xref: /dflybsd-src/sys/dev/netif/emx/if_emx.c (revision f0140465f072dacd8b485e76b254a999329a1d3c)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #ifdef EMX_RSS_DEBUG
114 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
115 do { \
116 	if (sc->rss_debug >= lvl) \
117 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
118 } while (0)
119 #else	/* !EMX_RSS_DEBUG */
120 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
121 #endif	/* EMX_RSS_DEBUG */
122 
123 #define EMX_TX_SERIALIZE	1
124 #define EMX_RX_SERIALIZE	2
125 
126 #define EMX_NAME	"Intel(R) PRO/1000 "
127 
128 #define EMX_DEVICE(id)	\
129 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
130 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
131 
132 static const struct emx_device {
133 	uint16_t	vid;
134 	uint16_t	did;
135 	const char	*desc;
136 } emx_devices[] = {
137 	EMX_DEVICE(82571EB_COPPER),
138 	EMX_DEVICE(82571EB_FIBER),
139 	EMX_DEVICE(82571EB_SERDES),
140 	EMX_DEVICE(82571EB_SERDES_DUAL),
141 	EMX_DEVICE(82571EB_SERDES_QUAD),
142 	EMX_DEVICE(82571EB_QUAD_COPPER),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
145 	EMX_DEVICE(82571EB_QUAD_FIBER),
146 	EMX_DEVICE(82571PT_QUAD_COPPER),
147 
148 	EMX_DEVICE(82572EI_COPPER),
149 	EMX_DEVICE(82572EI_FIBER),
150 	EMX_DEVICE(82572EI_SERDES),
151 	EMX_DEVICE(82572EI),
152 
153 	EMX_DEVICE(82573E),
154 	EMX_DEVICE(82573E_IAMT),
155 	EMX_DEVICE(82573L),
156 
157 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
159 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
160 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
161 
162 	EMX_DEVICE(82574L),
163 	EMX_DEVICE(82574LA),
164 
165 	/* required last entry */
166 	EMX_DEVICE_NULL
167 };
168 
169 static int	emx_probe(device_t);
170 static int	emx_attach(device_t);
171 static int	emx_detach(device_t);
172 static int	emx_shutdown(device_t);
173 static int	emx_suspend(device_t);
174 static int	emx_resume(device_t);
175 
176 static void	emx_init(void *);
177 static void	emx_stop(struct emx_softc *);
178 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
179 static void	emx_start(struct ifnet *);
180 #ifdef IFPOLL_ENABLE
181 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
182 #endif
183 static void	emx_watchdog(struct ifnet *);
184 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
185 static int	emx_media_change(struct ifnet *);
186 static void	emx_timer(void *);
187 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
188 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
189 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
190 #ifdef INVARIANTS
191 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
192 		    boolean_t);
193 #endif
194 
195 static void	emx_intr(void *);
196 static void	emx_intr_mask(void *);
197 static void	emx_intr_body(struct emx_softc *, boolean_t);
198 static void	emx_rxeof(struct emx_softc *, int, int);
199 static void	emx_txeof(struct emx_softc *);
200 static void	emx_tx_collect(struct emx_softc *);
201 static void	emx_tx_purge(struct emx_softc *);
202 static void	emx_enable_intr(struct emx_softc *);
203 static void	emx_disable_intr(struct emx_softc *);
204 
205 static int	emx_dma_alloc(struct emx_softc *);
206 static void	emx_dma_free(struct emx_softc *);
207 static void	emx_init_tx_ring(struct emx_softc *);
208 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
209 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
210 static int	emx_create_tx_ring(struct emx_softc *);
211 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
212 static void	emx_destroy_tx_ring(struct emx_softc *, int);
213 static void	emx_destroy_rx_ring(struct emx_softc *,
214 		    struct emx_rxdata *, int);
215 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
216 static int	emx_encap(struct emx_softc *, struct mbuf **);
217 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
218 		    uint32_t *, uint32_t *);
219 static int	emx_tso_pullup(struct emx_softc *, struct mbuf **);
220 static int	emx_tso_setup(struct emx_softc *, struct mbuf *,
221 		    uint32_t *, uint32_t *);
222 
223 static int 	emx_is_valid_eaddr(const uint8_t *);
224 static int	emx_reset(struct emx_softc *);
225 static void	emx_setup_ifp(struct emx_softc *);
226 static void	emx_init_tx_unit(struct emx_softc *);
227 static void	emx_init_rx_unit(struct emx_softc *);
228 static void	emx_update_stats(struct emx_softc *);
229 static void	emx_set_promisc(struct emx_softc *);
230 static void	emx_disable_promisc(struct emx_softc *);
231 static void	emx_set_multi(struct emx_softc *);
232 static void	emx_update_link_status(struct emx_softc *);
233 static void	emx_smartspeed(struct emx_softc *);
234 static void	emx_set_itr(struct emx_softc *, uint32_t);
235 static void	emx_disable_aspm(struct emx_softc *);
236 
237 static void	emx_print_debug_info(struct emx_softc *);
238 static void	emx_print_nvm_info(struct emx_softc *);
239 static void	emx_print_hw_stats(struct emx_softc *);
240 
241 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
242 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
243 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
244 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
245 #ifdef IFPOLL_ENABLE
246 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
247 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
248 #endif
249 static void	emx_add_sysctl(struct emx_softc *);
250 
251 static void	emx_serialize_skipmain(struct emx_softc *);
252 static void	emx_deserialize_skipmain(struct emx_softc *);
253 
254 /* Management and WOL Support */
255 static void	emx_get_mgmt(struct emx_softc *);
256 static void	emx_rel_mgmt(struct emx_softc *);
257 static void	emx_get_hw_control(struct emx_softc *);
258 static void	emx_rel_hw_control(struct emx_softc *);
259 static void	emx_enable_wol(device_t);
260 
261 static device_method_t emx_methods[] = {
262 	/* Device interface */
263 	DEVMETHOD(device_probe,		emx_probe),
264 	DEVMETHOD(device_attach,	emx_attach),
265 	DEVMETHOD(device_detach,	emx_detach),
266 	DEVMETHOD(device_shutdown,	emx_shutdown),
267 	DEVMETHOD(device_suspend,	emx_suspend),
268 	DEVMETHOD(device_resume,	emx_resume),
269 	{ 0, 0 }
270 };
271 
272 static driver_t emx_driver = {
273 	"emx",
274 	emx_methods,
275 	sizeof(struct emx_softc),
276 };
277 
278 static devclass_t emx_devclass;
279 
280 DECLARE_DUMMY_MODULE(if_emx);
281 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
282 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
283 
284 /*
285  * Tunables
286  */
287 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
288 static int	emx_rxd = EMX_DEFAULT_RXD;
289 static int	emx_txd = EMX_DEFAULT_TXD;
290 static int	emx_smart_pwr_down = 0;
291 static int	emx_rxr = 0;
292 
293 /* Controls whether promiscuous also shows bad packets */
294 static int	emx_debug_sbp = 0;
295 
296 static int	emx_82573_workaround = 1;
297 static int	emx_msi_enable = 1;
298 
299 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
300 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
301 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
302 TUNABLE_INT("hw.emx.txd", &emx_txd);
303 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
304 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
305 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
306 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
307 
308 /* Global used in WOL setup with multiport cards */
309 static int	emx_global_quad_port_a = 0;
310 
311 /* Set this to one to display debug statistics */
312 static int	emx_display_debug_stats = 0;
313 
314 #if !defined(KTR_IF_EMX)
315 #define KTR_IF_EMX	KTR_ALL
316 #endif
317 KTR_INFO_MASTER(if_emx);
318 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
319 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
320 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
321 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
322 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
323 #define logif(name)	KTR_LOG(if_emx_ ## name)
324 
325 static __inline void
326 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
327 {
328 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
329 	/* DD bit must be cleared */
330 	rxd->rxd_staterr = 0;
331 }
332 
333 static __inline void
334 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
335 {
336 	/* Ignore Checksum bit is set */
337 	if (staterr & E1000_RXD_STAT_IXSM)
338 		return;
339 
340 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
341 	    E1000_RXD_STAT_IPCS)
342 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
343 
344 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
345 	    E1000_RXD_STAT_TCPCS) {
346 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
347 					   CSUM_PSEUDO_HDR |
348 					   CSUM_FRAG_NOT_CHECKED;
349 		mp->m_pkthdr.csum_data = htons(0xffff);
350 	}
351 }
352 
353 static __inline struct pktinfo *
354 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
355 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
356 {
357 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
358 	case EMX_RXDMRQ_IPV4_TCP:
359 		pi->pi_netisr = NETISR_IP;
360 		pi->pi_flags = 0;
361 		pi->pi_l3proto = IPPROTO_TCP;
362 		break;
363 
364 	case EMX_RXDMRQ_IPV6_TCP:
365 		pi->pi_netisr = NETISR_IPV6;
366 		pi->pi_flags = 0;
367 		pi->pi_l3proto = IPPROTO_TCP;
368 		break;
369 
370 	case EMX_RXDMRQ_IPV4:
371 		if (staterr & E1000_RXD_STAT_IXSM)
372 			return NULL;
373 
374 		if ((staterr &
375 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
376 		    E1000_RXD_STAT_TCPCS) {
377 			pi->pi_netisr = NETISR_IP;
378 			pi->pi_flags = 0;
379 			pi->pi_l3proto = IPPROTO_UDP;
380 			break;
381 		}
382 		/* FALL THROUGH */
383 	default:
384 		return NULL;
385 	}
386 
387 	m->m_flags |= M_HASH;
388 	m->m_pkthdr.hash = toeplitz_hash(hash);
389 	return pi;
390 }
391 
392 static int
393 emx_probe(device_t dev)
394 {
395 	const struct emx_device *d;
396 	uint16_t vid, did;
397 
398 	vid = pci_get_vendor(dev);
399 	did = pci_get_device(dev);
400 
401 	for (d = emx_devices; d->desc != NULL; ++d) {
402 		if (vid == d->vid && did == d->did) {
403 			device_set_desc(dev, d->desc);
404 			device_set_async_attach(dev, TRUE);
405 			return 0;
406 		}
407 	}
408 	return ENXIO;
409 }
410 
411 static int
412 emx_attach(device_t dev)
413 {
414 	struct emx_softc *sc = device_get_softc(dev);
415 	struct ifnet *ifp = &sc->arpcom.ac_if;
416 	int error = 0, i, throttle, msi_enable;
417 	u_int intr_flags;
418 	uint16_t eeprom_data, device_id, apme_mask;
419 	driver_intr_t *intr_func;
420 #ifdef IFPOLL_ENABLE
421 	int offset, offset_def;
422 #endif
423 
424 	lwkt_serialize_init(&sc->main_serialize);
425 	lwkt_serialize_init(&sc->tx_serialize);
426 	for (i = 0; i < EMX_NRX_RING; ++i)
427 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
428 
429 	i = 0;
430 	sc->serializes[i++] = &sc->main_serialize;
431 	sc->serializes[i++] = &sc->tx_serialize;
432 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
433 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
434 	KKASSERT(i == EMX_NSERIALIZE);
435 
436 	callout_init_mp(&sc->timer);
437 
438 	sc->dev = sc->osdep.dev = dev;
439 
440 	/*
441 	 * Determine hardware and mac type
442 	 */
443 	sc->hw.vendor_id = pci_get_vendor(dev);
444 	sc->hw.device_id = pci_get_device(dev);
445 	sc->hw.revision_id = pci_get_revid(dev);
446 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
447 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
448 
449 	if (e1000_set_mac_type(&sc->hw))
450 		return ENXIO;
451 
452 	/*
453 	 * Pullup extra 4bytes into the first data segment, see:
454 	 * 82571/82572 specification update errata #7
455 	 *
456 	 * NOTE:
457 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
458 	 * are pulled; mainly to keep rest of the data properly aligned.
459 	 */
460 	if (sc->hw.mac.type == e1000_82571 || sc->hw.mac.type == e1000_82572)
461 		sc->flags |= EMX_FLAG_TSO_PULLEX;
462 
463 	/* Enable bus mastering */
464 	pci_enable_busmaster(dev);
465 
466 	/*
467 	 * Allocate IO memory
468 	 */
469 	sc->memory_rid = EMX_BAR_MEM;
470 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
471 					    &sc->memory_rid, RF_ACTIVE);
472 	if (sc->memory == NULL) {
473 		device_printf(dev, "Unable to allocate bus resource: memory\n");
474 		error = ENXIO;
475 		goto fail;
476 	}
477 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
478 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
479 
480 	/* XXX This is quite goofy, it is not actually used */
481 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
482 
483 	/*
484 	 * Don't enable MSI-X on 82574, see:
485 	 * 82574 specification update errata #15
486 	 *
487 	 * Don't enable MSI on 82571/82572, see:
488 	 * 82571/82572 specification update errata #63
489 	 */
490 	msi_enable = emx_msi_enable;
491 	if (msi_enable &&
492 	    (sc->hw.mac.type == e1000_82571 ||
493 	     sc->hw.mac.type == e1000_82572))
494 		msi_enable = 0;
495 
496 	/*
497 	 * Allocate interrupt
498 	 */
499 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
500 	    &sc->intr_rid, &intr_flags);
501 
502 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
503 		int unshared;
504 
505 		unshared = device_getenv_int(dev, "irq.unshared", 0);
506 		if (!unshared) {
507 			sc->flags |= EMX_FLAG_SHARED_INTR;
508 			if (bootverbose)
509 				device_printf(dev, "IRQ shared\n");
510 		} else {
511 			intr_flags &= ~RF_SHAREABLE;
512 			if (bootverbose)
513 				device_printf(dev, "IRQ unshared\n");
514 		}
515 	}
516 
517 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
518 	    intr_flags);
519 	if (sc->intr_res == NULL) {
520 		device_printf(dev, "Unable to allocate bus resource: "
521 		    "interrupt\n");
522 		error = ENXIO;
523 		goto fail;
524 	}
525 
526 	/* Save PCI command register for Shared Code */
527 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
528 	sc->hw.back = &sc->osdep;
529 
530 	/* Do Shared Code initialization */
531 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
532 		device_printf(dev, "Setup of Shared code failed\n");
533 		error = ENXIO;
534 		goto fail;
535 	}
536 	e1000_get_bus_info(&sc->hw);
537 
538 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
539 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
540 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
541 
542 	/*
543 	 * Interrupt throttle rate
544 	 */
545 	throttle = device_getenv_int(dev, "int_throttle_ceil",
546 	    emx_int_throttle_ceil);
547 	if (throttle == 0) {
548 		sc->int_throttle_ceil = 0;
549 	} else {
550 		if (throttle < 0)
551 			throttle = EMX_DEFAULT_ITR;
552 
553 		/* Recalculate the tunable value to get the exact frequency. */
554 		throttle = 1000000000 / 256 / throttle;
555 
556 		/* Upper 16bits of ITR is reserved and should be zero */
557 		if (throttle & 0xffff0000)
558 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
559 
560 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
561 	}
562 
563 	e1000_init_script_state_82541(&sc->hw, TRUE);
564 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
565 
566 	/* Copper options */
567 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
568 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
569 		sc->hw.phy.disable_polarity_correction = FALSE;
570 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
571 	}
572 
573 	/* Set the frame limits assuming standard ethernet sized frames. */
574 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
575 	sc->min_frame_size = ETHER_MIN_LEN;
576 
577 	/* This controls when hardware reports transmit completion status. */
578 	sc->hw.mac.report_tx_early = 1;
579 
580 	/* Calculate # of RX rings */
581 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
582 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
583 
584 	/* Allocate RX/TX rings' busdma(9) stuffs */
585 	error = emx_dma_alloc(sc);
586 	if (error)
587 		goto fail;
588 
589 	/* Allocate multicast array memory. */
590 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
591 	    M_DEVBUF, M_WAITOK);
592 
593 	/* Indicate SOL/IDER usage */
594 	if (e1000_check_reset_block(&sc->hw)) {
595 		device_printf(dev,
596 		    "PHY reset is blocked due to SOL/IDER session.\n");
597 	}
598 
599 	/*
600 	 * Start from a known state, this is important in reading the
601 	 * nvm and mac from that.
