sc->flags |= FXP_FLAG_EXT_TXCB; 607 608 /* enable reception of long frames for VLAN */ 609 sc->flags |= FXP_FLAG_LONG_PKT_EN; 610 } 611 612 /* 613 * Read MAC address. 614 */ 615 fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3); 616 device_printf(dev, "Ethernet address %6D%s\n", 617 sc->arpcom.ac_enaddr, ":", 618 sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : ""); 619 if (bootverbose) { 620 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 621 pci_get_vendor(dev), pci_get_device(dev), 622 pci_get_subvendor(dev), pci_get_subdevice(dev), 623 pci_get_revid(dev)); 624 fxp_read_eeprom(sc, &data, 10, 1); 625 device_printf(dev, "Dynamic Standby mode is %s\n", 626 data & 0x02 ? "enabled" : "disabled"); 627 } 628 629 /* 630 * If this is only a 10Mbps device, then there is no MII, and 631 * the PHY will use a serial interface instead. 632 * 633 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 634 * doesn't have a programming interface of any sort. The 635 * media is sensed automatically based on how the link partner 636 * is configured. This is, in essence, manual configuration. 637 */ 638 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 639 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 640 fxp_serial_ifmedia_sts); 641 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 642 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 643 } else { 644 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd, 645 fxp_ifmedia_sts)) { 646 device_printf(dev, "MII without any PHY!\n"); 647 error = ENXIO; 648 goto fail; 649 } 650 } 651 652 ifp = &sc->arpcom.ac_if; 653 if_initname(ifp, "fxp", device_get_unit(dev)); 654 ifp->if_output = ether_output; 655 ifp->if_baudrate = 100000000; 656 ifp->if_init = fxp_init; 657 ifp->if_softc = sc; 658 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 659 ifp->if_ioctl = fxp_ioctl; 660 ifp->if_start = fxp_start; 661 ifp->if_watchdog = fxp_watchdog; 662 663 /* 664 * Attach the interface. 665 */ 666 ether_ifattach(ifp, sc->arpcom.ac_enaddr); 667 668 /* 669 * Tell the upper layer(s) we support long frames. 670 */ 671 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 672 673 /* 674 * Let the system queue as many packets as we have available 675 * TX descriptors. 676 */ 677 ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1; 678 679 splx(s); 680 return (0); 681 682 failmem: 683 device_printf(dev, "Failed to malloc memory\n"); 684 error = ENOMEM; 685 fail: 686 splx(s); 687 fxp_release(sc); 688 return (error); 689 } 690 691 /* 692 * release all resources 693 */ 694 static void 695 fxp_release(struct fxp_softc *sc) 696 { 697 698 bus_generic_detach(sc->dev); 699 if (sc->miibus) 700 device_delete_child(sc->dev, sc->miibus); 701 702 if (sc->cbl_base) 703 free(sc->cbl_base, M_DEVBUF); 704 if (sc->fxp_stats) 705 free(sc->fxp_stats, M_DEVBUF); 706 if (sc->mcsp) 707 free(sc->mcsp, M_DEVBUF); 708 if (sc->rfa_headm) 709 m_freem(sc->rfa_headm); 710 711 if (sc->ih) 712 bus_teardown_intr(sc->dev, sc->irq, sc->ih); 713 if (sc->irq) 714 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq); 715 if (sc->mem) 716 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem); 717 718 sysctl_ctx_free(&sc->sysctl_ctx); 719 720 mtx_destroy(&sc->sc_mtx); 721 } 722 723 /* 724 * Detach interface. 725 */ 726 static int 727 fxp_detach(device_t dev) 728 { 729 struct fxp_softc *sc = device_get_softc(dev); 730 int s; 731 732 /* disable interrupts */ 733 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 734 735 s = splimp(); 736 737 /* 738 * Stop DMA and drop transmit queue. 739 */ 740 fxp_stop(sc); 741 742 /* 743 * Close down routes etc. 744 */ 745 ether_ifdetach(&sc->arpcom.ac_if); 746 747 /* 748 * Free all media structures. 749 */ 750 ifmedia_removeall(&sc->sc_media); 751 752 splx(s); 753 754 /* Release our allocated resources. */ 755 fxp_release(sc); 756 757 return (0); 758 } 759 760 /* 761 * Device shutdown routine. Called at system shutdown after sync. The 762 * main purpose of this routine is to shut off receiver DMA so that 763 * kernel memory doesn't get clobbered during warmboot. 764 */ 765 static int 766 fxp_shutdown(device_t dev) 767 { 768 /* 769 * Make sure that DMA is disabled prior to reboot. Not doing 770 * do could allow DMA to corrupt kernel memory during the 771 * reboot before the driver initializes. 772 */ 773 fxp_stop((struct fxp_softc *) device_get_softc(dev)); 774 return (0); 775 } 776 777 /* 778 * Device suspend routine. Stop the interface and save some PCI 779 * settings in case the BIOS doesn't restore them properly on 780 * resume. 781 */ 782 static int 783 fxp_suspend(device_t dev) 784 { 785 struct fxp_softc *sc = device_get_softc(dev); 786 int i, s; 787 788 s = splimp(); 789 790 fxp_stop(sc); 791 792 for (i = 0; i < 5; i++) 793 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); 794 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); 795 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); 796 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 797 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 798 799 sc->suspended = 1; 800 801 splx(s); 802 return (0); 803 } 804 805 /* 806 * Device resume routine. Restore some PCI settings in case the BIOS 807 * doesn't, re-enable busmastering, and restart the interface if 808 * appropriate. 809 */ 810 static int 811 fxp_resume(device_t dev) 812 { 813 struct fxp_softc *sc = device_get_softc(dev); 814 struct ifnet *ifp = &sc->sc_if; 815 u_int16_t pci_command; 816 int i, s; 817 818 s = splimp(); 819 820 fxp_powerstate_d0(dev); 821 822 /* better way to do this? */ 823 for (i = 0; i < 5; i++) 824 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); 825 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); 826 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); 827 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); 828 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); 829 830 /* reenable busmastering */ 831 pci_command = pci_read_config(dev, PCIR_COMMAND, 2); 832 pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 833 pci_write_config(dev, PCIR_COMMAND, pci_command, 2); 834 835 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 836 DELAY(10); 837 838 /* reinitialize interface if necessary */ 839 if (ifp->if_flags & IFF_UP) 840 fxp_init(sc); 841 842 sc->suspended = 0; 843 844 splx(s); 845 return (0); 846 } 847 848 static void 849 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 850 { 851 u_int16_t reg; 852 int x; 853 854 /* 855 * Shift in data. 856 */ 857 for (x = 1 << (length - 1); x; x >>= 1) { 858 if (data & x) 859 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 860 else 861 reg = FXP_EEPROM_EECS; 862 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 863 DELAY(1); 864 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 865 DELAY(1); 866 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 867 DELAY(1); 868 } 869 } 870 871 /* 872 * Read from the serial EEPROM. Basically, you manually shift in 873 * the read opcode (one bit at a time) and then shift in the address, 874 * and then you shift out the data (all of this one bit at a time). 