xref: /dflybsd-src/sys/dev/netif/fxp/if_fxp.c (revision 17ea22213f86a5c5966c1e6bf8e95f022ebb92b9)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.20 2005/01/31 15:39:12 joerg Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 		/* #include <sys/mutex.h> */
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 
49 #ifdef NS
50 #include <netns/ns.h>
51 #include <netns/ns_if.h>
52 #endif
53 
54 #include <net/bpf.h>
55 #include <sys/sockio.h>
56 #include <sys/bus.h>
57 #include <machine/bus.h>
58 #include <sys/rman.h>
59 #include <machine/resource.h>
60 
61 #include <net/ethernet.h>
62 #include <net/if_arp.h>
63 
64 #include <vm/vm.h>		/* for vtophys */
65 #include <vm/pmap.h>		/* for vtophys */
66 #include <machine/clock.h>	/* for DELAY */
67 
68 #include <net/if_types.h>
69 #include <net/vlan/if_vlan_var.h>
70 
71 #include <bus/pci/pcivar.h>
72 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
73 
74 #include "../mii_layer/mii.h"
75 #include "../mii_layer/miivar.h"
76 
77 #include "if_fxpreg.h"
78 #include "if_fxpvar.h"
79 #include "rcvbundl.h"
80 
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	int16_t		revid;		/* -1 matches anything */
140 	char 		*name;
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
151      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
152      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
162      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
167      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
168      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
169      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
170      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
171      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
172      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
173      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
174      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
175      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
176      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
177      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
178      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
179      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
180      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
181      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
182      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
183      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
184      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
185      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
186      { 0,	-1,	NULL },
187 };
188 
189 static int		fxp_probe(device_t dev);
190 static int		fxp_attach(device_t dev);
191 static int		fxp_detach(device_t dev);
192 static int		fxp_shutdown(device_t dev);
193 static int		fxp_suspend(device_t dev);
194 static int		fxp_resume(device_t dev);
195 
196 static void		fxp_intr(void *xsc);
197 static void		fxp_intr_body(struct fxp_softc *sc,
198 				u_int8_t statack, int count);
199 
200 static void 		fxp_init(void *xsc);
201 static void 		fxp_tick(void *xsc);
202 static void		fxp_powerstate_d0(device_t dev);
203 static void 		fxp_start(struct ifnet *ifp);
204 static void		fxp_stop(struct fxp_softc *sc);
205 static void 		fxp_release(struct fxp_softc *sc);
206 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
207 			    caddr_t data, struct ucred *);
208 static void 		fxp_watchdog(struct ifnet *ifp);
209 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
210 static int		fxp_mc_addrs(struct fxp_softc *sc);
211 static void		fxp_mc_setup(struct fxp_softc *sc);
212 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
213 			    int autosize);
214 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
215 			    u_int16_t data);
216 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
217 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
218 			    int offset, int words);
219 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
220 			    int offset, int words);
221 static int		fxp_ifmedia_upd(struct ifnet *ifp);
222 static void		fxp_ifmedia_sts(struct ifnet *ifp,
223 			    struct ifmediareq *ifmr);
224 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
225 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
226 			    struct ifmediareq *ifmr);
227 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
228 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
229 			    int value);
230 static void		fxp_load_ucode(struct fxp_softc *sc);
231 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
232 			    int low, int high);
233 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
234 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
235 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
236 			    volatile u_int32_t *dst);
237 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
238 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
239 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
240 			    struct fxp_softc *sc);
241 
242 static device_method_t fxp_methods[] = {
243 	/* Device interface */
244 	DEVMETHOD(device_probe,		fxp_probe),
245 	DEVMETHOD(device_attach,	fxp_attach),
246 	DEVMETHOD(device_detach,	fxp_detach),
247 	DEVMETHOD(device_shutdown,	fxp_shutdown),
248 	DEVMETHOD(device_suspend,	fxp_suspend),
249 	DEVMETHOD(device_resume,	fxp_resume),
250 
251 	/* MII interface */
252 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
253 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
254 
255 	{ 0, 0 }
256 };
257 
258 static driver_t fxp_driver = {
259 	"fxp",
260 	fxp_methods,
261 	sizeof(struct fxp_softc),
262 };
263 
264 static devclass_t fxp_devclass;
265 
266 DECLARE_DUMMY_MODULE(if_fxp);
267 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
268 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
269 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
270 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
271 
272 static int fxp_rnr;
273 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
274 
275 /*
276  * Inline function to copy a 16-bit aligned 32-bit quantity.
277  */
278 static __inline void
279 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
280 {
281 #ifdef __i386__
282 	*dst = *src;
283 #else
284 	volatile u_int16_t *a = (volatile u_int16_t *)src;
285 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
286 
287 	b[0] = a[0];
288 	b[1] = a[1];
289 #endif
290 }
291 
292 /*
293  * Wait for the previous command to be accepted (but not necessarily
294  * completed).
295  */
296 static __inline void
297 fxp_scb_wait(struct fxp_softc *sc)
298 {
299 	int i = 10000;
300 
301 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
302 		DELAY(2);
303 	if (i == 0)
304 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
305 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
306 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
307 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
308 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
309 }
310 
311 static __inline void
312 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
313 {
314 
315 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
316 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
317 		fxp_scb_wait(sc);
318 	}
319 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
320 }
321 
322 static __inline void
323 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
324 {
325 	int i = 10000;
326 
327 	while (!(*status & FXP_CB_STATUS_C) && --i)
328 		DELAY(2);
329 	if (i == 0)
330 		device_printf(sc->dev, "DMA timeout\n");
331 }
332 
333 /*
334  * Return identification string if this is device is ours.
335  */
336 static int
337 fxp_probe(device_t dev)
338 {
339 	u_int16_t devid;
340 	u_int8_t revid;
341 	struct fxp_ident *ident;
342 
343 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
344 		devid = pci_get_device(dev);
345 		revid = pci_get_revid(dev);
346 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
347 			if (ident->devid == devid &&
348 			    (ident->revid == revid || ident->revid == -1)) {
349 				device_set_desc(dev, ident->name);
350 				return (0);
351 			}
352 		}
353 	}
354 	return (ENXIO);
355 }
356 
357 static void
358 fxp_powerstate_d0(device_t dev)
359 {
360 	u_int32_t iobase, membase, irq;
361 
362 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
363 		/* Save important PCI config data. */
364 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
365 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
366 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
367 
368 		/* Reset the power state. */
369 		device_printf(dev, "chip is in D%d power mode "
370 		    "-- setting to D0\n", pci_get_powerstate(dev));
371 
372 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
373 
374 		/* Restore PCI config data. */
375 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
376 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
377 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
378 	}
379 }
380 
381 static int
382 fxp_attach(device_t dev)
383 {
384 	int error = 0;
385 	struct fxp_softc *sc = device_get_softc(dev);
386 	struct ifnet *ifp;
387 	u_int32_t val;
388 	u_int16_t data;
389 	int i, rid, m1, m2, prefer_iomap;
390 	int s;
391 
392 	bzero(sc, sizeof(*sc));
393 	sc->dev = dev;
394 	callout_init(&sc->fxp_stat_timer);
395 	sysctl_ctx_init(&sc->sysctl_ctx);
396 
397 	s = splimp();
398 
399 	/*
400 	 * Enable bus mastering. Enable memory space too, in case
401 	 * BIOS/Prom forgot about it.
402 	 */
403 	val = pci_read_config(dev, PCIR_COMMAND, 2);
404 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
405 	pci_write_config(dev, PCIR_COMMAND, val, 2);
406 	val = pci_read_config(dev, PCIR_COMMAND, 2);
407 
408 	fxp_powerstate_d0(dev);
409 
410 	/*
411 	 * Figure out which we should try first - memory mapping or i/o mapping?
