xref: /dflybsd-src/sys/dev/netif/emx/if_emx.c (revision f92bfd8c061883fce60e10af766df574806c8688)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_polling.h"
68 #include "opt_serializer.h"
69 #include "opt_rss.h"
70 #include "opt_emx.h"
71 
72 #include <sys/param.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/interrupt.h>
76 #include <sys/kernel.h>
77 #include <sys/ktr.h>
78 #include <sys/malloc.h>
79 #include <sys/mbuf.h>
80 #include <sys/proc.h>
81 #include <sys/rman.h>
82 #include <sys/serialize.h>
83 #include <sys/socket.h>
84 #include <sys/sockio.h>
85 #include <sys/sysctl.h>
86 #include <sys/systm.h>
87 
88 #include <net/bpf.h>
89 #include <net/ethernet.h>
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/ifq_var.h>
95 #include <net/vlan/if_vlan_var.h>
96 #include <net/vlan/if_vlan_ether.h>
97 
98 #include <netinet/in_systm.h>
99 #include <netinet/in.h>
100 #include <netinet/ip.h>
101 #include <netinet/tcp.h>
102 #include <netinet/udp.h>
103 
104 #include <bus/pci/pcivar.h>
105 #include <bus/pci/pcireg.h>
106 
107 #include <dev/netif/ig_hal/e1000_api.h>
108 #include <dev/netif/ig_hal/e1000_82571.h>
109 #include <dev/netif/emx/if_emx.h>
110 
111 #ifdef EMX_RSS_DEBUG
112 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
113 do { \
114 	if (sc->rss_debug > lvl) \
115 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
116 } while (0)
117 #else	/* !EMX_RSS_DEBUG */
118 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
119 #endif	/* EMX_RSS_DEBUG */
120 
121 #define EMX_NAME	"Intel(R) PRO/1000 "
122 
123 #define EMX_DEVICE(id)	\
124 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
125 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
126 
127 static const struct emx_device {
128 	uint16_t	vid;
129 	uint16_t	did;
130 	const char	*desc;
131 } emx_devices[] = {
132 	EMX_DEVICE(82571EB_COPPER),
133 	EMX_DEVICE(82571EB_FIBER),
134 	EMX_DEVICE(82571EB_SERDES),
135 	EMX_DEVICE(82571EB_SERDES_DUAL),
136 	EMX_DEVICE(82571EB_SERDES_QUAD),
137 	EMX_DEVICE(82571EB_QUAD_COPPER),
138 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
139 	EMX_DEVICE(82571EB_QUAD_FIBER),
140 	EMX_DEVICE(82571PT_QUAD_COPPER),
141 
142 	EMX_DEVICE(82572EI_COPPER),
143 	EMX_DEVICE(82572EI_FIBER),
144 	EMX_DEVICE(82572EI_SERDES),
145 	EMX_DEVICE(82572EI),
146 
147 	EMX_DEVICE(82573E),
148 	EMX_DEVICE(82573E_IAMT),
149 	EMX_DEVICE(82573L),
150 
151 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
152 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
153 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
154 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
155 
156 	EMX_DEVICE(82574L),
157 
158 	/* required last entry */
159 	EMX_DEVICE_NULL
160 };
161 
162 static int	emx_probe(device_t);
163 static int	emx_attach(device_t);
164 static int	emx_detach(device_t);
165 static int	emx_shutdown(device_t);
166 static int	emx_suspend(device_t);
167 static int	emx_resume(device_t);
168 
169 static void	emx_init(void *);
170 static void	emx_stop(struct emx_softc *);
171 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
172 static void	emx_start(struct ifnet *);
173 #ifdef DEVICE_POLLING
174 static void	emx_poll(struct ifnet *, enum poll_cmd, int);
175 #endif
176 static void	emx_watchdog(struct ifnet *);
177 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
178 static int	emx_media_change(struct ifnet *);
179 static void	emx_timer(void *);
180 
181 static void	emx_intr(void *);
182 static void	emx_rxeof(struct emx_softc *, int, int);
183 static void	emx_txeof(struct emx_softc *);
184 static void	emx_tx_collect(struct emx_softc *);
185 static void	emx_tx_purge(struct emx_softc *);
186 static void	emx_enable_intr(struct emx_softc *);
187 static void	emx_disable_intr(struct emx_softc *);
188 
189 static int	emx_dma_alloc(struct emx_softc *);
190 static void	emx_dma_free(struct emx_softc *);
191 static void	emx_init_tx_ring(struct emx_softc *);
192 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
193 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
194 static int	emx_create_tx_ring(struct emx_softc *);
195 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
196 static void	emx_destroy_tx_ring(struct emx_softc *, int);
197 static void	emx_destroy_rx_ring(struct emx_softc *,
198 		    struct emx_rxdata *, int);
199 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
200 static int	emx_encap(struct emx_softc *, struct mbuf **);
201 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
202 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
203 		    uint32_t *, uint32_t *);
204 
205 static int 	emx_is_valid_eaddr(const uint8_t *);
206 static int	emx_hw_init(struct emx_softc *);
207 static void	emx_setup_ifp(struct emx_softc *);
208 static void	emx_init_tx_unit(struct emx_softc *);
209 static void	emx_init_rx_unit(struct emx_softc *);
210 static void	emx_update_stats(struct emx_softc *);
211 static void	emx_set_promisc(struct emx_softc *);
212 static void	emx_disable_promisc(struct emx_softc *);
213 static void	emx_set_multi(struct emx_softc *);
214 static void	emx_update_link_status(struct emx_softc *);
215 static void	emx_smartspeed(struct emx_softc *);
216 
217 static void	emx_print_debug_info(struct emx_softc *);
218 static void	emx_print_nvm_info(struct emx_softc *);
219 static void	emx_print_hw_stats(struct emx_softc *);
220 
221 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
222 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
223 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
224 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
225 static void	emx_add_sysctl(struct emx_softc *);
226 
227 /* Management and WOL Support */
228 static void	emx_get_mgmt(struct emx_softc *);
229 static void	emx_rel_mgmt(struct emx_softc *);
230 static void	emx_get_hw_control(struct emx_softc *);
231 static void	emx_rel_hw_control(struct emx_softc *);
232 static void	emx_enable_wol(device_t);
233 
234 static device_method_t emx_methods[] = {
235 	/* Device interface */
236 	DEVMETHOD(device_probe,		emx_probe),
237 	DEVMETHOD(device_attach,	emx_attach),
238 	DEVMETHOD(device_detach,	emx_detach),
239 	DEVMETHOD(device_shutdown,	emx_shutdown),
240 	DEVMETHOD(device_suspend,	emx_suspend),
241 	DEVMETHOD(device_resume,	emx_resume),
242 	{ 0, 0 }
243 };
244 
245 static driver_t emx_driver = {
246 	"emx",
247 	emx_methods,
248 	sizeof(struct emx_softc),
249 };
250 
251 static devclass_t emx_devclass;
252 
253 DECLARE_DUMMY_MODULE(if_emx);
254 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
255 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, 0, 0);
256 
257 /*
258  * Tunables
259  */
260 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
261 static int	emx_rxd = EMX_DEFAULT_RXD;
262 static int	emx_txd = EMX_DEFAULT_TXD;
263 static int	emx_smart_pwr_down = FALSE;
264 
265 /* Controls whether promiscuous also shows bad packets */
266 static int	emx_debug_sbp = FALSE;
267 
268 static int	emx_82573_workaround = TRUE;
269 
270 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
271 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
272 TUNABLE_INT("hw.emx.txd", &emx_txd);
273 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
274 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
275 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
276 
277 /* Global used in WOL setup with multiport cards */
278 static int	emx_global_quad_port_a = 0;
279 
280 /* Set this to one to display debug statistics */
281 static int	emx_display_debug_stats = 0;
282 
283 #if !defined(KTR_IF_EMX)
284 #define KTR_IF_EMX	KTR_ALL
285 #endif
286 KTR_INFO_MASTER(if_emx);
287 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin", 0);
288 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end", 0);
289 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet", 0);
290 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet", 0);
291 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean", 0);
292 #define logif(name)	KTR_LOG(if_emx_ ## name)
293 
294 static __inline void
295 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
296 {
297 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
298 	/* DD bit must be cleared */
299 	rxd->rxd_staterr = 0;
300 }
301 
302 static __inline void
303 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
304 {
305 	/* Ignore Checksum bit is set */
306 	if (staterr & E1000_RXD_STAT_IXSM)
307 		return;
308 
309 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
310 	    E1000_RXD_STAT_IPCS)
311 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
312 
313 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
314 	    E1000_RXD_STAT_TCPCS) {
315 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
316 					   CSUM_PSEUDO_HDR |
317 					   CSUM_FRAG_NOT_CHECKED;
318 		mp->m_pkthdr.csum_data = htons(0xffff);
319 	}
320 }
321 
322 static int
323 emx_probe(device_t dev)
324 {
325 	const struct emx_device *d;
326 	uint16_t vid, did;
327 
328 	vid = pci_get_vendor(dev);
329 	did = pci_get_device(dev);
330 
331 	for (d = emx_devices; d->desc != NULL; ++d) {
332 		if (vid == d->vid && did == d->did) {
333 			device_set_desc(dev, d->desc);
334 			device_set_async_attach(dev, TRUE);
335 			return 0;
336 		}
337 	}
338 	return ENXIO;
339 }
340 
341 static int
342 emx_attach(device_t dev)
343 {
344 	struct emx_softc *sc = device_get_softc(dev);
345 	struct ifnet *ifp = &sc->arpcom.ac_if;
346 	int error = 0;
347 	uint16_t eeprom_data, device_id;
348 
349 	callout_init(&sc->timer);
350 
351 	sc->dev = sc->osdep.dev = dev;
352 
353 	/*
354 	 * Determine hardware and mac type
355 	 */
356 	sc->hw.vendor_id = pci_get_vendor(dev);
357 	sc->hw.device_id = pci_get_device(dev);
358 	sc->hw.revision_id = pci_get_revid(dev);
359 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
360 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
361 
362 	if (e1000_set_mac_type(&sc->hw))
363 		return ENXIO;
364 
365 	/* Enable bus mastering */
366 	pci_enable_busmaster(dev);
367 
368 	/*
369 	 * Allocate IO memory
370 	 */
371 	sc->memory_rid = EMX_BAR_MEM;
372 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
373 					    &sc->memory_rid, RF_ACTIVE);
374 	if (sc->memory == NULL) {
375 		device_printf(dev, "Unable to allocate bus resource: memory\n");
376 		error = ENXIO;
377 		goto fail;
378 	}
379 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
380 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
381 
382 	/* XXX This is quite goofy, it is not actually used */
383 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
384 
385 	/*
386 	 * Allocate interrupt
387 	 */
388 	sc->intr_rid = 0;
389 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
390 					      RF_SHAREABLE | RF_ACTIVE);
391 	if (sc->intr_res == NULL) {
392 		device_printf(dev, "Unable to allocate bus resource: "
393 		    "interrupt\n");
394 		error = ENXIO;
395 		goto fail;
396 	}
397 
398 	/* Save PCI command register for Shared Code */
399 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
400 	sc->hw.back = &sc->osdep;
401 
402 	/* Do Shared Code initialization */
403 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
404 		device_printf(dev, "Setup of Shared code failed\n");
405 		error = ENXIO;
406 		goto fail;
407 	}
408 	e1000_get_bus_info(&sc->hw);
409 
410 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
411 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
412 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
413 
414 	/*
415 	 * Interrupt throttle rate
416 	 */
417 	if (emx_int_throttle_ceil == 0) {
418 		sc->int_throttle_ceil = 0;
419 	} else {
420 		int throttle = emx_int_throttle_ceil;
421 
422 		if (throttle < 0)
423 			throttle = EMX_DEFAULT_ITR;
424 
425 		/* Recalculate the tunable value to get the exact frequency. */
426 		throttle = 1000000000 / 256 / throttle;
427 
428 		/* Upper 16bits of ITR is reserved and should be zero */
429 		if (throttle & 0xffff0000)
430 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
431 
432 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
433 	}
434 
435 	e1000_init_script_state_82541(&sc->hw, TRUE);
436 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
437 
438 	/* Copper options */
439 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
440 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
441 		sc->hw.phy.disable_polarity_correction = FALSE;
442 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
443 	}
444 
445 	/* Set the frame limits assuming standard ethernet sized frames. */
446 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
447 	sc->min_frame_size = ETHER_MIN_LEN;
448 
449 	/* This controls when hardware reports transmit completion status. */
450 	sc->hw.mac.report_tx_early = 1;
451 
452 #ifdef RSS
453 	/* Calculate # of RX rings */
454 	if (ncpus > 1)
455 		sc->rx_ring_cnt = EMX_NRX_RING;
456 	else
457 #endif
458 		sc->rx_ring_cnt = 1;
459 	sc->rx_ring_inuse = sc->rx_ring_cnt;
460 
461 	/* Allocate RX/TX rings' busdma(9) stuffs */
462 	error = emx_dma_alloc(sc);
463 	if (error)
464 		goto fail;
465 
466 	/* Make sure we have a good EEPROM before we read from it */
467 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
468 		/*
469 		 * Some PCI-E parts fail the first check due to
470 		 * the link being in sleep state, call it again,
471 		 * if it fails a second time its a real issue.