875 * The word size is 16 bits, so you have to provide the address for 876 * every 16 bits of data. 877 */ 878 static u_int16_t 879 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 880 { 881 u_int16_t reg, data; 882 int x; 883 884 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 885 /* 886 * Shift in read opcode. 887 */ 888 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 889 /* 890 * Shift in address. 891 */ 892 data = 0; 893 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 894 if (offset & x) 895 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 896 else 897 reg = FXP_EEPROM_EECS; 898 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 899 DELAY(1); 900 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 901 DELAY(1); 902 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 903 DELAY(1); 904 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 905 data++; 906 if (autosize && reg == 0) { 907 sc->eeprom_size = data; 908 break; 909 } 910 } 911 /* 912 * Shift out data. 913 */ 914 data = 0; 915 reg = FXP_EEPROM_EECS; 916 for (x = 1 << 15; x; x >>= 1) { 917 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 918 DELAY(1); 919 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 920 data |= x; 921 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 922 DELAY(1); 923 } 924 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 925 DELAY(1); 926 927 return (data); 928 } 929 930 static void 931 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data) 932 { 933 int i; 934 935 /* 936 * Erase/write enable. 937 */ 938 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 939 fxp_eeprom_shiftin(sc, 0x4, 3); 940 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 941 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 942 DELAY(1); 943 /* 944 * Shift in write opcode, address, data. 945 */ 946 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 947 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 948 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 949 fxp_eeprom_shiftin(sc, data, 16); 950 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 951 DELAY(1); 952 /* 953 * Wait for EEPROM to finish up. 954 */ 955 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 956 DELAY(1); 957 for (i = 0; i < 1000; i++) { 958 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 959 break; 960 DELAY(50); 961 } 962 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 963 DELAY(1); 964 /* 965 * Erase/write disable. 966 */ 967 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 968 fxp_eeprom_shiftin(sc, 0x4, 3); 969 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 970 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 971 DELAY(1); 972 } 973 974 /* 975 * From NetBSD: 976 * 977 * Figure out EEPROM size. 978 * 979 * 559's can have either 64-word or 256-word EEPROMs, the 558 980 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 981 * talks about the existance of 16 to 256 word EEPROMs. 982 * 983 * The only known sizes are 64 and 256, where the 256 version is used 984 * by CardBus cards to store CIS information. 985 * 986 * The address is shifted in msb-to-lsb, and after the last 987 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 988 * after which follows the actual data. We try to detect this zero, by 989 * probing the data-out bit in the EEPROM control register just after 990 * having shifted in a bit. If the bit is zero, we assume we've 991 * shifted enough address bits. The data-out should be tri-state, 992 * before this, which should translate to a logical one. 993 */ 994 static void 995 fxp_autosize_eeprom(struct fxp_softc *sc) 996 { 997 998 /* guess maximum size of 256 words */ 999 sc->eeprom_size = 8; 1000 1001 /* autosize */ 1002 (void) fxp_eeprom_getword(sc, 0, 1); 1003 } 1004 1005 static void 1006 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1007 { 1008 int i; 1009 1010 for (i = 0; i < words; i++) 1011 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1012 } 1013 1014 static void 1015 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1016 { 1017 int i; 1018 1019 for (i = 0; i < words; i++) 1020 fxp_eeprom_putword(sc, offset + i, data[i]); 1021 } 1022 1023 /* 1024 * Start packet transmission on the interface. 1025 */ 1026 static void 1027 fxp_start(struct ifnet *ifp) 1028 { 1029 struct fxp_softc *sc = ifp->if_softc; 1030 struct fxp_cb_tx *txp; 1031 1032 /* 1033 * See if we need to suspend xmit until the multicast filter 1034 * has been reprogrammed (which can only be done at the head 1035 * of the command chain). 1036 */ 1037 if (sc->need_mcsetup) { 1038 return; 1039 } 1040 1041 txp = NULL; 1042 1043 /* 1044 * We're finished if there is nothing more to add to the list or if 1045 * we're all filled up with buffers to transmit. 1046 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1047 * a NOP command when needed. 1048 */ 1049 while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) { 1050 struct mbuf *m, *mb_head; 1051 int segment; 1052 1053 /* 1054 * Grab a packet to transmit. 