412 	 * We default to memory mapping. Then we accept an override from the
413 	 * command line. Then we check to see which one is enabled.
414 	 */
415 	m1 = PCIM_CMD_MEMEN;
416 	m2 = PCIM_CMD_PORTEN;
417 	prefer_iomap = 0;
418 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
419 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
420 		m1 = PCIM_CMD_PORTEN;
421 		m2 = PCIM_CMD_MEMEN;
422 	}
423 
424 	if (val & m1) {
425 		sc->rtp =
426 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
427 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
428 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
429 	                                     0, ~0, 1, RF_ACTIVE);
430 	}
431 	if (sc->mem == NULL && (val & m2)) {
432 		sc->rtp =
433 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
434 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
435 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
436                                             0, ~0, 1, RF_ACTIVE);
437 	}
438 
439 	if (!sc->mem) {
440 		device_printf(dev, "could not map device registers\n");
441 		error = ENXIO;
442 		goto fail;
443         }
444 	if (bootverbose) {
445 		device_printf(dev, "using %s space register mapping\n",
446 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
447 	}
448 
449 	sc->sc_st = rman_get_bustag(sc->mem);
450 	sc->sc_sh = rman_get_bushandle(sc->mem);
451 
452 	/*
453 	 * Allocate our interrupt.
454 	 */
455 	rid = 0;
456 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
457 				 RF_SHAREABLE | RF_ACTIVE);
458 	if (sc->irq == NULL) {
459 		device_printf(dev, "could not map interrupt\n");
460 		error = ENXIO;
461 		goto fail;
462 	}
463 
464 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
465 			       fxp_intr, sc, &sc->ih);
466 	if (error) {
467 		device_printf(dev, "could not setup irq\n");
468 		goto fail;
469 	}
470 
471 	/*
472 	 * Reset to a stable state.
473 	 */
474 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
475 	DELAY(10);
476 
477 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
478 	    M_DEVBUF, M_WAITOK | M_ZERO);
479 
480 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
481 	    M_WAITOK | M_ZERO);
482 
483 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
484 
485 	/*
486 	 * Pre-allocate our receive buffers.
487 	 */
488 	for (i = 0; i < FXP_NRFABUFS; i++) {
489 		if (fxp_add_rfabuf(sc, NULL) != 0) {
490 			goto failmem;
491 		}
492 	}
493 
494 	/*
495 	 * Find out how large of an SEEPROM we have.
496 	 */
497 	fxp_autosize_eeprom(sc);
498 
499 	/*
500 	 * Determine whether we must use the 503 serial interface.
501 	 */
502 	fxp_read_eeprom(sc, &data, 6, 1);
503 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
504 	    (data & FXP_PHY_SERIAL_ONLY))
505 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
506 
507 	/*
508 	 * Create the sysctl tree
509 	 */
510 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
511 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
512 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
513 	if (sc->sysctl_tree == NULL)
514 		goto fail;
515 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
516 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
517 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
518 	    "FXP driver receive interrupt microcode bundling delay");
519 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
520 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
521 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
522 	    "FXP driver receive interrupt microcode bundle size limit");
523 
524 	/*
525 	 * Pull in device tunables.
526 	 */
527 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
528 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
529 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
530 	    "int_delay", &sc->tunable_int_delay);
531 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
532 	    "bundle_max", &sc->tunable_bundle_max);
533 
534 	/*
535 	 * Find out the chip revision; lump all 82557 revs together.
536 	 */
537 	fxp_read_eeprom(sc, &data, 5, 1);
538 	if ((data >> 8) == 1)
539 		sc->revision = FXP_REV_82557;
540 	else
541 		sc->revision = pci_get_revid(dev);
542 
543 	/*
544 	 * Enable workarounds for certain chip revision deficiencies.
545 	 *
546 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
547 	 * some systems based a normal 82559 design, have a defect where
548 	 * the chip can cause a PCI protocol violation if it receives
549 	 * a CU_RESUME command when it is entering the IDLE state.  The
550 	 * workaround is to disable Dynamic Standby Mode, so the chip never
551 	 * deasserts CLKRUN#, and always remains in an active state.
552 	 *
553 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
554 	 */
555 	i = pci_get_device(dev);
556 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
557 	    sc->revision >= FXP_REV_82559_A0) {
558 		fxp_read_eeprom(sc, &data, 10, 1);
559 		if (data & 0x02) {			/* STB enable */
560 			u_int16_t cksum;
561 			int i;
562 
563 			device_printf(dev,
564 			    "Disabling dynamic standby mode in EEPROM\n");
565 			data &= ~0x02;
566 			fxp_write_eeprom(sc, &data, 10, 1);
567 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
568 			cksum = 0;
569 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
570 				fxp_read_eeprom(sc, &data, i, 1);
571 				cksum += data;
572 			}
573 			i = (1 << sc->eeprom_size) - 1;
574 			cksum = 0xBABA - cksum;
575 			fxp_read_eeprom(sc, &data, i, 1);
576 			fxp_write_eeprom(sc, &cksum, i, 1);
577 			device_printf(dev,
578 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
579 			    i, data, cksum);
580 #if 1
581 			/*
582 			 * If the user elects to continue, try the software
583 			 * workaround, as it is better than nothing.
584 			 */
585 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
586 #endif
587 		}
588 	}
589 
590 	/*
591 	 * If we are not a 82557 chip, we can enable extended features.
592 	 */
593 	if (sc->revision != FXP_REV_82557) {
594 		/*
595 		 * If MWI is enabled in the PCI configuration, and there
596 		 * is a valid cacheline size (8 or 16 dwords), then tell
597 		 * the board to turn on MWI.
598 		 */
599 		if (val & PCIM_CMD_MWRICEN &&
600 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
601 			sc->flags |= FXP_FLAG_MWI_ENABLE;
602 
603 		/* turn on the extended TxCB feature */
604 		sc->flags |= FXP_FLAG_EXT_TXCB;
605 
606 		/* enable reception of long frames for VLAN */
607 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
608 	}
609 
610 	/*
611 	 * Read MAC address.
612 	 */
613 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
614 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
615 		device_printf(dev, "10Mbps");
616 	if (bootverbose) {
617 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
618 		    pci_get_vendor(dev), pci_get_device(dev),
619 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
620 		    pci_get_revid(dev));
621 		fxp_read_eeprom(sc, &data, 10, 1);
622 		device_printf(dev, "Dynamic Standby mode is %s\n",
623 		    data & 0x02 ? "enabled" : "disabled");
624 	}
625 
626 	/*
627 	 * If this is only a 10Mbps device, then there is no MII, and
628 	 * the PHY will use a serial interface instead.
629 	 *
630 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
631 	 * doesn't have a programming interface of any sort.  The
632 	 * media is sensed automatically based on how the link partner
633 	 * is configured.  This is, in essence, manual configuration.
634 	 */
635 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
636 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
637 		    fxp_serial_ifmedia_sts);
638 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
639 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
640 	} else {
641 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
642 		    fxp_ifmedia_sts)) {
643 	                device_printf(dev, "MII without any PHY!\n");
644 			error = ENXIO;
645 			goto fail;
646 		}
647 	}
648 
649 	ifp = &sc->arpcom.ac_if;
650 	if_initname(ifp, "fxp", device_get_unit(dev));
651 	ifp->if_baudrate = 100000000;
652 	ifp->if_init = fxp_init;
653 	ifp->if_softc = sc;
654 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
655 	ifp->if_ioctl = fxp_ioctl;
656 	ifp->if_start = fxp_start;
657 	ifp->if_watchdog = fxp_watchdog;
658 
659 	/*
660 	 * Attach the interface.
661 	 */
662 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
663 
664 	/*
665 	 * Tell the upper layer(s) we support long frames.
666 	 */
667 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
668 
669 	/*
670 	 * Let the system queue as many packets as we have available
671 	 * TX descriptors.
