xref: /dflybsd-src/sys/dev/netif/emx/if_emx.c (revision f3adbb3cdddf061a5f284c3d9b33d22fecdfcfaf)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #ifdef EMX_RSS_DEBUG
114 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
115 do { \
116 	if (sc->rss_debug >= lvl) \
117 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
118 } while (0)
119 #else	/* !EMX_RSS_DEBUG */
120 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
121 #endif	/* EMX_RSS_DEBUG */
122 
123 #define EMX_TX_SERIALIZE	1
124 #define EMX_RX_SERIALIZE	2
125 
126 #define EMX_NAME	"Intel(R) PRO/1000 "
127 
128 #define EMX_DEVICE(id)	\
129 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
130 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
131 
132 static const struct emx_device {
133 	uint16_t	vid;
134 	uint16_t	did;
135 	const char	*desc;
136 } emx_devices[] = {
137 	EMX_DEVICE(82571EB_COPPER),
138 	EMX_DEVICE(82571EB_FIBER),
139 	EMX_DEVICE(82571EB_SERDES),
140 	EMX_DEVICE(82571EB_SERDES_DUAL),
141 	EMX_DEVICE(82571EB_SERDES_QUAD),
142 	EMX_DEVICE(82571EB_QUAD_COPPER),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
145 	EMX_DEVICE(82571EB_QUAD_FIBER),
146 	EMX_DEVICE(82571PT_QUAD_COPPER),
147 
148 	EMX_DEVICE(82572EI_COPPER),
149 	EMX_DEVICE(82572EI_FIBER),
150 	EMX_DEVICE(82572EI_SERDES),
151 	EMX_DEVICE(82572EI),
152 
153 	EMX_DEVICE(82573E),
154 	EMX_DEVICE(82573E_IAMT),
155 	EMX_DEVICE(82573L),
156 
157 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
159 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
160 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
161 
162 	EMX_DEVICE(82574L),
163 	EMX_DEVICE(82574LA),
164 
165 	/* required last entry */
166 	EMX_DEVICE_NULL
167 };
168 
169 static int	emx_probe(device_t);
170 static int	emx_attach(device_t);
171 static int	emx_detach(device_t);
172 static int	emx_shutdown(device_t);
173 static int	emx_suspend(device_t);
174 static int	emx_resume(device_t);
175 
176 static void	emx_init(void *);
177 static void	emx_stop(struct emx_softc *);
178 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
179 static void	emx_start(struct ifnet *);
180 #ifdef IFPOLL_ENABLE
181 static void	emx_qpoll(struct ifnet *, struct ifpoll_info *);
182 #endif
183 static void	emx_watchdog(struct ifnet *);
184 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
185 static int	emx_media_change(struct ifnet *);
186 static void	emx_timer(void *);
187 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
188 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
189 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
190 #ifdef INVARIANTS
191 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
192 		    boolean_t);
193 #endif
194 
195 static void	emx_intr(void *);
196 static void	emx_intr_mask(void *);
197 static void	emx_intr_body(struct emx_softc *, boolean_t);
198 static void	emx_rxeof(struct emx_softc *, int, int);
199 static void	emx_txeof(struct emx_softc *);
200 static void	emx_tx_collect(struct emx_softc *);
201 static void	emx_tx_purge(struct emx_softc *);
202 static void	emx_enable_intr(struct emx_softc *);
203 static void	emx_disable_intr(struct emx_softc *);
204 
205 static int	emx_dma_alloc(struct emx_softc *);
206 static void	emx_dma_free(struct emx_softc *);
207 static void	emx_init_tx_ring(struct emx_softc *);
208 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
209 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
210 static int	emx_create_tx_ring(struct emx_softc *);
211 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
212 static void	emx_destroy_tx_ring(struct emx_softc *, int);
213 static void	emx_destroy_rx_ring(struct emx_softc *,
214 		    struct emx_rxdata *, int);
215 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
216 static int	emx_encap(struct emx_softc *, struct mbuf **);
217 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
218 		    uint32_t *, uint32_t *);
219 static int	emx_tso_pullup(struct emx_softc *, struct mbuf **);
220 static int	emx_tso_setup(struct emx_softc *, struct mbuf *,
221 		    uint32_t *, uint32_t *);
222 
223 static int 	emx_is_valid_eaddr(const uint8_t *);
224 static int	emx_reset(struct emx_softc *);
225 static void	emx_setup_ifp(struct emx_softc *);
226 static void	emx_init_tx_unit(struct emx_softc *);
227 static void	emx_init_rx_unit(struct emx_softc *);
228 static void	emx_update_stats(struct emx_softc *);
229 static void	emx_set_promisc(struct emx_softc *);
230 static void	emx_disable_promisc(struct emx_softc *);
231 static void	emx_set_multi(struct emx_softc *);
232 static void	emx_update_link_status(struct emx_softc *);
233 static void	emx_smartspeed(struct emx_softc *);
234 static void	emx_set_itr(struct emx_softc *, uint32_t);
235 static void	emx_disable_aspm(struct emx_softc *);
236 
237 static void	emx_print_debug_info(struct emx_softc *);
238 static void	emx_print_nvm_info(struct emx_softc *);
239 static void	emx_print_hw_stats(struct emx_softc *);
240 
241 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
242 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
243 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
244 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
245 static void	emx_add_sysctl(struct emx_softc *);
246 
247 static void	emx_serialize_skipmain(struct emx_softc *);
248 static void	emx_deserialize_skipmain(struct emx_softc *);
249 
250 /* Management and WOL Support */
251 static void	emx_get_mgmt(struct emx_softc *);
252 static void	emx_rel_mgmt(struct emx_softc *);
253 static void	emx_get_hw_control(struct emx_softc *);
254 static void	emx_rel_hw_control(struct emx_softc *);
255 static void	emx_enable_wol(device_t);
256 
257 static device_method_t emx_methods[] = {
258 	/* Device interface */
259 	DEVMETHOD(device_probe,		emx_probe),
260 	DEVMETHOD(device_attach,	emx_attach),
261 	DEVMETHOD(device_detach,	emx_detach),
262 	DEVMETHOD(device_shutdown,	emx_shutdown),
263 	DEVMETHOD(device_suspend,	emx_suspend),
264 	DEVMETHOD(device_resume,	emx_resume),
265 	{ 0, 0 }
266 };
267 
268 static driver_t emx_driver = {
269 	"emx",
270 	emx_methods,
271 	sizeof(struct emx_softc),
272 };
273 
274 static devclass_t emx_devclass;
275 
276 DECLARE_DUMMY_MODULE(if_emx);
277 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
278 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
279 
280 /*
281  * Tunables
282  */
283 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
284 static int	emx_rxd = EMX_DEFAULT_RXD;
285 static int	emx_txd = EMX_DEFAULT_TXD;
286 static int	emx_smart_pwr_down = 0;
287 static int	emx_rxr = 0;
288 
289 /* Controls whether promiscuous also shows bad packets */
290 static int	emx_debug_sbp = 0;
291 
292 static int	emx_82573_workaround = 1;
293 static int	emx_msi_enable = 1;
294 
295 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
296 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
297 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
298 TUNABLE_INT("hw.emx.txd", &emx_txd);
299 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
300 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
301 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
302 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
303 
304 /* Global used in WOL setup with multiport cards */
305 static int	emx_global_quad_port_a = 0;
306 
307 /* Set this to one to display debug statistics */
308 static int	emx_display_debug_stats = 0;
309 
310 #if !defined(KTR_IF_EMX)
311 #define KTR_IF_EMX	KTR_ALL
312 #endif
313 KTR_INFO_MASTER(if_emx);
314 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
315 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
316 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
317 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
318 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
319 #define logif(name)	KTR_LOG(if_emx_ ## name)
320 
321 static __inline void
322 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
323 {
324 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
325 	/* DD bit must be cleared */
326 	rxd->rxd_staterr = 0;
327 }
328 
329 static __inline void
330 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
331 {
332 	/* Ignore Checksum bit is set */
333 	if (staterr & E1000_RXD_STAT_IXSM)
334 		return;
335 
336 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
337 	    E1000_RXD_STAT_IPCS)
338 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
339 
340 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
341 	    E1000_RXD_STAT_TCPCS) {
342 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
343 					   CSUM_PSEUDO_HDR |
344 					   CSUM_FRAG_NOT_CHECKED;
345 		mp->m_pkthdr.csum_data = htons(0xffff);
346 	}
347 }
348 
349 static __inline struct pktinfo *
350 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
351 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
352 {
353 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
354 	case EMX_RXDMRQ_IPV4_TCP:
355 		pi->pi_netisr = NETISR_IP;
356 		pi->pi_flags = 0;
357 		pi->pi_l3proto = IPPROTO_TCP;
358 		break;
359 
360 	case EMX_RXDMRQ_IPV6_TCP:
361 		pi->pi_netisr = NETISR_IPV6;
362 		pi->pi_flags = 0;
363 		pi->pi_l3proto = IPPROTO_TCP;
364 		break;
365 
366 	case EMX_RXDMRQ_IPV4:
367 		if (staterr & E1000_RXD_STAT_IXSM)
368 			return NULL;
369 
370 		if ((staterr &
371 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
372 		    E1000_RXD_STAT_TCPCS) {
373 			pi->pi_netisr = NETISR_IP;
374 			pi->pi_flags = 0;
375 			pi->pi_l3proto = IPPROTO_UDP;
376 			break;
377 		}
378 		/* FALL THROUGH */
379 	default:
380 		return NULL;
381 	}
382 
383 	m->m_flags |= M_HASH;
384 	m->m_pkthdr.hash = toeplitz_hash(hash);
385 	return pi;
386 }
387 
388 static int
389 emx_probe(device_t dev)
390 {
391 	const struct emx_device *d;
392 	uint16_t vid, did;
393 
394 	vid = pci_get_vendor(dev);
395 	did = pci_get_device(dev);
396 
397 	for (d = emx_devices; d->desc != NULL; ++d) {
398 		if (vid == d->vid && did == d->did) {
399 			device_set_desc(dev, d->desc);
400 			device_set_async_attach(dev, TRUE);
401 			return 0;
402 		}
403 	}
404 	return ENXIO;
405 }
406 
407 static int
408 emx_attach(device_t dev)
409 {
410 	struct emx_softc *sc = device_get_softc(dev);
411 	struct ifnet *ifp = &sc->arpcom.ac_if;
412 	int error = 0, i, throttle, msi_enable;
413 	u_int intr_flags;
414 	uint16_t eeprom_data, device_id, apme_mask;
415 	driver_intr_t *intr_func;
416 
417 	lwkt_serialize_init(&sc->main_serialize);
418 	lwkt_serialize_init(&sc->tx_serialize);
419 	for (i = 0; i < EMX_NRX_RING; ++i)
420 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
421 
422 	i = 0;
423 	sc->serializes[i++] = &sc->main_serialize;
424 	sc->serializes[i++] = &sc->tx_serialize;
425 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
426 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
427 	KKASSERT(i == EMX_NSERIALIZE);
428 
429 	callout_init_mp(&sc->timer);
430 
431 	sc->dev = sc->osdep.dev = dev;
432 
433 	/*
434 	 * Determine hardware and mac type
435 	 */
436 	sc->hw.vendor_id = pci_get_vendor(dev);
437 	sc->hw.device_id = pci_get_device(dev);
438 	sc->hw.revision_id = pci_get_revid(dev);
439 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
440 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
441 
442 	if (e1000_set_mac_type(&sc->hw))
443 		return ENXIO;
444 
445 	/*
446 	 * Pullup extra 4bytes into the first data segment, see:
447 	 * 82571/82572 specification update errata #7
448 	 *
449 	 * NOTE:
450 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
451 	 * are pulled; mainly to keep rest of the data properly aligned.
452 	 */
453 	if (sc->hw.mac.type == e1000_82571 || sc->hw.mac.type == e1000_82572)
454 		sc->flags |= EMX_FLAG_TSO_PULLEX;
455 
456 	/* Enable bus mastering */
457 	pci_enable_busmaster(dev);
458 
459 	/*
460 	 * Allocate IO memory
461 	 */
462 	sc->memory_rid = EMX_BAR_MEM;
463 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
464 					    &sc->memory_rid, RF_ACTIVE);
465 	if (sc->memory == NULL) {
466 		device_printf(dev, "Unable to allocate bus resource: memory\n");
467 		error = ENXIO;
468 		goto fail;
469 	}
470 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
471 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
472 
473 	/* XXX This is quite goofy, it is not actually used */
474 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
475 
476 	/*
477 	 * Don't enable MSI-X on 82574, see:
478 	 * 82574 specification update errata #15
479 	 *
480 	 * Don't enable MSI on 82571/82572, see:
481 	 * 82571/82572 specification update errata #63
482 	 */
483 	msi_enable = emx_msi_enable;
484 	if (msi_enable &&
485 	    (sc->hw.mac.type == e1000_82571 ||
486 	     sc->hw.mac.type == e1000_82572))
487 		msi_enable = 0;
488 
489 	/*
490 	 * Allocate interrupt
491 	 */
492 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
493 	    &sc->intr_rid, &intr_flags);
494 
495 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
496 		int unshared;
497 
498 		unshared = device_getenv_int(dev, "irq.unshared", 0);
499 		if (!unshared) {
500 			sc->flags |= EMX_FLAG_SHARED_INTR;
501 			if (bootverbose)
502 				device_printf(dev, "IRQ shared\n");
503 		} else {
504 			intr_flags &= ~RF_SHAREABLE;
505 			if (bootverbose)
506 				device_printf(dev, "IRQ unshared\n");
507 		}
508 	}
509 
510 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
511 	    intr_flags);
512 	if (sc->intr_res == NULL) {
513 		device_printf(dev, "Unable to allocate bus resource: "
514 		    "interrupt\n");
515 		error = ENXIO;
516 		goto fail;
517 	}
518 
519 	/* Save PCI command register for Shared Code */
520 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
521 	sc->hw.back = &sc->osdep;
522 
523 	/* Do Shared Code initialization */
524 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
525 		device_printf(dev, "Setup of Shared code failed\n");
526 		error = ENXIO;
527 		goto fail;
528 	}
529 	e1000_get_bus_info(&sc->hw);
530 
531 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
532 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
533 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
534 
535 	/*
536 	 * Interrupt throttle rate
537 	 */
538 	throttle = device_getenv_int(dev, "int_throttle_ceil",
539 	    emx_int_throttle_ceil);
540 	if (throttle == 0) {
541 		sc->int_throttle_ceil = 0;
542 	} else {
543 		if (throttle < 0)
544 			throttle = EMX_DEFAULT_ITR;
545 
546 		/* Recalculate the tunable value to get the exact frequency. */
547 		throttle = 1000000000 / 256 / throttle;
548 
549 		/* Upper 16bits of ITR is reserved and should be zero */
550 		if (throttle & 0xffff0000)
551 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
552 
553 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
554 	}
555 
556 	e1000_init_script_state_82541(&sc->hw, TRUE);
557 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
558 
559 	/* Copper options */
560 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
561 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
562 		sc->hw.phy.disable_polarity_correction = FALSE;
563 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
564 	}
565 
566 	/* Set the frame limits assuming standard ethernet sized frames. */
567 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
568 	sc->min_frame_size = ETHER_MIN_LEN;
569 
570 	/* This controls when hardware reports transmit completion status. */
571 	sc->hw.mac.report_tx_early = 1;
572 
573 	/* Calculate # of RX rings */
574 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
575 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
576 
577 	/* Allocate RX/TX rings' busdma(9) stuffs */
578 	error = emx_dma_alloc(sc);
579 	if (error)
580 		goto fail;
581 
582 	/* Allocate multicast array memory. */
583 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
584 	    M_DEVBUF, M_WAITOK);
585 
586 	/* Indicate SOL/IDER usage */
587 	if (e1000_check_reset_block(&sc->hw)) {
588 		device_printf(dev,
589 		    "PHY reset is blocked due to SOL/IDER session.\n");
590 	}
591 
592 	/*
593 	 * Start from a known state, this is important in reading the
594 	 * nvm and mac from that.
