xref: /dflybsd-src/sys/dev/netif/emx/if_emx.c (revision f00eae149c338528630cd778fd4de222713daa11)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #ifdef EMX_RSS_DEBUG
114 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
115 do { \
116 	if (sc->rss_debug >= lvl) \
117 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
118 } while (0)
119 #else	/* !EMX_RSS_DEBUG */
120 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
121 #endif	/* EMX_RSS_DEBUG */
122 
123 #define EMX_NAME	"Intel(R) PRO/1000 "
124 
125 #define EMX_DEVICE(id)	\
126 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
127 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
128 
129 static const struct emx_device {
130 	uint16_t	vid;
131 	uint16_t	did;
132 	const char	*desc;
133 } emx_devices[] = {
134 	EMX_DEVICE(82571EB_COPPER),
135 	EMX_DEVICE(82571EB_FIBER),
136 	EMX_DEVICE(82571EB_SERDES),
137 	EMX_DEVICE(82571EB_SERDES_DUAL),
138 	EMX_DEVICE(82571EB_SERDES_QUAD),
139 	EMX_DEVICE(82571EB_QUAD_COPPER),
140 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
141 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
142 	EMX_DEVICE(82571EB_QUAD_FIBER),
143 	EMX_DEVICE(82571PT_QUAD_COPPER),
144 
145 	EMX_DEVICE(82572EI_COPPER),
146 	EMX_DEVICE(82572EI_FIBER),
147 	EMX_DEVICE(82572EI_SERDES),
148 	EMX_DEVICE(82572EI),
149 
150 	EMX_DEVICE(82573E),
151 	EMX_DEVICE(82573E_IAMT),
152 	EMX_DEVICE(82573L),
153 
154 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
155 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
156 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
157 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
158 
159 	EMX_DEVICE(82574L),
160 	EMX_DEVICE(82574LA),
161 
162 	/* required last entry */
163 	EMX_DEVICE_NULL
164 };
165 
166 static int	emx_probe(device_t);
167 static int	emx_attach(device_t);
168 static int	emx_detach(device_t);
169 static int	emx_shutdown(device_t);
170 static int	emx_suspend(device_t);
171 static int	emx_resume(device_t);
172 
173 static void	emx_init(void *);
174 static void	emx_stop(struct emx_softc *);
175 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
176 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
177 #ifdef IFPOLL_ENABLE
178 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
179 static void	emx_npoll_status(struct ifnet *);
180 static void	emx_npoll_tx(struct ifnet *, void *, int);
181 static void	emx_npoll_rx(struct ifnet *, void *, int);
182 #endif
183 static void	emx_watchdog(struct ifaltq_subque *);
184 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
185 static int	emx_media_change(struct ifnet *);
186 static void	emx_timer(void *);
187 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
188 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
189 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
190 #ifdef INVARIANTS
191 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
192 		    boolean_t);
193 #endif
194 
195 static void	emx_intr(void *);
196 static void	emx_intr_mask(void *);
197 static void	emx_intr_body(struct emx_softc *, boolean_t);
198 static void	emx_rxeof(struct emx_rxdata *, int);
199 static void	emx_txeof(struct emx_txdata *);
200 static void	emx_tx_collect(struct emx_txdata *);
201 static void	emx_tx_purge(struct emx_softc *);
202 static void	emx_enable_intr(struct emx_softc *);
203 static void	emx_disable_intr(struct emx_softc *);
204 
205 static int	emx_dma_alloc(struct emx_softc *);
206 static void	emx_dma_free(struct emx_softc *);
207 static void	emx_init_tx_ring(struct emx_txdata *);
208 static int	emx_init_rx_ring(struct emx_rxdata *);
209 static void	emx_free_tx_ring(struct emx_txdata *);
210 static void	emx_free_rx_ring(struct emx_rxdata *);
211 static int	emx_create_tx_ring(struct emx_txdata *);
212 static int	emx_create_rx_ring(struct emx_rxdata *);
213 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
214 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
215 static int	emx_newbuf(struct emx_rxdata *, int, int);
216 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
217 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
218 		    uint32_t *, uint32_t *);
219 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
220 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
221 		    uint32_t *, uint32_t *);
222 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
223 
224 static int 	emx_is_valid_eaddr(const uint8_t *);
225 static int	emx_reset(struct emx_softc *);
226 static void	emx_setup_ifp(struct emx_softc *);
227 static void	emx_init_tx_unit(struct emx_softc *);
228 static void	emx_init_rx_unit(struct emx_softc *);
229 static void	emx_update_stats(struct emx_softc *);
230 static void	emx_set_promisc(struct emx_softc *);
231 static void	emx_disable_promisc(struct emx_softc *);
232 static void	emx_set_multi(struct emx_softc *);
233 static void	emx_update_link_status(struct emx_softc *);
234 static void	emx_smartspeed(struct emx_softc *);
235 static void	emx_set_itr(struct emx_softc *, uint32_t);
236 static void	emx_disable_aspm(struct emx_softc *);
237 
238 static void	emx_print_debug_info(struct emx_softc *);
239 static void	emx_print_nvm_info(struct emx_softc *);
240 static void	emx_print_hw_stats(struct emx_softc *);
241 
242 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
243 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
244 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
245 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
246 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
247 #ifdef IFPOLL_ENABLE
248 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
249 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
250 #endif
251 static void	emx_add_sysctl(struct emx_softc *);
252 
253 static void	emx_serialize_skipmain(struct emx_softc *);
254 static void	emx_deserialize_skipmain(struct emx_softc *);
255 
256 /* Management and WOL Support */
257 static void	emx_get_mgmt(struct emx_softc *);
258 static void	emx_rel_mgmt(struct emx_softc *);
259 static void	emx_get_hw_control(struct emx_softc *);
