1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $ 29 * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.24 2005/05/05 22:57:44 swildner Exp $ 30 */ 31 32 /* 33 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 34 */ 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/mbuf.h> 39 #include <sys/malloc.h> 40 /* #include <sys/mutex.h> */ 41 #include <sys/kernel.h> 42 #include <sys/socket.h> 43 #include <sys/sysctl.h> 44 45 #include <net/if.h> 46 #include <net/ifq_var.h> 47 #include <net/if_dl.h> 48 #include <net/if_media.h> 49 50 #ifdef NS 51 #include <netns/ns.h> 52 #include <netns/ns_if.h> 53 #endif 54 55 #include <net/bpf.h> 56 #include <sys/sockio.h> 57 #include <sys/bus.h> 58 #include <machine/bus.h> 59 #include <sys/rman.h> 60 #include <machine/resource.h> 61 62 #include <net/ethernet.h> 63 #include <net/if_arp.h> 64 65 #include <vm/vm.h> /* for vtophys */ 66 #include <vm/pmap.h> /* for vtophys */ 67 #include <machine/clock.h> /* for DELAY */ 68 69 #include <net/if_types.h> 70 #include <net/vlan/if_vlan_var.h> 71 72 #include <bus/pci/pcivar.h> 73 #include <bus/pci/pcireg.h> /* for PCIM_CMD_xxx */ 74 75 #include "../mii_layer/mii.h" 76 #include "../mii_layer/miivar.h" 77 78 #include "if_fxpreg.h" 79 #include "if_fxpvar.h" 80 #include "rcvbundl.h" 81 82 #include "miibus_if.h" 83 84 /* 85 * NOTE! On the Alpha, we have an alignment constraint. The 86 * card DMAs the packet immediately following the RFA. However, 87 * the first thing in the packet is a 14-byte Ethernet header. 88 * This means that the packet is misaligned. To compensate, 89 * we actually offset the RFA 2 bytes into the cluster. This 90 * alignes the packet after the Ethernet header at a 32-bit 91 * boundary. HOWEVER! This means that the RFA is misaligned! 92 */ 93 #define RFA_ALIGNMENT_FUDGE 2 94 95 /* 96 * Set initial transmit threshold at 64 (512 bytes). This is 97 * increased by 64 (512 bytes) at a time, to maximum of 192 98 * (1536 bytes), if an underrun occurs. 99 */ 100 static int tx_threshold = 64; 101 102 /* 103 * The configuration byte map has several undefined fields which 104 * must be one or must be zero. Set up a template for these bits 105 * only, (assuming a 82557 chip) leaving the actual configuration 106 * to fxp_init. 107 * 108 * See struct fxp_cb_config for the bit definitions. 109 */ 110 static u_char fxp_cb_config_template[] = { 111 0x0, 0x0, /* cb_status */ 112 0x0, 0x0, /* cb_command */ 113 0x0, 0x0, 0x0, 0x0, /* link_addr */ 114 0x0, /* 0 */ 115 0x0, /* 1 */ 116 0x0, /* 2 */ 117 0x0, /* 3 */ 118 0x0, /* 4 */ 119 0x0, /* 5 */ 120 0x32, /* 6 */ 121 0x0, /* 7 */ 122 0x0, /* 8 */ 123 0x0, /* 9 */ 124 0x6, /* 10 */ 125 0x0, /* 11 */ 126 0x0, /* 12 */ 127 0x0, /* 13 */ 128 0xf2, /* 14 */ 129 0x48, /* 15 */ 130 0x0, /* 16 */ 131 0x40, /* 17 */ 132 0xf0, /* 18 */ 133 0x0, /* 19 */ 134 0x3f, /* 20 */ 135 0x5 /* 21 */ 136 }; 137 138 struct fxp_ident { 139 u_int16_t devid; 140 int16_t revid; /* -1 matches anything */ 141 char *name; 142 }; 143 144 /* 145 * Claim various Intel PCI device identifiers for this driver. The 146 * sub-vendor and sub-device field are extensively used to identify 147 * particular variants, but we don't currently differentiate between 148 * them. 149 */ 150 static struct fxp_ident fxp_ident_table[] = { 151 { 0x1029, -1, "Intel 82559 PCI/CardBus Pro/100" }, 152 { 0x1030, -1, "Intel 82559 Pro/100 Ethernet" }, 153 { 0x1031, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 154 { 0x1032, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 155 { 0x1033, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 156 { 0x1034, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 157 { 0x1035, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 158 { 0x1036, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 159 { 0x1037, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 160 { 0x1038, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 161 { 0x1039, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 162 { 0x103A, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 163 { 0x103B, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 164 { 0x103C, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 165 { 0x103D, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 166 { 0x103E, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 167 { 0x1050, -1, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, 168 { 0x1051, -1, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" }, 169 { 0x1059, -1, "Intel 82551QM Pro/100 M Mobile Connection" }, 170 { 0x1064, -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" }, 171 { 0x1209, -1, "Intel 82559ER Embedded 10/100 Ethernet" }, 172 { 0x1229, 0x01, "Intel 82557 Pro/100 Ethernet" }, 173 { 0x1229, 0x02, "Intel 82557 Pro/100 Ethernet" }, 174 { 0x1229, 0x03, "Intel 82557 Pro/100 Ethernet" }, 175 { 0x1229, 0x04, "Intel 82558 Pro/100 Ethernet" }, 176 { 0x1229, 0x05, "Intel 82558 Pro/100 Ethernet" }, 177 { 0x1229, 0x06, "Intel 82559 Pro/100 Ethernet" }, 178 { 0x1229, 0x07, "Intel 82559 Pro/100 Ethernet" }, 179 { 0x1229, 0x08, "Intel 82559 Pro/100 Ethernet" }, 180 { 0x1229, 0x09, "Intel 82559ER Pro/100 Ethernet" }, 181 { 0x1229, 0x0c, "Intel 82550 Pro/100 Ethernet" }, 182 { 0x1229, 0x0d, "Intel 82550 Pro/100 Ethernet" }, 183 { 0x1229, 0x0e, "Intel 82550 Pro/100 Ethernet" }, 184 { 0x1229, 0x0f, "Intel 82551 Pro/100 Ethernet" }, 185 { 0x1229, 0x10, "Intel 82551 Pro/100 Ethernet" }, 186 { 0x1229, -1, "Intel 82557/8/9 Pro/100 Ethernet" }, 187 { 0x2449, -1, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 188 { 0, -1, NULL }, 189 }; 190 191 static int fxp_probe(device_t dev); 192 static int fxp_attach(device_t dev); 193 static int fxp_detach(device_t dev); 194 static int fxp_shutdown(device_t dev); 195 static int fxp_suspend(device_t dev); 196 static int fxp_resume(device_t dev); 197 198 static void fxp_intr(void *xsc); 199 static void fxp_intr_body(struct fxp_softc *sc, 200 u_int8_t statack, int count); 201 202 static void fxp_init(void *xsc); 203 static void fxp_tick(void *xsc); 204 static void fxp_powerstate_d0(device_t dev); 205 static void fxp_start(struct ifnet *ifp); 206 static void fxp_stop(struct fxp_softc *sc); 207 static void fxp_release(struct fxp_softc *sc); 208 static int fxp_ioctl(struct ifnet *ifp, u_long command, 209 caddr_t data, struct ucred *); 210 static void fxp_watchdog(struct ifnet *ifp); 211 static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm); 212 static int fxp_mc_addrs(struct fxp_softc *sc); 213 static void fxp_mc_setup(struct fxp_softc *sc); 214 static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 215 int autosize); 216 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 217 u_int16_t data); 218 static void fxp_autosize_eeprom(struct fxp_softc *sc); 219 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 220 int offset, int words); 221 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 222 int offset, int words); 223 static int fxp_ifmedia_upd(struct ifnet *ifp); 224 static void fxp_ifmedia_sts(struct ifnet *ifp, 225 struct ifmediareq *ifmr); 226 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 227 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 228 struct ifmediareq *ifmr); 229 static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg); 230 static void fxp_miibus_writereg(device_t dev, int phy, int reg, 231 int value); 232 static void fxp_load_ucode(struct fxp_softc *sc); 233 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 234 int low, int high); 235 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 236 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 237 static __inline void fxp_lwcopy(volatile u_int32_t *src, 238 volatile u_int32_t *dst); 239 static __inline void fxp_scb_wait(struct fxp_softc *sc); 240 static __inline void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 241 static __inline void fxp_dma_wait(volatile u_int16_t *status, 242 struct fxp_softc *sc); 243 244 static device_method_t fxp_methods[] = { 245 /* Device interface */ 246 DEVMETHOD(device_probe, fxp_probe), 247 DEVMETHOD(device_attach, fxp_attach), 248 DEVMETHOD(device_detach, fxp_detach), 249 DEVMETHOD(device_shutdown, fxp_shutdown), 250 DEVMETHOD(device_suspend, fxp_suspend), 251 DEVMETHOD(device_resume, fxp_resume), 252 253 /* MII interface */ 254 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 255 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 256 257 { 0, 0 } 258 }; 259 260 static driver_t fxp_driver = { 261 "fxp", 262 fxp_methods, 263 sizeof(struct fxp_softc), 264 }; 265 266 static devclass_t fxp_devclass; 267 268 DECLARE_DUMMY_MODULE(if_fxp); 269 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1); 270 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0); 271 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0); 272 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0); 273 274 static int fxp_rnr; 275 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events"); 276 277 /* 278 * Inline function to copy a 16-bit aligned 32-bit quantity. 