xref: /dflybsd-src/sys/dev/netif/fxp/if_fxp.c (revision 20de928f7e2934afb39de1e8ab6f66a704e55be0)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.28 2005/05/27 15:03:12 joerg Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 		/* #include <sys/mutex.h> */
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/if.h>
46 #include <net/ifq_var.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #ifdef NS
51 #include <netns/ns.h>
52 #include <netns/ns_if.h>
53 #endif
54 
55 #include <net/bpf.h>
56 #include <sys/sockio.h>
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 #include <vm/vm.h>		/* for vtophys */
66 #include <vm/pmap.h>		/* for vtophys */
67 #include <machine/clock.h>	/* for DELAY */
68 
69 #include <net/if_types.h>
70 #include <net/vlan/if_vlan_var.h>
71 
72 #include <bus/pci/pcivar.h>
73 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
74 
75 #include "../mii_layer/mii.h"
76 #include "../mii_layer/miivar.h"
77 
78 #include "if_fxpreg.h"
79 #include "if_fxpvar.h"
80 #include "rcvbundl.h"
81 
82 #include "miibus_if.h"
83 
84 /*
85  * NOTE!  On the Alpha, we have an alignment constraint.  The
86  * card DMAs the packet immediately following the RFA.  However,
87  * the first thing in the packet is a 14-byte Ethernet header.
88  * This means that the packet is misaligned.  To compensate,
89  * we actually offset the RFA 2 bytes into the cluster.  This
90  * alignes the packet after the Ethernet header at a 32-bit
91  * boundary.  HOWEVER!  This means that the RFA is misaligned!
92  */
93 #define	RFA_ALIGNMENT_FUDGE	2
94 
95 /*
96  * Set initial transmit threshold at 64 (512 bytes). This is
97  * increased by 64 (512 bytes) at a time, to maximum of 192
98  * (1536 bytes), if an underrun occurs.
99  */
100 static int tx_threshold = 64;
101 
102 /*
103  * The configuration byte map has several undefined fields which
104  * must be one or must be zero.  Set up a template for these bits
105  * only, (assuming a 82557 chip) leaving the actual configuration
106  * to fxp_init.
107  *
108  * See struct fxp_cb_config for the bit definitions.
109  */
110 static u_char fxp_cb_config_template[] = {
111 	0x0, 0x0,		/* cb_status */
112 	0x0, 0x0,		/* cb_command */
113 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
114 	0x0,	/*  0 */
115 	0x0,	/*  1 */
116 	0x0,	/*  2 */
117 	0x0,	/*  3 */
118 	0x0,	/*  4 */
119 	0x0,	/*  5 */
120 	0x32,	/*  6 */
121 	0x0,	/*  7 */
122 	0x0,	/*  8 */
123 	0x0,	/*  9 */
124 	0x6,	/* 10 */
125 	0x0,	/* 11 */
126 	0x0,	/* 12 */
127 	0x0,	/* 13 */
128 	0xf2,	/* 14 */
129 	0x48,	/* 15 */
130 	0x0,	/* 16 */
131 	0x40,	/* 17 */
132 	0xf0,	/* 18 */
133 	0x0,	/* 19 */
134 	0x3f,	/* 20 */
135 	0x5	/* 21 */
136 };
137 
138 struct fxp_ident {
139 	u_int16_t	devid;
140 	int16_t		revid;		/* -1 matches anything */
141 	char 		*name;
142 };
143 
144 /*
145  * Claim various Intel PCI device identifiers for this driver.  The
146  * sub-vendor and sub-device field are extensively used to identify
147  * particular variants, but we don't currently differentiate between
148  * them.
149  */
150 static struct fxp_ident fxp_ident_table[] = {
151      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
152      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
153      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
162      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
163      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
164      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
165      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
168      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
169      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
170 	 { 0x1064,  -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
171      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
172      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
173      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
174      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
175      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
176      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
177      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
178      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
179      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
180      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
181      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
182      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
183      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
184      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
185      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
186      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
187      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
188      { 0,	-1,	NULL },
189 };
190 
191 static int		fxp_probe(device_t dev);
192 static int		fxp_attach(device_t dev);
193 static int		fxp_detach(device_t dev);
194 static int		fxp_shutdown(device_t dev);
195 static int		fxp_suspend(device_t dev);
196 static int		fxp_resume(device_t dev);
197 
198 static void		fxp_intr(void *xsc);
199 static void		fxp_intr_body(struct fxp_softc *sc,
200 				u_int8_t statack, int count);
201 
202 static void 		fxp_init(void *xsc);
203 static void 		fxp_tick(void *xsc);
204 static void		fxp_powerstate_d0(device_t dev);
205 static void 		fxp_start(struct ifnet *ifp);
206 static void		fxp_stop(struct fxp_softc *sc);
207 static void 		fxp_release(struct fxp_softc *sc);
208 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
209 			    caddr_t data, struct ucred *);
210 static void 		fxp_watchdog(struct ifnet *ifp);
211 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
212 static int		fxp_mc_addrs(struct fxp_softc *sc);
213 static void		fxp_mc_setup(struct fxp_softc *sc);
214 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
215 			    int autosize);
216 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
217 			    u_int16_t data);
218 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
219 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
220 			    int offset, int words);
221 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
222 			    int offset, int words);
223 static int		fxp_ifmedia_upd(struct ifnet *ifp);
224 static void		fxp_ifmedia_sts(struct ifnet *ifp,
225 			    struct ifmediareq *ifmr);
226 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
227 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
228 			    struct ifmediareq *ifmr);
229 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
230 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
231 			    int value);
232 static void		fxp_load_ucode(struct fxp_softc *sc);
233 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
234 			    int low, int high);
235 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
236 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
237 #ifdef DEVICE_POLLING
238 static poll_handler_t fxp_poll;
239 #endif
240 
241 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
242 			    volatile u_int32_t *dst);
243 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
244 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
245 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
246 			    struct fxp_softc *sc);
247 
248 static device_method_t fxp_methods[] = {
249 	/* Device interface */
250 	DEVMETHOD(device_probe,		fxp_probe),
251 	DEVMETHOD(device_attach,	fxp_attach),
252 	DEVMETHOD(device_detach,	fxp_detach),
253 	DEVMETHOD(device_shutdown,	fxp_shutdown),
254 	DEVMETHOD(device_suspend,	fxp_suspend),
255 	DEVMETHOD(device_resume,	fxp_resume),
256 
257 	/* MII interface */
258 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
259 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
260 
261 	{ 0, 0 }
262 };
263 
264 static driver_t fxp_driver = {
265 	"fxp",
266 	fxp_methods,
267 	sizeof(struct fxp_softc),
268 };
269 
270 static devclass_t fxp_devclass;
271 
272 DECLARE_DUMMY_MODULE(if_fxp);
273 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
274 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
275 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
276 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
277 
278 static int fxp_rnr;
279 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
280 
281 /*
282  * Inline function to copy a 16-bit aligned 32-bit quantity.
283  */
284 static __inline void
285 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
286 {
287 #ifdef __i386__
288 	*dst = *src;
289 #else
290 	volatile u_int16_t *a = (volatile u_int16_t *)src;
291 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
292 
293 	b[0] = a[0];
294 	b[1] = a[1];
295 #endif
296 }
297 
298 /*
299  * Wait for the previous command to be accepted (but not necessarily
300  * completed).
301  */
302 static __inline void
303 fxp_scb_wait(struct fxp_softc *sc)
304 {
305 	int i = 10000;
306 
307 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
308 		DELAY(2);
309 	if (i == 0)
310 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
311 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
312 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
313 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
314 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
315 }
316 
317 static __inline void
318 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
319 {
320 
321 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
322 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
323 		fxp_scb_wait(sc);
324 	}
325 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
326 }
327 
328 static __inline void
329 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
330 {
331 	int i = 10000;
332 
333 	while (!(*status & FXP_CB_STATUS_C) && --i)
334 		DELAY(2);
335 	if (i == 0)
336 		device_printf(sc->dev, "DMA timeout\n");
337 }
338 
339 /*
340  * Return identification string if this is device is ours.