260 static void	emx_rel_hw_control(struct emx_softc *);
261 static void	emx_enable_wol(device_t);
262 
263 static device_method_t emx_methods[] = {
264 	/* Device interface */
265 	DEVMETHOD(device_probe,		emx_probe),
266 	DEVMETHOD(device_attach,	emx_attach),
267 	DEVMETHOD(device_detach,	emx_detach),
268 	DEVMETHOD(device_shutdown,	emx_shutdown),
269 	DEVMETHOD(device_suspend,	emx_suspend),
270 	DEVMETHOD(device_resume,	emx_resume),
271 	DEVMETHOD_END
272 };
273 
274 static driver_t emx_driver = {
275 	"emx",
276 	emx_methods,
277 	sizeof(struct emx_softc),
278 };
279 
280 static devclass_t emx_devclass;
281 
282 DECLARE_DUMMY_MODULE(if_emx);
283 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
284 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
285 
286 /*
287  * Tunables
288  */
289 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
290 static int	emx_rxd = EMX_DEFAULT_RXD;
291 static int	emx_txd = EMX_DEFAULT_TXD;
292 static int	emx_smart_pwr_down = 0;
293 static int	emx_rxr = 0;
294 static int	emx_txr = 1;
295 
296 /* Controls whether promiscuous also shows bad packets */
297 static int	emx_debug_sbp = 0;
298 
299 static int	emx_82573_workaround = 1;
300 static int	emx_msi_enable = 1;
301 
302 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
303 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
304 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
305 TUNABLE_INT("hw.emx.txd", &emx_txd);
306 TUNABLE_INT("hw.emx.txr", &emx_txr);
307 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
308 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
309 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
310 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
311 
312 /* Global used in WOL setup with multiport cards */
313 static int	emx_global_quad_port_a = 0;
314 
315 /* Set this to one to display debug statistics */
316 static int	emx_display_debug_stats = 0;
317 
318 #if !defined(KTR_IF_EMX)
319 #define KTR_IF_EMX	KTR_ALL
320 #endif
321 KTR_INFO_MASTER(if_emx);
322 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
323 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
324 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
325 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
326 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
327 #define logif(name)	KTR_LOG(if_emx_ ## name)
328 
329 static __inline void
330 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
331 {
332 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
333 	/* DD bit must be cleared */
334 	rxd->rxd_staterr = 0;
335 }
336 
337 static __inline void
338 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
339 {
340 	/* Ignore Checksum bit is set */
341 	if (staterr & E1000_RXD_STAT_IXSM)
342 		return;
343 
344 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
345 	    E1000_RXD_STAT_IPCS)
346 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
347 
348 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
349 	    E1000_RXD_STAT_TCPCS) {
350 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
351 					   CSUM_PSEUDO_HDR |
352 					   CSUM_FRAG_NOT_CHECKED;
353 		mp->m_pkthdr.csum_data = htons(0xffff);
354 	}
355 }
356 
357 static __inline struct pktinfo *
358 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
359 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
360 {
361 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
362 	case EMX_RXDMRQ_IPV4_TCP:
363 		pi->pi_netisr = NETISR_IP;
364 		pi->pi_flags = 0;
365 		pi->pi_l3proto = IPPROTO_TCP;
366 		break;
367 
368 	case EMX_RXDMRQ_IPV6_TCP:
369 		pi->pi_netisr = NETISR_IPV6;
370 		pi->pi_flags = 0;
371 		pi->pi_l3proto = IPPROTO_TCP;
372 		break;
373 
374 	case EMX_RXDMRQ_IPV4:
375 		if (staterr & E1000_RXD_STAT_IXSM)
376 			return NULL;
377 
378 		if ((staterr &
379 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
380 		    E1000_RXD_STAT_TCPCS) {
381 			pi->pi_netisr = NETISR_IP;
382 			pi->pi_flags = 0;
383 			pi->pi_l3proto = IPPROTO_UDP;
384 			break;
385 		}
386 		/* FALL THROUGH */
387 	default:
388 		return NULL;
389 	}
390 
391 	m->m_flags |= M_HASH;
392 	m->m_pkthdr.hash = toeplitz_hash(hash);
393 	return pi;
394 }
395 
396 static int
397 emx_probe(device_t dev)
398 {
399 	const struct emx_device *d;
400 	uint16_t vid, did;
401 
402 	vid = pci_get_vendor(dev);
403 	did = pci_get_device(dev);
404 
405 	for (d = emx_devices; d->desc != NULL; ++d) {
406 		if (vid == d->vid && did == d->did) {
407 			device_set_desc(dev, d->desc);
408 			device_set_async_attach(dev, TRUE);
409 			return 0;
410 		}
411 	}
412 	return ENXIO;
413 }
414 
415 static int
416 emx_attach(device_t dev)
417 {
418 	struct emx_softc *sc = device_get_softc(dev);
419 	int error = 0, i, throttle, msi_enable, tx_ring_max;
420 	u_int intr_flags;
421 	uint16_t eeprom_data, device_id, apme_mask;
422 	driver_intr_t *intr_func;
423 #ifdef IFPOLL_ENABLE
424 	int offset, offset_def;
425 #endif
426 
427 	/*
428 	 * Setup RX rings
429 	 */
430 	for (i = 0; i < EMX_NRX_RING; ++i) {
431 		sc->rx_data[i].sc = sc;
432 		sc->rx_data[i].idx = i;
433 	}
434 
435 	/*
436 	 * Setup TX ring
437 	 */
438 	for (i = 0; i < EMX_NTX_RING; ++i) {
439 		sc->tx_data[i].sc = sc;
440 		sc->tx_data[i].idx = i;
441 	}
442 
443 	/*
444 	 * Initialize serializers
445 	 */
446 	lwkt_serialize_init(&sc->main_serialize);
447 	for (i = 0; i < EMX_NTX_RING; ++i)
448 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
449 	for (i = 0; i < EMX_NRX_RING; ++i)
450 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
451 
452 	/*
453 	 * Initialize serializer array
454 	 */
455 	i = 0;
456 
457 	KKASSERT(i < EMX_NSERIALIZE);
458 	sc->serializes[i++] = &sc->main_serialize;
459 
460 	KKASSERT(i < EMX_NSERIALIZE);
461 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
462 	KKASSERT(i < EMX_NSERIALIZE);
463 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
464 
465 	KKASSERT(i < EMX_NSERIALIZE);
466 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
467 	KKASSERT(i < EMX_NSERIALIZE);
468 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