279 */ 280 static __inline void 281 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst) 282 { 283 #ifdef __i386__ 284 *dst = *src; 285 #else 286 volatile u_int16_t *a = (volatile u_int16_t *)src; 287 volatile u_int16_t *b = (volatile u_int16_t *)dst; 288 289 b[0] = a[0]; 290 b[1] = a[1]; 291 #endif 292 } 293 294 /* 295 * Wait for the previous command to be accepted (but not necessarily 296 * completed). 297 */ 298 static __inline void 299 fxp_scb_wait(struct fxp_softc *sc) 300 { 301 int i = 10000; 302 303 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 304 DELAY(2); 305 if (i == 0) 306 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 307 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 308 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 309 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), 310 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL)); 311 } 312 313 static __inline void 314 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 315 { 316 317 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 318 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 319 fxp_scb_wait(sc); 320 } 321 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 322 } 323 324 static __inline void 325 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc) 326 { 327 int i = 10000; 328 329 while (!(*status & FXP_CB_STATUS_C) && --i) 330 DELAY(2); 331 if (i == 0) 332 device_printf(sc->dev, "DMA timeout\n"); 333 } 334 335 /* 336 * Return identification string if this is device is ours. 337 */ 338 static int 339 fxp_probe(device_t dev) 340 { 341 u_int16_t devid; 342 u_int8_t revid; 343 struct fxp_ident *ident; 344 345 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 346 devid = pci_get_device(dev); 347 revid = pci_get_revid(dev); 348 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 349 if (ident->devid == devid && 350 (ident->revid == revid || ident->revid == -1)) { 351 device_set_desc(dev, ident->name); 352 return (0); 353 } 354 } 355 } 356 return (ENXIO); 357 } 358 359 static void 360 fxp_powerstate_d0(device_t dev) 361 { 362 u_int32_t iobase, membase, irq; 363 364 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 365 /* Save important PCI config data. */ 366 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4); 367 membase = pci_read_config(dev, FXP_PCI_MMBA, 4); 368 irq = pci_read_config(dev, PCIR_INTLINE, 4); 369 370 /* Reset the power state. */ 371 device_printf(dev, "chip is in D%d power mode " 372 "-- setting to D0\n", pci_get_powerstate(dev)); 373 374 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 375 376 /* Restore PCI config data. */ 377 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4); 378 pci_write_config(dev, FXP_PCI_MMBA, membase, 4); 379 pci_write_config(dev, PCIR_INTLINE, irq, 4); 380 } 381 } 382 383 static int 384 fxp_attach(device_t dev) 385 { 386 int error = 0; 387 struct fxp_softc *sc = device_get_softc(dev); 388 struct ifnet *ifp; 389 u_int32_t val; 390 u_int16_t data; 391 int i, rid, m1, m2, prefer_iomap; 392 int s; 393 394 bzero(sc, sizeof(*sc)); 395 sc->dev = dev; 396 callout_init(&sc->fxp_stat_timer); 397 sysctl_ctx_init(&sc->sysctl_ctx); 398 399 s = splimp(); 400 401 /* 402 * Enable bus mastering. Enable memory space too, in case 403 * BIOS/Prom forgot about it. 404 */ 405 val = pci_read_config(dev, PCIR_COMMAND, 2); 406 val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 407 pci_write_config(dev, PCIR_COMMAND, val, 2); 408 val = pci_read_config(dev, PCIR_COMMAND, 2); 409 410 fxp_powerstate_d0(dev); 411 412 /* 413 * Figure out which we should try first - memory mapping or i/o mapping? 414 * We default to memory mapping. Then we accept an override from the 415 * command line. Then we check to see which one is enabled. 416 */ 417 m1 = PCIM_CMD_MEMEN; 418 m2 = PCIM_CMD_PORTEN; 419 prefer_iomap = 0; 420 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 421 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) { 422 m1 = PCIM_CMD_PORTEN; 423 m2 = PCIM_CMD_MEMEN; 424 } 425 426 if (val & m1) { 427 sc->rtp = 428 (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 429 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 430 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 431 0, ~0, 1, RF_ACTIVE); 432 } 433 if (sc->mem == NULL && (val & m2)) { 434 sc->rtp = 435 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 436 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 437 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 438 0, ~0, 1, RF_ACTIVE); 439 } 440 441 if (!sc->mem) { 442 device_printf(dev, "could not map device registers\n"); 443 error = ENXIO; 444 goto fail; 445 } 446 if (bootverbose) { 447 device_printf(dev, "using %s space register mapping\n", 448 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O"); 449 } 450 451 sc->sc_st = rman_get_bustag(sc->mem); 452 sc->sc_sh = rman_get_bushandle(sc->mem); 453 454 /* 455 * Allocate our interrupt. 456 */ 457 rid = 0; 458 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 459 RF_SHAREABLE | RF_ACTIVE); 460 if (sc->irq == NULL) { 461 device_printf(dev, "could not map interrupt\n"); 462 error = ENXIO; 463 goto fail; 464 } 465 466 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET, 467 fxp_intr, sc, &sc->ih); 468 if (error) { 469 device_printf(dev, "could not setup irq\n"); 470 goto fail; 471 } 472 473 /* 474 * Reset to a stable state. 475 */ 476 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 477 DELAY(10); 478 479 sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB, 480 M_DEVBUF, M_WAITOK | M_ZERO); 481 482 sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, 483 M_WAITOK | M_ZERO); 484 485 sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK); 486 487 /* 488 * Pre-allocate our receive buffers. 489 */ 490 for (i = 0; i < FXP_NRFABUFS; i++) { 491 if (fxp_add_rfabuf(sc, NULL) != 0) { 492 goto failmem; 493 } 494 } 495 496 /* 497 * Find out how large of an SEEPROM we have. 498 */ 499 fxp_autosize_eeprom(sc); 500 501 /* 502 * Determine whether we must use the 503 serial interface. 503 */ 504 fxp_read_eeprom(sc, &data, 6, 1); 505 if ((data & FXP_PHY_DEVICE_MASK) != 0 && 506 (data & FXP_PHY_SERIAL_ONLY)) 507 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 508 509 /* 510 * Create the sysctl tree 511 */ 512 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 513 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 514 device_get_nameunit(dev), CTLFLAG_RD, 0, ""); 515 if (sc->sysctl_tree == NULL) 516 goto fail; 517 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 518 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 519 &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I", 520 "FXP driver receive interrupt microcode bundling delay"); 521 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 522 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 523 &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I", 524 "FXP driver receive interrupt microcode bundle size limit"); 525 526 /* 527 * Pull in device tunables. 528 */ 529 sc->tunable_int_delay = TUNABLE_INT_DELAY; 530 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 531 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 532 "int_delay", &sc->tunable_int_delay); 533 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 534 "bundle_max", &sc->tunable_bundle_max); 535 536 /* 537 * Find out the chip revision; lump all 82557 revs together. 538 */ 539 fxp_read_eeprom(sc, &data, 5, 1); 540 if ((data >> 8) == 1) 541 sc->revision = FXP_REV_82557; 542 else 543 sc->revision = pci_get_revid(dev); 544 545 /* 546 * Enable workarounds for certain chip revision deficiencies. 547 * 548 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 549 * some systems based a normal 82559 design, have a defect where 550 * the chip can cause a PCI protocol violation if it receives 551 * a CU_RESUME command when it is entering the IDLE state. The 552 * workaround is to disable Dynamic Standby Mode, so the chip never 553 * deasserts CLKRUN#, and always remains in an active state. 