341  */
342 static int
343 fxp_probe(device_t dev)
344 {
345 	u_int16_t devid;
346 	u_int8_t revid;
347 	struct fxp_ident *ident;
348 
349 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
350 		devid = pci_get_device(dev);
351 		revid = pci_get_revid(dev);
352 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
353 			if (ident->devid == devid &&
354 			    (ident->revid == revid || ident->revid == -1)) {
355 				device_set_desc(dev, ident->name);
356 				return (0);
357 			}
358 		}
359 	}
360 	return (ENXIO);
361 }
362 
363 static void
364 fxp_powerstate_d0(device_t dev)
365 {
366 	u_int32_t iobase, membase, irq;
367 
368 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
369 		/* Save important PCI config data. */
370 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
371 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
372 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
373 
374 		/* Reset the power state. */
375 		device_printf(dev, "chip is in D%d power mode "
376 		    "-- setting to D0\n", pci_get_powerstate(dev));
377 
378 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
379 
380 		/* Restore PCI config data. */
381 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
382 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
383 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
384 	}
385 }
386 
387 static int
388 fxp_attach(device_t dev)
389 {
390 	int error = 0;
391 	struct fxp_softc *sc = device_get_softc(dev);
392 	struct ifnet *ifp;
393 	u_int32_t val;
394 	u_int16_t data;
395 	int i, rid, m1, m2, prefer_iomap;
396 	int s;
397 
398 	bzero(sc, sizeof(*sc));
399 	sc->dev = dev;
400 	callout_init(&sc->fxp_stat_timer);
401 	sysctl_ctx_init(&sc->sysctl_ctx);
402 
403 	s = splimp();
404 
405 	/*
406 	 * Enable bus mastering. Enable memory space too, in case
407 	 * BIOS/Prom forgot about it.
408 	 */
409 	val = pci_read_config(dev, PCIR_COMMAND, 2);
410 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
411 	pci_write_config(dev, PCIR_COMMAND, val, 2);
412 	val = pci_read_config(dev, PCIR_COMMAND, 2);
413 
414 	fxp_powerstate_d0(dev);
415 
416 	/*
417 	 * Figure out which we should try first - memory mapping or i/o mapping?
418 	 * We default to memory mapping. Then we accept an override from the
419 	 * command line. Then we check to see which one is enabled.
420 	 */
421 	m1 = PCIM_CMD_MEMEN;
422 	m2 = PCIM_CMD_PORTEN;
423 	prefer_iomap = 0;
424 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
425 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
426 		m1 = PCIM_CMD_PORTEN;
427 		m2 = PCIM_CMD_MEMEN;
428 	}
429 
430 	if (val & m1) {
431 		sc->rtp =
432 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
433 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
434 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
435 		    RF_ACTIVE);
436 	}
437 	if (sc->mem == NULL && (val & m2)) {
438 		sc->rtp =
439 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
440 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
441 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
442             	    RF_ACTIVE);
443 	}
444 
445 	if (!sc->mem) {
446 		device_printf(dev, "could not map device registers\n");
447 		error = ENXIO;
448 		goto fail;
449         }
450 	if (bootverbose) {
451 		device_printf(dev, "using %s space register mapping\n",
452 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
453 	}
454 
455 	sc->sc_st = rman_get_bustag(sc->mem);
456 	sc->sc_sh = rman_get_bushandle(sc->mem);
457 
458 	/*
459 	 * Allocate our interrupt.
460 	 */
461 	rid = 0;
462 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
463 	    RF_SHAREABLE | RF_ACTIVE);
464 	if (sc->irq == NULL) {
465 		device_printf(dev, "could not map interrupt\n");
466 		error = ENXIO;
467 		goto fail;
468 	}
469 
470 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
471 			       fxp_intr, sc, &sc->ih, NULL);
472 	if (error) {
473 		device_printf(dev, "could not setup irq\n");
474 		goto fail;
475 	}
476 
477 	/*
478 	 * Reset to a stable state.
479 	 */
480 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
481 	DELAY(10);
482 
483 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
484 	    M_DEVBUF, M_WAITOK | M_ZERO);
485 
486 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
487 	    M_WAITOK | M_ZERO);
488 
489 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
490 
491 	/*
492 	 * Pre-allocate our receive buffers.
493 	 */
494 	for (i = 0; i < FXP_NRFABUFS; i++) {
495 		if (fxp_add_rfabuf(sc, NULL) != 0) {
496 			goto failmem;
497 		}
498 	}
499 
500 	/*
501 	 * Find out how large of an SEEPROM we have.
502 	 */
503 	fxp_autosize_eeprom(sc);
504 
505 	/*
506 	 * Determine whether we must use the 503 serial interface.
507 	 */
508 	fxp_read_eeprom(sc, &data, 6, 1);
509 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
510 	    (data & FXP_PHY_SERIAL_ONLY))
511 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
512 
513 	/*
514 	 * Create the sysctl tree
515 	 */
516 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
517 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
518 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
519 	if (sc->sysctl_tree == NULL)
520 		goto fail;
521 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
522 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
523 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
524 	    "FXP driver receive interrupt microcode bundling delay");
525 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
526 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
527 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
528 	    "FXP driver receive interrupt microcode bundle size limit");
529 
530 	/*
531 	 * Pull in device tunables.
532 	 */
533 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
534 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
535 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
536 	    "int_delay", &sc->tunable_int_delay);
537 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
538 	    "bundle_max", &sc->tunable_bundle_max);
539 
540 	/*
541 	 * Find out the chip revision; lump all 82557 revs together.
542 	 */
543 	fxp_read_eeprom(sc, &data, 5, 1);
544 	if ((data >> 8) == 1)
545 		sc->revision = FXP_REV_82557;
546 	else
547 		sc->revision = pci_get_revid(dev);
548 
549 	/*
550 	 * Enable workarounds for certain chip revision deficiencies.
551 	 *
552 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
553 	 * some systems based a normal 82559 design, have a defect where
554 	 * the chip can cause a PCI protocol violation if it receives
555 	 * a CU_RESUME command when it is entering the IDLE state.  The
556 	 * workaround is to disable Dynamic Standby Mode, so the chip never
557 	 * deasserts CLKRUN#, and always remains in an active state.
558 	 *
559 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
560 	 */
561 	i = pci_get_device(dev);
562 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
563 	    sc->revision >= FXP_REV_82559_A0) {
564 		fxp_read_eeprom(sc, &data, 10, 1);
565 		if (data & 0x02) {			/* STB enable */
566 			u_int16_t cksum;
567 			int i;
568 
569 			device_printf(dev,
570 			    "Disabling dynamic standby mode in EEPROM\n");
571 			data &= ~0x02;
572 			fxp_write_eeprom(sc, &data, 10, 1);
573 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
574 			cksum = 0;
575 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
576 				fxp_read_eeprom(sc, &data, i, 1);
577 				cksum += data;
578 			}
579 			i = (1 << sc->eeprom_size) - 1;
580 			cksum = 0xBABA - cksum;
581 			fxp_read_eeprom(sc, &data, i, 1);
582 			fxp_write_eeprom(sc, &cksum, i, 1);
583 			device_printf(dev,
584 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
585 			    i, data, cksum);
586 #if 1
587 			/*
588 			 * If the user elects to continue, try the software
589 			 * workaround, as it is better than nothing.
590 			 */
591 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
592 #endif
593 		}
594 	}
595 
596 	/*
597 	 * If we are not a 82557 chip, we can enable extended features.
598 	 */
599 	if (sc->revision != FXP_REV_82557) {
600 		/*
601 		 * If MWI is enabled in the PCI configuration, and there
602 		 * is a valid cacheline size (8 or 16 dwords), then tell
603 		 * the board to turn on MWI.
604 		 */
605 		if (val & PCIM_CMD_MWRICEN &&
606 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
607 			sc->flags |= FXP_FLAG_MWI_ENABLE;
608 
609 		/* turn on the extended TxCB feature */
610 		sc->flags |= FXP_FLAG_EXT_TXCB;
611 
612 		/* enable reception of long frames for VLAN */
613 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
614 	}
615 
616 	/*
617 	 * Read MAC address.