595 	 */
596 	e1000_reset_hw(&sc->hw);
597 
598 	/* Make sure we have a good EEPROM before we read from it */
599 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
600 		/*
601 		 * Some PCI-E parts fail the first check due to
602 		 * the link being in sleep state, call it again,
603 		 * if it fails a second time its a real issue.
604 		 */
605 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
606 			device_printf(dev,
607 			    "The EEPROM Checksum Is Not Valid\n");
608 			error = EIO;
609 			goto fail;
610 		}
611 	}
612 
613 	/* Copy the permanent MAC address out of the EEPROM */
614 	if (e1000_read_mac_addr(&sc->hw) < 0) {
615 		device_printf(dev, "EEPROM read error while reading MAC"
616 		    " address\n");
617 		error = EIO;
618 		goto fail;
619 	}
620 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
621 		device_printf(dev, "Invalid MAC address\n");
622 		error = EIO;
623 		goto fail;
624 	}
625 
626 	/* Determine if we have to control management hardware */
627 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
628 
629 	/*
630 	 * Setup Wake-on-Lan
631 	 */
632 	apme_mask = EMX_EEPROM_APME;
633 	eeprom_data = 0;
634 	switch (sc->hw.mac.type) {
635 	case e1000_82573:
636 		sc->has_amt = 1;
637 		/* FALL THROUGH */
638 
639 	case e1000_82571:
640 	case e1000_82572:
641 	case e1000_80003es2lan:
642 		if (sc->hw.bus.func == 1) {
643 			e1000_read_nvm(&sc->hw,
644 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
645 		} else {
646 			e1000_read_nvm(&sc->hw,
647 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
648 		}
649 		break;
650 
651 	default:
652 		e1000_read_nvm(&sc->hw,
653 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
654 		break;
655 	}
656 	if (eeprom_data & apme_mask)
657 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
658 
659 	/*
660          * We have the eeprom settings, now apply the special cases
661          * where the eeprom may be wrong or the board won't support
662          * wake on lan on a particular port
663 	 */
664 	device_id = pci_get_device(dev);
665         switch (device_id) {
666 	case E1000_DEV_ID_82571EB_FIBER:
667 		/*
668 		 * Wake events only supported on port A for dual fiber
669 		 * regardless of eeprom setting
670 		 */
671 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
672 		    E1000_STATUS_FUNC_1)
673 			sc->wol = 0;
674 		break;
675 
676 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
677 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
678 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
679                 /* if quad port sc, disable WoL on all but port A */
680 		if (emx_global_quad_port_a != 0)
681 			sc->wol = 0;
682 		/* Reset for multiple quad port adapters */
683 		if (++emx_global_quad_port_a == 4)
684 			emx_global_quad_port_a = 0;
685                 break;
686 	}
687 
688 	/* XXX disable wol */
689 	sc->wol = 0;
690 
691 	/* Setup OS specific network interface */
692 	emx_setup_ifp(sc);
693 
694 	/* Add sysctl tree, must after em_setup_ifp() */
695 	emx_add_sysctl(sc);
696 
697 	/* Reset the hardware */
698 	error = emx_reset(sc);
699 	if (error) {
700 		device_printf(dev, "Unable to reset the hardware\n");
701 		goto fail;
702 	}
703 
704 	/* Initialize statistics */
705 	emx_update_stats(sc);
706 
707 	sc->hw.mac.get_link_status = 1;
708 	emx_update_link_status(sc);
709 
710 	sc->spare_tx_desc = EMX_TX_SPARE;
711 
712 	/*
713 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
714 	 * and tx_int_nsegs:
715 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
716 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
717 	 */
718 	sc->oact_tx_desc = sc->num_tx_desc / 8;
719 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
720 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
721 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
722 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
723 
724 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
725 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
726 		sc->tx_int_nsegs = sc->oact_tx_desc;
727 
728 	/* Non-AMT based hardware can now take control from firmware */
729 	if (sc->has_manage && !sc->has_amt)
730 		emx_get_hw_control(sc);
731 
732 	/*
733 	 * Missing Interrupt Following ICR read:
734 	 *
735 	 * 82571/82572 specification update errata #76
736 	 * 82573 specification update errata #31
737 	 * 82574 specification update errata #12
738 	 */
739 	intr_func = emx_intr;
740 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
741 	    (sc->hw.mac.type == e1000_82571 ||
742 	     sc->hw.mac.type == e1000_82572 ||
743 	     sc->hw.mac.type == e1000_82573 ||
744 	     sc->hw.mac.type == e1000_82574))
745 		intr_func = emx_intr_mask;
746 
747 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
748 			       &sc->intr_tag, &sc->main_serialize);
749 	if (error) {
750 		device_printf(dev, "Failed to register interrupt handler");
751 		ether_ifdetach(&sc->arpcom.ac_if);
752 		goto fail;
753 	}
754 
755 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
756 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
757 	return (0);
758 fail:
759 	emx_detach(dev);
760 	return (error);
761 }
762 
763 static int
764 emx_detach(device_t dev)
765 {
766 	struct emx_softc *sc = device_get_softc(dev);
767 
768 	if (device_is_attached(dev)) {
769 		struct ifnet *ifp = &sc->arpcom.ac_if;
770 
771 		ifnet_serialize_all(ifp);
772 
773 		emx_stop(sc);
774 
775 		e1000_phy_hw_reset(&sc->hw);
776 
777 		emx_rel_mgmt(sc);
778 		emx_rel_hw_control(sc);
779 
780 		if (sc->wol) {
781 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
782 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
783 			emx_enable_wol(dev);
784 		}
785 
786 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
787 
788 		ifnet_deserialize_all(ifp);
789 
790 		ether_ifdetach(ifp);
791 	} else if (sc->memory != NULL) {
792 		emx_rel_hw_control(sc);
793 	}
794 	bus_generic_detach(dev);
795 
796 	if (sc->intr_res != NULL) {
797 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
798 				     sc->intr_res);
799 	}
800 
801 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
802 		pci_release_msi(dev);
803 
804 	if (sc->memory != NULL) {
805 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
806 				     sc->memory);
807 	}
808 
809 	emx_dma_free(sc);
810 
811 	/* Free sysctl tree */
812 	if (sc->sysctl_tree != NULL)
813 		sysctl_ctx_free(&sc->sysctl_ctx);
814 
815 	if (sc->mta != NULL)
816 		kfree(sc->mta, M_DEVBUF);
817 
818 	return (0);
819 }
820 
821 static int
822 emx_shutdown(device_t dev)
823 {
824 	return emx_suspend(dev);
825 }
826 
827 static int
828 emx_suspend(device_t dev)
829 {
830 	struct emx_softc *sc = device_get_softc(dev);
831 	struct ifnet *ifp = &sc->arpcom.ac_if;
832 
833 	ifnet_serialize_all(ifp);
834 
835 	emx_stop(sc);
836 
837 	emx_rel_mgmt(sc);
838 	emx_rel_hw_control(sc);
839 
840 	if (sc->wol) {
841 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
842 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
843 		emx_enable_wol(dev);
844 	}
845 
846 	ifnet_deserialize_all(ifp);
847 
848 	return bus_generic_suspend(dev);
849 }
850 
851 static int
852 emx_resume(device_t dev)
853 {
854 	struct emx_softc *sc = device_get_softc(dev);
855 	struct ifnet *ifp = &sc->arpcom.ac_if;
856 
857 	ifnet_serialize_all(ifp);
858 
859 	emx_init(sc);
860 	emx_get_mgmt(sc);
861 	if_devstart(ifp);
862 
863 	ifnet_deserialize_all(ifp);
864 
865 	return bus_generic_resume(dev);
866 }
867 
868 static void
869 emx_start(struct ifnet *ifp)
870 {
871 	struct emx_softc *sc = ifp->if_softc;
872 	struct mbuf *m_head;
873 
874 	ASSERT_SERIALIZED(&sc->tx_serialize);
875 
876 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
877 		return;
878 
879 	if (!sc->link_active) {
880 		ifq_purge(&ifp->if_snd);
881 		return;
882 	}
883 
884 	while (!ifq_is_empty(&ifp->if_snd)) {
885 		/* Now do we at least have a minimal? */
886 		if (EMX_IS_OACTIVE(sc)) {
887 			emx_tx_collect(sc);
888 			if (EMX_IS_OACTIVE(sc)) {
889 				ifp->if_flags |= IFF_OACTIVE;
890 				sc->no_tx_desc_avail1++;
891 				break;
892 			}
893 		}
894 
895 		logif(pkt_txqueue);
896 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
897 		if (m_head == NULL)
898 			break;
899 
900 		if (emx_encap(sc, &m_head)) {
901 			ifp->if_oerrors++;
902 			emx_tx_collect(sc);
903 			continue;
904 		}
905 
906 		/* Send a copy of the frame to the BPF listener */
907 		ETHER_BPF_MTAP(ifp, m_head);
908 
909 		/* Set timeout in case hardware has problems transmitting. */
910 		ifp->if_timer = EMX_TX_TIMEOUT;
911 	}
912 }
913 
914 static int
915 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
916 {
917 	struct emx_softc *sc = ifp->if_softc;
918 	struct ifreq *ifr = (struct ifreq *)data;
919 	uint16_t eeprom_data = 0;
920 	int max_frame_size, mask, reinit;
921 	int error = 0;
922 
923 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
924 
925 	switch (command) {
926 	case SIOCSIFMTU:
927 		switch (sc->hw.mac.type) {
928 		case e1000_82573:
929 			/*
930 			 * 82573 only supports jumbo frames
931 			 * if ASPM is disabled.
932 			 */
933 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
934 				       &eeprom_data);
935 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
936 				max_frame_size = ETHER_MAX_LEN;
937 				break;
938 			}
939 			/* FALL THROUGH */
940 
941 		/* Limit Jumbo Frame size */
942 		case e1000_82571:
943 		case e1000_82572:
944 		case e1000_82574:
945 		case e1000_80003es2lan:
946 			max_frame_size = 9234;
947 			break;
948 
949 		default:
950 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
951 			break;
952 		}
953 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
954 		    ETHER_CRC_LEN) {
955 			error = EINVAL;
956 			break;
957 		}
958 
959 		ifp->if_mtu = ifr->ifr_mtu;
960 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
961 				     ETHER_CRC_LEN;
962 
963 		if (ifp->if_flags & IFF_RUNNING)
964 			emx_init(sc);
965 		break;
966 
967 	case SIOCSIFFLAGS:
968 		if (ifp->if_flags & IFF_UP) {
969 			if ((ifp->if_flags & IFF_RUNNING)) {
970 				if ((ifp->if_flags ^ sc->if_flags) &
971 				    (IFF_PROMISC | IFF_ALLMULTI)) {
972 					emx_disable_promisc(sc);
973 					emx_set_promisc(sc);
974 				}
975 			} else {
976 				emx_init(sc);
977 			}
978 		} else if (ifp->if_flags & IFF_RUNNING) {
979 			emx_stop(sc);
980 		}
981 		sc->if_flags = ifp->if_flags;
982 		break;
983 
984 	case SIOCADDMULTI:
985 	case SIOCDELMULTI:
986 		if (ifp->if_flags & IFF_RUNNING) {
987 			emx_disable_intr(sc);
988 			emx_set_multi(sc);
989 #ifdef IFPOLL_ENABLE
990 			if (!(ifp->if_flags & IFF_NPOLLING))
991 #endif
992 				emx_enable_intr(sc);
993 		}
994 		break;
995 
996 	case SIOCSIFMEDIA:
997 		/* Check SOL/IDER usage */
998 		if (e1000_check_reset_block(&sc->hw)) {
999 			device_printf(sc->dev, "Media change is"
1000 			    " blocked due to SOL/IDER session.\n");
1001 			break;
1002 		}
1003 		/* FALL THROUGH */
1004 
1005 	case SIOCGIFMEDIA:
1006 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1007 		break;
1008 
1009 	case SIOCSIFCAP:
1010 		reinit = 0;
1011 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1012 		if (mask & IFCAP_RXCSUM) {
1013 			ifp->if_capenable ^= IFCAP_RXCSUM;
1014 			reinit = 1;
1015 		}
1016 		if (mask & IFCAP_VLAN_HWTAGGING) {
1017 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1018 			reinit = 1;
1019 		}
1020 		if (mask & IFCAP_TXCSUM) {
1021 			ifp->if_capenable ^= IFCAP_TXCSUM;
1022 			if (ifp->if_capenable & IFCAP_TXCSUM)
1023 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1024 			else
1025 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1026 		}
1027 		if (mask & IFCAP_TSO) {
1028 			ifp->if_capenable ^= IFCAP_TSO;
1029 			if (ifp->if_capenable & IFCAP_TSO)
1030 				ifp->if_hwassist |= CSUM_TSO;
1031 			else
1032 				ifp->if_hwassist &= ~CSUM_TSO;
1033 		}
1034 		if (mask & IFCAP_RSS)
1035 			ifp->if_capenable ^= IFCAP_RSS;
1036 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1037 			emx_init(sc);
1038 		break;
1039 
1040 	default:
1041 		error = ether_ioctl(ifp, command, data);
1042 		break;
1043 	}
1044 	return (error);
1045 }
1046 
1047 static void
1048 emx_watchdog(struct ifnet *ifp)
1049 {
1050 	struct emx_softc *sc = ifp->if_softc;
1051 
1052 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1053 
1054 	/*
1055 	 * The timer is set to 5 every time start queues a packet.