472 		 */
473 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
474 			device_printf(dev,
475 			    "The EEPROM Checksum Is Not Valid\n");
476 			error = EIO;
477 			goto fail;
478 		}
479 	}
480 
481 	/* Initialize the hardware */
482 	error = emx_hw_init(sc);
483 	if (error) {
484 		device_printf(dev, "Unable to initialize the hardware\n");
485 		goto fail;
486 	}
487 
488 	/* Copy the permanent MAC address out of the EEPROM */
489 	if (e1000_read_mac_addr(&sc->hw) < 0) {
490 		device_printf(dev, "EEPROM read error while reading MAC"
491 		    " address\n");
492 		error = EIO;
493 		goto fail;
494 	}
495 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
496 		device_printf(dev, "Invalid MAC address\n");
497 		error = EIO;
498 		goto fail;
499 	}
500 
501 	/* Manually turn off all interrupts */
502 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
503 
504 	/* Setup OS specific network interface */
505 	emx_setup_ifp(sc);
506 
507 	/* Add sysctl tree, must after emx_setup_ifp() */
508 	emx_add_sysctl(sc);
509 
510 	/* Initialize statistics */
511 	emx_update_stats(sc);
512 
513 	sc->hw.mac.get_link_status = 1;
514 	emx_update_link_status(sc);
515 
516 	/* Indicate SOL/IDER usage */
517 	if (e1000_check_reset_block(&sc->hw)) {
518 		device_printf(dev,
519 		    "PHY reset is blocked due to SOL/IDER session.\n");
520 	}
521 
522 	/* Determine if we have to control management hardware */
523 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
524 
525 	/*
526 	 * Setup Wake-on-Lan
527 	 */
528 	switch (sc->hw.mac.type) {
529 	case e1000_82571:
530 	case e1000_80003es2lan:
531 		if (sc->hw.bus.func == 1) {
532 			e1000_read_nvm(&sc->hw,
533 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
534 		} else {
535 			e1000_read_nvm(&sc->hw,
536 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
537 		}
538 		eeprom_data &= EMX_EEPROM_APME;
539 		break;
540 
541 	default:
542 		/* APME bit in EEPROM is mapped to WUC.APME */
543 		eeprom_data =
544 		    E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
545 		break;
546 	}
547 	if (eeprom_data)
548 		sc->wol = E1000_WUFC_MAG;
549 	/*
550          * We have the eeprom settings, now apply the special cases
551          * where the eeprom may be wrong or the board won't support
552          * wake on lan on a particular port
553 	 */
554 	device_id = pci_get_device(dev);
555         switch (device_id) {
556 	case E1000_DEV_ID_82571EB_FIBER:
557 		/*
558 		 * Wake events only supported on port A for dual fiber
559 		 * regardless of eeprom setting
560 		 */
561 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
562 		    E1000_STATUS_FUNC_1)
563 			sc->wol = 0;
564 		break;
565 
566 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
567 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
568 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
569                 /* if quad port sc, disable WoL on all but port A */
570 		if (emx_global_quad_port_a != 0)
571 			sc->wol = 0;
572 		/* Reset for multiple quad port adapters */
573 		if (++emx_global_quad_port_a == 4)
574 			emx_global_quad_port_a = 0;
575                 break;
576 	}
577 
578 	/* XXX disable wol */
579 	sc->wol = 0;
580 
581 	sc->spare_tx_desc = EMX_TX_SPARE;
582 
583 	/*
584 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
585 	 * and tx_int_nsegs:
586 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
587 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
588 	 */
589 	sc->oact_tx_desc = sc->num_tx_desc / 8;
590 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
591 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
592 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
593 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
594 
595 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
596 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
597 		sc->tx_int_nsegs = sc->oact_tx_desc;
598 
599 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, emx_intr, sc,
600 			       &sc->intr_tag, ifp->if_serializer);
601 	if (error) {
602 		device_printf(dev, "Failed to register interrupt handler");
603 		ether_ifdetach(&sc->arpcom.ac_if);
604 		goto fail;
605 	}
606 
607 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->intr_res));
608 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
609 	return (0);
610 fail:
611 	emx_detach(dev);
612 	return (error);
613 }
614 
615 static int
616 emx_detach(device_t dev)
617 {
618 	struct emx_softc *sc = device_get_softc(dev);
619 
620 	if (device_is_attached(dev)) {
621 		struct ifnet *ifp = &sc->arpcom.ac_if;
622 
623 		lwkt_serialize_enter(ifp->if_serializer);
624 
625 		emx_stop(sc);
626 
627 		e1000_phy_hw_reset(&sc->hw);
628 
629 		emx_rel_mgmt(sc);
630 
631 		if (sc->hw.mac.type == e1000_82573 &&
632 		    e1000_check_mng_mode(&sc->hw))
633 			emx_rel_hw_control(sc);
634 
635 		if (sc->wol) {
636 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
637 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
638 			emx_enable_wol(dev);
639 		}
640 
641 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
642 
643 		lwkt_serialize_exit(ifp->if_serializer);
644 
645 		ether_ifdetach(ifp);
646 	}
647 	bus_generic_detach(dev);
648 
649 	if (sc->intr_res != NULL) {
650 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
651 				     sc->intr_res);
652 	}
653 
654 	if (sc->memory != NULL) {
655 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
656 				     sc->memory);
657 	}
658 
659 	emx_dma_free(sc);
660 
661 	/* Free sysctl tree */
662 	if (sc->sysctl_tree != NULL)
663 		sysctl_ctx_free(&sc->sysctl_ctx);
664 
665 	return (0);
666 }
667 
668 static int
669 emx_shutdown(device_t dev)
670 {
671 	return emx_suspend(dev);
672 }
673 
674 static int
675 emx_suspend(device_t dev)
676 {
677 	struct emx_softc *sc = device_get_softc(dev);
678 	struct ifnet *ifp = &sc->arpcom.ac_if;
679 
680 	lwkt_serialize_enter(ifp->if_serializer);
681 
682 	emx_stop(sc);
683 
684 	emx_rel_mgmt(sc);
685 
686         if (sc->hw.mac.type == e1000_82573 &&
687             e1000_check_mng_mode(&sc->hw))
688                 emx_rel_hw_control(sc);
689 
690         if (sc->wol) {
691 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
692 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
693 		emx_enable_wol(dev);
694         }
695 
696 	lwkt_serialize_exit(ifp->if_serializer);
697 
698 	return bus_generic_suspend(dev);
699 }
700 
701 static int
702 emx_resume(device_t dev)
703 {
704 	struct emx_softc *sc = device_get_softc(dev);
705 	struct ifnet *ifp = &sc->arpcom.ac_if;
706 
707 	lwkt_serialize_enter(ifp->if_serializer);
708 
709 	emx_init(sc);
710 	emx_get_mgmt(sc);
711 	if_devstart(ifp);
712 
713 	lwkt_serialize_exit(ifp->if_serializer);
714 
715 	return bus_generic_resume(dev);
716 }
717 
718 static void
719 emx_start(struct ifnet *ifp)
720 {
721 	struct emx_softc *sc = ifp->if_softc;
722 	struct mbuf *m_head;
723 
724 	ASSERT_SERIALIZED(ifp->if_serializer);
725 
726 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
727 		return;
728 
729 	if (!sc->link_active) {
730 		ifq_purge(&ifp->if_snd);
731 		return;
732 	}
733 
734 	while (!ifq_is_empty(&ifp->if_snd)) {
735 		/* Now do we at least have a minimal? */
736 		if (EMX_IS_OACTIVE(sc)) {
737 			emx_tx_collect(sc);
738 			if (EMX_IS_OACTIVE(sc)) {
739 				ifp->if_flags |= IFF_OACTIVE;
740 				sc->no_tx_desc_avail1++;
741 				break;
742 			}
743 		}
744 
745 		logif(pkt_txqueue);
746 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
747 		if (m_head == NULL)
748 			break;
749 
750 		if (emx_encap(sc, &m_head)) {
751 			ifp->if_oerrors++;
752 			emx_tx_collect(sc);
753 			continue;
754 		}
755 
756 		/* Send a copy of the frame to the BPF listener */
757 		ETHER_BPF_MTAP(ifp, m_head);
758 
759 		/* Set timeout in case hardware has problems transmitting. */
760 		ifp->if_timer = EMX_TX_TIMEOUT;
761 	}
762 }
763 
764 static int
765 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
766 {
767 	struct emx_softc *sc = ifp->if_softc;
768 	struct ifreq *ifr = (struct ifreq *)data;
769 	uint16_t eeprom_data = 0;
770 	int max_frame_size, mask, reinit;
771 	int error = 0;
772 
773 	ASSERT_SERIALIZED(ifp->if_serializer);
774 
775 	switch (command) {
776 	case SIOCSIFMTU:
777 		switch (sc->hw.mac.type) {
778 		case e1000_82573:
779 			/*
780 			 * 82573 only supports jumbo frames
781 			 * if ASPM is disabled.
782 			 */
783 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
784 				       &eeprom_data);
785 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
786 				max_frame_size = ETHER_MAX_LEN;
787 				break;
788 			}
789 			/* FALL THROUGH */
790 
791 		/* Limit Jumbo Frame size */
792 		case e1000_82571:
793 		case e1000_82572:
794 		case e1000_82574:
795 		case e1000_80003es2lan:
796 			max_frame_size = 9234;
797 			break;
798 
799 		default:
800 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
801 			break;
802 		}
803 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
804 		    ETHER_CRC_LEN) {
805 			error = EINVAL;
806 			break;
807 		}
808 
809 		ifp->if_mtu = ifr->ifr_mtu;
810 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
811 				     ETHER_CRC_LEN;
812 
813 		if (ifp->if_flags & IFF_RUNNING)
814 			emx_init(sc);
815 		break;
816 
817 	case SIOCSIFFLAGS:
818 		if (ifp->if_flags & IFF_UP) {
819 			if ((ifp->if_flags & IFF_RUNNING)) {
820 				if ((ifp->if_flags ^ sc->if_flags) &
821 				    (IFF_PROMISC | IFF_ALLMULTI)) {
822 					emx_disable_promisc(sc);
823 					emx_set_promisc(sc);
824 				}
825 			} else {
826 				emx_init(sc);
827 			}
828 		} else if (ifp->if_flags & IFF_RUNNING) {
829 			emx_stop(sc);
830 		}
831 		sc->if_flags = ifp->if_flags;
832 		break;
833 
834 	case SIOCADDMULTI:
835 	case SIOCDELMULTI:
836 		if (ifp->if_flags & IFF_RUNNING) {
837 			emx_disable_intr(sc);
838 			emx_set_multi(sc);
839 #ifdef DEVICE_POLLING
840 			if (!(ifp->if_flags & IFF_POLLING))
841 #endif
842 				emx_enable_intr(sc);
843 		}
844 		break;
845 
846 	case SIOCSIFMEDIA:
847 		/* Check SOL/IDER usage */
848 		if (e1000_check_reset_block(&sc->hw)) {
849 			device_printf(sc->dev, "Media change is"
850 			    " blocked due to SOL/IDER session.\n");
851 			break;
852 		}
853 		/* FALL THROUGH */
854 
855 	case SIOCGIFMEDIA:
856 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
857 		break;
858 
859 	case SIOCSIFCAP:
860 		reinit = 0;
861 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
862 		if (mask & IFCAP_HWCSUM) {
863 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
864 			reinit = 1;
865 		}
866 		if (mask & IFCAP_VLAN_HWTAGGING) {
867 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
868 			reinit = 1;
869 		}
870 		if (mask & IFCAP_RSS) {
871 			ifp->if_capenable ^= IFCAP_RSS;
872 			reinit = 1;
873 		}
874 		if (reinit && (ifp->if_flags & IFF_RUNNING))
875 			emx_init(sc);
876 		break;
877 
878 	default:
879 		error = ether_ioctl(ifp, command, data);
880 		break;
881 	}
882 	return (error);
883 }
884 
885 static void
886 emx_watchdog(struct ifnet *ifp)
887 {
888 	struct emx_softc *sc = ifp->if_softc;
889 
890 	ASSERT_SERIALIZED(ifp->if_serializer);
891 
892 	/*
893 	 * The timer is set to 5 every time start queues a packet.
894 	 * Then txeof keeps resetting it as long as it cleans at
895 	 * least one descriptor.
896 	 * Finally, anytime all descriptors are clean the timer is
897 	 * set to 0.
898 	 */
899 
900 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
901 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
902 		/*
903 		 * If we reach here, all TX jobs are completed and
904 		 * the TX engine should have been idled for some time.
905 		 * We don't need to call if_devstart() here.
906 		 */
907 		ifp->if_flags &= ~IFF_OACTIVE;
908 		ifp->if_timer = 0;
909 		return;
910 	}
911 
912 	/*
913 	 * If we are in this routine because of pause frames, then
914 	 * don't reset the hardware.
