xref: /dflybsd-src/sys/dev/netif/fxp/if_fxp.c (revision 39b5d600dedf02a61b8b1213f9fdaaee4b8292e0)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.37 2005/10/24 08:06:15 sephe Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include "opt_polling.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 #include <sys/thread2.h>
46 
47 #include <net/if.h>
48 #include <net/ifq_var.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #ifdef NS
53 #include <netns/ns.h>
54 #include <netns/ns_if.h>
55 #endif
56 
57 #include <net/bpf.h>
58 #include <sys/sockio.h>
59 #include <sys/bus.h>
60 #include <machine/bus.h>
61 #include <sys/rman.h>
62 #include <machine/resource.h>
63 
64 #include <net/ethernet.h>
65 #include <net/if_arp.h>
66 
67 #include <vm/vm.h>		/* for vtophys */
68 #include <vm/pmap.h>		/* for vtophys */
69 
70 #include <net/if_types.h>
71 #include <net/vlan/if_vlan_var.h>
72 
73 #include <bus/pci/pcivar.h>
74 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include "../mii_layer/mii.h"
77 #include "../mii_layer/miivar.h"
78 
79 #include "if_fxpreg.h"
80 #include "if_fxpvar.h"
81 #include "rcvbundl.h"
82 
83 #include "miibus_if.h"
84 
85 /*
86  * NOTE!  On the Alpha, we have an alignment constraint.  The
87  * card DMAs the packet immediately following the RFA.  However,
88  * the first thing in the packet is a 14-byte Ethernet header.
89  * This means that the packet is misaligned.  To compensate,
90  * we actually offset the RFA 2 bytes into the cluster.  This
91  * alignes the packet after the Ethernet header at a 32-bit
92  * boundary.  HOWEVER!  This means that the RFA is misaligned!
93  */
94 #define	RFA_ALIGNMENT_FUDGE	2
95 
96 /*
97  * Set initial transmit threshold at 64 (512 bytes). This is
98  * increased by 64 (512 bytes) at a time, to maximum of 192
99  * (1536 bytes), if an underrun occurs.
100  */
101 static int tx_threshold = 64;
102 
103 /*
104  * The configuration byte map has several undefined fields which
105  * must be one or must be zero.  Set up a template for these bits
106  * only, (assuming a 82557 chip) leaving the actual configuration
107  * to fxp_init.
108  *
109  * See struct fxp_cb_config for the bit definitions.
110  */
111 static u_char fxp_cb_config_template[] = {
112 	0x0, 0x0,		/* cb_status */
113 	0x0, 0x0,		/* cb_command */
114 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
115 	0x0,	/*  0 */
116 	0x0,	/*  1 */
117 	0x0,	/*  2 */
118 	0x0,	/*  3 */
119 	0x0,	/*  4 */
120 	0x0,	/*  5 */
121 	0x32,	/*  6 */
122 	0x0,	/*  7 */
123 	0x0,	/*  8 */
124 	0x0,	/*  9 */
125 	0x6,	/* 10 */
126 	0x0,	/* 11 */
127 	0x0,	/* 12 */
128 	0x0,	/* 13 */
129 	0xf2,	/* 14 */
130 	0x48,	/* 15 */
131 	0x0,	/* 16 */
132 	0x40,	/* 17 */
133 	0xf0,	/* 18 */
134 	0x0,	/* 19 */
135 	0x3f,	/* 20 */
136 	0x5	/* 21 */
137 };
138 
139 struct fxp_ident {
140 	u_int16_t	devid;
141 	int16_t		revid;		/* -1 matches anything */
142 	char 		*name;
143 };
144 
145 /*
146  * Claim various Intel PCI device identifiers for this driver.  The
147  * sub-vendor and sub-device field are extensively used to identify
148  * particular variants, but we don't currently differentiate between
149  * them.
150  */
151 static struct fxp_ident fxp_ident_table[] = {
152      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
153      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
154      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
156      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
158      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
163      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
165      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
166      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
167      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
169      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
170      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
171 	 { 0x1064,  -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
172      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
173      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
174      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
175      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
176      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
177      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
178      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
179      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
180      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
181      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
182      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
183      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
184      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
185      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
186      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
187      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
188      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
189      { 0,	-1,	NULL },
190 };
191 
192 static int		fxp_probe(device_t dev);
193 static int		fxp_attach(device_t dev);
194 static int		fxp_detach(device_t dev);
195 static int		fxp_shutdown(device_t dev);
196 static int		fxp_suspend(device_t dev);
197 static int		fxp_resume(device_t dev);
198 
199 static void		fxp_intr(void *xsc);
200 static void		fxp_intr_body(struct fxp_softc *sc,
201 				u_int8_t statack, int count);
202 
203 static void 		fxp_init(void *xsc);
204 static void 		fxp_tick(void *xsc);
205 static void		fxp_powerstate_d0(device_t dev);
206 static void 		fxp_start(struct ifnet *ifp);
207 static void		fxp_stop(struct fxp_softc *sc);
208 static void 		fxp_release(device_t dev);
209 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
210 			    caddr_t data, struct ucred *);
211 static void 		fxp_watchdog(struct ifnet *ifp);
212 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
213 static int		fxp_mc_addrs(struct fxp_softc *sc);
214 static void		fxp_mc_setup(struct fxp_softc *sc);
215 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
216 			    int autosize);
217 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
218 			    u_int16_t data);
219 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
220 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
221 			    int offset, int words);
222 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
223 			    int offset, int words);
224 static int		fxp_ifmedia_upd(struct ifnet *ifp);
225 static void		fxp_ifmedia_sts(struct ifnet *ifp,
226 			    struct ifmediareq *ifmr);
227 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
228 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
229 			    struct ifmediareq *ifmr);
230 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
231 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
232 			    int value);
233 static void		fxp_load_ucode(struct fxp_softc *sc);
234 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
235 			    int low, int high);
236 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
237 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
238 #ifdef DEVICE_POLLING
239 static poll_handler_t fxp_poll;
240 #endif
241 
242 static void		fxp_lwcopy(volatile u_int32_t *src,
243 			    volatile u_int32_t *dst);
244 static void 		fxp_scb_wait(struct fxp_softc *sc);
245 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
246 static void		fxp_dma_wait(volatile u_int16_t *status,
247 			    struct fxp_softc *sc);
248 
249 static device_method_t fxp_methods[] = {
250 	/* Device interface */
251 	DEVMETHOD(device_probe,		fxp_probe),
252 	DEVMETHOD(device_attach,	fxp_attach),
253 	DEVMETHOD(device_detach,	fxp_detach),
254 	DEVMETHOD(device_shutdown,	fxp_shutdown),
255 	DEVMETHOD(device_suspend,	fxp_suspend),
256 	DEVMETHOD(device_resume,	fxp_resume),
257 
258 	/* MII interface */
259 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
260 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
261 
262 	{ 0, 0 }
263 };
264 
265 static driver_t fxp_driver = {
266 	"fxp",
267 	fxp_methods,
268 	sizeof(struct fxp_softc),
269 };
270 
271 static devclass_t fxp_devclass;
272 
273 DECLARE_DUMMY_MODULE(if_fxp);
274 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
275 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
276 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
277 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
278 
279 static int fxp_rnr;
280 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
281 
282 /*
283  * Copy a 16-bit aligned 32-bit quantity.
284  */
285 static void
286 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
287 {
288 #ifdef __i386__
289 	*dst = *src;
290 #else
291 	volatile u_int16_t *a = (volatile u_int16_t *)src;
292 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
293 
294 	b[0] = a[0];
295 	b[1] = a[1];
296 #endif
297 }
298 
299 /*
300  * Wait for the previous command to be accepted (but not necessarily
301  * completed).