1055 */ 1056 IF_DEQUEUE(&ifp->if_snd, mb_head); 1057 1058 /* 1059 * Get pointer to next available tx desc. 1060 */ 1061 txp = sc->cbl_last->next; 1062 1063 /* 1064 * Go through each of the mbufs in the chain and initialize 1065 * the transmit buffer descriptors with the physical address 1066 * and size of the mbuf. 1067 */ 1068 tbdinit: 1069 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) { 1070 if (m->m_len != 0) { 1071 if (segment == FXP_NTXSEG) 1072 break; 1073 txp->tbd[segment].tb_addr = 1074 vtophys(mtod(m, vm_offset_t)); 1075 txp->tbd[segment].tb_size = m->m_len; 1076 segment++; 1077 } 1078 } 1079 if (m != NULL) { 1080 struct mbuf *mn; 1081 1082 /* 1083 * We ran out of segments. We have to recopy this 1084 * mbuf chain first. Bail out if we can't get the 1085 * new buffers. 1086 */ 1087 MGETHDR(mn, M_DONTWAIT, MT_DATA); 1088 if (mn == NULL) { 1089 m_freem(mb_head); 1090 break; 1091 } 1092 if (mb_head->m_pkthdr.len > MHLEN) { 1093 MCLGET(mn, M_DONTWAIT); 1094 if ((mn->m_flags & M_EXT) == 0) { 1095 m_freem(mn); 1096 m_freem(mb_head); 1097 break; 1098 } 1099 } 1100 m_copydata(mb_head, 0, mb_head->m_pkthdr.len, 1101 mtod(mn, caddr_t)); 1102 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; 1103 m_freem(mb_head); 1104 mb_head = mn; 1105 goto tbdinit; 1106 } 1107 1108 txp->tbd_number = segment; 1109 txp->mb_head = mb_head; 1110 txp->cb_status = 0; 1111 if (sc->tx_queued != FXP_CXINT_THRESH - 1) { 1112 txp->cb_command = 1113 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | 1114 FXP_CB_COMMAND_S; 1115 } else { 1116 txp->cb_command = 1117 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | 1118 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 1119 /* 1120 * Set a 5 second timer just in case we don't hear 1121 * from the card again. 1122 */ 1123 ifp->if_timer = 5; 1124 } 1125 txp->tx_threshold = tx_threshold; 1126 1127 /* 1128 * Advance the end of list forward. 1129 */ 1130 1131 #ifdef __alpha__ 1132 /* 1133 * On platforms which can't access memory in 16-bit 1134 * granularities, we must prevent the card from DMA'ing 1135 * up the status while we update the command field. 1136 * This could cause us to overwrite the completion status. 1137 */ 1138 atomic_clear_short(&sc->cbl_last->cb_command, 1139 FXP_CB_COMMAND_S); 1140 #else 1141 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; 1142 #endif /*__alpha__*/ 1143 sc->cbl_last = txp; 1144 1145 /* 1146 * Advance the beginning of the list forward if there are 1147 * no other packets queued (when nothing is queued, cbl_first 1148 * sits on the last TxCB that was sent out). 1149 */ 1150 if (sc->tx_queued == 0) 1151 sc->cbl_first = txp; 1152 1153 sc->tx_queued++; 1154 1155 /* 1156 * Pass packet to bpf if there is a listener. 1157 */ 1158 if (ifp->if_bpf) 1159 bpf_mtap(ifp, mb_head); 1160 } 1161 1162 /* 1163 * We're finished. If we added to the list, issue a RESUME to get DMA 1164 * going again if suspended. 1165 */ 1166 if (txp != NULL) { 1167 fxp_scb_wait(sc); 1168 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1169 } 1170 } 1171 1172 #ifdef DEVICE_POLLING 1173 static poll_handler_t fxp_poll; 1174 1175 static void 1176 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1177 { 1178 struct fxp_softc *sc = ifp->if_softc; 1179 u_int8_t statack; 1180 1181 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ 1182 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1183 return; 1184 } 1185 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1186 FXP_SCB_STATACK_FR; 1187 if (cmd == POLL_AND_CHECK_STATUS) { 1188 u_int8_t tmp; 1189 1190 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1191 if (tmp == 0xff || tmp == 0) 1192 return; /* nothing to do */ 1193 tmp &= ~statack; 1194 /* ack what we can */ 1195 if (tmp != 0) 1196 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1197 statack |= tmp; 1198 } 1199 fxp_intr_body(sc, statack, count); 1200 } 1201 #endif /* DEVICE_POLLING */ 1202 1203 /* 1204 * Process interface interrupts. 1205 */ 1206 static void 1207 fxp_intr(void *xsc) 1208 { 1209 struct fxp_softc *sc = xsc; 1210 u_int8_t statack; 1211 1212 #ifdef DEVICE_POLLING 1213 struct ifnet *ifp = &sc->sc_if; 1214 1215 if (ifp->if_flags & IFF_POLLING) 1216 return; 1217 if (ether_poll_register(fxp_poll, ifp)) { 1218 /* disable interrupts */ 1219 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1220 fxp_poll(ifp, 0, 1); 1221 return; 1222 } 1223 #endif 1224 1225 if (sc->suspended) { 1226 return; 1227 } 1228 1229 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1230 /* 1231 * It should not be possible to have all bits set; the 1232 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1233 * all bits are set, this may indicate that the card has 1234 * been physically ejected, so ignore it. 1235 */ 1236 if (statack == 0xff) 1237 return; 1238 1239 /* 1240 * First ACK all the interrupts in this pass. 1241 */ 1242 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1243 fxp_intr_body(sc, statack, -1); 1244 } 1245 } 1246 1247 static void 1248 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count) 1249 { 1250 struct ifnet *ifp = &sc->sc_if; 1251 struct mbuf *m; 1252 struct fxp_rfa *rfa; 1253 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1254 1255 if (rnr) 1256 fxp_rnr++; 1257 #ifdef DEVICE_POLLING 1258 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1259 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1260 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1261 rnr = 1; 1262 } 1263 #endif 1264 1265 /* 1266 * Free any finished transmit mbuf chains. 1267 * 1268 * Handle the CNA event likt a CXTNO event. It used to 1269 * be that this event (control unit not ready) was not 1270 * encountered, but it is now with the SMPng modifications. 1271 * The exact sequence of events that occur when the interface 1272 * is brought up are different now, and if this event 1273 * goes unhandled, the configuration/rxfilter setup sequence 1274 * can stall for several seconds. The result is that no 1275 * packets go out onto the wire for about 5 to 10 seconds 1276 * after the interface is ifconfig'ed for the first time. 1277 */ 1278 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { 1279 struct fxp_cb_tx *txp; 1280 1281 for (txp = sc->cbl_first; sc->tx_queued && 1282 (txp->cb_status & FXP_CB_STATUS_C) != 0; 1283 txp = txp->next) { 1284 if (txp->mb_head != NULL) { 1285 m_freem(txp->mb_head); 1286 txp->mb_head = NULL; 1287 } 1288 sc->tx_queued--; 1289 } 1290 sc->cbl_first = txp; 1291 ifp->if_timer = 0; 1292 if (sc->tx_queued == 0) { 1293 if (sc->need_mcsetup) 1294 fxp_mc_setup(sc); 1295 } 1296 /* 1297 * Try to start more packets transmitting. 