469 
470 	KKASSERT(i == EMX_NSERIALIZE);
471 
472 	callout_init_mp(&sc->timer);
473 
474 	sc->dev = sc->osdep.dev = dev;
475 
476 	/*
477 	 * Determine hardware and mac type
478 	 */
479 	sc->hw.vendor_id = pci_get_vendor(dev);
480 	sc->hw.device_id = pci_get_device(dev);
481 	sc->hw.revision_id = pci_get_revid(dev);
482 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
483 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
484 
485 	if (e1000_set_mac_type(&sc->hw))
486 		return ENXIO;
487 
488 	/* Enable bus mastering */
489 	pci_enable_busmaster(dev);
490 
491 	/*
492 	 * Allocate IO memory
493 	 */
494 	sc->memory_rid = EMX_BAR_MEM;
495 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
496 					    &sc->memory_rid, RF_ACTIVE);
497 	if (sc->memory == NULL) {
498 		device_printf(dev, "Unable to allocate bus resource: memory\n");
499 		error = ENXIO;
500 		goto fail;
501 	}
502 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
503 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
504 
505 	/* XXX This is quite goofy, it is not actually used */
506 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
507 
508 	/*
509 	 * Don't enable MSI-X on 82574, see:
510 	 * 82574 specification update errata #15
511 	 *
512 	 * Don't enable MSI on 82571/82572, see:
513 	 * 82571/82572 specification update errata #63
514 	 */
515 	msi_enable = emx_msi_enable;
516 	if (msi_enable &&
517 	    (sc->hw.mac.type == e1000_82571 ||
518 	     sc->hw.mac.type == e1000_82572))
519 		msi_enable = 0;
520 
521 	/*
522 	 * Allocate interrupt
523 	 */
524 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
525 	    &sc->intr_rid, &intr_flags);
526 
527 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
528 		int unshared;
529 
530 		unshared = device_getenv_int(dev, "irq.unshared", 0);
531 		if (!unshared) {
532 			sc->flags |= EMX_FLAG_SHARED_INTR;
533 			if (bootverbose)
534 				device_printf(dev, "IRQ shared\n");
535 		} else {
536 			intr_flags &= ~RF_SHAREABLE;
537 			if (bootverbose)
538 				device_printf(dev, "IRQ unshared\n");
539 		}
540 	}
541 
542 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
543 	    intr_flags);
544 	if (sc->intr_res == NULL) {
545 		device_printf(dev, "Unable to allocate bus resource: "
546 		    "interrupt\n");
547 		error = ENXIO;
548 		goto fail;
549 	}
550 
551 	/* Save PCI command register for Shared Code */
552 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
553 	sc->hw.back = &sc->osdep;
554 
555 	/* Do Shared Code initialization */
556 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
557 		device_printf(dev, "Setup of Shared code failed\n");
558 		error = ENXIO;
559 		goto fail;
560 	}
561 	e1000_get_bus_info(&sc->hw);
562 
563 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
564 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
565 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
566 
567 	/*
568 	 * Interrupt throttle rate
569 	 */
570 	throttle = device_getenv_int(dev, "int_throttle_ceil",
571 	    emx_int_throttle_ceil);
572 	if (throttle == 0) {
573 		sc->int_throttle_ceil = 0;
574 	} else {
575 		if (throttle < 0)
576 			throttle = EMX_DEFAULT_ITR;
577 
578 		/* Recalculate the tunable value to get the exact frequency. */
579 		throttle = 1000000000 / 256 / throttle;
580 
581 		/* Upper 16bits of ITR is reserved and should be zero */
582 		if (throttle & 0xffff0000)
583 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
584 
585 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
586 	}
587 
588 	e1000_init_script_state_82541(&sc->hw, TRUE);
589 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
590 
591 	/* Copper options */
592 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
593 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
594 		sc->hw.phy.disable_polarity_correction = FALSE;
595 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
596 	}
597 
598 	/* Set the frame limits assuming standard ethernet sized frames. */
599 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
600 	sc->min_frame_size = ETHER_MIN_LEN;
601 
602 	/* This controls when hardware reports transmit completion status. */
603 	sc->hw.mac.report_tx_early = 1;
604 
605 	/* Calculate # of RX rings */
606 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
607 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
608 
609 	/*
610 	 * Calculate # of TX rings
611 	 *
612 	 * NOTE:
613 	 * Don't enable multiple TX queues on 82574; it always gives
614 	 * watchdog timeout on TX queue0, when multiple TCP streams are
615 	 * received.  It was originally suspected that the hardware TX
616 	 * checksum offloading caused this watchdog timeout, since only
617 	 * TCP ACKs are sent during TCP receiving tests.  However, even
618 	 * if the hardware TX checksum offloading is disable, TX queue0
619 	 * still will give watchdog.
620 	 */
621 	tx_ring_max = 1;
622 	if (sc->hw.mac.type == e1000_82571 ||
623 	    sc->hw.mac.type == e1000_82572 ||
624 	    sc->hw.mac.type == e1000_80003es2lan)
625 		tx_ring_max = EMX_NTX_RING;
626 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
627 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
628 
629 	/* Allocate RX/TX rings' busdma(9) stuffs */
630 	error = emx_dma_alloc(sc);
631 	if (error)
632 		goto fail;
633 
634 	/* Allocate multicast array memory. */
635 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
636 	    M_DEVBUF, M_WAITOK);
637 
638 	/* Indicate SOL/IDER usage */
639 	if (e1000_check_reset_block(&sc->hw)) {
640 		device_printf(dev,
641 		    "PHY reset is blocked due to SOL/IDER session.\n");
642 	}
643 
644 	/*
645 	 * Start from a known state, this is important in reading the
646 	 * nvm and mac from that.
647 	 */
648 	e1000_reset_hw(&sc->hw);
649 
650 	/* Make sure we have a good EEPROM before we read from it */
651 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
652 		/*
653 		 * Some PCI-E parts fail the first check due to
654 		 * the link being in sleep state, call it again,
655 		 * if it fails a second time its a real issue.