1056 	 * Then txeof keeps resetting it as long as it cleans at
1057 	 * least one descriptor.
1058 	 * Finally, anytime all descriptors are clean the timer is
1059 	 * set to 0.
1060 	 */
1061 
1062 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
1063 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
1064 		/*
1065 		 * If we reach here, all TX jobs are completed and
1066 		 * the TX engine should have been idled for some time.
1067 		 * We don't need to call if_devstart() here.
1068 		 */
1069 		ifp->if_flags &= ~IFF_OACTIVE;
1070 		ifp->if_timer = 0;
1071 		return;
1072 	}
1073 
1074 	/*
1075 	 * If we are in this routine because of pause frames, then
1076 	 * don't reset the hardware.
1077 	 */
1078 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1079 		ifp->if_timer = EMX_TX_TIMEOUT;
1080 		return;
1081 	}
1082 
1083 	if (e1000_check_for_link(&sc->hw) == 0)
1084 		if_printf(ifp, "watchdog timeout -- resetting\n");
1085 
1086 	ifp->if_oerrors++;
1087 	sc->watchdog_events++;
1088 
1089 	emx_init(sc);
1090 
1091 	if (!ifq_is_empty(&ifp->if_snd))
1092 		if_devstart(ifp);
1093 }
1094 
1095 static void
1096 emx_init(void *xsc)
1097 {
1098 	struct emx_softc *sc = xsc;
1099 	struct ifnet *ifp = &sc->arpcom.ac_if;
1100 	device_t dev = sc->dev;
1101 	uint32_t pba;
1102 	int i;
1103 
1104 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1105 
1106 	emx_stop(sc);
1107 
1108 	/*
1109 	 * Packet Buffer Allocation (PBA)
1110 	 * Writing PBA sets the receive portion of the buffer
1111 	 * the remainder is used for the transmit buffer.
1112 	 */
1113 	switch (sc->hw.mac.type) {
1114 	/* Total Packet Buffer on these is 48K */
1115 	case e1000_82571:
1116 	case e1000_82572:
1117 	case e1000_80003es2lan:
1118 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1119 		break;
1120 
1121 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1122 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1123 		break;
1124 
1125 	case e1000_82574:
1126 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1127 		break;
1128 
1129 	default:
1130 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1131 		if (sc->max_frame_size > 8192)
1132 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1133 		else
1134 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1135 	}
1136 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1137 
1138 	/* Get the latest mac address, User can use a LAA */
1139         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1140 
1141 	/* Put the address into the Receive Address Array */
1142 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1143 
1144 	/*
1145 	 * With the 82571 sc, RAR[0] may be overwritten
1146 	 * when the other port is reset, we make a duplicate
1147 	 * in RAR[14] for that eventuality, this assures
1148 	 * the interface continues to function.
1149 	 */
1150 	if (sc->hw.mac.type == e1000_82571) {
1151 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1152 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1153 		    E1000_RAR_ENTRIES - 1);
1154 	}
1155 
1156 	/* Initialize the hardware */
1157 	if (emx_reset(sc)) {
1158 		device_printf(dev, "Unable to reset the hardware\n");
1159 		/* XXX emx_stop()? */
1160 		return;
1161 	}
1162 	emx_update_link_status(sc);
1163 
1164 	/* Setup VLAN support, basic and offload if available */
1165 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1166 
1167 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1168 		uint32_t ctrl;
1169 
1170 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1171 		ctrl |= E1000_CTRL_VME;
1172 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1173 	}
1174 
1175 	/* Configure for OS presence */
1176 	emx_get_mgmt(sc);
1177 
1178 	/* Prepare transmit descriptors and buffers */
1179 	emx_init_tx_ring(sc);
1180 	emx_init_tx_unit(sc);
1181 
1182 	/* Setup Multicast table */
1183 	emx_set_multi(sc);
1184 
1185 	/* Prepare receive descriptors and buffers */
1186 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1187 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1188 			device_printf(dev,
1189 			    "Could not setup receive structures\n");
1190 			emx_stop(sc);
1191 			return;
1192 		}
1193 	}
1194 	emx_init_rx_unit(sc);
1195 
1196 	/* Don't lose promiscuous settings */
1197 	emx_set_promisc(sc);
1198 
1199 	ifp->if_flags |= IFF_RUNNING;
1200 	ifp->if_flags &= ~IFF_OACTIVE;
1201 
1202 	callout_reset(&sc->timer, hz, emx_timer, sc);
1203 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1204 
1205 	/* MSI/X configuration for 82574 */
1206 	if (sc->hw.mac.type == e1000_82574) {
1207 		int tmp;
1208 
1209 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1210 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1211 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1212 		/*
1213 		 * XXX MSIX
1214 		 * Set the IVAR - interrupt vector routing.
1215 		 * Each nibble represents a vector, high bit
1216 		 * is enable, other 3 bits are the MSIX table
1217 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1218 		 * Link (other) to 2, hence the magic number.
1219 		 */
1220 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1221 	}
1222 
1223 #ifdef IFPOLL_ENABLE
1224 	/*
1225 	 * Only enable interrupts if we are not polling, make sure
1226 	 * they are off otherwise.
1227 	 */
1228 	if (ifp->if_flags & IFF_NPOLLING)
1229 		emx_disable_intr(sc);
1230 	else
1231 #endif /* IFPOLL_ENABLE */
1232 		emx_enable_intr(sc);
1233 
1234 	/* AMT based hardware can now take control from firmware */
1235 	if (sc->has_manage && sc->has_amt)
1236 		emx_get_hw_control(sc);
1237 
1238 	/* Don't reset the phy next time init gets called */
1239 	sc->hw.phy.reset_disable = TRUE;
1240 }
1241 
1242 static void
1243 emx_intr(void *xsc)
1244 {
1245 	emx_intr_body(xsc, TRUE);
1246 }
1247 
1248 static void
1249 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1250 {
1251 	struct ifnet *ifp = &sc->arpcom.ac_if;
1252 	uint32_t reg_icr;
1253 
1254 	logif(intr_beg);
1255 	ASSERT_SERIALIZED(&sc->main_serialize);
1256 
1257 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1258 
1259 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1260 		logif(intr_end);
1261 		return;
1262 	}
1263 
1264 	/*
1265 	 * XXX: some laptops trigger several spurious interrupts
1266 	 * on emx(4) when in the resume cycle. The ICR register
1267 	 * reports all-ones value in this case. Processing such
1268 	 * interrupts would lead to a freeze. I don't know why.
1269 	 */
1270 	if (reg_icr == 0xffffffff) {
1271 		logif(intr_end);
1272 		return;
1273 	}
1274 
1275 	if (ifp->if_flags & IFF_RUNNING) {
1276 		if (reg_icr &
1277 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1278 			int i;
1279 
1280 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1281 				lwkt_serialize_enter(
1282 				&sc->rx_data[i].rx_serialize);
1283 				emx_rxeof(sc, i, -1);
1284 				lwkt_serialize_exit(
1285 				&sc->rx_data[i].rx_serialize);
1286 			}
1287 		}
1288 		if (reg_icr & E1000_ICR_TXDW) {
1289 			lwkt_serialize_enter(&sc->tx_serialize);
1290 			emx_txeof(sc);
1291 			if (!ifq_is_empty(&ifp->if_snd))
1292 				if_devstart(ifp);
1293 			lwkt_serialize_exit(&sc->tx_serialize);
1294 		}
1295 	}
1296 
1297 	/* Link status change */
1298 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1299 		emx_serialize_skipmain(sc);
1300 
1301 		callout_stop(&sc->timer);
1302 		sc->hw.mac.get_link_status = 1;
1303 		emx_update_link_status(sc);
1304 
1305 		/* Deal with TX cruft when link lost */
1306 		emx_tx_purge(sc);
1307 
1308 		callout_reset(&sc->timer, hz, emx_timer, sc);
1309 
1310 		emx_deserialize_skipmain(sc);
1311 	}
1312 
1313 	if (reg_icr & E1000_ICR_RXO)
1314 		sc->rx_overruns++;
1315 
1316 	logif(intr_end);
1317 }
1318 
1319 static void
1320 emx_intr_mask(void *xsc)
1321 {
1322 	struct emx_softc *sc = xsc;
1323 
1324 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1325 	/*
1326 	 * NOTE:
1327 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1328 	 * so don't check it.
1329 	 */
1330 	emx_intr_body(sc, FALSE);
1331 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1332 }
1333 
1334 static void
1335 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1336 {
1337 	struct emx_softc *sc = ifp->if_softc;
1338 
1339 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1340 
1341 	emx_update_link_status(sc);
1342 
1343 	ifmr->ifm_status = IFM_AVALID;
1344 	ifmr->ifm_active = IFM_ETHER;
1345 
1346 	if (!sc->link_active)
1347 		return;
1348 
1349 	ifmr->ifm_status |= IFM_ACTIVE;
1350 
1351 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1352 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1353 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1354 	} else {
1355 		switch (sc->link_speed) {
1356 		case 10:
1357 			ifmr->ifm_active |= IFM_10_T;
1358 			break;
1359 		case 100:
1360 			ifmr->ifm_active |= IFM_100_TX;
1361 			break;
1362 
1363 		case 1000:
1364 			ifmr->ifm_active |= IFM_1000_T;
1365 			break;
1366 		}
1367 		if (sc->link_duplex == FULL_DUPLEX)
1368 			ifmr->ifm_active |= IFM_FDX;
1369 		else
1370 			ifmr->ifm_active |= IFM_HDX;
1371 	}
1372 }
1373 
1374 static int
1375 emx_media_change(struct ifnet *ifp)
1376 {
1377 	struct emx_softc *sc = ifp->if_softc;
1378 	struct ifmedia *ifm = &sc->media;
1379 
1380 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1381 
1382 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1383 		return (EINVAL);
1384 
1385 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1386 	case IFM_AUTO:
1387 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1388 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1389 		break;
1390 
1391 	case IFM_1000_LX:
1392 	case IFM_1000_SX:
1393 	case IFM_1000_T:
1394 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1395 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1396 		break;
1397 
1398 	case IFM_100_TX:
1399 		sc->hw.mac.autoneg = FALSE;
1400 		sc->hw.phy.autoneg_advertised = 0;
1401 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1402 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1403 		else
1404 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1405 		break;
1406 
1407 	case IFM_10_T:
1408 		sc->hw.mac.autoneg = FALSE;
1409 		sc->hw.phy.autoneg_advertised = 0;
1410 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1411 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1412 		else
1413 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1414 		break;
1415 
1416 	default:
1417 		if_printf(ifp, "Unsupported media type\n");
1418 		break;
1419 	}
1420 
1421 	/*
1422 	 * As the speed/duplex settings my have changed we need to
1423 	 * reset the PHY.
1424 	 */
1425 	sc->hw.phy.reset_disable = FALSE;
1426 
1427 	emx_init(sc);
1428 
1429 	return (0);
1430 }
1431 
1432 static int
1433 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1434 {
1435 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1436 	bus_dmamap_t map;
1437 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1438 	struct e1000_tx_desc *ctxd = NULL;
1439 	struct mbuf *m_head = *m_headp;
1440 	uint32_t txd_upper, txd_lower, cmd = 0;
1441 	int maxsegs, nsegs, i, j, first, last = 0, error;
1442 
1443 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1444 		error = emx_tso_pullup(sc, m_headp);
1445 		if (error)
1446 			return error;
1447 		m_head = *m_headp;
1448 	}
1449 
1450 	txd_upper = txd_lower = 0;
1451 
1452 	/*
1453 	 * Capture the first descriptor index, this descriptor
1454 	 * will have the index of the EOP which is the only one
1455 	 * that now gets a DONE bit writeback.
1456 	 */
1457 	first = sc->next_avail_tx_desc;
1458 	tx_buffer = &sc->tx_buf[first];
1459 	tx_buffer_mapped = tx_buffer;
1460 	map = tx_buffer->map;
1461 
1462 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1463 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc"));
1464 	if (maxsegs > EMX_MAX_SCATTER)
1465 		maxsegs = EMX_MAX_SCATTER;
1466 
1467 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1468 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1469 	if (error) {
1470 		if (error == ENOBUFS)
1471 			sc->mbuf_alloc_failed++;
1472 		else
1473 			sc->no_tx_dma_setup++;
1474 
1475 		m_freem(*m_headp);
1476 		*m_headp = NULL;
1477 		return error;
1478 	}
1479         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1480 
1481 	m_head = *m_headp;
1482 	sc->tx_nsegs += nsegs;
1483 
1484 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1485 		/* TSO will consume one TX desc */
1486 		sc->tx_nsegs += emx_tso_setup(sc, m_head,
1487 		    &txd_upper, &txd_lower);
1488 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1489 		/* TX csum offloading will consume one TX desc */
1490 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1491 	}
1492 	i = sc->next_avail_tx_desc;
1493 
1494 	/* Set up our transmit descriptors */
1495 	for (j = 0; j < nsegs; j++) {
1496 		tx_buffer = &sc->tx_buf[i];
1497 		ctxd = &sc->tx_desc_base[i];
1498 
1499 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1500 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1501 					   txd_lower | segs[j].ds_len);
1502 		ctxd->upper.data = htole32(txd_upper);
1503 
1504 		last = i;
1505 		if (++i == sc->num_tx_desc)
1506 			i = 0;
1507 	}
1508 
1509 	sc->next_avail_tx_desc = i;
1510 
1511 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1512 	sc->num_tx_desc_avail -= nsegs;
1513 
1514         /* Handle VLAN tag */
1515 	if (m_head->m_flags & M_VLANTAG) {
1516 		/* Set the vlan id. */
1517 		ctxd->upper.fields.special =
1518 		    htole16(m_head->m_pkthdr.ether_vlantag);
1519 
1520 		/* Tell hardware to add tag */
1521 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1522 	}
1523 
1524 	tx_buffer->m_head = m_head;
1525 	tx_buffer_mapped->map = tx_buffer->map;
1526 	tx_buffer->map = map;
1527 
1528 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1529 		sc->tx_nsegs = 0;
1530 
1531 		/*
1532 		 * Report Status (RS) is turned on
1533 		 * every tx_int_nsegs descriptors.