1298 */ 1299 if (ifp->if_snd.ifq_head != NULL) 1300 fxp_start(ifp); 1301 } 1302 1303 /* 1304 * Just return if nothing happened on the receive side. 1305 */ 1306 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1307 return; 1308 1309 /* 1310 * Process receiver interrupts. If a no-resource (RNR) 1311 * condition exists, get whatever packets we can and 1312 * re-start the receiver. 1313 * 1314 * When using polling, we do not process the list to completion, 1315 * so when we get an RNR interrupt we must defer the restart 1316 * until we hit the last buffer with the C bit set. 1317 * If we run out of cycles and rfa_headm has the C bit set, 1318 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1319 * that the info will be used in the subsequent polling cycle. 1320 */ 1321 for (;;) { 1322 m = sc->rfa_headm; 1323 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1324 RFA_ALIGNMENT_FUDGE); 1325 1326 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1327 if (count >= 0 && count-- == 0) { 1328 if (rnr) { 1329 /* Defer RNR processing until the next time. */ 1330 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1331 rnr = 0; 1332 } 1333 break; 1334 } 1335 #endif /* DEVICE_POLLING */ 1336 1337 if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0) 1338 break; 1339 1340 /* 1341 * Remove first packet from the chain. 1342 */ 1343 sc->rfa_headm = m->m_next; 1344 m->m_next = NULL; 1345 1346 /* 1347 * Add a new buffer to the receive chain. 1348 * If this fails, the old buffer is recycled 1349 * instead. 1350 */ 1351 if (fxp_add_rfabuf(sc, m) == 0) { 1352 int total_len; 1353 1354 /* 1355 * Fetch packet length (the top 2 bits of 1356 * actual_size are flags set by the controller 1357 * upon completion), and drop the packet in case 1358 * of bogus length or CRC errors. 1359 */ 1360 total_len = rfa->actual_size & 0x3fff; 1361 if (total_len < sizeof(struct ether_header) || 1362 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE - 1363 sizeof(struct fxp_rfa) || 1364 rfa->rfa_status & FXP_RFA_STATUS_CRC) { 1365 m_freem(m); 1366 continue; 1367 } 1368 m->m_pkthdr.len = m->m_len = total_len; 1369 ether_input(ifp, NULL, m); 1370 } 1371 } 1372 if (rnr) { 1373 fxp_scb_wait(sc); 1374 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1375 vtophys(sc->rfa_headm->m_ext.ext_buf) + 1376 RFA_ALIGNMENT_FUDGE); 1377 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1378 } 1379 } 1380 1381 /* 1382 * Update packet in/out/collision statistics. The i82557 doesn't 1383 * allow you to access these counters without doing a fairly 1384 * expensive DMA to get _all_ of the statistics it maintains, so 1385 * we do this operation here only once per second. The statistics 1386 * counters in the kernel are updated from the previous dump-stats 1387 * DMA and then a new dump-stats DMA is started. The on-chip 1388 * counters are zeroed when the DMA completes. If we can't start 1389 * the DMA immediately, we don't wait - we just prepare to read 1390 * them again next time. 1391 */ 1392 static void 1393 fxp_tick(void *xsc) 1394 { 1395 struct fxp_softc *sc = xsc; 1396 struct ifnet *ifp = &sc->sc_if; 1397 struct fxp_stats *sp = sc->fxp_stats; 1398 struct fxp_cb_tx *txp; 1399 int s; 1400 1401 ifp->if_opackets += sp->tx_good; 1402 ifp->if_collisions += sp->tx_total_collisions; 1403 if (sp->rx_good) { 1404 ifp->if_ipackets += sp->rx_good; 1405 sc->rx_idle_secs = 0; 1406 } else { 1407 /* 1408 * Receiver's been idle for another second. 1409 */ 1410 sc->rx_idle_secs++; 1411 } 1412 ifp->if_ierrors += 1413 sp->rx_crc_errors + 1414 sp->rx_alignment_errors + 1415 sp->rx_rnr_errors + 1416 sp->rx_overrun_errors; 1417 /* 1418 * If any transmit underruns occured, bump up the transmit 1419 * threshold by another 512 bytes (64 * 8). 1420 */ 1421 if (sp->tx_underruns) { 1422 ifp->if_oerrors += sp->tx_underruns; 1423 if (tx_threshold < 192) 1424 tx_threshold += 64; 1425 } 1426 s = splimp(); 1427 /* 1428 * Release any xmit buffers that have completed DMA. This isn't 1429 * strictly necessary to do here, but it's advantagous for mbufs 1430 * with external storage to be released in a timely manner rather 1431 * than being defered for a potentially long time. This limits 1432 * the delay to a maximum of one second. 1433 */ 1434 for (txp = sc->cbl_first; sc->tx_queued && 1435 (txp->cb_status & FXP_CB_STATUS_C) != 0; 1436 txp = txp->next) { 1437 if (txp->mb_head != NULL) { 1438 m_freem(txp->mb_head); 1439 txp->mb_head = NULL; 1440 } 1441 sc->tx_queued--; 1442 } 1443 sc->cbl_first = txp; 1444 /* 1445 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 1446 * then assume the receiver has locked up and attempt to clear 1447 * the condition by reprogramming the multicast filter. This is 1448 * a work-around for a bug in the 82557 where the receiver locks 1449 * up if it gets certain types of garbage in the syncronization 1450 * bits prior to the packet header. This bug is supposed to only 1451 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 1452 * mode as well (perhaps due to a 10/100 speed transition). 1453 */ 1454 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 1455 sc->rx_idle_secs = 0; 1456 fxp_mc_setup(sc); 1457 } 1458 /* 1459 * If there is no pending command, start another stats 1460 * dump. Otherwise punt for now. 1461 */ 1462 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 1463 /* 1464 * Start another stats dump. 1465 */ 1466 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 1467 } else { 1468 /* 1469 * A previous command is still waiting to be accepted. 1470 * Just zero our copy of the stats and wait for the 1471 * next timer event to update them. 1472 */ 1473 sp->tx_good = 0; 1474 sp->tx_underruns = 0; 1475 sp->tx_total_collisions = 0; 1476 1477 sp->rx_good = 0; 1478 sp->rx_crc_errors = 0; 1479 sp->rx_alignment_errors = 0; 1480 sp->rx_rnr_errors = 0; 1481 sp->rx_overrun_errors = 0; 1482 } 1483 if (sc->miibus != NULL) 1484 mii_tick(device_get_softc(sc->miibus)); 1485 splx(s); 1486 /* 1487 * Schedule another timeout one second from now. 1488 */ 1489 sc->stat_ch = timeout(fxp_tick, sc, hz); 1490 } 1491 1492 /* 1493 * Stop the interface. Cancels the statistics updater and resets 1494 * the interface. 