656 		 */
657 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
658 			device_printf(dev,
659 			    "The EEPROM Checksum Is Not Valid\n");
660 			error = EIO;
661 			goto fail;
662 		}
663 	}
664 
665 	/* Copy the permanent MAC address out of the EEPROM */
666 	if (e1000_read_mac_addr(&sc->hw) < 0) {
667 		device_printf(dev, "EEPROM read error while reading MAC"
668 		    " address\n");
669 		error = EIO;
670 		goto fail;
671 	}
672 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
673 		device_printf(dev, "Invalid MAC address\n");
674 		error = EIO;
675 		goto fail;
676 	}
677 
678 	/* Determine if we have to control management hardware */
679 	if (e1000_enable_mng_pass_thru(&sc->hw))
680 		sc->flags |= EMX_FLAG_HAS_MGMT;
681 
682 	/*
683 	 * Setup Wake-on-Lan
684 	 */
685 	apme_mask = EMX_EEPROM_APME;
686 	eeprom_data = 0;
687 	switch (sc->hw.mac.type) {
688 	case e1000_82573:
689 		sc->flags |= EMX_FLAG_HAS_AMT;
690 		/* FALL THROUGH */
691 
692 	case e1000_82571:
693 	case e1000_82572:
694 	case e1000_80003es2lan:
695 		if (sc->hw.bus.func == 1) {
696 			e1000_read_nvm(&sc->hw,
697 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
698 		} else {
699 			e1000_read_nvm(&sc->hw,
700 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
701 		}
702 		break;
703 
704 	default:
705 		e1000_read_nvm(&sc->hw,
706 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
707 		break;
708 	}
709 	if (eeprom_data & apme_mask)
710 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
711 
712 	/*
713          * We have the eeprom settings, now apply the special cases
714          * where the eeprom may be wrong or the board won't support
715          * wake on lan on a particular port
716 	 */
717 	device_id = pci_get_device(dev);
718         switch (device_id) {
719 	case E1000_DEV_ID_82571EB_FIBER:
720 		/*
721 		 * Wake events only supported on port A for dual fiber
722 		 * regardless of eeprom setting
723 		 */
724 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
725 		    E1000_STATUS_FUNC_1)
726 			sc->wol = 0;
727 		break;
728 
729 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
730 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
731 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
732                 /* if quad port sc, disable WoL on all but port A */
733 		if (emx_global_quad_port_a != 0)
734 			sc->wol = 0;
735 		/* Reset for multiple quad port adapters */
736 		if (++emx_global_quad_port_a == 4)
737 			emx_global_quad_port_a = 0;
738                 break;
739 	}
740 
741 	/* XXX disable wol */
742 	sc->wol = 0;
743 
744 #ifdef IFPOLL_ENABLE
745 	/*
746 	 * NPOLLING RX CPU offset
747 	 */
748 	if (sc->rx_ring_cnt == ncpus2) {
749 		offset = 0;
750 	} else {
751 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
752 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
753 		if (offset >= ncpus2 ||
754 		    offset % sc->rx_ring_cnt != 0) {
755 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
756 			    offset, offset_def);
757 			offset = offset_def;
758 		}
759 	}
760 	sc->rx_npoll_off = offset;
761 
762 	/*
763 	 * NPOLLING TX CPU offset
764 	 */
765 	if (sc->tx_ring_cnt == ncpus2) {
766 		offset = 0;
767 	} else {
768 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
769 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
770 		if (offset >= ncpus2 ||
771 		    offset % sc->tx_ring_cnt != 0) {
772 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
773 			    offset, offset_def);
774 			offset = offset_def;
775 		}
776 	}
777 	sc->tx_npoll_off = offset;
778 #endif
779 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
780 
781 	/* Setup OS specific network interface */
782 	emx_setup_ifp(sc);
783 
784 	/* Add sysctl tree, must after em_setup_ifp() */
785 	emx_add_sysctl(sc);
786 
787 	/* Reset the hardware */
788 	error = emx_reset(sc);
789 	if (error) {
790 		device_printf(dev, "Unable to reset the hardware\n");
791 		goto fail;
792 	}
793 
794 	/* Initialize statistics */
795 	emx_update_stats(sc);
796 
797 	sc->hw.mac.get_link_status = 1;
798 	emx_update_link_status(sc);
799 
800 	/* Non-AMT based hardware can now take control from firmware */
801 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
802 	    EMX_FLAG_HAS_MGMT)
803 		emx_get_hw_control(sc);
804 
805 	/*
806 	 * Missing Interrupt Following ICR read:
807 	 *
808 	 * 82571/82572 specification update errata #76
809 	 * 82573 specification update errata #31
810 	 * 82574 specification update errata #12
811 	 */
812 	intr_func = emx_intr;
813 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
814 	    (sc->hw.mac.type == e1000_82571 ||
815 	     sc->hw.mac.type == e1000_82572 ||
816 	     sc->hw.mac.type == e1000_82573 ||
817 	     sc->hw.mac.type == e1000_82574))
818 		intr_func = emx_intr_mask;
819 
820 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
821 			       &sc->intr_tag, &sc->main_serialize);
822 	if (error) {
823 		device_printf(dev, "Failed to register interrupt handler");
824 		ether_ifdetach(&sc->arpcom.ac_if);
825 		goto fail;
826 	}
827 	return (0);
828 fail:
829 	emx_detach(dev);
830 	return (error);
831 }
832 
833 static int
834 emx_detach(device_t dev)
835 {
836 	struct emx_softc *sc = device_get_softc(dev);
837 
838 	if (device_is_attached(dev)) {
839 		struct ifnet *ifp = &sc->arpcom.ac_if;
840 
841 		ifnet_serialize_all(ifp);
842 
843 		emx_stop(sc);
844 
845 		e1000_phy_hw_reset(&sc->hw);
846 
847 		emx_rel_mgmt(sc);
848 		emx_rel_hw_control(sc);
849 
850 		if (sc->wol) {
851 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
852 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
853 			emx_enable_wol(dev);
854 		}
855 
856 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
857 
858 		ifnet_deserialize_all(ifp);
859 
860 		ether_ifdetach(ifp);
861 	} else if (sc->memory != NULL) {
862 		emx_rel_hw_control(sc);
863 	}
864 	bus_generic_detach(dev);
865 
866 	if (sc->intr_res != NULL) {
867 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
868 				     sc->intr_res);
869 	}
870 
871 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
872 		pci_release_msi(dev);
873 
874 	if (sc->memory != NULL) {
875 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
876 				     sc->memory);
877 	}
878 
879 	emx_dma_free(sc);
880 
881 	/* Free sysctl tree */
882 	if (sc->sysctl_tree != NULL)
883 		sysctl_ctx_free(&sc->sysctl_ctx);
884 
885 	if (sc->mta != NULL)
886 		kfree(sc->mta, M_DEVBUF);
887 
888 	return (0);
889 }
890 
891 static int
892 emx_shutdown(device_t dev)
893 {
