xref: /dflybsd-src/sys/dev/netif/et/if_et.c (revision f5b0e57cc98926a8909f9a0df811e3321c71113c)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.4 2007/10/17 13:25:04 sephe Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/bitops.h>
39 #include <sys/endian.h>
40 #include <sys/kernel.h>
41 #include <sys/bus.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/rman.h>
45 #include <sys/serialize.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 
50 #include <net/ethernet.h>
51 #include <net/if.h>
52 #include <net/bpf.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/ifq_var.h>
57 #include <net/vlan/if_vlan_var.h>
58 
59 #include <dev/netif/mii_layer/miivar.h>
60 
61 #include <bus/pci/pcireg.h>
62 #include <bus/pci/pcivar.h>
63 #include <bus/pci/pcidevs.h>
64 
65 #include <dev/netif/et/if_etreg.h>
66 #include <dev/netif/et/if_etvar.h>
67 
68 #include "miibus_if.h"
69 
70 static int	et_probe(device_t);
71 static int	et_attach(device_t);
72 static int	et_detach(device_t);
73 static int	et_shutdown(device_t);
74 
75 static int	et_miibus_readreg(device_t, int, int);
76 static int	et_miibus_writereg(device_t, int, int, int);
77 static void	et_miibus_statchg(device_t);
78 
79 static void	et_init(void *);
80 static int	et_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
81 static void	et_start(struct ifnet *);
82 static void	et_watchdog(struct ifnet *);
83 static int	et_ifmedia_upd(struct ifnet *);
84 static void	et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
85 
86 static int	et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS);
87 static int	et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS);
88 
89 static void	et_intr(void *);
90 static void	et_enable_intrs(struct et_softc *, uint32_t);
91 static void	et_disable_intrs(struct et_softc *);
92 static void	et_rxeof(struct et_softc *);
93 static void	et_txeof(struct et_softc *);
94 
95 static int	et_dma_alloc(device_t);
96 static void	et_dma_free(device_t);
97 static int	et_dma_mem_create(device_t, bus_size_t, bus_dma_tag_t *,
98 				  void **, bus_addr_t *, bus_dmamap_t *);
99 static void	et_dma_mem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
100 static int	et_dma_mbuf_create(device_t);
101 static void	et_dma_mbuf_destroy(device_t, int, const int[]);
102 static void	et_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
103 static void	et_dma_buf_addr(void *, bus_dma_segment_t *, int,
104 				bus_size_t, int);
105 static int	et_init_tx_ring(struct et_softc *);
106 static int	et_init_rx_ring(struct et_softc *);
107 static void	et_free_tx_ring(struct et_softc *);
108 static void	et_free_rx_ring(struct et_softc *);
109 static int	et_encap(struct et_softc *, struct mbuf **);
110 static int	et_newbuf(struct et_rxbuf_data *, int, int, int);
111 static int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
112 static int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
113 
114 static void	et_stop(struct et_softc *);
115 static int	et_chip_init(struct et_softc *);
116 static void	et_chip_attach(struct et_softc *);
117 static void	et_init_mac(struct et_softc *);
118 static void	et_init_rxmac(struct et_softc *);
119 static void	et_init_txmac(struct et_softc *);
120 static int	et_init_rxdma(struct et_softc *);
121 static int	et_init_txdma(struct et_softc *);
122 static int	et_start_rxdma(struct et_softc *);
123 static int	et_start_txdma(struct et_softc *);
124 static int	et_stop_rxdma(struct et_softc *);
125 static int	et_stop_txdma(struct et_softc *);
126 static int	et_enable_txrx(struct et_softc *, int);
127 static void	et_reset(struct et_softc *);
128 static int	et_bus_config(device_t);
129 static void	et_get_eaddr(device_t, uint8_t[]);
130 static void	et_setmulti(struct et_softc *);
131 static void	et_tick(void *);
132 static void	et_setmedia(struct et_softc *);
133 
134 static const struct et_dev {
135 	uint16_t	vid;
136 	uint16_t	did;
137 	const char	*desc;
138 } et_devices[] = {
139 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310,
140 	  "Agere ET1310 Gigabit Ethernet" },
141 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST,
142 	  "Agere ET1310 Fast Ethernet" },
143 	{ 0, 0, NULL }
144 };
145 
146 static device_method_t et_methods[] = {
147 	DEVMETHOD(device_probe,		et_probe),
148 	DEVMETHOD(device_attach,	et_attach),
149 	DEVMETHOD(device_detach,	et_detach),
150 	DEVMETHOD(device_shutdown,	et_shutdown),
151 #if 0
152 	DEVMETHOD(device_suspend,	et_suspend),
153 	DEVMETHOD(device_resume,	et_resume),
154 #endif
155 
156 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
157 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
158 
159 	DEVMETHOD(miibus_readreg,	et_miibus_readreg),
160 	DEVMETHOD(miibus_writereg,	et_miibus_writereg),
161 	DEVMETHOD(miibus_statchg,	et_miibus_statchg),
162 
163 	{ 0, 0 }
164 };
165 
166 static driver_t et_driver = {
167 	"et",
168 	et_methods,
169 	sizeof(struct et_softc)
170 };
171 
172 static devclass_t et_devclass;
173 
174 DECLARE_DUMMY_MODULE(if_et);
175 MODULE_DEPEND(if_et, miibus, 1, 1, 1);
176 DRIVER_MODULE(if_et, pci, et_driver, et_devclass, 0, 0);
177 DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, 0, 0);
178 
179 static int	et_rx_intr_npkts = 32;
180 static int	et_rx_intr_delay = 20;		/* x10 usec */
181 static int	et_tx_intr_nsegs = 126;
182 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
183 
184 TUNABLE_INT("hw.et.timer", &et_timer);
185 TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts);
186 TUNABLE_INT("hw.et.rx_intr_intvl", &et_rx_intr_delay);
187 TUNABLE_INT("hw.et_tx_intr_nsegs", &et_tx_intr_nsegs);
188 
189 struct et_bsize {
190 	int		bufsize;
191 	et_newbuf_t	newbuf;
192 };
193 
194 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
195 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
196 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
197 };
198 
199 static int
200 et_probe(device_t dev)
201 {
202 	const struct et_dev *d;
203 	uint16_t did, vid;
204 
205 	vid = pci_get_vendor(dev);
206 	did = pci_get_device(dev);
207 
208 	for (d = et_devices; d->desc != NULL; ++d) {
209 		if (vid == d->vid && did == d->did) {
210 			device_set_desc(dev, d->desc);
211 			return 0;
212 		}
213 	}
214 	return ENXIO;
215 }
216 
217 static int
218 et_attach(device_t dev)
219 {
220 	struct et_softc *sc = device_get_softc(dev);
221 	struct ifnet *ifp = &sc->arpcom.ac_if;
222 	uint8_t eaddr[ETHER_ADDR_LEN];
223 	int error;
224 
225 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
226 	callout_init(&sc->sc_tick);
227 
228 	/*
229 	 * Initialize tunables
230 	 */
231 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
232 	sc->sc_rx_intr_delay = et_rx_intr_delay;
233 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
234 	sc->sc_timer = et_timer;
235 
236 #ifndef BURN_BRIDGES
237 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
238 		uint32_t irq, mem;
239 
240 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
241 		mem = pci_read_config(dev, ET_PCIR_BAR, 4);
242 
243 		device_printf(dev, "chip is in D%d power mode "
244 		    "-- setting to D0\n", pci_get_powerstate(dev));
245 
246 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
247 
248 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
249 		pci_write_config(dev, ET_PCIR_BAR, mem, 4);
250 	}
251 #endif	/* !BURN_BRIDGE */
252 
253 	/* Enable bus mastering */
254 	pci_enable_busmaster(dev);
255 
256 	/*
257 	 * Allocate IO memory
258 	 */
259 	sc->sc_mem_rid = ET_PCIR_BAR;
260 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
261 						&sc->sc_mem_rid, RF_ACTIVE);
262 	if (sc->sc_mem_res == NULL) {
263 		device_printf(dev, "can't allocate IO memory\n");
264 		return ENXIO;
265 	}
266 	sc->sc_mem_bt = rman_get_bustag(sc->sc_mem_res);
267 	sc->sc_mem_bh = rman_get_bushandle(sc->sc_mem_res);
268 
269 	/*
270 	 * Allocate IRQ
271 	 */
272 	sc->sc_irq_rid = 0;
273 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