554 * 555 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 556 */ 557 i = pci_get_device(dev); 558 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) || 559 sc->revision >= FXP_REV_82559_A0) { 560 fxp_read_eeprom(sc, &data, 10, 1); 561 if (data & 0x02) { /* STB enable */ 562 u_int16_t cksum; 563 int i; 564 565 device_printf(dev, 566 "Disabling dynamic standby mode in EEPROM\n"); 567 data &= ~0x02; 568 fxp_write_eeprom(sc, &data, 10, 1); 569 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 570 cksum = 0; 571 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { 572 fxp_read_eeprom(sc, &data, i, 1); 573 cksum += data; 574 } 575 i = (1 << sc->eeprom_size) - 1; 576 cksum = 0xBABA - cksum; 577 fxp_read_eeprom(sc, &data, i, 1); 578 fxp_write_eeprom(sc, &cksum, i, 1); 579 device_printf(dev, 580 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 581 i, data, cksum); 582 #if 1 583 /* 584 * If the user elects to continue, try the software 585 * workaround, as it is better than nothing. 586 */ 587 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 588 #endif 589 } 590 } 591 592 /* 593 * If we are not a 82557 chip, we can enable extended features. 594 */ 595 if (sc->revision != FXP_REV_82557) { 596 /* 597 * If MWI is enabled in the PCI configuration, and there 598 * is a valid cacheline size (8 or 16 dwords), then tell 599 * the board to turn on MWI. 600 */ 601 if (val & PCIM_CMD_MWRICEN && 602 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 603 sc->flags |= FXP_FLAG_MWI_ENABLE; 604 605 /* turn on the extended TxCB feature */ 606 sc->flags |= FXP_FLAG_EXT_TXCB; 607 608 /* enable reception of long frames for VLAN */ 609 sc->flags |= FXP_FLAG_LONG_PKT_EN; 610 } 611 612 /* 613 * Read MAC address. 614 */ 615 fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3); 616 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) 617 device_printf(dev, "10Mbps"); 618 if (bootverbose) { 619 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 620 pci_get_vendor(dev), pci_get_device(dev), 621 pci_get_subvendor(dev), pci_get_subdevice(dev), 622 pci_get_revid(dev)); 623 fxp_read_eeprom(sc, &data, 10, 1); 624 device_printf(dev, "Dynamic Standby mode is %s\n", 625 data & 0x02 ? "enabled" : "disabled"); 626 } 627 628 /* 629 * If this is only a 10Mbps device, then there is no MII, and 630 * the PHY will use a serial interface instead. 631 * 632 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 633 * doesn't have a programming interface of any sort. The 634 * media is sensed automatically based on how the link partner 635 * is configured. This is, in essence, manual configuration. 636 */ 637 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 638 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 639 fxp_serial_ifmedia_sts); 640 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 641 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 642 } else { 643 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd, 644 fxp_ifmedia_sts)) { 645 device_printf(dev, "MII without any PHY!\n"); 646 error = ENXIO; 647 goto fail; 648 } 649 } 650 651 ifp = &sc->arpcom.ac_if; 652 if_initname(ifp, "fxp", device_get_unit(dev)); 653 ifp->if_baudrate = 100000000; 654 ifp->if_init = fxp_init; 655 ifp->if_softc = sc; 656 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 657 ifp->if_ioctl = fxp_ioctl; 658 ifp->if_start = fxp_start; 659 ifp->if_watchdog = fxp_watchdog; 660 661 /* 662 * Attach the interface. 663 */ 664 ether_ifattach(ifp, sc->arpcom.ac_enaddr); 665 666 /* 667 * Tell the upper layer(s) we support long frames. 668 */ 669 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 670 671 /* 672 * Let the system queue as many packets as we have available 673 * TX descriptors. 674 */ 675 ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1); 676 ifq_set_ready(&ifp->if_snd); 677 678 splx(s); 679 return (0); 680 681 failmem: 682 device_printf(dev, "Failed to malloc memory\n"); 683 error = ENOMEM; 684 fail: 685 splx(s); 686 fxp_release(sc); 687 return (error); 688 } 689 690 /* 691 * release all resources 692 */ 693 static void 694 fxp_release(struct fxp_softc *sc) 695 { 696 697 bus_generic_detach(sc->dev); 698 if (sc->miibus) 699 device_delete_child(sc->dev, sc->miibus); 700 701 if (sc->cbl_base) 702 free(sc->cbl_base, M_DEVBUF); 703 if (sc->fxp_stats) 704 free(sc->fxp_stats, M_DEVBUF); 705 if (sc->mcsp) 706 free(sc->mcsp, M_DEVBUF); 707 if (sc->rfa_headm) 708 m_freem(sc->rfa_headm); 709 710 if (sc->ih) 711 bus_teardown_intr(sc->dev, sc->irq, sc->ih); 712 if (sc->irq) 713 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq); 714 if (sc->mem) 715 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem); 716 717 sysctl_ctx_free(&sc->sysctl_ctx); 718 } 719 720 /* 721 * Detach interface. 722 */ 723 static int 724 fxp_detach(device_t dev) 725 { 726 struct fxp_softc *sc = device_get_softc(dev); 727 int s; 728 729 /* disable interrupts */ 730 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 731 732 s = splimp(); 733 734 /* 735 * Stop DMA and drop transmit queue. 736 */ 737 fxp_stop(sc); 738 739 /* 740 * Close down routes etc. 741 */ 742 ether_ifdetach(&sc->arpcom.ac_if); 743 744 /* 745 * Free all media structures. 746 */ 747 ifmedia_removeall(&sc->sc_media); 748 749 splx(s); 750 751 /* Release our allocated resources. */ 752 fxp_release(sc); 753 754 return (0); 755 } 756 757 /* 758 * Device shutdown routine. Called at system shutdown after sync. The 759 * main purpose of this routine is to shut off receiver DMA so that 760 * kernel memory doesn't get clobbered during warmboot. 761 */ 762 static int 763 fxp_shutdown(device_t dev) 764 { 765 /* 766 * Make sure that DMA is disabled prior to reboot. Not doing 767 * do could allow DMA to corrupt kernel memory during the 768 * reboot before the driver initializes. 769 */ 770 fxp_stop((struct fxp_softc *) device_get_softc(dev)); 771 return (0); 772 } 773 774 /* 775 * Device suspend routine. Stop the interface and save some PCI 776 * settings in case the BIOS doesn't restore them properly on 777 * resume. 778 */ 779 static int 780 fxp_suspend(device_t dev) 781 { 782 struct fxp_softc *sc = device_get_softc(dev); 783 int i, s; 784 785 s = splimp(); 786 787 fxp_stop(sc); 788 789 for (i = 0; i < 5; i++) 790 sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4); 791 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); 792 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); 793 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 794 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 795 796 sc->suspended = 1; 797 798 splx(s); 799 return (0); 800 } 801 802 /* 803 * Device resume routine. Restore some PCI settings in case the BIOS 804 * doesn't, re-enable busmastering, and restart the interface if 805 * appropriate. 806 */ 807 static int 808 fxp_resume(device_t dev) 809 { 810 struct fxp_softc *sc = device_get_softc(dev); 811 struct ifnet *ifp = &sc->arpcom.ac_if; 812 u_int16_t pci_command; 813 int i, s; 814 815 s = splimp(); 816 817 fxp_powerstate_d0(dev); 818 819 /* better way to do this? */ 820 for (i = 0; i < 5; i++) 821 pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4); 822 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); 823 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); 824 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); 825 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); 826 827 /* reenable busmastering */ 828 pci_command = pci_read_config(dev, PCIR_COMMAND, 2); 829 pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 830 pci_write_config(dev, PCIR_COMMAND, pci_command, 2); 831 832 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 833 DELAY(10); 834 835 /* reinitialize interface if necessary */ 836 if (ifp->if_flags & IFF_UP) 837 fxp_init(sc); 838 839 sc->suspended = 0; 840 841 splx(s); 842 return (0); 843 } 844 845 static void 846 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 847 { 848 u_int16_t reg; 849 int x; 850 851 /* 852 * Shift in data. 853 */ 854 for (x = 1 << (length - 1); x; x >>= 1) { 855 if (data & x) 856 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 857 else 858 reg = FXP_EEPROM_EECS; 859 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 860 DELAY(1); 861 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 862 DELAY(1); 863 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 864 DELAY(1); 865 } 866 } 867 868 /* 869 * Read from the serial EEPROM. Basically, you manually shift in 870 * the read opcode (one bit at a time) and then shift in the address, 871 * and then you shift out the data (all of this one bit at a time). 