915 	 */
916 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
917 		ifp->if_timer = EMX_TX_TIMEOUT;
918 		return;
919 	}
920 
921 	if (e1000_check_for_link(&sc->hw) == 0)
922 		if_printf(ifp, "watchdog timeout -- resetting\n");
923 
924 	ifp->if_oerrors++;
925 	sc->watchdog_events++;
926 
927 	emx_init(sc);
928 
929 	if (!ifq_is_empty(&ifp->if_snd))
930 		if_devstart(ifp);
931 }
932 
933 static void
934 emx_init(void *xsc)
935 {
936 	struct emx_softc *sc = xsc;
937 	struct ifnet *ifp = &sc->arpcom.ac_if;
938 	device_t dev = sc->dev;
939 	uint32_t pba;
940 	int i;
941 
942 	ASSERT_SERIALIZED(ifp->if_serializer);
943 
944 	emx_stop(sc);
945 
946 	/*
947 	 * Packet Buffer Allocation (PBA)
948 	 * Writing PBA sets the receive portion of the buffer
949 	 * the remainder is used for the transmit buffer.
950 	 */
951 	switch (sc->hw.mac.type) {
952 	/* Total Packet Buffer on these is 48K */
953 	case e1000_82571:
954 	case e1000_82572:
955 	case e1000_80003es2lan:
956 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
957 		break;
958 
959 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
960 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
961 		break;
962 
963 	case e1000_82574:
964 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
965 		break;
966 
967 	default:
968 		/* Devices before 82547 had a Packet Buffer of 64K.   */
969 		if (sc->max_frame_size > 8192)
970 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
971 		else
972 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
973 	}
974 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
975 
976 	/* Get the latest mac address, User can use a LAA */
977         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
978 
979 	/* Put the address into the Receive Address Array */
980 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
981 
982 	/*
983 	 * With the 82571 sc, RAR[0] may be overwritten
984 	 * when the other port is reset, we make a duplicate
985 	 * in RAR[14] for that eventuality, this assures
986 	 * the interface continues to function.
987 	 */
988 	if (sc->hw.mac.type == e1000_82571) {
989 		e1000_set_laa_state_82571(&sc->hw, TRUE);
990 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
991 		    E1000_RAR_ENTRIES - 1);
992 	}
993 
994 	/* Initialize the hardware */
995 	if (emx_hw_init(sc)) {
996 		device_printf(dev, "Unable to initialize the hardware\n");
997 		/* XXX emx_stop()? */
998 		return;
999 	}
1000 	emx_update_link_status(sc);
1001 
1002 	/* Setup VLAN support, basic and offload if available */
1003 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1004 
1005 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1006 		uint32_t ctrl;
1007 
1008 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1009 		ctrl |= E1000_CTRL_VME;
1010 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1011 	}
1012 
1013 	/* Set hardware offload abilities */
1014 	if (ifp->if_capenable & IFCAP_TXCSUM)
1015 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1016 	else
1017 		ifp->if_hwassist = 0;
1018 
1019 	/* Configure for OS presence */
1020 	emx_get_mgmt(sc);
1021 
1022 	/* Prepare transmit descriptors and buffers */
1023 	emx_init_tx_ring(sc);
1024 	emx_init_tx_unit(sc);
1025 
1026 	/* Setup Multicast table */
1027 	emx_set_multi(sc);
1028 
1029 	/*
1030 	 * Adjust # of RX ring to be used based on IFCAP_RSS
1031 	 */
1032 	if (ifp->if_capenable & IFCAP_RSS)
1033 		sc->rx_ring_inuse = sc->rx_ring_cnt;
1034 	else
1035 		sc->rx_ring_inuse = 1;
1036 
1037 	/* Prepare receive descriptors and buffers */
1038 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
1039 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1040 			device_printf(dev,
1041 			    "Could not setup receive structures\n");
1042 			emx_stop(sc);
1043 			return;
1044 		}
1045 	}
1046 	emx_init_rx_unit(sc);
1047 
1048 	/* Don't lose promiscuous settings */
1049 	emx_set_promisc(sc);
1050 
1051 	ifp->if_flags |= IFF_RUNNING;
1052 	ifp->if_flags &= ~IFF_OACTIVE;
1053 
1054 	callout_reset(&sc->timer, hz, emx_timer, sc);
1055 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1056 
1057 	/* MSI/X configuration for 82574 */
1058 	if (sc->hw.mac.type == e1000_82574) {
1059 		int tmp;
1060 
1061 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1062 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1063 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1064 		/*
1065 		 * Set the IVAR - interrupt vector routing.
1066 		 * Each nibble represents a vector, high bit
1067 		 * is enable, other 3 bits are the MSIX table
1068 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1069 		 * Link (other) to 2, hence the magic number.
1070 		 */
1071 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1072 	}
1073 
1074 #ifdef DEVICE_POLLING
1075 	/*
1076 	 * Only enable interrupts if we are not polling, make sure
1077 	 * they are off otherwise.
1078 	 */
1079 	if (ifp->if_flags & IFF_POLLING)
1080 		emx_disable_intr(sc);
1081 	else
1082 #endif /* DEVICE_POLLING */
1083 		emx_enable_intr(sc);
1084 
1085 	/* Don't reset the phy next time init gets called */
1086 	sc->hw.phy.reset_disable = TRUE;
1087 }
1088 
1089 #ifdef DEVICE_POLLING
1090 
1091 static void
1092 emx_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1093 {
1094 	struct emx_softc *sc = ifp->if_softc;
1095 	uint32_t reg_icr;
1096 
1097 	ASSERT_SERIALIZED(ifp->if_serializer);
1098 
1099 	switch (cmd) {
1100 	case POLL_REGISTER:
1101 		emx_disable_intr(sc);
1102 		break;
1103 
1104 	case POLL_DEREGISTER:
1105 		emx_enable_intr(sc);
1106 		break;
1107 
1108 	case POLL_AND_CHECK_STATUS:
1109 		reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1110 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1111 			callout_stop(&sc->timer);
1112 			sc->hw.mac.get_link_status = 1;
1113 			emx_update_link_status(sc);
1114 			callout_reset(&sc->timer, hz, emx_timer, sc);
1115 		}
1116 		/* FALL THROUGH */
1117 	case POLL_ONLY:
1118 		if (ifp->if_flags & IFF_RUNNING) {
1119 			int i;
1120 
1121 			for (i = 0; i < sc->rx_ring_inuse; ++i)
1122 				emx_rxeof(sc, i, count);
1123 
1124 			emx_txeof(sc);
1125 			if (!ifq_is_empty(&ifp->if_snd))
1126 				if_devstart(ifp);
1127 		}
1128 		break;
1129 	}
1130 }
1131 
1132 #endif /* DEVICE_POLLING */
1133 
1134 static void
1135 emx_intr(void *xsc)
1136 {
1137 	struct emx_softc *sc = xsc;
1138 	struct ifnet *ifp = &sc->arpcom.ac_if;
1139 	uint32_t reg_icr;
1140 
1141 	logif(intr_beg);
1142 	ASSERT_SERIALIZED(ifp->if_serializer);
1143 
1144 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1145 
1146 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1147 		logif(intr_end);
1148 		return;
1149 	}
1150 
1151 	/*
1152 	 * XXX: some laptops trigger several spurious interrupts
1153 	 * on emx(4) when in the resume cycle. The ICR register
1154 	 * reports all-ones value in this case. Processing such
1155 	 * interrupts would lead to a freeze. I don't know why.
1156 	 */
1157 	if (reg_icr == 0xffffffff) {
1158 		logif(intr_end);
1159 		return;
1160 	}
1161 
1162 	if (ifp->if_flags & IFF_RUNNING) {
1163 		if (reg_icr &
1164 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1165 			int i;
1166 
1167 			for (i = 0; i < sc->rx_ring_inuse; ++i)
1168 				emx_rxeof(sc, i, -1);
1169 		}
1170 		if (reg_icr & E1000_ICR_TXDW) {
1171 			emx_txeof(sc);
1172 			if (!ifq_is_empty(&ifp->if_snd))
1173 				if_devstart(ifp);
1174 		}
1175 	}
1176 
1177 	/* Link status change */
1178 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1179 		callout_stop(&sc->timer);
1180 		sc->hw.mac.get_link_status = 1;
1181 		emx_update_link_status(sc);
1182 
1183 		/* Deal with TX cruft when link lost */
1184 		emx_tx_purge(sc);
1185 
1186 		callout_reset(&sc->timer, hz, emx_timer, sc);
1187 	}
1188 
1189 	if (reg_icr & E1000_ICR_RXO)
1190 		sc->rx_overruns++;
1191 
1192 	logif(intr_end);
1193 }
1194 
1195 static void
1196 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1197 {
1198 	struct emx_softc *sc = ifp->if_softc;
1199 
1200 	ASSERT_SERIALIZED(ifp->if_serializer);
1201 
1202 	emx_update_link_status(sc);
1203 
1204 	ifmr->ifm_status = IFM_AVALID;
1205 	ifmr->ifm_active = IFM_ETHER;
1206 
1207 	if (!sc->link_active)
1208 		return;
1209 
1210 	ifmr->ifm_status |= IFM_ACTIVE;
1211 
1212 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1213 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1214 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1215 	} else {
1216 		switch (sc->link_speed) {
1217 		case 10:
1218 			ifmr->ifm_active |= IFM_10_T;
1219 			break;
1220 		case 100:
1221 			ifmr->ifm_active |= IFM_100_TX;
1222 			break;
1223 
1224 		case 1000:
1225 			ifmr->ifm_active |= IFM_1000_T;
1226 			break;
1227 		}
1228 		if (sc->link_duplex == FULL_DUPLEX)
1229 			ifmr->ifm_active |= IFM_FDX;
1230 		else
1231 			ifmr->ifm_active |= IFM_HDX;
1232 	}
1233 }
1234 
1235 static int
1236 emx_media_change(struct ifnet *ifp)
1237 {
1238 	struct emx_softc *sc = ifp->if_softc;
1239 	struct ifmedia *ifm = &sc->media;
1240 
1241 	ASSERT_SERIALIZED(ifp->if_serializer);
1242 
1243 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1244 		return (EINVAL);
1245 
1246 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1247 	case IFM_AUTO:
1248 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1249 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1250 		break;
1251 
1252 	case IFM_1000_LX:
1253 	case IFM_1000_SX:
1254 	case IFM_1000_T:
1255 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1256 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1257 		break;
1258 
1259 	case IFM_100_TX:
1260 		sc->hw.mac.autoneg = FALSE;
1261 		sc->hw.phy.autoneg_advertised = 0;
1262 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1263 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1264 		else
1265 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1266 		break;
1267 
1268 	case IFM_10_T:
1269 		sc->hw.mac.autoneg = FALSE;
1270 		sc->hw.phy.autoneg_advertised = 0;
1271 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1272 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1273 		else
1274 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1275 		break;
1276 
1277 	default:
1278 		if_printf(ifp, "Unsupported media type\n");
1279 		break;
1280 	}
1281 
1282 	/*
1283 	 * As the speed/duplex settings my have changed we need to
1284 	 * reset the PHY.
1285 	 */
1286 	sc->hw.phy.reset_disable = FALSE;
1287 
1288 	emx_init(sc);
1289 
1290 	return (0);
1291 }
1292 
1293 static int
1294 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1295 {
1296 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1297 	bus_dmamap_t map;
1298 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1299 	struct e1000_tx_desc *ctxd = NULL;
1300 	struct mbuf *m_head = *m_headp;
1301 	uint32_t txd_upper, txd_lower, cmd = 0;
1302 	int maxsegs, nsegs, i, j, first, last = 0, error;
1303 
1304 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1305 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1306 		/*
1307 		 * Make sure that ethernet header and ip.ip_hl are in
1308 		 * contiguous memory, since if TXCSUM is enabled, later
1309 		 * TX context descriptor's setup need to access ip.ip_hl.
1310 		 */
1311 		error = emx_txcsum_pullup(sc, m_headp);
1312 		if (error) {
1313 			KKASSERT(*m_headp == NULL);
1314 			return error;
1315 		}
1316 		m_head = *m_headp;
1317 	}
1318 
1319 	txd_upper = txd_lower = 0;
1320 
1321 	/*
1322 	 * Capture the first descriptor index, this descriptor
1323 	 * will have the index of the EOP which is the only one
1324 	 * that now gets a DONE bit writeback.
1325 	 */
1326 	first = sc->next_avail_tx_desc;
1327 	tx_buffer = &sc->tx_buf[first];
1328 	tx_buffer_mapped = tx_buffer;
1329 	map = tx_buffer->map;
1330 
1331 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1332 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc\n"));
1333 	if (maxsegs > EMX_MAX_SCATTER)
1334 		maxsegs = EMX_MAX_SCATTER;
1335 
1336 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1337 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1338 	if (error) {
1339 		if (error == ENOBUFS)
1340 			sc->mbuf_alloc_failed++;
1341 		else
1342 			sc->no_tx_dma_setup++;
1343 
1344 		m_freem(*m_headp);
1345 		*m_headp = NULL;
1346 		return error;
1347 	}
1348         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1349 
1350 	m_head = *m_headp;
1351 	sc->tx_nsegs += nsegs;
1352 
1353 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1354 		/* TX csum offloading will consume one TX desc */
1355 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1356 	}
1357 	i = sc->next_avail_tx_desc;
1358 
1359 	/* Set up our transmit descriptors */
1360 	for (j = 0; j < nsegs; j++) {
1361 		tx_buffer = &sc->tx_buf[i];
1362 		ctxd = &sc->tx_desc_base[i];
1363 
1364 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1365 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1366 					   txd_lower | segs[j].ds_len);
1367 		ctxd->upper.data = htole32(txd_upper);
1368 
1369 		last = i;
1370 		if (++i == sc->num_tx_desc)
1371 			i = 0;
1372 	}
1373 
1374 	sc->next_avail_tx_desc = i;
1375 
1376 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1377 	sc->num_tx_desc_avail -= nsegs;
1378 
1379         /* Handle VLAN tag */
1380 	if (m_head->m_flags & M_VLANTAG) {
1381 		/* Set the vlan id. */
1382 		ctxd->upper.fields.special =
1383 		    htole16(m_head->m_pkthdr.ether_vlantag);
1384 
1385 		/* Tell hardware to add tag */
1386 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1387 	}
1388 
1389 	tx_buffer->m_head = m_head;
1390 	tx_buffer_mapped->map = tx_buffer->map;
1391 	tx_buffer->map = map;
1392 
1393 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1394 		sc->tx_nsegs = 0;
1395 
1396 		/*
1397 		 * Report Status (RS) is turned on
1398 		 * every tx_int_nsegs descriptors.