618 	 */
619 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
620 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
621 		device_printf(dev, "10Mbps");
622 	if (bootverbose) {
623 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
624 		    pci_get_vendor(dev), pci_get_device(dev),
625 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
626 		    pci_get_revid(dev));
627 		fxp_read_eeprom(sc, &data, 10, 1);
628 		device_printf(dev, "Dynamic Standby mode is %s\n",
629 		    data & 0x02 ? "enabled" : "disabled");
630 	}
631 
632 	/*
633 	 * If this is only a 10Mbps device, then there is no MII, and
634 	 * the PHY will use a serial interface instead.
635 	 *
636 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
637 	 * doesn't have a programming interface of any sort.  The
638 	 * media is sensed automatically based on how the link partner
639 	 * is configured.  This is, in essence, manual configuration.
640 	 */
641 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
642 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
643 		    fxp_serial_ifmedia_sts);
644 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
645 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
646 	} else {
647 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
648 		    fxp_ifmedia_sts)) {
649 	                device_printf(dev, "MII without any PHY!\n");
650 			error = ENXIO;
651 			goto fail;
652 		}
653 	}
654 
655 	ifp = &sc->arpcom.ac_if;
656 	if_initname(ifp, "fxp", device_get_unit(dev));
657 	ifp->if_baudrate = 100000000;
658 	ifp->if_init = fxp_init;
659 	ifp->if_softc = sc;
660 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661 	ifp->if_ioctl = fxp_ioctl;
662 	ifp->if_start = fxp_start;
663 #ifdef DEVICE_POLLING
664 	ifp->if_poll = fxp_poll;
665 #endif
666 	ifp->if_watchdog = fxp_watchdog;
667 
668 	/*
669 	 * Attach the interface.
670 	 */
671 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
672 
673 	/*
674 	 * Tell the upper layer(s) we support long frames.
675 	 */
676 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
677 
678 	/*
679 	 * Let the system queue as many packets as we have available
680 	 * TX descriptors.
681 	 */
682 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
683 	ifq_set_ready(&ifp->if_snd);
684 
685 	splx(s);
686 	return (0);
687 
688 failmem:
689 	device_printf(dev, "Failed to malloc memory\n");
690 	error = ENOMEM;
691 fail:
692 	splx(s);
693 	fxp_release(sc);
694 	return (error);
695 }
696 
697 /*
698  * release all resources
699  */
700 static void
701 fxp_release(struct fxp_softc *sc)
702 {
703 
704 	bus_generic_detach(sc->dev);
705 	if (sc->miibus)
706 		device_delete_child(sc->dev, sc->miibus);
707 
708 	if (sc->cbl_base)
709 		free(sc->cbl_base, M_DEVBUF);
710 	if (sc->fxp_stats)
711 		free(sc->fxp_stats, M_DEVBUF);
712 	if (sc->mcsp)
713 		free(sc->mcsp, M_DEVBUF);
714 	if (sc->rfa_headm)
715 		m_freem(sc->rfa_headm);
716 
717 	if (sc->ih)
718 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
719 	if (sc->irq)
720 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
721 	if (sc->mem)
722 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
723 
724         sysctl_ctx_free(&sc->sysctl_ctx);
725 }
726 
727 /*
728  * Detach interface.
729  */
730 static int
731 fxp_detach(device_t dev)
732 {
733 	struct fxp_softc *sc = device_get_softc(dev);
734 	int s;
735 
736 	/* disable interrupts */
737 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
738 
739 	s = splimp();
740 
741 	/*
742 	 * Stop DMA and drop transmit queue.
743 	 */
744 	fxp_stop(sc);
745 
746 	/*
747 	 * Close down routes etc.
748 	 */
749 	ether_ifdetach(&sc->arpcom.ac_if);
750 
751 	/*
752 	 * Free all media structures.
753 	 */
754 	ifmedia_removeall(&sc->sc_media);
755 
756 	splx(s);
757 
758 	/* Release our allocated resources. */
759 	fxp_release(sc);
760 
761 	return (0);
762 }
763 
764 /*
765  * Device shutdown routine. Called at system shutdown after sync. The
766  * main purpose of this routine is to shut off receiver DMA so that
767  * kernel memory doesn't get clobbered during warmboot.
768  */
769 static int
770 fxp_shutdown(device_t dev)
771 {
772 	/*
773 	 * Make sure that DMA is disabled prior to reboot. Not doing
774 	 * do could allow DMA to corrupt kernel memory during the
775 	 * reboot before the driver initializes.
776 	 */
777 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
778 	return (0);
779 }
780 
781 /*
782  * Device suspend routine.  Stop the interface and save some PCI
783  * settings in case the BIOS doesn't restore them properly on
784  * resume.
785  */
786 static int
787 fxp_suspend(device_t dev)
788 {
789 	struct fxp_softc *sc = device_get_softc(dev);
790 	int i, s;
791 
792 	s = splimp();
793 
794 	fxp_stop(sc);
795 
796 	for (i = 0; i < 5; i++)
797 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
798 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
799 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
800 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
801 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
802 
803 	sc->suspended = 1;
804 
805 	splx(s);
806 	return (0);
807 }
808 
809 /*
810  * Device resume routine.  Restore some PCI settings in case the BIOS
811  * doesn't, re-enable busmastering, and restart the interface if
812  * appropriate.
813  */
814 static int
815 fxp_resume(device_t dev)
816 {
817 	struct fxp_softc *sc = device_get_softc(dev);
818 	struct ifnet *ifp = &sc->arpcom.ac_if;
819 	u_int16_t pci_command;
820 	int i, s;
821 
822 	s = splimp();
823 
824 	fxp_powerstate_d0(dev);
825 
826 	/* better way to do this? */
827 	for (i = 0; i < 5; i++)
828 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
829 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
830 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
831 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
832 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
833 
834 	/* reenable busmastering */
835 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
836 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
837 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
838 
839 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
840 	DELAY(10);
841 
842 	/* reinitialize interface if necessary */
843 	if (ifp->if_flags & IFF_UP)
844 		fxp_init(sc);
845 
846 	sc->suspended = 0;
847 
848 	splx(s);
849 	return (0);
850 }
851 
852 static void
853 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
854 {
855 	u_int16_t reg;
856 	int x;
857 
858 	/*
859 	 * Shift in data.
860 	 */
861 	for (x = 1 << (length - 1); x; x >>= 1) {
862 		if (data & x)
863 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
864 		else
865 			reg = FXP_EEPROM_EECS;
866 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
867 		DELAY(1);
868 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
869 		DELAY(1);
870 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
871 		DELAY(1);
872 	}
873 }
874 
875 /*
876  * Read from the serial EEPROM. Basically, you manually shift in
877  * the read opcode (one bit at a time) and then shift in the address,
878  * and then you shift out the data (all of this one bit at a time).
879  * The word size is 16 bits, so you have to provide the address for
880  * every 16 bits of data.
881  */
882 static u_int16_t
883 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
884 {
885 	u_int16_t reg, data;
886 	int x;
887 
888 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
889 	/*
890 	 * Shift in read opcode.
891 	 */
892 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
893 	/*
894 	 * Shift in address.
895 	 */
896 	data = 0;
897 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
898 		if (offset & x)
899 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
900 		else
901 			reg = FXP_EEPROM_EECS;
902 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
903 		DELAY(1);
904 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
905 		DELAY(1);
906 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
907 		DELAY(1);
908 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
909 		data++;
910 		if (autosize && reg == 0) {
911 			sc->eeprom_size = data;
912 			break;
913 		}
914 	}
915 	/*
916 	 * Shift out data.
917 	 */
918 	data = 0;
919 	reg = FXP_EEPROM_EECS;
920 	for (x = 1 << 15; x; x >>= 1) {
921 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
922 		DELAY(1);
923 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
924 			data |= x;
925 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
926 		DELAY(1);
927 	}
928 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
929 	DELAY(1);
930 
931 	return (data);
932 }
933 
934 static void
935 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
936 {
937 	int i;
938 
939 	/*
940 	 * Erase/write enable.