302  */
303 static void
304 fxp_scb_wait(struct fxp_softc *sc)
305 {
306 	int i = 10000;
307 
308 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
309 		DELAY(2);
310 	if (i == 0) {
311 		if_printf(&sc->arpcom.ac_if,
312 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
313 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
314 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
315 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
316 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
317 	}
318 }
319 
320 static void
321 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
322 {
323 
324 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
325 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
326 		fxp_scb_wait(sc);
327 	}
328 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
329 }
330 
331 static void
332 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
333 {
334 	int i = 10000;
335 
336 	while (!(*status & FXP_CB_STATUS_C) && --i)
337 		DELAY(2);
338 	if (i == 0)
339 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
340 }
341 
342 /*
343  * Return identification string if this is device is ours.
344  */
345 static int
346 fxp_probe(device_t dev)
347 {
348 	u_int16_t devid;
349 	u_int8_t revid;
350 	struct fxp_ident *ident;
351 
352 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
353 		devid = pci_get_device(dev);
354 		revid = pci_get_revid(dev);
355 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
356 			if (ident->devid == devid &&
357 			    (ident->revid == revid || ident->revid == -1)) {
358 				device_set_desc(dev, ident->name);
359 				return (0);
360 			}
361 		}
362 	}
363 	return (ENXIO);
364 }
365 
366 static void
367 fxp_powerstate_d0(device_t dev)
368 {
369 	u_int32_t iobase, membase, irq;
370 
371 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
372 		/* Save important PCI config data. */
373 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
374 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
375 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
376 
377 		/* Reset the power state. */
378 		device_printf(dev, "chip is in D%d power mode "
379 		    "-- setting to D0\n", pci_get_powerstate(dev));
380 
381 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
382 
383 		/* Restore PCI config data. */
384 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
385 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
386 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
387 	}
388 }
389 
390 static int
391 fxp_attach(device_t dev)
392 {
393 	int error = 0;
394 	struct fxp_softc *sc = device_get_softc(dev);
395 	struct ifnet *ifp;
396 	u_int32_t val;
397 	u_int16_t data;
398 	int i, rid, m1, m2, prefer_iomap;
399 
400 	callout_init(&sc->fxp_stat_timer);
401 	sysctl_ctx_init(&sc->sysctl_ctx);
402 
403 	/*
404 	 * Enable bus mastering. Enable memory space too, in case
405 	 * BIOS/Prom forgot about it.
406 	 */
407 	pci_enable_busmaster(dev);
408 	pci_enable_io(dev, SYS_RES_MEMORY);
409 	val = pci_read_config(dev, PCIR_COMMAND, 2);
410 
411 	fxp_powerstate_d0(dev);
412 
413 	/*
414 	 * Figure out which we should try first - memory mapping or i/o mapping?
415 	 * We default to memory mapping. Then we accept an override from the
416 	 * command line. Then we check to see which one is enabled.
417 	 */
418 	m1 = PCIM_CMD_MEMEN;
419 	m2 = PCIM_CMD_PORTEN;
420 	prefer_iomap = 0;
421 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
422 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
423 		m1 = PCIM_CMD_PORTEN;
424 		m2 = PCIM_CMD_MEMEN;
425 	}
426 
427 	if (val & m1) {
428 		sc->rtp =
429 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
430 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
431 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
432 		    RF_ACTIVE);
433 	}
434 	if (sc->mem == NULL && (val & m2)) {
435 		sc->rtp =
436 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
437 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
438 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
439             	    RF_ACTIVE);
440 	}
441 
442 	if (!sc->mem) {
443 		device_printf(dev, "could not map device registers\n");
444 		error = ENXIO;
445 		goto fail;
446         }
447 	if (bootverbose) {
448 		device_printf(dev, "using %s space register mapping\n",
449 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
450 	}
451 
452 	sc->sc_st = rman_get_bustag(sc->mem);
453 	sc->sc_sh = rman_get_bushandle(sc->mem);
454 
455 	/*
456 	 * Allocate our interrupt.
457 	 */
458 	rid = 0;
459 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
460 	    RF_SHAREABLE | RF_ACTIVE);
461 	if (sc->irq == NULL) {
462 		device_printf(dev, "could not map interrupt\n");
463 		error = ENXIO;
464 		goto fail;
465 	}
466 
467 	/*
468 	 * Reset to a stable state.
469 	 */
470 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
471 	DELAY(10);
472 
473 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
474 	    M_DEVBUF, M_WAITOK | M_ZERO);
475 
476 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
477 	    M_WAITOK | M_ZERO);
478 
479 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
480 
481 	/*
482 	 * Pre-allocate our receive buffers.
483 	 */
484 	for (i = 0; i < FXP_NRFABUFS; i++) {
485 		if (fxp_add_rfabuf(sc, NULL) != 0) {
486 			goto failmem;
487 		}
488 	}
489 
490 	/*
491 	 * Find out how large of an SEEPROM we have.
492 	 */
493 	fxp_autosize_eeprom(sc);
494 
495 	/*
496 	 * Determine whether we must use the 503 serial interface.
497 	 */
498 	fxp_read_eeprom(sc, &data, 6, 1);
499 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
500 	    (data & FXP_PHY_SERIAL_ONLY))
501 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
502 
503 	/*
504 	 * Create the sysctl tree
505 	 */
506 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
507 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
508 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
509 	if (sc->sysctl_tree == NULL)
510 		goto fail;
511 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
512 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
513 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
514 	    "FXP driver receive interrupt microcode bundling delay");
515 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
516 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
517 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
518 	    "FXP driver receive interrupt microcode bundle size limit");
519 
520 	/*
521 	 * Pull in device tunables.
522 	 */
523 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
524 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
525 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
526 	    "int_delay", &sc->tunable_int_delay);
527 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
528 	    "bundle_max", &sc->tunable_bundle_max);
529 
530 	/*
531 	 * Find out the chip revision; lump all 82557 revs together.
532 	 */
533 	fxp_read_eeprom(sc, &data, 5, 1);
534 	if ((data >> 8) == 1)
535 		sc->revision = FXP_REV_82557;
536 	else
537 		sc->revision = pci_get_revid(dev);
538 
539 	/*
540 	 * Enable workarounds for certain chip revision deficiencies.
541 	 *
542 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
543 	 * some systems based a normal 82559 design, have a defect where
544 	 * the chip can cause a PCI protocol violation if it receives
545 	 * a CU_RESUME command when it is entering the IDLE state.  The
546 	 * workaround is to disable Dynamic Standby Mode, so the chip never
547 	 * deasserts CLKRUN#, and always remains in an active state.
548 	 *
549 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
550 	 */
551 	i = pci_get_device(dev);
552 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
553 	    sc->revision >= FXP_REV_82559_A0) {
554 		fxp_read_eeprom(sc, &data, 10, 1);
555 		if (data & 0x02) {			/* STB enable */
556 			u_int16_t cksum;
557 			int i;
558 
559 			device_printf(dev,
560 			    "Disabling dynamic standby mode in EEPROM\n");
561 			data &= ~0x02;
562 			fxp_write_eeprom(sc, &data, 10, 1);
563 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
564 			cksum = 0;
565 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
566 				fxp_read_eeprom(sc, &data, i, 1);
567 				cksum += data;
568 			}
569 			i = (1 << sc->eeprom_size) - 1;
570 			cksum = 0xBABA - cksum;
571 			fxp_read_eeprom(sc, &data, i, 1);
572 			fxp_write_eeprom(sc, &cksum, i, 1);
573 			device_printf(dev,
574 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
575 			    i, data, cksum);
576 #if 1
577 			/*
578 			 * If the user elects to continue, try the software
579 			 * workaround, as it is better than nothing.
580 			 */
581 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
582 #endif
583 		}
584 	}
585 
586 	/*
587 	 * If we are not a 82557 chip, we can enable extended features.
588 	 */
589 	if (sc->revision != FXP_REV_82557) {
590 		/*
591 		 * If MWI is enabled in the PCI configuration, and there
592 		 * is a valid cacheline size (8 or 16 dwords), then tell
593 		 * the board to turn on MWI.
594 		 */
595 		if (val & PCIM_CMD_MWRICEN &&
596 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
597 			sc->flags |= FXP_FLAG_MWI_ENABLE;
598 
599 		/* turn on the extended TxCB feature */
600 		sc->flags |= FXP_FLAG_EXT_TXCB;
601 
602 		/* enable reception of long frames for VLAN */
603 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
604 	}
605 
606 	/*
607 	 * Read MAC address.