1399 		 */
1400 		cmd = E1000_TXD_CMD_RS;
1401 
1402 		/*
1403 		 * Keep track of the descriptor, which will
1404 		 * be written back by hardware.
1405 		 */
1406 		sc->tx_dd[sc->tx_dd_tail] = last;
1407 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1408 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1409 	}
1410 
1411 	/*
1412 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1413 	 */
1414 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1415 
1416 	/*
1417 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1418 	 * the E1000 that this frame is available to transmit.
1419 	 */
1420 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1421 
1422 	return (0);
1423 }
1424 
1425 static void
1426 emx_set_promisc(struct emx_softc *sc)
1427 {
1428 	struct ifnet *ifp = &sc->arpcom.ac_if;
1429 	uint32_t reg_rctl;
1430 
1431 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1432 
1433 	if (ifp->if_flags & IFF_PROMISC) {
1434 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1435 		/* Turn this on if you want to see bad packets */
1436 		if (emx_debug_sbp)
1437 			reg_rctl |= E1000_RCTL_SBP;
1438 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1439 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1440 		reg_rctl |= E1000_RCTL_MPE;
1441 		reg_rctl &= ~E1000_RCTL_UPE;
1442 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1443 	}
1444 }
1445 
1446 static void
1447 emx_disable_promisc(struct emx_softc *sc)
1448 {
1449 	uint32_t reg_rctl;
1450 
1451 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1452 
1453 	reg_rctl &= ~E1000_RCTL_UPE;
1454 	reg_rctl &= ~E1000_RCTL_MPE;
1455 	reg_rctl &= ~E1000_RCTL_SBP;
1456 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1457 }
1458 
1459 static void
1460 emx_set_multi(struct emx_softc *sc)
1461 {
1462 	struct ifnet *ifp = &sc->arpcom.ac_if;
1463 	struct ifmultiaddr *ifma;
1464 	uint32_t reg_rctl = 0;
1465 	uint8_t  mta[512]; /* Largest MTS is 4096 bits */
1466 	int mcnt = 0;
1467 
1468 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1469 		if (ifma->ifma_addr->sa_family != AF_LINK)
1470 			continue;
1471 
1472 		if (mcnt == EMX_MCAST_ADDR_MAX)
1473 			break;
1474 
1475 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1476 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1477 		mcnt++;
1478 	}
1479 
1480 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1481 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1482 		reg_rctl |= E1000_RCTL_MPE;
1483 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1484 	} else {
1485 		e1000_update_mc_addr_list(&sc->hw, mta,
1486 		    mcnt, 1, sc->hw.mac.rar_entry_count);
1487 	}
1488 }
1489 
1490 /*
1491  * This routine checks for link status and updates statistics.
1492  */
1493 static void
1494 emx_timer(void *xsc)
1495 {
1496 	struct emx_softc *sc = xsc;
1497 	struct ifnet *ifp = &sc->arpcom.ac_if;
1498 
1499 	lwkt_serialize_enter(ifp->if_serializer);
1500 
1501 	emx_update_link_status(sc);
1502 	emx_update_stats(sc);
1503 
1504 	/* Reset LAA into RAR[0] on 82571 */
1505 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1506 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1507 
1508 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1509 		emx_print_hw_stats(sc);
1510 
1511 	emx_smartspeed(sc);
1512 
1513 	callout_reset(&sc->timer, hz, emx_timer, sc);
1514 
1515 	lwkt_serialize_exit(ifp->if_serializer);
1516 }
1517 
1518 static void
1519 emx_update_link_status(struct emx_softc *sc)
1520 {
1521 	struct e1000_hw *hw = &sc->hw;
1522 	struct ifnet *ifp = &sc->arpcom.ac_if;
1523 	device_t dev = sc->dev;
1524 	uint32_t link_check = 0;
1525 
1526 	/* Get the cached link value or read phy for real */
1527 	switch (hw->phy.media_type) {
1528 	case e1000_media_type_copper:
1529 		if (hw->mac.get_link_status) {
1530 			/* Do the work to read phy */
1531 			e1000_check_for_link(hw);
1532 			link_check = !hw->mac.get_link_status;
1533 			if (link_check) /* ESB2 fix */
1534 				e1000_cfg_on_link_up(hw);
1535 		} else {
1536 			link_check = TRUE;
1537 		}
1538 		break;
1539 
1540 	case e1000_media_type_fiber:
1541 		e1000_check_for_link(hw);
1542 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1543 		break;
1544 
1545 	case e1000_media_type_internal_serdes:
1546 		e1000_check_for_link(hw);
1547 		link_check = sc->hw.mac.serdes_has_link;
1548 		break;
1549 
1550 	case e1000_media_type_unknown:
1551 	default:
1552 		break;
1553 	}
1554 
1555 	/* Now check for a transition */
1556 	if (link_check && sc->link_active == 0) {
1557 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1558 		    &sc->link_duplex);
1559 
1560 		/*
1561 		 * Check if we should enable/disable SPEED_MODE bit on
1562 		 * 82571EB/82572EI
1563 		 */
1564 		if (hw->mac.type == e1000_82571 ||
1565 		    hw->mac.type == e1000_82572) {
1566 			int tarc0;
1567 
1568 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1569 			if (sc->link_speed != SPEED_1000)
1570 				tarc0 &= ~EMX_TARC_SPEED_MODE;
1571 			else
1572 				tarc0 |= EMX_TARC_SPEED_MODE;
1573 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1574 		}
1575 		if (bootverbose) {
1576 			device_printf(dev, "Link is up %d Mbps %s\n",
1577 			    sc->link_speed,
1578 			    ((sc->link_duplex == FULL_DUPLEX) ?
1579 			    "Full Duplex" : "Half Duplex"));
1580 		}
1581 		sc->link_active = 1;
1582 		sc->smartspeed = 0;
1583 		ifp->if_baudrate = sc->link_speed * 1000000;
1584 		ifp->if_link_state = LINK_STATE_UP;
1585 		if_link_state_change(ifp);
1586 	} else if (!link_check && sc->link_active == 1) {
1587 		ifp->if_baudrate = sc->link_speed = 0;
1588 		sc->link_duplex = 0;
1589 		if (bootverbose)
1590 			device_printf(dev, "Link is Down\n");
1591 		sc->link_active = 0;
1592 #if 0
1593 		/* Link down, disable watchdog */
1594 		if->if_timer = 0;
1595 #endif
1596 		ifp->if_link_state = LINK_STATE_DOWN;
1597 		if_link_state_change(ifp);
1598 	}
1599 }
1600 
1601 static void
1602 emx_stop(struct emx_softc *sc)
1603 {
1604 	struct ifnet *ifp = &sc->arpcom.ac_if;
1605 	int i;
1606 
1607 	ASSERT_SERIALIZED(ifp->if_serializer);
1608 
1609 	emx_disable_intr(sc);
1610 
1611 	callout_stop(&sc->timer);
1612 
1613 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1614 	ifp->if_timer = 0;
1615 
1616 	/*
1617 	 * Disable multiple receive queues.
1618 	 *
1619 	 * NOTE:
1620 	 * We should disable multiple receive queues before
1621 	 * resetting the hardware.
1622 	 */
1623 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1624 
1625 	e1000_reset_hw(&sc->hw);
1626 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1627 
1628 	for (i = 0; i < sc->num_tx_desc; i++) {
1629 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1630 
1631 		if (tx_buffer->m_head != NULL) {
1632 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1633 			m_freem(tx_buffer->m_head);
1634 			tx_buffer->m_head = NULL;
1635 		}
1636 	}
1637 
1638 	for (i = 0; i < sc->rx_ring_inuse; ++i)
1639 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1640 
1641 	sc->csum_flags = 0;
1642 	sc->csum_ehlen = 0;
1643 	sc->csum_iphlen = 0;
1644 
1645 	sc->tx_dd_head = 0;
1646 	sc->tx_dd_tail = 0;
1647 	sc->tx_nsegs = 0;
1648 }
1649 
1650 static int
1651 emx_hw_init(struct emx_softc *sc)
1652 {
1653 	device_t dev = sc->dev;
1654 	uint16_t rx_buffer_size;
1655 
1656 	/* Issue a global reset */
1657 	e1000_reset_hw(&sc->hw);
1658 
1659 	/* Get control from any management/hw control */
1660 	if (sc->hw.mac.type == e1000_82573 &&
1661 	    e1000_check_mng_mode(&sc->hw))
1662 		emx_get_hw_control(sc);
1663 
1664 	/* Set up smart power down as default off on newer adapters. */
1665 	if (!emx_smart_pwr_down &&
1666 	    (sc->hw.mac.type == e1000_82571 ||
1667 	     sc->hw.mac.type == e1000_82572)) {
1668 		uint16_t phy_tmp = 0;
1669 
1670 		/* Speed up time to link by disabling smart power down. */
1671 		e1000_read_phy_reg(&sc->hw,
1672 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1673 		phy_tmp &= ~IGP02E1000_PM_SPD;
1674 		e1000_write_phy_reg(&sc->hw,
1675 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1676 	}
1677 
1678 	/*
1679 	 * These parameters control the automatic generation (Tx) and
1680 	 * response (Rx) to Ethernet PAUSE frames.
1681 	 * - High water mark should allow for at least two frames to be
1682 	 *   received after sending an XOFF.
1683 	 * - Low water mark works best when it is very near the high water mark.
1684 	 *   This allows the receiver to restart by sending XON when it has
1685 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1686 	 *   restart after one full frame is pulled from the buffer. There
1687 	 *   could be several smaller frames in the buffer and if so they will
1688 	 *   not trigger the XON until their total number reduces the buffer
1689 	 *   by 1500.
1690 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1691 	 */
1692 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1693 
1694 	sc->hw.fc.high_water = rx_buffer_size -
1695 			       roundup2(sc->max_frame_size, 1024);
1696 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1697 
1698 	if (sc->hw.mac.type == e1000_80003es2lan)
1699 		sc->hw.fc.pause_time = 0xFFFF;
1700 	else
1701 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1702 	sc->hw.fc.send_xon = TRUE;
1703 	sc->hw.fc.requested_mode = e1000_fc_full;
1704 
1705 	if (e1000_init_hw(&sc->hw) < 0) {
1706 		device_printf(dev, "Hardware Initialization Failed\n");
1707 		return (EIO);
1708 	}
1709 
1710 	e1000_check_for_link(&sc->hw);
1711 
1712 	return (0);
1713 }
1714 
1715 static void
1716 emx_setup_ifp(struct emx_softc *sc)
1717 {
1718 	struct ifnet *ifp = &sc->arpcom.ac_if;
1719 
1720 	if_initname(ifp, device_get_name(sc->dev),
1721 		    device_get_unit(sc->dev));
1722 	ifp->if_softc = sc;
1723 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1724 	ifp->if_init =  emx_init;
1725 	ifp->if_ioctl = emx_ioctl;
1726 	ifp->if_start = emx_start;
1727 #ifdef DEVICE_POLLING
1728 	ifp->if_poll = emx_poll;
1729 #endif
1730 	ifp->if_watchdog = emx_watchdog;
1731 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1732 	ifq_set_ready(&ifp->if_snd);
1733 
1734 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1735 
1736 	ifp->if_capabilities = IFCAP_HWCSUM |
1737 			       IFCAP_VLAN_HWTAGGING |
1738 			       IFCAP_VLAN_MTU;
1739 	if (sc->rx_ring_cnt > 1)
1740 		ifp->if_capabilities |= IFCAP_RSS;
1741 	ifp->if_capenable = ifp->if_capabilities;
1742 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1743 
1744 	/*
1745 	 * Tell the upper layer(s) we support long frames.