1495 */ 1496 static void 1497 fxp_stop(struct fxp_softc *sc) 1498 { 1499 struct ifnet *ifp = &sc->sc_if; 1500 struct fxp_cb_tx *txp; 1501 int i; 1502 1503 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1504 ifp->if_timer = 0; 1505 1506 #ifdef DEVICE_POLLING 1507 ether_poll_deregister(ifp); 1508 #endif 1509 /* 1510 * Cancel stats updater. 1511 */ 1512 untimeout(fxp_tick, sc, sc->stat_ch); 1513 1514 /* 1515 * Issue software reset, which also unloads the microcode. 1516 */ 1517 sc->flags &= ~FXP_FLAG_UCODE; 1518 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 1519 DELAY(50); 1520 1521 /* 1522 * Release any xmit buffers. 1523 */ 1524 txp = sc->cbl_base; 1525 if (txp != NULL) { 1526 for (i = 0; i < FXP_NTXCB; i++) { 1527 if (txp[i].mb_head != NULL) { 1528 m_freem(txp[i].mb_head); 1529 txp[i].mb_head = NULL; 1530 } 1531 } 1532 } 1533 sc->tx_queued = 0; 1534 1535 /* 1536 * Free all the receive buffers then reallocate/reinitialize 1537 */ 1538 if (sc->rfa_headm != NULL) 1539 m_freem(sc->rfa_headm); 1540 sc->rfa_headm = NULL; 1541 sc->rfa_tailm = NULL; 1542 for (i = 0; i < FXP_NRFABUFS; i++) { 1543 if (fxp_add_rfabuf(sc, NULL) != 0) { 1544 /* 1545 * This "can't happen" - we're at splimp() 1546 * and we just freed all the buffers we need 1547 * above. 1548 */ 1549 panic("fxp_stop: no buffers!"); 1550 } 1551 } 1552 } 1553 1554 /* 1555 * Watchdog/transmission transmit timeout handler. Called when a 1556 * transmission is started on the interface, but no interrupt is 1557 * received before the timeout. This usually indicates that the 1558 * card has wedged for some reason. 1559 */ 1560 static void 1561 fxp_watchdog(struct ifnet *ifp) 1562 { 1563 struct fxp_softc *sc = ifp->if_softc; 1564 1565 device_printf(sc->dev, "device timeout\n"); 1566 ifp->if_oerrors++; 1567 1568 fxp_init(sc); 1569 } 1570 1571 static void 1572 fxp_init(void *xsc) 1573 { 1574 struct fxp_softc *sc = xsc; 1575 struct ifnet *ifp = &sc->sc_if; 1576 struct fxp_cb_config *cbp; 1577 struct fxp_cb_ias *cb_ias; 1578 struct fxp_cb_tx *txp; 1579 struct fxp_cb_mcs *mcsp; 1580 int i, prm, s; 1581 1582 s = splimp(); 1583 /* 1584 * Cancel any pending I/O 1585 */ 1586 fxp_stop(sc); 1587 1588 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 1589 1590 /* 1591 * Initialize base of CBL and RFA memory. Loading with zero 1592 * sets it up for regular linear addressing. 1593 */ 1594 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 1595 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 1596 1597 fxp_scb_wait(sc); 1598 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 1599 1600 /* 1601 * Initialize base of dump-stats buffer. 1602 */ 1603 fxp_scb_wait(sc); 1604 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats)); 1605 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 1606 1607 /* 1608 * Attempt to load microcode if requested. 1609 */ 1610 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0) 1611 fxp_load_ucode(sc); 1612 1613 /* 1614 * Initialize the multicast address list. 1615 */ 1616 if (fxp_mc_addrs(sc)) { 1617 mcsp = sc->mcsp; 1618 mcsp->cb_status = 0; 1619 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL; 1620 mcsp->link_addr = -1; 1621 /* 1622 * Start the multicast setup command. 1623 */ 1624 fxp_scb_wait(sc); 1625 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); 1626 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1627 /* ...and wait for it to complete. */ 1628 fxp_dma_wait(&mcsp->cb_status, sc); 1629 } 1630 1631 /* 1632 * We temporarily use memory that contains the TxCB list to 1633 * construct the config CB. The TxCB list memory is rebuilt 1634 * later. 1635 */ 1636 cbp = (struct fxp_cb_config *) sc->cbl_base; 1637 1638 /* 1639 * This bcopy is kind of disgusting, but there are a bunch of must be 1640 * zero and must be one bits in this structure and this is the easiest 1641 * way to initialize them all to proper values. 1642 */ 1643 bcopy(fxp_cb_config_template, 1644 (void *)(uintptr_t)(volatile void *)&cbp->cb_status, 1645 sizeof(fxp_cb_config_template)); 1646 1647 cbp->cb_status = 0; 1648 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; 1649 cbp->link_addr = -1; /* (no) next command */ 1650 cbp->byte_count = 22; /* (22) bytes to config */ 1651 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 1652 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 1653 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 1654 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 1655 cbp->type_enable = 0; /* actually reserved */ 1656 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 1657 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 1658 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 1659 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 1660 cbp->dma_mbce = 0; /* (disable) dma max counters */ 1661 cbp->late_scb = 0; /* (don't) defer SCB update */ 1662 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 1663 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 1664 cbp->ci_int = 1; /* interrupt on CU idle */ 1665 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 1666 cbp->ext_stats_dis = 1; /* disable extended counters */ 1667 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 1668 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm; 1669 cbp->disc_short_rx = !prm; /* discard short packets */ 1670 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 1671 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 1672 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */ 1673 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 1674 cbp->csma_dis = 0; /* (don't) disable link */ 1675 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */ 1676 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 1677 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 1678 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 1679 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 1680 cbp->nsai = 1; /* (don't) disable source addr insert */ 1681 cbp->preamble_length = 2; /* (7 byte) preamble */ 1682 cbp->loopback = 0; /* (don't) loopback */ 1683 