1534 		 */
1535 		cmd = E1000_TXD_CMD_RS;
1536 
1537 		/*
1538 		 * Keep track of the descriptor, which will
1539 		 * be written back by hardware.
1540 		 */
1541 		sc->tx_dd[sc->tx_dd_tail] = last;
1542 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1543 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1544 	}
1545 
1546 	/*
1547 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1548 	 */
1549 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1550 
1551 	/*
1552 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1553 	 * the E1000 that this frame is available to transmit.
1554 	 */
1555 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1556 
1557 	return (0);
1558 }
1559 
1560 static void
1561 emx_set_promisc(struct emx_softc *sc)
1562 {
1563 	struct ifnet *ifp = &sc->arpcom.ac_if;
1564 	uint32_t reg_rctl;
1565 
1566 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1567 
1568 	if (ifp->if_flags & IFF_PROMISC) {
1569 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1570 		/* Turn this on if you want to see bad packets */
1571 		if (emx_debug_sbp)
1572 			reg_rctl |= E1000_RCTL_SBP;
1573 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1574 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1575 		reg_rctl |= E1000_RCTL_MPE;
1576 		reg_rctl &= ~E1000_RCTL_UPE;
1577 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1578 	}
1579 }
1580 
1581 static void
1582 emx_disable_promisc(struct emx_softc *sc)
1583 {
1584 	uint32_t reg_rctl;
1585 
1586 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1587 
1588 	reg_rctl &= ~E1000_RCTL_UPE;
1589 	reg_rctl &= ~E1000_RCTL_MPE;
1590 	reg_rctl &= ~E1000_RCTL_SBP;
1591 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1592 }
1593 
1594 static void
1595 emx_set_multi(struct emx_softc *sc)
1596 {
1597 	struct ifnet *ifp = &sc->arpcom.ac_if;
1598 	struct ifmultiaddr *ifma;
1599 	uint32_t reg_rctl = 0;
1600 	uint8_t *mta;
1601 	int mcnt = 0;
1602 
1603 	mta = sc->mta;
1604 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1605 
1606 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1607 		if (ifma->ifma_addr->sa_family != AF_LINK)
1608 			continue;
1609 
1610 		if (mcnt == EMX_MCAST_ADDR_MAX)
1611 			break;
1612 
1613 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1614 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1615 		mcnt++;
1616 	}
1617 
1618 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1619 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1620 		reg_rctl |= E1000_RCTL_MPE;
1621 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1622 	} else {
1623 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1624 	}
1625 }
1626 
1627 /*
1628  * This routine checks for link status and updates statistics.
1629  */
1630 static void
1631 emx_timer(void *xsc)
1632 {
1633 	struct emx_softc *sc = xsc;
1634 	struct ifnet *ifp = &sc->arpcom.ac_if;
1635 
1636 	lwkt_serialize_enter(&sc->main_serialize);
1637 
1638 	emx_update_link_status(sc);
1639 	emx_update_stats(sc);
1640 
1641 	/* Reset LAA into RAR[0] on 82571 */
1642 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1643 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1644 
1645 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1646 		emx_print_hw_stats(sc);
1647 
1648 	emx_smartspeed(sc);
1649 
1650 	callout_reset(&sc->timer, hz, emx_timer, sc);
1651 
1652 	lwkt_serialize_exit(&sc->main_serialize);
1653 }
1654 
1655 static void
1656 emx_update_link_status(struct emx_softc *sc)
1657 {
1658 	struct e1000_hw *hw = &sc->hw;
1659 	struct ifnet *ifp = &sc->arpcom.ac_if;
1660 	device_t dev = sc->dev;
1661 	uint32_t link_check = 0;
1662 
1663 	/* Get the cached link value or read phy for real */
1664 	switch (hw->phy.media_type) {
1665 	case e1000_media_type_copper:
1666 		if (hw->mac.get_link_status) {
1667 			/* Do the work to read phy */
1668 			e1000_check_for_link(hw);
1669 			link_check = !hw->mac.get_link_status;
1670 			if (link_check) /* ESB2 fix */
1671 				e1000_cfg_on_link_up(hw);
1672 		} else {
1673 			link_check = TRUE;
1674 		}
1675 		break;
1676 
1677 	case e1000_media_type_fiber:
1678 		e1000_check_for_link(hw);
1679 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1680 		break;
1681 
1682 	case e1000_media_type_internal_serdes:
1683 		e1000_check_for_link(hw);
1684 		link_check = sc->hw.mac.serdes_has_link;
1685 		break;
1686 
1687 	case e1000_media_type_unknown:
1688 	default:
1689 		break;
1690 	}
1691 
1692 	/* Now check for a transition */
1693 	if (link_check && sc->link_active == 0) {
1694 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1695 		    &sc->link_duplex);
1696 
1697 		/*
1698 		 * Check if we should enable/disable SPEED_MODE bit on
1699 		 * 82571EB/82572EI
1700 		 */
1701 		if (sc->link_speed != SPEED_1000 &&
1702 		    (hw->mac.type == e1000_82571 ||
1703 		     hw->mac.type == e1000_82572)) {
1704 			int tarc0;
1705 
1706 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1707 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1708 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1709 		}
1710 		if (bootverbose) {
1711 			device_printf(dev, "Link is up %d Mbps %s\n",
1712 			    sc->link_speed,
1713 			    ((sc->link_duplex == FULL_DUPLEX) ?
1714 			    "Full Duplex" : "Half Duplex"));
1715 		}
1716 		sc->link_active = 1;
1717 		sc->smartspeed = 0;
1718 		ifp->if_baudrate = sc->link_speed * 1000000;
1719 		ifp->if_link_state = LINK_STATE_UP;
1720 		if_link_state_change(ifp);
1721 	} else if (!link_check && sc->link_active == 1) {
1722 		ifp->if_baudrate = sc->link_speed = 0;
1723 		sc->link_duplex = 0;
1724 		if (bootverbose)
1725 			device_printf(dev, "Link is Down\n");
1726 		sc->link_active = 0;
1727 #if 0
1728 		/* Link down, disable watchdog */
1729 		if->if_timer = 0;
1730 #endif
1731 		ifp->if_link_state = LINK_STATE_DOWN;
1732 		if_link_state_change(ifp);
1733 	}
1734 }
1735 
1736 static void
1737 emx_stop(struct emx_softc *sc)
1738 {
1739 	struct ifnet *ifp = &sc->arpcom.ac_if;
1740 	int i;
1741 
1742 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1743 
1744 	emx_disable_intr(sc);
1745 
1746 	callout_stop(&sc->timer);
1747 
1748 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1749 	ifp->if_timer = 0;
1750 
1751 	/*
1752 	 * Disable multiple receive queues.
1753 	 *
1754 	 * NOTE:
1755 	 * We should disable multiple receive queues before
1756 	 * resetting the hardware.
1757 	 */
1758 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1759 
1760 	e1000_reset_hw(&sc->hw);
1761 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1762 
1763 	for (i = 0; i < sc->num_tx_desc; i++) {
1764 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1765 
1766 		if (tx_buffer->m_head != NULL) {
1767 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1768 			m_freem(tx_buffer->m_head);
1769 			tx_buffer->m_head = NULL;
1770 		}
1771 	}
1772 
1773 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1774 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1775 
1776 	sc->csum_flags = 0;
1777 	sc->csum_lhlen = 0;
1778 	sc->csum_iphlen = 0;
1779 	sc->csum_thlen = 0;
1780 	sc->csum_mss = 0;
1781 	sc->csum_pktlen = 0;
1782 
1783 	sc->tx_dd_head = 0;
1784 	sc->tx_dd_tail = 0;
1785 	sc->tx_nsegs = 0;
1786 }
1787 
1788 static int
1789 emx_reset(struct emx_softc *sc)
1790 {
1791 	device_t dev = sc->dev;
1792 	uint16_t rx_buffer_size;
1793 
1794 	/* Set up smart power down as default off on newer adapters. */
1795 	if (!emx_smart_pwr_down &&
1796 	    (sc->hw.mac.type == e1000_82571 ||
1797 	     sc->hw.mac.type == e1000_82572)) {
1798 		uint16_t phy_tmp = 0;
1799 
1800 		/* Speed up time to link by disabling smart power down. */
1801 		e1000_read_phy_reg(&sc->hw,
1802 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1803 		phy_tmp &= ~IGP02E1000_PM_SPD;
1804 		e1000_write_phy_reg(&sc->hw,
1805 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1806 	}
1807 
1808 	/*
1809 	 * These parameters control the automatic generation (Tx) and
1810 	 * response (Rx) to Ethernet PAUSE frames.
1811 	 * - High water mark should allow for at least two frames to be
1812 	 *   received after sending an XOFF.
1813 	 * - Low water mark works best when it is very near the high water mark.
1814 	 *   This allows the receiver to restart by sending XON when it has
1815 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1816 	 *   restart after one full frame is pulled from the buffer. There
1817 	 *   could be several smaller frames in the buffer and if so they will
1818 	 *   not trigger the XON until their total number reduces the buffer
1819 	 *   by 1500.
1820 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1821 	 */
1822 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1823 
1824 	sc->hw.fc.high_water = rx_buffer_size -
1825 			       roundup2(sc->max_frame_size, 1024);
1826 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1827 
1828 	if (sc->hw.mac.type == e1000_80003es2lan)
1829 		sc->hw.fc.pause_time = 0xFFFF;
1830 	else
1831 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1832 	sc->hw.fc.send_xon = TRUE;
1833 	sc->hw.fc.requested_mode = e1000_fc_full;
1834 
1835 	/* Issue a global reset */
1836 	e1000_reset_hw(&sc->hw);
1837 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1838 	emx_disable_aspm(sc);
1839 
1840 	if (e1000_init_hw(&sc->hw) < 0) {
1841 		device_printf(dev, "Hardware Initialization Failed\n");
1842 		return (EIO);
1843 	}
1844 
1845 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1846 	e1000_get_phy_info(&sc->hw);
1847 	e1000_check_for_link(&sc->hw);
1848 
1849 	return (0);
1850 }
1851 
1852 static void
1853 emx_setup_ifp(struct emx_softc *sc)
1854 {
1855 	struct ifnet *ifp = &sc->arpcom.ac_if;
1856 
1857 	if_initname(ifp, device_get_name(sc->dev),
1858 		    device_get_unit(sc->dev));
1859 	ifp->if_softc = sc;
1860 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1861 	ifp->if_init =  emx_init;
1862 	ifp->if_ioctl = emx_ioctl;
1863 	ifp->if_start = emx_start;
1864 #ifdef IFPOLL_ENABLE
1865 	ifp->if_qpoll = emx_qpoll;
1866 #endif
1867 	ifp->if_watchdog = emx_watchdog;
1868 	ifp->if_serialize = emx_serialize;
1869 	ifp->if_deserialize = emx_deserialize;
1870 	ifp->if_tryserialize = emx_tryserialize;
1871 #ifdef INVARIANTS
1872 	ifp->if_serialize_assert = emx_serialize_assert;
1873 #endif
1874 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1875 	ifq_set_ready(&ifp->if_snd);
1876 
1877 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1878 
1879 	ifp->if_capabilities = IFCAP_HWCSUM |
1880 			       IFCAP_VLAN_HWTAGGING |
1881 			       IFCAP_VLAN_MTU |
1882 			       IFCAP_TSO;
1883 	if (sc->rx_ring_cnt > 1)
1884 		ifp->if_capabilities |= IFCAP_RSS;
1885 	ifp->if_capenable = ifp->if_capabilities;
1886 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
1887 
1888 	/*
1889 	 * Tell the upper layer(s) we support long frames.