274 						&sc->sc_irq_rid,
275 						RF_SHAREABLE | RF_ACTIVE);
276 	if (sc->sc_irq_res == NULL) {
277 		device_printf(dev, "can't allocate irq\n");
278 		error = ENXIO;
279 		goto fail;
280 	}
281 
282 	/*
283 	 * Create sysctl tree
284 	 */
285 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
286 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
287 					     SYSCTL_STATIC_CHILDREN(_hw),
288 					     OID_AUTO,
289 					     device_get_nameunit(dev),
290 					     CTLFLAG_RD, 0, "");
291 	if (sc->sc_sysctl_tree == NULL) {
292 		device_printf(dev, "can't add sysctl node\n");
293 		error = ENXIO;
294 		goto fail;
295 	}
296 
297 	SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
298 			SYSCTL_CHILDREN(sc->sc_sysctl_tree),
299 			OID_AUTO, "rx_intr_npkts", CTLTYPE_INT | CTLFLAG_RW,
300 			sc, 0, et_sysctl_rx_intr_npkts, "I",
301 			"RX IM, # packets per RX interrupt");
302 	SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
303 			SYSCTL_CHILDREN(sc->sc_sysctl_tree),
304 			OID_AUTO, "rx_intr_delay", CTLTYPE_INT | CTLFLAG_RW,
305 			sc, 0, et_sysctl_rx_intr_delay, "I",
306 			"RX IM, RX interrupt delay (x10 usec)");
307 	SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
308 		       SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
309 		       "tx_intr_nsegs", CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0,
310 		       "TX IM, # segments per TX interrupt");
311 	SYSCTL_ADD_UINT(&sc->sc_sysctl_ctx,
312 			SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
313 			"timer", CTLFLAG_RW, &sc->sc_timer, 0,
314 			"TX timer");
315 
316 	error = et_bus_config(dev);
317 	if (error)
318 		goto fail;
319 
320 	et_get_eaddr(dev, eaddr);
321 
322 	CSR_WRITE_4(sc, ET_PM,
323 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
324 
325 	et_reset(sc);
326 
327 	et_disable_intrs(sc);
328 
329 	error = et_dma_alloc(dev);
330 	if (error)
331 		goto fail;
332 
333 	ifp->if_softc = sc;
334 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
335 	ifp->if_init = et_init;
336 	ifp->if_ioctl = et_ioctl;
337 	ifp->if_start = et_start;
338 	ifp->if_watchdog = et_watchdog;
339 	ifp->if_mtu = ETHERMTU;
340 	ifp->if_capabilities = IFCAP_VLAN_MTU;
341 	ifp->if_capenable = ifp->if_capabilities;
342 	ifq_set_maxlen(&ifp->if_snd, ET_TX_NDESC);
343 	ifq_set_ready(&ifp->if_snd);
344 
345 	et_chip_attach(sc);
346 
347 	error = mii_phy_probe(dev, &sc->sc_miibus,
348 			      et_ifmedia_upd, et_ifmedia_sts);
349 	if (error) {
350 		device_printf(dev, "can't probe any PHY\n");
351 		goto fail;
352 	}
353 
354 	ether_ifattach(ifp, eaddr, NULL);
355 
356 	error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, et_intr, sc,
357 			       &sc->sc_irq_handle, ifp->if_serializer);
358 	if (error) {
359 		ether_ifdetach(ifp);
360 		device_printf(dev, "can't setup intr\n");
361 		goto fail;
362 	}
363 	return 0;
364 fail:
365 	et_detach(dev);
366 	return error;
367 }
368 
369 static int
370 et_detach(device_t dev)
371 {
372 	struct et_softc *sc = device_get_softc(dev);
373 
374 	if (device_is_attached(dev)) {
375 		struct ifnet *ifp = &sc->arpcom.ac_if;
376 
377 		lwkt_serialize_enter(ifp->if_serializer);
378 		et_stop(sc);
379 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
380 		lwkt_serialize_exit(ifp->if_serializer);
381 
382 		ether_ifdetach(ifp);
383 	}
384 
385 	if (sc->sc_sysctl_tree != NULL)
386 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
387 
388 	if (sc->sc_miibus != NULL)
389 		device_delete_child(dev, sc->sc_miibus);
390 	bus_generic_detach(dev);
391 
392 	if (sc->sc_irq_res != NULL) {
393 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
394 				     sc->sc_irq_res);
395 	}
396 
397 	if (sc->sc_mem_res != NULL) {
398 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
399 				     sc->sc_mem_res);
400 	}
401 
402 	et_dma_free(dev);
403 
404 	return 0;
405 }
406 
407 static int
408 et_shutdown(device_t dev)
409 {
410 	struct et_softc *sc = device_get_softc(dev);
411 	struct ifnet *ifp = &sc->arpcom.ac_if;
412 
413 	lwkt_serialize_enter(ifp->if_serializer);
414 	et_stop(sc);
415 	lwkt_serialize_exit(ifp->if_serializer);
416 	return 0;
417 }
418 
419 static int
420 et_miibus_readreg(device_t dev, int phy, int reg)
421 {
422 	struct et_softc *sc = device_get_softc(dev);
423 	uint32_t val;
424 	int i, ret;
425 
426 	/* Stop any pending operations */
427 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
428 
429 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
430 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
431 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
432 
433 	/* Start reading */
434 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
435 
436 #define NRETRY	50
437 
438 	for (i = 0; i < NRETRY; ++i) {
439 		val = CSR_READ_4(sc, ET_MII_IND);
440 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
441 			break;
442 		DELAY(50);
443 	}
444 	if (i == NRETRY) {
445 		if_printf(&sc->arpcom.ac_if,
446 			  "read phy %d, reg %d timed out\n", phy, reg);
447 		ret = 0;
448 		goto back;
449 	}
450 
451 #undef NRETRY
452 
453 	val = CSR_READ_4(sc, ET_MII_STAT);
454 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
455 
456 back:
457 	/* Make sure that the current operation is stopped */
458 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
459 	return ret;
460 }
461 
462 static int
463 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
464 {
465 	struct et_softc *sc = device_get_softc(dev);
466 	uint32_t val;
467 	int i;
468 
469 	/* Stop any pending operations */
470 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
471 
472 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
473 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
474 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
475 
476 	/* Start writing */
477 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
478 
479 #define NRETRY 100
480 
481 	for (i = 0; i < NRETRY; ++i) {
482 		val = CSR_READ_4(sc, ET_MII_IND);
483 		if ((val & ET_MII_IND_BUSY) == 0)
484 			break;
485 		DELAY(50);
486 	}
487 	if (i == NRETRY) {
488 		if_printf(&sc->arpcom.ac_if,
489 			  "write phy %d, reg %d timed out\n", phy, reg);
490 		et_miibus_readreg(dev, phy, reg);
491 	}
492 
493 #undef NRETRY
494 
495 	/* Make sure that the current operation is stopped */
496 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
497 	return 0;
498 }
499 
500 static void
501 et_miibus_statchg(device_t dev)
502 {
503 	et_setmedia(device_get_softc(dev));
504 }
505 
506 static int
507 et_ifmedia_upd(struct ifnet *ifp)
508 {
509 	struct et_softc *sc = ifp->if_softc;
510 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
511 
512 	if (mii->mii_instance != 0) {
513 		struct mii_softc *miisc;
514 
515 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
516 			mii_phy_reset(miisc);
517 	}
518 	mii_mediachg(mii);
519 
520 	return 0;
521 }
522 
523 static void
524 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
525 {
526 	struct et_softc *sc = ifp->if_softc;
527 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
528 
529 	mii_pollstat(mii);
530 	ifmr->ifm_active = mii->mii_media_active;
531 	ifmr->ifm_status = mii->mii_media_status;
532 }
533 
534 static void
535 et_stop(struct et_softc *sc)
536 {
537 	struct ifnet *ifp = &sc->arpcom.ac_if;
538 
539 	ASSERT_SERIALIZED(ifp->if_serializer);
540 
541 	callout_stop(&sc->sc_tick);
542 
543 	et_stop_rxdma(sc);
544 	et_stop_txdma(sc);
545 
546 	et_disable_intrs(sc);
547 
548 	et_free_tx_ring(sc);
549 	et_free_rx_ring(sc);
550 
551 	et_reset(sc);
552 
553 	sc->sc_tx = 0;
554 	sc->sc_tx_intr = 0;
555 	sc->sc_txrx_enabled = 0;
556 
557 	ifp->if_timer = 0;
558 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
559 }
560 
561 static int
562 et_bus_config(device_t dev)
563 {
564 	uint32_t val, max_plsz;
565 	uint16_t ack_latency, replay_timer;
566 
567 	/*
568 	 * Test whether EEPROM is valid