894 	return emx_suspend(dev);
895 }
896 
897 static int
898 emx_suspend(device_t dev)
899 {
900 	struct emx_softc *sc = device_get_softc(dev);
901 	struct ifnet *ifp = &sc->arpcom.ac_if;
902 
903 	ifnet_serialize_all(ifp);
904 
905 	emx_stop(sc);
906 
907 	emx_rel_mgmt(sc);
908 	emx_rel_hw_control(sc);
909 
910 	if (sc->wol) {
911 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
912 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
913 		emx_enable_wol(dev);
914 	}
915 
916 	ifnet_deserialize_all(ifp);
917 
918 	return bus_generic_suspend(dev);
919 }
920 
921 static int
922 emx_resume(device_t dev)
923 {
924 	struct emx_softc *sc = device_get_softc(dev);
925 	struct ifnet *ifp = &sc->arpcom.ac_if;
926 	int i;
927 
928 	ifnet_serialize_all(ifp);
929 
930 	emx_init(sc);
931 	emx_get_mgmt(sc);
932 	for (i = 0; i < sc->tx_ring_inuse; ++i)
933 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
934 
935 	ifnet_deserialize_all(ifp);
936 
937 	return bus_generic_resume(dev);
938 }
939 
940 static void
941 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
942 {
943 	struct emx_softc *sc = ifp->if_softc;
944 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
945 	struct mbuf *m_head;
946 	int idx = -1, nsegs = 0;
947 
948 	KKASSERT(tdata->ifsq == ifsq);
949 	ASSERT_SERIALIZED(&tdata->tx_serialize);
950 
951 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
952 		return;
953 
954 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
955 		ifsq_purge(ifsq);
956 		return;
957 	}
958 
959 	while (!ifsq_is_empty(ifsq)) {
960 		/* Now do we at least have a minimal? */
961 		if (EMX_IS_OACTIVE(tdata)) {
962 			emx_tx_collect(tdata);
963 			if (EMX_IS_OACTIVE(tdata)) {
964 				ifsq_set_oactive(ifsq);
965 				break;
966 			}
967 		}
968 
969 		logif(pkt_txqueue);
970 		m_head = ifsq_dequeue(ifsq, NULL);
971 		if (m_head == NULL)
972 			break;
973 
974 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
975 			IFNET_STAT_INC(ifp, oerrors, 1);
976 			emx_tx_collect(tdata);
977 			continue;
978 		}
979 
980 		if (nsegs >= tdata->tx_wreg_nsegs) {
981 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
982 			nsegs = 0;
983 			idx = -1;
984 		}
985 
986 		/* Send a copy of the frame to the BPF listener */
987 		ETHER_BPF_MTAP(ifp, m_head);
988 
989 		/* Set timeout in case hardware has problems transmitting. */
990 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
991 	}
992 	if (idx >= 0)
993 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
994 }
995 
996 static int
997 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
998 {
999 	struct emx_softc *sc = ifp->if_softc;
1000 	struct ifreq *ifr = (struct ifreq *)data;
1001 	uint16_t eeprom_data = 0;
1002 	int max_frame_size, mask, reinit;
1003 	int error = 0;
1004 
1005 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1006 
1007 	switch (command) {
1008 	case SIOCSIFMTU:
1009 		switch (sc->hw.mac.type) {
1010 		case e1000_82573:
1011 			/*
1012 			 * 82573 only supports jumbo frames
1013 			 * if ASPM is disabled.
1014 			 */
1015 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1016 				       &eeprom_data);
1017 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1018 				max_frame_size = ETHER_MAX_LEN;
1019 				break;
1020 			}
1021 			/* FALL THROUGH */
1022 
1023 		/* Limit Jumbo Frame size */
1024 		case e1000_82571:
1025 		case e1000_82572:
1026 		case e1000_82574:
1027 		case e1000_80003es2lan:
1028 			max_frame_size = 9234;
1029 			break;
1030 
1031 		default:
1032 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1033 			break;
1034 		}
1035 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1036 		    ETHER_CRC_LEN) {
1037 			error = EINVAL;
1038 			break;
1039 		}
1040 
1041 		ifp->if_mtu = ifr->ifr_mtu;
1042 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1043 				     ETHER_CRC_LEN;
1044 
1045 		if (ifp->if_flags & IFF_RUNNING)
1046 			emx_init(sc);
1047 		break;
1048 
1049 	case SIOCSIFFLAGS:
1050 		if (ifp->if_flags & IFF_UP) {
1051 			if ((ifp->if_flags & IFF_RUNNING)) {
1052 				if ((ifp->if_flags ^ sc->if_flags) &
1053 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1054 					emx_disable_promisc(sc);
1055 					emx_set_promisc(sc);
1056 				}
1057 			} else {
1058 				emx_init(sc);
1059 			}
1060 		} else if (ifp->if_flags & IFF_RUNNING) {
1061 			emx_stop(sc);
1062 		}
1063 		sc->if_flags = ifp->if_flags;
1064 		break;
1065 
1066 	case SIOCADDMULTI:
1067 	case SIOCDELMULTI:
1068 		if (ifp->if_flags & IFF_RUNNING) {
1069 			emx_disable_intr(sc);
1070 			emx_set_multi(sc);
1071 #ifdef IFPOLL_ENABLE
1072 			if (!(ifp->if_flags & IFF_NPOLLING))
1073 #endif
1074 				emx_enable_intr(sc);
1075 		}
1076 		break;
1077 
1078 	case SIOCSIFMEDIA:
1079 		/* Check SOL/IDER usage */
1080 		if (e1000_check_reset_block(&sc->hw)) {
1081 			device_printf(sc->dev, "Media change is"
1082 			    " blocked due to SOL/IDER session.\n");
1083 			break;
1084 		}
1085 		/* FALL THROUGH */
1086 
1087 	case SIOCGIFMEDIA:
1088 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1089 		break;
1090 
1091 	case SIOCSIFCAP:
1092 		reinit = 0;
1093 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1094 		if (mask & IFCAP_RXCSUM) {
1095 			ifp->if_capenable ^= IFCAP_RXCSUM;
1096 			reinit = 1;
1097 		}
1098 		if (mask & IFCAP_VLAN_HWTAGGING) {
1099 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1100 			reinit = 1;
1101 		}
1102 		if (mask & IFCAP_TXCSUM) {
1103 			ifp->if_capenable ^= IFCAP_TXCSUM;
1104 			if (ifp->if_capenable & IFCAP_TXCSUM)
1105 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1106 			else
1107 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1108 		}
1109 		if (mask & IFCAP_TSO) {
1110 			ifp->if_capenable ^= IFCAP_TSO;
1111 			if (ifp->if_capenable & IFCAP_TSO)
1112 				ifp->if_hwassist |= CSUM_TSO;
1113 			else
1114 				ifp->if_hwassist &= ~CSUM_TSO;
1115 		}
1116 		if (mask & IFCAP_RSS)
1117 			ifp->if_capenable ^= IFCAP_RSS;
1118 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1119 			emx_init(sc);
1120 		break;
1121 
1122 	default:
1123 		error = ether_ioctl(ifp, command, data);
1124 		break;
1125 	}
1126 	return (error);
1127 }
1128 
1129 static void
1130 emx_watchdog(struct ifaltq_subque *ifsq)
1131 {
1132 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1133 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1134 	struct emx_softc *sc = ifp->if_softc;
1135 	int i;
1136 
1137 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1138 
1139 	/*
1140 	 * The timer is set to 5 every time start queues a packet.