602 	 */
603 	e1000_reset_hw(&sc->hw);
604 
605 	/* Make sure we have a good EEPROM before we read from it */
606 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
607 		/*
608 		 * Some PCI-E parts fail the first check due to
609 		 * the link being in sleep state, call it again,
610 		 * if it fails a second time its a real issue.
611 		 */
612 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
613 			device_printf(dev,
614 			    "The EEPROM Checksum Is Not Valid\n");
615 			error = EIO;
616 			goto fail;
617 		}
618 	}
619 
620 	/* Copy the permanent MAC address out of the EEPROM */
621 	if (e1000_read_mac_addr(&sc->hw) < 0) {
622 		device_printf(dev, "EEPROM read error while reading MAC"
623 		    " address\n");
624 		error = EIO;
625 		goto fail;
626 	}
627 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
628 		device_printf(dev, "Invalid MAC address\n");
629 		error = EIO;
630 		goto fail;
631 	}
632 
633 	/* Determine if we have to control management hardware */
634 	if (e1000_enable_mng_pass_thru(&sc->hw))
635 		sc->flags |= EMX_FLAG_HAS_MGMT;
636 
637 	/*
638 	 * Setup Wake-on-Lan
639 	 */
640 	apme_mask = EMX_EEPROM_APME;
641 	eeprom_data = 0;
642 	switch (sc->hw.mac.type) {
643 	case e1000_82573:
644 		sc->flags |= EMX_FLAG_HAS_AMT;
645 		/* FALL THROUGH */
646 
647 	case e1000_82571:
648 	case e1000_82572:
649 	case e1000_80003es2lan:
650 		if (sc->hw.bus.func == 1) {
651 			e1000_read_nvm(&sc->hw,
652 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
653 		} else {
654 			e1000_read_nvm(&sc->hw,
655 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
656 		}
657 		break;
658 
659 	default:
660 		e1000_read_nvm(&sc->hw,
661 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
662 		break;
663 	}
664 	if (eeprom_data & apme_mask)
665 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
666 
667 	/*
668          * We have the eeprom settings, now apply the special cases
669          * where the eeprom may be wrong or the board won't support
670          * wake on lan on a particular port
671 	 */
672 	device_id = pci_get_device(dev);
673         switch (device_id) {
674 	case E1000_DEV_ID_82571EB_FIBER:
675 		/*
676 		 * Wake events only supported on port A for dual fiber
677 		 * regardless of eeprom setting
678 		 */
679 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
680 		    E1000_STATUS_FUNC_1)
681 			sc->wol = 0;
682 		break;
683 
684 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
685 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
686 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
687                 /* if quad port sc, disable WoL on all but port A */
688 		if (emx_global_quad_port_a != 0)
689 			sc->wol = 0;
690 		/* Reset for multiple quad port adapters */
691 		if (++emx_global_quad_port_a == 4)
692 			emx_global_quad_port_a = 0;
693                 break;
694 	}
695 
696 	/* XXX disable wol */
697 	sc->wol = 0;
698 
699 #ifdef IFPOLL_ENABLE
700 	/*
701 	 * NPOLLING RX CPU offset
702 	 */
703 	if (sc->rx_ring_cnt == ncpus2) {
704 		offset = 0;
705 	} else {
706 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
707 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
708 		if (offset >= ncpus2 ||
709 		    offset % sc->rx_ring_cnt != 0) {
710 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
711 			    offset, offset_def);
712 			offset = offset_def;
713 		}
714 	}
715 	sc->rx_npoll_off = offset;
716 
717 	/*
718 	 * NPOLLING TX CPU offset
719 	 */
720 	offset_def = sc->rx_npoll_off;
721 	offset = device_getenv_int(dev, "npoll.txoff", offset_def);
722 	if (offset >= ncpus2) {
723 		device_printf(dev, "invalid npoll.txoff %d, use %d\n",
724 		    offset, offset_def);
725 		offset = offset_def;
726 	}
727 	sc->tx_npoll_off = offset;
728 #endif
729 
730 	/* Setup OS specific network interface */
731 	emx_setup_ifp(sc);
732 
733 	/* Add sysctl tree, must after em_setup_ifp() */
734 	emx_add_sysctl(sc);
735 
736 	/* Reset the hardware */
737 	error = emx_reset(sc);
738 	if (error) {
739 		device_printf(dev, "Unable to reset the hardware\n");
740 		goto fail;
741 	}
742 
743 	/* Initialize statistics */
744 	emx_update_stats(sc);
745 
746 	sc->hw.mac.get_link_status = 1;
747 	emx_update_link_status(sc);
748 
749 	sc->spare_tx_desc = EMX_TX_SPARE;
750 
751 	/*
752 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
753 	 * and tx_int_nsegs:
754 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
755 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
756 	 */
757 	sc->oact_tx_desc = sc->num_tx_desc / 8;
758 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
759 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
760 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
761 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
762 
763 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
764 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
765 		sc->tx_int_nsegs = sc->oact_tx_desc;
766 
767 	/* Non-AMT based hardware can now take control from firmware */
768 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
769 	    EMX_FLAG_HAS_MGMT)
770 		emx_get_hw_control(sc);
771 
772 	/*
773 	 * Missing Interrupt Following ICR read:
774 	 *
775 	 * 82571/82572 specification update errata #76
776 	 * 82573 specification update errata #31
777 	 * 82574 specification update errata #12
778 	 */
779 	intr_func = emx_intr;
780 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
781 	    (sc->hw.mac.type == e1000_82571 ||
782 	     sc->hw.mac.type == e1000_82572 ||
783 	     sc->hw.mac.type == e1000_82573 ||
784 	     sc->hw.mac.type == e1000_82574))
785 		intr_func = emx_intr_mask;
786 
787 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
788 			       &sc->intr_tag, &sc->main_serialize);
789 	if (error) {
790 		device_printf(dev, "Failed to register interrupt handler");
791 		ether_ifdetach(&sc->arpcom.ac_if);
792 		goto fail;
793 	}
794 
795 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
796 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
797 	return (0);
798 fail:
799 	emx_detach(dev);
800 	return (error);
801 }
802 
803 static int
804 emx_detach(device_t dev)
805 {
806 	struct emx_softc *sc = device_get_softc(dev);
807 
808 	if (device_is_attached(dev)) {
809 		struct ifnet *ifp = &sc->arpcom.ac_if;
810 
811 		ifnet_serialize_all(ifp);
812 
813 		emx_stop(sc);
814 
815 		e1000_phy_hw_reset(&sc->hw);
816 
817 		emx_rel_mgmt(sc);
818 		emx_rel_hw_control(sc);
819 
820 		if (sc->wol) {
821 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
822 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
823 			emx_enable_wol(dev);
824 		}
825 
826 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
827 
828 		ifnet_deserialize_all(ifp);
829 
830 		ether_ifdetach(ifp);
831 	} else if (sc->memory != NULL) {
832 		emx_rel_hw_control(sc);
833 	}
834 	bus_generic_detach(dev);
835 
836 	if (sc->intr_res != NULL) {
837 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
838 				     sc->intr_res);
839 	}
840 
841 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
842 		pci_release_msi(dev);
843 
844 	if (sc->memory != NULL) {
845 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
846 				     sc->memory);
847 	}
848 
849 	emx_dma_free(sc);
850 
851 	/* Free sysctl tree */
852 	if (sc->sysctl_tree != NULL)
853 		sysctl_ctx_free(&sc->sysctl_ctx);
854 
855 	if (sc->mta != NULL)
856 		kfree(sc->mta, M_DEVBUF);
857 
858 	return (0);
859 }
860 
861 static int
862 emx_shutdown(device_t dev)
863 {
864 	return emx_suspend(dev);
865 }
866 
867 static int
868 emx_suspend(device_t dev)
869 {
870 	struct emx_softc *sc = device_get_softc(dev);
871 	struct ifnet *ifp = &sc->arpcom.ac_if;
872 
873 	ifnet_serialize_all(ifp);
874 
875 	emx_stop(sc);
876 
877 	emx_rel_mgmt(sc);
878 	emx_rel_hw_control(sc);
879 
880 	if (sc->wol) {
881 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
882 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
883 		emx_enable_wol(dev);
884 	}
885 
886 	ifnet_deserialize_all(ifp);
887 
888 	return bus_generic_suspend(dev);
889 }
890 
891 static int
892 emx_resume(device_t dev)
893 {
894 	struct emx_softc *sc = device_get_softc(dev);
895 	struct ifnet *ifp = &sc->arpcom.ac_if;
896 
897 	ifnet_serialize_all(ifp);
898 
899 	emx_init(sc);
900 	emx_get_mgmt(sc);
901 	if_devstart(ifp);
902 
903 	ifnet_deserialize_all(ifp);
904 
905 	return bus_generic_resume(dev);
906 }
907 
908 static void
909 emx_start(struct ifnet *ifp)
910 {
911 	struct emx_softc *sc = ifp->if_softc;
912 	struct mbuf *m_head;
913 
914 	ASSERT_SERIALIZED(&sc->tx_serialize);
915 
916 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
917 		return;
918 
919 	if (!sc->link_active) {
920 		ifq_purge(&ifp->if_snd);
921 		return;
922 	}
923 
924 	while (!ifq_is_empty(&ifp->if_snd)) {
925 		/* Now do we at least have a minimal? */
926 		if (EMX_IS_OACTIVE(sc)) {
927 			emx_tx_collect(sc);
928 			if (EMX_IS_OACTIVE(sc)) {
929 				ifp->if_flags |= IFF_OACTIVE;
930 				sc->no_tx_desc_avail1++;
931 				break;
932 			}
933 		}
934 
935 		logif(pkt_txqueue);
936 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
937 		if (m_head == NULL)
938 			break;
939 
940 		if (emx_encap(sc, &m_head)) {
941 			ifp->if_oerrors++;
942 			emx_tx_collect(sc);
943 			continue;
944 		}
945 
946 		/* Send a copy of the frame to the BPF listener */
947 		ETHER_BPF_MTAP(ifp, m_head);
948 
949 		/* Set timeout in case hardware has problems transmitting. */
950 		ifp->if_timer = EMX_TX_TIMEOUT;
951 	}
952 }
953 
954 static int
955 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
956 {
957 	struct emx_softc *sc = ifp->if_softc;
958 	struct ifreq *ifr = (struct ifreq *)data;
959 	uint16_t eeprom_data = 0;
960 	int max_frame_size, mask, reinit;
961 	int error = 0;
962 
963 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
964 
965 	switch (command) {
966 	case SIOCSIFMTU:
967 		switch (sc->hw.mac.type) {
968 		case e1000_82573:
969 			/*
970 			 * 82573 only supports jumbo frames
971 			 * if ASPM is disabled.
972 			 */
973 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
974 				       &eeprom_data);
975 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
976 				max_frame_size = ETHER_MAX_LEN;
977 				break;
978 			}
979 			/* FALL THROUGH */
980 
981 		/* Limit Jumbo Frame size */
982 		case e1000_82571:
983 		case e1000_82572:
984 		case e1000_82574:
985 		case e1000_80003es2lan:
986 			max_frame_size = 9234;
987 			break;
988 
989 		default:
990 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
991 			break;
992 		}
993 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
994 		    ETHER_CRC_LEN) {
995 			error = EINVAL;
996 			break;
997 		}
998 
999 		ifp->if_mtu = ifr->ifr_mtu;
1000 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1001 				     ETHER_CRC_LEN;
1002 
1003 		if (ifp->if_flags & IFF_RUNNING)
1004 			emx_init(sc);
1005 		break;
1006 
1007 	case SIOCSIFFLAGS:
1008 		if (ifp->if_flags & IFF_UP) {
1009 			if ((ifp->if_flags & IFF_RUNNING)) {
1010 				if ((ifp->if_flags ^ sc->if_flags) &
1011 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1012 					emx_disable_promisc(sc);
1013 					emx_set_promisc(sc);
1014 				}
1015 			} else {
1016 				emx_init(sc);
1017 			}
1018 		} else if (ifp->if_flags & IFF_RUNNING) {
1019 			emx_stop(sc);
1020 		}
1021 		sc->if_flags = ifp->if_flags;
1022 		break;
1023 
1024 	case SIOCADDMULTI:
1025 	case SIOCDELMULTI:
1026 		if (ifp->if_flags & IFF_RUNNING) {
1027 			emx_disable_intr(sc);
1028 			emx_set_multi(sc);
1029 #ifdef IFPOLL_ENABLE
1030 			if (!(ifp->if_flags & IFF_NPOLLING))
1031 #endif
1032 				emx_enable_intr(sc);
1033 		}
1034 		break;
1035 
1036 	case SIOCSIFMEDIA:
1037 		/* Check SOL/IDER usage */
1038 		if (e1000_check_reset_block(&sc->hw)) {
1039 			device_printf(sc->dev, "Media change is"
1040 			    " blocked due to SOL/IDER session.\n");
1041 			break;
1042 		}
1043 		/* FALL THROUGH */
1044 
1045 	case SIOCGIFMEDIA:
1046 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1047 		break;
1048 
1049 	case SIOCSIFCAP:
1050 		reinit = 0;
1051 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1052 		if (mask & IFCAP_RXCSUM) {
1053 			ifp->if_capenable ^= IFCAP_RXCSUM;
1054 			reinit = 1;
1055 		}
1056 		if (mask & IFCAP_VLAN_HWTAGGING) {
1057 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1058 			reinit = 1;
1059 		}
1060 		if (mask & IFCAP_TXCSUM) {
1061 			ifp->if_capenable ^= IFCAP_TXCSUM;
1062 			if (ifp->if_capenable & IFCAP_TXCSUM)
1063 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1064 			else
1065 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1066 		}
1067 		if (mask & IFCAP_TSO) {
1068 			ifp->if_capenable ^= IFCAP_TSO;
1069 			if (ifp->if_capenable & IFCAP_TSO)
1070 				ifp->if_hwassist |= CSUM_TSO;
1071 			else
1072 				ifp->if_hwassist &= ~CSUM_TSO;
1073 		}
1074 		if (mask & IFCAP_RSS)
1075 			ifp->if_capenable ^= IFCAP_RSS;
1076 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1077 			emx_init(sc);
1078 		break;
1079 
1080 	default:
1081 		error = ether_ioctl(ifp, command, data);
1082 		break;
1083 	}
1084 	return (error);
1085 }
1086 
1087 static void
1088 emx_watchdog(struct ifnet *ifp)
1089 {
1090 	struct emx_softc *sc = ifp->if_softc;
1091 
1092 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1093 
1094 	/*
1095 	 * The timer is set to 5 every time start queues a packet.