569 	 * NOTE: Read twice to get the correct value
570 	 */
571 	pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
572 	val = pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
573 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
574 		device_printf(dev, "EEPROM status error 0x%02x\n", val);
575 		return ENXIO;
576 	}
577 
578 	/* TODO: LED */
579 
580 	/*
581 	 * Configure ACK latency and replay timer according to
582 	 * max playload size
583 	 */
584 	val = pci_read_config(dev, ET_PCIR_DEVICE_CAPS, 4);
585 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
586 
587 	switch (max_plsz) {
588 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
589 		ack_latency = ET_PCIV_ACK_LATENCY_128;
590 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
591 		break;
592 
593 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
594 		ack_latency = ET_PCIV_ACK_LATENCY_256;
595 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
596 		break;
597 
598 	default:
599 		ack_latency = pci_read_config(dev, ET_PCIR_ACK_LATENCY, 2);
600 		replay_timer = pci_read_config(dev, ET_PCIR_REPLAY_TIMER, 2);
601 		device_printf(dev, "ack latency %u, replay timer %u\n",
602 			      ack_latency, replay_timer);
603 		break;
604 	}
605 	if (ack_latency != 0) {
606 		pci_write_config(dev, ET_PCIR_ACK_LATENCY, ack_latency, 2);
607 		pci_write_config(dev, ET_PCIR_REPLAY_TIMER, replay_timer, 2);
608 	}
609 
610 	/*
611 	 * Set L0s and L1 latency timer to 2us
612 	 */
613 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
614 	pci_write_config(dev, ET_PCIR_L0S_L1_LATENCY, val, 1);
615 
616 	/*
617 	 * Set max read request size to 2048 bytes
618 	 */
619 	val = pci_read_config(dev, ET_PCIR_DEVICE_CTRL, 2);
620 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
621 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
622 	pci_write_config(dev, ET_PCIR_DEVICE_CTRL, val, 2);
623 
624 	return 0;
625 }
626 
627 static void
628 et_get_eaddr(device_t dev, uint8_t eaddr[])
629 {
630 	uint32_t val;
631 	int i;
632 
633 	val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4);
634 	for (i = 0; i < 4; ++i)
635 		eaddr[i] = (val >> (8 * i)) & 0xff;
636 
637 	val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2);
638 	for (; i < ETHER_ADDR_LEN; ++i)
639 		eaddr[i] = (val >> (8 * (i - 4))) & 0xff;
640 }
641 
642 static void
643 et_reset(struct et_softc *sc)
644 {
645 	CSR_WRITE_4(sc, ET_MAC_CFG1,
646 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
647 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
648 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
649 
650 	CSR_WRITE_4(sc, ET_SWRST,
651 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
652 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
653 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
654 
655 	CSR_WRITE_4(sc, ET_MAC_CFG1,
656 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
657 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
658 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
659 }
660 
661 static void
662 et_disable_intrs(struct et_softc *sc)
663 {
664 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
665 }
666 
667 static void
668 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
669 {
670 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
671 }
672 
673 static int
674 et_dma_alloc(device_t dev)
675 {
676 	struct et_softc *sc = device_get_softc(dev);
677 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
678 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
679 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
680 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
681 	int i, error;
682 
683 	/*
684 	 * Create top level DMA tag
685 	 */
686 	error = bus_dma_tag_create(NULL, 1, 0,
687 				   BUS_SPACE_MAXADDR_32BIT,
688 				   BUS_SPACE_MAXADDR,
689 				   NULL, NULL,
690 				   MAXBSIZE,
691 				   BUS_SPACE_UNRESTRICTED,
692 				   BUS_SPACE_MAXSIZE_32BIT,
693 				   0, &sc->sc_dtag);
694 	if (error) {
695 		device_printf(dev, "can't create DMA tag\n");
696 		return error;
697 	}
698 
699 	/*
700 	 * Create TX ring DMA stuffs
701 	 */
702 	error = et_dma_mem_create(dev, ET_TX_RING_SIZE, &tx_ring->tr_dtag,
703 				  (void **)&tx_ring->tr_desc,
704 				  &tx_ring->tr_paddr, &tx_ring->tr_dmap);
705 	if (error) {
706 		device_printf(dev, "can't create TX ring DMA stuffs\n");
707 		return error;
708 	}
709 
710 	/*
711 	 * Create TX status DMA stuffs
712 	 */
713 	error = et_dma_mem_create(dev, sizeof(uint32_t), &txsd->txsd_dtag,
714 				  (void **)&txsd->txsd_status,
715 				  &txsd->txsd_paddr, &txsd->txsd_dmap);
716 	if (error) {
717 		device_printf(dev, "can't create TX status DMA stuffs\n");
718 		return error;
719 	}
720 
721 	/*
722 	 * Create DMA stuffs for RX rings
723 	 */
724 	for (i = 0; i < ET_RX_NRING; ++i) {
725 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
726 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
727 
728 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
729 
730 		error = et_dma_mem_create(dev, ET_RX_RING_SIZE,
731 					  &rx_ring->rr_dtag,
732 					  (void **)&rx_ring->rr_desc,
733 					  &rx_ring->rr_paddr,
734 					  &rx_ring->rr_dmap);
735 		if (error) {
736 			device_printf(dev, "can't create DMA stuffs for "
737 				      "the %d RX ring\n", i);
738 			return error;
739 		}
740 		rx_ring->rr_posreg = rx_ring_posreg[i];
741 	}
742 
743 	/*
744 	 * Create RX stat ring DMA stuffs
745 	 */
746 	error = et_dma_mem_create(dev, ET_RXSTAT_RING_SIZE,
747 				  &rxst_ring->rsr_dtag,
748 				  (void **)&rxst_ring->rsr_stat,
749 				  &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap);
750 	if (error) {
751 		device_printf(dev, "can't create RX stat ring DMA stuffs\n");
752 		return error;
753 	}
754 
755 	/*
756 	 * Create RX status DMA stuffs
757 	 */
758 	error = et_dma_mem_create(dev, sizeof(struct et_rxstatus),
759 				  &rxsd->rxsd_dtag,
760 				  (void **)&rxsd->rxsd_status,
761 				  &rxsd->rxsd_paddr, &rxsd->rxsd_dmap);
762 	if (error) {
763 		device_printf(dev, "can't create RX status DMA stuffs\n");
764 		return error;
765 	}
766 
767 	/*
768 	 * Create mbuf DMA stuffs
769 	 */
770 	error = et_dma_mbuf_create(dev);
771 	if (error)
772 		return error;
773 
774 	return 0;
775 }
776 
777 static void
778 et_dma_free(device_t dev)
779 {
780 	struct et_softc *sc = device_get_softc(dev);
781 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
782 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
783 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
784 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
785 	int i, rx_done[ET_RX_NRING];
786 
787 	/*
788 	 * Destroy TX ring DMA stuffs
789 	 */
790 	et_dma_mem_destroy(tx_ring->tr_dtag, tx_ring->tr_desc,
791 			   tx_ring->tr_dmap);
792 
793 	/*
794 	 * Destroy TX status DMA stuffs
795 	 */
796 	et_dma_mem_destroy(txsd->txsd_dtag, txsd->txsd_status,
797 			   txsd->txsd_dmap);
798 
799 	/*
800 	 * Destroy DMA stuffs for RX rings
801 	 */
802 	for (i = 0; i < ET_RX_NRING; ++i) {
803 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
804 
805 		et_dma_mem_destroy(rx_ring->rr_dtag, rx_ring->rr_desc,
806 				   rx_ring->rr_dmap);
807 	}
808 
809 	/*
810 	 * Destroy RX stat ring DMA stuffs
811 	 */
812 	et_dma_mem_destroy(rxst_ring->rsr_dtag, rxst_ring->rsr_stat,
813 			   rxst_ring->rsr_dmap);
814 
815 	/*
816 	 * Destroy RX status DMA stuffs
817 	 */
818 	et_dma_mem_destroy(rxsd->rxsd_dtag, rxsd->rxsd_status,
819 			   rxsd->rxsd_dmap);
820 
821 	/*
822 	 * Destroy mbuf DMA stuffs
823 	 */
824 	for (i = 0; i < ET_RX_NRING; ++i)
825 		rx_done[i] = ET_RX_NDESC;
826 	et_dma_mbuf_destroy(dev, ET_TX_NDESC, rx_done);
827 
828 	/*
829 	 * Destroy top level DMA tag
830 	 */
831 	if (sc->sc_dtag != NULL)
832 		bus_dma_tag_destroy(sc->sc_dtag);
833 }
834 
835 static int
836 et_dma_mbuf_create(device_t dev)
837 {
838 	struct et_softc *sc = device_get_softc(dev);