1890 	 */
1891 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1892 
1893 	/*
1894 	 * Specify the media types supported by this sc and register
1895 	 * callbacks to update media and link information
1896 	 */
1897 	ifmedia_init(&sc->media, IFM_IMASK,
1898 		     emx_media_change, emx_media_status);
1899 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1900 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1901 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1902 			    0, NULL);
1903 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1904 	} else {
1905 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1906 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1907 			    0, NULL);
1908 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1909 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1910 			    0, NULL);
1911 		if (sc->hw.phy.type != e1000_phy_ife) {
1912 			ifmedia_add(&sc->media,
1913 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1914 			ifmedia_add(&sc->media,
1915 				IFM_ETHER | IFM_1000_T, 0, NULL);
1916 		}
1917 	}
1918 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1919 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1920 }
1921 
1922 /*
1923  * Workaround for SmartSpeed on 82541 and 82547 controllers
1924  */
1925 static void
1926 emx_smartspeed(struct emx_softc *sc)
1927 {
1928 	uint16_t phy_tmp;
1929 
1930 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1931 	    sc->hw.mac.autoneg == 0 ||
1932 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1933 		return;
1934 
1935 	if (sc->smartspeed == 0) {
1936 		/*
1937 		 * If Master/Slave config fault is asserted twice,
1938 		 * we assume back-to-back
1939 		 */
1940 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1941 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1942 			return;
1943 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1944 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1945 			e1000_read_phy_reg(&sc->hw,
1946 			    PHY_1000T_CTRL, &phy_tmp);
1947 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1948 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1949 				e1000_write_phy_reg(&sc->hw,
1950 				    PHY_1000T_CTRL, phy_tmp);
1951 				sc->smartspeed++;
1952 				if (sc->hw.mac.autoneg &&
1953 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1954 				    !e1000_read_phy_reg(&sc->hw,
1955 				     PHY_CONTROL, &phy_tmp)) {
1956 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1957 						   MII_CR_RESTART_AUTO_NEG;
1958 					e1000_write_phy_reg(&sc->hw,
1959 					    PHY_CONTROL, phy_tmp);
1960 				}
1961 			}
1962 		}
1963 		return;
1964 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1965 		/* If still no link, perhaps using 2/3 pair cable */
1966 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1967 		phy_tmp |= CR_1000T_MS_ENABLE;
1968 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1969 		if (sc->hw.mac.autoneg &&
1970 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1971 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1972 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1973 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1974 		}
1975 	}
1976 
1977 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1978 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1979 		sc->smartspeed = 0;
1980 }
1981 
1982 static int
1983 emx_create_tx_ring(struct emx_softc *sc)
1984 {
1985 	device_t dev = sc->dev;
1986 	struct emx_txbuf *tx_buffer;
1987 	int error, i, tsize, ntxd;
1988 
1989 	/*
1990 	 * Validate number of transmit descriptors.  It must not exceed
1991 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1992 	 */
1993 	ntxd = device_getenv_int(dev, "txd", emx_txd);
1994 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1995 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
1996 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1997 		    EMX_DEFAULT_TXD, ntxd);
1998 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1999 	} else {
2000 		sc->num_tx_desc = ntxd;
2001 	}
2002 
2003 	/*
2004 	 * Allocate Transmit Descriptor ring
2005 	 */
2006 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
2007 			 EMX_DBA_ALIGN);
2008 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
2009 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2010 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
2011 				&sc->tx_desc_paddr);
2012 	if (sc->tx_desc_base == NULL) {
2013 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2014 		return ENOMEM;
2015 	}
2016 
2017 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
2018 			     M_DEVBUF, M_WAITOK | M_ZERO);
2019 
2020 	/*
2021 	 * Create DMA tags for tx buffers
2022 	 */
2023 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2024 			1, 0,			/* alignment, bounds */
2025 			BUS_SPACE_MAXADDR,	/* lowaddr */
2026 			BUS_SPACE_MAXADDR,	/* highaddr */
2027 			NULL, NULL,		/* filter, filterarg */
2028 			EMX_TSO_SIZE,		/* maxsize */
2029 			EMX_MAX_SCATTER,	/* nsegments */
2030 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2031 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2032 			BUS_DMA_ONEBPAGE,	/* flags */
2033 			&sc->txtag);
2034 	if (error) {
2035 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2036 		kfree(sc->tx_buf, M_DEVBUF);
2037 		sc->tx_buf = NULL;
2038 		return error;
2039 	}
2040 
2041 	/*
2042 	 * Create DMA maps for tx buffers
2043 	 */
2044 	for (i = 0; i < sc->num_tx_desc; i++) {
2045 		tx_buffer = &sc->tx_buf[i];
2046 
2047 		error = bus_dmamap_create(sc->txtag,
2048 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2049 					  &tx_buffer->map);
2050 		if (error) {
2051 			device_printf(dev, "Unable to create TX DMA map\n");
2052 			emx_destroy_tx_ring(sc, i);
2053 			return error;
2054 		}
2055 	}
2056 	return (0);
2057 }
2058 
2059 static void
2060 emx_init_tx_ring(struct emx_softc *sc)
2061 {
2062 	/* Clear the old ring contents */
2063 	bzero(sc->tx_desc_base,
2064 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
2065 
2066 	/* Reset state */
2067 	sc->next_avail_tx_desc = 0;
2068 	sc->next_tx_to_clean = 0;
2069 	sc->num_tx_desc_avail = sc->num_tx_desc;
2070 }
2071 
2072 static void
2073 emx_init_tx_unit(struct emx_softc *sc)
2074 {
2075 	uint32_t tctl, tarc, tipg = 0;
2076 	uint64_t bus_addr;
2077 
2078 	/* Setup the Base and Length of the Tx Descriptor Ring */
2079 	bus_addr = sc->tx_desc_paddr;
2080 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
2081 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
2082 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
2083 	    (uint32_t)(bus_addr >> 32));
2084 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2085 	    (uint32_t)bus_addr);
2086 	/* Setup the HW Tx Head and Tail descriptor pointers */
2087 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2088 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2089 
2090 	/* Set the default values for the Tx Inter Packet Gap timer */
2091 	switch (sc->hw.mac.type) {
2092 	case e1000_80003es2lan:
2093 		tipg = DEFAULT_82543_TIPG_IPGR1;
2094 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2095 		    E1000_TIPG_IPGR2_SHIFT;
2096 		break;
2097 
2098 	default:
2099 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2100 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2101 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2102 		else
2103 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2104 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2105 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2106 		break;
2107 	}
2108 
2109 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2110 
2111 	/* NOTE: 0 is not allowed for TIDV */
2112 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2113 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2114 
2115 	if (sc->hw.mac.type == e1000_82571 ||
2116 	    sc->hw.mac.type == e1000_82572) {
2117 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2118 		tarc |= EMX_TARC_SPEED_MODE;
2119 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2120 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2121 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2122 		tarc |= 1;
2123 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2124 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2125 		tarc |= 1;
2126 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2127 	}
2128 
2129 	/* Program the Transmit Control Register */
2130 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2131 	tctl &= ~E1000_TCTL_CT;
2132 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2133 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2134 	tctl |= E1000_TCTL_MULR;
2135 
2136 	/* This write will effectively turn on the transmit unit. */
2137 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2138 }
2139 
2140 static void
2141 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2142 {
2143 	struct emx_txbuf *tx_buffer;
2144 	int i;
2145 
2146 	/* Free Transmit Descriptor ring */
2147 	if (sc->tx_desc_base) {
2148 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2149 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2150 				sc->tx_desc_dmap);
2151 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2152 
2153 		sc->tx_desc_base = NULL;
2154 	}
2155 
2156 	if (sc->tx_buf == NULL)
2157 		return;
2158 
2159 	for (i = 0; i < ndesc; i++) {
2160 		tx_buffer = &sc->tx_buf[i];
2161 
2162 		KKASSERT(tx_buffer->m_head == NULL);
2163 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2164 	}
2165 	bus_dma_tag_destroy(sc->txtag);
2166 
2167 	kfree(sc->tx_buf, M_DEVBUF);
2168 	sc->tx_buf = NULL;
2169 }
2170 
2171 /*
2172  * The offload context needs to be set when we transfer the first
2173  * packet of a particular protocol (TCP/UDP).  This routine has been
2174  * enhanced to deal with inserted VLAN headers.
2175  *
2176  * If the new packet's ether header length, ip header length and
2177  * csum offloading type are same as the previous packet, we should
2178  * avoid allocating a new csum context descriptor; mainly to take
2179  * advantage of the pipeline effect of the TX data read request.
2180  *
2181  * This function returns number of TX descrptors allocated for
2182  * csum context.
2183  */
2184 static int
2185 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2186 	   uint32_t *txd_upper, uint32_t *txd_lower)
2187 {
2188 	struct e1000_context_desc *TXD;
2189 	int curr_txd, ehdrlen, csum_flags;
2190 	uint32_t cmd, hdr_len, ip_hlen;
2191 
2192 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2193 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2194 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2195 
2196 	if (sc->csum_lhlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2197 	    sc->csum_flags == csum_flags) {
2198 		/*
2199 		 * Same csum offload context as the previous packets;
2200 		 * just return.
2201 		 */
2202 		*txd_upper = sc->csum_txd_upper;
2203 		*txd_lower = sc->csum_txd_lower;
2204 		return 0;
2205 	}
2206 
2207 	/*
2208 	 * Setup a new csum offload context.
2209 	 */
2210 
2211 	curr_txd = sc->next_avail_tx_desc;
2212 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2213 
2214 	cmd = 0;
2215 
2216 	/* Setup of IP header checksum. */
2217 	if (csum_flags & CSUM_IP) {
2218 		/*
2219 		 * Start offset for header checksum calculation.
2220 		 * End offset for header checksum calculation.
2221 		 * Offset of place to put the checksum.
2222 		 */
2223 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2224 		TXD->lower_setup.ip_fields.ipcse =
2225 		    htole16(ehdrlen + ip_hlen - 1);
2226 		TXD->lower_setup.ip_fields.ipcso =
2227 		    ehdrlen + offsetof(struct ip, ip_sum);
2228 		cmd |= E1000_TXD_CMD_IP;
2229 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2230 	}
2231 	hdr_len = ehdrlen + ip_hlen;
2232 
2233 	if (csum_flags & CSUM_TCP) {
2234 		/*
2235 		 * Start offset for payload checksum calculation.
2236 		 * End offset for payload checksum calculation.
2237 		 * Offset of place to put the checksum.
2238 		 */
2239 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2240 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2241 		TXD->upper_setup.tcp_fields.tucso =
2242 		    hdr_len + offsetof(struct tcphdr, th_sum);
2243 		cmd |= E1000_TXD_CMD_TCP;
2244 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2245 	} else if (csum_flags & CSUM_UDP) {
2246 		/*
2247 		 * Start offset for header checksum calculation.
2248 		 * End offset for header checksum calculation.
2249 		 * Offset of place to put the checksum.
2250 		 */
2251 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2252 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2253 		TXD->upper_setup.tcp_fields.tucso =
2254 		    hdr_len + offsetof(struct udphdr, uh_sum);
2255 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2256 	}
2257 
2258 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2259 		     E1000_TXD_DTYP_D;		/* Data descr */
2260 
2261 	/* Save the information for this csum offloading context */
2262 	sc->csum_lhlen = ehdrlen;
2263 	sc->csum_iphlen = ip_hlen;
2264 	sc->csum_flags = csum_flags;
2265 	sc->csum_txd_upper = *txd_upper;
2266 	sc->csum_txd_lower = *txd_lower;
2267 
2268 	TXD->tcp_seg_setup.data = htole32(0);
2269 	TXD->cmd_and_length =
2270 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2271 
2272 	if (++curr_txd == sc->num_tx_desc)
2273 		curr_txd = 0;
2274 
2275 	KKASSERT(sc->num_tx_desc_avail > 0);
2276 	sc->num_tx_desc_avail--;
2277 
2278 	sc->next_avail_tx_desc = curr_txd;
2279 	return 1;
2280 }
2281 
2282 static void
2283 emx_txeof(struct emx_softc *sc)
2284 {
2285 	struct ifnet *ifp = &sc->arpcom.ac_if;
2286 	struct emx_txbuf *tx_buffer;
2287 	int first, num_avail;
2288 
2289 	if (sc->tx_dd_head == sc->tx_dd_tail)
2290 		return;
2291 
2292 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2293 		return;
2294 
2295 	num_avail = sc->num_tx_desc_avail;
2296 	first = sc->next_tx_to_clean;
2297 
2298 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2299 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2300 		struct e1000_tx_desc *tx_desc;
2301 
2302 		tx_desc = &sc->tx_desc_base[dd_idx];
2303 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2304 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2305 
2306 			if (++dd_idx == sc->num_tx_desc)
2307 				dd_idx = 0;
2308 
2309 			while (first != dd_idx) {
2310 				logif(pkt_txclean);
2311 
2312 				num_avail++;
2313 
2314 				tx_buffer = &sc->tx_buf[first];
2315 				if (tx_buffer->m_head) {
2316 					ifp->if_opackets++;
2317 					bus_dmamap_unload(sc->txtag,
2318 							  tx_buffer->map);
2319 					m_freem(tx_buffer->m_head);
2320 					tx_buffer->m_head = NULL;
2321 				}
2322 
2323 				if (++first == sc->num_tx_desc)
2324 					first = 0;
2325 			}
2326 		} else {
2327 			break;
2328 		}
2329 	}
2330 	sc->next_tx_to_clean = first;
2331 	sc->num_tx_desc_avail = num_avail;
2332 
2333 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2334 		sc->tx_dd_head = 0;
2335 		sc->tx_dd_tail = 0;
2336 	}
2337 
2338 	if (!EMX_IS_OACTIVE(sc)) {
2339 		ifp->if_flags &= ~IFF_OACTIVE;
2340 
2341 		/* All clean, turn off the timer */
2342 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2343 			ifp->if_timer = 0;
2344 	}
2345 }
2346 
2347 static void
2348 emx_tx_collect(struct emx_softc *sc)
2349 {
2350 	struct ifnet *ifp = &sc->arpcom.ac_if;
2351 	struct emx_txbuf *tx_buffer;
2352 	int tdh, first, num_avail, dd_idx = -1;
2353 
2354 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2355 		return;
2356 
2357 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2358 	if (tdh == sc->next_tx_to_clean)
2359 		return;
2360 
2361 	if (sc->tx_dd_head != sc->tx_dd_tail)
2362 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2363 
2364 	num_avail = sc->num_tx_desc_avail;
2365 	first = sc->next_tx_to_clean;
2366 
2367 	while (first != tdh) {
2368 		logif(pkt_txclean);
2369 
2370 		num_avail++;
2371 
2372 		tx_buffer = &sc->tx_buf[first];
2373 		if (tx_buffer->m_head) {
2374 			ifp->if_opackets++;
2375 			bus_dmamap_unload(sc->txtag,
2376 					  tx_buffer->map);
2377 			m_freem(tx_buffer->m_head);
2378 			tx_buffer->m_head = NULL;
2379 		}
2380 
2381 		if (first == dd_idx) {
2382 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2383 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2384 				sc->tx_dd_head = 0;
2385 				sc->tx_dd_tail = 0;
2386 				dd_idx = -1;
2387 			} else {
2388 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2389 			}
2390 		}
2391 
2392 		if (++first == sc->num_tx_desc)
2393 			first = 0;
2394 	}
2395 	sc->next_tx_to_clean = first;
2396 	sc->num_tx_desc_avail = num_avail;
2397 
2398 	if (!EMX_IS_OACTIVE(sc)) {
2399 		ifp->if_flags &= ~IFF_OACTIVE;
2400 
2401 		/* All clean, turn off the timer */
2402 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2403 			ifp->if_timer = 0;
2404 	}
2405 }
2406 
2407 /*
2408  * When Link is lost sometimes there is work still in the TX ring
2409  * which will result in a watchdog, rather than allow that do an
2410  * attempted cleanup and then reinit here.  Note that this has been
2411  * seens mostly with fiber adapters.