672 	 */
673 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
674 
675 	splx(s);
676 	return (0);
677 
678 failmem:
679 	device_printf(dev, "Failed to malloc memory\n");
680 	error = ENOMEM;
681 fail:
682 	splx(s);
683 	fxp_release(sc);
684 	return (error);
685 }
686 
687 /*
688  * release all resources
689  */
690 static void
691 fxp_release(struct fxp_softc *sc)
692 {
693 
694 	bus_generic_detach(sc->dev);
695 	if (sc->miibus)
696 		device_delete_child(sc->dev, sc->miibus);
697 
698 	if (sc->cbl_base)
699 		free(sc->cbl_base, M_DEVBUF);
700 	if (sc->fxp_stats)
701 		free(sc->fxp_stats, M_DEVBUF);
702 	if (sc->mcsp)
703 		free(sc->mcsp, M_DEVBUF);
704 	if (sc->rfa_headm)
705 		m_freem(sc->rfa_headm);
706 
707 	if (sc->ih)
708 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
709 	if (sc->irq)
710 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
711 	if (sc->mem)
712 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
713 
714         sysctl_ctx_free(&sc->sysctl_ctx);
715 }
716 
717 /*
718  * Detach interface.
719  */
720 static int
721 fxp_detach(device_t dev)
722 {
723 	struct fxp_softc *sc = device_get_softc(dev);
724 	int s;
725 
726 	/* disable interrupts */
727 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
728 
729 	s = splimp();
730 
731 	/*
732 	 * Stop DMA and drop transmit queue.
733 	 */
734 	fxp_stop(sc);
735 
736 	/*
737 	 * Close down routes etc.
738 	 */
739 	ether_ifdetach(&sc->arpcom.ac_if);
740 
741 	/*
742 	 * Free all media structures.
743 	 */
744 	ifmedia_removeall(&sc->sc_media);
745 
746 	splx(s);
747 
748 	/* Release our allocated resources. */
749 	fxp_release(sc);
750 
751 	return (0);
752 }
753 
754 /*
755  * Device shutdown routine. Called at system shutdown after sync. The
756  * main purpose of this routine is to shut off receiver DMA so that
757  * kernel memory doesn't get clobbered during warmboot.
758  */
759 static int
760 fxp_shutdown(device_t dev)
761 {
762 	/*
763 	 * Make sure that DMA is disabled prior to reboot. Not doing
764 	 * do could allow DMA to corrupt kernel memory during the
765 	 * reboot before the driver initializes.
766 	 */
767 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
768 	return (0);
769 }
770 
771 /*
772  * Device suspend routine.  Stop the interface and save some PCI
773  * settings in case the BIOS doesn't restore them properly on
774  * resume.
775  */
776 static int
777 fxp_suspend(device_t dev)
778 {
779 	struct fxp_softc *sc = device_get_softc(dev);
780 	int i, s;
781 
782 	s = splimp();
783 
784 	fxp_stop(sc);
785 
786 	for (i = 0; i < 5; i++)
787 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
788 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
789 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
790 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
791 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
792 
793 	sc->suspended = 1;
794 
795 	splx(s);
796 	return (0);
797 }
798 
799 /*
800  * Device resume routine.  Restore some PCI settings in case the BIOS
801  * doesn't, re-enable busmastering, and restart the interface if
802  * appropriate.
803  */
804 static int
805 fxp_resume(device_t dev)
806 {
807 	struct fxp_softc *sc = device_get_softc(dev);
808 	struct ifnet *ifp = &sc->arpcom.ac_if;
809 	u_int16_t pci_command;
810 	int i, s;
811 
812 	s = splimp();
813 
814 	fxp_powerstate_d0(dev);
815 
816 	/* better way to do this? */
817 	for (i = 0; i < 5; i++)
818 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
819 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
820 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
821 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
822 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
823 
824 	/* reenable busmastering */
825 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
826 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
827 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
828 
829 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
830 	DELAY(10);
831 
832 	/* reinitialize interface if necessary */
833 	if (ifp->if_flags & IFF_UP)
834 		fxp_init(sc);
835 
836 	sc->suspended = 0;
837 
838 	splx(s);
839 	return (0);
840 }
841 
842 static void
843 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
844 {
845 	u_int16_t reg;
846 	int x;
847 
848 	/*
849 	 * Shift in data.
850 	 */
851 	for (x = 1 << (length - 1); x; x >>= 1) {
852 		if (data & x)
853 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
854 		else
855 			reg = FXP_EEPROM_EECS;
856 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
857 		DELAY(1);
858 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
859 		DELAY(1);
860 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
861 		DELAY(1);
862 	}
863 }
864 
865 /*
866  * Read from the serial EEPROM. Basically, you manually shift in
867  * the read opcode (one bit at a time) and then shift in the address,
868  * and then you shift out the data (all of this one bit at a time).
869  * The word size is 16 bits, so you have to provide the address for
870  * every 16 bits of data.
871  */
872 static u_int16_t
873 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
874 {
875 	u_int16_t reg, data;
876 	int x;
877 
878 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
879 	/*
880 	 * Shift in read opcode.
881 	 */
882 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
883 	/*
884 	 * Shift in address.
885 	 */
886 	data = 0;
887 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
888 		if (offset & x)
889 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
890 		else
891 			reg = FXP_EEPROM_EECS;
892 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
893 		DELAY(1);
894 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
895 		DELAY(1);
896 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
897 		DELAY(1);
898 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
899 		data++;
900 		if (autosize && reg == 0) {
901 			sc->eeprom_size = data;
902 			break;
903 		}
904 	}
905 	/*
906 	 * Shift out data.
907 	 */
908 	data = 0;
909 	reg = FXP_EEPROM_EECS;
910 	for (x = 1 << 15; x; x >>= 1) {
911 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
912 		DELAY(1);
913 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
914 			data |= x;
915 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
916 		DELAY(1);
917 	}
918 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
919 	DELAY(1);
920 
921 	return (data);
922 }
923 
924 static void
925 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
926 {
927 	int i;
928 
929 	/*
930 	 * Erase/write enable.
931 	 */
932 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
933 	fxp_eeprom_shiftin(sc, 0x4, 3);
934 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
935 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
936 	DELAY(1);
937 	/*
938 	 * Shift in write opcode, address, data.
939 	 */
940 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
941 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
942 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
943 	fxp_eeprom_shiftin(sc, data, 16);
944 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
945 	DELAY(1);
946 	/*
947 	 * Wait for EEPROM to finish up.
948 	 */
949 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
950 	DELAY(1);
951 	for (i = 0; i < 1000; i++) {
952 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
953 			break;
954 		DELAY(50);
955 	}
956 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
957 	DELAY(1);
958 	/*
959 	 * Erase/write disable.
960 	 */
961 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
962 	fxp_eeprom_shiftin(sc, 0x4, 3);
963 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
964 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
965 	DELAY(1);
966 }
967 
968 /*
969  * From NetBSD:
970  *
971  * Figure out EEPROM size.
972  *
973  * 559's can have either 64-word or 256-word EEPROMs, the 558
974  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
975  * talks about the existance of 16 to 256 word EEPROMs.
976  *
977  * The only known sizes are 64 and 256, where the 256 version is used
978  * by CardBus cards to store CIS information.
979  *
980  * The address is shifted in msb-to-lsb, and after the last
981  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
982  * after which follows the actual data. We try to detect this zero, by
983  * probing the data-out bit in the EEPROM control register just after
984  * having shifted in a bit. If the bit is zero, we assume we've
985  * shifted enough address bits. The data-out should be tri-state,
986  * before this, which should translate to a logical one.