839 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
840 	int i, error, rx_done[ET_RX_NRING];
841 
842 	/*
843 	 * Create mbuf DMA tag
844 	 */
845 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
846 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
847 				   NULL, NULL,
848 				   MCLBYTES, ET_NSEG_MAX,
849 				   BUS_SPACE_MAXSIZE_32BIT,
850 				   BUS_DMA_ALLOCNOW, &sc->sc_mbuf_dtag);
851 	if (error) {
852 		device_printf(dev, "can't create mbuf DMA tag\n");
853 		return error;
854 	}
855 
856 	/*
857 	 * Create spare DMA map for RX mbufs
858 	 */
859 	error = bus_dmamap_create(sc->sc_mbuf_dtag, 0, &sc->sc_mbuf_tmp_dmap);
860 	if (error) {
861 		device_printf(dev, "can't create spare mbuf DMA map\n");
862 		bus_dma_tag_destroy(sc->sc_mbuf_dtag);
863 		sc->sc_mbuf_dtag = NULL;
864 		return error;
865 	}
866 
867 	/*
868 	 * Create DMA maps for RX mbufs
869 	 */
870 	bzero(rx_done, sizeof(rx_done));
871 	for (i = 0; i < ET_RX_NRING; ++i) {
872 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
873 		int j;
874 
875 		for (j = 0; j < ET_RX_NDESC; ++j) {
876 			error = bus_dmamap_create(sc->sc_mbuf_dtag, 0,
877 				&rbd->rbd_buf[j].rb_dmap);
878 			if (error) {
879 				device_printf(dev, "can't create %d RX mbuf "
880 					      "for %d RX ring\n", j, i);
881 				rx_done[i] = j;
882 				et_dma_mbuf_destroy(dev, 0, rx_done);
883 				return error;
884 			}
885 		}
886 		rx_done[i] = ET_RX_NDESC;
887 
888 		rbd->rbd_softc = sc;
889 		rbd->rbd_ring = &sc->sc_rx_ring[i];
890 	}
891 
892 	/*
893 	 * Create DMA maps for TX mbufs
894 	 */
895 	for (i = 0; i < ET_TX_NDESC; ++i) {
896 		error = bus_dmamap_create(sc->sc_mbuf_dtag, 0,
897 					  &tbd->tbd_buf[i].tb_dmap);
898 		if (error) {
899 			device_printf(dev, "can't create %d TX mbuf "
900 				      "DMA map\n", i);
901 			et_dma_mbuf_destroy(dev, i, rx_done);
902 			return error;
903 		}
904 	}
905 
906 	return 0;
907 }
908 
909 static void
910 et_dma_mbuf_destroy(device_t dev, int tx_done, const int rx_done[])
911 {
912 	struct et_softc *sc = device_get_softc(dev);
913 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
914 	int i;
915 
916 	if (sc->sc_mbuf_dtag == NULL)
917 		return;
918 
919 	/*
920 	 * Destroy DMA maps for RX mbufs
921 	 */
922 	for (i = 0; i < ET_RX_NRING; ++i) {
923 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
924 		int j;
925 
926 		for (j = 0; j < rx_done[i]; ++j) {
927 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
928 
929 			KASSERT(rb->rb_mbuf == NULL,
930 			    ("RX mbuf in %d RX ring is not freed yet\n", i));
931 			bus_dmamap_destroy(sc->sc_mbuf_dtag, rb->rb_dmap);
932 		}
933 	}
934 
935 	/*
936 	 * Destroy DMA maps for TX mbufs
937 	 */
938 	for (i = 0; i < tx_done; ++i) {
939 		struct et_txbuf *tb = &tbd->tbd_buf[i];
940 
941 		KASSERT(tb->tb_mbuf == NULL, ("TX mbuf is not freed yet\n"));
942 		bus_dmamap_destroy(sc->sc_mbuf_dtag, tb->tb_dmap);
943 	}
944 
945 	/*
946 	 * Destroy spare mbuf DMA map
947 	 */
948 	bus_dmamap_destroy(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap);
949 
950 	/*
951 	 * Destroy mbuf DMA tag
952 	 */
953 	bus_dma_tag_destroy(sc->sc_mbuf_dtag);
954 	sc->sc_mbuf_dtag = NULL;
955 }
956 
957 static int
958 et_dma_mem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
959 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
960 {
961 	struct et_softc *sc = device_get_softc(dev);
962 	int error;
963 
964 	error = bus_dma_tag_create(sc->sc_dtag, ET_ALIGN, 0,
965 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
966 				   NULL, NULL,
967 				   size, 1, BUS_SPACE_MAXSIZE_32BIT,
968 				   0, dtag);
969 	if (error) {
970 		device_printf(dev, "can't create DMA tag\n");
971 		return error;
972 	}
973 
974 	error = bus_dmamem_alloc(*dtag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
975 				 dmap);
976 	if (error) {
977 		device_printf(dev, "can't allocate DMA mem\n");
978 		bus_dma_tag_destroy(*dtag);
979 		*dtag = NULL;
980 		return error;
981 	}
982 
983 	error = bus_dmamap_load(*dtag, *dmap, *addr, size,
984 				et_dma_ring_addr, paddr, BUS_DMA_WAITOK);
985 	if (error) {
986 		device_printf(dev, "can't load DMA mem\n");
987 		bus_dmamem_free(*dtag, *addr, *dmap);
988 		bus_dma_tag_destroy(*dtag);
989 		*dtag = NULL;
990 		return error;
991 	}
992 	return 0;
993 }
994 
995 static void
996 et_dma_mem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
997 {
998 	if (dtag != NULL) {
999 		bus_dmamap_unload(dtag, dmap);
1000 		bus_dmamem_free(dtag, addr, dmap);
1001 		bus_dma_tag_destroy(dtag);
1002 	}
1003 }
1004 
1005 static void
1006 et_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1007 {
1008 	KASSERT(nseg == 1, ("too many segments\n"));
1009 	*((bus_addr_t *)arg) = seg->ds_addr;
1010 }
1011 
1012 static void
1013 et_chip_attach(struct et_softc *sc)
1014 {
1015 	uint32_t val;
1016 
1017 	/*
1018 	 * Perform minimal initialization
1019 	 */
1020 
1021 	/* Disable loopback */
1022 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1023 
1024 	/* Reset MAC */
1025 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1026 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1027 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1028 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1029 
1030 	/*
1031 	 * Setup half duplex mode
1032 	 */
1033 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1034 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1035 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1036 	      ET_MAC_HDX_EXC_DEFER;
1037 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1038 
1039 	/* Clear MAC control */
1040 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1041 
1042 	/* Reset MII */
1043 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1044 
1045 	/* Bring MAC out of reset state */
1046 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1047 
1048 	/* Enable memory controllers */
1049 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1050 }
1051 
1052 static void
1053 et_intr(void *xsc)
1054 {
1055 	struct et_softc *sc = xsc;
1056 	struct ifnet *ifp = &sc->arpcom.ac_if;
1057 	uint32_t intrs;
1058 
1059 	ASSERT_SERIALIZED(ifp->if_serializer);
1060 
1061 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1062 		return;
1063 
1064 	et_disable_intrs(sc);
1065 
1066 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1067 	intrs &= ET_INTRS;
1068 	if (intrs == 0)	/* Not interested */
1069 		goto back;
1070 
1071 	if (intrs & ET_INTR_RXEOF)
1072 		et_rxeof(sc);
1073 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1074 		et_txeof(sc);
1075 	if (intrs & ET_INTR_TIMER)
1076 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1077 back:
1078 	et_enable_intrs(sc, ET_INTRS);
1079 }
1080 
1081 static void
1082 et_init(void *xsc)
1083 {
1084 	struct et_softc *sc = xsc;
1085 	struct ifnet *ifp = &sc->arpcom.ac_if;
1086 	const struct et_bsize *arr;
1087 	int error, i;
1088 
1089 	ASSERT_SERIALIZED(ifp->if_serializer);
1090 
1091 	et_stop(sc);
1092 
1093 	arr = ifp->if_mtu <= ETHERMTU ? et_bufsize : NULL;
1094 	for (i = 0; i < ET_RX_NRING; ++i) {
1095 		sc->sc_rx_data[i].rbd_bufsize = arr[i].bufsize;
1096 		sc->sc_rx_data[i].rbd_newbuf = arr[i].newbuf;
1097 	}
1098 
1099 	error = et_init_tx_ring(sc);
1100 	if (error)
1101 		goto back;
1102 
1103 	error = et_init_rx_ring(sc);
1104 	if (error)
1105 		goto back;
1106 
1107 	error = et_chip_init(sc);
1108 	if (error)
1109 		goto back;
1110 
1111 	error = et_enable_txrx(sc, 1);
1112 	if (error)
1113 		goto back;
1114 
1115 	et_enable_intrs(sc, ET_INTRS);
1116 
1117 	callout_reset(&sc->sc_tick, hz, et_tick, sc);
1118 
1119 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1120 
1121 	ifp->if_flags |= IFF_RUNNING;
1122 	ifp->if_flags &= ~IFF_OACTIVE;
1123 back:
1124 	if (error)
1125 		et_stop(sc);
1126 }
1127 
1128 static int
1129 et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1130 {