1746 	 */
1747 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1748 
1749 	/*
1750 	 * Specify the media types supported by this sc and register
1751 	 * callbacks to update media and link information
1752 	 */
1753 	ifmedia_init(&sc->media, IFM_IMASK,
1754 		     emx_media_change, emx_media_status);
1755 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1756 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1757 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1758 			    0, NULL);
1759 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1760 	} else {
1761 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1762 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1763 			    0, NULL);
1764 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1765 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1766 			    0, NULL);
1767 		if (sc->hw.phy.type != e1000_phy_ife) {
1768 			ifmedia_add(&sc->media,
1769 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1770 			ifmedia_add(&sc->media,
1771 				IFM_ETHER | IFM_1000_T, 0, NULL);
1772 		}
1773 	}
1774 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1775 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1776 }
1777 
1778 /*
1779  * Workaround for SmartSpeed on 82541 and 82547 controllers
1780  */
1781 static void
1782 emx_smartspeed(struct emx_softc *sc)
1783 {
1784 	uint16_t phy_tmp;
1785 
1786 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1787 	    sc->hw.mac.autoneg == 0 ||
1788 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1789 		return;
1790 
1791 	if (sc->smartspeed == 0) {
1792 		/*
1793 		 * If Master/Slave config fault is asserted twice,
1794 		 * we assume back-to-back
1795 		 */
1796 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1797 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1798 			return;
1799 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1800 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1801 			e1000_read_phy_reg(&sc->hw,
1802 			    PHY_1000T_CTRL, &phy_tmp);
1803 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1804 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1805 				e1000_write_phy_reg(&sc->hw,
1806 				    PHY_1000T_CTRL, phy_tmp);
1807 				sc->smartspeed++;
1808 				if (sc->hw.mac.autoneg &&
1809 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1810 				    !e1000_read_phy_reg(&sc->hw,
1811 				     PHY_CONTROL, &phy_tmp)) {
1812 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1813 						   MII_CR_RESTART_AUTO_NEG;
1814 					e1000_write_phy_reg(&sc->hw,
1815 					    PHY_CONTROL, phy_tmp);
1816 				}
1817 			}
1818 		}
1819 		return;
1820 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1821 		/* If still no link, perhaps using 2/3 pair cable */
1822 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1823 		phy_tmp |= CR_1000T_MS_ENABLE;
1824 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1825 		if (sc->hw.mac.autoneg &&
1826 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1827 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1828 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1829 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1830 		}
1831 	}
1832 
1833 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1834 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1835 		sc->smartspeed = 0;
1836 }
1837 
1838 static int
1839 emx_create_tx_ring(struct emx_softc *sc)
1840 {
1841 	device_t dev = sc->dev;
1842 	struct emx_txbuf *tx_buffer;
1843 	int error, i, tsize;
1844 
1845 	/*
1846 	 * Validate number of transmit descriptors.  It must not exceed
1847 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1848 	 */
1849 	if ((emx_txd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1850 	    emx_txd > EMX_MAX_TXD || emx_txd < EMX_MIN_TXD) {
1851 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1852 		    EMX_DEFAULT_TXD, emx_txd);
1853 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1854 	} else {
1855 		sc->num_tx_desc = emx_txd;
1856 	}
1857 
1858 	/*
1859 	 * Allocate Transmit Descriptor ring
1860 	 */
1861 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1862 			 EMX_DBA_ALIGN);
1863 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1864 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1865 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1866 				&sc->tx_desc_paddr);
1867 	if (sc->tx_desc_base == NULL) {
1868 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1869 		return ENOMEM;
1870 	}
1871 
1872 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1873 			     M_DEVBUF, M_WAITOK | M_ZERO);
1874 
1875 	/*
1876 	 * Create DMA tags for tx buffers
1877 	 */
1878 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
1879 			1, 0,			/* alignment, bounds */
1880 			BUS_SPACE_MAXADDR,	/* lowaddr */
1881 			BUS_SPACE_MAXADDR,	/* highaddr */
1882 			NULL, NULL,		/* filter, filterarg */
1883 			EMX_TSO_SIZE,		/* maxsize */
1884 			EMX_MAX_SCATTER,	/* nsegments */
1885 			EMX_MAX_SEGSIZE,	/* maxsegsize */
1886 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1887 			BUS_DMA_ONEBPAGE,	/* flags */
1888 			&sc->txtag);
1889 	if (error) {
1890 		device_printf(dev, "Unable to allocate TX DMA tag\n");
1891 		kfree(sc->tx_buf, M_DEVBUF);
1892 		sc->tx_buf = NULL;
1893 		return error;
1894 	}
1895 
1896 	/*
1897 	 * Create DMA maps for tx buffers
1898 	 */
1899 	for (i = 0; i < sc->num_tx_desc; i++) {
1900 		tx_buffer = &sc->tx_buf[i];
1901 
1902 		error = bus_dmamap_create(sc->txtag,
1903 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1904 					  &tx_buffer->map);
1905 		if (error) {
1906 			device_printf(dev, "Unable to create TX DMA map\n");
1907 			emx_destroy_tx_ring(sc, i);
1908 			return error;
1909 		}
1910 	}
1911 	return (0);
1912 }
1913 
1914 static void
1915 emx_init_tx_ring(struct emx_softc *sc)
1916 {
1917 	/* Clear the old ring contents */
1918 	bzero(sc->tx_desc_base,
1919 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
1920 
1921 	/* Reset state */
1922 	sc->next_avail_tx_desc = 0;
1923 	sc->next_tx_to_clean = 0;
1924 	sc->num_tx_desc_avail = sc->num_tx_desc;
1925 }
1926 
1927 static void
1928 emx_init_tx_unit(struct emx_softc *sc)
1929 {
1930 	uint32_t tctl, tarc, tipg = 0;
1931 	uint64_t bus_addr;
1932 
1933 	/* Setup the Base and Length of the Tx Descriptor Ring */
1934 	bus_addr = sc->tx_desc_paddr;
1935 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
1936 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
1937 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
1938 	    (uint32_t)(bus_addr >> 32));
1939 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
1940 	    (uint32_t)bus_addr);
1941 	/* Setup the HW Tx Head and Tail descriptor pointers */
1942 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
1943 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
1944 
1945 	/* Set the default values for the Tx Inter Packet Gap timer */
1946 	switch (sc->hw.mac.type) {
1947 	case e1000_80003es2lan:
1948 		tipg = DEFAULT_82543_TIPG_IPGR1;
1949 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
1950 		    E1000_TIPG_IPGR2_SHIFT;
1951 		break;
1952 
1953 	default:
1954 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1955 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1956 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1957 		else
1958 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1959 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1960 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1961 		break;
1962 	}
1963 
1964 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
1965 
1966 	/* NOTE: 0 is not allowed for TIDV */
1967 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
1968 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
1969 
1970 	if (sc->hw.mac.type == e1000_82571 ||
1971 	    sc->hw.mac.type == e1000_82572) {
1972 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
1973 		tarc |= EMX_TARC_SPEED_MODE;
1974 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
1975 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
1976 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
1977 		tarc |= 1;
1978 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
1979 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
1980 		tarc |= 1;
1981 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
1982 	}
1983 
1984 	/* Program the Transmit Control Register */
1985 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
1986 	tctl &= ~E1000_TCTL_CT;
1987 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1988 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1989 	tctl |= E1000_TCTL_MULR;
1990 
1991 	/* This write will effectively turn on the transmit unit. */
1992 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
1993 }
1994 
1995 static void
1996 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
1997 {
1998 	struct emx_txbuf *tx_buffer;
1999 	int i;
2000 
2001 	/* Free Transmit Descriptor ring */
2002 	if (sc->tx_desc_base) {
2003 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2004 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2005 				sc->tx_desc_dmap);
2006 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2007 
2008 		sc->tx_desc_base = NULL;
2009 	}
2010 
2011 	if (sc->tx_buf == NULL)
2012 		return;
2013 
2014 	for (i = 0; i < ndesc; i++) {
2015 		tx_buffer = &sc->tx_buf[i];
2016 
2017 		KKASSERT(tx_buffer->m_head == NULL);
2018 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2019 	}
2020 	bus_dma_tag_destroy(sc->txtag);
2021 
2022 	kfree(sc->tx_buf, M_DEVBUF);
2023 	sc->tx_buf = NULL;
2024 }
2025 
2026 /*
2027  * The offload context needs to be set when we transfer the first
2028  * packet of a particular protocol (TCP/UDP).  This routine has been
2029  * enhanced to deal with inserted VLAN headers.
2030  *
2031  * If the new packet's ether header length, ip header length and
2032  * csum offloading type are same as the previous packet, we should
2033  * avoid allocating a new csum context descriptor; mainly to take
2034  * advantage of the pipeline effect of the TX data read request.
2035  *
2036  * This function returns number of TX descrptors allocated for
2037  * csum context.
2038  */
2039 static int
2040 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2041 	   uint32_t *txd_upper, uint32_t *txd_lower)
2042 {
2043 	struct e1000_context_desc *TXD;
2044 	struct emx_txbuf *tx_buffer;
2045 	struct ether_vlan_header *eh;
2046 	struct ip *ip;
2047 	int curr_txd, ehdrlen, csum_flags;
2048 	uint32_t cmd, hdr_len, ip_hlen;
2049 	uint16_t etype;
2050 
2051 	/*
2052 	 * Determine where frame payload starts.
2053 	 * Jump over vlan headers if already present,
2054 	 * helpful for QinQ too.
2055 	 */
2056 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2057 		("emx_txcsum_pullup is not called (eh)?\n"));
2058 	eh = mtod(mp, struct ether_vlan_header *);
2059 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2060 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2061 			("emx_txcsum_pullup is not called (evh)?\n"));
2062 		etype = ntohs(eh->evl_proto);
2063 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2064 	} else {
2065 		etype = ntohs(eh->evl_encap_proto);
2066 		ehdrlen = ETHER_HDR_LEN;
2067 	}
2068 
2069 	/*
2070 	 * We only support TCP/UDP for IPv4 for the moment.
2071 	 * TODO: Support SCTP too when it hits the tree.
2072 	 */
2073 	if (etype != ETHERTYPE_IP)
2074 		return 0;
2075 
2076 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2077 		("emx_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2078 
2079 	/* NOTE: We could only safely access ip.ip_vhl part */
2080 	ip = (struct ip *)(mp->m_data + ehdrlen);
2081 	ip_hlen = ip->ip_hl << 2;
2082 
2083 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2084 
2085 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2086 	    sc->csum_flags == csum_flags) {
2087 		/*
2088 		 * Same csum offload context as the previous packets;
2089 		 * just return.
2090 		 */
2091 		*txd_upper = sc->csum_txd_upper;
2092 		*txd_lower = sc->csum_txd_lower;
2093 		return 0;
2094 	}
2095 
2096 	/*
2097 	 * Setup a new csum offload context.
2098 	 */
2099 
2100 	curr_txd = sc->next_avail_tx_desc;
2101 	tx_buffer = &sc->tx_buf[curr_txd];
2102 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2103 
2104 	cmd = 0;
2105 
2106 	/* Setup of IP header checksum. */
2107 	if (csum_flags & CSUM_IP) {
2108 		/*
2109 		 * Start offset for header checksum calculation.
2110 		 * End offset for header checksum calculation.
2111 		 * Offset of place to put the checksum.
2112 		 */
2113 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2114 		TXD->lower_setup.ip_fields.ipcse =
2115 		    htole16(ehdrlen + ip_hlen - 1);
2116 		TXD->lower_setup.ip_fields.ipcso =
2117 		    ehdrlen + offsetof(struct ip, ip_sum);
2118 		cmd |= E1000_TXD_CMD_IP;
2119 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2120 	}
2121 	hdr_len = ehdrlen + ip_hlen;
2122 
2123 	if (csum_flags & CSUM_TCP) {
2124 		/*
2125 		 * Start offset for payload checksum calculation.
2126 		 * End offset for payload checksum calculation.
2127 		 * Offset of place to put the checksum.
2128 		 */
2129 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2130 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2131 		TXD->upper_setup.tcp_fields.tucso =
2132 		    hdr_len + offsetof(struct tcphdr, th_sum);
2133 		cmd |= E1000_TXD_CMD_TCP;
2134 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2135 	} else if (csum_flags & CSUM_UDP) {
2136 		/*
2137 		 * Start offset for header checksum calculation.
2138 		 * End offset for header checksum calculation.
2139 		 * Offset of place to put the checksum.