608 	 */
609 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
610 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
611 		device_printf(dev, "10Mbps\n");
612 	if (bootverbose) {
613 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
614 		    pci_get_vendor(dev), pci_get_device(dev),
615 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
616 		    pci_get_revid(dev));
617 		fxp_read_eeprom(sc, &data, 10, 1);
618 		device_printf(dev, "Dynamic Standby mode is %s\n",
619 		    data & 0x02 ? "enabled" : "disabled");
620 	}
621 
622 	/*
623 	 * If this is only a 10Mbps device, then there is no MII, and
624 	 * the PHY will use a serial interface instead.
625 	 *
626 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
627 	 * doesn't have a programming interface of any sort.  The
628 	 * media is sensed automatically based on how the link partner
629 	 * is configured.  This is, in essence, manual configuration.
630 	 */
631 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
632 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
633 		    fxp_serial_ifmedia_sts);
634 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
635 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
636 	} else {
637 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
638 		    fxp_ifmedia_sts)) {
639 	                device_printf(dev, "MII without any PHY!\n");
640 			error = ENXIO;
641 			goto fail;
642 		}
643 	}
644 
645 	ifp = &sc->arpcom.ac_if;
646 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
647 	ifp->if_baudrate = 100000000;
648 	ifp->if_init = fxp_init;
649 	ifp->if_softc = sc;
650 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
651 	ifp->if_ioctl = fxp_ioctl;
652 	ifp->if_start = fxp_start;
653 #ifdef DEVICE_POLLING
654 	ifp->if_poll = fxp_poll;
655 #endif
656 	ifp->if_watchdog = fxp_watchdog;
657 
658 	/*
659 	 * Attach the interface.
660 	 */
661 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
662 
663 	/*
664 	 * Tell the upper layer(s) we support long frames.
665 	 */
666 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
667 
668 	/*
669 	 * Let the system queue as many packets as we have available
670 	 * TX descriptors.
671 	 */
672 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
673 	ifq_set_ready(&ifp->if_snd);
674 
675 	error = bus_setup_intr(dev, sc->irq, 0,
676 			       fxp_intr, sc, &sc->ih, NULL);
677 	if (error) {
678 		ether_ifdetach(ifp);
679 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
680 			ifmedia_removeall(&sc->sc_media);
681 		device_printf(dev, "could not setup irq\n");
682 		goto fail;
683 	}
684 
685 	return (0);
686 
687 failmem:
688 	device_printf(dev, "Failed to malloc memory\n");
689 	error = ENOMEM;
690 fail:
691 	fxp_release(dev);
692 	return (error);
693 }
694 
695 /*
696  * release all resources
697  */
698 static void
699 fxp_release(device_t dev)
700 {
701 	struct fxp_softc *sc = device_get_softc(dev);
702 
703 	if (sc->miibus)
704 		device_delete_child(dev, sc->miibus);
705 	bus_generic_detach(dev);
706 
707 	if (sc->cbl_base)
708 		free(sc->cbl_base, M_DEVBUF);
709 	if (sc->fxp_stats)
710 		free(sc->fxp_stats, M_DEVBUF);
711 	if (sc->mcsp)
712 		free(sc->mcsp, M_DEVBUF);
713 	if (sc->rfa_headm)
714 		m_freem(sc->rfa_headm);
715 
716 	if (sc->irq)
717 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
718 	if (sc->mem)
719 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
720 
721         sysctl_ctx_free(&sc->sysctl_ctx);
722 }
723 
724 /*
725  * Detach interface.
726  */
727 static int
728 fxp_detach(device_t dev)
729 {
730 	struct fxp_softc *sc = device_get_softc(dev);
731 
732 	/* disable interrupts */
733 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
734 
735 	crit_enter();
736 
737 	/*
738 	 * Stop DMA and drop transmit queue.
739 	 */
740 	fxp_stop(sc);
741 
742 	/*
743 	 * Close down routes etc.
744 	 */
745 	ether_ifdetach(&sc->arpcom.ac_if);
746 
747 	/*
748 	 * Free all media structures.
749 	 */
750 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
751 		ifmedia_removeall(&sc->sc_media);
752 
753 	if (sc->ih)
754 		bus_teardown_intr(dev, sc->irq, sc->ih);
755 
756 	crit_exit();
757 
758 	/* Release our allocated resources. */
759 	fxp_release(dev);
760 
761 	return (0);
762 }
763 
764 /*
765  * Device shutdown routine. Called at system shutdown after sync. The
766  * main purpose of this routine is to shut off receiver DMA so that
767  * kernel memory doesn't get clobbered during warmboot.
768  */
769 static int
770 fxp_shutdown(device_t dev)
771 {
772 	/*
773 	 * Make sure that DMA is disabled prior to reboot. Not doing
774 	 * do could allow DMA to corrupt kernel memory during the
775 	 * reboot before the driver initializes.
776 	 */
777 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
778 	return (0);
779 }
780 
781 /*
782  * Device suspend routine.  Stop the interface and save some PCI
783  * settings in case the BIOS doesn't restore them properly on
784  * resume.
785  */
786 static int
787 fxp_suspend(device_t dev)
788 {
789 	struct fxp_softc *sc = device_get_softc(dev);
790 	int i;
791 
792 	crit_enter();
793 
794 	fxp_stop(sc);
795 
796 	for (i = 0; i < 5; i++)
797 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
798 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
799 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
800 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
801 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
802 
803 	sc->suspended = 1;
804 
805 	crit_exit();
806 	return (0);
807 }
808 
809 /*
810  * Device resume routine.  Restore some PCI settings in case the BIOS
811  * doesn't, re-enable busmastering, and restart the interface if
812  * appropriate.
813  */
814 static int
815 fxp_resume(device_t dev)
816 {
817 	struct fxp_softc *sc = device_get_softc(dev);
818 	struct ifnet *ifp = &sc->arpcom.ac_if;
819 	int i;
820 
821 	crit_enter();
822 
823 	fxp_powerstate_d0(dev);
824 
825 	/* better way to do this? */
826 	for (i = 0; i < 5; i++)
827 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
828 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
829 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
830 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
831 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
832 
833 	/* reenable busmastering and memory space */
834 	pci_enable_busmaster(dev);
835 	pci_enable_io(dev, SYS_RES_MEMORY);
836 
837 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
838 	DELAY(10);
839 
840 	/* reinitialize interface if necessary */
841 	if (ifp->if_flags & IFF_UP)
842 		fxp_init(sc);
843 
844 	sc->suspended = 0;
845 
846 	crit_exit();
847 	return (0);
848 }
849 
850 static void
851 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
852 {
853 	u_int16_t reg;
854 	int x;
855 
856 	/*
857 	 * Shift in data.
858 	 */
859 	for (x = 1 << (length - 1); x; x >>= 1) {
860 		if (data & x)
861 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
862 		else
863 			reg = FXP_EEPROM_EECS;
864 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
865 		DELAY(1);
866 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
867 		DELAY(1);
868 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
869 		DELAY(1);
870 	}
871 }
872 
873 /*
874  * Read from the serial EEPROM. Basically, you manually shift in
875  * the read opcode (one bit at a time) and then shift in the address,
876  * and then you shift out the data (all of this one bit at a time).
877  * The word size is 16 bits, so you have to provide the address for
878  * every 16 bits of data.
879  */
880 static u_int16_t
881 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
882 {
883 	u_int16_t reg, data;
884 	int x;
885 
886 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
887 	/*
888 	 * Shift in read opcode.
889 	 */
890 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
891 	/*
892 	 * Shift in address.
893 	 */
894 	data = 0;
895 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
896 		if (offset & x)
897 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
898 		else
899 			reg = FXP_EEPROM_EECS;
900 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
901 		DELAY(1);
902 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
903 		DELAY(1);
904 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
905 		DELAY(1);
906 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
907 		data++;
908 		if (autosize && reg == 0) {
909 			sc->eeprom_size = data;
910 			break;
911 		}
912 	}
913 	/*
914 	 * Shift out data.