1131 	struct et_softc *sc = ifp->if_softc;
1132 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
1133 	struct ifreq *ifr = (struct ifreq *)data;
1134 	int error = 0;
1135 
1136 	ASSERT_SERIALIZED(ifp->if_serializer);
1137 
1138 	switch (cmd) {
1139 	case SIOCSIFFLAGS:
1140 		if (ifp->if_flags & IFF_UP) {
1141 			if (ifp->if_flags & IFF_RUNNING) {
1142 				if ((ifp->if_flags ^ sc->sc_if_flags) &
1143 				(IFF_ALLMULTI | IFF_PROMISC | IFF_BROADCAST))
1144 					et_setmulti(sc);
1145 			} else {
1146 				et_init(sc);
1147 			}
1148 		} else {
1149 			if (ifp->if_flags & IFF_RUNNING)
1150 				et_stop(sc);
1151 		}
1152 		sc->sc_if_flags = ifp->if_flags;
1153 		break;
1154 
1155 	case SIOCSIFMEDIA:
1156 	case SIOCGIFMEDIA:
1157 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1158 		break;
1159 
1160 	case SIOCADDMULTI:
1161 	case SIOCDELMULTI:
1162 		if (ifp->if_flags & IFF_RUNNING)
1163 			et_setmulti(sc);
1164 		break;
1165 
1166 	case SIOCSIFMTU:
1167 		/* TODO */
1168 		error = EOPNOTSUPP;
1169 		break;
1170 
1171 	default:
1172 		error = ether_ioctl(ifp, cmd, data);
1173 		break;
1174 	}
1175 	return error;
1176 }
1177 
1178 static void
1179 et_start(struct ifnet *ifp)
1180 {
1181 	struct et_softc *sc = ifp->if_softc;
1182 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1183 	int trans;
1184 
1185 	ASSERT_SERIALIZED(ifp->if_serializer);
1186 
1187 	if (!sc->sc_txrx_enabled)
1188 		return;
1189 
1190 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1191 		return;
1192 
1193 	trans = 0;
1194 	for (;;) {
1195 		struct mbuf *m;
1196 
1197 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1198 			ifp->if_flags |= IFF_OACTIVE;
1199 			break;
1200 		}
1201 
1202 		m = ifq_dequeue(&ifp->if_snd, NULL);
1203 		if (m == NULL)
1204 			break;
1205 
1206 		if (et_encap(sc, &m)) {
1207 			ifp->if_oerrors++;
1208 			ifp->if_flags |= IFF_OACTIVE;
1209 			break;
1210 		}
1211 		trans = 1;
1212 
1213 		BPF_MTAP(ifp, m);
1214 	}
1215 
1216 	if (trans)
1217 		ifp->if_timer = 5;
1218 }
1219 
1220 static void
1221 et_watchdog(struct ifnet *ifp)
1222 {
1223 	ASSERT_SERIALIZED(ifp->if_serializer);
1224 
1225 	if_printf(ifp, "watchdog timed out\n");
1226 
1227 	ifp->if_init(ifp->if_softc);
1228 	ifp->if_start(ifp);
1229 }
1230 
1231 static int
1232 et_stop_rxdma(struct et_softc *sc)
1233 {
1234 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1235 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1236 
1237 	DELAY(5);
1238 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1239 		if_printf(&sc->arpcom.ac_if, "can't stop RX DMA engine\n");
1240 		return ETIMEDOUT;
1241 	}
1242 	return 0;
1243 }
1244 
1245 static int
1246 et_stop_txdma(struct et_softc *sc)
1247 {
1248 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1249 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1250 	return 0;
1251 }
1252 
1253 static void
1254 et_free_tx_ring(struct et_softc *sc)
1255 {
1256 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1257 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1258 	int i;
1259 
1260 	for (i = 0; i < ET_TX_NDESC; ++i) {
1261 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1262 
1263 		if (tb->tb_mbuf != NULL) {
1264 			bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
1265 			m_freem(tb->tb_mbuf);
1266 			tb->tb_mbuf = NULL;
1267 		}
1268 	}
1269 
1270 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1271 	bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
1272 			BUS_DMASYNC_PREWRITE);
1273 }
1274 
1275 static void
1276 et_free_rx_ring(struct et_softc *sc)
1277 {
1278 	int n;
1279 
1280 	for (n = 0; n < ET_RX_NRING; ++n) {
1281 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1282 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1283 		int i;
1284 
1285 		for (i = 0; i < ET_RX_NDESC; ++i) {
1286 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1287 
1288 			if (rb->rb_mbuf != NULL) {
1289 				bus_dmamap_unload(sc->sc_mbuf_dtag,
1290 						  rb->rb_dmap);
1291 				m_freem(rb->rb_mbuf);
1292 				rb->rb_mbuf = NULL;
1293 			}
1294 		}
1295 
1296 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1297 		bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap,
1298 				BUS_DMASYNC_PREWRITE);
1299 	}
1300 }
1301 
1302 static void
1303 et_setmulti(struct et_softc *sc)
1304 {
1305 	struct ifnet *ifp = &sc->arpcom.ac_if;
1306 	uint32_t hash[4] = { 0, 0, 0, 0 };
1307 	uint32_t rxmac_ctrl, pktfilt;
1308 	struct ifmultiaddr *ifma;
1309 	int i, count;
1310 
1311 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1312 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1313 
1314 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1315 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1316 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1317 		goto back;
1318 	}
1319 
1320 	count = 0;
1321 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1322 		uint32_t *hp, h;
1323 
1324 		if (ifma->ifma_addr->sa_family != AF_LINK)
1325 			continue;
1326 
1327 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
1328 				   ifma->ifma_addr), ETHER_ADDR_LEN);
1329 		h = (h & 0x3f800000) >> 23;
1330 
1331 		hp = &hash[0];
1332 		if (h >= 32 && h < 64) {
1333 			h -= 32;
1334 			hp = &hash[1];
1335 		} else if (h >= 64 && h < 96) {
1336 			h -= 64;
1337 			hp = &hash[2];
1338 		} else if (h >= 96) {
1339 			h -= 96;
1340 			hp = &hash[3];
1341 		}
1342 		*hp |= (1 << h);
1343 
1344 		++count;
1345 	}
1346 
1347 	for (i = 0; i < 4; ++i)
1348 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1349 
1350 	if (count > 0)
1351 		pktfilt |= ET_PKTFILT_MCAST;
1352 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1353 back:
1354 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1355 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1356 }
1357 
1358 static int
1359 et_chip_init(struct et_softc *sc)
1360 {
1361 	struct ifnet *ifp = &sc->arpcom.ac_if;
1362 	uint32_t rxq_end;
1363 	int error;
1364 
1365 	/*
1366 	 * Split internal memory between TX and RX according to MTU
1367 	 */
1368 	if (ifp->if_mtu < 2048)
1369 		rxq_end = 0x2bc;
1370 	else if (ifp->if_mtu < 8192)
1371 		rxq_end = 0x1ff;
1372 	else
1373 		rxq_end = 0x1b3;
1374 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1375 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1376 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1377 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1378 
1379 	/* No loopback */
1380 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1381 
1382 	/* Clear MSI configure */
1383 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1384 
1385 	/* Disable timer */
1386 	CSR_WRITE_4(sc, ET_TIMER, 0);
1387 
1388 	/* Initialize MAC */
1389 	et_init_mac(sc);
1390 
1391 	/* Enable memory controllers */
1392 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1393 
1394 	/* Initialize RX MAC */
1395 	et_init_rxmac(sc);
1396 
1397 	/* Initialize TX MAC */
1398 	et_init_txmac(sc);
1399 
1400 	/* Initialize RX DMA engine */
1401 	error = et_init_rxdma(sc);
1402 	if (error)
1403 		return error;
1404 
1405 	/* Initialize TX DMA engine */
1406 	error = et_init_txdma(sc);
1407 	if (error)
1408 		return error;
1409 
1410 	return 0;
1411 }
1412 
1413 static int
1414 et_init_tx_ring(struct et_softc *sc)
1415 {
1416 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1417 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1418 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1419 
1420 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1421 	bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
1422 			BUS_DMASYNC_PREWRITE);
1423 
1424 	tbd->tbd_start_index = 0;
1425 	tbd->tbd_start_wrap = 0;
1426 	tbd->tbd_used = 0;
1427 
1428 	bzero(txsd->txsd_status, sizeof(uint32_t));
1429 	bus_dmamap_sync(txsd->txsd_dtag, txsd->txsd_dmap,
1430 			BUS_DMASYNC_PREWRITE);
1431 	return 0;
1432 }
1433 
1434 static int