941 	 */
942 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
943 	fxp_eeprom_shiftin(sc, 0x4, 3);
944 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
945 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
946 	DELAY(1);
947 	/*
948 	 * Shift in write opcode, address, data.
949 	 */
950 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
951 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
952 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
953 	fxp_eeprom_shiftin(sc, data, 16);
954 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
955 	DELAY(1);
956 	/*
957 	 * Wait for EEPROM to finish up.
958 	 */
959 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
960 	DELAY(1);
961 	for (i = 0; i < 1000; i++) {
962 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
963 			break;
964 		DELAY(50);
965 	}
966 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
967 	DELAY(1);
968 	/*
969 	 * Erase/write disable.
970 	 */
971 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
972 	fxp_eeprom_shiftin(sc, 0x4, 3);
973 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
974 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
975 	DELAY(1);
976 }
977 
978 /*
979  * From NetBSD:
980  *
981  * Figure out EEPROM size.
982  *
983  * 559's can have either 64-word or 256-word EEPROMs, the 558
984  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
985  * talks about the existance of 16 to 256 word EEPROMs.
986  *
987  * The only known sizes are 64 and 256, where the 256 version is used
988  * by CardBus cards to store CIS information.
989  *
990  * The address is shifted in msb-to-lsb, and after the last
991  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
992  * after which follows the actual data. We try to detect this zero, by
993  * probing the data-out bit in the EEPROM control register just after
994  * having shifted in a bit. If the bit is zero, we assume we've
995  * shifted enough address bits. The data-out should be tri-state,
996  * before this, which should translate to a logical one.
997  */
998 static void
999 fxp_autosize_eeprom(struct fxp_softc *sc)
1000 {
1001 
1002 	/* guess maximum size of 256 words */
1003 	sc->eeprom_size = 8;
1004 
1005 	/* autosize */
1006 	(void) fxp_eeprom_getword(sc, 0, 1);
1007 }
1008 
1009 static void
1010 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1011 {
1012 	int i;
1013 
1014 	for (i = 0; i < words; i++)
1015 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1016 }
1017 
1018 static void
1019 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1020 {
1021 	int i;
1022 
1023 	for (i = 0; i < words; i++)
1024 		fxp_eeprom_putword(sc, offset + i, data[i]);
1025 }
1026 
1027 /*
1028  * Start packet transmission on the interface.
1029  */
1030 static void
1031 fxp_start(struct ifnet *ifp)
1032 {
1033 	struct fxp_softc *sc = ifp->if_softc;
1034 	struct fxp_cb_tx *txp;
1035 
1036 	/*
1037 	 * See if we need to suspend xmit until the multicast filter
1038 	 * has been reprogrammed (which can only be done at the head
1039 	 * of the command chain).
1040 	 */
1041 	if (sc->need_mcsetup) {
1042 		return;
1043 	}
1044 
1045 	txp = NULL;
1046 
1047 	/*
1048 	 * We're finished if there is nothing more to add to the list or if
1049 	 * we're all filled up with buffers to transmit.
1050 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1051 	 *       a NOP command when needed.
1052 	 */
1053 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1054 		struct mbuf *m, *mb_head;
1055 		int segment;
1056 
1057 		/*
1058 		 * Grab a packet to transmit. The packet is dequeued,
1059 		 * once we are sure that we have enough free descriptors.
1060 		 */
1061 		mb_head = ifq_poll(&ifp->if_snd);
1062 		if (mb_head == NULL)
1063 			break;
1064 
1065 		/*
1066 		 * Get pointer to next available tx desc.
1067 		 */
1068 		txp = sc->cbl_last->next;
1069 
1070 		/*
1071 		 * Go through each of the mbufs in the chain and initialize
1072 		 * the transmit buffer descriptors with the physical address
1073 		 * and size of the mbuf.
1074 		 */
1075 tbdinit:
1076 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1077 			if (m->m_len != 0) {
1078 				if (segment == FXP_NTXSEG)
1079 					break;
1080 				txp->tbd[segment].tb_addr =
1081 				    vtophys(mtod(m, vm_offset_t));
1082 				txp->tbd[segment].tb_size = m->m_len;
1083 				segment++;
1084 			}
1085 		}
1086 		if (m != NULL) {
1087 			struct mbuf *mn;
1088 
1089 			/*
1090 			 * We ran out of segments. We have to recopy this
1091 			 * mbuf chain first. Bail out if we can't get the
1092 			 * new buffers.
1093 			 */
1094 			MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1095 			if (mn == NULL)
1096 				break;
1097 			if (mb_head->m_pkthdr.len > MHLEN) {
1098 				MCLGET(mn, MB_DONTWAIT);
1099 				if ((mn->m_flags & M_EXT) == 0) {
1100 					m_freem(mn);
1101 					break;
1102 				}
1103 			}
1104 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1105 			    mtod(mn, caddr_t));
1106 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1107 			 /* We can transmit the packet, dequeue it. */
1108 			mb_head = ifq_dequeue(&ifp->if_snd);
1109 			m_freem(mb_head);
1110 			mb_head = mn;
1111 			goto tbdinit;
1112 		} else {
1113 			/* Nothing to worry about, just dequeue. */
1114 			mb_head = ifq_dequeue(&ifp->if_snd);
1115 		}
1116 
1117 		txp->tbd_number = segment;
1118 		txp->mb_head = mb_head;
1119 		txp->cb_status = 0;
1120 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1121 			txp->cb_command =
1122 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1123 			    FXP_CB_COMMAND_S;
1124 		} else {
1125 			txp->cb_command =
1126 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1127 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1128 			/*
1129 			 * Set a 5 second timer just in case we don't hear
1130 			 * from the card again.
1131 			 */
1132 			ifp->if_timer = 5;
1133 		}
1134 		txp->tx_threshold = tx_threshold;
1135 
1136 		/*
1137 		 * Advance the end of list forward.
1138 		 */
1139 
1140 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1141 		sc->cbl_last = txp;
1142 
1143 		/*
1144 		 * Advance the beginning of the list forward if there are
1145 		 * no other packets queued (when nothing is queued, cbl_first
1146 		 * sits on the last TxCB that was sent out).
1147 		 */
1148 		if (sc->tx_queued == 0)
1149 			sc->cbl_first = txp;
1150 
1151 		sc->tx_queued++;
1152 
1153 		BPF_MTAP(ifp, mb_head);
1154 	}
1155 
1156 	/*
1157 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1158 	 * going again if suspended.
1159 	 */
1160 	if (txp != NULL) {
1161 		fxp_scb_wait(sc);
1162 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1163 	}
1164 }
1165 
1166 #ifdef DEVICE_POLLING
1167 
1168 static void
1169 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1170 {
1171 	struct fxp_softc *sc = ifp->if_softc;
1172 	u_int8_t statack;
1173 
1174 	switch(cmd) {
1175 	case POLL_REGISTER:
1176 		/* disable interrupts */
1177 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1178 		break;
1179 	case POLL_DEREGISTER:
1180 		/* enable interrupts */
1181 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1182 		break;
1183 	default:
1184 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1185 			  FXP_SCB_STATACK_FR;
1186 		if (cmd == POLL_AND_CHECK_STATUS) {
1187 			u_int8_t tmp;
1188 
1189 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1190 			if (tmp == 0xff || tmp == 0)
1191 				return; /* nothing to do */
1192 			tmp &= ~statack;
1193 			/* ack what we can */
1194 			if (tmp != 0)
1195 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1196 			statack |= tmp;
1197 		}
1198 		fxp_intr_body(sc, statack, count);
1199 		break;
1200 	}
1201 }
1202 
1203 #endif /* DEVICE_POLLING */
1204 
1205 /*
1206  * Process interface interrupts.