1096 	 * Then txeof keeps resetting it as long as it cleans at
1097 	 * least one descriptor.
1098 	 * Finally, anytime all descriptors are clean the timer is
1099 	 * set to 0.
1100 	 */
1101 
1102 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
1103 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
1104 		/*
1105 		 * If we reach here, all TX jobs are completed and
1106 		 * the TX engine should have been idled for some time.
1107 		 * We don't need to call if_devstart() here.
1108 		 */
1109 		ifp->if_flags &= ~IFF_OACTIVE;
1110 		ifp->if_timer = 0;
1111 		return;
1112 	}
1113 
1114 	/*
1115 	 * If we are in this routine because of pause frames, then
1116 	 * don't reset the hardware.
1117 	 */
1118 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1119 		ifp->if_timer = EMX_TX_TIMEOUT;
1120 		return;
1121 	}
1122 
1123 	if (e1000_check_for_link(&sc->hw) == 0)
1124 		if_printf(ifp, "watchdog timeout -- resetting\n");
1125 
1126 	ifp->if_oerrors++;
1127 	sc->watchdog_events++;
1128 
1129 	emx_init(sc);
1130 
1131 	if (!ifq_is_empty(&ifp->if_snd))
1132 		if_devstart(ifp);
1133 }
1134 
1135 static void
1136 emx_init(void *xsc)
1137 {
1138 	struct emx_softc *sc = xsc;
1139 	struct ifnet *ifp = &sc->arpcom.ac_if;
1140 	device_t dev = sc->dev;
1141 	uint32_t pba;
1142 	int i;
1143 
1144 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1145 
1146 	emx_stop(sc);
1147 
1148 	/*
1149 	 * Packet Buffer Allocation (PBA)
1150 	 * Writing PBA sets the receive portion of the buffer
1151 	 * the remainder is used for the transmit buffer.
1152 	 */
1153 	switch (sc->hw.mac.type) {
1154 	/* Total Packet Buffer on these is 48K */
1155 	case e1000_82571:
1156 	case e1000_82572:
1157 	case e1000_80003es2lan:
1158 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1159 		break;
1160 
1161 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1162 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1163 		break;
1164 
1165 	case e1000_82574:
1166 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1167 		break;
1168 
1169 	default:
1170 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1171 		if (sc->max_frame_size > 8192)
1172 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1173 		else
1174 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1175 	}
1176 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1177 
1178 	/* Get the latest mac address, User can use a LAA */
1179         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1180 
1181 	/* Put the address into the Receive Address Array */
1182 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1183 
1184 	/*
1185 	 * With the 82571 sc, RAR[0] may be overwritten
1186 	 * when the other port is reset, we make a duplicate
1187 	 * in RAR[14] for that eventuality, this assures
1188 	 * the interface continues to function.
1189 	 */
1190 	if (sc->hw.mac.type == e1000_82571) {
1191 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1192 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1193 		    E1000_RAR_ENTRIES - 1);
1194 	}
1195 
1196 	/* Initialize the hardware */
1197 	if (emx_reset(sc)) {
1198 		device_printf(dev, "Unable to reset the hardware\n");
1199 		/* XXX emx_stop()? */
1200 		return;
1201 	}
1202 	emx_update_link_status(sc);
1203 
1204 	/* Setup VLAN support, basic and offload if available */
1205 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1206 
1207 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1208 		uint32_t ctrl;
1209 
1210 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1211 		ctrl |= E1000_CTRL_VME;
1212 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1213 	}
1214 
1215 	/* Configure for OS presence */
1216 	emx_get_mgmt(sc);
1217 
1218 	/* Prepare transmit descriptors and buffers */
1219 	emx_init_tx_ring(sc);
1220 	emx_init_tx_unit(sc);
1221 
1222 	/* Setup Multicast table */
1223 	emx_set_multi(sc);
1224 
1225 	/* Prepare receive descriptors and buffers */
1226 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1227 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1228 			device_printf(dev,
1229 			    "Could not setup receive structures\n");
1230 			emx_stop(sc);
1231 			return;
1232 		}
1233 	}
1234 	emx_init_rx_unit(sc);
1235 
1236 	/* Don't lose promiscuous settings */
1237 	emx_set_promisc(sc);
1238 
1239 	ifp->if_flags |= IFF_RUNNING;
1240 	ifp->if_flags &= ~IFF_OACTIVE;
1241 
1242 	callout_reset(&sc->timer, hz, emx_timer, sc);
1243 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1244 
1245 	/* MSI/X configuration for 82574 */
1246 	if (sc->hw.mac.type == e1000_82574) {
1247 		int tmp;
1248 
1249 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1250 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1251 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1252 		/*
1253 		 * XXX MSIX
1254 		 * Set the IVAR - interrupt vector routing.
1255 		 * Each nibble represents a vector, high bit
1256 		 * is enable, other 3 bits are the MSIX table
1257 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1258 		 * Link (other) to 2, hence the magic number.
1259 		 */
1260 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1261 	}
1262 
1263 #ifdef IFPOLL_ENABLE
1264 	/*
1265 	 * Only enable interrupts if we are not polling, make sure
1266 	 * they are off otherwise.
1267 	 */
1268 	if (ifp->if_flags & IFF_NPOLLING)
1269 		emx_disable_intr(sc);
1270 	else
1271 #endif /* IFPOLL_ENABLE */
1272 		emx_enable_intr(sc);
1273 
1274 	/* AMT based hardware can now take control from firmware */
1275 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1276 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1277 		emx_get_hw_control(sc);
1278 
1279 	/* Don't reset the phy next time init gets called */
1280 	sc->hw.phy.reset_disable = TRUE;
1281 }
1282 
1283 static void
1284 emx_intr(void *xsc)
1285 {
1286 	emx_intr_body(xsc, TRUE);
1287 }
1288 
1289 static void
1290 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1291 {
1292 	struct ifnet *ifp = &sc->arpcom.ac_if;
1293 	uint32_t reg_icr;
1294 
1295 	logif(intr_beg);
1296 	ASSERT_SERIALIZED(&sc->main_serialize);
1297 
1298 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1299 
1300 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1301 		logif(intr_end);
1302 		return;
1303 	}
1304 
1305 	/*
1306 	 * XXX: some laptops trigger several spurious interrupts
1307 	 * on emx(4) when in the resume cycle. The ICR register
1308 	 * reports all-ones value in this case. Processing such
1309 	 * interrupts would lead to a freeze. I don't know why.
1310 	 */
1311 	if (reg_icr == 0xffffffff) {
1312 		logif(intr_end);
1313 		return;
1314 	}
1315 
1316 	if (ifp->if_flags & IFF_RUNNING) {
1317 		if (reg_icr &
1318 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1319 			int i;
1320 
1321 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1322 				lwkt_serialize_enter(
1323 				&sc->rx_data[i].rx_serialize);
1324 				emx_rxeof(sc, i, -1);
1325 				lwkt_serialize_exit(
1326 				&sc->rx_data[i].rx_serialize);
1327 			}
1328 		}
1329 		if (reg_icr & E1000_ICR_TXDW) {
1330 			lwkt_serialize_enter(&sc->tx_serialize);
1331 			emx_txeof(sc);
1332 			if (!ifq_is_empty(&ifp->if_snd))
1333 				if_devstart(ifp);
1334 			lwkt_serialize_exit(&sc->tx_serialize);
1335 		}
1336 	}
1337 
1338 	/* Link status change */
1339 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1340 		emx_serialize_skipmain(sc);
1341 
1342 		callout_stop(&sc->timer);
1343 		sc->hw.mac.get_link_status = 1;
1344 		emx_update_link_status(sc);
1345 
1346 		/* Deal with TX cruft when link lost */
1347 		emx_tx_purge(sc);
1348 
1349 		callout_reset(&sc->timer, hz, emx_timer, sc);
1350 
1351 		emx_deserialize_skipmain(sc);
1352 	}
1353 
1354 	if (reg_icr & E1000_ICR_RXO)
1355 		sc->rx_overruns++;
1356 
1357 	logif(intr_end);
1358 }
1359 
1360 static void
1361 emx_intr_mask(void *xsc)
1362 {
1363 	struct emx_softc *sc = xsc;
1364 
1365 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1366 	/*
1367 	 * NOTE:
1368 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1369 	 * so don't check it.
1370 	 */
1371 	emx_intr_body(sc, FALSE);
1372 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1373 }
1374 
1375 static void
1376 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1377 {
1378 	struct emx_softc *sc = ifp->if_softc;
1379 
1380 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1381 
1382 	emx_update_link_status(sc);
1383 
1384 	ifmr->ifm_status = IFM_AVALID;
1385 	ifmr->ifm_active = IFM_ETHER;
1386 
1387 	if (!sc->link_active)
1388 		return;
1389 
1390 	ifmr->ifm_status |= IFM_ACTIVE;
1391 
1392 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1393 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1394 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1395 	} else {
1396 		switch (sc->link_speed) {
1397 		case 10:
1398 			ifmr->ifm_active |= IFM_10_T;
1399 			break;
1400 		case 100:
1401 			ifmr->ifm_active |= IFM_100_TX;
1402 			break;
1403 
1404 		case 1000:
1405 			ifmr->ifm_active |= IFM_1000_T;
1406 			break;
1407 		}
1408 		if (sc->link_duplex == FULL_DUPLEX)
1409 			ifmr->ifm_active |= IFM_FDX;
1410 		else
1411 			ifmr->ifm_active |= IFM_HDX;
1412 	}
1413 }
1414 
1415 static int
1416 emx_media_change(struct ifnet *ifp)
1417 {
1418 	struct emx_softc *sc = ifp->if_softc;
1419 	struct ifmedia *ifm = &sc->media;
1420 
1421 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1422 
1423 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1424 		return (EINVAL);
1425 
1426 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1427 	case IFM_AUTO:
1428 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1429 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1430 		break;
1431 
1432 	case IFM_1000_LX:
1433 	case IFM_1000_SX:
1434 	case IFM_1000_T:
1435 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1436 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1437 		break;
1438 
1439 	case IFM_100_TX:
1440 		sc->hw.mac.autoneg = FALSE;
1441 		sc->hw.phy.autoneg_advertised = 0;
1442 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1443 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1444 		else
1445 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1446 		break;
1447 
1448 	case IFM_10_T:
1449 		sc->hw.mac.autoneg = FALSE;
1450 		sc->hw.phy.autoneg_advertised = 0;
1451 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1452 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1453 		else
1454 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1455 		break;
1456 
1457 	default:
1458 		if_printf(ifp, "Unsupported media type\n");
1459 		break;
1460 	}
1461 
1462 	/*
1463 	 * As the speed/duplex settings my have changed we need to
1464 	 * reset the PHY.
1465 	 */
1466 	sc->hw.phy.reset_disable = FALSE;
1467 
1468 	emx_init(sc);
1469 
1470 	return (0);
1471 }
1472 
1473 static int
1474 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1475 {
1476 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1477 	bus_dmamap_t map;
1478 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1479 	struct e1000_tx_desc *ctxd = NULL;
1480 	struct mbuf *m_head = *m_headp;
1481 	uint32_t txd_upper, txd_lower, cmd = 0;
1482 	int maxsegs, nsegs, i, j, first, last = 0, error;
1483 
1484 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1485 		error = emx_tso_pullup(sc, m_headp);
1486 		if (error)
1487 			return error;
1488 		m_head = *m_headp;
1489 	}
1490 
1491 	txd_upper = txd_lower = 0;
1492 
1493 	/*
1494 	 * Capture the first descriptor index, this descriptor
1495 	 * will have the index of the EOP which is the only one
1496 	 * that now gets a DONE bit writeback.
1497 	 */
1498 	first = sc->next_avail_tx_desc;
1499 	tx_buffer = &sc->tx_buf[first];
1500 	tx_buffer_mapped = tx_buffer;
1501 	map = tx_buffer->map;
1502 
1503 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1504 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc"));
1505 	if (maxsegs > EMX_MAX_SCATTER)
1506 		maxsegs = EMX_MAX_SCATTER;
1507 
1508 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1509 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1510 	if (error) {
1511 		if (error == ENOBUFS)
1512 			sc->mbuf_alloc_failed++;
1513 		else
1514 			sc->no_tx_dma_setup++;
1515 
1516 		m_freem(*m_headp);
1517 		*m_headp = NULL;
1518 		return error;
1519 	}
1520         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1521 
1522 	m_head = *m_headp;
1523 	sc->tx_nsegs += nsegs;
1524 
1525 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1526 		/* TSO will consume one TX desc */
1527 		sc->tx_nsegs += emx_tso_setup(sc, m_head,
1528 		    &txd_upper, &txd_lower);
1529 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1530 		/* TX csum offloading will consume one TX desc */
1531 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1532 	}
1533 	i = sc->next_avail_tx_desc;
1534 
1535 	/* Set up our transmit descriptors */
1536 	for (j = 0; j < nsegs; j++) {
1537 		tx_buffer = &sc->tx_buf[i];
1538 		ctxd = &sc->tx_desc_base[i];
1539 
1540 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1541 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1542 					   txd_lower | segs[j].ds_len);
1543 		ctxd->upper.data = htole32(txd_upper);
1544 
1545 		last = i;
1546 		if (++i == sc->num_tx_desc)
1547 			i = 0;
1548 	}
1549 
1550 	sc->next_avail_tx_desc = i;
1551 
1552 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1553 	sc->num_tx_desc_avail -= nsegs;
1554 
1555         /* Handle VLAN tag */
1556 	if (m_head->m_flags & M_VLANTAG) {
1557 		/* Set the vlan id. */
1558 		ctxd->upper.fields.special =
1559 		    htole16(m_head->m_pkthdr.ether_vlantag);
1560 
1561 		/* Tell hardware to add tag */
1562 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1563 	}
1564 
1565 	tx_buffer->m_head = m_head;
1566 	tx_buffer_mapped->map = tx_buffer->map;
1567 	tx_buffer->map = map;
1568 
1569 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1570 		sc->tx_nsegs = 0;
1571 
1572 		/*
1573 		 * Report Status (RS) is turned on
1574 		 * every tx_int_nsegs descriptors.