2140 		 */
2141 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2142 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2143 		TXD->upper_setup.tcp_fields.tucso =
2144 		    hdr_len + offsetof(struct udphdr, uh_sum);
2145 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2146 	}
2147 
2148 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2149 		     E1000_TXD_DTYP_D;		/* Data descr */
2150 
2151 	/* Save the information for this csum offloading context */
2152 	sc->csum_ehlen = ehdrlen;
2153 	sc->csum_iphlen = ip_hlen;
2154 	sc->csum_flags = csum_flags;
2155 	sc->csum_txd_upper = *txd_upper;
2156 	sc->csum_txd_lower = *txd_lower;
2157 
2158 	TXD->tcp_seg_setup.data = htole32(0);
2159 	TXD->cmd_and_length =
2160 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2161 
2162 	if (++curr_txd == sc->num_tx_desc)
2163 		curr_txd = 0;
2164 
2165 	KKASSERT(sc->num_tx_desc_avail > 0);
2166 	sc->num_tx_desc_avail--;
2167 
2168 	sc->next_avail_tx_desc = curr_txd;
2169 	return 1;
2170 }
2171 
2172 static int
2173 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2174 {
2175 	struct mbuf *m = *m0;
2176 	struct ether_header *eh;
2177 	int len;
2178 
2179 	sc->tx_csum_try_pullup++;
2180 
2181 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2182 
2183 	if (__predict_false(!M_WRITABLE(m))) {
2184 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2185 			sc->tx_csum_drop1++;
2186 			m_freem(m);
2187 			*m0 = NULL;
2188 			return ENOBUFS;
2189 		}
2190 		eh = mtod(m, struct ether_header *);
2191 
2192 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2193 			len += EVL_ENCAPLEN;
2194 
2195 		if (m->m_len < len) {
2196 			sc->tx_csum_drop2++;
2197 			m_freem(m);
2198 			*m0 = NULL;
2199 			return ENOBUFS;
2200 		}
2201 		return 0;
2202 	}
2203 
2204 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2205 		sc->tx_csum_pullup1++;
2206 		m = m_pullup(m, ETHER_HDR_LEN);
2207 		if (m == NULL) {
2208 			sc->tx_csum_pullup1_failed++;
2209 			*m0 = NULL;
2210 			return ENOBUFS;
2211 		}
2212 		*m0 = m;
2213 	}
2214 	eh = mtod(m, struct ether_header *);
2215 
2216 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2217 		len += EVL_ENCAPLEN;
2218 
2219 	if (m->m_len < len) {
2220 		sc->tx_csum_pullup2++;
2221 		m = m_pullup(m, len);
2222 		if (m == NULL) {
2223 			sc->tx_csum_pullup2_failed++;
2224 			*m0 = NULL;
2225 			return ENOBUFS;
2226 		}
2227 		*m0 = m;
2228 	}
2229 	return 0;
2230 }
2231 
2232 static void
2233 emx_txeof(struct emx_softc *sc)
2234 {
2235 	struct ifnet *ifp = &sc->arpcom.ac_if;
2236 	struct emx_txbuf *tx_buffer;
2237 	int first, num_avail;
2238 
2239 	if (sc->tx_dd_head == sc->tx_dd_tail)
2240 		return;
2241 
2242 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2243 		return;
2244 
2245 	num_avail = sc->num_tx_desc_avail;
2246 	first = sc->next_tx_to_clean;
2247 
2248 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2249 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2250 		struct e1000_tx_desc *tx_desc;
2251 
2252 		tx_desc = &sc->tx_desc_base[dd_idx];
2253 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2254 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2255 
2256 			if (++dd_idx == sc->num_tx_desc)
2257 				dd_idx = 0;
2258 
2259 			while (first != dd_idx) {
2260 				logif(pkt_txclean);
2261 
2262 				num_avail++;
2263 
2264 				tx_buffer = &sc->tx_buf[first];
2265 				if (tx_buffer->m_head) {
2266 					ifp->if_opackets++;
2267 					bus_dmamap_unload(sc->txtag,
2268 							  tx_buffer->map);
2269 					m_freem(tx_buffer->m_head);
2270 					tx_buffer->m_head = NULL;
2271 				}
2272 
2273 				if (++first == sc->num_tx_desc)
2274 					first = 0;
2275 			}
2276 		} else {
2277 			break;
2278 		}
2279 	}
2280 	sc->next_tx_to_clean = first;
2281 	sc->num_tx_desc_avail = num_avail;
2282 
2283 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2284 		sc->tx_dd_head = 0;
2285 		sc->tx_dd_tail = 0;
2286 	}
2287 
2288 	if (!EMX_IS_OACTIVE(sc)) {
2289 		ifp->if_flags &= ~IFF_OACTIVE;
2290 
2291 		/* All clean, turn off the timer */
2292 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2293 			ifp->if_timer = 0;
2294 	}
2295 }
2296 
2297 static void
2298 emx_tx_collect(struct emx_softc *sc)
2299 {
2300 	struct ifnet *ifp = &sc->arpcom.ac_if;
2301 	struct emx_txbuf *tx_buffer;
2302 	int tdh, first, num_avail, dd_idx = -1;
2303 
2304 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2305 		return;
2306 
2307 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2308 	if (tdh == sc->next_tx_to_clean)
2309 		return;
2310 
2311 	if (sc->tx_dd_head != sc->tx_dd_tail)
2312 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2313 
2314 	num_avail = sc->num_tx_desc_avail;
2315 	first = sc->next_tx_to_clean;
2316 
2317 	while (first != tdh) {
2318 		logif(pkt_txclean);
2319 
2320 		num_avail++;
2321 
2322 		tx_buffer = &sc->tx_buf[first];
2323 		if (tx_buffer->m_head) {
2324 			ifp->if_opackets++;
2325 			bus_dmamap_unload(sc->txtag,
2326 					  tx_buffer->map);
2327 			m_freem(tx_buffer->m_head);
2328 			tx_buffer->m_head = NULL;
2329 		}
2330 
2331 		if (first == dd_idx) {
2332 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2333 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2334 				sc->tx_dd_head = 0;
2335 				sc->tx_dd_tail = 0;
2336 				dd_idx = -1;
2337 			} else {
2338 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2339 			}
2340 		}
2341 
2342 		if (++first == sc->num_tx_desc)
2343 			first = 0;
2344 	}
2345 	sc->next_tx_to_clean = first;
2346 	sc->num_tx_desc_avail = num_avail;
2347 
2348 	if (!EMX_IS_OACTIVE(sc)) {
2349 		ifp->if_flags &= ~IFF_OACTIVE;
2350 
2351 		/* All clean, turn off the timer */
2352 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2353 			ifp->if_timer = 0;
2354 	}
2355 }
2356 
2357 /*
2358  * When Link is lost sometimes there is work still in the TX ring
2359  * which will result in a watchdog, rather than allow that do an
2360  * attempted cleanup and then reinit here.  Note that this has been
2361  * seens mostly with fiber adapters.
2362  */
2363 static void
2364 emx_tx_purge(struct emx_softc *sc)
2365 {
2366 	struct ifnet *ifp = &sc->arpcom.ac_if;
2367 
2368 	if (!sc->link_active && ifp->if_timer) {
2369 		emx_tx_collect(sc);
2370 		if (ifp->if_timer) {
2371 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2372 			ifp->if_timer = 0;
2373 			emx_init(sc);
2374 		}
2375 	}
2376 }
2377 
2378 static int
2379 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2380 {
2381 	struct mbuf *m;
2382 	bus_dma_segment_t seg;
2383 	bus_dmamap_t map;
2384 	struct emx_rxbuf *rx_buffer;
2385 	int error, nseg;
2386 
2387 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2388 	if (m == NULL) {
2389 		rdata->mbuf_cluster_failed++;
2390 		if (init) {
2391 			if_printf(&sc->arpcom.ac_if,
2392 				  "Unable to allocate RX mbuf\n");
2393 		}
2394 		return (ENOBUFS);
2395 	}
2396 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2397 
2398 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2399 		m_adj(m, ETHER_ALIGN);
2400 
2401 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2402 			rdata->rx_sparemap, m,
2403 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2404 	if (error) {
2405 		m_freem(m);
2406 		if (init) {
2407 			if_printf(&sc->arpcom.ac_if,
2408 				  "Unable to load RX mbuf\n");
2409 		}
2410 		return (error);
2411 	}
2412 
2413 	rx_buffer = &rdata->rx_buf[i];
2414 	if (rx_buffer->m_head != NULL)
2415 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2416 
2417 	map = rx_buffer->map;
2418 	rx_buffer->map = rdata->rx_sparemap;
2419 	rdata->rx_sparemap = map;
2420 
2421 	rx_buffer->m_head = m;
2422 	rx_buffer->paddr = seg.ds_addr;
2423 
2424 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2425 	return (0);
2426 }
2427 
2428 static int
2429 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2430 {
2431 	device_t dev = sc->dev;
2432 	struct emx_rxbuf *rx_buffer;
2433 	int i, error, rsize;
2434 
2435 	/*
2436 	 * Validate number of receive descriptors.  It must not exceed
2437 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2438 	 */
2439 	if ((emx_rxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2440 	    emx_rxd > EMX_MAX_RXD || emx_rxd < EMX_MIN_RXD) {
2441 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2442 		    EMX_DEFAULT_RXD, emx_rxd);
2443 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2444 	} else {
2445 		rdata->num_rx_desc = emx_rxd;
2446 	}
2447 
2448 	/*
2449 	 * Allocate Receive Descriptor ring
2450 	 */
2451 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2452 			 EMX_DBA_ALIGN);
2453 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2454 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2455 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2456 				&rdata->rx_desc_paddr);
2457 	if (rdata->rx_desc == NULL) {
2458 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2459 		return ENOMEM;
2460 	}
2461 
2462 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2463 				M_DEVBUF, M_WAITOK | M_ZERO);
2464 
2465 	/*
2466 	 * Create DMA tag for rx buffers
2467 	 */
2468 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2469 			1, 0,			/* alignment, bounds */
2470 			BUS_SPACE_MAXADDR,	/* lowaddr */
2471 			BUS_SPACE_MAXADDR,	/* highaddr */
2472 			NULL, NULL,		/* filter, filterarg */
2473 			MCLBYTES,		/* maxsize */
2474 			1,			/* nsegments */
2475 			MCLBYTES,		/* maxsegsize */
2476 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2477 			&rdata->rxtag);
2478 	if (error) {
2479 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2480 		kfree(rdata->rx_buf, M_DEVBUF);
2481 		rdata->rx_buf = NULL;
2482 		return error;
2483 	}
2484 
2485 	/*
2486 	 * Create spare DMA map for rx buffers
2487 	 */
2488 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2489 				  &rdata->rx_sparemap);
2490 	if (error) {
2491 		device_printf(dev, "Unable to create spare RX DMA map\n");
2492 		bus_dma_tag_destroy(rdata->rxtag);
2493 		kfree(rdata->rx_buf, M_DEVBUF);
2494 		rdata->rx_buf = NULL;
2495 		return error;
2496 	}
2497 
2498 	/*
2499 	 * Create DMA maps for rx buffers
2500 	 */
2501 	for (i = 0; i < rdata->num_rx_desc; i++) {
2502 		rx_buffer = &rdata->rx_buf[i];
2503 
2504 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2505 					  &rx_buffer->map);
2506 		if (error) {
2507 			device_printf(dev, "Unable to create RX DMA map\n");
2508 			emx_destroy_rx_ring(sc, rdata, i);
2509 			return error;
2510 		}
2511 	}
2512 	return (0);
2513 }
2514 
2515 static void
2516 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2517 {
2518 	int i;
2519 
2520 	for (i = 0; i < rdata->num_rx_desc; i++) {
2521 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2522 
2523 		if (rx_buffer->m_head != NULL) {
2524 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2525 			m_freem(rx_buffer->m_head);
2526 			rx_buffer->m_head = NULL;
2527 		}
2528 	}
2529 
2530 	if (rdata->fmp != NULL)
2531 		m_freem(rdata->fmp);
2532 	rdata->fmp = NULL;
2533 	rdata->lmp = NULL;
2534 }
2535 
2536 static int
2537 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2538 {
2539 	int i, error;
2540 
2541 	/* Reset descriptor ring */
2542 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2543 
2544 	/* Allocate new ones. */
2545 	for (i = 0; i < rdata->num_rx_desc; i++) {
2546 		error = emx_newbuf(sc, rdata, i, 1);
2547 		if (error)
2548 			return (error);
2549 	}
2550 
2551 	/* Setup our descriptor pointers */
2552 	rdata->next_rx_desc_to_check = 0;
2553 
2554 	return (0);
2555 }
2556 
2557 static void
2558 emx_init_rx_unit(struct emx_softc *sc)
2559 {
2560 	struct ifnet *ifp = &sc->arpcom.ac_if;
2561 	uint64_t bus_addr;
2562 	uint32_t rctl, rxcsum, rfctl, key, reta;
2563 	int i;
2564 
2565 	/*
2566 	 * Make sure receives are disabled while setting
2567 	 * up the descriptor ring
2568 	 */
2569 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2570 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2571 
2572 	/*
2573 	 * Set the interrupt throttling rate. Value is calculated
2574 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2575 	 */
2576 	if (sc->int_throttle_ceil) {
2577 		E1000_WRITE_REG(&sc->hw, E1000_ITR,
2578 			1000000000 / 256 / sc->int_throttle_ceil);
2579 	} else {
2580 		E1000_WRITE_REG(&sc->hw, E1000_ITR, 0);
2581 	}
2582 
2583 	/* Use extended RX descriptor */
2584 	rfctl = E1000_RFCTL_EXTEN;
2585 
2586 	/* Disable accelerated ackknowledge */
2587 	if (sc->hw.mac.type == e1000_82574)
2588 		rfctl |= E1000_RFCTL_ACK_DIS;
2589 
2590 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2591 
2592 	/* Setup the Base and Length of the Rx Descriptor Ring */
2593 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2594 		struct emx_rxdata *rdata = &sc->rx_data[i];
2595 
2596 		bus_addr = rdata->rx_desc_paddr;
2597 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2598 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2599 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2600 		    (uint32_t)(bus_addr >> 32));
2601 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2602 		    (uint32_t)bus_addr);
2603 	}
2604 
2605 	/* Setup the Receive Control Register */
2606 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2607 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2608 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2609 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2610 
2611 	/* Make sure VLAN Filters are off */
2612 	rctl &= ~E1000_RCTL_VFE;
2613 
2614 	/* Don't store bad paket */
2615 	rctl &= ~E1000_RCTL_SBP;
2616 
2617 	/* MCLBYTES */
2618 	rctl |= E1000_RCTL_SZ_2048;
2619 
2620 	if (ifp->if_mtu > ETHERMTU)
2621 		rctl |= E1000_RCTL_LPE;
2622 	else
2623 		rctl &= ~E1000_RCTL_LPE;
2624 
2625 	/*
2626 	 * Receive Checksum Offload for TCP and UDP
2627 	 *
2628 	 * Checksum offloading is also enabled if multiple receive
2629 	 * queue is to be supported, since we need it to figure out
2630 	 * packet type.