1207  */
1208 static void
1209 fxp_intr(void *xsc)
1210 {
1211 	struct fxp_softc *sc = xsc;
1212 	u_int8_t statack;
1213 
1214 	if (sc->suspended) {
1215 		return;
1216 	}
1217 
1218 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1219 		/*
1220 		 * It should not be possible to have all bits set; the
1221 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1222 		 * all bits are set, this may indicate that the card has
1223 		 * been physically ejected, so ignore it.
1224 		 */
1225 		if (statack == 0xff)
1226 			return;
1227 
1228 		/*
1229 		 * First ACK all the interrupts in this pass.
1230 		 */
1231 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1232 		fxp_intr_body(sc, statack, -1);
1233 	}
1234 }
1235 
1236 static void
1237 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1238 {
1239 	struct ifnet *ifp = &sc->arpcom.ac_if;
1240 	struct mbuf *m;
1241 	struct fxp_rfa *rfa;
1242 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1243 
1244 	if (rnr)
1245 		fxp_rnr++;
1246 #ifdef DEVICE_POLLING
1247 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1248 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1249 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1250 		rnr = 1;
1251 	}
1252 #endif
1253 
1254 	/*
1255 	 * Free any finished transmit mbuf chains.
1256 	 *
1257 	 * Handle the CNA event likt a CXTNO event. It used to
1258 	 * be that this event (control unit not ready) was not
1259 	 * encountered, but it is now with the SMPng modifications.
1260 	 * The exact sequence of events that occur when the interface
1261 	 * is brought up are different now, and if this event
1262 	 * goes unhandled, the configuration/rxfilter setup sequence
1263 	 * can stall for several seconds. The result is that no
1264 	 * packets go out onto the wire for about 5 to 10 seconds
1265 	 * after the interface is ifconfig'ed for the first time.
1266 	 */
1267 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1268 		struct fxp_cb_tx *txp;
1269 
1270 		for (txp = sc->cbl_first; sc->tx_queued &&
1271 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1272 		    txp = txp->next) {
1273 			if ((m = txp->mb_head) != NULL) {
1274 				txp->mb_head = NULL;
1275 				sc->tx_queued--;
1276 				m_freem(m);
1277 			} else {
1278 				sc->tx_queued--;
1279 			}
1280 		}
1281 		sc->cbl_first = txp;
1282 		ifp->if_timer = 0;
1283 		if (sc->tx_queued == 0) {
1284 			if (sc->need_mcsetup)
1285 				fxp_mc_setup(sc);
1286 		}
1287 		/*
1288 		 * Try to start more packets transmitting.
1289 		 */
1290 		if (!ifq_is_empty(&ifp->if_snd))
1291 			(*ifp->if_start)(ifp);
1292 	}
1293 
1294 	/*
1295 	 * Just return if nothing happened on the receive side.
1296 	 */
1297 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1298 		return;
1299 
1300 	/*
1301 	 * Process receiver interrupts. If a no-resource (RNR)
1302 	 * condition exists, get whatever packets we can and
1303 	 * re-start the receiver.
1304 	 *
1305 	 * When using polling, we do not process the list to completion,
1306 	 * so when we get an RNR interrupt we must defer the restart
1307 	 * until we hit the last buffer with the C bit set.
1308 	 * If we run out of cycles and rfa_headm has the C bit set,
1309 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1310 	 * that the info will be used in the subsequent polling cycle.
1311 	 */
1312 	for (;;) {
1313 		m = sc->rfa_headm;
1314 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1315 		    RFA_ALIGNMENT_FUDGE);
1316 
1317 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1318 		if (count >= 0 && count-- == 0) {
1319 			if (rnr) {
1320 				/* Defer RNR processing until the next time. */
1321 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1322 				rnr = 0;
1323 			}
1324 			break;
1325 		}
1326 #endif /* DEVICE_POLLING */
1327 
1328 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1329 			break;
1330 
1331 		/*
1332 		 * Remove first packet from the chain.
1333 		 */
1334 		sc->rfa_headm = m->m_next;
1335 		m->m_next = NULL;
1336 
1337 		/*
1338 		 * Add a new buffer to the receive chain.
1339 		 * If this fails, the old buffer is recycled
1340 		 * instead.
1341 		 */
1342 		if (fxp_add_rfabuf(sc, m) == 0) {
1343 			int total_len;
1344 
1345 			/*
1346 			 * Fetch packet length (the top 2 bits of
1347 			 * actual_size are flags set by the controller
1348 			 * upon completion), and drop the packet in case
1349 			 * of bogus length or CRC errors.
1350 			 */
1351 			total_len = rfa->actual_size & 0x3fff;
1352 			if (total_len < sizeof(struct ether_header) ||
1353 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1354 				sizeof(struct fxp_rfa) ||
1355 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1356 				m_freem(m);
1357 				continue;
1358 			}
1359 			m->m_pkthdr.len = m->m_len = total_len;
1360 			(*ifp->if_input)(ifp, m);
1361 		}
1362 	}
1363 	if (rnr) {
1364 		fxp_scb_wait(sc);
1365 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1366 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1367 		    RFA_ALIGNMENT_FUDGE);
1368 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1369 	}
1370 }
1371 
1372 /*
1373  * Update packet in/out/collision statistics. The i82557 doesn't
1374  * allow you to access these counters without doing a fairly
1375  * expensive DMA to get _all_ of the statistics it maintains, so
1376  * we do this operation here only once per second. The statistics
1377  * counters in the kernel are updated from the previous dump-stats
1378  * DMA and then a new dump-stats DMA is started. The on-chip
1379  * counters are zeroed when the DMA completes. If we can't start
1380  * the DMA immediately, we don't wait - we just prepare to read
1381  * them again next time.
1382  */
1383 static void
1384 fxp_tick(void *xsc)
1385 {
1386 	struct fxp_softc *sc = xsc;
1387 	struct ifnet *ifp = &sc->arpcom.ac_if;
1388 	struct fxp_stats *sp = sc->fxp_stats;
1389 	struct fxp_cb_tx *txp;
1390 	struct mbuf *m;
1391 	int s;
1392 
1393 	ifp->if_opackets += sp->tx_good;
1394 	ifp->if_collisions += sp->tx_total_collisions;
1395 	if (sp->rx_good) {
1396 		ifp->if_ipackets += sp->rx_good;
1397 		sc->rx_idle_secs = 0;
1398 	} else {
1399 		/*
1400 		 * Receiver's been idle for another second.
1401 		 */
1402 		sc->rx_idle_secs++;
1403 	}
1404 	ifp->if_ierrors +=
1405 	    sp->rx_crc_errors +
1406 	    sp->rx_alignment_errors +
1407 	    sp->rx_rnr_errors +
1408 	    sp->rx_overrun_errors;
1409 	/*
1410 	 * If any transmit underruns occured, bump up the transmit
1411 	 * threshold by another 512 bytes (64 * 8).
1412 	 */
1413 	if (sp->tx_underruns) {
1414 		ifp->if_oerrors += sp->tx_underruns;
1415 		if (tx_threshold < 192)
1416 			tx_threshold += 64;
1417 	}
1418 	s = splimp();
1419 	/*
1420 	 * Release any xmit buffers that have completed DMA. This isn't
1421 	 * strictly necessary to do here, but it's advantagous for mbufs
1422 	 * with external storage to be released in a timely manner rather
1423 	 * than being defered for a potentially long time. This limits
1424 	 * the delay to a maximum of one second.
1425 	 */
1426 	for (txp = sc->cbl_first; sc->tx_queued &&
1427 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1428 	    txp = txp->next) {
1429 		if ((m = txp->mb_head) != NULL) {
1430 			txp->mb_head = NULL;
1431 			sc->tx_queued--;
1432 			m_freem(m);
1433 		} else {
1434 			sc->tx_queued--;
1435 		}
1436 	}
1437 	sc->cbl_first = txp;
1438 	/*
1439 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1440 	 * then assume the receiver has locked up and attempt to clear
1441 	 * the condition by reprogramming the multicast filter. This is
1442 	 * a work-around for a bug in the 82557 where the receiver locks
1443 	 * up if it gets certain types of garbage in the syncronization
1444 	 * bits prior to the packet header. This bug is supposed to only
1445 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1446 	 * mode as well (perhaps due to a 10/100 speed transition).