987  */
988 static void
989 fxp_autosize_eeprom(struct fxp_softc *sc)
990 {
991 
992 	/* guess maximum size of 256 words */
993 	sc->eeprom_size = 8;
994 
995 	/* autosize */
996 	(void) fxp_eeprom_getword(sc, 0, 1);
997 }
998 
999 static void
1000 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1001 {
1002 	int i;
1003 
1004 	for (i = 0; i < words; i++)
1005 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1006 }
1007 
1008 static void
1009 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1010 {
1011 	int i;
1012 
1013 	for (i = 0; i < words; i++)
1014 		fxp_eeprom_putword(sc, offset + i, data[i]);
1015 }
1016 
1017 /*
1018  * Start packet transmission on the interface.
1019  */
1020 static void
1021 fxp_start(struct ifnet *ifp)
1022 {
1023 	struct fxp_softc *sc = ifp->if_softc;
1024 	struct fxp_cb_tx *txp;
1025 
1026 	/*
1027 	 * See if we need to suspend xmit until the multicast filter
1028 	 * has been reprogrammed (which can only be done at the head
1029 	 * of the command chain).
1030 	 */
1031 	if (sc->need_mcsetup) {
1032 		return;
1033 	}
1034 
1035 	txp = NULL;
1036 
1037 	/*
1038 	 * We're finished if there is nothing more to add to the list or if
1039 	 * we're all filled up with buffers to transmit.
1040 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1041 	 *       a NOP command when needed.
1042 	 */
1043 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1044 		struct mbuf *m, *mb_head;
1045 		int segment;
1046 
1047 		/*
1048 		 * Grab a packet to transmit.
1049 		 */
1050 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1051 
1052 		/*
1053 		 * Get pointer to next available tx desc.
1054 		 */
1055 		txp = sc->cbl_last->next;
1056 
1057 		/*
1058 		 * Go through each of the mbufs in the chain and initialize
1059 		 * the transmit buffer descriptors with the physical address
1060 		 * and size of the mbuf.
1061 		 */
1062 tbdinit:
1063 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1064 			if (m->m_len != 0) {
1065 				if (segment == FXP_NTXSEG)
1066 					break;
1067 				txp->tbd[segment].tb_addr =
1068 				    vtophys(mtod(m, vm_offset_t));
1069 				txp->tbd[segment].tb_size = m->m_len;
1070 				segment++;
1071 			}
1072 		}
1073 		if (m != NULL) {
1074 			struct mbuf *mn;
1075 
1076 			/*
1077 			 * We ran out of segments. We have to recopy this
1078 			 * mbuf chain first. Bail out if we can't get the
1079 			 * new buffers.
1080 			 */
1081 			MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1082 			if (mn == NULL) {
1083 				m_freem(mb_head);
1084 				break;
1085 			}
1086 			if (mb_head->m_pkthdr.len > MHLEN) {
1087 				MCLGET(mn, MB_DONTWAIT);
1088 				if ((mn->m_flags & M_EXT) == 0) {
1089 					m_freem(mn);
1090 					m_freem(mb_head);
1091 					break;
1092 				}
1093 			}
1094 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1095 			    mtod(mn, caddr_t));
1096 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1097 			m_freem(mb_head);
1098 			mb_head = mn;
1099 			goto tbdinit;
1100 		}
1101 
1102 		txp->tbd_number = segment;
1103 		txp->mb_head = mb_head;
1104 		txp->cb_status = 0;
1105 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1106 			txp->cb_command =
1107 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1108 			    FXP_CB_COMMAND_S;
1109 		} else {
1110 			txp->cb_command =
1111 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1112 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1113 			/*
1114 			 * Set a 5 second timer just in case we don't hear
1115 			 * from the card again.
1116 			 */
1117 			ifp->if_timer = 5;
1118 		}
1119 		txp->tx_threshold = tx_threshold;
1120 
1121 		/*
1122 		 * Advance the end of list forward.
1123 		 */
1124 
1125 #ifdef __alpha__
1126 		/*
1127 		 * On platforms which can't access memory in 16-bit
1128 		 * granularities, we must prevent the card from DMA'ing
1129 		 * up the status while we update the command field.
1130 		 * This could cause us to overwrite the completion status.
1131 		 */
1132 		atomic_clear_short(&sc->cbl_last->cb_command,
1133 		    FXP_CB_COMMAND_S);
1134 #else
1135 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1136 #endif /*__alpha__*/
1137 		sc->cbl_last = txp;
1138 
1139 		/*
1140 		 * Advance the beginning of the list forward if there are
1141 		 * no other packets queued (when nothing is queued, cbl_first
1142 		 * sits on the last TxCB that was sent out).
1143 		 */
1144 		if (sc->tx_queued == 0)
1145 			sc->cbl_first = txp;
1146 
1147 		sc->tx_queued++;
1148 
1149 		BPF_MTAP(ifp, mb_head);
1150 	}
1151 
1152 	/*
1153 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1154 	 * going again if suspended.
1155 	 */
1156 	if (txp != NULL) {
1157 		fxp_scb_wait(sc);
1158 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1159 	}
1160 }
1161 
1162 #ifdef DEVICE_POLLING
1163 static poll_handler_t fxp_poll;
1164 
1165 static void
1166 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1167 {
1168 	struct fxp_softc *sc = ifp->if_softc;
1169 	u_int8_t statack;
1170 
1171 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1172 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1173 		return;
1174 	}
1175 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1176 	    FXP_SCB_STATACK_FR;
1177 	if (cmd == POLL_AND_CHECK_STATUS) {
1178 		u_int8_t tmp;
1179 
1180 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1181 		if (tmp == 0xff || tmp == 0)
1182 			return; /* nothing to do */
1183 		tmp &= ~statack;
1184 		/* ack what we can */
1185 		if (tmp != 0)
1186 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1187 		statack |= tmp;
1188 	}
1189 	fxp_intr_body(sc, statack, count);
1190 }
1191 #endif /* DEVICE_POLLING */
1192 
1193 /*
1194  * Process interface interrupts.
1195  */
1196 static void
1197 fxp_intr(void *xsc)
1198 {
1199 	struct fxp_softc *sc = xsc;
1200 	u_int8_t statack;
1201 
1202 #ifdef DEVICE_POLLING
1203 	struct ifnet *ifp = &sc->arpcom.ac_if;
1204 
1205 	if (ifp->if_flags & IFF_POLLING)
1206 		return;
1207 	if (ether_poll_register(fxp_poll, ifp)) {
1208 		/* disable interrupts */
1209 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1210 		fxp_poll(ifp, 0, 1);
1211 		return;
1212 	}
1213 #endif
1214 
1215 	if (sc->suspended) {
1216 		return;
1217 	}
1218 
1219 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1220 		/*
1221 		 * It should not be possible to have all bits set; the
1222 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1223 		 * all bits are set, this may indicate that the card has
1224 		 * been physically ejected, so ignore it.
1225 		 */
1226 		if (statack == 0xff)
1227 			return;
1228 
1229 		/*
1230 		 * First ACK all the interrupts in this pass.
1231 		 */
1232 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1233 		fxp_intr_body(sc, statack, -1);
1234 	}
1235 }
1236 
1237 static void
1238 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1239 {
1240 	struct ifnet *ifp = &sc->arpcom.ac_if;
1241 	struct mbuf *m;
1242 	struct fxp_rfa *rfa;
1243 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1244 
1245 	if (rnr)
1246 		fxp_rnr++;
1247 #ifdef DEVICE_POLLING
1248 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1249 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1250 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1251 		rnr = 1;
1252 	}
1253 #endif
1254 
1255 	/*
1256 	 * Free any finished transmit mbuf chains.
1257 	 *
1258 	 * Handle the CNA event likt a CXTNO event. It used to
1259 	 * be that this event (control unit not ready) was not
1260 	 * encountered, but it is now with the SMPng modifications.