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 1684 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 1685 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 1686 cbp->promiscuous = prm; /* promiscuous mode */ 1687 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 1688 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 1689 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 1690 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 1691 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 1692 1693 cbp->stripping = !prm; /* truncate rx packet to byte count */ 1694 cbp->padding = 1; /* (do) pad short tx packets */ 1695 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 1696 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 1697 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 1698 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */ 1699 /* must set wake_en in PMCSR also */ 1700 cbp->force_fdx = 0; /* (don't) force full duplex */ 1701 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 1702 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 1703 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0; 1704 1705 if (sc->revision == FXP_REV_82557) { 1706 /* 1707 * The 82557 has no hardware flow control, the values 1708 * below are the defaults for the chip. 1709 */ 1710 cbp->fc_delay_lsb = 0; 1711 cbp->fc_delay_msb = 0x40; 1712 cbp->pri_fc_thresh = 3; 1713 cbp->tx_fc_dis = 0; 1714 cbp->rx_fc_restop = 0; 1715 cbp->rx_fc_restart = 0; 1716 cbp->fc_filter = 0; 1717 cbp->pri_fc_loc = 1; 1718 } else { 1719 cbp->fc_delay_lsb = 0x1f; 1720 cbp->fc_delay_msb = 0x01; 1721 cbp->pri_fc_thresh = 3; 1722 cbp->tx_fc_dis = 0; /* enable transmit FC */ 1723 cbp->rx_fc_restop = 1; /* enable FC restop frames */ 1724 cbp->rx_fc_restart = 1; /* enable FC restart frames */ 1725 cbp->fc_filter = !prm; /* drop FC frames to host */ 1726 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 1727 } 1728 1729 /* 1730 * Start the config command/DMA. 1731 */ 1732 fxp_scb_wait(sc); 1733 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); 1734 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1735 /* ...and wait for it to complete. */ 1736 fxp_dma_wait(&cbp->cb_status, sc); 1737 1738 /* 1739 * Now initialize the station address. Temporarily use the TxCB 1740 * memory area like we did above for the config CB. 1741 */ 1742 cb_ias = (struct fxp_cb_ias *) sc->cbl_base; 1743 cb_ias->cb_status = 0; 1744 cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL; 1745 cb_ias->link_addr = -1; 1746 bcopy(sc->arpcom.ac_enaddr, 1747 (void *)(uintptr_t)(volatile void *)cb_ias->macaddr, 1748 sizeof(sc->arpcom.ac_enaddr)); 1749 1750 /* 1751 * Start the IAS (Individual Address Setup) command/DMA. 1752 */ 1753 fxp_scb_wait(sc); 1754 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1755 /* ...and wait for it to complete. */ 1756 fxp_dma_wait(&cb_ias->cb_status, sc); 1757 1758 /* 1759 * Initialize transmit control block (TxCB) list. 1760 */ 1761 1762 txp = sc->cbl_base; 1763 bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB); 1764 for (i = 0; i < FXP_NTXCB; i++) { 1765 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK; 1766 txp[i].cb_command = FXP_CB_COMMAND_NOP; 1767 txp[i].link_addr = 1768 vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status); 1769 if (sc->flags & FXP_FLAG_EXT_TXCB) 1770 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]); 1771 else 1772 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]); 1773 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK]; 1774 } 1775 /* 1776 * Set the suspend flag on the first TxCB and start the control 1777 * unit. It will execute the NOP and then suspend. 1778 */ 1779 txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S; 1780 sc->cbl_first = sc->cbl_last = txp; 1781 sc->tx_queued = 1; 1782 1783 fxp_scb_wait(sc); 1784 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1785 1786 /* 1787 * Initialize receiver buffer area - RFA. 1788 */ 1789 fxp_scb_wait(sc); 1790 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1791 vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); 1792 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1793 1794 /* 1795 * Set current media. 1796 */ 1797 if (sc->miibus != NULL) 1798 mii_mediachg(device_get_softc(sc->miibus)); 1799 1800 ifp->if_flags |= IFF_RUNNING; 1801 ifp->if_flags &= ~IFF_OACTIVE; 1802 1803 /* 1804 * Enable interrupts. 1805 */ 1806 #ifdef DEVICE_POLLING 1807 /* 1808 * ... but only do that if we are not polling. And because (presumably) 1809 * the default is interrupts on, we need to disable them explicitly! 1810 */ 1811 if ( ifp->if_flags & IFF_POLLING ) 1812 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1813 else 1814 #endif /* DEVICE_POLLING */ 1815 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1816 splx(s); 1817 1818 /* 1819 * Start stats updater. 1820 */ 1821 sc->stat_ch = timeout(fxp_tick, sc, hz); 1822 } 1823 1824 static int 1825 fxp_serial_ifmedia_upd(struct ifnet *ifp) 1826 { 1827 1828 return (0); 1829 } 1830 1831 static void 1832 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1833 { 1834 1835 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 1836 } 1837 1838 /* 1839 * Change media according to request. 1840 */ 1841 static int 1842 fxp_ifmedia_upd(struct ifnet *ifp) 1843 { 1844 struct fxp_softc *sc = ifp->if_softc; 1845 struct mii_data *mii; 1846 1847 mii = device_get_softc(sc->miibus); 1848 mii_mediachg(mii); 1849 return (0); 1850 } 1851 1852 /* 1853 * Notify the world which media we're using. 1854 */ 1855 static void 1856 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1857 { 1858 struct fxp_softc *sc = ifp->if_softc; 1859 struct mii_data *mii; 1860 1861 mii = device_get_softc(sc->miibus); 1862 mii_pollstat(mii); 1863 ifmr->ifm_active = mii->mii_media_active; 1864 ifmr->ifm_status = mii->mii_media_status; 1865 1866 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG) 1867 sc->cu_resume_bug = 1; 1868 else 1869 sc->cu_resume_bug = 0; 1870 } 1871 1872 /* 1873 * Add a buffer to the end of the RFA buffer list. 1874 * Return 0 if successful, 1 for failure. A failure results in 1875 * adding the 'oldm' (if non-NULL) on to the end of the list - 1876 * tossing out its old contents and recycling it. 1877 * The RFA struct is stuck at the beginning of mbuf cluster and the 1878 * data pointer is fixed up to point just past it. 1879 */ 1880 static int 1881 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm) 1882 { 1883 u_int32_t v; 1884 struct mbuf *m; 1885 struct fxp_rfa *rfa, *p_rfa; 1886 1887 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1888 if (m == NULL) { /* try to recycle the old mbuf instead */ 1889 if (oldm == NULL) 1890 return 1; 1891 m = oldm; 1892 m->m_data = m->m_ext.ext_buf; 1893 } 1894 1895 /* 1896 * Move the data pointer up so that the incoming data packet 1897 * will be 32-bit aligned. 