872 * The word size is 16 bits, so you have to provide the address for 873 * every 16 bits of data. 874 */ 875 static u_int16_t 876 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 877 { 878 u_int16_t reg, data; 879 int x; 880 881 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 882 /* 883 * Shift in read opcode. 884 */ 885 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 886 /* 887 * Shift in address. 888 */ 889 data = 0; 890 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 891 if (offset & x) 892 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 893 else 894 reg = FXP_EEPROM_EECS; 895 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 896 DELAY(1); 897 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 898 DELAY(1); 899 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 900 DELAY(1); 901 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 902 data++; 903 if (autosize && reg == 0) { 904 sc->eeprom_size = data; 905 break; 906 } 907 } 908 /* 909 * Shift out data. 910 */ 911 data = 0; 912 reg = FXP_EEPROM_EECS; 913 for (x = 1 << 15; x; x >>= 1) { 914 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 915 DELAY(1); 916 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 917 data |= x; 918 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 919 DELAY(1); 920 } 921 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 922 DELAY(1); 923 924 return (data); 925 } 926 927 static void 928 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data) 929 { 930 int i; 931 932 /* 933 * Erase/write enable. 934 */ 935 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 936 fxp_eeprom_shiftin(sc, 0x4, 3); 937 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 938 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 939 DELAY(1); 940 /* 941 * Shift in write opcode, address, data. 942 */ 943 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 944 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 945 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 946 fxp_eeprom_shiftin(sc, data, 16); 947 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 948 DELAY(1); 949 /* 950 * Wait for EEPROM to finish up. 951 */ 952 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 953 DELAY(1); 954 for (i = 0; i < 1000; i++) { 955 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 956 break; 957 DELAY(50); 958 } 959 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 960 DELAY(1); 961 /* 962 * Erase/write disable. 963 */ 964 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 965 fxp_eeprom_shiftin(sc, 0x4, 3); 966 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 967 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 968 DELAY(1); 969 } 970 971 /* 972 * From NetBSD: 973 * 974 * Figure out EEPROM size. 975 * 976 * 559's can have either 64-word or 256-word EEPROMs, the 558 977 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 978 * talks about the existance of 16 to 256 word EEPROMs. 979 * 980 * The only known sizes are 64 and 256, where the 256 version is used 981 * by CardBus cards to store CIS information. 982 * 983 * The address is shifted in msb-to-lsb, and after the last 984 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 985 * after which follows the actual data. We try to detect this zero, by 986 * probing the data-out bit in the EEPROM control register just after 987 * having shifted in a bit. If the bit is zero, we assume we've 988 * shifted enough address bits. The data-out should be tri-state, 989 * before this, which should translate to a logical one. 990 */ 991 static void 992 fxp_autosize_eeprom(struct fxp_softc *sc) 993 { 994 995 /* guess maximum size of 256 words */ 996 sc->eeprom_size = 8; 997 998 /* autosize */ 999 (void) fxp_eeprom_getword(sc, 0, 1); 1000 } 1001 1002 static void 1003 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1004 { 1005 int i; 1006 1007 for (i = 0; i < words; i++) 1008 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1009 } 1010 1011 static void 1012 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1013 { 1014 int i; 1015 1016 for (i = 0; i < words; i++) 1017 fxp_eeprom_putword(sc, offset + i, data[i]); 1018 } 1019 1020 /* 1021 * Start packet transmission on the interface. 1022 */ 1023 static void 1024 fxp_start(struct ifnet *ifp) 1025 { 1026 struct fxp_softc *sc = ifp->if_softc; 1027 struct fxp_cb_tx *txp; 1028 1029 /* 1030 * See if we need to suspend xmit until the multicast filter 1031 * has been reprogrammed (which can only be done at the head 1032 * of the command chain). 1033 */ 1034 if (sc->need_mcsetup) { 1035 return; 1036 } 1037 1038 txp = NULL; 1039 1040 /* 1041 * We're finished if there is nothing more to add to the list or if 1042 * we're all filled up with buffers to transmit. 1043 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1044 * a NOP command when needed. 1045 */ 1046 while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) { 1047 struct mbuf *m, *mb_head; 1048 int segment; 1049 1050 /* 1051 * Grab a packet to transmit. The packet is dequeued, 1052 * once we are sure that we have enough free descriptors. 1053 */ 1054 mb_head = ifq_poll(&ifp->if_snd); 1055 if (mb_head == NULL) 1056 break; 1057 1058 /* 1059 * Get pointer to next available tx desc. 1060 */ 1061 txp = sc->cbl_last->next; 1062 1063 /* 1064 * Go through each of the mbufs in the chain and initialize 1065 * the transmit buffer descriptors with the physical address 1066 * and size of the mbuf. 1067 */ 1068 tbdinit: 1069 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) { 1070 if (m->m_len != 0) { 1071 if (segment == FXP_NTXSEG) 1072 break; 1073 txp->tbd[segment].tb_addr = 1074 vtophys(mtod(m, vm_offset_t)); 1075 txp->tbd[segment].tb_size = m->m_len; 1076 segment++; 1077 } 1078 } 1079 if (m != NULL) { 1080 struct mbuf *mn; 1081 1082 /* 1083 * We ran out of segments. We have to recopy this 1084 * mbuf chain first. Bail out if we can't get the 1085 * new buffers. 1086 */ 1087 MGETHDR(mn, MB_DONTWAIT, MT_DATA); 1088 if (mn == NULL) 1089 break; 1090 if (mb_head->m_pkthdr.len > MHLEN) { 1091 MCLGET(mn, MB_DONTWAIT); 1092 if ((mn->m_flags & M_EXT) == 0) { 1093 m_freem(mn); 1094 break; 1095 } 1096 } 1097 m_copydata(mb_head, 0, mb_head->m_pkthdr.len, 1098 mtod(mn, caddr_t)); 1099 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; 1100 /* We can transmit the packet, dequeue it. */ 1101 mb_head = ifq_dequeue(&ifp->if_snd); 1102 m_freem(mb_head); 1103 mb_head = mn; 1104 goto tbdinit; 1105 } else { 1106 /* Nothing to worry about, just dequeue. */ 1107 mb_head = ifq_dequeue(&ifp->if_snd); 1108 } 1109 1110 txp->tbd_number = segment; 1111 txp->mb_head = mb_head; 1112 txp->cb_status = 0; 1113 if (sc->tx_queued != FXP_CXINT_THRESH - 1) { 1114 txp->cb_command = 1115 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | 1116 FXP_CB_COMMAND_S; 1117 } else { 1118 txp->cb_command = 1119 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | 1120 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 1121 /* 1122 * Set a 5 second timer just in case we don't hear 1123 * from the card again. 1124 */ 1125 ifp->if_timer = 5; 1126 } 1127 txp->tx_threshold = tx_threshold; 1128 1129 /* 1130 * Advance the end of list forward. 1131 */ 1132 1133 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; 1134 sc->cbl_last = txp; 1135 1136 /* 1137 * Advance the beginning of the list forward if there are 1138 * no other packets queued (when nothing is queued, cbl_first 1139 * sits on the last TxCB that was sent out). 1140 */ 1141 if (sc->tx_queued == 0) 1142 sc->cbl_first = txp; 1143 1144 sc->tx_queued++; 1145 1146 BPF_MTAP(ifp, mb_head); 1147 } 1148 1149 /* 1150 * We're finished. If we added to the list, issue a RESUME to get DMA 1151 * going again if suspended. 1152 */ 1153 if (txp != NULL) { 1154 fxp_scb_wait(sc); 1155 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1156 } 1157 } 1158 1159 #ifdef DEVICE_POLLING 1160 static poll_handler_t fxp_poll; 1161 1162 static void 1163 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1164 { 1165 struct fxp_softc *sc = ifp->if_softc; 1166 u_int8_t statack; 1167 1168 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ 1169 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1170 return; 1171 } 1172 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1173 FXP_SCB_STATACK_FR; 1174 if (cmd == POLL_AND_CHECK_STATUS) { 1175 u_int8_t tmp; 1176 1177 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1178 if (tmp == 0xff || tmp == 0) 1179 return; /* nothing to do */ 1180 tmp &= ~statack; 1181 /* ack what we can */ 1182 if (tmp != 0) 1183 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1184 statack |= tmp; 1185 } 1186 fxp_intr_body(sc, statack, count); 1187 } 1188 #endif /* DEVICE_POLLING */ 1189 1190 /* 1191 * Process interface interrupts. 