1575 		 */
1576 		cmd = E1000_TXD_CMD_RS;
1577 
1578 		/*
1579 		 * Keep track of the descriptor, which will
1580 		 * be written back by hardware.
1581 		 */
1582 		sc->tx_dd[sc->tx_dd_tail] = last;
1583 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1584 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1585 	}
1586 
1587 	/*
1588 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1589 	 */
1590 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1591 
1592 	/*
1593 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1594 	 * the E1000 that this frame is available to transmit.
1595 	 */
1596 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1597 
1598 	return (0);
1599 }
1600 
1601 static void
1602 emx_set_promisc(struct emx_softc *sc)
1603 {
1604 	struct ifnet *ifp = &sc->arpcom.ac_if;
1605 	uint32_t reg_rctl;
1606 
1607 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1608 
1609 	if (ifp->if_flags & IFF_PROMISC) {
1610 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1611 		/* Turn this on if you want to see bad packets */
1612 		if (emx_debug_sbp)
1613 			reg_rctl |= E1000_RCTL_SBP;
1614 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1615 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1616 		reg_rctl |= E1000_RCTL_MPE;
1617 		reg_rctl &= ~E1000_RCTL_UPE;
1618 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1619 	}
1620 }
1621 
1622 static void
1623 emx_disable_promisc(struct emx_softc *sc)
1624 {
1625 	uint32_t reg_rctl;
1626 
1627 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1628 
1629 	reg_rctl &= ~E1000_RCTL_UPE;
1630 	reg_rctl &= ~E1000_RCTL_MPE;
1631 	reg_rctl &= ~E1000_RCTL_SBP;
1632 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1633 }
1634 
1635 static void
1636 emx_set_multi(struct emx_softc *sc)
1637 {
1638 	struct ifnet *ifp = &sc->arpcom.ac_if;
1639 	struct ifmultiaddr *ifma;
1640 	uint32_t reg_rctl = 0;
1641 	uint8_t *mta;
1642 	int mcnt = 0;
1643 
1644 	mta = sc->mta;
1645 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1646 
1647 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1648 		if (ifma->ifma_addr->sa_family != AF_LINK)
1649 			continue;
1650 
1651 		if (mcnt == EMX_MCAST_ADDR_MAX)
1652 			break;
1653 
1654 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1655 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1656 		mcnt++;
1657 	}
1658 
1659 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1660 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1661 		reg_rctl |= E1000_RCTL_MPE;
1662 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1663 	} else {
1664 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1665 	}
1666 }
1667 
1668 /*
1669  * This routine checks for link status and updates statistics.
1670  */
1671 static void
1672 emx_timer(void *xsc)
1673 {
1674 	struct emx_softc *sc = xsc;
1675 	struct ifnet *ifp = &sc->arpcom.ac_if;
1676 
1677 	lwkt_serialize_enter(&sc->main_serialize);
1678 
1679 	emx_update_link_status(sc);
1680 	emx_update_stats(sc);
1681 
1682 	/* Reset LAA into RAR[0] on 82571 */
1683 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1684 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1685 
1686 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1687 		emx_print_hw_stats(sc);
1688 
1689 	emx_smartspeed(sc);
1690 
1691 	callout_reset(&sc->timer, hz, emx_timer, sc);
1692 
1693 	lwkt_serialize_exit(&sc->main_serialize);
1694 }
1695 
1696 static void
1697 emx_update_link_status(struct emx_softc *sc)
1698 {
1699 	struct e1000_hw *hw = &sc->hw;
1700 	struct ifnet *ifp = &sc->arpcom.ac_if;
1701 	device_t dev = sc->dev;
1702 	uint32_t link_check = 0;
1703 
1704 	/* Get the cached link value or read phy for real */
1705 	switch (hw->phy.media_type) {
1706 	case e1000_media_type_copper:
1707 		if (hw->mac.get_link_status) {
1708 			/* Do the work to read phy */
1709 			e1000_check_for_link(hw);
1710 			link_check = !hw->mac.get_link_status;
1711 			if (link_check) /* ESB2 fix */
1712 				e1000_cfg_on_link_up(hw);
1713 		} else {
1714 			link_check = TRUE;
1715 		}
1716 		break;
1717 
1718 	case e1000_media_type_fiber:
1719 		e1000_check_for_link(hw);
1720 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1721 		break;
1722 
1723 	case e1000_media_type_internal_serdes:
1724 		e1000_check_for_link(hw);
1725 		link_check = sc->hw.mac.serdes_has_link;
1726 		break;
1727 
1728 	case e1000_media_type_unknown:
1729 	default:
1730 		break;
1731 	}
1732 
1733 	/* Now check for a transition */
1734 	if (link_check && sc->link_active == 0) {
1735 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1736 		    &sc->link_duplex);
1737 
1738 		/*
1739 		 * Check if we should enable/disable SPEED_MODE bit on
1740 		 * 82571EB/82572EI
1741 		 */
1742 		if (sc->link_speed != SPEED_1000 &&
1743 		    (hw->mac.type == e1000_82571 ||
1744 		     hw->mac.type == e1000_82572)) {
1745 			int tarc0;
1746 
1747 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1748 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1749 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1750 		}
1751 		if (bootverbose) {
1752 			device_printf(dev, "Link is up %d Mbps %s\n",
1753 			    sc->link_speed,
1754 			    ((sc->link_duplex == FULL_DUPLEX) ?
1755 			    "Full Duplex" : "Half Duplex"));
1756 		}
1757 		sc->link_active = 1;
1758 		sc->smartspeed = 0;
1759 		ifp->if_baudrate = sc->link_speed * 1000000;
1760 		ifp->if_link_state = LINK_STATE_UP;
1761 		if_link_state_change(ifp);
1762 	} else if (!link_check && sc->link_active == 1) {
1763 		ifp->if_baudrate = sc->link_speed = 0;
1764 		sc->link_duplex = 0;
1765 		if (bootverbose)
1766 			device_printf(dev, "Link is Down\n");
1767 		sc->link_active = 0;
1768 #if 0
1769 		/* Link down, disable watchdog */
1770 		if->if_timer = 0;
1771 #endif
1772 		ifp->if_link_state = LINK_STATE_DOWN;
1773 		if_link_state_change(ifp);
1774 	}
1775 }
1776 
1777 static void
1778 emx_stop(struct emx_softc *sc)
1779 {
1780 	struct ifnet *ifp = &sc->arpcom.ac_if;
1781 	int i;
1782 
1783 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1784 
1785 	emx_disable_intr(sc);
1786 
1787 	callout_stop(&sc->timer);
1788 
1789 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1790 	ifp->if_timer = 0;
1791 
1792 	/*
1793 	 * Disable multiple receive queues.
1794 	 *
1795 	 * NOTE:
1796 	 * We should disable multiple receive queues before
1797 	 * resetting the hardware.
1798 	 */
1799 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1800 
1801 	e1000_reset_hw(&sc->hw);
1802 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1803 
1804 	for (i = 0; i < sc->num_tx_desc; i++) {
1805 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1806 
1807 		if (tx_buffer->m_head != NULL) {
1808 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1809 			m_freem(tx_buffer->m_head);
1810 			tx_buffer->m_head = NULL;
1811 		}
1812 	}
1813 
1814 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1815 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1816 
1817 	sc->csum_flags = 0;
1818 	sc->csum_lhlen = 0;
1819 	sc->csum_iphlen = 0;
1820 	sc->csum_thlen = 0;
1821 	sc->csum_mss = 0;
1822 	sc->csum_pktlen = 0;
1823 
1824 	sc->tx_dd_head = 0;
1825 	sc->tx_dd_tail = 0;
1826 	sc->tx_nsegs = 0;
1827 }
1828 
1829 static int
1830 emx_reset(struct emx_softc *sc)
1831 {
1832 	device_t dev = sc->dev;
1833 	uint16_t rx_buffer_size;
1834 
1835 	/* Set up smart power down as default off on newer adapters. */
1836 	if (!emx_smart_pwr_down &&
1837 	    (sc->hw.mac.type == e1000_82571 ||
1838 	     sc->hw.mac.type == e1000_82572)) {
1839 		uint16_t phy_tmp = 0;
1840 
1841 		/* Speed up time to link by disabling smart power down. */
1842 		e1000_read_phy_reg(&sc->hw,
1843 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1844 		phy_tmp &= ~IGP02E1000_PM_SPD;
1845 		e1000_write_phy_reg(&sc->hw,
1846 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1847 	}
1848 
1849 	/*
1850 	 * These parameters control the automatic generation (Tx) and
1851 	 * response (Rx) to Ethernet PAUSE frames.
1852 	 * - High water mark should allow for at least two frames to be
1853 	 *   received after sending an XOFF.
1854 	 * - Low water mark works best when it is very near the high water mark.
1855 	 *   This allows the receiver to restart by sending XON when it has
1856 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1857 	 *   restart after one full frame is pulled from the buffer. There
1858 	 *   could be several smaller frames in the buffer and if so they will
1859 	 *   not trigger the XON until their total number reduces the buffer
1860 	 *   by 1500.
1861 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1862 	 */
1863 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1864 
1865 	sc->hw.fc.high_water = rx_buffer_size -
1866 			       roundup2(sc->max_frame_size, 1024);
1867 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1868 
1869 	if (sc->hw.mac.type == e1000_80003es2lan)
1870 		sc->hw.fc.pause_time = 0xFFFF;
1871 	else
1872 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1873 	sc->hw.fc.send_xon = TRUE;
1874 	sc->hw.fc.requested_mode = e1000_fc_full;
1875 
1876 	/* Issue a global reset */
1877 	e1000_reset_hw(&sc->hw);
1878 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1879 	emx_disable_aspm(sc);
1880 
1881 	if (e1000_init_hw(&sc->hw) < 0) {
1882 		device_printf(dev, "Hardware Initialization Failed\n");
1883 		return (EIO);
1884 	}
1885 
1886 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1887 	e1000_get_phy_info(&sc->hw);
1888 	e1000_check_for_link(&sc->hw);
1889 
1890 	return (0);
1891 }
1892 
1893 static void
1894 emx_setup_ifp(struct emx_softc *sc)
1895 {
1896 	struct ifnet *ifp = &sc->arpcom.ac_if;
1897 
1898 	if_initname(ifp, device_get_name(sc->dev),
1899 		    device_get_unit(sc->dev));
1900 	ifp->if_softc = sc;
1901 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1902 	ifp->if_init =  emx_init;
1903 	ifp->if_ioctl = emx_ioctl;
1904 	ifp->if_start = emx_start;
1905 #ifdef IFPOLL_ENABLE
1906 	ifp->if_npoll = emx_npoll;
1907 #endif
1908 	ifp->if_watchdog = emx_watchdog;
1909 	ifp->if_serialize = emx_serialize;
1910 	ifp->if_deserialize = emx_deserialize;
1911 	ifp->if_tryserialize = emx_tryserialize;
1912 #ifdef INVARIANTS
1913 	ifp->if_serialize_assert = emx_serialize_assert;
1914 #endif
1915 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1916 	ifq_set_ready(&ifp->if_snd);
1917 
1918 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1919 
1920 	ifp->if_capabilities = IFCAP_HWCSUM |
1921 			       IFCAP_VLAN_HWTAGGING |
1922 			       IFCAP_VLAN_MTU |
1923 			       IFCAP_TSO;
1924 	if (sc->rx_ring_cnt > 1)
1925 		ifp->if_capabilities |= IFCAP_RSS;
1926 	ifp->if_capenable = ifp->if_capabilities;
1927 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
1928 
1929 	/*
1930 	 * Tell the upper layer(s) we support long frames.