915 	 */
916 	data = 0;
917 	reg = FXP_EEPROM_EECS;
918 	for (x = 1 << 15; x; x >>= 1) {
919 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
920 		DELAY(1);
921 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
922 			data |= x;
923 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
924 		DELAY(1);
925 	}
926 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
927 	DELAY(1);
928 
929 	return (data);
930 }
931 
932 static void
933 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
934 {
935 	int i;
936 
937 	/*
938 	 * Erase/write enable.
939 	 */
940 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
941 	fxp_eeprom_shiftin(sc, 0x4, 3);
942 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
943 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
944 	DELAY(1);
945 	/*
946 	 * Shift in write opcode, address, data.
947 	 */
948 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
949 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
950 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
951 	fxp_eeprom_shiftin(sc, data, 16);
952 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
953 	DELAY(1);
954 	/*
955 	 * Wait for EEPROM to finish up.
956 	 */
957 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
958 	DELAY(1);
959 	for (i = 0; i < 1000; i++) {
960 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
961 			break;
962 		DELAY(50);
963 	}
964 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
965 	DELAY(1);
966 	/*
967 	 * Erase/write disable.
968 	 */
969 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
970 	fxp_eeprom_shiftin(sc, 0x4, 3);
971 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
972 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
973 	DELAY(1);
974 }
975 
976 /*
977  * From NetBSD:
978  *
979  * Figure out EEPROM size.
980  *
981  * 559's can have either 64-word or 256-word EEPROMs, the 558
982  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
983  * talks about the existance of 16 to 256 word EEPROMs.
984  *
985  * The only known sizes are 64 and 256, where the 256 version is used
986  * by CardBus cards to store CIS information.
987  *
988  * The address is shifted in msb-to-lsb, and after the last
989  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
990  * after which follows the actual data. We try to detect this zero, by
991  * probing the data-out bit in the EEPROM control register just after
992  * having shifted in a bit. If the bit is zero, we assume we've
993  * shifted enough address bits. The data-out should be tri-state,
994  * before this, which should translate to a logical one.
995  */
996 static void
997 fxp_autosize_eeprom(struct fxp_softc *sc)
998 {
999 
1000 	/* guess maximum size of 256 words */
1001 	sc->eeprom_size = 8;
1002 
1003 	/* autosize */
1004 	(void) fxp_eeprom_getword(sc, 0, 1);
1005 }
1006 
1007 static void
1008 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1009 {
1010 	int i;
1011 
1012 	for (i = 0; i < words; i++)
1013 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1014 }
1015 
1016 static void
1017 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < words; i++)
1022 		fxp_eeprom_putword(sc, offset + i, data[i]);
1023 }
1024 
1025 /*
1026  * Start packet transmission on the interface.
1027  */
1028 static void
1029 fxp_start(struct ifnet *ifp)
1030 {
1031 	struct fxp_softc *sc = ifp->if_softc;
1032 	struct fxp_cb_tx *txp;
1033 
1034 	/*
1035 	 * See if we need to suspend xmit until the multicast filter
1036 	 * has been reprogrammed (which can only be done at the head
1037 	 * of the command chain).
1038 	 */
1039 	if (sc->need_mcsetup) {
1040 		return;
1041 	}
1042 
1043 	txp = NULL;
1044 
1045 	/*
1046 	 * We're finished if there is nothing more to add to the list or if
1047 	 * we're all filled up with buffers to transmit.
1048 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1049 	 *       a NOP command when needed.
1050 	 */
1051 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1052 		struct mbuf *m, *mb_head;
1053 		int segment, ntries = 0;
1054 
1055 		/*
1056 		 * Grab a packet to transmit. The packet is dequeued,
1057 		 * once we are sure that we have enough free descriptors.
1058 		 */
1059 		mb_head = ifq_poll(&ifp->if_snd);
1060 		if (mb_head == NULL)
1061 			break;
1062 
1063 		/*
1064 		 * Get pointer to next available tx desc.
1065 		 */
1066 		txp = sc->cbl_last->next;
1067 
1068 		/*
1069 		 * Go through each of the mbufs in the chain and initialize
1070 		 * the transmit buffer descriptors with the physical address
1071 		 * and size of the mbuf.
1072 		 */
1073 tbdinit:
1074 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1075 			if (m->m_len != 0) {
1076 				if (segment == FXP_NTXSEG)
1077 					break;
1078 				txp->tbd[segment].tb_addr =
1079 				    vtophys(mtod(m, vm_offset_t));
1080 				txp->tbd[segment].tb_size = m->m_len;
1081 				segment++;
1082 			}
1083 		}
1084 		if (m != NULL) {
1085 			struct mbuf *mn;
1086 
1087 			/*
1088 			 * We ran out of segments. We have to recopy this
1089 			 * mbuf chain first. Bail out if we can't get the
1090 			 * new buffers.
1091 			 */
1092 			if (ntries > 0)
1093 				break;
1094 			mn = m_dup(mb_head, MB_DONTWAIT);
1095 			if (mn == NULL)
1096 				break;
1097 			 /* We can transmit the packet, dequeue it. */
1098 			mb_head = ifq_dequeue(&ifp->if_snd);
1099 			m_freem(mb_head);
1100 			mb_head = mn;
1101 			ntries = 1;
1102 			goto tbdinit;
1103 		} else {
1104 			/* Nothing to worry about, just dequeue. */
1105 			mb_head = ifq_dequeue(&ifp->if_snd);
1106 		}
1107 
1108 		txp->tbd_number = segment;
1109 		txp->mb_head = mb_head;
1110 		txp->cb_status = 0;
1111 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1112 			txp->cb_command =
1113 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1114 			    FXP_CB_COMMAND_S;
1115 		} else {
1116 			txp->cb_command =
1117 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1118 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1119 			/*
1120 			 * Set a 5 second timer just in case we don't hear
1121 			 * from the card again.
1122 			 */
1123 			ifp->if_timer = 5;
1124 		}
1125 		txp->tx_threshold = tx_threshold;
1126 
1127 		/*
1128 		 * Advance the end of list forward.
1129 		 */
1130 
1131 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1132 		sc->cbl_last = txp;
1133 
1134 		/*
1135 		 * Advance the beginning of the list forward if there are
1136 		 * no other packets queued (when nothing is queued, cbl_first
1137 		 * sits on the last TxCB that was sent out).
1138 		 */
1139 		if (sc->tx_queued == 0)
1140 			sc->cbl_first = txp;
1141 
1142 		sc->tx_queued++;
1143 
1144 		BPF_MTAP(ifp, mb_head);
1145 	}
1146 
1147 	/*
1148 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1149 	 * going again if suspended.
1150 	 */
1151 	if (txp != NULL) {
1152 		fxp_scb_wait(sc);
1153 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1154 	}
1155 }
1156 
1157 #ifdef DEVICE_POLLING
1158 
1159 static void
1160 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1161 {
1162 	struct fxp_softc *sc = ifp->if_softc;
1163 	u_int8_t statack;
1164 
1165 	switch(cmd) {
1166 	case POLL_REGISTER:
1167 		/* disable interrupts */
1168 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1169 		break;
1170 	case POLL_DEREGISTER:
1171 		/* enable interrupts */
1172 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1173 		break;
1174 	default:
1175 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1176 			  FXP_SCB_STATACK_FR;
1177 		if (cmd == POLL_AND_CHECK_STATUS) {
1178 			u_int8_t tmp;
1179 
1180 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1181 			if (tmp == 0xff || tmp == 0)
1182 				return; /* nothing to do */
1183 			tmp &= ~statack;
1184 			/* ack what we can */
1185 			if (tmp != 0)
1186 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1187 			statack |= tmp;
1188 		}
1189 		fxp_intr_body(sc, statack, count);
1190 		break;
1191 	}
1192 }
1193 
1194 #endif /* DEVICE_POLLING */
1195 
1196 /*
1197  * Process interface interrupts.