1898 */ 1899 m->m_data += RFA_ALIGNMENT_FUDGE; 1900 1901 /* 1902 * Get a pointer to the base of the mbuf cluster and move 1903 * data start past it. 1904 */ 1905 rfa = mtod(m, struct fxp_rfa *); 1906 m->m_data += sizeof(struct fxp_rfa); 1907 rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE); 1908 1909 /* 1910 * Initialize the rest of the RFA. Note that since the RFA 1911 * is misaligned, we cannot store values directly. Instead, 1912 * we use an optimized, inline copy. 1913 */ 1914 1915 rfa->rfa_status = 0; 1916 rfa->rfa_control = FXP_RFA_CONTROL_EL; 1917 rfa->actual_size = 0; 1918 1919 v = -1; 1920 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr); 1921 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr); 1922 1923 /* 1924 * If there are other buffers already on the list, attach this 1925 * one to the end by fixing up the tail to point to this one. 1926 */ 1927 if (sc->rfa_headm != NULL) { 1928 p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf + 1929 RFA_ALIGNMENT_FUDGE); 1930 sc->rfa_tailm->m_next = m; 1931 v = vtophys(rfa); 1932 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr); 1933 p_rfa->rfa_control = 0; 1934 } else { 1935 sc->rfa_headm = m; 1936 } 1937 sc->rfa_tailm = m; 1938 1939 return (m == oldm); 1940 } 1941 1942 static volatile int 1943 fxp_miibus_readreg(device_t dev, int phy, int reg) 1944 { 1945 struct fxp_softc *sc = device_get_softc(dev); 1946 int count = 10000; 1947 int value; 1948 1949 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1950 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 1951 1952 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 1953 && count--) 1954 DELAY(10); 1955 1956 if (count <= 0) 1957 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 1958 1959 return (value & 0xffff); 1960 } 1961 1962 static void 1963 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 1964 { 1965 struct fxp_softc *sc = device_get_softc(dev); 1966 int count = 10000; 1967 1968 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1969 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 1970 (value & 0xffff)); 1971 1972 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 1973 count--) 1974 DELAY(10); 1975 1976 if (count <= 0) 1977 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 1978 } 1979 1980 static int 1981 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) 1982 { 1983 struct fxp_softc *sc = ifp->if_softc; 1984 struct ifreq *ifr = (struct ifreq *)data; 1985 struct mii_data *mii; 1986 int s, error = 0; 1987 1988 s = splimp(); 1989 1990 switch (command) { 1991 case SIOCSIFADDR: 1992 case SIOCGIFADDR: 1993 case SIOCSIFMTU: 1994 error = ether_ioctl(ifp, command, data); 1995 break; 1996 1997 case SIOCSIFFLAGS: 1998 if (ifp->if_flags & IFF_ALLMULTI) 1999 sc->flags |= FXP_FLAG_ALL_MCAST; 2000 else 2001 sc->flags &= ~FXP_FLAG_ALL_MCAST; 2002 2003 /* 2004 * If interface is marked up and not running, then start it. 2005 * If it is marked down and running, stop it. 2006 * XXX If it's up then re-initialize it. This is so flags 2007 * such as IFF_PROMISC are handled. 2008 */ 2009 if (ifp->if_flags & IFF_UP) { 2010 fxp_init(sc); 2011 } else { 2012 if (ifp->if_flags & IFF_RUNNING) 2013 fxp_stop(sc); 2014 } 2015 break; 2016 2017 case SIOCADDMULTI: 2018 case SIOCDELMULTI: 2019 if (ifp->if_flags & IFF_ALLMULTI) 2020 sc->flags |= FXP_FLAG_ALL_MCAST; 2021 else 2022 sc->flags &= ~FXP_FLAG_ALL_MCAST; 2023 /* 2024 * Multicast list has changed; set the hardware filter 2025 * accordingly. 2026 */ 2027 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) 2028 fxp_mc_setup(sc); 2029 /* 2030 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it 2031 * again rather than else {}. 2032 */ 2033 if (sc->flags & FXP_FLAG_ALL_MCAST) 2034 fxp_init(sc); 2035 error = 0; 2036 break; 2037 2038 case SIOCSIFMEDIA: 2039 case SIOCGIFMEDIA: 2040 if (sc->miibus != NULL) { 2041 mii = device_get_softc(sc->miibus); 2042 error = ifmedia_ioctl(ifp, ifr, 2043 &mii->mii_media, command); 2044 } else { 2045 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2046 } 2047 break; 2048 2049 default: 2050 error = EINVAL; 2051 } 2052 splx(s); 2053 return (error); 2054 } 2055 2056 /* 2057 * Fill in the multicast address list and return number of entries. 2058 */ 2059 static int 2060 fxp_mc_addrs(struct fxp_softc *sc) 2061 { 2062 struct fxp_cb_mcs *mcsp = sc->mcsp; 2063 struct ifnet *ifp = &sc->sc_if; 2064 struct ifmultiaddr *ifma; 2065 int nmcasts; 2066 2067 nmcasts = 0; 2068 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) { 2069 #if defined(__DragonFly__) || __FreeBSD_version < 500000 2070 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2071 #else 2072 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2073 #endif 2074 if (ifma->ifma_addr->sa_family != AF_LINK) 2075 continue; 2076 if (nmcasts >= MAXMCADDR) { 2077 sc->flags |= FXP_FLAG_ALL_MCAST; 2078 nmcasts = 0; 2079 break; 2080 } 2081 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2082 (void *)(uintptr_t)(volatile void *) 2083 &sc->mcsp->mc_addr[nmcasts][0], 6); 2084 nmcasts++; 2085 } 2086 } 2087 mcsp->mc_cnt = nmcasts * 6; 2088 return (nmcasts); 2089 } 2090 2091 /* 2092 * Program the multicast filter. 2093 * 2094 * We have an artificial restriction that the multicast setup command 2095 * must be the first command in the chain, so we take steps to ensure 2096 * this. By requiring this, it allows us to keep up the performance of 2097 * the pre-initialized command ring (esp. link pointers) by not actually 2098 * inserting the mcsetup command in the ring - i.e. its link pointer 2099 * points to the TxCB ring, but the mcsetup descriptor itself is not part 2100 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 2101 * lead into the regular TxCB ring when it completes. 