1931 	 */
1932 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1933 
1934 	/*
1935 	 * Specify the media types supported by this sc and register
1936 	 * callbacks to update media and link information
1937 	 */
1938 	ifmedia_init(&sc->media, IFM_IMASK,
1939 		     emx_media_change, emx_media_status);
1940 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1941 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1942 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1943 			    0, NULL);
1944 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1945 	} else {
1946 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1947 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1948 			    0, NULL);
1949 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1950 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1951 			    0, NULL);
1952 		if (sc->hw.phy.type != e1000_phy_ife) {
1953 			ifmedia_add(&sc->media,
1954 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1955 			ifmedia_add(&sc->media,
1956 				IFM_ETHER | IFM_1000_T, 0, NULL);
1957 		}
1958 	}
1959 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1960 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1961 }
1962 
1963 /*
1964  * Workaround for SmartSpeed on 82541 and 82547 controllers
1965  */
1966 static void
1967 emx_smartspeed(struct emx_softc *sc)
1968 {
1969 	uint16_t phy_tmp;
1970 
1971 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1972 	    sc->hw.mac.autoneg == 0 ||
1973 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1974 		return;
1975 
1976 	if (sc->smartspeed == 0) {
1977 		/*
1978 		 * If Master/Slave config fault is asserted twice,
1979 		 * we assume back-to-back
1980 		 */
1981 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1982 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1983 			return;
1984 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1985 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1986 			e1000_read_phy_reg(&sc->hw,
1987 			    PHY_1000T_CTRL, &phy_tmp);
1988 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1989 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1990 				e1000_write_phy_reg(&sc->hw,
1991 				    PHY_1000T_CTRL, phy_tmp);
1992 				sc->smartspeed++;
1993 				if (sc->hw.mac.autoneg &&
1994 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1995 				    !e1000_read_phy_reg(&sc->hw,
1996 				     PHY_CONTROL, &phy_tmp)) {
1997 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1998 						   MII_CR_RESTART_AUTO_NEG;
1999 					e1000_write_phy_reg(&sc->hw,
2000 					    PHY_CONTROL, phy_tmp);
2001 				}
2002 			}
2003 		}
2004 		return;
2005 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2006 		/* If still no link, perhaps using 2/3 pair cable */
2007 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2008 		phy_tmp |= CR_1000T_MS_ENABLE;
2009 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2010 		if (sc->hw.mac.autoneg &&
2011 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2012 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2013 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2014 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2015 		}
2016 	}
2017 
2018 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2019 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2020 		sc->smartspeed = 0;
2021 }
2022 
2023 static int
2024 emx_create_tx_ring(struct emx_softc *sc)
2025 {
2026 	device_t dev = sc->dev;
2027 	struct emx_txbuf *tx_buffer;
2028 	int error, i, tsize, ntxd;
2029 
2030 	/*
2031 	 * Validate number of transmit descriptors.  It must not exceed
2032 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2033 	 */
2034 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2035 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2036 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2037 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2038 		    EMX_DEFAULT_TXD, ntxd);
2039 		sc->num_tx_desc = EMX_DEFAULT_TXD;
2040 	} else {
2041 		sc->num_tx_desc = ntxd;
2042 	}
2043 
2044 	/*
2045 	 * Allocate Transmit Descriptor ring
2046 	 */
2047 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
2048 			 EMX_DBA_ALIGN);
2049 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
2050 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2051 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
2052 				&sc->tx_desc_paddr);
2053 	if (sc->tx_desc_base == NULL) {
2054 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2055 		return ENOMEM;
2056 	}
2057 
2058 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
2059 			     M_DEVBUF, M_WAITOK | M_ZERO);
2060 
2061 	/*
2062 	 * Create DMA tags for tx buffers
2063 	 */
2064 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2065 			1, 0,			/* alignment, bounds */
2066 			BUS_SPACE_MAXADDR,	/* lowaddr */
2067 			BUS_SPACE_MAXADDR,	/* highaddr */
2068 			NULL, NULL,		/* filter, filterarg */
2069 			EMX_TSO_SIZE,		/* maxsize */
2070 			EMX_MAX_SCATTER,	/* nsegments */
2071 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2072 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2073 			BUS_DMA_ONEBPAGE,	/* flags */
2074 			&sc->txtag);
2075 	if (error) {
2076 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2077 		kfree(sc->tx_buf, M_DEVBUF);
2078 		sc->tx_buf = NULL;
2079 		return error;
2080 	}
2081 
2082 	/*
2083 	 * Create DMA maps for tx buffers
2084 	 */
2085 	for (i = 0; i < sc->num_tx_desc; i++) {
2086 		tx_buffer = &sc->tx_buf[i];
2087 
2088 		error = bus_dmamap_create(sc->txtag,
2089 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2090 					  &tx_buffer->map);
2091 		if (error) {
2092 			device_printf(dev, "Unable to create TX DMA map\n");
2093 			emx_destroy_tx_ring(sc, i);
2094 			return error;
2095 		}
2096 	}
2097 	return (0);
2098 }
2099 
2100 static void
2101 emx_init_tx_ring(struct emx_softc *sc)
2102 {
2103 	/* Clear the old ring contents */
2104 	bzero(sc->tx_desc_base,
2105 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
2106 
2107 	/* Reset state */
2108 	sc->next_avail_tx_desc = 0;
2109 	sc->next_tx_to_clean = 0;
2110 	sc->num_tx_desc_avail = sc->num_tx_desc;
2111 }
2112 
2113 static void
2114 emx_init_tx_unit(struct emx_softc *sc)
2115 {
2116 	uint32_t tctl, tarc, tipg = 0;
2117 	uint64_t bus_addr;
2118 
2119 	/* Setup the Base and Length of the Tx Descriptor Ring */
2120 	bus_addr = sc->tx_desc_paddr;
2121 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
2122 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
2123 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
2124 	    (uint32_t)(bus_addr >> 32));
2125 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2126 	    (uint32_t)bus_addr);
2127 	/* Setup the HW Tx Head and Tail descriptor pointers */
2128 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2129 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2130 
2131 	/* Set the default values for the Tx Inter Packet Gap timer */
2132 	switch (sc->hw.mac.type) {
2133 	case e1000_80003es2lan:
2134 		tipg = DEFAULT_82543_TIPG_IPGR1;
2135 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2136 		    E1000_TIPG_IPGR2_SHIFT;
2137 		break;
2138 
2139 	default:
2140 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2141 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2142 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2143 		else
2144 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2145 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2146 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2147 		break;
2148 	}
2149 
2150 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2151 
2152 	/* NOTE: 0 is not allowed for TIDV */
2153 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2154 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2155 
2156 	if (sc->hw.mac.type == e1000_82571 ||
2157 	    sc->hw.mac.type == e1000_82572) {
2158 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2159 		tarc |= EMX_TARC_SPEED_MODE;
2160 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2161 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2162 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2163 		tarc |= 1;
2164 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2165 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2166 		tarc |= 1;
2167 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2168 	}
2169 
2170 	/* Program the Transmit Control Register */
2171 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2172 	tctl &= ~E1000_TCTL_CT;
2173 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2174 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2175 	tctl |= E1000_TCTL_MULR;
2176 
2177 	/* This write will effectively turn on the transmit unit. */
2178 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2179 }
2180 
2181 static void
2182 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2183 {
2184 	struct emx_txbuf *tx_buffer;
2185 	int i;
2186 
2187 	/* Free Transmit Descriptor ring */
2188 	if (sc->tx_desc_base) {
2189 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2190 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2191 				sc->tx_desc_dmap);
2192 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2193 
2194 		sc->tx_desc_base = NULL;
2195 	}
2196 
2197 	if (sc->tx_buf == NULL)
2198 		return;
2199 
2200 	for (i = 0; i < ndesc; i++) {
2201 		tx_buffer = &sc->tx_buf[i];
2202 
2203 		KKASSERT(tx_buffer->m_head == NULL);
2204 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2205 	}
2206 	bus_dma_tag_destroy(sc->txtag);
2207 
2208 	kfree(sc->tx_buf, M_DEVBUF);
2209 	sc->tx_buf = NULL;
2210 }
2211 
2212 /*
2213  * The offload context needs to be set when we transfer the first
2214  * packet of a particular protocol (TCP/UDP).  This routine has been
2215  * enhanced to deal with inserted VLAN headers.
2216  *
2217  * If the new packet's ether header length, ip header length and
2218  * csum offloading type are same as the previous packet, we should
2219  * avoid allocating a new csum context descriptor; mainly to take
2220  * advantage of the pipeline effect of the TX data read request.
2221  *
2222  * This function returns number of TX descrptors allocated for
2223  * csum context.
2224  */
2225 static int
2226 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2227 	   uint32_t *txd_upper, uint32_t *txd_lower)
2228 {
2229 	struct e1000_context_desc *TXD;
2230 	int curr_txd, ehdrlen, csum_flags;
2231 	uint32_t cmd, hdr_len, ip_hlen;
2232 
2233 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2234 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2235 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2236 
2237 	if (sc->csum_lhlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2238 	    sc->csum_flags == csum_flags) {
2239 		/*
2240 		 * Same csum offload context as the previous packets;
2241 		 * just return.
2242 		 */
2243 		*txd_upper = sc->csum_txd_upper;
2244 		*txd_lower = sc->csum_txd_lower;
2245 		return 0;
2246 	}
2247 
2248 	/*
2249 	 * Setup a new csum offload context.
2250 	 */
2251 
2252 	curr_txd = sc->next_avail_tx_desc;
2253 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2254 
2255 	cmd = 0;
2256 
2257 	/* Setup of IP header checksum. */
2258 	if (csum_flags & CSUM_IP) {
2259 		/*
2260 		 * Start offset for header checksum calculation.
2261 		 * End offset for header checksum calculation.
2262 		 * Offset of place to put the checksum.
2263 		 */
2264 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2265 		TXD->lower_setup.ip_fields.ipcse =
2266 		    htole16(ehdrlen + ip_hlen - 1);
2267 		TXD->lower_setup.ip_fields.ipcso =
2268 		    ehdrlen + offsetof(struct ip, ip_sum);
2269 		cmd |= E1000_TXD_CMD_IP;
2270 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2271 	}
2272 	hdr_len = ehdrlen + ip_hlen;
2273 
2274 	if (csum_flags & CSUM_TCP) {
2275 		/*
2276 		 * Start offset for payload checksum calculation.
2277 		 * End offset for payload checksum calculation.
2278 		 * Offset of place to put the checksum.
2279 		 */
2280 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2281 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2282 		TXD->upper_setup.tcp_fields.tucso =
2283 		    hdr_len + offsetof(struct tcphdr, th_sum);
2284 		cmd |= E1000_TXD_CMD_TCP;
2285 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2286 	} else if (csum_flags & CSUM_UDP) {
2287 		/*
2288 		 * Start offset for header checksum calculation.
2289 		 * End offset for header checksum calculation.
2290 		 * Offset of place to put the checksum.
2291 		 */
2292 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2293 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2294 		TXD->upper_setup.tcp_fields.tucso =
2295 		    hdr_len + offsetof(struct udphdr, uh_sum);
2296 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2297 	}
2298 
2299 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2300 		     E1000_TXD_DTYP_D;		/* Data descr */
2301 
2302 	/* Save the information for this csum offloading context */
2303 	sc->csum_lhlen = ehdrlen;
2304 	sc->csum_iphlen = ip_hlen;
2305 	sc->csum_flags = csum_flags;
2306 	sc->csum_txd_upper = *txd_upper;
2307 	sc->csum_txd_lower = *txd_lower;
2308 
2309 	TXD->tcp_seg_setup.data = htole32(0);
2310 	TXD->cmd_and_length =
2311 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2312 
2313 	if (++curr_txd == sc->num_tx_desc)
2314 		curr_txd = 0;
2315 
2316 	KKASSERT(sc->num_tx_desc_avail > 0);
2317 	sc->num_tx_desc_avail--;
2318 
2319 	sc->next_avail_tx_desc = curr_txd;
2320 	return 1;
2321 }
2322 
2323 static void
2324 emx_txeof(struct emx_softc *sc)
2325 {
2326 	struct ifnet *ifp = &sc->arpcom.ac_if;
2327 	struct emx_txbuf *tx_buffer;
2328 	int first, num_avail;
2329 
2330 	if (sc->tx_dd_head == sc->tx_dd_tail)
2331 		return;
2332 
2333 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2334 		return;
2335 
2336 	num_avail = sc->num_tx_desc_avail;
2337 	first = sc->next_tx_to_clean;
2338 
2339 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2340 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2341 		struct e1000_tx_desc *tx_desc;
2342 
2343 		tx_desc = &sc->tx_desc_base[dd_idx];
2344 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2345 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2346 
2347 			if (++dd_idx == sc->num_tx_desc)
2348 				dd_idx = 0;
2349 
2350 			while (first != dd_idx) {
2351 				logif(pkt_txclean);
2352 
2353 				num_avail++;
2354 
2355 				tx_buffer = &sc->tx_buf[first];
2356 				if (tx_buffer->m_head) {
2357 					ifp->if_opackets++;
2358 					bus_dmamap_unload(sc->txtag,
2359 							  tx_buffer->map);
2360 					m_freem(tx_buffer->m_head);
2361 					tx_buffer->m_head = NULL;
2362 				}
2363 
2364 				if (++first == sc->num_tx_desc)
2365 					first = 0;
2366 			}
2367 		} else {
2368 			break;
2369 		}
2370 	}
2371 	sc->next_tx_to_clean = first;
2372 	sc->num_tx_desc_avail = num_avail;
2373 
2374 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2375 		sc->tx_dd_head = 0;
2376 		sc->tx_dd_tail = 0;
2377 	}
2378 
2379 	if (!EMX_IS_OACTIVE(sc)) {
2380 		ifp->if_flags &= ~IFF_OACTIVE;
2381 
2382 		/* All clean, turn off the timer */
2383 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2384 			ifp->if_timer = 0;
2385 	}
2386 }
2387 
2388 static void
2389 emx_tx_collect(struct emx_softc *sc)
2390 {
2391 	struct ifnet *ifp = &sc->arpcom.ac_if;
2392 	struct emx_txbuf *tx_buffer;
2393 	int tdh, first, num_avail, dd_idx = -1;
2394 
2395 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2396 		return;
2397 
2398 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2399 	if (tdh == sc->next_tx_to_clean)
2400 		return;
2401 
2402 	if (sc->tx_dd_head != sc->tx_dd_tail)
2403 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2404 
2405 	num_avail = sc->num_tx_desc_avail;
2406 	first = sc->next_tx_to_clean;
2407 
2408 	while (first != tdh) {
2409 		logif(pkt_txclean);
2410 
2411 		num_avail++;
2412 
2413 		tx_buffer = &sc->tx_buf[first];
2414 		if (tx_buffer->m_head) {
2415 			ifp->if_opackets++;
2416 			bus_dmamap_unload(sc->txtag,
2417 					  tx_buffer->map);
2418 			m_freem(tx_buffer->m_head);
2419 			tx_buffer->m_head = NULL;
2420 		}
2421 
2422 		if (first == dd_idx) {
2423 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2424 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2425 				sc->tx_dd_head = 0;
2426 				sc->tx_dd_tail = 0;
2427 				dd_idx = -1;
2428 			} else {
2429 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2430 			}
2431 		}
2432 
2433 		if (++first == sc->num_tx_desc)
2434 			first = 0;
2435 	}
2436 	sc->next_tx_to_clean = first;
2437 	sc->num_tx_desc_avail = num_avail;
2438 
2439 	if (!EMX_IS_OACTIVE(sc)) {
2440 		ifp->if_flags &= ~IFF_OACTIVE;
2441 
2442 		/* All clean, turn off the timer */
2443 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2444 			ifp->if_timer = 0;
2445 	}
2446 }
2447 
2448 /*
2449  * When Link is lost sometimes there is work still in the TX ring
2450  * which will result in a watchdog, rather than allow that do an
2451  * attempted cleanup and then reinit here.  Note that this has been
2452  * seens mostly with fiber adapters.