1435 et_init_rx_ring(struct et_softc *sc)
1436 {
1437 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1438 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1439 	int n;
1440 
1441 	for (n = 0; n < ET_RX_NRING; ++n) {
1442 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1443 		int i, error;
1444 
1445 		for (i = 0; i < ET_RX_NDESC; ++i) {
1446 			error = rbd->rbd_newbuf(rbd, i, 1);
1447 			if (error) {
1448 				if_printf(&sc->arpcom.ac_if, "%d ring %d buf, "
1449 					  "newbuf failed: %d\n", n, i, error);
1450 				return error;
1451 			}
1452 		}
1453 	}
1454 
1455 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1456 	bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
1457 			BUS_DMASYNC_PREWRITE);
1458 
1459 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1460 	bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
1461 			BUS_DMASYNC_PREWRITE);
1462 
1463 	return 0;
1464 }
1465 
1466 static void
1467 et_dma_buf_addr(void *xctx, bus_dma_segment_t *segs, int nsegs,
1468 		bus_size_t mapsz __unused, int error)
1469 {
1470 	struct et_dmamap_ctx *ctx = xctx;
1471 	int i;
1472 
1473 	if (error)
1474 		return;
1475 
1476 	if (nsegs > ctx->nsegs) {
1477 		ctx->nsegs = 0;
1478 		return;
1479 	}
1480 
1481 	ctx->nsegs = nsegs;
1482 	for (i = 0; i < nsegs; ++i)
1483 		ctx->segs[i] = segs[i];
1484 }
1485 
1486 static int
1487 et_init_rxdma(struct et_softc *sc)
1488 {
1489 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1490 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1491 	struct et_rxdesc_ring *rx_ring;
1492 	int error;
1493 
1494 	error = et_stop_rxdma(sc);
1495 	if (error) {
1496 		if_printf(&sc->arpcom.ac_if, "can't init RX DMA engine\n");
1497 		return error;
1498 	}
1499 
1500 	/*
1501 	 * Install RX status
1502 	 */
1503 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1504 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1505 
1506 	/*
1507 	 * Install RX stat ring
1508 	 */
1509 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1510 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1511 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1512 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1513 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1514 
1515 	/* Match ET_RXSTAT_POS */
1516 	rxst_ring->rsr_index = 0;
1517 	rxst_ring->rsr_wrap = 0;
1518 
1519 	/*
1520 	 * Install the 2nd RX descriptor ring
1521 	 */
1522 	rx_ring = &sc->sc_rx_ring[1];
1523 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1524 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1525 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1526 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1527 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1528 
1529 	/* Match ET_RX_RING1_POS */
1530 	rx_ring->rr_index = 0;
1531 	rx_ring->rr_wrap = 1;
1532 
1533 	/*
1534 	 * Install the 1st RX descriptor ring
1535 	 */
1536 	rx_ring = &sc->sc_rx_ring[0];
1537 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1538 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1539 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1540 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1541 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1542 
1543 	/* Match ET_RX_RING0_POS */
1544 	rx_ring->rr_index = 0;
1545 	rx_ring->rr_wrap = 1;
1546 
1547 	/*
1548 	 * RX intr moderation
1549 	 */
1550 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1551 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1552 
1553 	return 0;
1554 }
1555 
1556 static int
1557 et_init_txdma(struct et_softc *sc)
1558 {
1559 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1560 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1561 	int error;
1562 
1563 	error = et_stop_txdma(sc);
1564 	if (error) {
1565 		if_printf(&sc->arpcom.ac_if, "can't init TX DMA engine\n");
1566 		return error;
1567 	}
1568 
1569 	/*
1570 	 * Install TX descriptor ring
1571 	 */
1572 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1573 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1574 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1575 
1576 	/*
1577 	 * Install TX status
1578 	 */
1579 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1580 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1581 
1582 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1583 
1584 	/* Match ET_TX_READY_POS */
1585 	tx_ring->tr_ready_index = 0;
1586 	tx_ring->tr_ready_wrap = 0;
1587 
1588 	return 0;
1589 }
1590 
1591 static void
1592 et_init_mac(struct et_softc *sc)
1593 {
1594 	struct ifnet *ifp = &sc->arpcom.ac_if;
1595 	const uint8_t *eaddr = IF_LLADDR(ifp);
1596 	uint32_t val;
1597 
1598 	/* Reset MAC */
1599 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1600 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1601 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1602 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1603 
1604 	/*
1605 	 * Setup inter packet gap
1606 	 */
1607 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1608 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1609 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1610 	      __SHIFTIN(96, ET_IPG_B2B);
1611 	CSR_WRITE_4(sc, ET_IPG, val);
1612 
1613 	/*
1614 	 * Setup half duplex mode
1615 	 */
1616 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1617 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1618 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1619 	      ET_MAC_HDX_EXC_DEFER;
1620 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1621 
1622 	/* Clear MAC control */
1623 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1624 
1625 	/* Reset MII */
1626 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1627 
1628 	/*
1629 	 * Set MAC address
1630 	 */
1631 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1632 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1633 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1634 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1635 
1636 	/* Set max frame length */
1637 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1638 		    ETHER_HDR_LEN + EVL_ENCAPLEN + ifp->if_mtu + ETHER_CRC_LEN);
1639 
1640 	/* Bring MAC out of reset state */
1641 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1642 }
1643 
1644 static void
1645 et_init_rxmac(struct et_softc *sc)
1646 {
1647 	struct ifnet *ifp = &sc->arpcom.ac_if;
1648 	const uint8_t *eaddr = IF_LLADDR(ifp);
1649 	uint32_t val;
1650 	int i;
1651 
1652 	/* Disable RX MAC and WOL */
1653 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1654 
1655 	/*
1656 	 * Clear all WOL related registers
1657 	 */
1658 	for (i = 0; i < 3; ++i)
1659 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1660 	for (i = 0; i < 20; ++i)
1661 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1662 
1663 	/*
1664 	 * Set WOL source address.  XXX is this necessary?
1665 	 */
1666 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1667 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1668 	val = (eaddr[0] << 8) | eaddr[1];
1669 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1670 
1671 	/* Clear packet filters */
1672 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1673 
1674 	/* No ucast filtering */
1675 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1676 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1677 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1678 
1679 	if (ifp->if_mtu > 8192) {
1680 		/*
1681 		 * In order to transmit jumbo packets greater than 8k,
1682 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1683 		 * in size to (16k - MTU).  In order to implement this, we
1684 		 * must use "cut through" mode in the RX MAC, which chops
1685 		 * packets down into segments which are (max_size * 16).
1686 		 * In this case we selected 256 bytes, since this is the
1687 		 * size of the PCI-Express TLP's that the 1310 uses.