2631 	 */
2632 	if (ifp->if_capenable & (IFCAP_RSS | IFCAP_RXCSUM)) {
2633 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2634 
2635 		/*
2636 		 * NOTE:
2637 		 * PCSD must be enabled to enable multiple
2638 		 * receive queues.
2639 		 */
2640 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2641 			  E1000_RXCSUM_PCSD;
2642 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2643 	}
2644 
2645 	/*
2646 	 * Configure multiple receive queue (RSS)
2647 	 */
2648 	if (ifp->if_capenable & IFCAP_RSS) {
2649 		/*
2650 		 * NOTE:
2651 		 * When we reach here, RSS has already been disabled
2652 		 * in emx_stop(), so we could safely configure RSS key
2653 		 * and redirect table.
2654 		 */
2655 
2656 		/*
2657 		 * Configure RSS key
2658 		 */
2659 		key = 0x5a6d5a6d; /* XXX */
2660 		for (i = 0; i < EMX_NRSSRK; ++i)
2661 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), key);
2662 
2663 		/*
2664 		 * Configure RSS redirect table
2665 		 */
2666 		reta = 0x80008000;
2667 		for (i = 0; i < EMX_NRETA; ++i)
2668 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2669 
2670 		/*
2671 		 * Enable multiple receive queues.
2672 		 * Enable IPv4 RSS standard hash functions.
2673 		 * Disable RSS interrupt.
2674 		 */
2675 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2676 				E1000_MRQC_ENABLE_RSS_2Q |
2677 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2678 				E1000_MRQC_RSS_FIELD_IPV4);
2679 	}
2680 
2681 	/*
2682 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2683 	 * long latencies are observed, like Lenovo X60. This
2684 	 * change eliminates the problem, but since having positive
2685 	 * values in RDTR is a known source of problems on other
2686 	 * platforms another solution is being sought.
2687 	 */
2688 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2689 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2690 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2691 	}
2692 
2693 	/*
2694 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2695 	 */
2696 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2697 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2698 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2699 		    sc->rx_data[i].num_rx_desc - 1);
2700 	}
2701 
2702 	/* Enable Receives */
2703 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2704 }
2705 
2706 static void
2707 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2708 {
2709 	struct emx_rxbuf *rx_buffer;
2710 	int i;
2711 
2712 	/* Free Receive Descriptor ring */
2713 	if (rdata->rx_desc) {
2714 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2715 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2716 				rdata->rx_desc_dmap);
2717 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2718 
2719 		rdata->rx_desc = NULL;
2720 	}
2721 
2722 	if (rdata->rx_buf == NULL)
2723 		return;
2724 
2725 	for (i = 0; i < ndesc; i++) {
2726 		rx_buffer = &rdata->rx_buf[i];
2727 
2728 		KKASSERT(rx_buffer->m_head == NULL);
2729 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2730 	}
2731 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2732 	bus_dma_tag_destroy(rdata->rxtag);
2733 
2734 	kfree(rdata->rx_buf, M_DEVBUF);
2735 	rdata->rx_buf = NULL;
2736 }
2737 
2738 static void
2739 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2740 {
2741 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2742 	struct ifnet *ifp = &sc->arpcom.ac_if;
2743 	uint32_t staterr;
2744 	emx_rxdesc_t *current_desc;
2745 	struct mbuf *mp;
2746 	int i;
2747 	struct mbuf_chain chain[MAXCPU];
2748 
2749 	i = rdata->next_rx_desc_to_check;
2750 	current_desc = &rdata->rx_desc[i];
2751 	staterr = le32toh(current_desc->rxd_staterr);
2752 
2753 	if (!(staterr & E1000_RXD_STAT_DD))
2754 		return;
2755 
2756 	ether_input_chain_init(chain);
2757 
2758 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2759 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2760 		struct mbuf *m = NULL;
2761 		int eop, len;
2762 
2763 		logif(pkt_receive);
2764 
2765 		mp = rx_buf->m_head;
2766 
2767 		/*
2768 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2769 		 * needs to access the last received byte in the mbuf.
2770 		 */
2771 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2772 				BUS_DMASYNC_POSTREAD);
2773 
2774 		len = le16toh(current_desc->rxd_length);
2775 		if (staterr & E1000_RXD_STAT_EOP) {
2776 			count--;
2777 			eop = 1;
2778 		} else {
2779 			eop = 0;
2780 		}
2781 
2782 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2783 			uint16_t vlan = 0;
2784 			uint32_t mrq, rss_hash;
2785 
2786 			/*
2787 			 * Save several necessary information,
2788 			 * before emx_newbuf() destroy it.
2789 			 */
2790 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2791 				vlan = le16toh(current_desc->rxd_vlan);
2792 
2793 			mrq = le32toh(current_desc->rxd_mrq);
2794 			rss_hash = le32toh(current_desc->rxd_rss);
2795 
2796 			EMX_RSS_DPRINTF(sc, 10,
2797 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2798 			    ring_idx, mrq, rss_hash);
2799 
2800 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2801 				ifp->if_iqdrops++;
2802 				goto discard;
2803 			}
2804 
2805 			/* Assign correct length to the current fragment */
2806 			mp->m_len = len;
2807 
2808 			if (rdata->fmp == NULL) {
2809 				mp->m_pkthdr.len = len;
2810 				rdata->fmp = mp; /* Store the first mbuf */
2811 				rdata->lmp = mp;
2812 			} else {
2813 				/*
2814 				 * Chain mbuf's together
2815 				 */
2816 				rdata->lmp->m_next = mp;
2817 				rdata->lmp = rdata->lmp->m_next;
2818 				rdata->fmp->m_pkthdr.len += len;
2819 			}
2820 
2821 			if (eop) {
2822 				rdata->fmp->m_pkthdr.rcvif = ifp;
2823 				ifp->if_ipackets++;
2824 
2825 				if (ifp->if_capenable & IFCAP_RXCSUM)
2826 					emx_rxcsum(staterr, rdata->fmp);
2827 
2828 				if (staterr & E1000_RXD_STAT_VP) {
2829 					rdata->fmp->m_pkthdr.ether_vlantag =
2830 					    vlan;
2831 					rdata->fmp->m_flags |= M_VLANTAG;
2832 				}
2833 				m = rdata->fmp;
2834 				rdata->fmp = NULL;
2835 				rdata->lmp = NULL;
2836 
2837 #ifdef EMX_RSS_DEBUG
2838 				rdata->rx_pkts++;
2839 #endif
2840 			}
2841 		} else {
2842 			ifp->if_ierrors++;
2843 discard:
2844 			emx_setup_rxdesc(current_desc, rx_buf);
2845 			if (rdata->fmp != NULL) {
2846 				m_freem(rdata->fmp);
2847 				rdata->fmp = NULL;
2848 				rdata->lmp = NULL;
2849 			}
2850 			m = NULL;
2851 		}
2852 
2853 		if (m != NULL)
2854 			ether_input_chain(ifp, m, chain);
2855 
2856 		/* Advance our pointers to the next descriptor. */
2857 		if (++i == rdata->num_rx_desc)
2858 			i = 0;
2859 
2860 		current_desc = &rdata->rx_desc[i];
2861 		staterr = le32toh(current_desc->rxd_staterr);
2862 	}
2863 	rdata->next_rx_desc_to_check = i;
2864 
2865 	ether_input_dispatch(chain);
2866 
2867 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2868 	if (--i < 0)
2869 		i = rdata->num_rx_desc - 1;
2870 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2871 }
2872 
2873 static void
2874 emx_enable_intr(struct emx_softc *sc)
2875 {
2876 	lwkt_serialize_handler_enable(sc->arpcom.ac_if.if_serializer);
2877 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2878 }
2879 
2880 static void
2881 emx_disable_intr(struct emx_softc *sc)
2882 {
2883 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2884 	lwkt_serialize_handler_disable(sc->arpcom.ac_if.if_serializer);
2885 }
2886 
2887 /*
2888  * Bit of a misnomer, what this really means is
2889  * to enable OS management of the system... aka
2890  * to disable special hardware management features
2891  */
2892 static void
2893 emx_get_mgmt(struct emx_softc *sc)
2894 {
2895 	/* A shared code workaround */
2896 	if (sc->has_manage) {
2897 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2898 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2899 
2900 		/* disable hardware interception of ARP */
2901 		manc &= ~(E1000_MANC_ARP_EN);
2902 
2903                 /* enable receiving management packets to the host */
2904 		manc |= E1000_MANC_EN_MNG2HOST;
2905 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2906 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2907 		manc2h |= E1000_MNG2HOST_PORT_623;
2908 		manc2h |= E1000_MNG2HOST_PORT_664;
2909 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2910 
2911 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2912 	}
2913 }
2914 
2915 /*
2916  * Give control back to hardware management
2917  * controller if there is one.
2918  */
2919 static void
2920 emx_rel_mgmt(struct emx_softc *sc)
2921 {
2922 	if (sc->has_manage) {
2923 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2924 
2925 		/* re-enable hardware interception of ARP */
2926 		manc |= E1000_MANC_ARP_EN;
2927 		manc &= ~E1000_MANC_EN_MNG2HOST;
2928 
2929 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2930 	}
2931 }
2932 
2933 /*
2934  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
2935  * For ASF and Pass Through versions of f/w this means that
2936  * the driver is loaded.  For AMT version (only with 82573)
2937  * of the f/w this means that the network i/f is open.
2938  */
2939 static void
2940 emx_get_hw_control(struct emx_softc *sc)
2941 {
2942 	uint32_t ctrl_ext, swsm;
2943 
2944 	/* Let firmware know the driver has taken over */
2945 	switch (sc->hw.mac.type) {
2946 	case e1000_82573:
2947 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
2948 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
2949 		    swsm | E1000_SWSM_DRV_LOAD);
2950 		break;
2951 
2952 	case e1000_82571:
2953 	case e1000_82572:
2954 	case e1000_80003es2lan:
2955 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2956 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2957 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2958 		break;
2959 
2960 	default:
2961 		break;
2962 	}
2963 }
2964 
2965 /*
2966  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
2967  * For ASF and Pass Through versions of f/w this means that the
2968  * driver is no longer loaded.  For AMT version (only with 82573)
2969  * of the f/w this means that the network i/f is closed.