2102 * 2103 * This function must be called at splimp. 2104 */ 2105 static void 2106 fxp_mc_setup(struct fxp_softc *sc) 2107 { 2108 struct fxp_cb_mcs *mcsp = sc->mcsp; 2109 struct ifnet *ifp = &sc->sc_if; 2110 int count; 2111 2112 /* 2113 * If there are queued commands, we must wait until they are all 2114 * completed. If we are already waiting, then add a NOP command 2115 * with interrupt option so that we're notified when all commands 2116 * have been completed - fxp_start() ensures that no additional 2117 * TX commands will be added when need_mcsetup is true. 2118 */ 2119 if (sc->tx_queued) { 2120 struct fxp_cb_tx *txp; 2121 2122 /* 2123 * need_mcsetup will be true if we are already waiting for the 2124 * NOP command to be completed (see below). In this case, bail. 2125 */ 2126 if (sc->need_mcsetup) 2127 return; 2128 sc->need_mcsetup = 1; 2129 2130 /* 2131 * Add a NOP command with interrupt so that we are notified 2132 * when all TX commands have been processed. 2133 */ 2134 txp = sc->cbl_last->next; 2135 txp->mb_head = NULL; 2136 txp->cb_status = 0; 2137 txp->cb_command = FXP_CB_COMMAND_NOP | 2138 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 2139 /* 2140 * Advance the end of list forward. 2141 */ 2142 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; 2143 sc->cbl_last = txp; 2144 sc->tx_queued++; 2145 /* 2146 * Issue a resume in case the CU has just suspended. 2147 */ 2148 fxp_scb_wait(sc); 2149 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 2150 /* 2151 * Set a 5 second timer just in case we don't hear from the 2152 * card again. 2153 */ 2154 ifp->if_timer = 5; 2155 2156 return; 2157 } 2158 sc->need_mcsetup = 0; 2159 2160 /* 2161 * Initialize multicast setup descriptor. 2162 */ 2163 mcsp->next = sc->cbl_base; 2164 mcsp->mb_head = NULL; 2165 mcsp->cb_status = 0; 2166 mcsp->cb_command = FXP_CB_COMMAND_MCAS | 2167 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 2168 mcsp->link_addr = vtophys(&sc->cbl_base->cb_status); 2169 (void) fxp_mc_addrs(sc); 2170 sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp; 2171 sc->tx_queued = 1; 2172 2173 /* 2174 * Wait until command unit is not active. This should never 2175 * be the case when nothing is queued, but make sure anyway. 2176 */ 2177 count = 100; 2178 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == 2179 FXP_SCB_CUS_ACTIVE && --count) 2180 DELAY(10); 2181 if (count == 0) { 2182 device_printf(sc->dev, "command queue timeout\n"); 2183 return; 2184 } 2185 2186 /* 2187 * Start the multicast setup command. 2188 */ 2189 fxp_scb_wait(sc); 2190 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); 2191 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2192 2193 ifp->if_timer = 2; 2194 return; 2195 } 2196 2197 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 2198 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 2199 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 2200 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 2201 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 2202 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 2203 2204 #define UCODE(x) x, sizeof(x) 2205 2206 struct ucode { 2207 u_int32_t revision; 2208 u_int32_t *ucode; 2209 int length; 2210 u_short int_delay_offset; 2211 u_short bundle_max_offset; 2212 } ucode_table[] = { 2213 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 2214 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 2215 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 2216 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 2217 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 2218 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 2219 { FXP_REV_82550, UCODE(fxp_ucode_d102), 2220 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 2221 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 2222 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 2223 { 0, NULL, 0, 0, 0 } 2224 }; 2225 2226 static void 2227 fxp_load_ucode(struct fxp_softc *sc) 2228 { 2229 struct ucode *uc; 2230 struct fxp_cb_ucode *cbp; 2231 2232 for (uc = ucode_table; uc->ucode != NULL; uc++) 2233 if (sc->revision == uc->revision) 2234 break; 2235 if (uc->ucode == NULL) 2236 return; 2237 cbp = (struct fxp_cb_ucode *)sc->cbl_base; 2238 cbp->cb_status = 0; 2239 cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL; 2240 cbp->link_addr = -1; /* (no) next command */ 2241 memcpy(cbp->ucode, uc->ucode, uc->length); 2242 if (uc->int_delay_offset) 2243 *(u_short *)&cbp->ucode[uc->int_delay_offset] = 2244 sc->tunable_int_delay + sc->tunable_int_delay / 2; 2245 if (uc->bundle_max_offset) 2246 *(u_short *)&cbp->ucode[uc->bundle_max_offset] = 2247 sc->tunable_bundle_max; 2248 /* 2249 * Download the ucode to the chip. 2250 */ 2251 fxp_scb_wait(sc); 2252 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); 2253 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2254 /* ...and wait for it to complete. */ 2255 fxp_dma_wait(&cbp->cb_status, sc); 2256 device_printf(sc->dev, 2257 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 2258 sc->tunable_int_delay, 2259 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 2260 sc->flags |= FXP_FLAG_UCODE; 2261 } 2262 2263 static int 2264 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2265 { 2266 int error, value; 2267 2268 value = *(int *)arg1; 2269 error = sysctl_handle_int(oidp, &value, 0, req); 2270 if (error || !req->newptr) 2271 return (error); 2272 if (value < low || value > high) 2273 return (EINVAL); 2274 *(int *)arg1 = value; 2275 return (0); 2276 } 2277 2278 /* 2279 * Interrupt delay is expressed in microseconds, a multiplier is used 2280 * to convert this to the appropriate clock ticks before using. 2281 */ 2282 static int 2283 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 2284 { 2285 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 2286 } 2287 2288 static int 2289 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 2290 { 2291 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 2292 } 2293