1447 	 */
1448 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1449 		sc->rx_idle_secs = 0;
1450 		fxp_mc_setup(sc);
1451 	}
1452 	/*
1453 	 * If there is no pending command, start another stats
1454 	 * dump. Otherwise punt for now.
1455 	 */
1456 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1457 		/*
1458 		 * Start another stats dump.
1459 		 */
1460 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1461 	} else {
1462 		/*
1463 		 * A previous command is still waiting to be accepted.
1464 		 * Just zero our copy of the stats and wait for the
1465 		 * next timer event to update them.
1466 		 */
1467 		sp->tx_good = 0;
1468 		sp->tx_underruns = 0;
1469 		sp->tx_total_collisions = 0;
1470 
1471 		sp->rx_good = 0;
1472 		sp->rx_crc_errors = 0;
1473 		sp->rx_alignment_errors = 0;
1474 		sp->rx_rnr_errors = 0;
1475 		sp->rx_overrun_errors = 0;
1476 	}
1477 	if (sc->miibus != NULL)
1478 		mii_tick(device_get_softc(sc->miibus));
1479 	splx(s);
1480 	/*
1481 	 * Schedule another timeout one second from now.
1482 	 */
1483 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1484 }
1485 
1486 /*
1487  * Stop the interface. Cancels the statistics updater and resets
1488  * the interface.
1489  */
1490 static void
1491 fxp_stop(struct fxp_softc *sc)
1492 {
1493 	struct ifnet *ifp = &sc->arpcom.ac_if;
1494 	struct fxp_cb_tx *txp;
1495 	int i;
1496 
1497 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1498 	ifp->if_timer = 0;
1499 
1500 	/*
1501 	 * Cancel stats updater.
1502 	 */
1503 	callout_stop(&sc->fxp_stat_timer);
1504 
1505 	/*
1506 	 * Issue software reset, which also unloads the microcode.
1507 	 */
1508 	sc->flags &= ~FXP_FLAG_UCODE;
1509 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1510 	DELAY(50);
1511 
1512 	/*
1513 	 * Release any xmit buffers.
1514 	 */
1515 	txp = sc->cbl_base;
1516 	if (txp != NULL) {
1517 		for (i = 0; i < FXP_NTXCB; i++) {
1518 			if (txp[i].mb_head != NULL) {
1519 				m_freem(txp[i].mb_head);
1520 				txp[i].mb_head = NULL;
1521 			}
1522 		}
1523 	}
1524 	sc->tx_queued = 0;
1525 
1526 	/*
1527 	 * Free all the receive buffers then reallocate/reinitialize
1528 	 */
1529 	if (sc->rfa_headm != NULL)
1530 		m_freem(sc->rfa_headm);
1531 	sc->rfa_headm = NULL;
1532 	sc->rfa_tailm = NULL;
1533 	for (i = 0; i < FXP_NRFABUFS; i++) {
1534 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1535 			/*
1536 			 * This "can't happen" - we're at splimp()
1537 			 * and we just freed all the buffers we need
1538 			 * above.
1539 			 */
1540 			panic("fxp_stop: no buffers!");
1541 		}
1542 	}
1543 }
1544 
1545 /*
1546  * Watchdog/transmission transmit timeout handler. Called when a
1547  * transmission is started on the interface, but no interrupt is
1548  * received before the timeout. This usually indicates that the
1549  * card has wedged for some reason.
1550  */
1551 static void
1552 fxp_watchdog(struct ifnet *ifp)
1553 {
1554 	struct fxp_softc *sc = ifp->if_softc;
1555 
1556 	device_printf(sc->dev, "device timeout\n");
1557 	ifp->if_oerrors++;
1558 
1559 	fxp_init(sc);
1560 }
1561 
1562 static void
1563 fxp_init(void *xsc)
1564 {
1565 	struct fxp_softc *sc = xsc;
1566 	struct ifnet *ifp = &sc->arpcom.ac_if;
1567 	struct fxp_cb_config *cbp;
1568 	struct fxp_cb_ias *cb_ias;
1569 	struct fxp_cb_tx *txp;
1570 	struct fxp_cb_mcs *mcsp;
1571 	int i, prm, s;
1572 
1573 	s = splimp();
1574 	/*
1575 	 * Cancel any pending I/O
1576 	 */
1577 	fxp_stop(sc);
1578 
1579 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1580 
1581 	/*
1582 	 * Initialize base of CBL and RFA memory. Loading with zero
1583 	 * sets it up for regular linear addressing.
1584 	 */
1585 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1586 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1587 
1588 	fxp_scb_wait(sc);
1589 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1590 
1591 	/*
1592 	 * Initialize base of dump-stats buffer.
1593 	 */
1594 	fxp_scb_wait(sc);
1595 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1596 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1597 
1598 	/*
1599 	 * Attempt to load microcode if requested.
1600 	 */
1601 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1602 		fxp_load_ucode(sc);
1603 
1604 	/*
1605 	 * Initialize the multicast address list.
1606 	 */
1607 	if (fxp_mc_addrs(sc)) {
1608 		mcsp = sc->mcsp;
1609 		mcsp->cb_status = 0;
1610 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1611 		mcsp->link_addr = -1;
1612 		/*
1613 	 	 * Start the multicast setup command.
1614 		 */
1615 		fxp_scb_wait(sc);
1616 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1617 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1618 		/* ...and wait for it to complete. */
1619 		fxp_dma_wait(&mcsp->cb_status, sc);
1620 	}
1621 
1622 	/*
1623 	 * We temporarily use memory that contains the TxCB list to
1624 	 * construct the config CB. The TxCB list memory is rebuilt
1625 	 * later.
1626 	 */
1627 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1628 
1629 	/*
1630 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1631 	 * zero and must be one bits in this structure and this is the easiest
1632 	 * way to initialize them all to proper values.
1633 	 */
1634 	bcopy(fxp_cb_config_template,
1635 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1636 		sizeof(fxp_cb_config_template));
1637 
1638 	cbp->cb_status =	0;
1639 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1640 	cbp->link_addr =	-1;	/* (no) next command */
1641 	cbp->byte_count =	22;	/* (22) bytes to config */
1642 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1643 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1644 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1645 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1646 	cbp->type_enable =	0;	/* actually reserved */
1647 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1648 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1649 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1650 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1651 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1652 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1653 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1654 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1655 	cbp->ci_int =		1;	/* interrupt on CU idle */
1656 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1657 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1658 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1659 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1660 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1661 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1662 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1663 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1664 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1665 	cbp->csma_dis =		0;	/* (don't) disable link */
1666 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1667 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1668 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1669 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1670 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1671 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1672 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1673 	cbp->loopback =		0;	/* (don't) loopback */
1674 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1675 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1676 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1677 	cbp->promiscuous =	prm;	/* promiscuous mode */
1678 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1679 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1680 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1681 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1682 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1683 
1684 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1685 	cbp->padding =		1;	/* (do) pad short tx packets */
1686 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1687 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1688 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1689 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1690 					/* must set wake_en in PMCSR also */
1691 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1692 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1693 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1694 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1695 
1696 	if (sc->revision == FXP_REV_82557) {
1697 		/*
1698 		 * The 82557 has no hardware flow control, the values
1699 		 * below are the defaults for the chip.
1700 		 */
1701 		cbp->fc_delay_lsb =	0;
1702 		cbp->fc_delay_msb =	0x40;
1703 		cbp->pri_fc_thresh =	3;
1704 		cbp->tx_fc_dis =	0;
1705 		cbp->rx_fc_restop =	0;
1706 		cbp->rx_fc_restart =	0;
1707 		cbp->fc_filter =	0;
1708 		cbp->pri_fc_loc =	1;
1709 	} else {
1710 		cbp->fc_delay_lsb =	0x1f;
1711 		cbp->fc_delay_msb =	0x01;
1712 		cbp->pri_fc_thresh =	3;
1713 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1714 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1715 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1716 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1717 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1718 	}
1719 
1720 	/*
1721 	 * Start the config command/DMA.