1261 	 * The exact sequence of events that occur when the interface
1262 	 * is brought up are different now, and if this event
1263 	 * goes unhandled, the configuration/rxfilter setup sequence
1264 	 * can stall for several seconds. The result is that no
1265 	 * packets go out onto the wire for about 5 to 10 seconds
1266 	 * after the interface is ifconfig'ed for the first time.
1267 	 */
1268 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1269 		struct fxp_cb_tx *txp;
1270 
1271 		for (txp = sc->cbl_first; sc->tx_queued &&
1272 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1273 		    txp = txp->next) {
1274 			if ((m = txp->mb_head) != NULL) {
1275 				txp->mb_head = NULL;
1276 				sc->tx_queued--;
1277 				m_freem(m);
1278 			} else {
1279 				sc->tx_queued--;
1280 			}
1281 		}
1282 		sc->cbl_first = txp;
1283 		ifp->if_timer = 0;
1284 		if (sc->tx_queued == 0) {
1285 			if (sc->need_mcsetup)
1286 				fxp_mc_setup(sc);
1287 		}
1288 		/*
1289 		 * Try to start more packets transmitting.
1290 		 */
1291 		if (ifp->if_snd.ifq_head != NULL)
1292 			fxp_start(ifp);
1293 	}
1294 
1295 	/*
1296 	 * Just return if nothing happened on the receive side.
1297 	 */
1298 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1299 		return;
1300 
1301 	/*
1302 	 * Process receiver interrupts. If a no-resource (RNR)
1303 	 * condition exists, get whatever packets we can and
1304 	 * re-start the receiver.
1305 	 *
1306 	 * When using polling, we do not process the list to completion,
1307 	 * so when we get an RNR interrupt we must defer the restart
1308 	 * until we hit the last buffer with the C bit set.
1309 	 * If we run out of cycles and rfa_headm has the C bit set,
1310 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1311 	 * that the info will be used in the subsequent polling cycle.
1312 	 */
1313 	for (;;) {
1314 		m = sc->rfa_headm;
1315 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1316 		    RFA_ALIGNMENT_FUDGE);
1317 
1318 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1319 		if (count >= 0 && count-- == 0) {
1320 			if (rnr) {
1321 				/* Defer RNR processing until the next time. */
1322 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1323 				rnr = 0;
1324 			}
1325 			break;
1326 		}
1327 #endif /* DEVICE_POLLING */
1328 
1329 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1330 			break;
1331 
1332 		/*
1333 		 * Remove first packet from the chain.
1334 		 */
1335 		sc->rfa_headm = m->m_next;
1336 		m->m_next = NULL;
1337 
1338 		/*
1339 		 * Add a new buffer to the receive chain.
1340 		 * If this fails, the old buffer is recycled
1341 		 * instead.
1342 		 */
1343 		if (fxp_add_rfabuf(sc, m) == 0) {
1344 			int total_len;
1345 
1346 			/*
1347 			 * Fetch packet length (the top 2 bits of
1348 			 * actual_size are flags set by the controller
1349 			 * upon completion), and drop the packet in case
1350 			 * of bogus length or CRC errors.
1351 			 */
1352 			total_len = rfa->actual_size & 0x3fff;
1353 			if (total_len < sizeof(struct ether_header) ||
1354 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1355 				sizeof(struct fxp_rfa) ||
1356 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1357 				m_freem(m);
1358 				continue;
1359 			}
1360 			m->m_pkthdr.len = m->m_len = total_len;
1361 			(*ifp->if_input)(ifp, m);
1362 		}
1363 	}
1364 	if (rnr) {
1365 		fxp_scb_wait(sc);
1366 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1367 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1368 		    RFA_ALIGNMENT_FUDGE);
1369 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1370 	}
1371 }
1372 
1373 /*
1374  * Update packet in/out/collision statistics. The i82557 doesn't
1375  * allow you to access these counters without doing a fairly
1376  * expensive DMA to get _all_ of the statistics it maintains, so
1377  * we do this operation here only once per second. The statistics
1378  * counters in the kernel are updated from the previous dump-stats
1379  * DMA and then a new dump-stats DMA is started. The on-chip
1380  * counters are zeroed when the DMA completes. If we can't start
1381  * the DMA immediately, we don't wait - we just prepare to read
1382  * them again next time.
1383  */
1384 static void
1385 fxp_tick(void *xsc)
1386 {
1387 	struct fxp_softc *sc = xsc;
1388 	struct ifnet *ifp = &sc->arpcom.ac_if;
1389 	struct fxp_stats *sp = sc->fxp_stats;
1390 	struct fxp_cb_tx *txp;
1391 	struct mbuf *m;
1392 	int s;
1393 
1394 	ifp->if_opackets += sp->tx_good;
1395 	ifp->if_collisions += sp->tx_total_collisions;
1396 	if (sp->rx_good) {
1397 		ifp->if_ipackets += sp->rx_good;
1398 		sc->rx_idle_secs = 0;
1399 	} else {
1400 		/*
1401 		 * Receiver's been idle for another second.
1402 		 */
1403 		sc->rx_idle_secs++;
1404 	}
1405 	ifp->if_ierrors +=
1406 	    sp->rx_crc_errors +
1407 	    sp->rx_alignment_errors +
1408 	    sp->rx_rnr_errors +
1409 	    sp->rx_overrun_errors;
1410 	/*
1411 	 * If any transmit underruns occured, bump up the transmit
1412 	 * threshold by another 512 bytes (64 * 8).
1413 	 */
1414 	if (sp->tx_underruns) {
1415 		ifp->if_oerrors += sp->tx_underruns;
1416 		if (tx_threshold < 192)
1417 			tx_threshold += 64;
1418 	}
1419 	s = splimp();
1420 	/*
1421 	 * Release any xmit buffers that have completed DMA. This isn't
1422 	 * strictly necessary to do here, but it's advantagous for mbufs
1423 	 * with external storage to be released in a timely manner rather
1424 	 * than being defered for a potentially long time. This limits
1425 	 * the delay to a maximum of one second.
1426 	 */
1427 	for (txp = sc->cbl_first; sc->tx_queued &&
1428 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1429 	    txp = txp->next) {
1430 		if ((m = txp->mb_head) != NULL) {
1431 			txp->mb_head = NULL;
1432 			sc->tx_queued--;
1433 			m_freem(m);
1434 		} else {
1435 			sc->tx_queued--;
1436 		}
1437 	}
1438 	sc->cbl_first = txp;
1439 	/*
1440 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1441 	 * then assume the receiver has locked up and attempt to clear
1442 	 * the condition by reprogramming the multicast filter. This is
1443 	 * a work-around for a bug in the 82557 where the receiver locks
1444 	 * up if it gets certain types of garbage in the syncronization
1445 	 * bits prior to the packet header. This bug is supposed to only
1446 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1447 	 * mode as well (perhaps due to a 10/100 speed transition).
1448 	 */
1449 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1450 		sc->rx_idle_secs = 0;
1451 		fxp_mc_setup(sc);
1452 	}
1453 	/*
1454 	 * If there is no pending command, start another stats
1455 	 * dump. Otherwise punt for now.
1456 	 */
1457 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1458 		/*
1459 		 * Start another stats dump.
1460 		 */
1461 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1462 	} else {
1463 		/*
1464 		 * A previous command is still waiting to be accepted.
1465 		 * Just zero our copy of the stats and wait for the
1466 		 * next timer event to update them.
1467 		 */
1468 		sp->tx_good = 0;
1469 		sp->tx_underruns = 0;
1470 		sp->tx_total_collisions = 0;
1471 
1472 		sp->rx_good = 0;
1473 		sp->rx_crc_errors = 0;
1474 		sp->rx_alignment_errors = 0;
1475 		sp->rx_rnr_errors = 0;
1476 		sp->rx_overrun_errors = 0;
1477 	}
1478 	if (sc->miibus != NULL)
1479 		mii_tick(device_get_softc(sc->miibus));
1480 	splx(s);
1481 	/*
1482 	 * Schedule another timeout one second from now.