2453  */
2454 static void
2455 emx_tx_purge(struct emx_softc *sc)
2456 {
2457 	struct ifnet *ifp = &sc->arpcom.ac_if;
2458 
2459 	if (!sc->link_active && ifp->if_timer) {
2460 		emx_tx_collect(sc);
2461 		if (ifp->if_timer) {
2462 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2463 			ifp->if_timer = 0;
2464 			emx_init(sc);
2465 		}
2466 	}
2467 }
2468 
2469 static int
2470 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2471 {
2472 	struct mbuf *m;
2473 	bus_dma_segment_t seg;
2474 	bus_dmamap_t map;
2475 	struct emx_rxbuf *rx_buffer;
2476 	int error, nseg;
2477 
2478 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2479 	if (m == NULL) {
2480 		rdata->mbuf_cluster_failed++;
2481 		if (init) {
2482 			if_printf(&sc->arpcom.ac_if,
2483 				  "Unable to allocate RX mbuf\n");
2484 		}
2485 		return (ENOBUFS);
2486 	}
2487 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2488 
2489 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2490 		m_adj(m, ETHER_ALIGN);
2491 
2492 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2493 			rdata->rx_sparemap, m,
2494 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2495 	if (error) {
2496 		m_freem(m);
2497 		if (init) {
2498 			if_printf(&sc->arpcom.ac_if,
2499 				  "Unable to load RX mbuf\n");
2500 		}
2501 		return (error);
2502 	}
2503 
2504 	rx_buffer = &rdata->rx_buf[i];
2505 	if (rx_buffer->m_head != NULL)
2506 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2507 
2508 	map = rx_buffer->map;
2509 	rx_buffer->map = rdata->rx_sparemap;
2510 	rdata->rx_sparemap = map;
2511 
2512 	rx_buffer->m_head = m;
2513 	rx_buffer->paddr = seg.ds_addr;
2514 
2515 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2516 	return (0);
2517 }
2518 
2519 static int
2520 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2521 {
2522 	device_t dev = sc->dev;
2523 	struct emx_rxbuf *rx_buffer;
2524 	int i, error, rsize, nrxd;
2525 
2526 	/*
2527 	 * Validate number of receive descriptors.  It must not exceed
2528 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2529 	 */
2530 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2531 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2532 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2533 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2534 		    EMX_DEFAULT_RXD, nrxd);
2535 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2536 	} else {
2537 		rdata->num_rx_desc = nrxd;
2538 	}
2539 
2540 	/*
2541 	 * Allocate Receive Descriptor ring
2542 	 */
2543 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2544 			 EMX_DBA_ALIGN);
2545 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2546 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2547 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2548 				&rdata->rx_desc_paddr);
2549 	if (rdata->rx_desc == NULL) {
2550 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2551 		return ENOMEM;
2552 	}
2553 
2554 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2555 				M_DEVBUF, M_WAITOK | M_ZERO);
2556 
2557 	/*
2558 	 * Create DMA tag for rx buffers
2559 	 */
2560 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2561 			1, 0,			/* alignment, bounds */
2562 			BUS_SPACE_MAXADDR,	/* lowaddr */
2563 			BUS_SPACE_MAXADDR,	/* highaddr */
2564 			NULL, NULL,		/* filter, filterarg */
2565 			MCLBYTES,		/* maxsize */
2566 			1,			/* nsegments */
2567 			MCLBYTES,		/* maxsegsize */
2568 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2569 			&rdata->rxtag);
2570 	if (error) {
2571 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2572 		kfree(rdata->rx_buf, M_DEVBUF);
2573 		rdata->rx_buf = NULL;
2574 		return error;
2575 	}
2576 
2577 	/*
2578 	 * Create spare DMA map for rx buffers
2579 	 */
2580 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2581 				  &rdata->rx_sparemap);
2582 	if (error) {
2583 		device_printf(dev, "Unable to create spare RX DMA map\n");
2584 		bus_dma_tag_destroy(rdata->rxtag);
2585 		kfree(rdata->rx_buf, M_DEVBUF);
2586 		rdata->rx_buf = NULL;
2587 		return error;
2588 	}
2589 
2590 	/*
2591 	 * Create DMA maps for rx buffers
2592 	 */
2593 	for (i = 0; i < rdata->num_rx_desc; i++) {
2594 		rx_buffer = &rdata->rx_buf[i];
2595 
2596 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2597 					  &rx_buffer->map);
2598 		if (error) {
2599 			device_printf(dev, "Unable to create RX DMA map\n");
2600 			emx_destroy_rx_ring(sc, rdata, i);
2601 			return error;
2602 		}
2603 	}
2604 	return (0);
2605 }
2606 
2607 static void
2608 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2609 {
2610 	int i;
2611 
2612 	for (i = 0; i < rdata->num_rx_desc; i++) {
2613 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2614 
2615 		if (rx_buffer->m_head != NULL) {
2616 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2617 			m_freem(rx_buffer->m_head);
2618 			rx_buffer->m_head = NULL;
2619 		}
2620 	}
2621 
2622 	if (rdata->fmp != NULL)
2623 		m_freem(rdata->fmp);
2624 	rdata->fmp = NULL;
2625 	rdata->lmp = NULL;
2626 }
2627 
2628 static int
2629 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2630 {
2631 	int i, error;
2632 
2633 	/* Reset descriptor ring */
2634 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2635 
2636 	/* Allocate new ones. */
2637 	for (i = 0; i < rdata->num_rx_desc; i++) {
2638 		error = emx_newbuf(sc, rdata, i, 1);
2639 		if (error)
2640 			return (error);
2641 	}
2642 
2643 	/* Setup our descriptor pointers */
2644 	rdata->next_rx_desc_to_check = 0;
2645 
2646 	return (0);
2647 }
2648 
2649 static void
2650 emx_init_rx_unit(struct emx_softc *sc)
2651 {
2652 	struct ifnet *ifp = &sc->arpcom.ac_if;
2653 	uint64_t bus_addr;
2654 	uint32_t rctl, itr, rfctl;
2655 	int i;
2656 
2657 	/*
2658 	 * Make sure receives are disabled while setting
2659 	 * up the descriptor ring
2660 	 */
2661 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2662 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2663 
2664 	/*
2665 	 * Set the interrupt throttling rate. Value is calculated
2666 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2667 	 */
2668 	if (sc->int_throttle_ceil)
2669 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2670 	else
2671 		itr = 0;
2672 	emx_set_itr(sc, itr);
2673 
2674 	/* Use extended RX descriptor */
2675 	rfctl = E1000_RFCTL_EXTEN;
2676 
2677 	/* Disable accelerated ackknowledge */
2678 	if (sc->hw.mac.type == e1000_82574)
2679 		rfctl |= E1000_RFCTL_ACK_DIS;
2680 
2681 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2682 
2683 	/*
2684 	 * Receive Checksum Offload for TCP and UDP
2685 	 *
2686 	 * Checksum offloading is also enabled if multiple receive
2687 	 * queue is to be supported, since we need it to figure out
2688 	 * packet type.
2689 	 */
2690 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2691 	    sc->rx_ring_cnt > 1) {
2692 		uint32_t rxcsum;
2693 
2694 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2695 
2696 		/*
2697 		 * NOTE:
2698 		 * PCSD must be enabled to enable multiple
2699 		 * receive queues.
2700 		 */
2701 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2702 			  E1000_RXCSUM_PCSD;
2703 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2704 	}
2705 
2706 	/*
2707 	 * Configure multiple receive queue (RSS)
2708 	 */
2709 	if (sc->rx_ring_cnt > 1) {
2710 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2711 		uint32_t reta;
2712 
2713 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2714 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2715 
2716 		/*
2717 		 * NOTE:
2718 		 * When we reach here, RSS has already been disabled
2719 		 * in emx_stop(), so we could safely configure RSS key
2720 		 * and redirect table.
2721 		 */
2722 
2723 		/*
2724 		 * Configure RSS key
2725 		 */
2726 		toeplitz_get_key(key, sizeof(key));
2727 		for (i = 0; i < EMX_NRSSRK; ++i) {
2728 			uint32_t rssrk;
2729 
2730 			rssrk = EMX_RSSRK_VAL(key, i);
2731 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2732 
2733 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2734 		}
2735 
2736 		/*
2737 		 * Configure RSS redirect table in following fashion:
2738 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2739 		 */
2740 		reta = 0;
2741 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2742 			uint32_t q;
2743 
2744 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2745 			reta |= q << (8 * i);
2746 		}
2747 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2748 
2749 		for (i = 0; i < EMX_NRETA; ++i)
2750 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2751 
2752 		/*
2753 		 * Enable multiple receive queues.
2754 		 * Enable IPv4 RSS standard hash functions.
2755 		 * Disable RSS interrupt.
2756 		 */
2757 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2758 				E1000_MRQC_ENABLE_RSS_2Q |
2759 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2760 				E1000_MRQC_RSS_FIELD_IPV4);
2761 	}
2762 
2763 	/*
2764 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2765 	 * long latencies are observed, like Lenovo X60. This
2766 	 * change eliminates the problem, but since having positive
2767 	 * values in RDTR is a known source of problems on other
2768 	 * platforms another solution is being sought.
2769 	 */
2770 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2771 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2772 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2773 	}
2774 
2775 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2776 		struct emx_rxdata *rdata = &sc->rx_data[i];
2777 
2778 		/*
2779 		 * Setup the Base and Length of the Rx Descriptor Ring
2780 		 */
2781 		bus_addr = rdata->rx_desc_paddr;
2782 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2783 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2784 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2785 		    (uint32_t)(bus_addr >> 32));
2786 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2787 		    (uint32_t)bus_addr);
2788 
2789 		/*
2790 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2791 		 */
2792 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2793 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2794 		    sc->rx_data[i].num_rx_desc - 1);
2795 	}
2796 
2797 	/* Setup the Receive Control Register */
2798 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2799 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2800 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2801 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2802 
2803 	/* Make sure VLAN Filters are off */
2804 	rctl &= ~E1000_RCTL_VFE;
2805 
2806 	/* Don't store bad paket */
2807 	rctl &= ~E1000_RCTL_SBP;
2808 
2809 	/* MCLBYTES */
2810 	rctl |= E1000_RCTL_SZ_2048;
2811 
2812 	if (ifp->if_mtu > ETHERMTU)
2813 		rctl |= E1000_RCTL_LPE;
2814 	else
2815 		rctl &= ~E1000_RCTL_LPE;
2816 
2817 	/* Enable Receives */
2818 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2819 }
2820 
2821 static void
2822 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2823 {
2824 	struct emx_rxbuf *rx_buffer;
2825 	int i;
2826 
2827 	/* Free Receive Descriptor ring */
2828 	if (rdata->rx_desc) {
2829 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2830 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2831 				rdata->rx_desc_dmap);
2832 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2833 
2834 		rdata->rx_desc = NULL;
2835 	}
2836 
2837 	if (rdata->rx_buf == NULL)
2838 		return;
2839 
2840 	for (i = 0; i < ndesc; i++) {
2841 		rx_buffer = &rdata->rx_buf[i];
2842 
2843 		KKASSERT(rx_buffer->m_head == NULL);
2844 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2845 	}
2846 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2847 	bus_dma_tag_destroy(rdata->rxtag);
2848 
2849 	kfree(rdata->rx_buf, M_DEVBUF);
2850 	rdata->rx_buf = NULL;
2851 }
2852 
2853 static void
2854 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2855 {
2856 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2857 	struct ifnet *ifp = &sc->arpcom.ac_if;
2858 	uint32_t staterr;
2859 	emx_rxdesc_t *current_desc;
2860 	struct mbuf *mp;
2861 	int i;
2862 
2863 	i = rdata->next_rx_desc_to_check;
2864 	current_desc = &rdata->rx_desc[i];
2865 	staterr = le32toh(current_desc->rxd_staterr);
2866 
2867 	if (!(staterr & E1000_RXD_STAT_DD))
2868 		return;
2869 
2870 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2871 		struct pktinfo *pi = NULL, pi0;
2872 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2873 		struct mbuf *m = NULL;
2874 		int eop, len;
2875 
2876 		logif(pkt_receive);
2877 
2878 		mp = rx_buf->m_head;
2879 
2880 		/*
2881 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2882 		 * needs to access the last received byte in the mbuf.
2883 		 */
2884 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2885 				BUS_DMASYNC_POSTREAD);
2886 
2887 		len = le16toh(current_desc->rxd_length);
2888 		if (staterr & E1000_RXD_STAT_EOP) {
2889 			count--;
2890 			eop = 1;
2891 		} else {
2892 			eop = 0;
2893 		}
2894 
2895 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2896 			uint16_t vlan = 0;
2897 			uint32_t mrq, rss_hash;
2898 
2899 			/*
2900 			 * Save several necessary information,
2901 			 * before emx_newbuf() destroy it.
2902 			 */
2903 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2904 				vlan = le16toh(current_desc->rxd_vlan);
2905 
2906 			mrq = le32toh(current_desc->rxd_mrq);
2907 			rss_hash = le32toh(current_desc->rxd_rss);
2908 
2909 			EMX_RSS_DPRINTF(sc, 10,
2910 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2911 			    ring_idx, mrq, rss_hash);
2912 
2913 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2914 				ifp->if_iqdrops++;
2915 				goto discard;
2916 			}
2917 
2918 			/* Assign correct length to the current fragment */
2919 			mp->m_len = len;
2920 
2921 			if (rdata->fmp == NULL) {
2922 				mp->m_pkthdr.len = len;
2923 				rdata->fmp = mp; /* Store the first mbuf */
2924 				rdata->lmp = mp;
2925 			} else {
2926 				/*
2927 				 * Chain mbuf's together
2928 				 */
2929 				rdata->lmp->m_next = mp;
2930 				rdata->lmp = rdata->lmp->m_next;
2931 				rdata->fmp->m_pkthdr.len += len;
2932 			}
2933 
2934 			if (eop) {
2935 				rdata->fmp->m_pkthdr.rcvif = ifp;
2936 				ifp->if_ipackets++;
2937 
2938 				if (ifp->if_capenable & IFCAP_RXCSUM)
2939 					emx_rxcsum(staterr, rdata->fmp);
2940 
2941 				if (staterr & E1000_RXD_STAT_VP) {
2942 					rdata->fmp->m_pkthdr.ether_vlantag =
2943 					    vlan;
2944 					rdata->fmp->m_flags |= M_VLANTAG;
2945 				}
2946 				m = rdata->fmp;
2947 				rdata->fmp = NULL;
2948 				rdata->lmp = NULL;
2949 
2950 				if (ifp->if_capenable & IFCAP_RSS) {
2951 					pi = emx_rssinfo(m, &pi0, mrq,
2952 							 rss_hash, staterr);
2953 				}
2954 #ifdef EMX_RSS_DEBUG
2955 				rdata->rx_pkts++;
2956 #endif
2957 			}
2958 		} else {
2959 			ifp->if_ierrors++;
2960 discard:
2961 			emx_setup_rxdesc(current_desc, rx_buf);
2962 			if (rdata->fmp != NULL) {
2963 				m_freem(rdata->fmp);
2964 				rdata->fmp = NULL;
2965 				rdata->lmp = NULL;
2966 			}
2967 			m = NULL;
2968 		}
2969 
2970 		if (m != NULL)
2971 			ether_input_pkt(ifp, m, pi);
2972 
2973 		/* Advance our pointers to the next descriptor. */
2974 		if (++i == rdata->num_rx_desc)
2975 			i = 0;
2976 
2977 		current_desc = &rdata->rx_desc[i];
2978 		staterr = le32toh(current_desc->rxd_staterr);
2979 	}
2980 	rdata->next_rx_desc_to_check = i;
2981 
2982 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2983 	if (--i < 0)
2984 		i = rdata->num_rx_desc - 1;
2985 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2986 }
2987 
2988 static void
2989 emx_enable_intr(struct emx_softc *sc)
2990 {
2991 	uint32_t ims_mask = IMS_ENABLE_MASK;
2992 
2993 	lwkt_serialize_handler_enable(&sc->main_serialize);
2994 
2995 #if 0
2996 	if (sc->hw.mac.type == e1000_82574) {
2997 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
2998 		ims_mask |= EM_MSIX_MASK;
2999 	}
3000 #endif
3001 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3002 }
3003 
3004 static void
3005 emx_disable_intr(struct emx_softc *sc)
3006 {
3007 	if (sc->hw.mac.type == e1000_82574)
3008 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3009 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3010 
3011 	lwkt_serialize_handler_disable(&sc->main_serialize);
3012 }
3013 
3014 /*
3015  * Bit of a misnomer, what this really means is
3016  * to enable OS management of the system... aka
3017  * to disable special hardware management features
3018  */
3019 static void
3020 emx_get_mgmt(struct emx_softc *sc)
3021 {
3022 	/* A shared code workaround */
3023 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3024 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3025 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3026 
3027 		/* disable hardware interception of ARP */
3028 		manc &= ~(E1000_MANC_ARP_EN);
3029 
3030                 /* enable receiving management packets to the host */
3031 		manc |= E1000_MANC_EN_MNG2HOST;
3032 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3033 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3034 		manc2h |= E1000_MNG2HOST_PORT_623;
3035 		manc2h |= E1000_MNG2HOST_PORT_664;
3036 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3037 
3038 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3039 	}
3040 }
3041 
3042 /*
3043  * Give control back to hardware management
3044  * controller if there is one.