1722 	 */
1723 	fxp_scb_wait(sc);
1724 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1725 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1726 	/* ...and wait for it to complete. */
1727 	fxp_dma_wait(&cbp->cb_status, sc);
1728 
1729 	/*
1730 	 * Now initialize the station address. Temporarily use the TxCB
1731 	 * memory area like we did above for the config CB.
1732 	 */
1733 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1734 	cb_ias->cb_status = 0;
1735 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1736 	cb_ias->link_addr = -1;
1737 	bcopy(sc->arpcom.ac_enaddr,
1738 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1739 	    sizeof(sc->arpcom.ac_enaddr));
1740 
1741 	/*
1742 	 * Start the IAS (Individual Address Setup) command/DMA.
1743 	 */
1744 	fxp_scb_wait(sc);
1745 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1746 	/* ...and wait for it to complete. */
1747 	fxp_dma_wait(&cb_ias->cb_status, sc);
1748 
1749 	/*
1750 	 * Initialize transmit control block (TxCB) list.
1751 	 */
1752 
1753 	txp = sc->cbl_base;
1754 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1755 	for (i = 0; i < FXP_NTXCB; i++) {
1756 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1757 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1758 		txp[i].link_addr =
1759 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1760 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1761 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1762 		else
1763 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1764 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1765 	}
1766 	/*
1767 	 * Set the suspend flag on the first TxCB and start the control
1768 	 * unit. It will execute the NOP and then suspend.
1769 	 */
1770 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1771 	sc->cbl_first = sc->cbl_last = txp;
1772 	sc->tx_queued = 1;
1773 
1774 	fxp_scb_wait(sc);
1775 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1776 
1777 	/*
1778 	 * Initialize receiver buffer area - RFA.
1779 	 */
1780 	fxp_scb_wait(sc);
1781 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1782 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1783 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1784 
1785 	/*
1786 	 * Set current media.
1787 	 */
1788 	if (sc->miibus != NULL)
1789 		mii_mediachg(device_get_softc(sc->miibus));
1790 
1791 	ifp->if_flags |= IFF_RUNNING;
1792 	ifp->if_flags &= ~IFF_OACTIVE;
1793 
1794 	/*
1795 	 * Enable interrupts.
1796 	 */
1797 #ifdef DEVICE_POLLING
1798 	/*
1799 	 * ... but only do that if we are not polling. And because (presumably)
1800 	 * the default is interrupts on, we need to disable them explicitly!
1801 	 */
1802 	if ( ifp->if_flags & IFF_POLLING )
1803 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1804 	else
1805 #endif /* DEVICE_POLLING */
1806 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1807 	splx(s);
1808 
1809 	/*
1810 	 * Start stats updater.
1811 	 */
1812 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1813 }
1814 
1815 static int
1816 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1817 {
1818 
1819 	return (0);
1820 }
1821 
1822 static void
1823 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1824 {
1825 
1826 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1827 }
1828 
1829 /*
1830  * Change media according to request.
1831  */
1832 static int
1833 fxp_ifmedia_upd(struct ifnet *ifp)
1834 {
1835 	struct fxp_softc *sc = ifp->if_softc;
1836 	struct mii_data *mii;
1837 
1838 	mii = device_get_softc(sc->miibus);
1839 	mii_mediachg(mii);
1840 	return (0);
1841 }
1842 
1843 /*
1844  * Notify the world which media we're using.
1845  */
1846 static void
1847 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1848 {
1849 	struct fxp_softc *sc = ifp->if_softc;
1850 	struct mii_data *mii;
1851 
1852 	mii = device_get_softc(sc->miibus);
1853 	mii_pollstat(mii);
1854 	ifmr->ifm_active = mii->mii_media_active;
1855 	ifmr->ifm_status = mii->mii_media_status;
1856 
1857 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1858 		sc->cu_resume_bug = 1;
1859 	else
1860 		sc->cu_resume_bug = 0;
1861 }
1862 
1863 /*
1864  * Add a buffer to the end of the RFA buffer list.
1865  * Return 0 if successful, 1 for failure. A failure results in
1866  * adding the 'oldm' (if non-NULL) on to the end of the list -
1867  * tossing out its old contents and recycling it.
1868  * The RFA struct is stuck at the beginning of mbuf cluster and the
1869  * data pointer is fixed up to point just past it.
1870  */
1871 static int
1872 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1873 {
1874 	u_int32_t v;
1875 	struct mbuf *m;
1876 	struct fxp_rfa *rfa, *p_rfa;
1877 
1878 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1879 	if (m == NULL) { /* try to recycle the old mbuf instead */
1880 		if (oldm == NULL)
1881 			return 1;
1882 		m = oldm;
1883 		m->m_data = m->m_ext.ext_buf;
1884 	}
1885 
1886 	/*
1887 	 * Move the data pointer up so that the incoming data packet
1888 	 * will be 32-bit aligned.
1889 	 */
1890 	m->m_data += RFA_ALIGNMENT_FUDGE;
1891 
1892 	/*
1893 	 * Get a pointer to the base of the mbuf cluster and move
1894 	 * data start past it.
1895 	 */
1896 	rfa = mtod(m, struct fxp_rfa *);
1897 	m->m_data += sizeof(struct fxp_rfa);
1898 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1899 
1900 	/*
1901 	 * Initialize the rest of the RFA.  Note that since the RFA
1902 	 * is misaligned, we cannot store values directly.  Instead,
1903 	 * we use an optimized, inline copy.
1904 	 */
1905 
1906 	rfa->rfa_status = 0;
1907 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1908 	rfa->actual_size = 0;
1909 
1910 	v = -1;
1911 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1912 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1913 
1914 	/*
1915 	 * If there are other buffers already on the list, attach this
1916 	 * one to the end by fixing up the tail to point to this one.
1917 	 */
1918 	if (sc->rfa_headm != NULL) {
1919 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1920 		    RFA_ALIGNMENT_FUDGE);
1921 		sc->rfa_tailm->m_next = m;
1922 		v = vtophys(rfa);
1923 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1924 		p_rfa->rfa_control = 0;
1925 	} else {
1926 		sc->rfa_headm = m;
1927 	}
1928 	sc->rfa_tailm = m;
1929 
1930 	return (m == oldm);
1931 }
1932 
1933 static volatile int
1934 fxp_miibus_readreg(device_t dev, int phy, int reg)
1935 {
1936 	struct fxp_softc *sc = device_get_softc(dev);
1937 	int count = 10000;
1938 	int value;
1939 
1940 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1941 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1942 
1943 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1944 	    && count--)
1945 		DELAY(10);
1946 
1947 	if (count <= 0)
1948 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1949 
1950 	return (value & 0xffff);
1951 }
1952 
1953 static void
1954 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1955 {
1956 	struct fxp_softc *sc = device_get_softc(dev);
1957 	int count = 10000;
1958 
1959 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1960 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1961 	    (value & 0xffff));
1962 
1963 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1964 	    count--)
1965 		DELAY(10);
1966 
1967 	if (count <= 0)
1968 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1969 }
1970 
1971 static int
1972 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1973 {
1974 	struct fxp_softc *sc = ifp->if_softc;
1975 	struct ifreq *ifr = (struct ifreq *)data;
1976 	struct mii_data *mii;
1977 	int s, error = 0;
1978 
1979 	s = splimp();
1980 
1981 	switch (command) {
1982 
1983 	case SIOCSIFFLAGS:
1984 		if (ifp->if_flags & IFF_ALLMULTI)
1985 			sc->flags |= FXP_FLAG_ALL_MCAST;
1986 		else
1987 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1988 
1989 		/*
1990 		 * If interface is marked up and not running, then start it.
1991 		 * If it is marked down and running, stop it.
1992 		 * XXX If it's up then re-initialize it. This is so flags
1993 		 * such as IFF_PROMISC are handled.