1192 */ 1193 static void 1194 fxp_intr(void *xsc) 1195 { 1196 struct fxp_softc *sc = xsc; 1197 u_int8_t statack; 1198 1199 #ifdef DEVICE_POLLING 1200 struct ifnet *ifp = &sc->arpcom.ac_if; 1201 1202 if (ifp->if_flags & IFF_POLLING) 1203 return; 1204 if (ether_poll_register(fxp_poll, ifp)) { 1205 /* disable interrupts */ 1206 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1207 fxp_poll(ifp, 0, 1); 1208 return; 1209 } 1210 #endif 1211 1212 if (sc->suspended) { 1213 return; 1214 } 1215 1216 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1217 /* 1218 * It should not be possible to have all bits set; the 1219 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1220 * all bits are set, this may indicate that the card has 1221 * been physically ejected, so ignore it. 1222 */ 1223 if (statack == 0xff) 1224 return; 1225 1226 /* 1227 * First ACK all the interrupts in this pass. 1228 */ 1229 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1230 fxp_intr_body(sc, statack, -1); 1231 } 1232 } 1233 1234 static void 1235 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count) 1236 { 1237 struct ifnet *ifp = &sc->arpcom.ac_if; 1238 struct mbuf *m; 1239 struct fxp_rfa *rfa; 1240 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1241 1242 if (rnr) 1243 fxp_rnr++; 1244 #ifdef DEVICE_POLLING 1245 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1246 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1247 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1248 rnr = 1; 1249 } 1250 #endif 1251 1252 /* 1253 * Free any finished transmit mbuf chains. 1254 * 1255 * Handle the CNA event likt a CXTNO event. It used to 1256 * be that this event (control unit not ready) was not 1257 * encountered, but it is now with the SMPng modifications. 1258 * The exact sequence of events that occur when the interface 1259 * is brought up are different now, and if this event 1260 * goes unhandled, the configuration/rxfilter setup sequence 1261 * can stall for several seconds. The result is that no 1262 * packets go out onto the wire for about 5 to 10 seconds 1263 * after the interface is ifconfig'ed for the first time. 1264 */ 1265 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { 1266 struct fxp_cb_tx *txp; 1267 1268 for (txp = sc->cbl_first; sc->tx_queued && 1269 (txp->cb_status & FXP_CB_STATUS_C) != 0; 1270 txp = txp->next) { 1271 if ((m = txp->mb_head) != NULL) { 1272 txp->mb_head = NULL; 1273 sc->tx_queued--; 1274 m_freem(m); 1275 } else { 1276 sc->tx_queued--; 1277 } 1278 } 1279 sc->cbl_first = txp; 1280 ifp->if_timer = 0; 1281 if (sc->tx_queued == 0) { 1282 if (sc->need_mcsetup) 1283 fxp_mc_setup(sc); 1284 } 1285 /* 1286 * Try to start more packets transmitting. 1287 */ 1288 if (!ifq_is_empty(&ifp->if_snd)) 1289 (*ifp->if_start)(ifp); 1290 } 1291 1292 /* 1293 * Just return if nothing happened on the receive side. 1294 */ 1295 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1296 return; 1297 1298 /* 1299 * Process receiver interrupts. If a no-resource (RNR) 1300 * condition exists, get whatever packets we can and 1301 * re-start the receiver. 1302 * 1303 * When using polling, we do not process the list to completion, 1304 * so when we get an RNR interrupt we must defer the restart 1305 * until we hit the last buffer with the C bit set. 1306 * If we run out of cycles and rfa_headm has the C bit set, 1307 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1308 * that the info will be used in the subsequent polling cycle. 1309 */ 1310 for (;;) { 1311 m = sc->rfa_headm; 1312 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1313 RFA_ALIGNMENT_FUDGE); 1314 1315 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1316 if (count >= 0 && count-- == 0) { 1317 if (rnr) { 1318 /* Defer RNR processing until the next time. */ 1319 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1320 rnr = 0; 1321 } 1322 break; 1323 } 1324 #endif /* DEVICE_POLLING */ 1325 1326 if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0) 1327 break; 1328 1329 /* 1330 * Remove first packet from the chain. 1331 */ 1332 sc->rfa_headm = m->m_next; 1333 m->m_next = NULL; 1334 1335 /* 1336 * Add a new buffer to the receive chain. 1337 * If this fails, the old buffer is recycled 1338 * instead. 1339 */ 1340 if (fxp_add_rfabuf(sc, m) == 0) { 1341 int total_len; 1342 1343 /* 1344 * Fetch packet length (the top 2 bits of 1345 * actual_size are flags set by the controller 1346 * upon completion), and drop the packet in case 1347 * of bogus length or CRC errors. 1348 */ 1349 total_len = rfa->actual_size & 0x3fff; 1350 if (total_len < sizeof(struct ether_header) || 1351 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE - 1352 sizeof(struct fxp_rfa) || 1353 rfa->rfa_status & FXP_RFA_STATUS_CRC) { 1354 m_freem(m); 1355 continue; 1356 } 1357 m->m_pkthdr.len = m->m_len = total_len; 1358 (*ifp->if_input)(ifp, m); 1359 } 1360 } 1361 if (rnr) { 1362 fxp_scb_wait(sc); 1363 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1364 vtophys(sc->rfa_headm->m_ext.ext_buf) + 1365 RFA_ALIGNMENT_FUDGE); 1366 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1367 } 1368 } 1369 1370 /* 1371 * Update packet in/out/collision statistics. The i82557 doesn't 1372 * allow you to access these counters without doing a fairly 1373 * expensive DMA to get _all_ of the statistics it maintains, so 1374 * we do this operation here only once per second. The statistics 1375 * counters in the kernel are updated from the previous dump-stats 1376 * DMA and then a new dump-stats DMA is started. The on-chip 1377 * counters are zeroed when the DMA completes. If we can't start 1378 * the DMA immediately, we don't wait - we just prepare to read 1379 * them again next time. 1380 */ 1381 static void 1382 fxp_tick(void *xsc) 1383 { 1384 struct fxp_softc *sc = xsc; 1385 struct ifnet *ifp = &sc->arpcom.ac_if; 1386 struct fxp_stats *sp = sc->fxp_stats; 1387 struct fxp_cb_tx *txp; 1388 struct mbuf *m; 1389 int s; 1390 1391 ifp->if_opackets += sp->tx_good; 1392 ifp->if_collisions += sp->tx_total_collisions; 1393 if (sp->rx_good) { 1394 ifp->if_ipackets += sp->rx_good; 1395 sc->rx_idle_secs = 0; 1396 } else { 1397 /* 1398 * Receiver's been idle for another second. 1399 */ 1400 sc->rx_idle_secs++; 1401 } 1402 ifp->if_ierrors += 1403 sp->rx_crc_errors + 1404 sp->rx_alignment_errors + 1405 sp->rx_rnr_errors + 1406 sp->rx_overrun_errors; 1407 /* 1408 * If any transmit underruns occured, bump up the transmit 1409 * threshold by another 512 bytes (64 * 8). 1410 */ 1411 if (sp->tx_underruns) { 1412 ifp->if_oerrors += sp->tx_underruns; 1413 if (tx_threshold < 192) 1414 tx_threshold += 64; 1415 } 1416 s = splimp(); 1417 /* 1418 * Release any xmit buffers that have completed DMA. This isn't 1419 * strictly necessary to do here, but it's advantagous for mbufs 1420 * with external storage to be released in a timely manner rather 1421 * than being defered for a potentially long time. This limits 1422 * the delay to a maximum of one second. 1423 */ 1424 for (txp = sc->cbl_first; sc->tx_queued && 1425 (txp->cb_status & FXP_CB_STATUS_C) != 0; 1426 txp = txp->next) { 1427 if ((m = txp->mb_head) != NULL) { 1428 txp->mb_head = NULL; 1429 sc->tx_queued--; 1430 m_freem(m); 1431 } else { 1432 sc->tx_queued--; 1433 } 1434 } 1435 sc->cbl_first = txp; 1436 /* 1437 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 1438 * then assume the receiver has locked up and attempt to clear 1439 * the condition by reprogramming the multicast filter. This is 1440 * a work-around for a bug in the 82557 where the receiver locks 1441 * up if it gets certain types of garbage in the syncronization 1442 * bits prior to the packet header. This bug is supposed to only 1443 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 1444 * mode as well (perhaps due to a 10/100 speed transition). 1445 */ 1446 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 1447 sc->rx_idle_secs = 0; 1448 fxp_mc_setup(sc); 1449 } 1450 /* 1451 * If there is no pending command, start another stats 1452 * dump. Otherwise punt for now. 1453 */ 1454 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 1455 /* 1456 * Start another stats dump. 1457 */ 1458 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 1459 } else { 1460 /* 1461 * A previous command is still waiting to be accepted. 