2970  */
2971 static void
2972 emx_rel_hw_control(struct emx_softc *sc)
2973 {
2974 	uint32_t ctrl_ext, swsm;
2975 
2976 	/* Let firmware taken over control of h/w */
2977 	switch (sc->hw.mac.type) {
2978 	case e1000_82573:
2979 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
2980 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
2981 		    swsm & ~E1000_SWSM_DRV_LOAD);
2982 		break;
2983 
2984 	case e1000_82571:
2985 	case e1000_82572:
2986 	case e1000_80003es2lan:
2987 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2988 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2989 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2990 		break;
2991 
2992 	default:
2993 		break;
2994 	}
2995 }
2996 
2997 static int
2998 emx_is_valid_eaddr(const uint8_t *addr)
2999 {
3000 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3001 
3002 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3003 		return (FALSE);
3004 
3005 	return (TRUE);
3006 }
3007 
3008 /*
3009  * Enable PCI Wake On Lan capability
3010  */
3011 void
3012 emx_enable_wol(device_t dev)
3013 {
3014 	uint16_t cap, status;
3015 	uint8_t id;
3016 
3017 	/* First find the capabilities pointer*/
3018 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3019 
3020 	/* Read the PM Capabilities */
3021 	id = pci_read_config(dev, cap, 1);
3022 	if (id != PCIY_PMG)     /* Something wrong */
3023 		return;
3024 
3025 	/*
3026 	 * OK, we have the power capabilities,
3027 	 * so now get the status register
3028 	 */
3029 	cap += PCIR_POWER_STATUS;
3030 	status = pci_read_config(dev, cap, 2);
3031 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3032 	pci_write_config(dev, cap, status, 2);
3033 }
3034 
3035 static void
3036 emx_update_stats(struct emx_softc *sc)
3037 {
3038 	struct ifnet *ifp = &sc->arpcom.ac_if;
3039 
3040 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3041 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3042 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3043 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3044 	}
3045 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3046 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3047 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3048 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3049 
3050 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3051 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3052 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3053 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3054 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3055 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3056 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3057 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3058 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3059 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3060 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3061 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3062 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3063 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3064 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3065 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3066 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3067 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3068 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3069 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3070 
3071 	/* For the 64-bit byte counters the low dword must be read first. */
3072 	/* Both registers clear on the read of the high dword */
3073 
3074 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3075 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3076 
3077 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3078 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3079 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3080 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3081 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3082 
3083 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3084 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3085 
3086 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3087 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3088 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3089 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3090 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3091 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3092 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3093 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3094 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3095 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3096 
3097 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3098 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3099 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3100 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3101 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3102 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3103 
3104 	ifp->if_collisions = sc->stats.colc;
3105 
3106 	/* Rx Errors */
3107 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3108 			  sc->stats.crcerrs + sc->stats.algnerrc +
3109 			  sc->stats.ruc + sc->stats.roc +
3110 			  sc->stats.mpc + sc->stats.cexterr;
3111 
3112 	/* Tx Errors */
3113 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3114 			  sc->watchdog_events;
3115 }
3116 
3117 static void
3118 emx_print_debug_info(struct emx_softc *sc)
3119 {
3120 	device_t dev = sc->dev;
3121 	uint8_t *hw_addr = sc->hw.hw_addr;
3122 
3123 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3124 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3125 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3126 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3127 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3128 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3129 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3130 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3131 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3132 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3133 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3134 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3135 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3136 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3137 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3138 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3139 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3140 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3141 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3142 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3143 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3144 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3145 	    sc->num_tx_desc_avail);
3146 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3147 	    sc->no_tx_desc_avail1);
3148 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3149 	    sc->no_tx_desc_avail2);
3150 	device_printf(dev, "Std mbuf failed = %ld\n",
3151 	    sc->mbuf_alloc_failed);
3152 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3153 	    sc->rx_data[0].mbuf_cluster_failed);
3154 	device_printf(dev, "Driver dropped packets = %ld\n",
3155 	    sc->dropped_pkts);
3156 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3157 	    sc->no_tx_dma_setup);
3158 
3159 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3160 	    sc->tx_csum_try_pullup);
3161 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3162 	    sc->tx_csum_pullup1);
3163 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3164 	    sc->tx_csum_pullup1_failed);
3165 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3166 	    sc->tx_csum_pullup2);
3167 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3168 	    sc->tx_csum_pullup2_failed);
3169 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3170 	    sc->tx_csum_drop1);
3171 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3172 	    sc->tx_csum_drop2);
3173 }
3174 
3175 static void
3176 emx_print_hw_stats(struct emx_softc *sc)
3177 {
3178 	device_t dev = sc->dev;
3179 
3180 	device_printf(dev, "Excessive collisions = %lld\n",
3181 	    (long long)sc->stats.ecol);
3182 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3183 	device_printf(dev, "Symbol errors = %lld\n",
3184 	    (long long)sc->stats.symerrs);
3185 #endif
3186 	device_printf(dev, "Sequence errors = %lld\n",
3187 	    (long long)sc->stats.sec);
3188 	device_printf(dev, "Defer count = %lld\n",
3189 	    (long long)sc->stats.dc);
3190 	device_printf(dev, "Missed Packets = %lld\n",
3191 	    (long long)sc->stats.mpc);
3192 	device_printf(dev, "Receive No Buffers = %lld\n",
3193 	    (long long)sc->stats.rnbc);
3194 	/* RLEC is inaccurate on some hardware, calculate our own. */
3195 	device_printf(dev, "Receive Length Errors = %lld\n",
3196 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3197 	device_printf(dev, "Receive errors = %lld\n",
3198 	    (long long)sc->stats.rxerrc);
3199 	device_printf(dev, "Crc errors = %lld\n",
3200 	    (long long)sc->stats.crcerrs);
3201 	device_printf(dev, "Alignment errors = %lld\n",
3202 	    (long long)sc->stats.algnerrc);
3203 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3204 	    (long long)sc->stats.cexterr);
3205 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3206 	device_printf(dev, "watchdog timeouts = %ld\n",
3207 	    sc->watchdog_events);
3208 	device_printf(dev, "XON Rcvd = %lld\n",
3209 	    (long long)sc->stats.xonrxc);
3210 	device_printf(dev, "XON Xmtd = %lld\n",
3211 	    (long long)sc->stats.xontxc);
3212 	device_printf(dev, "XOFF Rcvd = %lld\n",
3213 	    (long long)sc->stats.xoffrxc);
3214 	device_printf(dev, "XOFF Xmtd = %lld\n",
3215 	    (long long)sc->stats.xofftxc);
3216 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3217 	    (long long)sc->stats.gprc);
3218 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3219 	    (long long)sc->stats.gptc);
3220 }
3221 
3222 static void
3223 emx_print_nvm_info(struct emx_softc *sc)
3224 {
3225 	uint16_t eeprom_data;
3226 	int i, j, row = 0;
3227 
3228 	/* Its a bit crude, but it gets the job done */
3229 	kprintf("\nInterface EEPROM Dump:\n");
3230 	kprintf("Offset\n0x0000  ");
3231 	for (i = 0, j = 0; i < 32; i++, j++) {
3232 		if (j == 8) { /* Make the offset block */
3233 			j = 0; ++row;
3234 			kprintf("\n0x00%x0  ",row);
3235 		}
3236 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3237 		kprintf("%04x ", eeprom_data);
3238 	}
3239 	kprintf("\n");
3240 }
3241 
3242 static int
3243 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3244 {
3245 	struct emx_softc *sc;
3246 	struct ifnet *ifp;
3247 	int error, result;
3248 
3249 	result = -1;
3250 	error = sysctl_handle_int(oidp, &result, 0, req);
3251 	if (error || !req->newptr)
3252 		return (error);
3253 
3254 	sc = (struct emx_softc *)arg1;
3255 	ifp = &sc->arpcom.ac_if;
3256 
3257 	lwkt_serialize_enter(ifp->if_serializer);
3258 
3259 	if (result == 1)
3260 		emx_print_debug_info(sc);
3261 
3262 	/*
3263 	 * This value will cause a hex dump of the
3264 	 * first 32 16-bit words of the EEPROM to
3265 	 * the screen.
3266 	 */
3267 	if (result == 2)
3268 		emx_print_nvm_info(sc);
3269 
3270 	lwkt_serialize_exit(ifp->if_serializer);
3271 
3272 	return (error);
3273 }
3274 
3275 static int
3276 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3277 {
3278 	int error, result;
3279 
3280 	result = -1;
3281 	error = sysctl_handle_int(oidp, &result, 0, req);
3282 	if (error || !req->newptr)
3283 		return (error);
3284 
3285 	if (result == 1) {
3286 		struct emx_softc *sc = (struct emx_softc *)arg1;
3287 		struct ifnet *ifp = &sc->arpcom.ac_if;
3288 
3289 		lwkt_serialize_enter(ifp->if_serializer);
3290 		emx_print_hw_stats(sc);
3291 		lwkt_serialize_exit(ifp->if_serializer);
3292 	}
3293 	return (error);
3294 }
3295 
3296 static void
3297 emx_add_sysctl(struct emx_softc *sc)
3298 {
3299 #ifdef PROFILE_SERIALIZER
3300 	struct ifnet *ifp = &sc->arpcom.ac_if;
3301 #endif
3302 #ifdef EMX_RSS_DEBUG
3303 	char rx_pkt[32];
3304 	int i;
3305 #endif
3306 
3307 	sysctl_ctx_init(&sc->sysctl_ctx);
3308 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3309 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3310 				device_get_nameunit(sc->dev),
3311 				CTLFLAG_RD, 0, "");
3312 	if (sc->sysctl_tree == NULL) {
3313 		device_printf(sc->dev, "can't add sysctl node\n");
3314 		return;
3315 	}
3316 
3317 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3318 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3319 			emx_sysctl_debug_info, "I", "Debug Information");
3320 
3321 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3322 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3323 			emx_sysctl_stats, "I", "Statistics");
3324 
3325 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3326 		       OID_AUTO, "rxd", CTLFLAG_RD,
3327 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3328 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3329 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3330 
3331 #ifdef PROFILE_SERIALIZER
3332 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3333 			OID_AUTO, "serializer_sleep", CTLFLAG_RW,
3334 			&ifp->if_serializer->sleep_cnt, 0, NULL);
3335 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3336 			OID_AUTO, "serializer_tryfail", CTLFLAG_RW,
3337 			&ifp->if_serializer->tryfail_cnt, 0, NULL);
3338 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3339 			OID_AUTO, "serializer_enter", CTLFLAG_RW,
3340 			&ifp->if_serializer->enter_cnt, 0, NULL);
3341 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3342 			OID_AUTO, "serializer_try", CTLFLAG_RW,
3343 			&ifp->if_serializer->try_cnt, 0, NULL);
3344 #endif
3345 
3346 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3347 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3348 			sc, 0, emx_sysctl_int_throttle, "I",
3349 			"interrupt throttling rate");
3350 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3351 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3352 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3353 			"# segments per TX interrupt");
3354 
3355 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3356 		       OID_AUTO, "rx_ring_inuse", CTLFLAG_RD,
3357 		       &sc->rx_ring_inuse, 0, "RX ring in use");
3358 
3359 #ifdef EMX_RSS_DEBUG
3360 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3361 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3362 		       0, "RSS debug level");
3363 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3364 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3365 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3366 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3367 				rx_pkt, CTLFLAG_RD,
3368 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3369 	}
3370 #endif
3371 }
3372 
3373 static int
3374 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3375 {
3376 	struct emx_softc *sc = (void *)arg1;
3377 	struct ifnet *ifp = &sc->arpcom.ac_if;
3378 	int error, throttle;
3379 
3380 	throttle = sc->int_throttle_ceil;
3381 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3382 	if (error || req->newptr == NULL)
3383 		return error;
3384 	if (throttle < 0 || throttle > 1000000000 / 256)
3385 		return EINVAL;
3386 
3387 	if (throttle) {
3388 		/*
3389 		 * Set the interrupt throttling rate in 256ns increments,
3390 		 * recalculate sysctl value assignment to get exact frequency.
3391 		 */
3392 		throttle = 1000000000 / 256 / throttle;
3393 
3394 		/* Upper 16bits of ITR is reserved and should be zero */
3395 		if (throttle & 0xffff0000)
3396 			return EINVAL;
3397 	}
3398 
3399 	lwkt_serialize_enter(ifp->if_serializer);
3400 
3401 	if (throttle)
3402 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3403 	else
3404 		sc->int_throttle_ceil = 0;
3405 
3406 	if (ifp->if_flags & IFF_RUNNING)
3407 		E1000_WRITE_REG(&sc->hw, E1000_ITR, throttle);
3408 
3409 	lwkt_serialize_exit(ifp->if_serializer);
3410 
3411 	if (bootverbose) {
3412 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3413 			  sc->int_throttle_ceil);
3414 	}
3415 	return 0;
3416 }
3417 
3418 static int
3419 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3420 {
3421 	struct emx_softc *sc = (void *)arg1;
3422 	struct ifnet *ifp = &sc->arpcom.ac_if;
3423 	int error, segs;
3424 
3425 	segs = sc->tx_int_nsegs;
3426 	error = sysctl_handle_int(oidp, &segs, 0, req);
3427 	if (error || req->newptr == NULL)
3428 		return error;
3429 	if (segs <= 0)
3430 		return EINVAL;
3431 
3432 	lwkt_serialize_enter(ifp->if_serializer);
3433 
3434 	/*
3435 	 * Don't allow int_tx_nsegs to become:
3436 	 * o  Less the oact_tx_desc
3437 	 * o  Too large that no TX desc will cause TX interrupt to
3438 	 *    be generated (OACTIVE will never recover)
3439 	 * o  Too small that will cause tx_dd[] overflow
3440 	 */
3441 	if (segs < sc->oact_tx_desc ||
3442 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3443 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3444 		error = EINVAL;
3445 	} else {
3446 		error = 0;
3447 		sc->tx_int_nsegs = segs;
3448 	}
3449 
3450 	lwkt_serialize_exit(ifp->if_serializer);
3451 
3452 	return error;
3453 }
3454 
3455 static int
3456 emx_dma_alloc(struct emx_softc *sc)
3457 {
3458 	int error, i;
3459 
3460 	/*
3461 	 * Create top level busdma tag
3462 	 */
3463 	error = bus_dma_tag_create(NULL, 1, 0,
3464 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3465 			NULL, NULL,
3466 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3467 			0, &sc->parent_dtag);
3468 	if (error) {
3469 		device_printf(sc->dev, "could not create top level DMA tag\n");
3470 		return error;
3471 	}
3472 
3473 	/*
3474 	 * Allocate transmit descriptors ring and buffers
3475 	 */
3476 	error = emx_create_tx_ring(sc);
3477 	if (error) {
3478 		device_printf(sc->dev, "Could not setup transmit structures\n");
3479 		return error;
3480 	}
3481 
3482 	/*
3483 	 * Allocate receive descriptors ring and buffers
3484 	 */
3485 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3486 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3487 		if (error) {
3488 			device_printf(sc->dev,
3489 			    "Could not setup receive structures\n");
3490 			return error;
3491 		}
3492 	}
3493 	return 0;
3494 }
3495 
3496 static void
3497 emx_dma_free(struct emx_softc *sc)
3498 {
3499 	int i;
3500 
3501 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3502 
3503 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3504 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3505 				    sc->rx_data[i].num_rx_desc);
3506 	}
3507 
3508 	/* Free top level busdma tag */
3509 	if (sc->parent_dtag != NULL)
3510 		bus_dma_tag_destroy(sc->parent_dtag);
3511 }
3512