1994 		 */
1995 		if (ifp->if_flags & IFF_UP) {
1996 			fxp_init(sc);
1997 		} else {
1998 			if (ifp->if_flags & IFF_RUNNING)
1999 				fxp_stop(sc);
2000 		}
2001 		break;
2002 
2003 	case SIOCADDMULTI:
2004 	case SIOCDELMULTI:
2005 		if (ifp->if_flags & IFF_ALLMULTI)
2006 			sc->flags |= FXP_FLAG_ALL_MCAST;
2007 		else
2008 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2009 		/*
2010 		 * Multicast list has changed; set the hardware filter
2011 		 * accordingly.
2012 		 */
2013 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2014 			fxp_mc_setup(sc);
2015 		/*
2016 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2017 		 * again rather than else {}.
2018 		 */
2019 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2020 			fxp_init(sc);
2021 		error = 0;
2022 		break;
2023 
2024 	case SIOCSIFMEDIA:
2025 	case SIOCGIFMEDIA:
2026 		if (sc->miibus != NULL) {
2027 			mii = device_get_softc(sc->miibus);
2028                         error = ifmedia_ioctl(ifp, ifr,
2029                             &mii->mii_media, command);
2030 		} else {
2031                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2032 		}
2033 		break;
2034 
2035 	default:
2036 		error = ether_ioctl(ifp, command, data);
2037 		break;
2038 	}
2039 	splx(s);
2040 	return (error);
2041 }
2042 
2043 /*
2044  * Fill in the multicast address list and return number of entries.
2045  */
2046 static int
2047 fxp_mc_addrs(struct fxp_softc *sc)
2048 {
2049 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2050 	struct ifnet *ifp = &sc->arpcom.ac_if;
2051 	struct ifmultiaddr *ifma;
2052 	int nmcasts;
2053 
2054 	nmcasts = 0;
2055 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2056 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2057 			if (ifma->ifma_addr->sa_family != AF_LINK)
2058 				continue;
2059 			if (nmcasts >= MAXMCADDR) {
2060 				sc->flags |= FXP_FLAG_ALL_MCAST;
2061 				nmcasts = 0;
2062 				break;
2063 			}
2064 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2065 			    (void *)(uintptr_t)(volatile void *)
2066 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2067 			nmcasts++;
2068 		}
2069 	}
2070 	mcsp->mc_cnt = nmcasts * 6;
2071 	return (nmcasts);
2072 }
2073 
2074 /*
2075  * Program the multicast filter.
2076  *
2077  * We have an artificial restriction that the multicast setup command
2078  * must be the first command in the chain, so we take steps to ensure
2079  * this. By requiring this, it allows us to keep up the performance of
2080  * the pre-initialized command ring (esp. link pointers) by not actually
2081  * inserting the mcsetup command in the ring - i.e. its link pointer
2082  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2083  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2084  * lead into the regular TxCB ring when it completes.
2085  *
2086  * This function must be called at splimp.
2087  */
2088 static void
2089 fxp_mc_setup(struct fxp_softc *sc)
2090 {
2091 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2092 	struct ifnet *ifp = &sc->arpcom.ac_if;
2093 	int count;
2094 
2095 	/*
2096 	 * If there are queued commands, we must wait until they are all
2097 	 * completed. If we are already waiting, then add a NOP command
2098 	 * with interrupt option so that we're notified when all commands
2099 	 * have been completed - fxp_start() ensures that no additional
2100 	 * TX commands will be added when need_mcsetup is true.
2101 	 */
2102 	if (sc->tx_queued) {
2103 		struct fxp_cb_tx *txp;
2104 
2105 		/*
2106 		 * need_mcsetup will be true if we are already waiting for the
2107 		 * NOP command to be completed (see below). In this case, bail.
2108 		 */
2109 		if (sc->need_mcsetup)
2110 			return;
2111 		sc->need_mcsetup = 1;
2112 
2113 		/*
2114 		 * Add a NOP command with interrupt so that we are notified
2115 		 * when all TX commands have been processed.
2116 		 */
2117 		txp = sc->cbl_last->next;
2118 		txp->mb_head = NULL;
2119 		txp->cb_status = 0;
2120 		txp->cb_command = FXP_CB_COMMAND_NOP |
2121 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2122 		/*
2123 		 * Advance the end of list forward.
2124 		 */
2125 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2126 		sc->cbl_last = txp;
2127 		sc->tx_queued++;
2128 		/*
2129 		 * Issue a resume in case the CU has just suspended.
2130 		 */
2131 		fxp_scb_wait(sc);
2132 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2133 		/*
2134 		 * Set a 5 second timer just in case we don't hear from the
2135 		 * card again.
2136 		 */
2137 		ifp->if_timer = 5;
2138 
2139 		return;
2140 	}
2141 	sc->need_mcsetup = 0;
2142 
2143 	/*
2144 	 * Initialize multicast setup descriptor.
2145 	 */
2146 	mcsp->next = sc->cbl_base;
2147 	mcsp->mb_head = NULL;
2148 	mcsp->cb_status = 0;
2149 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2150 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2151 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2152 	(void) fxp_mc_addrs(sc);
2153 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2154 	sc->tx_queued = 1;
2155 
2156 	/*
2157 	 * Wait until command unit is not active. This should never
2158 	 * be the case when nothing is queued, but make sure anyway.
2159 	 */
2160 	count = 100;
2161 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2162 	    FXP_SCB_CUS_ACTIVE && --count)
2163 		DELAY(10);
2164 	if (count == 0) {
2165 		device_printf(sc->dev, "command queue timeout\n");
2166 		return;
2167 	}
2168 
2169 	/*
2170 	 * Start the multicast setup command.
2171 	 */
2172 	fxp_scb_wait(sc);
2173 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2174 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2175 
2176 	ifp->if_timer = 2;
2177 	return;
2178 }
2179 
2180 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2181 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2182 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2183 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2184 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2185 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2186 
2187 #define UCODE(x)	x, sizeof(x)
2188 
2189 struct ucode {
2190 	u_int32_t	revision;
2191 	u_int32_t	*ucode;
2192 	int		length;
2193 	u_short		int_delay_offset;
2194 	u_short		bundle_max_offset;
2195 } ucode_table[] = {
2196 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2197 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2198 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2199 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2200 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2201 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2202 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2203 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2204 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2205 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2206 	{ 0, NULL, 0, 0, 0 }
2207 };
2208 
2209 static void
2210 fxp_load_ucode(struct fxp_softc *sc)
2211 {
2212 	struct ucode *uc;
2213 	struct fxp_cb_ucode *cbp;
2214 
2215 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2216 		if (sc->revision == uc->revision)
2217 			break;
2218 	if (uc->ucode == NULL)
2219 		return;
2220 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2221 	cbp->cb_status = 0;
2222 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2223 	cbp->link_addr = -1;    	/* (no) next command */
2224 	memcpy(cbp->ucode, uc->ucode, uc->length);
2225 	if (uc->int_delay_offset)
2226 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2227 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2228 	if (uc->bundle_max_offset)
2229 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2230 		    sc->tunable_bundle_max;
2231 	/*
2232 	 * Download the ucode to the chip.
2233 	 */
2234 	fxp_scb_wait(sc);
2235 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2236 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2237 	/* ...and wait for it to complete. */
2238 	fxp_dma_wait(&cbp->cb_status, sc);
2239 	device_printf(sc->dev,
2240 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2241 	    sc->tunable_int_delay,
2242 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2243 	sc->flags |= FXP_FLAG_UCODE;
2244 }
2245 
2246 static int
2247 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2248 {
2249 	int error, value;
2250 
2251 	value = *(int *)arg1;
2252 	error = sysctl_handle_int(oidp, &value, 0, req);
2253 	if (error || !req->newptr)
2254 		return (error);
2255 	if (value < low || value > high)
2256 		return (EINVAL);
2257 	*(int *)arg1 = value;
2258 	return (0);
2259 }
2260 
2261 /*
2262  * Interrupt delay is expressed in microseconds, a multiplier is used
2263  * to convert this to the appropriate clock ticks before using.
2264  */
2265 static int
2266 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2267 {
2268 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2269 }
2270 
2271 static int
2272 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2273 {
2274 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2275 }
2276