1462 * Just zero our copy of the stats and wait for the 1463 * next timer event to update them. 1464 */ 1465 sp->tx_good = 0; 1466 sp->tx_underruns = 0; 1467 sp->tx_total_collisions = 0; 1468 1469 sp->rx_good = 0; 1470 sp->rx_crc_errors = 0; 1471 sp->rx_alignment_errors = 0; 1472 sp->rx_rnr_errors = 0; 1473 sp->rx_overrun_errors = 0; 1474 } 1475 if (sc->miibus != NULL) 1476 mii_tick(device_get_softc(sc->miibus)); 1477 splx(s); 1478 /* 1479 * Schedule another timeout one second from now. 1480 */ 1481 callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc); 1482 } 1483 1484 /* 1485 * Stop the interface. Cancels the statistics updater and resets 1486 * the interface. 1487 */ 1488 static void 1489 fxp_stop(struct fxp_softc *sc) 1490 { 1491 struct ifnet *ifp = &sc->arpcom.ac_if; 1492 struct fxp_cb_tx *txp; 1493 int i; 1494 1495 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1496 ifp->if_timer = 0; 1497 1498 #ifdef DEVICE_POLLING 1499 ether_poll_deregister(ifp); 1500 #endif 1501 /* 1502 * Cancel stats updater. 1503 */ 1504 callout_stop(&sc->fxp_stat_timer); 1505 1506 /* 1507 * Issue software reset, which also unloads the microcode. 1508 */ 1509 sc->flags &= ~FXP_FLAG_UCODE; 1510 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 1511 DELAY(50); 1512 1513 /* 1514 * Release any xmit buffers. 1515 */ 1516 txp = sc->cbl_base; 1517 if (txp != NULL) { 1518 for (i = 0; i < FXP_NTXCB; i++) { 1519 if (txp[i].mb_head != NULL) { 1520 m_freem(txp[i].mb_head); 1521 txp[i].mb_head = NULL; 1522 } 1523 } 1524 } 1525 sc->tx_queued = 0; 1526 1527 /* 1528 * Free all the receive buffers then reallocate/reinitialize 1529 */ 1530 if (sc->rfa_headm != NULL) 1531 m_freem(sc->rfa_headm); 1532 sc->rfa_headm = NULL; 1533 sc->rfa_tailm = NULL; 1534 for (i = 0; i < FXP_NRFABUFS; i++) { 1535 if (fxp_add_rfabuf(sc, NULL) != 0) { 1536 /* 1537 * This "can't happen" - we're at splimp() 1538 * and we just freed all the buffers we need 1539 * above. 1540 */ 1541 panic("fxp_stop: no buffers!"); 1542 } 1543 } 1544 } 1545 1546 /* 1547 * Watchdog/transmission transmit timeout handler. Called when a 1548 * transmission is started on the interface, but no interrupt is 1549 * received before the timeout. This usually indicates that the 1550 * card has wedged for some reason. 1551 */ 1552 static void 1553 fxp_watchdog(struct ifnet *ifp) 1554 { 1555 struct fxp_softc *sc = ifp->if_softc; 1556 1557 device_printf(sc->dev, "device timeout\n"); 1558 ifp->if_oerrors++; 1559 1560 fxp_init(sc); 1561 } 1562 1563 static void 1564 fxp_init(void *xsc) 1565 { 1566 struct fxp_softc *sc = xsc; 1567 struct ifnet *ifp = &sc->arpcom.ac_if; 1568 struct fxp_cb_config *cbp; 1569 struct fxp_cb_ias *cb_ias; 1570 struct fxp_cb_tx *txp; 1571 struct fxp_cb_mcs *mcsp; 1572 int i, prm, s; 1573 1574 s = splimp(); 1575 /* 1576 * Cancel any pending I/O 1577 */ 1578 fxp_stop(sc); 1579 1580 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 1581 1582 /* 1583 * Initialize base of CBL and RFA memory. Loading with zero 1584 * sets it up for regular linear addressing. 1585 */ 1586 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 1587 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 1588 1589 fxp_scb_wait(sc); 1590 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 1591 1592 /* 1593 * Initialize base of dump-stats buffer. 1594 */ 1595 fxp_scb_wait(sc); 1596 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats)); 1597 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 1598 1599 /* 1600 * Attempt to load microcode if requested. 1601 */ 1602 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0) 1603 fxp_load_ucode(sc); 1604 1605 /* 1606 * Initialize the multicast address list. 1607 */ 1608 if (fxp_mc_addrs(sc)) { 1609 mcsp = sc->mcsp; 1610 mcsp->cb_status = 0; 1611 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL; 1612 mcsp->link_addr = -1; 1613 /* 1614 * Start the multicast setup command. 1615 */ 1616 fxp_scb_wait(sc); 1617 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); 1618 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1619 /* ...and wait for it to complete. */ 1620 fxp_dma_wait(&mcsp->cb_status, sc); 1621 } 1622 1623 /* 1624 * We temporarily use memory that contains the TxCB list to 1625 * construct the config CB. The TxCB list memory is rebuilt 1626 * later. 1627 */ 1628 cbp = (struct fxp_cb_config *) sc->cbl_base; 1629 1630 /* 1631 * This bcopy is kind of disgusting, but there are a bunch of must be 1632 * zero and must be one bits in this structure and this is the easiest 1633 * way to initialize them all to proper values. 1634 */ 1635 bcopy(fxp_cb_config_template, 1636 (void *)(uintptr_t)(volatile void *)&cbp->cb_status, 1637 sizeof(fxp_cb_config_template)); 1638 1639 cbp->cb_status = 0; 1640 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; 1641 cbp->link_addr = -1; /* (no) next command */ 1642 cbp->byte_count = 22; /* (22) bytes to config */ 1643 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 1644 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 1645 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 1646 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 1647 cbp->type_enable = 0; /* actually reserved */ 1648 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 1649 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 1650 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 1651 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 1652 cbp->dma_mbce = 0; /* (disable) dma max counters */ 1653 cbp->late_scb = 0; /* (don't) defer SCB update */ 1654 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 1655 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 1656 cbp->ci_int = 1; /* interrupt on CU idle */ 1657 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 1658 cbp->ext_stats_dis = 1; /* disable extended counters */ 1659 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 1660 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm; 1661 cbp->disc_short_rx = !prm; /* discard short packets */ 1662 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 1663 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 1664 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */ 1665 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 1666 cbp->csma_dis = 0; /* (don't) disable link */ 1667 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */ 1668 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 1669 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 1670 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 1671 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 1672 cbp->nsai = 1; /* (don't) disable source addr insert */ 1673 cbp->preamble_length = 2; /* (7 byte) preamble */ 1674 cbp->loopback = 0; /* (don't) loopback */ 1675 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 1676 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 1677 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 1678 cbp->promiscuous = prm; /* promiscuous mode */ 1679 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 1680 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 1681 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 1682 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 1683 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 1684 1685 cbp->stripping = !prm; /* truncate rx packet to byte count */ 1686 cbp->padding = 1; /* (do) pad short tx packets */ 1687 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 1688 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 1689 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 1690 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */ 1691 /* must set wake_en in PMCSR also */ 1692 cbp->force_fdx = 0; /* (don't) force full duplex */ 1693 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 1694 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 1695 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0; 1696 1697 if (sc->revision == FXP_REV_82557) { 1698 /* 1699 * The 82557 has no hardware flow control, the values 1700 * below are the defaults for the chip. 1701 */ 1702 cbp->fc_delay_lsb = 0; 1703 cbp->fc_delay_msb = 0x40; 1704 cbp->pri_fc_thresh = 3; 1705 cbp->tx_fc_dis = 0; 1706 cbp->rx_fc_restop = 0; 1707 cbp->rx_fc_restart = 0; 1708 cbp->fc_filter = 