3045  */
3046 static void
3047 emx_rel_mgmt(struct emx_softc *sc)
3048 {
3049 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3050 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3051 
3052 		/* re-enable hardware interception of ARP */
3053 		manc |= E1000_MANC_ARP_EN;
3054 		manc &= ~E1000_MANC_EN_MNG2HOST;
3055 
3056 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3057 	}
3058 }
3059 
3060 /*
3061  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3062  * For ASF and Pass Through versions of f/w this means that
3063  * the driver is loaded.  For AMT version (only with 82573)
3064  * of the f/w this means that the network i/f is open.
3065  */
3066 static void
3067 emx_get_hw_control(struct emx_softc *sc)
3068 {
3069 	/* Let firmware know the driver has taken over */
3070 	if (sc->hw.mac.type == e1000_82573) {
3071 		uint32_t swsm;
3072 
3073 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3074 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3075 		    swsm | E1000_SWSM_DRV_LOAD);
3076 	} else {
3077 		uint32_t ctrl_ext;
3078 
3079 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3080 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3081 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3082 	}
3083 	sc->flags |= EMX_FLAG_HW_CTRL;
3084 }
3085 
3086 /*
3087  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3088  * For ASF and Pass Through versions of f/w this means that the
3089  * driver is no longer loaded.  For AMT version (only with 82573)
3090  * of the f/w this means that the network i/f is closed.
3091  */
3092 static void
3093 emx_rel_hw_control(struct emx_softc *sc)
3094 {
3095 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3096 		return;
3097 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3098 
3099 	/* Let firmware taken over control of h/w */
3100 	if (sc->hw.mac.type == e1000_82573) {
3101 		uint32_t swsm;
3102 
3103 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3104 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3105 		    swsm & ~E1000_SWSM_DRV_LOAD);
3106 	} else {
3107 		uint32_t ctrl_ext;
3108 
3109 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3110 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3111 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3112 	}
3113 }
3114 
3115 static int
3116 emx_is_valid_eaddr(const uint8_t *addr)
3117 {
3118 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3119 
3120 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3121 		return (FALSE);
3122 
3123 	return (TRUE);
3124 }
3125 
3126 /*
3127  * Enable PCI Wake On Lan capability
3128  */
3129 void
3130 emx_enable_wol(device_t dev)
3131 {
3132 	uint16_t cap, status;
3133 	uint8_t id;
3134 
3135 	/* First find the capabilities pointer*/
3136 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3137 
3138 	/* Read the PM Capabilities */
3139 	id = pci_read_config(dev, cap, 1);
3140 	if (id != PCIY_PMG)     /* Something wrong */
3141 		return;
3142 
3143 	/*
3144 	 * OK, we have the power capabilities,
3145 	 * so now get the status register
3146 	 */
3147 	cap += PCIR_POWER_STATUS;
3148 	status = pci_read_config(dev, cap, 2);
3149 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3150 	pci_write_config(dev, cap, status, 2);
3151 }
3152 
3153 static void
3154 emx_update_stats(struct emx_softc *sc)
3155 {
3156 	struct ifnet *ifp = &sc->arpcom.ac_if;
3157 
3158 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3159 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3160 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3161 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3162 	}
3163 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3164 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3165 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3166 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3167 
3168 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3169 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3170 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3171 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3172 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3173 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3174 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3175 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3176 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3177 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3178 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3179 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3180 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3181 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3182 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3183 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3184 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3185 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3186 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3187 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3188 
3189 	/* For the 64-bit byte counters the low dword must be read first. */
3190 	/* Both registers clear on the read of the high dword */
3191 
3192 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3193 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3194 
3195 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3196 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3197 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3198 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3199 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3200 
3201 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3202 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3203 
3204 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3205 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3206 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3207 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3208 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3209 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3210 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3211 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3212 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3213 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3214 
3215 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3216 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3217 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3218 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3219 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3220 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3221 
3222 	ifp->if_collisions = sc->stats.colc;
3223 
3224 	/* Rx Errors */
3225 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3226 			  sc->stats.crcerrs + sc->stats.algnerrc +
3227 			  sc->stats.ruc + sc->stats.roc +
3228 			  sc->stats.mpc + sc->stats.cexterr;
3229 
3230 	/* Tx Errors */
3231 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3232 			  sc->watchdog_events;
3233 }
3234 
3235 static void
3236 emx_print_debug_info(struct emx_softc *sc)
3237 {
3238 	device_t dev = sc->dev;
3239 	uint8_t *hw_addr = sc->hw.hw_addr;
3240 
3241 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3242 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3243 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3244 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3245 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3246 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3247 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3248 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3249 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3250 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3251 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3252 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3253 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3254 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3255 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3256 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3257 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3258 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3259 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3260 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3261 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3262 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3263 	    sc->num_tx_desc_avail);
3264 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3265 	    sc->no_tx_desc_avail1);
3266 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3267 	    sc->no_tx_desc_avail2);
3268 	device_printf(dev, "Std mbuf failed = %ld\n",
3269 	    sc->mbuf_alloc_failed);
3270 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3271 	    sc->rx_data[0].mbuf_cluster_failed);
3272 	device_printf(dev, "Driver dropped packets = %ld\n",
3273 	    sc->dropped_pkts);
3274 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3275 	    sc->no_tx_dma_setup);
3276 
3277 	device_printf(dev, "TSO segments %lu\n", sc->tso_segments);
3278 	device_printf(dev, "TSO ctx reused %lu\n", sc->tso_ctx_reused);
3279 }
3280 
3281 static void
3282 emx_print_hw_stats(struct emx_softc *sc)
3283 {
3284 	device_t dev = sc->dev;
3285 
3286 	device_printf(dev, "Excessive collisions = %lld\n",
3287 	    (long long)sc->stats.ecol);
3288 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3289 	device_printf(dev, "Symbol errors = %lld\n",
3290 	    (long long)sc->stats.symerrs);
3291 #endif
3292 	device_printf(dev, "Sequence errors = %lld\n",
3293 	    (long long)sc->stats.sec);
3294 	device_printf(dev, "Defer count = %lld\n",
3295 	    (long long)sc->stats.dc);
3296 	device_printf(dev, "Missed Packets = %lld\n",
3297 	    (long long)sc->stats.mpc);
3298 	device_printf(dev, "Receive No Buffers = %lld\n",
3299 	    (long long)sc->stats.rnbc);
3300 	/* RLEC is inaccurate on some hardware, calculate our own. */
3301 	device_printf(dev, "Receive Length Errors = %lld\n",
3302 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3303 	device_printf(dev, "Receive errors = %lld\n",
3304 	    (long long)sc->stats.rxerrc);
3305 	device_printf(dev, "Crc errors = %lld\n",
3306 	    (long long)sc->stats.crcerrs);
3307 	device_printf(dev, "Alignment errors = %lld\n",
3308 	    (long long)sc->stats.algnerrc);
3309 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3310 	    (long long)sc->stats.cexterr);
3311 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3312 	device_printf(dev, "watchdog timeouts = %ld\n",
3313 	    sc->watchdog_events);
3314 	device_printf(dev, "XON Rcvd = %lld\n",
3315 	    (long long)sc->stats.xonrxc);
3316 	device_printf(dev, "XON Xmtd = %lld\n",
3317 	    (long long)sc->stats.xontxc);
3318 	device_printf(dev, "XOFF Rcvd = %lld\n",
3319 	    (long long)sc->stats.xoffrxc);
3320 	device_printf(dev, "XOFF Xmtd = %lld\n",
3321 	    (long long)sc->stats.xofftxc);
3322 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3323 	    (long long)sc->stats.gprc);
3324 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3325 	    (long long)sc->stats.gptc);
3326 }
3327 
3328 static void
3329 emx_print_nvm_info(struct emx_softc *sc)
3330 {
3331 	uint16_t eeprom_data;
3332 	int i, j, row = 0;
3333 
3334 	/* Its a bit crude, but it gets the job done */
3335 	kprintf("\nInterface EEPROM Dump:\n");
3336 	kprintf("Offset\n0x0000  ");
3337 	for (i = 0, j = 0; i < 32; i++, j++) {
3338 		if (j == 8) { /* Make the offset block */
3339 			j = 0; ++row;
3340 			kprintf("\n0x00%x0  ",row);
3341 		}
3342 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3343 		kprintf("%04x ", eeprom_data);
3344 	}
3345 	kprintf("\n");
3346 }
3347 
3348 static int
3349 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3350 {
3351 	struct emx_softc *sc;
3352 	struct ifnet *ifp;
3353 	int error, result;
3354 
3355 	result = -1;
3356 	error = sysctl_handle_int(oidp, &result, 0, req);
3357 	if (error || !req->newptr)
3358 		return (error);
3359 
3360 	sc = (struct emx_softc *)arg1;
3361 	ifp = &sc->arpcom.ac_if;
3362 
3363 	ifnet_serialize_all(ifp);
3364 
3365 	if (result == 1)
3366 		emx_print_debug_info(sc);
3367 
3368 	/*
3369 	 * This value will cause a hex dump of the
3370 	 * first 32 16-bit words of the EEPROM to
3371 	 * the screen.
3372 	 */
3373 	if (result == 2)
3374 		emx_print_nvm_info(sc);
3375 
3376 	ifnet_deserialize_all(ifp);
3377 
3378 	return (error);
3379 }
3380 
3381 static int
3382 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3383 {
3384 	int error, result;
3385 
3386 	result = -1;
3387 	error = sysctl_handle_int(oidp, &result, 0, req);
3388 	if (error || !req->newptr)
3389 		return (error);
3390 
3391 	if (result == 1) {
3392 		struct emx_softc *sc = (struct emx_softc *)arg1;
3393 		struct ifnet *ifp = &sc->arpcom.ac_if;
3394 
3395 		ifnet_serialize_all(ifp);
3396 		emx_print_hw_stats(sc);
3397 		ifnet_deserialize_all(ifp);
3398 	}
3399 	return (error);
3400 }
3401 
3402 static void
3403 emx_add_sysctl(struct emx_softc *sc)
3404 {
3405 #ifdef EMX_RSS_DEBUG
3406 	char rx_pkt[32];
3407 	int i;
3408 #endif
3409 
3410 	sysctl_ctx_init(&sc->sysctl_ctx);
3411 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3412 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3413 				device_get_nameunit(sc->dev),
3414 				CTLFLAG_RD, 0, "");
3415 	if (sc->sysctl_tree == NULL) {
3416 		device_printf(sc->dev, "can't add sysctl node\n");
3417 		return;
3418 	}
3419 
3420 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3421 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3422 			emx_sysctl_debug_info, "I", "Debug Information");
3423 
3424 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3425 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3426 			emx_sysctl_stats, "I", "Statistics");
3427 
3428 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3429 		       OID_AUTO, "rxd", CTLFLAG_RD,
3430 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3431 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3432 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3433 
3434 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3435 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3436 			sc, 0, emx_sysctl_int_throttle, "I",
3437 			"interrupt throttling rate");
3438 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3439 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3440 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3441 			"# segments per TX interrupt");
3442 
3443 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3444 		       OID_AUTO, "rx_ring_cnt", CTLFLAG_RD,
3445 		       &sc->rx_ring_cnt, 0, "RX ring count");
3446 
3447 #ifdef IFPOLL_ENABLE
3448 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3449 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3450 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3451 			"NPOLLING RX cpu offset");
3452 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3453 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3454 			sc, 0, emx_sysctl_npoll_txoff, "I",
3455 			"NPOLLING TX cpu offset");
3456 #endif
3457 
3458 #ifdef EMX_RSS_DEBUG
3459 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3460 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3461 		       0, "RSS debug level");
3462 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3463 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3464 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3465 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3466 				rx_pkt, CTLFLAG_RW,
3467 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3468 	}
3469 #endif
3470 }
3471 
3472 static int
3473 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3474 {
3475 	struct emx_softc *sc = (void *)arg1;
3476 	struct ifnet *ifp = &sc->arpcom.ac_if;
3477 	int error, throttle;
3478 
3479 	throttle = sc->int_throttle_ceil;
3480 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3481 	if (error || req->newptr == NULL)
3482 		return error;
3483 	if (throttle < 0 || throttle > 1000000000 / 256)
3484 		return EINVAL;
3485 
3486 	if (throttle) {
3487 		/*
3488 		 * Set the interrupt throttling rate in 256ns increments,
3489 		 * recalculate sysctl value assignment to get exact frequency.