1483 	 */
1484 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1485 }
1486 
1487 /*
1488  * Stop the interface. Cancels the statistics updater and resets
1489  * the interface.
1490  */
1491 static void
1492 fxp_stop(struct fxp_softc *sc)
1493 {
1494 	struct ifnet *ifp = &sc->arpcom.ac_if;
1495 	struct fxp_cb_tx *txp;
1496 	int i;
1497 
1498 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1499 	ifp->if_timer = 0;
1500 
1501 #ifdef DEVICE_POLLING
1502 	ether_poll_deregister(ifp);
1503 #endif
1504 	/*
1505 	 * Cancel stats updater.
1506 	 */
1507 	callout_stop(&sc->fxp_stat_timer);
1508 
1509 	/*
1510 	 * Issue software reset, which also unloads the microcode.
1511 	 */
1512 	sc->flags &= ~FXP_FLAG_UCODE;
1513 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1514 	DELAY(50);
1515 
1516 	/*
1517 	 * Release any xmit buffers.
1518 	 */
1519 	txp = sc->cbl_base;
1520 	if (txp != NULL) {
1521 		for (i = 0; i < FXP_NTXCB; i++) {
1522 			if (txp[i].mb_head != NULL) {
1523 				m_freem(txp[i].mb_head);
1524 				txp[i].mb_head = NULL;
1525 			}
1526 		}
1527 	}
1528 	sc->tx_queued = 0;
1529 
1530 	/*
1531 	 * Free all the receive buffers then reallocate/reinitialize
1532 	 */
1533 	if (sc->rfa_headm != NULL)
1534 		m_freem(sc->rfa_headm);
1535 	sc->rfa_headm = NULL;
1536 	sc->rfa_tailm = NULL;
1537 	for (i = 0; i < FXP_NRFABUFS; i++) {
1538 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1539 			/*
1540 			 * This "can't happen" - we're at splimp()
1541 			 * and we just freed all the buffers we need
1542 			 * above.
1543 			 */
1544 			panic("fxp_stop: no buffers!");
1545 		}
1546 	}
1547 }
1548 
1549 /*
1550  * Watchdog/transmission transmit timeout handler. Called when a
1551  * transmission is started on the interface, but no interrupt is
1552  * received before the timeout. This usually indicates that the
1553  * card has wedged for some reason.
1554  */
1555 static void
1556 fxp_watchdog(struct ifnet *ifp)
1557 {
1558 	struct fxp_softc *sc = ifp->if_softc;
1559 
1560 	device_printf(sc->dev, "device timeout\n");
1561 	ifp->if_oerrors++;
1562 
1563 	fxp_init(sc);
1564 }
1565 
1566 static void
1567 fxp_init(void *xsc)
1568 {
1569 	struct fxp_softc *sc = xsc;
1570 	struct ifnet *ifp = &sc->arpcom.ac_if;
1571 	struct fxp_cb_config *cbp;
1572 	struct fxp_cb_ias *cb_ias;
1573 	struct fxp_cb_tx *txp;
1574 	struct fxp_cb_mcs *mcsp;
1575 	int i, prm, s;
1576 
1577 	s = splimp();
1578 	/*
1579 	 * Cancel any pending I/O
1580 	 */
1581 	fxp_stop(sc);
1582 
1583 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1584 
1585 	/*
1586 	 * Initialize base of CBL and RFA memory. Loading with zero
1587 	 * sets it up for regular linear addressing.
1588 	 */
1589 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1590 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1591 
1592 	fxp_scb_wait(sc);
1593 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1594 
1595 	/*
1596 	 * Initialize base of dump-stats buffer.
1597 	 */
1598 	fxp_scb_wait(sc);
1599 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1600 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1601 
1602 	/*
1603 	 * Attempt to load microcode if requested.
1604 	 */
1605 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1606 		fxp_load_ucode(sc);
1607 
1608 	/*
1609 	 * Initialize the multicast address list.
1610 	 */
1611 	if (fxp_mc_addrs(sc)) {
1612 		mcsp = sc->mcsp;
1613 		mcsp->cb_status = 0;
1614 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1615 		mcsp->link_addr = -1;
1616 		/*
1617 	 	 * Start the multicast setup command.
1618 		 */
1619 		fxp_scb_wait(sc);
1620 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1621 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1622 		/* ...and wait for it to complete. */
1623 		fxp_dma_wait(&mcsp->cb_status, sc);
1624 	}
1625 
1626 	/*
1627 	 * We temporarily use memory that contains the TxCB list to
1628 	 * construct the config CB. The TxCB list memory is rebuilt
1629 	 * later.
1630 	 */
1631 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1632 
1633 	/*
1634 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1635 	 * zero and must be one bits in this structure and this is the easiest
1636 	 * way to initialize them all to proper values.
1637 	 */
1638 	bcopy(fxp_cb_config_template,
1639 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1640 		sizeof(fxp_cb_config_template));
1641 
1642 	cbp->cb_status =	0;
1643 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1644 	cbp->link_addr =	-1;	/* (no) next command */
1645 	cbp->byte_count =	22;	/* (22) bytes to config */
1646 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1647 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1648 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1649 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1650 	cbp->type_enable =	0;	/* actually reserved */
1651 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1652 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1653 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1654 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1655 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1656 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1657 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1658 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1659 	cbp->ci_int =		1;	/* interrupt on CU idle */
1660 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1661 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1662 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1663 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1664 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1665 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1666 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1667 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1668 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1669 	cbp->csma_dis =		0;	/* (don't) disable link */
1670 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1671 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1672 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1673 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1674 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1675 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1676 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1677 	cbp->loopback =		0;	/* (don't) loopback */
1678 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1679 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1680 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1681 	cbp->promiscuous =	prm;	/* promiscuous mode */
1682 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1683 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1684 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1685 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1686 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1687 
1688 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1689 	cbp->padding =		1;	/* (do) pad short tx packets */
1690 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1691 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1692 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1693 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1694 					/* must set wake_en in PMCSR also */
1695 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1696 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1697 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1698 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1699 
1700 	if (sc->revision == FXP_REV_82557) {
1701 		/*
1702 		 * The 82557 has no hardware flow control, the values
1703 		 * below are the defaults for the chip.
1704 		 */
1705 		cbp->fc_delay_lsb =	0;
1706 		cbp->fc_delay_msb =	0x40;
1707 		cbp->pri_fc_thresh =	3;
1708 		cbp->tx_fc_dis =	0;
1709 		cbp->rx_fc_restop =	0;
1710 		cbp->rx_fc_restart =	0;
1711 		cbp->fc_filter =	0;
1712 		cbp->pri_fc_loc =	1;
1713 	} else {
1714 		cbp->fc_delay_lsb =	0x1f;
1715 		cbp->fc_delay_msb =	0x01;
1716 		cbp->pri_fc_thresh =	3;
1717 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1718 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1719 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1720 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1721 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1722 	}
1723 
1724 	/*
1725 	 * Start the config command/DMA.
1726 	 */
1727 	fxp_scb_wait(sc);
1728 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1729 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1730 	/* ...and wait for it to complete. */
1731 	fxp_dma_wait(&cbp->cb_status, sc);
1732 
1733 	/*
1734 	 * Now initialize the station address. Temporarily use the TxCB
1735 	 * memory area like we did above for the config CB.
1736 	 */
1737 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1738 	cb_ias->cb_status = 0;
1739 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1740 	cb_ias->link_addr = -1;
1741 	bcopy(sc->arpcom.ac_enaddr,
1742 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1743 	    sizeof(sc->arpcom.ac_enaddr));
1744 
1745 	/*
1746 	 * Start the IAS (Individual Address Setup) command/DMA.