1198  */
1199 static void
1200 fxp_intr(void *xsc)
1201 {
1202 	struct fxp_softc *sc = xsc;
1203 	u_int8_t statack;
1204 
1205 	if (sc->suspended) {
1206 		return;
1207 	}
1208 
1209 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1210 		/*
1211 		 * It should not be possible to have all bits set; the
1212 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1213 		 * all bits are set, this may indicate that the card has
1214 		 * been physically ejected, so ignore it.
1215 		 */
1216 		if (statack == 0xff)
1217 			return;
1218 
1219 		/*
1220 		 * First ACK all the interrupts in this pass.
1221 		 */
1222 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1223 		fxp_intr_body(sc, statack, -1);
1224 	}
1225 }
1226 
1227 static void
1228 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1229 {
1230 	struct ifnet *ifp = &sc->arpcom.ac_if;
1231 	struct mbuf *m;
1232 	struct fxp_rfa *rfa;
1233 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1234 
1235 	if (rnr)
1236 		fxp_rnr++;
1237 #ifdef DEVICE_POLLING
1238 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1239 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1240 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1241 		rnr = 1;
1242 	}
1243 #endif
1244 
1245 	/*
1246 	 * Free any finished transmit mbuf chains.
1247 	 *
1248 	 * Handle the CNA event likt a CXTNO event. It used to
1249 	 * be that this event (control unit not ready) was not
1250 	 * encountered, but it is now with the SMPng modifications.
1251 	 * The exact sequence of events that occur when the interface
1252 	 * is brought up are different now, and if this event
1253 	 * goes unhandled, the configuration/rxfilter setup sequence
1254 	 * can stall for several seconds. The result is that no
1255 	 * packets go out onto the wire for about 5 to 10 seconds
1256 	 * after the interface is ifconfig'ed for the first time.
1257 	 */
1258 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1259 		struct fxp_cb_tx *txp;
1260 
1261 		for (txp = sc->cbl_first; sc->tx_queued &&
1262 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1263 		    txp = txp->next) {
1264 			if ((m = txp->mb_head) != NULL) {
1265 				txp->mb_head = NULL;
1266 				sc->tx_queued--;
1267 				m_freem(m);
1268 			} else {
1269 				sc->tx_queued--;
1270 			}
1271 		}
1272 		sc->cbl_first = txp;
1273 		ifp->if_timer = 0;
1274 		if (sc->tx_queued == 0) {
1275 			if (sc->need_mcsetup)
1276 				fxp_mc_setup(sc);
1277 		}
1278 		/*
1279 		 * Try to start more packets transmitting.
1280 		 */
1281 		if (!ifq_is_empty(&ifp->if_snd))
1282 			(*ifp->if_start)(ifp);
1283 	}
1284 
1285 	/*
1286 	 * Just return if nothing happened on the receive side.
1287 	 */
1288 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1289 		return;
1290 
1291 	/*
1292 	 * Process receiver interrupts. If a no-resource (RNR)
1293 	 * condition exists, get whatever packets we can and
1294 	 * re-start the receiver.
1295 	 *
1296 	 * When using polling, we do not process the list to completion,
1297 	 * so when we get an RNR interrupt we must defer the restart
1298 	 * until we hit the last buffer with the C bit set.
1299 	 * If we run out of cycles and rfa_headm has the C bit set,
1300 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1301 	 * that the info will be used in the subsequent polling cycle.
1302 	 */
1303 	for (;;) {
1304 		m = sc->rfa_headm;
1305 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1306 		    RFA_ALIGNMENT_FUDGE);
1307 
1308 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1309 		if (count >= 0 && count-- == 0) {
1310 			if (rnr) {
1311 				/* Defer RNR processing until the next time. */
1312 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1313 				rnr = 0;
1314 			}
1315 			break;
1316 		}
1317 #endif /* DEVICE_POLLING */
1318 
1319 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1320 			break;
1321 
1322 		/*
1323 		 * Remove first packet from the chain.
1324 		 */
1325 		sc->rfa_headm = m->m_next;
1326 		m->m_next = NULL;
1327 
1328 		/*
1329 		 * Add a new buffer to the receive chain.
1330 		 * If this fails, the old buffer is recycled
1331 		 * instead.
1332 		 */
1333 		if (fxp_add_rfabuf(sc, m) == 0) {
1334 			int total_len;
1335 
1336 			/*
1337 			 * Fetch packet length (the top 2 bits of
1338 			 * actual_size are flags set by the controller
1339 			 * upon completion), and drop the packet in case
1340 			 * of bogus length or CRC errors.
1341 			 */
1342 			total_len = rfa->actual_size & 0x3fff;
1343 			if (total_len < sizeof(struct ether_header) ||
1344 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1345 				sizeof(struct fxp_rfa) ||
1346 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1347 				m_freem(m);
1348 				continue;
1349 			}
1350 			m->m_pkthdr.len = m->m_len = total_len;
1351 			(*ifp->if_input)(ifp, m);
1352 		}
1353 	}
1354 	if (rnr) {
1355 		fxp_scb_wait(sc);
1356 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1357 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1358 		    RFA_ALIGNMENT_FUDGE);
1359 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1360 	}
1361 }
1362 
1363 /*
1364  * Update packet in/out/collision statistics. The i82557 doesn't
1365  * allow you to access these counters without doing a fairly
1366  * expensive DMA to get _all_ of the statistics it maintains, so
1367  * we do this operation here only once per second. The statistics
1368  * counters in the kernel are updated from the previous dump-stats
1369  * DMA and then a new dump-stats DMA is started. The on-chip
1370  * counters are zeroed when the DMA completes. If we can't start
1371  * the DMA immediately, we don't wait - we just prepare to read
1372  * them again next time.
1373  */
1374 static void
1375 fxp_tick(void *xsc)
1376 {
1377 	struct fxp_softc *sc = xsc;
1378 	struct ifnet *ifp = &sc->arpcom.ac_if;
1379 	struct fxp_stats *sp = sc->fxp_stats;
1380 	struct fxp_cb_tx *txp;
1381 	struct mbuf *m;
1382 
1383 	ifp->if_opackets += sp->tx_good;
1384 	ifp->if_collisions += sp->tx_total_collisions;
1385 	if (sp->rx_good) {
1386 		ifp->if_ipackets += sp->rx_good;
1387 		sc->rx_idle_secs = 0;
1388 	} else {
1389 		/*
1390 		 * Receiver's been idle for another second.
1391 		 */
1392 		sc->rx_idle_secs++;
1393 	}
1394 	ifp->if_ierrors +=
1395 	    sp->rx_crc_errors +
1396 	    sp->rx_alignment_errors +
1397 	    sp->rx_rnr_errors +
1398 	    sp->rx_overrun_errors;
1399 	/*
1400 	 * If any transmit underruns occured, bump up the transmit
1401 	 * threshold by another 512 bytes (64 * 8).
1402 	 */
1403 	if (sp->tx_underruns) {
1404 		ifp->if_oerrors += sp->tx_underruns;
1405 		if (tx_threshold < 192)
1406 			tx_threshold += 64;
1407 	}
1408 
1409 	crit_enter();
1410 
1411 	/*
1412 	 * Release any xmit buffers that have completed DMA. This isn't
1413 	 * strictly necessary to do here, but it's advantagous for mbufs
1414 	 * with external storage to be released in a timely manner rather
1415 	 * than being defered for a potentially long time. This limits
1416 	 * the delay to a maximum of one second.
1417 	 */
1418 	for (txp = sc->cbl_first; sc->tx_queued &&
1419 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1420 	    txp = txp->next) {
1421 		if ((m = txp->mb_head) != NULL) {
1422 			txp->mb_head = NULL;
1423 			sc->tx_queued--;
1424 			m_freem(m);
1425 		} else {
1426 			sc->tx_queued--;
1427 		}
1428 	}
1429 	sc->cbl_first = txp;
1430 	/*
1431 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1432 	 * then assume the receiver has locked up and attempt to clear
1433 	 * the condition by reprogramming the multicast filter. This is
1434 	 * a work-around for a bug in the 82557 where the receiver locks
1435 	 * up if it gets certain types of garbage in the syncronization
1436 	 * bits prior to the packet header. This bug is supposed to only
1437 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1438 	 * mode as well (perhaps due to a 10/100 speed transition).