3490 		 */
3491 		throttle = 1000000000 / 256 / throttle;
3492 
3493 		/* Upper 16bits of ITR is reserved and should be zero */
3494 		if (throttle & 0xffff0000)
3495 			return EINVAL;
3496 	}
3497 
3498 	ifnet_serialize_all(ifp);
3499 
3500 	if (throttle)
3501 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3502 	else
3503 		sc->int_throttle_ceil = 0;
3504 
3505 	if (ifp->if_flags & IFF_RUNNING)
3506 		emx_set_itr(sc, throttle);
3507 
3508 	ifnet_deserialize_all(ifp);
3509 
3510 	if (bootverbose) {
3511 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3512 			  sc->int_throttle_ceil);
3513 	}
3514 	return 0;
3515 }
3516 
3517 static int
3518 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3519 {
3520 	struct emx_softc *sc = (void *)arg1;
3521 	struct ifnet *ifp = &sc->arpcom.ac_if;
3522 	int error, segs;
3523 
3524 	segs = sc->tx_int_nsegs;
3525 	error = sysctl_handle_int(oidp, &segs, 0, req);
3526 	if (error || req->newptr == NULL)
3527 		return error;
3528 	if (segs <= 0)
3529 		return EINVAL;
3530 
3531 	ifnet_serialize_all(ifp);
3532 
3533 	/*
3534 	 * Don't allow int_tx_nsegs to become:
3535 	 * o  Less the oact_tx_desc
3536 	 * o  Too large that no TX desc will cause TX interrupt to
3537 	 *    be generated (OACTIVE will never recover)
3538 	 * o  Too small that will cause tx_dd[] overflow
3539 	 */
3540 	if (segs < sc->oact_tx_desc ||
3541 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3542 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3543 		error = EINVAL;
3544 	} else {
3545 		error = 0;
3546 		sc->tx_int_nsegs = segs;
3547 	}
3548 
3549 	ifnet_deserialize_all(ifp);
3550 
3551 	return error;
3552 }
3553 
3554 #ifdef IFPOLL_ENABLE
3555 
3556 static int
3557 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3558 {
3559 	struct emx_softc *sc = (void *)arg1;
3560 	struct ifnet *ifp = &sc->arpcom.ac_if;
3561 	int error, off;
3562 
3563 	off = sc->rx_npoll_off;
3564 	error = sysctl_handle_int(oidp, &off, 0, req);
3565 	if (error || req->newptr == NULL)
3566 		return error;
3567 	if (off < 0)
3568 		return EINVAL;
3569 
3570 	ifnet_serialize_all(ifp);
3571 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3572 		error = EINVAL;
3573 	} else {
3574 		error = 0;
3575 		sc->rx_npoll_off = off;
3576 	}
3577 	ifnet_deserialize_all(ifp);
3578 
3579 	return error;
3580 }
3581 
3582 static int
3583 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3584 {
3585 	struct emx_softc *sc = (void *)arg1;
3586 	struct ifnet *ifp = &sc->arpcom.ac_if;
3587 	int error, off;
3588 
3589 	off = sc->tx_npoll_off;
3590 	error = sysctl_handle_int(oidp, &off, 0, req);
3591 	if (error || req->newptr == NULL)
3592 		return error;
3593 	if (off < 0)
3594 		return EINVAL;
3595 
3596 	ifnet_serialize_all(ifp);
3597 	if (off >= ncpus2) {
3598 		error = EINVAL;
3599 	} else {
3600 		error = 0;
3601 		sc->tx_npoll_off = off;
3602 	}
3603 	ifnet_deserialize_all(ifp);
3604 
3605 	return error;
3606 }
3607 
3608 #endif	/* IFPOLL_ENABLE */
3609 
3610 static int
3611 emx_dma_alloc(struct emx_softc *sc)
3612 {
3613 	int error, i;
3614 
3615 	/*
3616 	 * Create top level busdma tag
3617 	 */
3618 	error = bus_dma_tag_create(NULL, 1, 0,
3619 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3620 			NULL, NULL,
3621 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3622 			0, &sc->parent_dtag);
3623 	if (error) {
3624 		device_printf(sc->dev, "could not create top level DMA tag\n");
3625 		return error;
3626 	}
3627 
3628 	/*
3629 	 * Allocate transmit descriptors ring and buffers
3630 	 */
3631 	error = emx_create_tx_ring(sc);
3632 	if (error) {
3633 		device_printf(sc->dev, "Could not setup transmit structures\n");
3634 		return error;
3635 	}
3636 
3637 	/*
3638 	 * Allocate receive descriptors ring and buffers
3639 	 */
3640 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3641 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3642 		if (error) {
3643 			device_printf(sc->dev,
3644 			    "Could not setup receive structures\n");
3645 			return error;
3646 		}
3647 	}
3648 	return 0;
3649 }
3650 
3651 static void
3652 emx_dma_free(struct emx_softc *sc)
3653 {
3654 	int i;
3655 
3656 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3657 
3658 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3659 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3660 				    sc->rx_data[i].num_rx_desc);
3661 	}
3662 
3663 	/* Free top level busdma tag */
3664 	if (sc->parent_dtag != NULL)
3665 		bus_dma_tag_destroy(sc->parent_dtag);
3666 }
3667 
3668 static void
3669 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3670 {
3671 	struct emx_softc *sc = ifp->if_softc;
3672 
3673 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE,
3674 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3675 }
3676 
3677 static void
3678 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3679 {
3680 	struct emx_softc *sc = ifp->if_softc;
3681 
3682 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE,
3683 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3684 }
3685 
3686 static int
3687 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3688 {
3689 	struct emx_softc *sc = ifp->if_softc;
3690 
3691 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE,
3692 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3693 }
3694 
3695 static void
3696 emx_serialize_skipmain(struct emx_softc *sc)
3697 {
3698 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3699 }
3700 
3701 static void
3702 emx_deserialize_skipmain(struct emx_softc *sc)
3703 {
3704 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3705 }
3706 
3707 #ifdef INVARIANTS
3708 
3709 static void
3710 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3711     boolean_t serialized)
3712 {
3713 	struct emx_softc *sc = ifp->if_softc;
3714 
3715 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3716 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz, serialized);
3717 }
3718 
3719 #endif	/* INVARIANTS */
3720 
3721 #ifdef IFPOLL_ENABLE
3722 
3723 static void
3724 emx_npoll_status(struct ifnet *ifp, int pollhz __unused)
3725 {
3726 	struct emx_softc *sc = ifp->if_softc;
3727 	uint32_t reg_icr;
3728 
3729 	ASSERT_SERIALIZED(&sc->main_serialize);
3730 
3731 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3732 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3733 		callout_stop(&sc->timer);
3734 		sc->hw.mac.get_link_status = 1;
3735 		emx_update_link_status(sc);
3736 		callout_reset(&sc->timer, hz, emx_timer, sc);
3737 	}
3738 }
3739 
3740 static void
3741 emx_npoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3742 {
3743 	struct emx_softc *sc = ifp->if_softc;
3744 
3745 	ASSERT_SERIALIZED(&sc->tx_serialize);
3746 
3747 	emx_txeof(sc);
3748 	if (!ifq_is_empty(&ifp->if_snd))
3749 		if_devstart(ifp);
3750 }
3751 
3752 static void
3753 emx_npoll_rx(struct ifnet *ifp, void *arg, int cycle)
3754 {
3755 	struct emx_softc *sc = ifp->if_softc;
3756 	struct emx_rxdata *rdata = arg;
3757 
3758 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3759 
3760 	emx_rxeof(sc, rdata - sc->rx_data, cycle);
3761 }
3762 
3763 static void
3764 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3765 {
3766 	struct emx_softc *sc = ifp->if_softc;
3767 
3768 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3769 
3770 	if (info) {
3771 		int i, off;
3772 
3773 		info->ifpi_status.status_func = emx_npoll_status;
3774 		info->ifpi_status.serializer = &sc->main_serialize;
3775 
3776 		off = sc->tx_npoll_off;
3777 		KKASSERT(off < ncpus2);
3778 		info->ifpi_tx[off].poll_func = emx_npoll_tx;
3779 		info->ifpi_tx[off].arg = NULL;
3780 		info->ifpi_tx[off].serializer = &sc->tx_serialize;
3781 
3782 		off = sc->rx_npoll_off;
3783 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3784 			struct emx_rxdata *rdata = &sc->rx_data[i];
3785 			int idx = i + off;
3786 
3787 			KKASSERT(idx < ncpus2);
3788 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
3789 			info->ifpi_rx[idx].arg = rdata;
3790 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
3791 		}
3792 
3793 		if (ifp->if_flags & IFF_RUNNING)
3794 			emx_disable_intr(sc);
3795 		ifp->if_npoll_cpuid = sc->tx_npoll_off;
3796 	} else {
3797 		if (ifp->if_flags & IFF_RUNNING)
3798 			emx_enable_intr(sc);
3799 		ifp->if_npoll_cpuid = -1;
3800 	}
3801 }
3802 
3803 #endif	/* IFPOLL_ENABLE */
3804 
3805 static void
3806 emx_set_itr(struct emx_softc *sc, uint32_t itr)
3807 {
3808 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3809 	if (sc->hw.mac.type == e1000_82574) {
3810 		int i;
3811 
3812 		/*
3813 		 * When using MSIX interrupts we need to
3814 		 * throttle using the EITR register
3815 		 */
3816 		for (i = 0; i < 4; ++i)
3817 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3818 	}
3819 }
3820 
3821 /*
3822  * Disable the L0s, 82574L Errata #20
3823  */
3824 static void
3825 emx_disable_aspm(struct emx_softc *sc)
3826 {
3827 	uint16_t link_cap, link_ctrl, disable;
3828 	uint8_t pcie_ptr, reg;
3829 	device_t dev = sc->dev;
3830 
3831 	switch (sc->hw.mac.type) {
3832 	case e1000_82571:
3833 	case e1000_82572:
3834 	case e1000_82573:
3835 		/*
3836 		 * 82573 specification update
3837 		 * errata #8 disable L0s
3838 		 * errata #41 disable L1
3839 		 *
3840 		 * 82571/82572 specification update
3841 		 # errata #13 disable L1
3842 		 * errata #68 disable L0s
3843 		 */
3844 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
3845 		break;
3846 
3847 	case e1000_82574:
3848 		/*
3849 		 * 82574 specification update errata #20
3850 		 *
3851 		 * There is no need to disable L1
3852 		 */
3853 		disable = PCIEM_LNKCTL_ASPM_L0S;
3854 		break;
3855 
3856 	default:
3857 		return;
3858 	}
3859 
3860 	pcie_ptr = pci_get_pciecap_ptr(dev);
3861 	if (pcie_ptr == 0)
3862 		return;
3863 
3864 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
3865 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
3866 		return;
3867 
3868 	if (bootverbose)
3869 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
3870 
3871 	reg = pcie_ptr + PCIER_LINKCTRL;
3872 	link_ctrl = pci_read_config(dev, reg, 2);
3873 	link_ctrl &= ~disable;
3874 	pci_write_config(dev, reg, link_ctrl, 2);
3875 }
3876 
3877 static int
3878 emx_tso_pullup(struct emx_softc *sc, struct mbuf **mp)
3879 {
3880 	int iphlen, hoff, thoff, ex = 0;
3881 	struct mbuf *m;
3882 	struct ip *ip;
3883 
3884 	m = *mp;
3885 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
3886 
3887 	iphlen = m->m_pkthdr.csum_iphlen;
3888 	thoff = m->m_pkthdr.csum_thlen;
3889 	hoff = m->m_pkthdr.csum_lhlen;
3890 
3891 	KASSERT(iphlen > 0, ("invalid ip hlen"));
3892 	KASSERT(thoff > 0, ("invalid tcp hlen"));
3893 	KASSERT(hoff > 0, ("invalid ether hlen"));
3894 
3895 	if (sc->flags & EMX_FLAG_TSO_PULLEX)
3896 		ex = 4;
3897 
3898 	if (m->m_len < hoff + iphlen + thoff + ex) {
3899 		m = m_pullup(m, hoff + iphlen + thoff + ex);
3900 		if (m == NULL) {
3901 			*mp = NULL;
3902 			return ENOBUFS;
3903 		}
3904 		*mp = m;
3905 	}
3906 	ip = mtodoff(m, struct ip *, hoff);
3907 	ip->ip_len = 0;
3908 
3909 	return 0;
3910 }
3911 
3912 static int
3913 emx_tso_setup(struct emx_softc *sc, struct mbuf *mp,
3914     uint32_t *txd_upper, uint32_t *txd_lower)
3915 {
3916 	struct e1000_context_desc *TXD;
3917 	int hoff, iphlen, thoff, hlen;
3918 	int mss, pktlen, curr_txd;
3919 
3920 #ifdef EMX_TSO_DEBUG
3921 	sc->tso_segments++;
3922 #endif
3923 
3924 	iphlen = mp->m_pkthdr.csum_iphlen;
3925 	thoff = mp->m_pkthdr.csum_thlen;
3926 	hoff = mp->m_pkthdr.csum_lhlen;
3927 	mss = mp->m_pkthdr.tso_segsz;
3928 	pktlen = mp->m_pkthdr.len;
3929 
3930 	if (sc->csum_flags == CSUM_TSO &&
3931 	    sc->csum_iphlen == iphlen &&
3932 	    sc->csum_lhlen == hoff &&
3933 	    sc->csum_thlen == thoff &&
3934 	    sc->csum_mss == mss &&
3935 	    sc->csum_pktlen == pktlen) {
3936 		*txd_upper = sc->csum_txd_upper;
3937 		*txd_lower = sc->csum_txd_lower;
3938 #ifdef EMX_TSO_DEBUG
3939 		sc->tso_ctx_reused++;
3940 #endif
3941 		return 0;
3942 	}
3943 	hlen = hoff + iphlen + thoff;
3944 
3945 	/*
3946 	 * Setup a new TSO context.
3947 	 */
3948 
3949 	curr_txd = sc->next_avail_tx_desc;
3950 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
3951 
3952 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3953 		     E1000_TXD_DTYP_D |		/* Data descr type */
3954 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
3955 
3956 	/* IP and/or TCP header checksum calculation and insertion. */
3957 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
3958 
3959 	/*
3960 	 * Start offset for header checksum calculation.
3961 	 * End offset for header checksum calculation.
3962 	 * Offset of place put the checksum.
3963 	 */
3964 	TXD->lower_setup.ip_fields.ipcss = hoff;
3965 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
3966 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
3967 
3968 	/*
3969 	 * Start offset for payload checksum calculation.
3970 	 * End offset for payload checksum calculation.
3971 	 * Offset of place to put the checksum.
3972 	 */
3973 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
3974 	TXD->upper_setup.tcp_fields.tucse = 0;
3975 	TXD->upper_setup.tcp_fields.tucso =
3976 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
3977 
3978 	/*
3979 	 * Payload size per packet w/o any headers.
3980 	 * Length of all headers up to payload.
3981 	 */
3982 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
3983 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
3984 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
3985 				E1000_TXD_CMD_DEXT |	/* Extended descr */
3986 				E1000_TXD_CMD_TSE |	/* TSE context */
3987 				E1000_TXD_CMD_IP |	/* Do IP csum */
3988 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
3989 				(pktlen - hlen));	/* Total len */
3990 
3991 	/* Save the information for this TSO context */
3992 	sc->csum_flags = CSUM_TSO;
3993 	sc->csum_lhlen = hoff;
3994 	sc->csum_iphlen = iphlen;
3995 	sc->csum_thlen = thoff;
3996 	sc->csum_mss = mss;
3997 	sc->csum_pktlen = pktlen;
3998 	sc->csum_txd_upper = *txd_upper;
3999 	sc->csum_txd_lower = *txd_lower;
4000 
4001 	if (++curr_txd == sc->num_tx_desc)
4002 		curr_txd = 0;
4003 
4004 	KKASSERT(sc->num_tx_desc_avail > 0);
4005 	sc->num_tx_desc_avail--;
4006 
4007 	sc->next_avail_tx_desc = curr_txd;
4008 	return 1;
4009 }
4010