1141 	 * Then txeof keeps resetting it as long as it cleans at
1142 	 * least one descriptor.
1143 	 * Finally, anytime all descriptors are clean the timer is
1144 	 * set to 0.
1145 	 */
1146 
1147 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1148 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1149 		/*
1150 		 * If we reach here, all TX jobs are completed and
1151 		 * the TX engine should have been idled for some time.
1152 		 * We don't need to call ifsq_devstart_sched() here.
1153 		 */
1154 		ifsq_clr_oactive(ifsq);
1155 		tdata->tx_watchdog.wd_timer = 0;
1156 		return;
1157 	}
1158 
1159 	/*
1160 	 * If we are in this routine because of pause frames, then
1161 	 * don't reset the hardware.
1162 	 */
1163 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1164 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1165 		return;
1166 	}
1167 
1168 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1169 
1170 	IFNET_STAT_INC(ifp, oerrors, 1);
1171 
1172 	emx_init(sc);
1173 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1174 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1175 }
1176 
1177 static void
1178 emx_init(void *xsc)
1179 {
1180 	struct emx_softc *sc = xsc;
1181 	struct ifnet *ifp = &sc->arpcom.ac_if;
1182 	device_t dev = sc->dev;
1183 	boolean_t polling;
1184 	int i;
1185 
1186 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1187 
1188 	emx_stop(sc);
1189 
1190 	/* Get the latest mac address, User can use a LAA */
1191         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1192 
1193 	/* Put the address into the Receive Address Array */
1194 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1195 
1196 	/*
1197 	 * With the 82571 sc, RAR[0] may be overwritten
1198 	 * when the other port is reset, we make a duplicate
1199 	 * in RAR[14] for that eventuality, this assures
1200 	 * the interface continues to function.
1201 	 */
1202 	if (sc->hw.mac.type == e1000_82571) {
1203 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1204 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1205 		    E1000_RAR_ENTRIES - 1);
1206 	}
1207 
1208 	/* Initialize the hardware */
1209 	if (emx_reset(sc)) {
1210 		device_printf(dev, "Unable to reset the hardware\n");
1211 		/* XXX emx_stop()? */
1212 		return;
1213 	}
1214 	emx_update_link_status(sc);
1215 
1216 	/* Setup VLAN support, basic and offload if available */
1217 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1218 
1219 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1220 		uint32_t ctrl;
1221 
1222 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1223 		ctrl |= E1000_CTRL_VME;
1224 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1225 	}
1226 
1227 	/* Configure for OS presence */
1228 	emx_get_mgmt(sc);
1229 
1230 	polling = FALSE;
1231 #ifdef IFPOLL_ENABLE
1232 	if (ifp->if_flags & IFF_NPOLLING)
1233 		polling = TRUE;
1234 #endif
1235 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1236 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1237 
1238 	/* Prepare transmit descriptors and buffers */
1239 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1240 		emx_init_tx_ring(&sc->tx_data[i]);
1241 	emx_init_tx_unit(sc);
1242 
1243 	/* Setup Multicast table */
1244 	emx_set_multi(sc);
1245 
1246 	/* Prepare receive descriptors and buffers */
1247 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1248 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1249 			device_printf(dev,
1250 			    "Could not setup receive structures\n");
1251 			emx_stop(sc);
1252 			return;
1253 		}
1254 	}
1255 	emx_init_rx_unit(sc);
1256 
1257 	/* Don't lose promiscuous settings */
1258 	emx_set_promisc(sc);
1259 
1260 	ifp->if_flags |= IFF_RUNNING;
1261 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1262 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1263 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1264 	}
1265 
1266 	callout_reset(&sc->timer, hz, emx_timer, sc);
1267 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1268 
1269 	/* MSI/X configuration for 82574 */
1270 	if (sc->hw.mac.type == e1000_82574) {
1271 		int tmp;
1272 
1273 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1274 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1275 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1276 		/*
1277 		 * XXX MSIX
1278 		 * Set the IVAR - interrupt vector routing.
1279 		 * Each nibble represents a vector, high bit
1280 		 * is enable, other 3 bits are the MSIX table
1281 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1282 		 * Link (other) to 2, hence the magic number.
1283 		 */
1284 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1285 	}
1286 
1287 	/*
1288 	 * Only enable interrupts if we are not polling, make sure
1289 	 * they are off otherwise.