1439 	 */
1440 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1441 		sc->rx_idle_secs = 0;
1442 		fxp_mc_setup(sc);
1443 	}
1444 	/*
1445 	 * If there is no pending command, start another stats
1446 	 * dump. Otherwise punt for now.
1447 	 */
1448 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1449 		/*
1450 		 * Start another stats dump.
1451 		 */
1452 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1453 	} else {
1454 		/*
1455 		 * A previous command is still waiting to be accepted.
1456 		 * Just zero our copy of the stats and wait for the
1457 		 * next timer event to update them.
1458 		 */
1459 		sp->tx_good = 0;
1460 		sp->tx_underruns = 0;
1461 		sp->tx_total_collisions = 0;
1462 
1463 		sp->rx_good = 0;
1464 		sp->rx_crc_errors = 0;
1465 		sp->rx_alignment_errors = 0;
1466 		sp->rx_rnr_errors = 0;
1467 		sp->rx_overrun_errors = 0;
1468 	}
1469 	if (sc->miibus != NULL)
1470 		mii_tick(device_get_softc(sc->miibus));
1471 	/*
1472 	 * Schedule another timeout one second from now.
1473 	 */
1474 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1475 
1476 	crit_exit();
1477 }
1478 
1479 /*
1480  * Stop the interface. Cancels the statistics updater and resets
1481  * the interface.
1482  */
1483 static void
1484 fxp_stop(struct fxp_softc *sc)
1485 {
1486 	struct ifnet *ifp = &sc->arpcom.ac_if;
1487 	struct fxp_cb_tx *txp;
1488 	int i;
1489 
1490 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1491 	ifp->if_timer = 0;
1492 
1493 	/*
1494 	 * Cancel stats updater.
1495 	 */
1496 	callout_stop(&sc->fxp_stat_timer);
1497 
1498 	/*
1499 	 * Issue software reset, which also unloads the microcode.
1500 	 */
1501 	sc->flags &= ~FXP_FLAG_UCODE;
1502 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1503 	DELAY(50);
1504 
1505 	/*
1506 	 * Release any xmit buffers.
1507 	 */
1508 	txp = sc->cbl_base;
1509 	if (txp != NULL) {
1510 		for (i = 0; i < FXP_NTXCB; i++) {
1511 			if (txp[i].mb_head != NULL) {
1512 				m_freem(txp[i].mb_head);
1513 				txp[i].mb_head = NULL;
1514 			}
1515 		}
1516 	}
1517 	sc->tx_queued = 0;
1518 
1519 	/*
1520 	 * Free all the receive buffers then reallocate/reinitialize
1521 	 */
1522 	if (sc->rfa_headm != NULL)
1523 		m_freem(sc->rfa_headm);
1524 	sc->rfa_headm = NULL;
1525 	sc->rfa_tailm = NULL;
1526 	for (i = 0; i < FXP_NRFABUFS; i++) {
1527 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1528 			/*
1529 			 * This "can't happen" - we're at splimp()
1530 			 * and we just freed all the buffers we need
1531 			 * above.
1532 			 */
1533 			panic("fxp_stop: no buffers!");
1534 		}
1535 	}
1536 }
1537 
1538 /*
1539  * Watchdog/transmission transmit timeout handler. Called when a
1540  * transmission is started on the interface, but no interrupt is
1541  * received before the timeout. This usually indicates that the
1542  * card has wedged for some reason.
1543  */
1544 static void
1545 fxp_watchdog(struct ifnet *ifp)
1546 {
1547 	if_printf(ifp, "device timeout\n");
1548 	ifp->if_oerrors++;
1549 	fxp_init(ifp->if_softc);
1550 }
1551 
1552 static void
1553 fxp_init(void *xsc)
1554 {
1555 	struct fxp_softc *sc = xsc;
1556 	struct ifnet *ifp = &sc->arpcom.ac_if;
1557 	struct fxp_cb_config *cbp;
1558 	struct fxp_cb_ias *cb_ias;
1559 	struct fxp_cb_tx *txp;
1560 	struct fxp_cb_mcs *mcsp;
1561 	int i, prm;
1562 
1563 	crit_enter();
1564 
1565 	/*
1566 	 * Cancel any pending I/O
1567 	 */
1568 	fxp_stop(sc);
1569 
1570 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1571 
1572 	/*
1573 	 * Initialize base of CBL and RFA memory. Loading with zero
1574 	 * sets it up for regular linear addressing.
1575 	 */
1576 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1577 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1578 
1579 	fxp_scb_wait(sc);
1580 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1581 
1582 	/*
1583 	 * Initialize base of dump-stats buffer.
1584 	 */
1585 	fxp_scb_wait(sc);
1586 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1587 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1588 
1589 	/*
1590 	 * Attempt to load microcode if requested.
1591 	 */
1592 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1593 		fxp_load_ucode(sc);
1594 
1595 	/*
1596 	 * Initialize the multicast address list.
1597 	 */
1598 	if (fxp_mc_addrs(sc)) {
1599 		mcsp = sc->mcsp;
1600 		mcsp->cb_status = 0;
1601 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1602 		mcsp->link_addr = -1;
1603 		/*
1604 	 	 * Start the multicast setup command.
1605 		 */
1606 		fxp_scb_wait(sc);
1607 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1608 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1609 		/* ...and wait for it to complete. */
1610 		fxp_dma_wait(&mcsp->cb_status, sc);
1611 	}
1612 
1613 	/*
1614 	 * We temporarily use memory that contains the TxCB list to
1615 	 * construct the config CB. The TxCB list memory is rebuilt
1616 	 * later.
1617 	 */
1618 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1619 
1620 	/*
1621 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1622 	 * zero and must be one bits in this structure and this is the easiest
1623 	 * way to initialize them all to proper values.
1624 	 */
1625 	bcopy(fxp_cb_config_template,
1626 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1627 		sizeof(fxp_cb_config_template));
1628 
1629 	cbp->cb_status =	0;
1630 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1631 	cbp->link_addr =	-1;	/* (no) next command */
1632 	cbp->byte_count =	22;	/* (22) bytes to config */
1633 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1634 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1635 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1636 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1637 	cbp->type_enable =	0;	/* actually reserved */
1638 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1639 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1640 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1641 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1642 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1643 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1644 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1645 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1646 	cbp->ci_int =		1;	/* interrupt on CU idle */
1647 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1648 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1649 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1650 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1651 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1652 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1653 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1654 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1655 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1656 	cbp->csma_dis =		0;	/* (don't) disable link */
1657 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1658 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1659 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1660 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1661 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1662 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1663 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1664 	cbp->loopback =		0;	/* (don't) loopback */
1665 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1666 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1667 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1668 	cbp->promiscuous =	prm;	/* promiscuous mode */
1669 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1670 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1671 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1672 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1673 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1674 
1675 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1676 	cbp->padding =		1;	/* (do) pad short tx packets */
1677 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1678 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1679 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1680 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1681 					/* must set wake_en in PMCSR also */
1682 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1683 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1684 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1685 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1686 
1687 	if (sc->revision == FXP_REV_82557) {
1688 		/*
1689 		 * The 82557 has no hardware flow control, the values
1690 		 * below are the defaults for the chip.
1691 		 */
1692 		cbp->fc_delay_lsb =	0;
1693 		cbp->fc_delay_msb =	0x40;
1694 		cbp->pri_fc_thresh =	3;
1695 		cbp->tx_fc_dis =	0;
1696 		cbp->rx_fc_restop =	0;
1697 		cbp->rx_fc_restart =	0;
1698 		cbp->fc_filter =	0;
1699 		cbp->pri_fc_loc =	1;
1700 	} else {
1701 		cbp->fc_delay_lsb =	0x1f;
1702 		cbp->fc_delay_msb =	0x01;
1703 		cbp->pri_fc_thresh =	3;
1704 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1705 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1706 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1707 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1708 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1709 	}
1710 
1711 	/*
1712 	 * Start the config command/DMA.