1688 		 */
1689 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1690 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1691 	} else {
1692 		val = 0;
1693 	}
1694 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1695 
1696 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1697 
1698 	/* Initialize RX MAC management register */
1699 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1700 
1701 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1702 
1703 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1704 		    ET_RXMAC_MGT_PASS_ECRC |
1705 		    ET_RXMAC_MGT_PASS_ELEN |
1706 		    ET_RXMAC_MGT_PASS_ETRUNC |
1707 		    ET_RXMAC_MGT_CHECK_PKT);
1708 
1709 	/*
1710 	 * Configure runt filtering (may not work on certain chip generation)
1711 	 */
1712 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1713 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1714 
1715 	/* Enable RX MAC but leave WOL disabled */
1716 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1717 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1718 
1719 	/*
1720 	 * Setup multicast hash and allmulti/promisc mode
1721 	 */
1722 	et_setmulti(sc);
1723 }
1724 
1725 static void
1726 et_init_txmac(struct et_softc *sc)
1727 {
1728 	/* Disable TX MAC and FC(?) */
1729 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1730 
1731 	/* No flow control yet */
1732 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1733 
1734 	/* Enable TX MAC but leave FC(?) diabled */
1735 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1736 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1737 }
1738 
1739 static int
1740 et_start_rxdma(struct et_softc *sc)
1741 {
1742 	uint32_t val = 0;
1743 
1744 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1745 			 ET_RXDMA_CTRL_RING0_SIZE) |
1746 	       ET_RXDMA_CTRL_RING0_ENABLE;
1747 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1748 			 ET_RXDMA_CTRL_RING1_SIZE) |
1749 	       ET_RXDMA_CTRL_RING1_ENABLE;
1750 
1751 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1752 
1753 	DELAY(5);
1754 
1755 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1756 		if_printf(&sc->arpcom.ac_if, "can't start RX DMA engine\n");
1757 		return ETIMEDOUT;
1758 	}
1759 	return 0;
1760 }
1761 
1762 static int
1763 et_start_txdma(struct et_softc *sc)
1764 {
1765 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1766 	return 0;
1767 }
1768 
1769 static int
1770 et_enable_txrx(struct et_softc *sc, int media_upd)
1771 {
1772 	struct ifnet *ifp = &sc->arpcom.ac_if;
1773 	uint32_t val;
1774 	int i, error;
1775 
1776 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1777 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1778 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1779 		 ET_MAC_CFG1_LOOPBACK);
1780 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1781 
1782 	if (media_upd)
1783 		et_ifmedia_upd(ifp);
1784 	else
1785 		et_setmedia(sc);
1786 
1787 #define NRETRY	100
1788 
1789 	for (i = 0; i < NRETRY; ++i) {
1790 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1791 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1792 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1793 			break;
1794 
1795 		DELAY(10);
1796 	}
1797 	if (i == NRETRY) {
1798 		if_printf(ifp, "can't enable RX/TX\n");
1799 		return 0;
1800 	}
1801 	sc->sc_txrx_enabled = 1;
1802 
1803 #undef NRETRY
1804 
1805 	/*
1806 	 * Start TX/RX DMA engine
1807 	 */
1808 	error = et_start_rxdma(sc);
1809 	if (error)
1810 		return error;
1811 
1812 	error = et_start_txdma(sc);
1813 	if (error)
1814 		return error;
1815 
1816 	return 0;
1817 }
1818 
1819 static void
1820 et_rxeof(struct et_softc *sc)
1821 {
1822 	struct ifnet *ifp = &sc->arpcom.ac_if;
1823 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1824 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1825 	uint32_t rxs_stat_ring;
1826 	int rxst_wrap, rxst_index;
1827 
1828 	if (!sc->sc_txrx_enabled)
1829 		return;
1830 
1831 	bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
1832 			BUS_DMASYNC_POSTREAD);
1833 	bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
1834 			BUS_DMASYNC_POSTREAD);
1835 
1836 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1837 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1838 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1839 
1840 	while (rxst_index != rxst_ring->rsr_index ||
1841 	       rxst_wrap != rxst_ring->rsr_wrap) {
1842 		struct et_rxbuf_data *rbd;
1843 		struct et_rxdesc_ring *rx_ring;
1844 		struct et_rxstat *st;
1845 		struct et_rxbuf *rb;
1846 		struct mbuf *m;
1847 		int buflen, buf_idx, ring_idx;
1848 		uint32_t rxstat_pos, rxring_pos;
1849 
1850 		KKASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1851 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1852 
1853 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1854 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1855 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1856 
1857 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1858 			rxst_ring->rsr_index = 0;
1859 			rxst_ring->rsr_wrap ^= 1;
1860 		}
1861 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1862 				       ET_RXSTAT_POS_INDEX);
1863 		if (rxst_ring->rsr_wrap)
1864 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1865 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1866 
1867 		if (ring_idx >= ET_RX_NRING) {
1868 			ifp->if_ierrors++;
1869 			if_printf(ifp, "invalid ring index %d\n", ring_idx);
1870 			continue;
1871 		}
1872 		if (buf_idx >= ET_RX_NDESC) {
1873 			ifp->if_ierrors++;
1874 			if_printf(ifp, "invalid buf index %d\n", buf_idx);
1875 			continue;
1876 		}
1877 
1878 		rbd = &sc->sc_rx_data[ring_idx];
1879 		rb = &rbd->rbd_buf[buf_idx];
1880 		m = rb->rb_mbuf;
1881 		bus_dmamap_sync(sc->sc_mbuf_dtag, rb->rb_dmap,
1882 				BUS_DMASYNC_POSTREAD);
1883 
1884 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1885 			m->m_pkthdr.len = m->m_len = buflen;
1886 			m->m_pkthdr.rcvif = ifp;
1887 
1888 			ifp->if_ipackets++;
1889 			ifp->if_input(ifp, m);
1890 		} else {
1891 			ifp->if_ierrors++;
1892 		}
1893 
1894 		rx_ring = &sc->sc_rx_ring[ring_idx];
1895 
1896 		if (buf_idx != rx_ring->rr_index) {
1897 			if_printf(ifp, "WARNING!! ring %d, "
1898 				  "buf_idx %d, rr_idx %d\n",
1899 				  ring_idx, buf_idx, rx_ring->rr_index);
1900 		}
1901 
1902 		KKASSERT(rx_ring->rr_index < ET_RX_NDESC);
1903 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1904 			rx_ring->rr_index = 0;
1905 			rx_ring->rr_wrap ^= 1;
1906 		}
1907 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1908 		if (rx_ring->rr_wrap)
1909 			rxring_pos |= ET_RX_RING_POS_WRAP;
1910 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1911 	}
1912 }
1913 
1914 static int
1915 et_encap(struct et_softc *sc, struct mbuf **m0)
1916 {
1917 	struct mbuf *m = *m0;
1918 	bus_dma_segment_t segs[ET_NSEG_MAX];
1919 	struct et_dmamap_ctx ctx;
1920 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1921 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1922 	struct et_txdesc *td;
1923 	bus_dmamap_t map;
1924 	int error, maxsegs, first_idx, last_idx, i;
1925 	uint32_t tx_ready_pos, last_td_ctrl2;
1926 
1927 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1928 	if (maxsegs > ET_NSEG_MAX)
1929 		maxsegs = ET_NSEG_MAX;
1930 	KASSERT(maxsegs >= ET_NSEG_SPARE,
1931 		("not enough spare TX desc (%d)\n", maxsegs));
1932 
1933 	KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1934 	first_idx = tx_ring->tr_ready_index;
1935 	map = tbd->tbd_buf[first_idx].tb_dmap;
1936 
1937 	ctx.nsegs = maxsegs;
1938 	ctx.segs = segs;
1939 	error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m,
1940 				     et_dma_buf_addr, &ctx, BUS_DMA_NOWAIT);
1941 	if (!error && ctx.nsegs == 0) {
1942 		bus_dmamap_unload(sc->sc_mbuf_dtag, map);
1943 		error = EFBIG;
1944 	}
1945 	if (error && error != EFBIG) {
1946 		if_printf(&sc->arpcom.ac_if, "can't load TX mbuf");
1947 		goto back;
1948 	}
1949 	if (error) {	/* error == EFBIG */
1950 		struct mbuf *m_new;
1951 
1952 		m_new = m_defrag(m, MB_DONTWAIT);
1953 		if (m_new == NULL) {
1954 			if_printf(&sc->arpcom.ac_if, "can't defrag TX mbuf\n");
1955 			error = ENOBUFS;
1956 			goto back;
1957 		} else {
1958 			*m0 = m = m_new;
1959 		}
1960 
1961 		ctx.nsegs = maxsegs;
1962 		ctx.segs = segs;
1963 		error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m,
1964 					     et_dma_buf_addr, &ctx,
1965 					     BUS_DMA_NOWAIT);
1966 		if (error || ctx.nsegs == 0) {
1967 			if (ctx.nsegs == 0) {
1968 				bus_dmamap_unload(sc->sc_mbuf_dtag, map);
1969 				error = EFBIG;
1970 			}
1971 			if_printf(&sc->arpcom.ac_if,
1972 				  "can't load defraged TX mbuf\n");
1973 			goto back;
1974 		}
1975 	}
1976 
1977 	bus_dmamap_sync(sc->sc_mbuf_dtag, map, BUS_DMASYNC_PREWRITE);
1978 
1979 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1980 	sc->sc_tx += ctx.nsegs;