0; 1709 cbp->pri_fc_loc = 1; 1710 } else { 1711 cbp->fc_delay_lsb = 0x1f; 1712 cbp->fc_delay_msb = 0x01; 1713 cbp->pri_fc_thresh = 3; 1714 cbp->tx_fc_dis = 0; /* enable transmit FC */ 1715 cbp->rx_fc_restop = 1; /* enable FC restop frames */ 1716 cbp->rx_fc_restart = 1; /* enable FC restart frames */ 1717 cbp->fc_filter = !prm; /* drop FC frames to host */ 1718 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 1719 } 1720 1721 /* 1722 * Start the config command/DMA. 1723 */ 1724 fxp_scb_wait(sc); 1725 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); 1726 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1727 /* ...and wait for it to complete. */ 1728 fxp_dma_wait(&cbp->cb_status, sc); 1729 1730 /* 1731 * Now initialize the station address. Temporarily use the TxCB 1732 * memory area like we did above for the config CB. 1733 */ 1734 cb_ias = (struct fxp_cb_ias *) sc->cbl_base; 1735 cb_ias->cb_status = 0; 1736 cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL; 1737 cb_ias->link_addr = -1; 1738 bcopy(sc->arpcom.ac_enaddr, 1739 (void *)(uintptr_t)(volatile void *)cb_ias->macaddr, 1740 sizeof(sc->arpcom.ac_enaddr)); 1741 1742 /* 1743 * Start the IAS (Individual Address Setup) command/DMA. 1744 */ 1745 fxp_scb_wait(sc); 1746 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1747 /* ...and wait for it to complete. */ 1748 fxp_dma_wait(&cb_ias->cb_status, sc); 1749 1750 /* 1751 * Initialize transmit control block (TxCB) list. 1752 */ 1753 1754 txp = sc->cbl_base; 1755 bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB); 1756 for (i = 0; i < FXP_NTXCB; i++) { 1757 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK; 1758 txp[i].cb_command = FXP_CB_COMMAND_NOP; 1759 txp[i].link_addr = 1760 vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status); 1761 if (sc->flags & FXP_FLAG_EXT_TXCB) 1762 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]); 1763 else 1764 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]); 1765 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK]; 1766 } 1767 /* 1768 * Set the suspend flag on the first TxCB and start the control 1769 * unit. It will execute the NOP and then suspend. 1770 */ 1771 txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S; 1772 sc->cbl_first = sc->cbl_last = txp; 1773 sc->tx_queued = 1; 1774 1775 fxp_scb_wait(sc); 1776 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1777 1778 /* 1779 * Initialize receiver buffer area - RFA. 1780 */ 1781 fxp_scb_wait(sc); 1782 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1783 vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); 1784 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1785 1786 /* 1787 * Set current media. 1788 */ 1789 if (sc->miibus != NULL) 1790 mii_mediachg(device_get_softc(sc->miibus)); 1791 1792 ifp->if_flags |= IFF_RUNNING; 1793 ifp->if_flags &= ~IFF_OACTIVE; 1794 1795 /* 1796 * Enable interrupts. 1797 */ 1798 #ifdef DEVICE_POLLING 1799 /* 1800 * ... but only do that if we are not polling. And because (presumably) 1801 * the default is interrupts on, we need to disable them explicitly! 1802 */ 1803 if ( ifp->if_flags & IFF_POLLING ) 1804 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1805 else 1806 #endif /* DEVICE_POLLING */ 1807 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1808 splx(s); 1809 1810 /* 1811 * Start stats updater. 1812 */ 1813 callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc); 1814 } 1815 1816 static int 1817 fxp_serial_ifmedia_upd(struct ifnet *ifp) 1818 { 1819 1820 return (0); 1821 } 1822 1823 static void 1824 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1825 { 1826 1827 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 1828 } 1829 1830 /* 1831 * Change media according to request. 1832 */ 1833 static int 1834 fxp_ifmedia_upd(struct ifnet *ifp) 1835 { 1836 struct fxp_softc *sc = ifp->if_softc; 1837 struct mii_data *mii; 1838 1839 mii = device_get_softc(sc->miibus); 1840 mii_mediachg(mii); 1841 return (0); 1842 } 1843 1844 /* 1845 * Notify the world which media we're using. 1846 */ 1847 static void 1848 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1849 { 1850 struct fxp_softc *sc = ifp->if_softc; 1851 struct mii_data *mii; 1852 1853 mii = device_get_softc(sc->miibus); 1854 mii_pollstat(mii); 1855 ifmr->ifm_active = mii->mii_media_active; 1856 ifmr->ifm_status = mii->mii_media_status; 1857 1858 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG) 1859 sc->cu_resume_bug = 1; 1860 else 1861 sc->cu_resume_bug = 0; 1862 } 1863 1864 /* 1865 * Add a buffer to the end of the RFA buffer list. 1866 * Return 0 if successful, 1 for failure. A failure results in 1867 * adding the 'oldm' (if non-NULL) on to the end of the list - 1868 * tossing out its old contents and recycling it. 1869 * The RFA struct is stuck at the beginning of mbuf cluster and the 1870 * data pointer is fixed up to point just past it. 1871 */ 1872 static int 1873 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm) 1874 { 1875 u_int32_t v; 1876 struct mbuf *m; 1877 struct fxp_rfa *rfa, *p_rfa; 1878 1879 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 1880 if (m == NULL) { /* try to recycle the old mbuf instead */ 1881 if (oldm == NULL) 1882 return 1; 1883 m = oldm; 1884 m->m_data = m->m_ext.ext_buf; 1885 } 1886 1887 /* 1888 * Move the data pointer up so that the incoming data packet 1889 * will be 32-bit aligned. 1890 */ 1891 m->m_data += RFA_ALIGNMENT_FUDGE; 1892 1893 /* 1894 * Get a pointer to the base of the mbuf cluster and move 1895 * data start past it. 1896 */ 1897 rfa = mtod(m, struct fxp_rfa *); 1898 m->m_data += sizeof(struct fxp_rfa); 1899 rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE); 1900 1901 /* 1902 * Initialize the rest of the RFA. Note that since the RFA 1903 * is misaligned, we cannot store values directly. Instead, 1904 * we use an optimized, inline copy. 1905 */ 1906 1907 rfa->rfa_status = 0; 1908 rfa->rfa_control = FXP_RFA_CONTROL_EL; 1909 rfa->actual_size = 0; 1910 1911 v = -1; 1912 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr); 1913 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr); 1914 1915 /* 1916 * If there are other buffers already on the list, attach this 1917 * one to the end by fixing up the tail to point to this one. 1918 */ 1919 if (sc->rfa_headm != NULL) { 1920 p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf + 1921 RFA_ALIGNMENT_FUDGE); 1922 sc->rfa_tailm->m_next = m; 1923 v = vtophys(rfa); 1924 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr); 1925 p_rfa->rfa_control = 0; 1926 } else { 1927 sc->rfa_headm = m; 1928 } 1929 sc->rfa_tailm = m; 1930 1931 return (m == oldm); 1932 } 1933 1934 static volatile int 1935 fxp_miibus_readreg(device_t dev, int phy, int reg) 1936 { 1937 struct fxp_softc *sc = device_get_softc(dev); 1938 int count = 10000; 1939 int value; 1940 1941 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1942 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 1943 1944 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 1945 && count--) 1946 DELAY(10); 1947 1948 if (count <= 0) 1949 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 1950 1951 return (value & 0xffff); 1952 } 1953 1954 static void 1955 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 1956 { 1957 struct fxp_softc *sc = device_get_softc(dev); 1958 int count = 10000; 1959 1960 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1961 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 1962 (value & 0xffff)); 1963 1964 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 1965 count--) 1966 DELAY(10); 1967 1968 if (count <= 0) 1969 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 1970 } 1971 1972 static int 1973 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) 1974 { 1975 struct fxp_softc *sc = ifp->if_softc; 1976 struct ifreq *ifr = (struct ifreq *)data; 1977 struct mii_data *mii; 1978 int s, error = 0; 1979 1980 s = splimp(); 1981 1982 switch (command) { 1983 case SIOCSIFADDR: 1984 case SIOCGIFADDR: 1985 case SIOCSIFMTU: 1986 error = ether_ioctl(ifp, command, data); 1987 break; 1988 1989 case SIOCSIFFLAGS: 1990 if (ifp->if_flags & IFF_ALLMULTI) 1991 sc->flags |= FXP_FLAG_ALL_MCAST; 1992 else 1993 sc->flags &= ~FXP_FLAG_ALL_MCAST; 1994 1995 /* 1996 * If interface is marked up and not running, then start it. 1997 * If it is marked down and running, stop it. 1998 * XXX If it's up then re-initialize it. This is so flags 1999 * such as IFF_PROMISC are handled. 