2412  */
2413 static void
2414 emx_tx_purge(struct emx_softc *sc)
2415 {
2416 	struct ifnet *ifp = &sc->arpcom.ac_if;
2417 
2418 	if (!sc->link_active && ifp->if_timer) {
2419 		emx_tx_collect(sc);
2420 		if (ifp->if_timer) {
2421 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2422 			ifp->if_timer = 0;
2423 			emx_init(sc);
2424 		}
2425 	}
2426 }
2427 
2428 static int
2429 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2430 {
2431 	struct mbuf *m;
2432 	bus_dma_segment_t seg;
2433 	bus_dmamap_t map;
2434 	struct emx_rxbuf *rx_buffer;
2435 	int error, nseg;
2436 
2437 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2438 	if (m == NULL) {
2439 		rdata->mbuf_cluster_failed++;
2440 		if (init) {
2441 			if_printf(&sc->arpcom.ac_if,
2442 				  "Unable to allocate RX mbuf\n");
2443 		}
2444 		return (ENOBUFS);
2445 	}
2446 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2447 
2448 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2449 		m_adj(m, ETHER_ALIGN);
2450 
2451 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2452 			rdata->rx_sparemap, m,
2453 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2454 	if (error) {
2455 		m_freem(m);
2456 		if (init) {
2457 			if_printf(&sc->arpcom.ac_if,
2458 				  "Unable to load RX mbuf\n");
2459 		}
2460 		return (error);
2461 	}
2462 
2463 	rx_buffer = &rdata->rx_buf[i];
2464 	if (rx_buffer->m_head != NULL)
2465 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2466 
2467 	map = rx_buffer->map;
2468 	rx_buffer->map = rdata->rx_sparemap;
2469 	rdata->rx_sparemap = map;
2470 
2471 	rx_buffer->m_head = m;
2472 	rx_buffer->paddr = seg.ds_addr;
2473 
2474 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2475 	return (0);
2476 }
2477 
2478 static int
2479 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2480 {
2481 	device_t dev = sc->dev;
2482 	struct emx_rxbuf *rx_buffer;
2483 	int i, error, rsize, nrxd;
2484 
2485 	/*
2486 	 * Validate number of receive descriptors.  It must not exceed
2487 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2488 	 */
2489 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2490 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2491 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2492 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2493 		    EMX_DEFAULT_RXD, nrxd);
2494 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2495 	} else {
2496 		rdata->num_rx_desc = nrxd;
2497 	}
2498 
2499 	/*
2500 	 * Allocate Receive Descriptor ring
2501 	 */
2502 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2503 			 EMX_DBA_ALIGN);
2504 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2505 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2506 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2507 				&rdata->rx_desc_paddr);
2508 	if (rdata->rx_desc == NULL) {
2509 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2510 		return ENOMEM;
2511 	}
2512 
2513 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2514 				M_DEVBUF, M_WAITOK | M_ZERO);
2515 
2516 	/*
2517 	 * Create DMA tag for rx buffers
2518 	 */
2519 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2520 			1, 0,			/* alignment, bounds */
2521 			BUS_SPACE_MAXADDR,	/* lowaddr */
2522 			BUS_SPACE_MAXADDR,	/* highaddr */
2523 			NULL, NULL,		/* filter, filterarg */
2524 			MCLBYTES,		/* maxsize */
2525 			1,			/* nsegments */
2526 			MCLBYTES,		/* maxsegsize */
2527 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2528 			&rdata->rxtag);
2529 	if (error) {
2530 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2531 		kfree(rdata->rx_buf, M_DEVBUF);
2532 		rdata->rx_buf = NULL;
2533 		return error;
2534 	}
2535 
2536 	/*
2537 	 * Create spare DMA map for rx buffers
2538 	 */
2539 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2540 				  &rdata->rx_sparemap);
2541 	if (error) {
2542 		device_printf(dev, "Unable to create spare RX DMA map\n");
2543 		bus_dma_tag_destroy(rdata->rxtag);
2544 		kfree(rdata->rx_buf, M_DEVBUF);
2545 		rdata->rx_buf = NULL;
2546 		return error;
2547 	}
2548 
2549 	/*
2550 	 * Create DMA maps for rx buffers
2551 	 */
2552 	for (i = 0; i < rdata->num_rx_desc; i++) {
2553 		rx_buffer = &rdata->rx_buf[i];
2554 
2555 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2556 					  &rx_buffer->map);
2557 		if (error) {
2558 			device_printf(dev, "Unable to create RX DMA map\n");
2559 			emx_destroy_rx_ring(sc, rdata, i);
2560 			return error;
2561 		}
2562 	}
2563 	return (0);
2564 }
2565 
2566 static void
2567 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2568 {
2569 	int i;
2570 
2571 	for (i = 0; i < rdata->num_rx_desc; i++) {
2572 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2573 
2574 		if (rx_buffer->m_head != NULL) {
2575 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2576 			m_freem(rx_buffer->m_head);
2577 			rx_buffer->m_head = NULL;
2578 		}
2579 	}
2580 
2581 	if (rdata->fmp != NULL)
2582 		m_freem(rdata->fmp);
2583 	rdata->fmp = NULL;
2584 	rdata->lmp = NULL;
2585 }
2586 
2587 static int
2588 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2589 {
2590 	int i, error;
2591 
2592 	/* Reset descriptor ring */
2593 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2594 
2595 	/* Allocate new ones. */
2596 	for (i = 0; i < rdata->num_rx_desc; i++) {
2597 		error = emx_newbuf(sc, rdata, i, 1);
2598 		if (error)
2599 			return (error);
2600 	}
2601 
2602 	/* Setup our descriptor pointers */
2603 	rdata->next_rx_desc_to_check = 0;
2604 
2605 	return (0);
2606 }
2607 
2608 static void
2609 emx_init_rx_unit(struct emx_softc *sc)
2610 {
2611 	struct ifnet *ifp = &sc->arpcom.ac_if;
2612 	uint64_t bus_addr;
2613 	uint32_t rctl, itr, rfctl;
2614 	int i;
2615 
2616 	/*
2617 	 * Make sure receives are disabled while setting
2618 	 * up the descriptor ring
2619 	 */
2620 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2621 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2622 
2623 	/*
2624 	 * Set the interrupt throttling rate. Value is calculated
2625 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2626 	 */
2627 	if (sc->int_throttle_ceil)
2628 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2629 	else
2630 		itr = 0;
2631 	emx_set_itr(sc, itr);
2632 
2633 	/* Use extended RX descriptor */
2634 	rfctl = E1000_RFCTL_EXTEN;
2635 
2636 	/* Disable accelerated ackknowledge */
2637 	if (sc->hw.mac.type == e1000_82574)
2638 		rfctl |= E1000_RFCTL_ACK_DIS;
2639 
2640 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2641 
2642 	/*
2643 	 * Receive Checksum Offload for TCP and UDP
2644 	 *
2645 	 * Checksum offloading is also enabled if multiple receive
2646 	 * queue is to be supported, since we need it to figure out
2647 	 * packet type.
2648 	 */
2649 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2650 	    sc->rx_ring_cnt > 1) {
2651 		uint32_t rxcsum;
2652 
2653 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2654 
2655 		/*
2656 		 * NOTE:
2657 		 * PCSD must be enabled to enable multiple
2658 		 * receive queues.
2659 		 */
2660 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2661 			  E1000_RXCSUM_PCSD;
2662 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2663 	}
2664 
2665 	/*
2666 	 * Configure multiple receive queue (RSS)
2667 	 */
2668 	if (sc->rx_ring_cnt > 1) {
2669 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2670 		uint32_t reta;
2671 
2672 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2673 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2674 
2675 		/*
2676 		 * NOTE:
2677 		 * When we reach here, RSS has already been disabled
2678 		 * in emx_stop(), so we could safely configure RSS key
2679 		 * and redirect table.
2680 		 */
2681 
2682 		/*
2683 		 * Configure RSS key
2684 		 */
2685 		toeplitz_get_key(key, sizeof(key));
2686 		for (i = 0; i < EMX_NRSSRK; ++i) {
2687 			uint32_t rssrk;
2688 
2689 			rssrk = EMX_RSSRK_VAL(key, i);
2690 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2691 
2692 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2693 		}
2694 
2695 		/*
2696 		 * Configure RSS redirect table in following fashion:
2697 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2698 		 */
2699 		reta = 0;
2700 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2701 			uint32_t q;
2702 
2703 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2704 			reta |= q << (8 * i);
2705 		}
2706 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2707 
2708 		for (i = 0; i < EMX_NRETA; ++i)
2709 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2710 
2711 		/*
2712 		 * Enable multiple receive queues.
2713 		 * Enable IPv4 RSS standard hash functions.
2714 		 * Disable RSS interrupt.
2715 		 */
2716 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2717 				E1000_MRQC_ENABLE_RSS_2Q |
2718 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2719 				E1000_MRQC_RSS_FIELD_IPV4);
2720 	}
2721 
2722 	/*
2723 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2724 	 * long latencies are observed, like Lenovo X60. This
2725 	 * change eliminates the problem, but since having positive
2726 	 * values in RDTR is a known source of problems on other
2727 	 * platforms another solution is being sought.
2728 	 */
2729 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2730 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2731 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2732 	}
2733 
2734 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2735 		struct emx_rxdata *rdata = &sc->rx_data[i];
2736 
2737 		/*
2738 		 * Setup the Base and Length of the Rx Descriptor Ring
2739 		 */
2740 		bus_addr = rdata->rx_desc_paddr;
2741 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2742 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2743 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2744 		    (uint32_t)(bus_addr >> 32));
2745 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2746 		    (uint32_t)bus_addr);
2747 
2748 		/*
2749 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2750 		 */
2751 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2752 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2753 		    sc->rx_data[i].num_rx_desc - 1);
2754 	}
2755 
2756 	/* Setup the Receive Control Register */
2757 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2758 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2759 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2760 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2761 
2762 	/* Make sure VLAN Filters are off */
2763 	rctl &= ~E1000_RCTL_VFE;
2764 
2765 	/* Don't store bad paket */
2766 	rctl &= ~E1000_RCTL_SBP;
2767 
2768 	/* MCLBYTES */
2769 	rctl |= E1000_RCTL_SZ_2048;
2770 
2771 	if (ifp->if_mtu > ETHERMTU)
2772 		rctl |= E1000_RCTL_LPE;
2773 	else
2774 		rctl &= ~E1000_RCTL_LPE;
2775 
2776 	/* Enable Receives */
2777 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2778 }
2779 
2780 static void
2781 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2782 {
2783 	struct emx_rxbuf *rx_buffer;
2784 	int i;
2785 
2786 	/* Free Receive Descriptor ring */
2787 	if (rdata->rx_desc) {
2788 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2789 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2790 				rdata->rx_desc_dmap);
2791 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2792 
2793 		rdata->rx_desc = NULL;
2794 	}
2795 
2796 	if (rdata->rx_buf == NULL)
2797 		return;
2798 
2799 	for (i = 0; i < ndesc; i++) {
2800 		rx_buffer = &rdata->rx_buf[i];
2801 
2802 		KKASSERT(rx_buffer->m_head == NULL);
2803 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2804 	}
2805 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2806 	bus_dma_tag_destroy(rdata->rxtag);
2807 
2808 	kfree(rdata->rx_buf, M_DEVBUF);
2809 	rdata->rx_buf = NULL;
2810 }
2811 
2812 static void
2813 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2814 {
2815 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2816 	struct ifnet *ifp = &sc->arpcom.ac_if;
2817 	uint32_t staterr;
2818 	emx_rxdesc_t *current_desc;
2819 	struct mbuf *mp;
2820 	int i;
2821 
2822 	i = rdata->next_rx_desc_to_check;
2823 	current_desc = &rdata->rx_desc[i];
2824 	staterr = le32toh(current_desc->rxd_staterr);
2825 
2826 	if (!(staterr & E1000_RXD_STAT_DD))
2827 		return;
2828 
2829 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2830 		struct pktinfo *pi = NULL, pi0;
2831 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2832 		struct mbuf *m = NULL;
2833 		int eop, len;
2834 
2835 		logif(pkt_receive);
2836 
2837 		mp = rx_buf->m_head;
2838 
2839 		/*
2840 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2841 		 * needs to access the last received byte in the mbuf.
2842 		 */
2843 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2844 				BUS_DMASYNC_POSTREAD);
2845 
2846 		len = le16toh(current_desc->rxd_length);
2847 		if (staterr & E1000_RXD_STAT_EOP) {
2848 			count--;
2849 			eop = 1;
2850 		} else {
2851 			eop = 0;
2852 		}
2853 
2854 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2855 			uint16_t vlan = 0;
2856 			uint32_t mrq, rss_hash;
2857 
2858 			/*
2859 			 * Save several necessary information,
2860 			 * before emx_newbuf() destroy it.