1290 	 */
1291 	if (polling)
1292 		emx_disable_intr(sc);
1293 	else
1294 		emx_enable_intr(sc);
1295 
1296 	/* AMT based hardware can now take control from firmware */
1297 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1298 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1299 		emx_get_hw_control(sc);
1300 }
1301 
1302 static void
1303 emx_intr(void *xsc)
1304 {
1305 	emx_intr_body(xsc, TRUE);
1306 }
1307 
1308 static void
1309 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1310 {
1311 	struct ifnet *ifp = &sc->arpcom.ac_if;
1312 	uint32_t reg_icr;
1313 
1314 	logif(intr_beg);
1315 	ASSERT_SERIALIZED(&sc->main_serialize);
1316 
1317 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1318 
1319 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1320 		logif(intr_end);
1321 		return;
1322 	}
1323 
1324 	/*
1325 	 * XXX: some laptops trigger several spurious interrupts
1326 	 * on emx(4) when in the resume cycle. The ICR register
1327 	 * reports all-ones value in this case. Processing such
1328 	 * interrupts would lead to a freeze. I don't know why.
1329 	 */
1330 	if (reg_icr == 0xffffffff) {
1331 		logif(intr_end);
1332 		return;
1333 	}
1334 
1335 	if (ifp->if_flags & IFF_RUNNING) {
1336 		if (reg_icr &
1337 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1338 			int i;
1339 
1340 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1341 				lwkt_serialize_enter(
1342 				&sc->rx_data[i].rx_serialize);
1343 				emx_rxeof(&sc->rx_data[i], -1);
1344 				lwkt_serialize_exit(
1345 				&sc->rx_data[i].rx_serialize);
1346 			}
1347 		}
1348 		if (reg_icr & E1000_ICR_TXDW) {
1349 			struct emx_txdata *tdata = &sc->tx_data[0];
1350 
1351 			lwkt_serialize_enter(&tdata->tx_serialize);
1352 			emx_txeof(tdata);
1353 			if (!ifsq_is_empty(tdata->ifsq))
1354 				ifsq_devstart(tdata->ifsq);
1355 			lwkt_serialize_exit(&tdata->tx_serialize);
1356 		}
1357 	}
1358 
1359 	/* Link status change */
1360 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1361 		emx_serialize_skipmain(sc);
1362 
1363 		callout_stop(&sc->timer);
1364 		sc->hw.mac.get_link_status = 1;
1365 		emx_update_link_status(sc);
1366 
1367 		/* Deal with TX cruft when link lost */
1368 		emx_tx_purge(sc);
1369 
1370 		callout_reset(&sc->timer, hz, emx_timer, sc);
1371 
1372 		emx_deserialize_skipmain(sc);
1373 	}
1374 
1375 	if (reg_icr & E1000_ICR_RXO)
1376 		sc->rx_overruns++;
1377 
1378 	logif(intr_end);
1379 }
1380 
1381 static void
1382 emx_intr_mask(void *xsc)
1383 {
1384 	struct emx_softc *sc = xsc;
1385 
1386 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1387 	/*
1388 	 * NOTE:
1389 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1390 	 * so don't check it.
1391 	 */
1392 	emx_intr_body(sc, FALSE);
1393 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1394 }
1395 
1396 static void
1397 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1398 {
1399 	struct emx_softc *sc = ifp->if_softc;
1400 
1401 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1402 
1403 	emx_update_link_status(sc);
1404 
1405 	ifmr->ifm_status = IFM_AVALID;
1406 	ifmr->ifm_active = IFM_ETHER;
1407 
1408 	if (!sc->link_active)
1409 		return;
1410 
1411 	ifmr->ifm_status |= IFM_ACTIVE;
1412 
1413 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1414 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1415 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1416 	} else {
1417 		switch (sc->link_speed) {
1418 		case 10:
1419 			ifmr->ifm_active |= IFM_10_T;
1420 			break;
1421 		case 100:
1422 			ifmr->ifm_active |= IFM_100_TX;
1423 			break;
1424 
1425 		case 1000:
1426 			ifmr->ifm_active |= IFM_1000_T;
1427 			break;
1428 		}
1429 		if (sc->link_duplex == FULL_DUPLEX)
1430 			ifmr->ifm_active |= IFM_FDX;
1431 		else
1432 			ifmr->ifm_active |= IFM_HDX;
1433 	}
1434 }
1435 
1436 static int
1437 emx_media_change(struct ifnet *ifp)
1438 {
1439 	struct emx_softc *sc = ifp->if_softc;
1440 	struct ifmedia *ifm = &sc->media;
1441 
1442 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1443 
1444 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1445 		return (EINVAL);
1446 
1447 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1448 	case IFM_AUTO:
1449 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1450 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1451 		break;
1452 
1453 	case IFM_1000_LX:
1454 	case IFM_1000_SX:
1455 	case IFM_1000_T:
1456 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1457 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1458 		break;
1459 
1460 	case IFM_100_TX:
1461 		sc->hw.mac.autoneg = FALSE;
1462 		sc->hw.phy.autoneg_advertised = 0;
1463 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1464 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1465 		else
1466 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1467 		break;
1468 
1469 	case IFM_10_T:
1470 		sc->hw.mac.autoneg = FALSE;
1471 		sc->hw.phy.autoneg_advertised = 0;
1472 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1473 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1474 		else
1475 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1476 		break;
1477 
1478 	default:
1479 		if_printf(ifp, "Unsupported media type\n");
1480 		break;
1481 	}
1482 
1483 	emx_init(sc);
1484 
1485 	return (0);
1486 }
1487 
1488 static int
1489 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1490     int *segs_used, int *idx)
1491 {
1492 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1493 	bus_dmamap_t map;
1494 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1495 	struct e1000_tx_desc *ctxd = NULL;
1496 	struct mbuf *m_head = *m_headp;
1497 	uint32_t txd_upper, txd_lower, cmd = 0;
1498 	int maxsegs, nsegs, i, j, first, last = 0, error;
1499 
1500 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1501 		error = emx_tso_pullup(tdata, m_headp);
1502 		if (error)
1503 			return error;
1504 		m_head = *m_headp;
1505 	}
1506 
1507 	txd_upper = txd_lower = 0;
1508 
1509 	/*
1510 	 * Capture the first descriptor index, this descriptor
1511 	 * will have the index of the EOP which is the only one
1512 	 * that now gets a DONE bit writeback.