1713 	 */
1714 	fxp_scb_wait(sc);
1715 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1716 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1717 	/* ...and wait for it to complete. */
1718 	fxp_dma_wait(&cbp->cb_status, sc);
1719 
1720 	/*
1721 	 * Now initialize the station address. Temporarily use the TxCB
1722 	 * memory area like we did above for the config CB.
1723 	 */
1724 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1725 	cb_ias->cb_status = 0;
1726 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1727 	cb_ias->link_addr = -1;
1728 	bcopy(sc->arpcom.ac_enaddr,
1729 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1730 	    sizeof(sc->arpcom.ac_enaddr));
1731 
1732 	/*
1733 	 * Start the IAS (Individual Address Setup) command/DMA.
1734 	 */
1735 	fxp_scb_wait(sc);
1736 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1737 	/* ...and wait for it to complete. */
1738 	fxp_dma_wait(&cb_ias->cb_status, sc);
1739 
1740 	/*
1741 	 * Initialize transmit control block (TxCB) list.
1742 	 */
1743 
1744 	txp = sc->cbl_base;
1745 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1746 	for (i = 0; i < FXP_NTXCB; i++) {
1747 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1748 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1749 		txp[i].link_addr =
1750 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1751 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1752 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1753 		else
1754 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1755 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1756 	}
1757 	/*
1758 	 * Set the suspend flag on the first TxCB and start the control
1759 	 * unit. It will execute the NOP and then suspend.
1760 	 */
1761 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1762 	sc->cbl_first = sc->cbl_last = txp;
1763 	sc->tx_queued = 1;
1764 
1765 	fxp_scb_wait(sc);
1766 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1767 
1768 	/*
1769 	 * Initialize receiver buffer area - RFA.
1770 	 */
1771 	fxp_scb_wait(sc);
1772 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1773 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1774 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1775 
1776 	/*
1777 	 * Set current media.
1778 	 */
1779 	if (sc->miibus != NULL)
1780 		mii_mediachg(device_get_softc(sc->miibus));
1781 
1782 	ifp->if_flags |= IFF_RUNNING;
1783 	ifp->if_flags &= ~IFF_OACTIVE;
1784 
1785 	/*
1786 	 * Enable interrupts.
1787 	 */
1788 #ifdef DEVICE_POLLING
1789 	/*
1790 	 * ... but only do that if we are not polling. And because (presumably)
1791 	 * the default is interrupts on, we need to disable them explicitly!
1792 	 */
1793 	if ( ifp->if_flags & IFF_POLLING )
1794 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1795 	else
1796 #endif /* DEVICE_POLLING */
1797 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1798 
1799 	/*
1800 	 * Start stats updater.
1801 	 */
1802 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1803 
1804 	crit_exit();
1805 }
1806 
1807 static int
1808 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1809 {
1810 
1811 	return (0);
1812 }
1813 
1814 static void
1815 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1816 {
1817 
1818 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1819 }
1820 
1821 /*
1822  * Change media according to request.
1823  */
1824 static int
1825 fxp_ifmedia_upd(struct ifnet *ifp)
1826 {
1827 	struct fxp_softc *sc = ifp->if_softc;
1828 	struct mii_data *mii;
1829 
1830 	mii = device_get_softc(sc->miibus);
1831 	mii_mediachg(mii);
1832 	return (0);
1833 }
1834 
1835 /*
1836  * Notify the world which media we're using.
1837  */
1838 static void
1839 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1840 {
1841 	struct fxp_softc *sc = ifp->if_softc;
1842 	struct mii_data *mii;
1843 
1844 	mii = device_get_softc(sc->miibus);
1845 	mii_pollstat(mii);
1846 	ifmr->ifm_active = mii->mii_media_active;
1847 	ifmr->ifm_status = mii->mii_media_status;
1848 
1849 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1850 		sc->cu_resume_bug = 1;
1851 	else
1852 		sc->cu_resume_bug = 0;
1853 }
1854 
1855 /*
1856  * Add a buffer to the end of the RFA buffer list.
1857  * Return 0 if successful, 1 for failure. A failure results in
1858  * adding the 'oldm' (if non-NULL) on to the end of the list -
1859  * tossing out its old contents and recycling it.
1860  * The RFA struct is stuck at the beginning of mbuf cluster and the
1861  * data pointer is fixed up to point just past it.
1862  */
1863 static int
1864 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1865 {
1866 	u_int32_t v;
1867 	struct mbuf *m;
1868 	struct fxp_rfa *rfa, *p_rfa;
1869 
1870 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1871 	if (m == NULL) { /* try to recycle the old mbuf instead */
1872 		if (oldm == NULL)
1873 			return 1;
1874 		m = oldm;
1875 		m->m_data = m->m_ext.ext_buf;
1876 	}
1877 
1878 	/*
1879 	 * Move the data pointer up so that the incoming data packet
1880 	 * will be 32-bit aligned.
1881 	 */
1882 	m->m_data += RFA_ALIGNMENT_FUDGE;
1883 
1884 	/*
1885 	 * Get a pointer to the base of the mbuf cluster and move
1886 	 * data start past it.
1887 	 */
1888 	rfa = mtod(m, struct fxp_rfa *);
1889 	m->m_data += sizeof(struct fxp_rfa);
1890 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1891 
1892 	/*
1893 	 * Initialize the rest of the RFA.  Note that since the RFA
1894 	 * is misaligned, we cannot store values directly.  Instead,
1895 	 * we use an optimized, inline copy.
1896 	 */
1897 
1898 	rfa->rfa_status = 0;
1899 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1900 	rfa->actual_size = 0;
1901 
1902 	v = -1;
1903 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1904 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1905 
1906 	/*
1907 	 * If there are other buffers already on the list, attach this
1908 	 * one to the end by fixing up the tail to point to this one.
1909 	 */
1910 	if (sc->rfa_headm != NULL) {
1911 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1912 		    RFA_ALIGNMENT_FUDGE);
1913 		sc->rfa_tailm->m_next = m;
1914 		v = vtophys(rfa);
1915 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1916 		p_rfa->rfa_control = 0;
1917 	} else {
1918 		sc->rfa_headm = m;
1919 	}
1920 	sc->rfa_tailm = m;
1921 
1922 	return (m == oldm);
1923 }
1924 
1925 static volatile int
1926 fxp_miibus_readreg(device_t dev, int phy, int reg)
1927 {
1928 	struct fxp_softc *sc = device_get_softc(dev);
1929 	int count = 10000;
1930 	int value;
1931 
1932 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1933 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1934 
1935 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1936 	    && count--)
1937 		DELAY(10);
1938 
1939 	if (count <= 0)
1940 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1941 
1942 	return (value & 0xffff);
1943 }
1944 
1945 static void
1946 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1947 {
1948 	struct fxp_softc *sc = device_get_softc(dev);
1949 	int count = 10000;
1950 
1951 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1952 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1953 	    (value & 0xffff));
1954 
1955 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1956 	    count--)
1957 		DELAY(10);
1958 
1959 	if (count <= 0)
1960 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1961 }
1962 
1963 static int
1964 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1965 {
1966 	struct fxp_softc *sc = ifp->if_softc;
1967 	struct ifreq *ifr = (struct ifreq *)data;
1968 	struct mii_data *mii;
1969 	int error = 0;
1970 
1971 	crit_enter();
1972 
1973 	switch (command) {
1974 
1975 	case SIOCSIFFLAGS:
1976 		if (ifp->if_flags & IFF_ALLMULTI)
1977 			sc->flags |= FXP_FLAG_ALL_MCAST;
1978 		else
1979 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1980 
1981 		/*
1982 		 * If interface is marked up and not running, then start it.
1983 		 * If it is marked down and running, stop it.
1984 		 * XXX If it's up then re-initialize it. This is so flags
1985 		 * such as IFF_PROMISC are handled.