1981 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1982 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1983 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1984 	}
1985 
1986 	last_idx = -1;
1987 	for (i = 0; i < ctx.nsegs; ++i) {
1988 		int idx;
1989 
1990 		idx = (first_idx + i) % ET_TX_NDESC;
1991 		td = &tx_ring->tr_desc[idx];
1992 		td->td_addr_hi = ET_ADDR_HI(segs[i].ds_addr);
1993 		td->td_addr_lo = ET_ADDR_LO(segs[i].ds_addr);
1994 		td->td_ctrl1 = __SHIFTIN(segs[i].ds_len, ET_TDCTRL1_LEN);
1995 
1996 		if (i == ctx.nsegs - 1) {	/* Last frag */
1997 			td->td_ctrl2 = last_td_ctrl2;
1998 			last_idx = idx;
1999 		}
2000 
2001 		KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
2002 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
2003 			tx_ring->tr_ready_index = 0;
2004 			tx_ring->tr_ready_wrap ^= 1;
2005 		}
2006 	}
2007 	td = &tx_ring->tr_desc[first_idx];
2008 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
2009 
2010 	KKASSERT(last_idx >= 0);
2011 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
2012 	tbd->tbd_buf[last_idx].tb_dmap = map;
2013 	tbd->tbd_buf[last_idx].tb_mbuf = m;
2014 
2015 	tbd->tbd_used += ctx.nsegs;
2016 	KKASSERT(tbd->tbd_used <= ET_TX_NDESC);
2017 
2018 	bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
2019 			BUS_DMASYNC_PREWRITE);
2020 
2021 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
2022 		       ET_TX_READY_POS_INDEX);
2023 	if (tx_ring->tr_ready_wrap)
2024 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
2025 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
2026 
2027 	error = 0;
2028 back:
2029 	if (error) {
2030 		m_freem(m);
2031 		*m0 = NULL;
2032 	}
2033 	return error;
2034 }
2035 
2036 static void
2037 et_txeof(struct et_softc *sc)
2038 {
2039 	struct ifnet *ifp = &sc->arpcom.ac_if;
2040 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
2041 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
2042 	uint32_t tx_done;
2043 	int end, wrap;
2044 
2045 	if (!sc->sc_txrx_enabled)
2046 		return;
2047 
2048 	if (tbd->tbd_used == 0)
2049 		return;
2050 
2051 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
2052 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
2053 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
2054 
2055 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
2056 		struct et_txbuf *tb;
2057 
2058 		KKASSERT(tbd->tbd_start_index < ET_TX_NDESC);
2059 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
2060 
2061 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
2062 		      sizeof(struct et_txdesc));
2063 		bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
2064 				BUS_DMASYNC_PREWRITE);
2065 
2066 		if (tb->tb_mbuf != NULL) {
2067 			bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
2068 			m_freem(tb->tb_mbuf);
2069 			tb->tb_mbuf = NULL;
2070 		}
2071 
2072 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
2073 			tbd->tbd_start_index = 0;
2074 			tbd->tbd_start_wrap ^= 1;
2075 		}
2076 
2077 		KKASSERT(tbd->tbd_used > 0);
2078 		tbd->tbd_used--;
2079 	}
2080 
2081 	if (tbd->tbd_used == 0)
2082 		ifp->if_timer = 0;
2083 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2084 		ifp->if_flags &= ~IFF_OACTIVE;
2085 
2086 	ifp->if_start(ifp);
2087 }
2088 
2089 static void
2090 et_tick(void *xsc)
2091 {
2092 	struct et_softc *sc = xsc;
2093 	struct ifnet *ifp = &sc->arpcom.ac_if;
2094 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2095 
2096 	lwkt_serialize_enter(ifp->if_serializer);
2097 
2098 	mii_tick(mii);
2099 	if (!sc->sc_txrx_enabled && (mii->mii_media_status & IFM_ACTIVE) &&
2100 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2101 		if_printf(ifp, "Link up, enable TX/RX\n");
2102 		if (et_enable_txrx(sc, 0) == 0)
2103 			ifp->if_start(ifp);
2104 	}
2105 	callout_reset(&sc->sc_tick, hz, et_tick, sc);
2106 
2107 	lwkt_serialize_exit(ifp->if_serializer);
2108 }
2109 
2110 static int
2111 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2112 {
2113 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2114 }
2115 
2116 static int
2117 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2118 {
2119 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2120 }
2121 
2122 static int
2123 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2124 {
2125 	struct et_softc *sc = rbd->rbd_softc;
2126 	struct et_rxdesc_ring *rx_ring;
2127 	struct et_rxdesc *desc;
2128 	struct et_rxbuf *rb;
2129 	struct mbuf *m;
2130 	struct et_dmamap_ctx ctx;
2131 	bus_dma_segment_t seg;
2132 	bus_dmamap_t dmap;
2133 	int error, len;
2134 
2135 	KKASSERT(buf_idx < ET_RX_NDESC);
2136 	rb = &rbd->rbd_buf[buf_idx];
2137 
2138 	m = m_getl(len0, init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR, &len);
2139 	if (m == NULL) {
2140 		error = ENOBUFS;
2141 
2142 		/* XXX for debug */
2143 		if_printf(&sc->arpcom.ac_if,
2144 			  "m_getl failed, size %d\n", len0);
2145 		if (init) {
2146 			return error;
2147 		} else {
2148 			goto back;
2149 		}
2150 	}
2151 	m->m_len = m->m_pkthdr.len = len;
2152 
2153 	/*
2154 	 * Try load RX mbuf into temporary DMA tag
2155 	 */
2156 	ctx.nsegs = 1;
2157 	ctx.segs = &seg;
2158 	error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap, m,
2159 				     et_dma_buf_addr, &ctx,
2160 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2161 	if (error || ctx.nsegs == 0) {
2162 		if (!error) {
2163 			bus_dmamap_unload(sc->sc_mbuf_dtag,
2164 					  sc->sc_mbuf_tmp_dmap);
2165 			error = EFBIG;
2166 			if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
2167 		}
2168 		m_freem(m);
2169 
2170 		/* XXX for debug */
2171 		if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2172 		if (init) {
2173 			return error;
2174 		} else {
2175 			goto back;
2176 		}
2177 	}
2178 
2179 	if (!init)
2180 		bus_dmamap_unload(sc->sc_mbuf_dtag, rb->rb_dmap);
2181 	rb->rb_mbuf = m;
2182 	rb->rb_paddr = seg.ds_addr;
2183 
2184 	/*
2185 	 * Swap RX buf's DMA map with the loaded temporary one
2186 	 */
2187 	dmap = rb->rb_dmap;
2188 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2189 	sc->sc_mbuf_tmp_dmap = dmap;
2190 
2191 	error = 0;
2192 back:
2193 	rx_ring = rbd->rbd_ring;
2194 	desc = &rx_ring->rr_desc[buf_idx];
2195 
2196 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2197 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2198 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2199 
2200 	bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap,
2201 			BUS_DMASYNC_PREWRITE);
2202 	return error;
2203 }
2204 
2205 static int
2206 et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS)
2207 {
2208 	struct et_softc *sc = arg1;
2209 	struct ifnet *ifp = &sc->arpcom.ac_if;
2210 	int error = 0, v;
2211 
2212 	lwkt_serialize_enter(ifp->if_serializer);
2213 
2214 	v = sc->sc_rx_intr_npkts;
2215 	error = sysctl_handle_int(oidp, &v, 0, req);
2216 	if (error || req->newptr == NULL)
2217 		goto back;
2218 	if (v <= 0) {
2219 		error = EINVAL;
2220 		goto back;
2221 	}
2222 
2223 	if (sc->sc_rx_intr_npkts != v) {
2224 		if (ifp->if_flags & IFF_RUNNING)
2225 			CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v);
2226 		sc->sc_rx_intr_npkts = v;
2227 	}
2228 back:
2229 	lwkt_serialize_exit(ifp->if_serializer);
2230 	return error;
2231 }
2232 
2233 static int
2234 et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS)
2235 {
2236 	struct et_softc *sc = arg1;
2237 	struct ifnet *ifp = &sc->arpcom.ac_if;
2238 	int error = 0, v;
2239 
2240 	lwkt_serialize_enter(ifp->if_serializer);
2241 
2242 	v = sc->sc_rx_intr_delay;
2243 	error = sysctl_handle_int(oidp, &v, 0, req);
2244 	if (error || req->newptr == NULL)
2245 		goto back;
2246 	if (v <= 0) {
2247 		error = EINVAL;
2248 		goto back;
2249 	}
2250 
2251 	if (sc->sc_rx_intr_delay != v) {
2252 		if (ifp->if_flags & IFF_RUNNING)
2253 			CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v);
2254 		sc->sc_rx_intr_delay = v;
2255 	}
2256 back:
2257 	lwkt_serialize_exit(ifp->if_serializer);
2258 	return error;
2259 }
2260 
2261 static void
2262 et_setmedia(struct et_softc *sc)
2263 {
2264 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2265 	uint32_t cfg2, ctrl;
2266 
2267 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
2268 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
2269 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
2270 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
2271 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
2272 
2273 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
2274 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
2275 
2276 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
2277 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
2278 	} else {
2279 		cfg2 |= ET_MAC_CFG2_MODE_MII;
2280 		ctrl |= ET_MAC_CTRL_MODE_MII;
2281 	}
2282 
2283 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
2284 		cfg2 |= ET_MAC_CFG2_FDX;
2285 	else
2286 		ctrl |= ET_MAC_CTRL_GHDX;
2287 
2288 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
2289 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
2290 }
2291