1747 	 */
1748 	fxp_scb_wait(sc);
1749 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1750 	/* ...and wait for it to complete. */
1751 	fxp_dma_wait(&cb_ias->cb_status, sc);
1752 
1753 	/*
1754 	 * Initialize transmit control block (TxCB) list.
1755 	 */
1756 
1757 	txp = sc->cbl_base;
1758 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1759 	for (i = 0; i < FXP_NTXCB; i++) {
1760 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1761 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1762 		txp[i].link_addr =
1763 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1764 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1765 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1766 		else
1767 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1768 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1769 	}
1770 	/*
1771 	 * Set the suspend flag on the first TxCB and start the control
1772 	 * unit. It will execute the NOP and then suspend.
1773 	 */
1774 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1775 	sc->cbl_first = sc->cbl_last = txp;
1776 	sc->tx_queued = 1;
1777 
1778 	fxp_scb_wait(sc);
1779 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1780 
1781 	/*
1782 	 * Initialize receiver buffer area - RFA.
1783 	 */
1784 	fxp_scb_wait(sc);
1785 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1786 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1787 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1788 
1789 	/*
1790 	 * Set current media.
1791 	 */
1792 	if (sc->miibus != NULL)
1793 		mii_mediachg(device_get_softc(sc->miibus));
1794 
1795 	ifp->if_flags |= IFF_RUNNING;
1796 	ifp->if_flags &= ~IFF_OACTIVE;
1797 
1798 	/*
1799 	 * Enable interrupts.
1800 	 */
1801 #ifdef DEVICE_POLLING
1802 	/*
1803 	 * ... but only do that if we are not polling. And because (presumably)
1804 	 * the default is interrupts on, we need to disable them explicitly!
1805 	 */
1806 	if ( ifp->if_flags & IFF_POLLING )
1807 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1808 	else
1809 #endif /* DEVICE_POLLING */
1810 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1811 	splx(s);
1812 
1813 	/*
1814 	 * Start stats updater.
1815 	 */
1816 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1817 }
1818 
1819 static int
1820 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1821 {
1822 
1823 	return (0);
1824 }
1825 
1826 static void
1827 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1828 {
1829 
1830 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1831 }
1832 
1833 /*
1834  * Change media according to request.
1835  */
1836 static int
1837 fxp_ifmedia_upd(struct ifnet *ifp)
1838 {
1839 	struct fxp_softc *sc = ifp->if_softc;
1840 	struct mii_data *mii;
1841 
1842 	mii = device_get_softc(sc->miibus);
1843 	mii_mediachg(mii);
1844 	return (0);
1845 }
1846 
1847 /*
1848  * Notify the world which media we're using.
1849  */
1850 static void
1851 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1852 {
1853 	struct fxp_softc *sc = ifp->if_softc;
1854 	struct mii_data *mii;
1855 
1856 	mii = device_get_softc(sc->miibus);
1857 	mii_pollstat(mii);
1858 	ifmr->ifm_active = mii->mii_media_active;
1859 	ifmr->ifm_status = mii->mii_media_status;
1860 
1861 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1862 		sc->cu_resume_bug = 1;
1863 	else
1864 		sc->cu_resume_bug = 0;
1865 }
1866 
1867 /*
1868  * Add a buffer to the end of the RFA buffer list.
1869  * Return 0 if successful, 1 for failure. A failure results in
1870  * adding the 'oldm' (if non-NULL) on to the end of the list -
1871  * tossing out its old contents and recycling it.
1872  * The RFA struct is stuck at the beginning of mbuf cluster and the
1873  * data pointer is fixed up to point just past it.
1874  */
1875 static int
1876 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1877 {
1878 	u_int32_t v;
1879 	struct mbuf *m;
1880 	struct fxp_rfa *rfa, *p_rfa;
1881 
1882 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1883 	if (m == NULL) { /* try to recycle the old mbuf instead */
1884 		if (oldm == NULL)
1885 			return 1;
1886 		m = oldm;
1887 		m->m_data = m->m_ext.ext_buf;
1888 	}
1889 
1890 	/*
1891 	 * Move the data pointer up so that the incoming data packet
1892 	 * will be 32-bit aligned.
1893 	 */
1894 	m->m_data += RFA_ALIGNMENT_FUDGE;
1895 
1896 	/*
1897 	 * Get a pointer to the base of the mbuf cluster and move
1898 	 * data start past it.
1899 	 */
1900 	rfa = mtod(m, struct fxp_rfa *);
1901 	m->m_data += sizeof(struct fxp_rfa);
1902 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1903 
1904 	/*
1905 	 * Initialize the rest of the RFA.  Note that since the RFA
1906 	 * is misaligned, we cannot store values directly.  Instead,
1907 	 * we use an optimized, inline copy.
1908 	 */
1909 
1910 	rfa->rfa_status = 0;
1911 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1912 	rfa->actual_size = 0;
1913 
1914 	v = -1;
1915 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1916 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1917 
1918 	/*
1919 	 * If there are other buffers already on the list, attach this
1920 	 * one to the end by fixing up the tail to point to this one.
1921 	 */
1922 	if (sc->rfa_headm != NULL) {
1923 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1924 		    RFA_ALIGNMENT_FUDGE);
1925 		sc->rfa_tailm->m_next = m;
1926 		v = vtophys(rfa);
1927 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1928 		p_rfa->rfa_control = 0;
1929 	} else {
1930 		sc->rfa_headm = m;
1931 	}
1932 	sc->rfa_tailm = m;
1933 
1934 	return (m == oldm);
1935 }
1936 
1937 static volatile int
1938 fxp_miibus_readreg(device_t dev, int phy, int reg)
1939 {
1940 	struct fxp_softc *sc = device_get_softc(dev);
1941 	int count = 10000;
1942 	int value;
1943 
1944 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1945 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1946 
1947 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1948 	    && count--)
1949 		DELAY(10);
1950 
1951 	if (count <= 0)
1952 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1953 
1954 	return (value & 0xffff);
1955 }
1956 
1957 static void
1958 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1959 {
1960 	struct fxp_softc *sc = device_get_softc(dev);
1961 	int count = 10000;
1962 
1963 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1964 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1965 	    (value & 0xffff));
1966 
1967 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1968 	    count--)
1969 		DELAY(10);
1970 
1971 	if (count <= 0)
1972 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1973 }
1974 
1975 static int
1976 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1977 {
1978 	struct fxp_softc *sc = ifp->if_softc;
1979 	struct ifreq *ifr = (struct ifreq *)data;
1980 	struct mii_data *mii;
1981 	int s, error = 0;
1982 
1983 	s = splimp();
1984 
1985 	switch (command) {
1986 	case SIOCSIFADDR:
1987 	case SIOCGIFADDR:
1988 	case SIOCSIFMTU:
1989 		error = ether_ioctl(ifp, command, data);
1990 		break;
1991 
1992 	case SIOCSIFFLAGS:
1993 		if (ifp->if_flags & IFF_ALLMULTI)
1994 			sc->flags |= FXP_FLAG_ALL_MCAST;
1995 		else
1996 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1997 
1998 		/*
1999 		 * If interface is marked up and not running, then start it.
2000 		 * If it is marked down and running, stop it.
2001 		 * XXX If it's up then re-initialize it. This is so flags
2002 		 * such as IFF_PROMISC are handled.
2003 		 */
2004 		if (ifp->if_flags & IFF_UP) {
2005 			fxp_init(sc);
2006 		} else {
2007 			if (ifp->if_flags & IFF_RUNNING)
2008 				fxp_stop(sc);
2009 		}
2010 		break;
2011 
2012 	case SIOCADDMULTI:
2013 	case SIOCDELMULTI:
2014 		if (ifp->if_flags & IFF_ALLMULTI)
2015 			sc->flags |= FXP_FLAG_ALL_MCAST;
2016 		else
2017 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2018 		/*
2019 		 * Multicast list has changed; set the hardware filter
2020 		 * accordingly.