2861 			 */
2862 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2863 				vlan = le16toh(current_desc->rxd_vlan);
2864 
2865 			mrq = le32toh(current_desc->rxd_mrq);
2866 			rss_hash = le32toh(current_desc->rxd_rss);
2867 
2868 			EMX_RSS_DPRINTF(sc, 10,
2869 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2870 			    ring_idx, mrq, rss_hash);
2871 
2872 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2873 				ifp->if_iqdrops++;
2874 				goto discard;
2875 			}
2876 
2877 			/* Assign correct length to the current fragment */
2878 			mp->m_len = len;
2879 
2880 			if (rdata->fmp == NULL) {
2881 				mp->m_pkthdr.len = len;
2882 				rdata->fmp = mp; /* Store the first mbuf */
2883 				rdata->lmp = mp;
2884 			} else {
2885 				/*
2886 				 * Chain mbuf's together
2887 				 */
2888 				rdata->lmp->m_next = mp;
2889 				rdata->lmp = rdata->lmp->m_next;
2890 				rdata->fmp->m_pkthdr.len += len;
2891 			}
2892 
2893 			if (eop) {
2894 				rdata->fmp->m_pkthdr.rcvif = ifp;
2895 				ifp->if_ipackets++;
2896 
2897 				if (ifp->if_capenable & IFCAP_RXCSUM)
2898 					emx_rxcsum(staterr, rdata->fmp);
2899 
2900 				if (staterr & E1000_RXD_STAT_VP) {
2901 					rdata->fmp->m_pkthdr.ether_vlantag =
2902 					    vlan;
2903 					rdata->fmp->m_flags |= M_VLANTAG;
2904 				}
2905 				m = rdata->fmp;
2906 				rdata->fmp = NULL;
2907 				rdata->lmp = NULL;
2908 
2909 				if (ifp->if_capenable & IFCAP_RSS) {
2910 					pi = emx_rssinfo(m, &pi0, mrq,
2911 							 rss_hash, staterr);
2912 				}
2913 #ifdef EMX_RSS_DEBUG
2914 				rdata->rx_pkts++;
2915 #endif
2916 			}
2917 		} else {
2918 			ifp->if_ierrors++;
2919 discard:
2920 			emx_setup_rxdesc(current_desc, rx_buf);
2921 			if (rdata->fmp != NULL) {
2922 				m_freem(rdata->fmp);
2923 				rdata->fmp = NULL;
2924 				rdata->lmp = NULL;
2925 			}
2926 			m = NULL;
2927 		}
2928 
2929 		if (m != NULL)
2930 			ether_input_pkt(ifp, m, pi);
2931 
2932 		/* Advance our pointers to the next descriptor. */
2933 		if (++i == rdata->num_rx_desc)
2934 			i = 0;
2935 
2936 		current_desc = &rdata->rx_desc[i];
2937 		staterr = le32toh(current_desc->rxd_staterr);
2938 	}
2939 	rdata->next_rx_desc_to_check = i;
2940 
2941 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2942 	if (--i < 0)
2943 		i = rdata->num_rx_desc - 1;
2944 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2945 }
2946 
2947 static void
2948 emx_enable_intr(struct emx_softc *sc)
2949 {
2950 	uint32_t ims_mask = IMS_ENABLE_MASK;
2951 
2952 	lwkt_serialize_handler_enable(&sc->main_serialize);
2953 
2954 #if 0
2955 	if (sc->hw.mac.type == e1000_82574) {
2956 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
2957 		ims_mask |= EM_MSIX_MASK;
2958 	}
2959 #endif
2960 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
2961 }
2962 
2963 static void
2964 emx_disable_intr(struct emx_softc *sc)
2965 {
2966 	if (sc->hw.mac.type == e1000_82574)
2967 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
2968 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2969 
2970 	lwkt_serialize_handler_disable(&sc->main_serialize);
2971 }
2972 
2973 /*
2974  * Bit of a misnomer, what this really means is
2975  * to enable OS management of the system... aka
2976  * to disable special hardware management features
2977  */
2978 static void
2979 emx_get_mgmt(struct emx_softc *sc)
2980 {
2981 	/* A shared code workaround */
2982 	if (sc->has_manage) {
2983 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2984 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2985 
2986 		/* disable hardware interception of ARP */
2987 		manc &= ~(E1000_MANC_ARP_EN);
2988 
2989                 /* enable receiving management packets to the host */
2990 		manc |= E1000_MANC_EN_MNG2HOST;
2991 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2992 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2993 		manc2h |= E1000_MNG2HOST_PORT_623;
2994 		manc2h |= E1000_MNG2HOST_PORT_664;
2995 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2996 
2997 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2998 	}
2999 }
3000 
3001 /*
3002  * Give control back to hardware management
3003  * controller if there is one.
3004  */
3005 static void
3006 emx_rel_mgmt(struct emx_softc *sc)
3007 {
3008 	if (sc->has_manage) {
3009 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3010 
3011 		/* re-enable hardware interception of ARP */
3012 		manc |= E1000_MANC_ARP_EN;
3013 		manc &= ~E1000_MANC_EN_MNG2HOST;
3014 
3015 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3016 	}
3017 }
3018 
3019 /*
3020  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3021  * For ASF and Pass Through versions of f/w this means that
3022  * the driver is loaded.  For AMT version (only with 82573)
3023  * of the f/w this means that the network i/f is open.
3024  */
3025 static void
3026 emx_get_hw_control(struct emx_softc *sc)
3027 {
3028 	/* Let firmware know the driver has taken over */
3029 	if (sc->hw.mac.type == e1000_82573) {
3030 		uint32_t swsm;
3031 
3032 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3033 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3034 		    swsm | E1000_SWSM_DRV_LOAD);
3035 	} else {
3036 		uint32_t ctrl_ext;
3037 
3038 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3039 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3040 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3041 	}
3042 	sc->control_hw = 1;
3043 }
3044 
3045 /*
3046  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3047  * For ASF and Pass Through versions of f/w this means that the
3048  * driver is no longer loaded.  For AMT version (only with 82573)
3049  * of the f/w this means that the network i/f is closed.
3050  */
3051 static void
3052 emx_rel_hw_control(struct emx_softc *sc)
3053 {
3054 	if (!sc->control_hw)
3055 		return;
3056 	sc->control_hw = 0;
3057 
3058 	/* Let firmware taken over control of h/w */
3059 	if (sc->hw.mac.type == e1000_82573) {
3060 		uint32_t swsm;
3061 
3062 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3063 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3064 		    swsm & ~E1000_SWSM_DRV_LOAD);
3065 	} else {
3066 		uint32_t ctrl_ext;
3067 
3068 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3069 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3070 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3071 	}
3072 }
3073 
3074 static int
3075 emx_is_valid_eaddr(const uint8_t *addr)
3076 {
3077 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3078 
3079 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3080 		return (FALSE);
3081 
3082 	return (TRUE);
3083 }
3084 
3085 /*
3086  * Enable PCI Wake On Lan capability
3087  */
3088 void
3089 emx_enable_wol(device_t dev)
3090 {
3091 	uint16_t cap, status;
3092 	uint8_t id;
3093 
3094 	/* First find the capabilities pointer*/
3095 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3096 
3097 	/* Read the PM Capabilities */
3098 	id = pci_read_config(dev, cap, 1);
3099 	if (id != PCIY_PMG)     /* Something wrong */
3100 		return;
3101 
3102 	/*
3103 	 * OK, we have the power capabilities,
3104 	 * so now get the status register
3105 	 */
3106 	cap += PCIR_POWER_STATUS;
3107 	status = pci_read_config(dev, cap, 2);
3108 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3109 	pci_write_config(dev, cap, status, 2);
3110 }
3111 
3112 static void
3113 emx_update_stats(struct emx_softc *sc)
3114 {
3115 	struct ifnet *ifp = &sc->arpcom.ac_if;
3116 
3117 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3118 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3119 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3120 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3121 	}
3122 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3123 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3124 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3125 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3126 
3127 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3128 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3129 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3130 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3131 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3132 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3133 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3134 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3135 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3136 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3137 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3138 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3139 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3140 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3141 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3142 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3143 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3144 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3145 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3146 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3147 
3148 	/* For the 64-bit byte counters the low dword must be read first. */
3149 	/* Both registers clear on the read of the high dword */
3150 
3151 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3152 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3153 
3154 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3155 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3156 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3157 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3158 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3159 
3160 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3161 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3162 
3163 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3164 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3165 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3166 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3167 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3168 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3169 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3170 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3171 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3172 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3173 
3174 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3175 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3176 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3177 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3178 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3179 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3180 
3181 	ifp->if_collisions = sc->stats.colc;
3182 
3183 	/* Rx Errors */
3184 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3185 			  sc->stats.crcerrs + sc->stats.algnerrc +
3186 			  sc->stats.ruc + sc->stats.roc +
3187 			  sc->stats.mpc + sc->stats.cexterr;
3188 
3189 	/* Tx Errors */
3190 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3191 			  sc->watchdog_events;
3192 }
3193 
3194 static void
3195 emx_print_debug_info(struct emx_softc *sc)
3196 {
3197 	device_t dev = sc->dev;
3198 	uint8_t *hw_addr = sc->hw.hw_addr;
3199 
3200 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3201 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3202 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3203 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3204 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3205 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3206 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3207 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3208 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3209 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3210 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3211 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3212 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3213 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3214 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3215 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3216 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3217 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3218 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3219 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3220 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3221 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3222 	    sc->num_tx_desc_avail);
3223 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3224 	    sc->no_tx_desc_avail1);
3225 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3226 	    sc->no_tx_desc_avail2);
3227 	device_printf(dev, "Std mbuf failed = %ld\n",
3228 	    sc->mbuf_alloc_failed);
3229 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3230 	    sc->rx_data[0].mbuf_cluster_failed);
3231 	device_printf(dev, "Driver dropped packets = %ld\n",
3232 	    sc->dropped_pkts);
3233 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3234 	    sc->no_tx_dma_setup);
3235 
3236 	device_printf(dev, "TSO segments %lu\n", sc->tso_segments);
3237 	device_printf(dev, "TSO ctx reused %lu\n", sc->tso_ctx_reused);
3238 }
3239 
3240 static void
3241 emx_print_hw_stats(struct emx_softc *sc)
3242 {
3243 	device_t dev = sc->dev;
3244 
3245 	device_printf(dev, "Excessive collisions = %lld\n",
3246 	    (long long)sc->stats.ecol);
3247 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3248 	device_printf(dev, "Symbol errors = %lld\n",
3249 	    (long long)sc->stats.symerrs);
3250 #endif
3251 	device_printf(dev, "Sequence errors = %lld\n",
3252 	    (long long)sc->stats.sec);
3253 	device_printf(dev, "Defer count = %lld\n",
3254 	    (long long)sc->stats.dc);
3255 	device_printf(dev, "Missed Packets = %lld\n",
3256 	    (long long)sc->stats.mpc);
3257 	device_printf(dev, "Receive No Buffers = %lld\n",
3258 	    (long long)sc->stats.rnbc);
3259 	/* RLEC is inaccurate on some hardware, calculate our own. */
3260 	device_printf(dev, "Receive Length Errors = %lld\n",
3261 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3262 	device_printf(dev, "Receive errors = %lld\n",
3263 	    (long long)sc->stats.rxerrc);
3264 	device_printf(dev, "Crc errors = %lld\n",
3265 	    (long long)sc->stats.crcerrs);
3266 	device_printf(dev, "Alignment errors = %lld\n",
3267 	    (long long)sc->stats.algnerrc);
3268 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3269 	    (long long)sc->stats.cexterr);
3270 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3271 	device_printf(dev, "watchdog timeouts = %ld\n",
3272 	    sc->watchdog_events);
3273 	device_printf(dev, "XON Rcvd = %lld\n",
3274 	    (long long)sc->stats.xonrxc);
3275 	device_printf(dev, "XON Xmtd = %lld\n",
3276 	    (long long)sc->stats.xontxc);
3277 	device_printf(dev, "XOFF Rcvd = %lld\n",
3278 	    (long long)sc->stats.xoffrxc);
3279 	device_printf(dev, "XOFF Xmtd = %lld\n",
3280 	    (long long)sc->stats.xofftxc);
3281 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3282 	    (long long)sc->stats.gprc);
3283 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3284 	    (long long)sc->stats.gptc);
3285 }
3286 
3287 static void
3288 emx_print_nvm_info(struct emx_softc *sc)
3289 {
3290 	uint16_t eeprom_data;
3291 	int i, j, row = 0;
3292 
3293 	/* Its a bit crude, but it gets the job done */
3294 	kprintf("\nInterface EEPROM Dump:\n");
3295 	kprintf("Offset\n0x0000  ");
3296 	for (i = 0, j = 0; i < 32; i++, j++) {
3297 		if (j == 8) { /* Make the offset block */
3298 			j = 0; ++row;
3299 			kprintf("\n0x00%x0  ",row);
3300 		}
3301 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3302 		kprintf("%04x ", eeprom_data);
3303 	}
3304 	kprintf("\n");
3305 }
3306 
3307 static int
3308 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3309 {
3310 	struct emx_softc *sc;
3311 	struct ifnet *ifp;
3312 	int error, result;
3313 
3314 	result = -1;
3315 	error = sysctl_handle_int(oidp, &result, 0, req);
3316 	if (error || !req->newptr)
3317 		return (error);
3318 
3319 	sc = (struct emx_softc *)arg1;
3320 	ifp = &sc->arpcom.ac_if;
3321 
3322 	ifnet_serialize_all(ifp);
3323 
3324 	if (result == 1)
3325 		emx_print_debug_info(sc);
3326 
3327 	/*
3328 	 * This value will cause a hex dump of the
3329 	 * first 32 16-bit words of the EEPROM to
3330 	 * the screen.
3331 	 */
3332 	if (result == 2)
3333 		emx_print_nvm_info(sc);
3334 
3335 	ifnet_deserialize_all(ifp);
3336 
3337 	return (error);
3338 }
3339 
3340 static int
3341 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3342 {
3343 	int error, result;
3344 
3345 	result = -1;
3346 	error = sysctl_handle_int(oidp, &result, 0, req);
3347 	if (error || !req->newptr)
3348 		return (error);
3349 
3350 	if (result == 1) {
3351 		struct emx_softc *sc = (struct emx_softc *)arg1;
3352 		struct ifnet *ifp = &sc->arpcom.ac_if;
3353 
3354 		ifnet_serialize_all(ifp);
3355 		emx_print_hw_stats(sc);
3356 		ifnet_deserialize_all(ifp);
3357 	}
3358 	return (error);
3359 }
3360 
3361 static void
3362 emx_add_sysctl(struct emx_softc *sc)
3363 {
3364 #ifdef EMX_RSS_DEBUG
3365 	char rx_pkt[32];
3366 	int i;
3367 #endif
3368 
3369 	sysctl_ctx_init(&sc->sysctl_ctx);
3370 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3371 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3372 				device_get_nameunit(sc->dev),
3373 				CTLFLAG_RD, 0, "");
3374 	if (sc->sysctl_tree == NULL) {
3375 		device_printf(sc->dev, "can't add sysctl node\n");
3376 		return;
3377 	}
3378 
3379 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3380 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3381 			emx_sysctl_debug_info, "I", "Debug Information");
3382 
3383 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3384 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3385 			emx_sysctl_stats, "I", "Statistics");
3386 
3387 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3388 		       OID_AUTO, "rxd", CTLFLAG_RD,
3389 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3390 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3391 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3392 
3393 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3394 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3395 			sc, 0, emx_sysctl_int_throttle, "I",
3396 			"interrupt throttling rate");
3397 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3398 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3399 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3400 			"# segments per TX interrupt");
3401 
3402 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3403 		       OID_AUTO, "rx_ring_cnt", CTLFLAG_RD,
3404 		       &sc->rx_ring_cnt, 0, "RX ring count");
3405 
3406 #ifdef EMX_RSS_DEBUG
3407 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3408 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3409 		       0, "RSS debug level");
3410 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3411 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3412 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3413 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3414 				rx_pkt, CTLFLAG_RW,
3415 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3416 	}
3417 #endif
3418 }
3419 
3420 static int
3421 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3422 {
3423 	struct emx_softc *sc = (void *)arg1;
3424 	struct ifnet *ifp = &sc->arpcom.ac_if;
3425 	int error, throttle;
3426 
3427 	throttle = sc->int_throttle_ceil;
3428 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3429 	if (error || req->newptr == NULL)
3430 		return error;
3431 	if (throttle < 0 || throttle > 1000000000 / 256)
3432 		return EINVAL;
3433 
3434 	if (throttle) {
3435 		/*
3436 		 * Set the interrupt throttling rate in 256ns increments,
3437 		 * recalculate sysctl value assignment to get exact frequency.