1986 		 */
1987 		if (ifp->if_flags & IFF_UP) {
1988 			fxp_init(sc);
1989 		} else {
1990 			if (ifp->if_flags & IFF_RUNNING)
1991 				fxp_stop(sc);
1992 		}
1993 		break;
1994 
1995 	case SIOCADDMULTI:
1996 	case SIOCDELMULTI:
1997 		if (ifp->if_flags & IFF_ALLMULTI)
1998 			sc->flags |= FXP_FLAG_ALL_MCAST;
1999 		else
2000 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2001 		/*
2002 		 * Multicast list has changed; set the hardware filter
2003 		 * accordingly.
2004 		 */
2005 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2006 			fxp_mc_setup(sc);
2007 		/*
2008 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2009 		 * again rather than else {}.
2010 		 */
2011 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2012 			fxp_init(sc);
2013 		error = 0;
2014 		break;
2015 
2016 	case SIOCSIFMEDIA:
2017 	case SIOCGIFMEDIA:
2018 		if (sc->miibus != NULL) {
2019 			mii = device_get_softc(sc->miibus);
2020                         error = ifmedia_ioctl(ifp, ifr,
2021                             &mii->mii_media, command);
2022 		} else {
2023                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2024 		}
2025 		break;
2026 
2027 	default:
2028 		error = ether_ioctl(ifp, command, data);
2029 		break;
2030 	}
2031 
2032 	crit_exit();
2033 
2034 	return (error);
2035 }
2036 
2037 /*
2038  * Fill in the multicast address list and return number of entries.
2039  */
2040 static int
2041 fxp_mc_addrs(struct fxp_softc *sc)
2042 {
2043 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2044 	struct ifnet *ifp = &sc->arpcom.ac_if;
2045 	struct ifmultiaddr *ifma;
2046 	int nmcasts;
2047 
2048 	nmcasts = 0;
2049 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2050 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2051 			if (ifma->ifma_addr->sa_family != AF_LINK)
2052 				continue;
2053 			if (nmcasts >= MAXMCADDR) {
2054 				sc->flags |= FXP_FLAG_ALL_MCAST;
2055 				nmcasts = 0;
2056 				break;
2057 			}
2058 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2059 			    (void *)(uintptr_t)(volatile void *)
2060 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2061 			nmcasts++;
2062 		}
2063 	}
2064 	mcsp->mc_cnt = nmcasts * 6;
2065 	return (nmcasts);
2066 }
2067 
2068 /*
2069  * Program the multicast filter.
2070  *
2071  * We have an artificial restriction that the multicast setup command
2072  * must be the first command in the chain, so we take steps to ensure
2073  * this. By requiring this, it allows us to keep up the performance of
2074  * the pre-initialized command ring (esp. link pointers) by not actually
2075  * inserting the mcsetup command in the ring - i.e. its link pointer
2076  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2077  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2078  * lead into the regular TxCB ring when it completes.
2079  *
2080  * This function must be called at splimp.
2081  */
2082 static void
2083 fxp_mc_setup(struct fxp_softc *sc)
2084 {
2085 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2086 	struct ifnet *ifp = &sc->arpcom.ac_if;
2087 	int count;
2088 
2089 	/*
2090 	 * If there are queued commands, we must wait until they are all
2091 	 * completed. If we are already waiting, then add a NOP command
2092 	 * with interrupt option so that we're notified when all commands
2093 	 * have been completed - fxp_start() ensures that no additional
2094 	 * TX commands will be added when need_mcsetup is true.
2095 	 */
2096 	if (sc->tx_queued) {
2097 		struct fxp_cb_tx *txp;
2098 
2099 		/*
2100 		 * need_mcsetup will be true if we are already waiting for the
2101 		 * NOP command to be completed (see below). In this case, bail.
2102 		 */
2103 		if (sc->need_mcsetup)
2104 			return;
2105 		sc->need_mcsetup = 1;
2106 
2107 		/*
2108 		 * Add a NOP command with interrupt so that we are notified
2109 		 * when all TX commands have been processed.
2110 		 */
2111 		txp = sc->cbl_last->next;
2112 		txp->mb_head = NULL;
2113 		txp->cb_status = 0;
2114 		txp->cb_command = FXP_CB_COMMAND_NOP |
2115 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2116 		/*
2117 		 * Advance the end of list forward.
2118 		 */
2119 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2120 		sc->cbl_last = txp;
2121 		sc->tx_queued++;
2122 		/*
2123 		 * Issue a resume in case the CU has just suspended.
2124 		 */
2125 		fxp_scb_wait(sc);
2126 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2127 		/*
2128 		 * Set a 5 second timer just in case we don't hear from the
2129 		 * card again.
2130 		 */
2131 		ifp->if_timer = 5;
2132 
2133 		return;
2134 	}
2135 	sc->need_mcsetup = 0;
2136 
2137 	/*
2138 	 * Initialize multicast setup descriptor.
2139 	 */
2140 	mcsp->next = sc->cbl_base;
2141 	mcsp->mb_head = NULL;
2142 	mcsp->cb_status = 0;
2143 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2144 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2145 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2146 	(void) fxp_mc_addrs(sc);
2147 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2148 	sc->tx_queued = 1;
2149 
2150 	/*
2151 	 * Wait until command unit is not active. This should never
2152 	 * be the case when nothing is queued, but make sure anyway.
2153 	 */
2154 	count = 100;
2155 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2156 	    FXP_SCB_CUS_ACTIVE && --count)
2157 		DELAY(10);
2158 	if (count == 0) {
2159 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2160 		return;
2161 	}
2162 
2163 	/*
2164 	 * Start the multicast setup command.
2165 	 */
2166 	fxp_scb_wait(sc);
2167 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2168 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2169 
2170 	ifp->if_timer = 2;
2171 	return;
2172 }
2173 
2174 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2175 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2176 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2177 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2178 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2179 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2180 
2181 #define UCODE(x)	x, sizeof(x)
2182 
2183 struct ucode {
2184 	u_int32_t	revision;
2185 	u_int32_t	*ucode;
2186 	int		length;
2187 	u_short		int_delay_offset;
2188 	u_short		bundle_max_offset;
2189 } ucode_table[] = {
2190 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2191 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2192 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2193 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2194 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2195 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2196 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2197 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2198 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2199 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2200 	{ 0, NULL, 0, 0, 0 }
2201 };
2202 
2203 static void
2204 fxp_load_ucode(struct fxp_softc *sc)
2205 {
2206 	struct ucode *uc;
2207 	struct fxp_cb_ucode *cbp;
2208 
2209 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2210 		if (sc->revision == uc->revision)
2211 			break;
2212 	if (uc->ucode == NULL)
2213 		return;
2214 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2215 	cbp->cb_status = 0;
2216 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2217 	cbp->link_addr = -1;    	/* (no) next command */
2218 	memcpy(cbp->ucode, uc->ucode, uc->length);
2219 	if (uc->int_delay_offset)
2220 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2221 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2222 	if (uc->bundle_max_offset)
2223 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2224 		    sc->tunable_bundle_max;
2225 	/*
2226 	 * Download the ucode to the chip.
2227 	 */
2228 	fxp_scb_wait(sc);
2229 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2230 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2231 	/* ...and wait for it to complete. */
2232 	fxp_dma_wait(&cbp->cb_status, sc);
2233 	if_printf(&sc->arpcom.ac_if,
2234 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2235 	    sc->tunable_int_delay,
2236 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2237 	sc->flags |= FXP_FLAG_UCODE;
2238 }
2239 
2240 static int
2241 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2242 {
2243 	int error, value;
2244 
2245 	value = *(int *)arg1;
2246 	error = sysctl_handle_int(oidp, &value, 0, req);
2247 	if (error || !req->newptr)
2248 		return (error);
2249 	if (value < low || value > high)
2250 		return (EINVAL);
2251 	*(int *)arg1 = value;
2252 	return (0);
2253 }
2254 
2255 /*
2256  * Interrupt delay is expressed in microseconds, a multiplier is used
2257  * to convert this to the appropriate clock ticks before using.
2258  */
2259 static int
2260 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2261 {
2262 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2263 }
2264 
2265 static int
2266 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2267 {
2268 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2269 }
2270