2021 		 */
2022 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2023 			fxp_mc_setup(sc);
2024 		/*
2025 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2026 		 * again rather than else {}.
2027 		 */
2028 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2029 			fxp_init(sc);
2030 		error = 0;
2031 		break;
2032 
2033 	case SIOCSIFMEDIA:
2034 	case SIOCGIFMEDIA:
2035 		if (sc->miibus != NULL) {
2036 			mii = device_get_softc(sc->miibus);
2037                         error = ifmedia_ioctl(ifp, ifr,
2038                             &mii->mii_media, command);
2039 		} else {
2040                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2041 		}
2042 		break;
2043 
2044 	default:
2045 		error = EINVAL;
2046 	}
2047 	splx(s);
2048 	return (error);
2049 }
2050 
2051 /*
2052  * Fill in the multicast address list and return number of entries.
2053  */
2054 static int
2055 fxp_mc_addrs(struct fxp_softc *sc)
2056 {
2057 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2058 	struct ifnet *ifp = &sc->arpcom.ac_if;
2059 	struct ifmultiaddr *ifma;
2060 	int nmcasts;
2061 
2062 	nmcasts = 0;
2063 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2064 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2065 			if (ifma->ifma_addr->sa_family != AF_LINK)
2066 				continue;
2067 			if (nmcasts >= MAXMCADDR) {
2068 				sc->flags |= FXP_FLAG_ALL_MCAST;
2069 				nmcasts = 0;
2070 				break;
2071 			}
2072 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2073 			    (void *)(uintptr_t)(volatile void *)
2074 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2075 			nmcasts++;
2076 		}
2077 	}
2078 	mcsp->mc_cnt = nmcasts * 6;
2079 	return (nmcasts);
2080 }
2081 
2082 /*
2083  * Program the multicast filter.
2084  *
2085  * We have an artificial restriction that the multicast setup command
2086  * must be the first command in the chain, so we take steps to ensure
2087  * this. By requiring this, it allows us to keep up the performance of
2088  * the pre-initialized command ring (esp. link pointers) by not actually
2089  * inserting the mcsetup command in the ring - i.e. its link pointer
2090  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2091  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2092  * lead into the regular TxCB ring when it completes.
2093  *
2094  * This function must be called at splimp.
2095  */
2096 static void
2097 fxp_mc_setup(struct fxp_softc *sc)
2098 {
2099 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2100 	struct ifnet *ifp = &sc->arpcom.ac_if;
2101 	int count;
2102 
2103 	/*
2104 	 * If there are queued commands, we must wait until they are all
2105 	 * completed. If we are already waiting, then add a NOP command
2106 	 * with interrupt option so that we're notified when all commands
2107 	 * have been completed - fxp_start() ensures that no additional
2108 	 * TX commands will be added when need_mcsetup is true.
2109 	 */
2110 	if (sc->tx_queued) {
2111 		struct fxp_cb_tx *txp;
2112 
2113 		/*
2114 		 * need_mcsetup will be true if we are already waiting for the
2115 		 * NOP command to be completed (see below). In this case, bail.
2116 		 */
2117 		if (sc->need_mcsetup)
2118 			return;
2119 		sc->need_mcsetup = 1;
2120 
2121 		/*
2122 		 * Add a NOP command with interrupt so that we are notified
2123 		 * when all TX commands have been processed.
2124 		 */
2125 		txp = sc->cbl_last->next;
2126 		txp->mb_head = NULL;
2127 		txp->cb_status = 0;
2128 		txp->cb_command = FXP_CB_COMMAND_NOP |
2129 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2130 		/*
2131 		 * Advance the end of list forward.
2132 		 */
2133 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2134 		sc->cbl_last = txp;
2135 		sc->tx_queued++;
2136 		/*
2137 		 * Issue a resume in case the CU has just suspended.
2138 		 */
2139 		fxp_scb_wait(sc);
2140 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2141 		/*
2142 		 * Set a 5 second timer just in case we don't hear from the
2143 		 * card again.
2144 		 */
2145 		ifp->if_timer = 5;
2146 
2147 		return;
2148 	}
2149 	sc->need_mcsetup = 0;
2150 
2151 	/*
2152 	 * Initialize multicast setup descriptor.
2153 	 */
2154 	mcsp->next = sc->cbl_base;
2155 	mcsp->mb_head = NULL;
2156 	mcsp->cb_status = 0;
2157 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2158 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2159 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2160 	(void) fxp_mc_addrs(sc);
2161 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2162 	sc->tx_queued = 1;
2163 
2164 	/*
2165 	 * Wait until command unit is not active. This should never
2166 	 * be the case when nothing is queued, but make sure anyway.
2167 	 */
2168 	count = 100;
2169 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2170 	    FXP_SCB_CUS_ACTIVE && --count)
2171 		DELAY(10);
2172 	if (count == 0) {
2173 		device_printf(sc->dev, "command queue timeout\n");
2174 		return;
2175 	}
2176 
2177 	/*
2178 	 * Start the multicast setup command.
2179 	 */
2180 	fxp_scb_wait(sc);
2181 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2182 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2183 
2184 	ifp->if_timer = 2;
2185 	return;
2186 }
2187 
2188 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2189 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2190 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2191 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2192 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2193 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2194 
2195 #define UCODE(x)	x, sizeof(x)
2196 
2197 struct ucode {
2198 	u_int32_t	revision;
2199 	u_int32_t	*ucode;
2200 	int		length;
2201 	u_short		int_delay_offset;
2202 	u_short		bundle_max_offset;
2203 } ucode_table[] = {
2204 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2205 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2206 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2207 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2208 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2209 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2210 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2211 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2212 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2213 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2214 	{ 0, NULL, 0, 0, 0 }
2215 };
2216 
2217 static void
2218 fxp_load_ucode(struct fxp_softc *sc)
2219 {
2220 	struct ucode *uc;
2221 	struct fxp_cb_ucode *cbp;
2222 
2223 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2224 		if (sc->revision == uc->revision)
2225 			break;
2226 	if (uc->ucode == NULL)
2227 		return;
2228 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2229 	cbp->cb_status = 0;
2230 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2231 	cbp->link_addr = -1;    	/* (no) next command */
2232 	memcpy(cbp->ucode, uc->ucode, uc->length);
2233 	if (uc->int_delay_offset)
2234 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2235 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2236 	if (uc->bundle_max_offset)
2237 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2238 		    sc->tunable_bundle_max;
2239 	/*
2240 	 * Download the ucode to the chip.
2241 	 */
2242 	fxp_scb_wait(sc);
2243 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2244 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2245 	/* ...and wait for it to complete. */
2246 	fxp_dma_wait(&cbp->cb_status, sc);
2247 	device_printf(sc->dev,
2248 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2249 	    sc->tunable_int_delay,
2250 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2251 	sc->flags |= FXP_FLAG_UCODE;
2252 }
2253 
2254 static int
2255 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2256 {
2257 	int error, value;
2258 
2259 	value = *(int *)arg1;
2260 	error = sysctl_handle_int(oidp, &value, 0, req);
2261 	if (error || !req->newptr)
2262 		return (error);
2263 	if (value < low || value > high)
2264 		return (EINVAL);
2265 	*(int *)arg1 = value;
2266 	return (0);
2267 }
2268 
2269 /*
2270  * Interrupt delay is expressed in microseconds, a multiplier is used
2271  * to convert this to the appropriate clock ticks before using.
2272  */
2273 static int
2274 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2275 {
2276 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2277 }
2278 
2279 static int
2280 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2281 {
2282 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2283 }
2284