3438 		 */
3439 		throttle = 1000000000 / 256 / throttle;
3440 
3441 		/* Upper 16bits of ITR is reserved and should be zero */
3442 		if (throttle & 0xffff0000)
3443 			return EINVAL;
3444 	}
3445 
3446 	ifnet_serialize_all(ifp);
3447 
3448 	if (throttle)
3449 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3450 	else
3451 		sc->int_throttle_ceil = 0;
3452 
3453 	if (ifp->if_flags & IFF_RUNNING)
3454 		emx_set_itr(sc, throttle);
3455 
3456 	ifnet_deserialize_all(ifp);
3457 
3458 	if (bootverbose) {
3459 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3460 			  sc->int_throttle_ceil);
3461 	}
3462 	return 0;
3463 }
3464 
3465 static int
3466 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3467 {
3468 	struct emx_softc *sc = (void *)arg1;
3469 	struct ifnet *ifp = &sc->arpcom.ac_if;
3470 	int error, segs;
3471 
3472 	segs = sc->tx_int_nsegs;
3473 	error = sysctl_handle_int(oidp, &segs, 0, req);
3474 	if (error || req->newptr == NULL)
3475 		return error;
3476 	if (segs <= 0)
3477 		return EINVAL;
3478 
3479 	ifnet_serialize_all(ifp);
3480 
3481 	/*
3482 	 * Don't allow int_tx_nsegs to become:
3483 	 * o  Less the oact_tx_desc
3484 	 * o  Too large that no TX desc will cause TX interrupt to
3485 	 *    be generated (OACTIVE will never recover)
3486 	 * o  Too small that will cause tx_dd[] overflow
3487 	 */
3488 	if (segs < sc->oact_tx_desc ||
3489 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3490 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3491 		error = EINVAL;
3492 	} else {
3493 		error = 0;
3494 		sc->tx_int_nsegs = segs;
3495 	}
3496 
3497 	ifnet_deserialize_all(ifp);
3498 
3499 	return error;
3500 }
3501 
3502 static int
3503 emx_dma_alloc(struct emx_softc *sc)
3504 {
3505 	int error, i;
3506 
3507 	/*
3508 	 * Create top level busdma tag
3509 	 */
3510 	error = bus_dma_tag_create(NULL, 1, 0,
3511 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3512 			NULL, NULL,
3513 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3514 			0, &sc->parent_dtag);
3515 	if (error) {
3516 		device_printf(sc->dev, "could not create top level DMA tag\n");
3517 		return error;
3518 	}
3519 
3520 	/*
3521 	 * Allocate transmit descriptors ring and buffers
3522 	 */
3523 	error = emx_create_tx_ring(sc);
3524 	if (error) {
3525 		device_printf(sc->dev, "Could not setup transmit structures\n");
3526 		return error;
3527 	}
3528 
3529 	/*
3530 	 * Allocate receive descriptors ring and buffers
3531 	 */
3532 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3533 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3534 		if (error) {
3535 			device_printf(sc->dev,
3536 			    "Could not setup receive structures\n");
3537 			return error;
3538 		}
3539 	}
3540 	return 0;
3541 }
3542 
3543 static void
3544 emx_dma_free(struct emx_softc *sc)
3545 {
3546 	int i;
3547 
3548 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3549 
3550 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3551 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3552 				    sc->rx_data[i].num_rx_desc);
3553 	}
3554 
3555 	/* Free top level busdma tag */
3556 	if (sc->parent_dtag != NULL)
3557 		bus_dma_tag_destroy(sc->parent_dtag);
3558 }
3559 
3560 static void
3561 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3562 {
3563 	struct emx_softc *sc = ifp->if_softc;
3564 
3565 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE,
3566 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3567 }
3568 
3569 static void
3570 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3571 {
3572 	struct emx_softc *sc = ifp->if_softc;
3573 
3574 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE,
3575 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3576 }
3577 
3578 static int
3579 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3580 {
3581 	struct emx_softc *sc = ifp->if_softc;
3582 
3583 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE,
3584 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3585 }
3586 
3587 static void
3588 emx_serialize_skipmain(struct emx_softc *sc)
3589 {
3590 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3591 }
3592 
3593 static void
3594 emx_deserialize_skipmain(struct emx_softc *sc)
3595 {
3596 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3597 }
3598 
3599 #ifdef INVARIANTS
3600 
3601 static void
3602 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3603     boolean_t serialized)
3604 {
3605 	struct emx_softc *sc = ifp->if_softc;
3606 
3607 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3608 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz, serialized);
3609 }
3610 
3611 #endif	/* INVARIANTS */
3612 
3613 #ifdef IFPOLL_ENABLE
3614 
3615 static void
3616 emx_qpoll_status(struct ifnet *ifp, int pollhz __unused)
3617 {
3618 	struct emx_softc *sc = ifp->if_softc;
3619 	uint32_t reg_icr;
3620 
3621 	ASSERT_SERIALIZED(&sc->main_serialize);
3622 
3623 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3624 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3625 		callout_stop(&sc->timer);
3626 		sc->hw.mac.get_link_status = 1;
3627 		emx_update_link_status(sc);
3628 		callout_reset(&sc->timer, hz, emx_timer, sc);
3629 	}
3630 }
3631 
3632 static void
3633 emx_qpoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3634 {
3635 	struct emx_softc *sc = ifp->if_softc;
3636 
3637 	ASSERT_SERIALIZED(&sc->tx_serialize);
3638 
3639 	emx_txeof(sc);
3640 	if (!ifq_is_empty(&ifp->if_snd))
3641 		if_devstart(ifp);
3642 }
3643 
3644 static void
3645 emx_qpoll_rx(struct ifnet *ifp, void *arg, int cycle)
3646 {
3647 	struct emx_softc *sc = ifp->if_softc;
3648 	struct emx_rxdata *rdata = arg;
3649 
3650 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3651 
3652 	emx_rxeof(sc, rdata - sc->rx_data, cycle);
3653 }
3654 
3655 static void
3656 emx_qpoll(struct ifnet *ifp, struct ifpoll_info *info)
3657 {
3658 	struct emx_softc *sc = ifp->if_softc;
3659 
3660 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3661 
3662 	if (info) {
3663 		int i;
3664 
3665 		info->ifpi_status.status_func = emx_qpoll_status;
3666 		info->ifpi_status.serializer = &sc->main_serialize;
3667 
3668 		info->ifpi_tx[0].poll_func = emx_qpoll_tx;
3669 		info->ifpi_tx[0].arg = NULL;
3670 		info->ifpi_tx[0].serializer = &sc->tx_serialize;
3671 
3672 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3673 			info->ifpi_rx[i].poll_func = emx_qpoll_rx;
3674 			info->ifpi_rx[i].arg = &sc->rx_data[i];
3675 			info->ifpi_rx[i].serializer =
3676 				&sc->rx_data[i].rx_serialize;
3677 		}
3678 
3679 		if (ifp->if_flags & IFF_RUNNING)
3680 			emx_disable_intr(sc);
3681 	} else if (ifp->if_flags & IFF_RUNNING) {
3682 		emx_enable_intr(sc);
3683 	}
3684 }
3685 
3686 #endif	/* IFPOLL_ENABLE */
3687 
3688 static void
3689 emx_set_itr(struct emx_softc *sc, uint32_t itr)
3690 {
3691 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3692 	if (sc->hw.mac.type == e1000_82574) {
3693 		int i;
3694 
3695 		/*
3696 		 * When using MSIX interrupts we need to
3697 		 * throttle using the EITR register
3698 		 */
3699 		for (i = 0; i < 4; ++i)
3700 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3701 	}
3702 }
3703 
3704 /*
3705  * Disable the L0s, 82574L Errata #20
3706  */
3707 static void
3708 emx_disable_aspm(struct emx_softc *sc)
3709 {
3710 	uint16_t link_cap, link_ctrl, disable;
3711 	uint8_t pcie_ptr, reg;
3712 	device_t dev = sc->dev;
3713 
3714 	switch (sc->hw.mac.type) {
3715 	case e1000_82571:
3716 	case e1000_82572:
3717 	case e1000_82573:
3718 		/*
3719 		 * 82573 specification update
3720 		 * errata #8 disable L0s
3721 		 * errata #41 disable L1
3722 		 *
3723 		 * 82571/82572 specification update
3724 		 # errata #13 disable L1
3725 		 * errata #68 disable L0s
3726 		 */
3727 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
3728 		break;
3729 
3730 	case e1000_82574:
3731 		/*
3732 		 * 82574 specification update errata #20
3733 		 *
3734 		 * There is no need to disable L1
3735 		 */
3736 		disable = PCIEM_LNKCTL_ASPM_L0S;
3737 		break;
3738 
3739 	default:
3740 		return;
3741 	}
3742 
3743 	pcie_ptr = pci_get_pciecap_ptr(dev);
3744 	if (pcie_ptr == 0)
3745 		return;
3746 
3747 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
3748 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
3749 		return;
3750 
3751 	if (bootverbose)
3752 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
3753 
3754 	reg = pcie_ptr + PCIER_LINKCTRL;
3755 	link_ctrl = pci_read_config(dev, reg, 2);
3756 	link_ctrl &= ~disable;
3757 	pci_write_config(dev, reg, link_ctrl, 2);
3758 }
3759 
3760 static int
3761 emx_tso_pullup(struct emx_softc *sc, struct mbuf **mp)
3762 {
3763 	int iphlen, hoff, thoff, ex = 0;
3764 	struct mbuf *m;
3765 	struct ip *ip;
3766 
3767 	m = *mp;
3768 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
3769 
3770 	iphlen = m->m_pkthdr.csum_iphlen;
3771 	thoff = m->m_pkthdr.csum_thlen;
3772 	hoff = m->m_pkthdr.csum_lhlen;
3773 
3774 	KASSERT(iphlen > 0, ("invalid ip hlen"));
3775 	KASSERT(thoff > 0, ("invalid tcp hlen"));
3776 	KASSERT(hoff > 0, ("invalid ether hlen"));
3777 
3778 	if (sc->flags & EMX_FLAG_TSO_PULLEX)
3779 		ex = 4;
3780 
3781 	if (m->m_len < hoff + iphlen + thoff + ex) {
3782 		m = m_pullup(m, hoff + iphlen + thoff + ex);
3783 		if (m == NULL) {
3784 			*mp = NULL;
3785 			return ENOBUFS;
3786 		}
3787 		*mp = m;
3788 	}
3789 	ip = mtodoff(m, struct ip *, hoff);
3790 	ip->ip_len = 0;
3791 
3792 	return 0;
3793 }
3794 
3795 static int
3796 emx_tso_setup(struct emx_softc *sc, struct mbuf *mp,
3797     uint32_t *txd_upper, uint32_t *txd_lower)
3798 {
3799 	struct e1000_context_desc *TXD;
3800 	int hoff, iphlen, thoff, hlen;
3801 	int mss, pktlen, curr_txd;
3802 
3803 #ifdef EMX_TSO_DEBUG
3804 	sc->tso_segments++;
3805 #endif
3806 
3807 	iphlen = mp->m_pkthdr.csum_iphlen;
3808 	thoff = mp->m_pkthdr.csum_thlen;
3809 	hoff = mp->m_pkthdr.csum_lhlen;
3810 	mss = mp->m_pkthdr.tso_segsz;
3811 	pktlen = mp->m_pkthdr.len;
3812 
3813 	if (sc->csum_flags == CSUM_TSO &&
3814 	    sc->csum_iphlen == iphlen &&
3815 	    sc->csum_lhlen == hoff &&
3816 	    sc->csum_thlen == thoff &&
3817 	    sc->csum_mss == mss &&
3818 	    sc->csum_pktlen == pktlen) {
3819 		*txd_upper = sc->csum_txd_upper;
3820 		*txd_lower = sc->csum_txd_lower;
3821 #ifdef EMX_TSO_DEBUG
3822 		sc->tso_ctx_reused++;
3823 #endif
3824 		return 0;
3825 	}
3826 	hlen = hoff + iphlen + thoff;
3827 
3828 	/*
3829 	 * Setup a new TSO context.
3830 	 */
3831 
3832 	curr_txd = sc->next_avail_tx_desc;
3833 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
3834 
3835 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3836 		     E1000_TXD_DTYP_D |		/* Data descr type */
3837 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
3838 
3839 	/* IP and/or TCP header checksum calculation and insertion. */
3840 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
3841 
3842 	/*
3843 	 * Start offset for header checksum calculation.
3844 	 * End offset for header checksum calculation.
3845 	 * Offset of place put the checksum.
3846 	 */
3847 	TXD->lower_setup.ip_fields.ipcss = hoff;
3848 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
3849 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
3850 
3851 	/*
3852 	 * Start offset for payload checksum calculation.
3853 	 * End offset for payload checksum calculation.
3854 	 * Offset of place to put the checksum.
3855 	 */
3856 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
3857 	TXD->upper_setup.tcp_fields.tucse = 0;
3858 	TXD->upper_setup.tcp_fields.tucso =
3859 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
3860 
3861 	/*
3862 	 * Payload size per packet w/o any headers.
3863 	 * Length of all headers up to payload.
3864 	 */
3865 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
3866 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
3867 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
3868 				E1000_TXD_CMD_DEXT |	/* Extended descr */
3869 				E1000_TXD_CMD_TSE |	/* TSE context */
3870 				E1000_TXD_CMD_IP |	/* Do IP csum */
3871 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
3872 				(pktlen - hlen));	/* Total len */
3873 
3874 	/* Save the information for this TSO context */
3875 	sc->csum_flags = CSUM_TSO;
3876 	sc->csum_lhlen = hoff;
3877 	sc->csum_iphlen = iphlen;
3878 	sc->csum_thlen = thoff;
3879 	sc->csum_mss = mss;
3880 	sc->csum_pktlen = pktlen;
3881 	sc->csum_txd_upper = *txd_upper;
3882 	sc->csum_txd_lower = *txd_lower;
3883 
3884 	if (++curr_txd == sc->num_tx_desc)
3885 		curr_txd = 0;
3886 
3887 	KKASSERT(sc->num_tx_desc_avail > 0);
3888 	sc->num_tx_desc_avail--;
3889 
3890 	sc->next_avail_tx_desc = curr_txd;
3891 	return 1;
3892 }
3893