2000 */ 2001 if (ifp->if_flags & IFF_UP) { 2002 fxp_init(sc); 2003 } else { 2004 if (ifp->if_flags & IFF_RUNNING) 2005 fxp_stop(sc); 2006 } 2007 break; 2008 2009 case SIOCADDMULTI: 2010 case SIOCDELMULTI: 2011 if (ifp->if_flags & IFF_ALLMULTI) 2012 sc->flags |= FXP_FLAG_ALL_MCAST; 2013 else 2014 sc->flags &= ~FXP_FLAG_ALL_MCAST; 2015 /* 2016 * Multicast list has changed; set the hardware filter 2017 * accordingly. 2018 */ 2019 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) 2020 fxp_mc_setup(sc); 2021 /* 2022 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it 2023 * again rather than else {}. 2024 */ 2025 if (sc->flags & FXP_FLAG_ALL_MCAST) 2026 fxp_init(sc); 2027 error = 0; 2028 break; 2029 2030 case SIOCSIFMEDIA: 2031 case SIOCGIFMEDIA: 2032 if (sc->miibus != NULL) { 2033 mii = device_get_softc(sc->miibus); 2034 error = ifmedia_ioctl(ifp, ifr, 2035 &mii->mii_media, command); 2036 } else { 2037 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2038 } 2039 break; 2040 2041 default: 2042 error = EINVAL; 2043 } 2044 splx(s); 2045 return (error); 2046 } 2047 2048 /* 2049 * Fill in the multicast address list and return number of entries. 2050 */ 2051 static int 2052 fxp_mc_addrs(struct fxp_softc *sc) 2053 { 2054 struct fxp_cb_mcs *mcsp = sc->mcsp; 2055 struct ifnet *ifp = &sc->arpcom.ac_if; 2056 struct ifmultiaddr *ifma; 2057 int nmcasts; 2058 2059 nmcasts = 0; 2060 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) { 2061 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2062 if (ifma->ifma_addr->sa_family != AF_LINK) 2063 continue; 2064 if (nmcasts >= MAXMCADDR) { 2065 sc->flags |= FXP_FLAG_ALL_MCAST; 2066 nmcasts = 0; 2067 break; 2068 } 2069 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2070 (void *)(uintptr_t)(volatile void *) 2071 &sc->mcsp->mc_addr[nmcasts][0], 6); 2072 nmcasts++; 2073 } 2074 } 2075 mcsp->mc_cnt = nmcasts * 6; 2076 return (nmcasts); 2077 } 2078 2079 /* 2080 * Program the multicast filter. 2081 * 2082 * We have an artificial restriction that the multicast setup command 2083 * must be the first command in the chain, so we take steps to ensure 2084 * this. By requiring this, it allows us to keep up the performance of 2085 * the pre-initialized command ring (esp. link pointers) by not actually 2086 * inserting the mcsetup command in the ring - i.e. its link pointer 2087 * points to the TxCB ring, but the mcsetup descriptor itself is not part 2088 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 2089 * lead into the regular TxCB ring when it completes. 2090 * 2091 * This function must be called at splimp. 2092 */ 2093 static void 2094 fxp_mc_setup(struct fxp_softc *sc) 2095 { 2096 struct fxp_cb_mcs *mcsp = sc->mcsp; 2097 struct ifnet *ifp = &sc->arpcom.ac_if; 2098 int count; 2099 2100 /* 2101 * If there are queued commands, we must wait until they are all 2102 * completed. If we are already waiting, then add a NOP command 2103 * with interrupt option so that we're notified when all commands 2104 * have been completed - fxp_start() ensures that no additional 2105 * TX commands will be added when need_mcsetup is true. 2106 */ 2107 if (sc->tx_queued) { 2108 struct fxp_cb_tx *txp; 2109 2110 /* 2111 * need_mcsetup will be true if we are already waiting for the 2112 * NOP command to be completed (see below). In this case, bail. 2113 */ 2114 if (sc->need_mcsetup) 2115 return; 2116 sc->need_mcsetup = 1; 2117 2118 /* 2119 * Add a NOP command with interrupt so that we are notified 2120 * when all TX commands have been processed. 2121 */ 2122 txp = sc->cbl_last->next; 2123 txp->mb_head = NULL; 2124 txp->cb_status = 0; 2125 txp->cb_command = FXP_CB_COMMAND_NOP | 2126 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 2127 /* 2128 * Advance the end of list forward. 2129 */ 2130 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; 2131 sc->cbl_last = txp; 2132 sc->tx_queued++; 2133 /* 2134 * Issue a resume in case the CU has just suspended. 2135 */ 2136 fxp_scb_wait(sc); 2137 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 2138 /* 2139 * Set a 5 second timer just in case we don't hear from the 2140 * card again. 2141 */ 2142 ifp->if_timer = 5; 2143 2144 return; 2145 } 2146 sc->need_mcsetup = 0; 2147 2148 /* 2149 * Initialize multicast setup descriptor. 2150 */ 2151 mcsp->next = sc->cbl_base; 2152 mcsp->mb_head = NULL; 2153 mcsp->cb_status = 0; 2154 mcsp->cb_command = FXP_CB_COMMAND_MCAS | 2155 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 2156 mcsp->link_addr = vtophys(&sc->cbl_base->cb_status); 2157 (void) fxp_mc_addrs(sc); 2158 sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp; 2159 sc->tx_queued = 1; 2160 2161 /* 2162 * Wait until command unit is not active. This should never 2163 * be the case when nothing is queued, but make sure anyway. 2164 */ 2165 count = 100; 2166 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == 2167 FXP_SCB_CUS_ACTIVE && --count) 2168 DELAY(10); 2169 if (count == 0) { 2170 device_printf(sc->dev, "command queue timeout\n"); 2171 return; 2172 } 2173 2174 /* 2175 * Start the multicast setup command. 2176 */ 2177 fxp_scb_wait(sc); 2178 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); 2179 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2180 2181 ifp->if_timer = 2; 2182 return; 2183 } 2184 2185 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 2186 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 2187 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 2188 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 2189 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 2190 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 2191 2192 #define UCODE(x) x, sizeof(x) 2193 2194 struct ucode { 2195 u_int32_t revision; 2196 u_int32_t *ucode; 2197 int length; 2198 u_short int_delay_offset; 2199 u_short bundle_max_offset; 2200 } ucode_table[] = { 2201 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 2202 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 2203 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 2204 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 2205 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 2206 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 2207 { FXP_REV_82550, UCODE(fxp_ucode_d102), 2208 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 2209 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 2210 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 2211 { 0, NULL, 0, 0, 0 } 2212 }; 2213 2214 static void 2215 fxp_load_ucode(struct fxp_softc *sc) 2216 { 2217 struct ucode *uc; 2218 struct fxp_cb_ucode *cbp; 2219 2220 for (uc = ucode_table; uc->ucode != NULL; uc++) 2221 if (sc->revision == uc->revision) 2222 break; 2223 if (uc->ucode == NULL) 2224 return; 2225 cbp = (struct fxp_cb_ucode *)sc->cbl_base; 2226 cbp->cb_status = 0; 2227 cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL; 2228 cbp->link_addr = -1; /* (no) next command */ 2229 memcpy(cbp->ucode, uc->ucode, uc->length); 2230 if (uc->int_delay_offset) 2231 *(u_short *)&cbp->ucode[uc->int_delay_offset] = 2232 sc->tunable_int_delay + sc->tunable_int_delay / 2; 2233 if (uc->bundle_max_offset) 2234 *(u_short *)&cbp->ucode[uc->bundle_max_offset] = 2235 sc->tunable_bundle_max; 2236 /* 2237 * Download the ucode to the chip. 2238 */ 2239 fxp_scb_wait(sc); 2240 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); 2241 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2242 /* ...and wait for it to complete. */ 2243 fxp_dma_wait(&cbp->cb_status, sc); 2244 device_printf(sc->dev, 2245 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 2246 sc->tunable_int_delay, 2247 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 2248 sc->flags |= FXP_FLAG_UCODE; 2249 } 2250 2251 static int 2252 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2253 { 2254 int error, value; 2255 2256 value = *(int *)arg1; 2257 error = sysctl_handle_int(oidp, &value, 0, req); 2258 if (error || !req->newptr) 2259 return (error); 2260 if (value < low || value > high) 2261 return (EINVAL); 2262 *(int *)arg1 = value; 2263 return (0); 2264 } 2265 2266 /* 2267 * Interrupt delay is expressed in microseconds, a multiplier is used 2268 * to convert this to the appropriate clock ticks before using. 2269 */ 2270 static int 2271 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 2272 { 2273 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 2274 } 2275 2276 static int 2277 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 2278 { 2279 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 2280 } 2281