1513 	 */
1514 	first = tdata->next_avail_tx_desc;
1515 	tx_buffer = &tdata->tx_buf[first];
1516 	tx_buffer_mapped = tx_buffer;
1517 	map = tx_buffer->map;
1518 
1519 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1520 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1521 	if (maxsegs > EMX_MAX_SCATTER)
1522 		maxsegs = EMX_MAX_SCATTER;
1523 
1524 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1525 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1526 	if (error) {
1527 		m_freem(*m_headp);
1528 		*m_headp = NULL;
1529 		return error;
1530 	}
1531         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1532 
1533 	m_head = *m_headp;
1534 	tdata->tx_nsegs += nsegs;
1535 	*segs_used += nsegs;
1536 
1537 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1538 		/* TSO will consume one TX desc */
1539 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1540 		tdata->tx_nsegs += i;
1541 		*segs_used += i;
1542 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1543 		/* TX csum offloading will consume one TX desc */
1544 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1545 		tdata->tx_nsegs += i;
1546 		*segs_used += i;
1547 	}
1548 	i = tdata->next_avail_tx_desc;
1549 
1550 	/* Set up our transmit descriptors */
1551 	for (j = 0; j < nsegs; j++) {
1552 		tx_buffer = &tdata->tx_buf[i];
1553 		ctxd = &tdata->tx_desc_base[i];
1554 
1555 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1556 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1557 					   txd_lower | segs[j].ds_len);
1558 		ctxd->upper.data = htole32(txd_upper);
1559 
1560 		last = i;
1561 		if (++i == tdata->num_tx_desc)
1562 			i = 0;
1563 	}
1564 
1565 	tdata->next_avail_tx_desc = i;
1566 
1567 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1568 	tdata->num_tx_desc_avail -= nsegs;
1569 
1570         /* Handle VLAN tag */
1571 	if (m_head->m_flags & M_VLANTAG) {
1572 		/* Set the vlan id. */
1573 		ctxd->upper.fields.special =
1574 		    htole16(m_head->m_pkthdr.ether_vlantag);
1575 
1576 		/* Tell hardware to add tag */
1577 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1578 	}
1579 
1580 	tx_buffer->m_head = m_head;
1581 	tx_buffer_mapped->map = tx_buffer->map;
1582 	tx_buffer->map = map;
1583 
1584 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1585 		tdata->tx_nsegs = 0;
1586 
1587 		/*
1588 		 * Report Status (RS) is turned on
1589 		 * every tx_intr_nsegs descriptors.
1590 		 */
1591 		cmd = E1000_TXD_CMD_RS;
1592 
1593 		/*
1594 		 * Keep track of the descriptor, which will
1595 		 * be written back by hardware.
1596 		 */
1597 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1598 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1599 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1600 	}
1601 
1602 	/*
1603 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1604 	 */
1605 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1606 
1607 	/*
1608 	 * Defer TDT updating, until enough descriptors are setup
1609 	 */
1610 	*idx = i;
1611 
1612 #ifdef EMX_TSS_DEBUG
1613 	tdata->tx_pkts++;
1614 #endif
1615 
1616 	return (0);
1617 }
1618 
1619 static void
1620 emx_set_promisc(struct emx_softc *sc)
1621 {
1622 	struct ifnet *ifp = &sc->arpcom.ac_if;
1623 	uint32_t reg_rctl;
1624 
1625 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1626 
1627 	if (ifp->if_flags & IFF_PROMISC) {
1628 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1629 		/* Turn this on if you want to see bad packets */
1630 		if (emx_debug_sbp)
1631 			reg_rctl |= E1000_RCTL_SBP;
1632 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1633 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1634 		reg_rctl |= E1000_RCTL_MPE;
1635 		reg_rctl &= ~E1000_RCTL_UPE;
1636 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1637 	}
1638 }
1639 
1640 static void
1641 emx_disable_promisc(struct emx_softc *sc)
1642 {
1643 	uint32_t reg_rctl;
1644 
1645 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1646 
1647 	reg_rctl &= ~E1000_RCTL_UPE;
1648 	reg_rctl &= ~E1000_RCTL_MPE;
1649 	reg_rctl &= ~E1000_RCTL_SBP;
1650 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1651 }
1652 
1653 static void
1654 emx_set_multi(struct emx_softc *sc)
1655 {
1656 	struct ifnet *ifp = &sc->arpcom.ac_if;
1657 	struct ifmultiaddr *ifma;
1658 	uint32_t reg_rctl = 0;
1659 	uint8_t *mta;
1660 	int mcnt = 0;
1661 
1662 	mta = sc->mta;
1663 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1664 
1665 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1666 		if (ifma->ifma_addr->sa_family != AF_LINK)
1667 			continue;
1668 
1669 		if (mcnt == EMX_MCAST_ADDR_MAX)
1670 			break;
1671 
1672 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1673 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1674 		mcnt++;
1675 	}
1676 
1677 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1678 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1679 		reg_rctl |= E1000_RCTL_MPE;
1680 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1681 	} else {
1682 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1683 	}
1684 }
1685 
1686 /*
1687  * This routine checks for link status and updates statistics.
1688  */
1689 static void
1690 emx_timer(void *xsc)
1691 {
1692 	struct emx_softc *sc = xsc;
1693 	struct ifnet *ifp = &sc->arpcom.ac_if;
1694 
1695 	lwkt_serialize_enter(&sc->main_serialize);
1696 
1697 	emx_update_link_status(sc);
1698 	emx_update_stats(sc);
1699 
1700 	/* Reset LAA into RAR[0] on 82571 */
1701 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1702 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1703 
1704 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1705 		emx_print_hw_stats(sc);
1706 
1707 	emx_smartspeed(sc);
1708 
1709 	callout_reset(&sc->timer, hz, emx_timer, sc);
1710 
1711 	lwkt_serialize_exit(&sc->main_serialize);
1712 }
1713 
1714 static void
1715 emx_update_link_status(struct emx_softc *sc)
1716 {
1717 	struct e1000_hw *hw = &sc->hw;
1718 	struct ifnet *ifp = &sc->arpcom.ac_if;
1719 	device_t dev = sc->dev;
1720 	uint32_t link_check = 0;
1721 
1722 	/* Get the cached link value or read phy for real */
1723 	switch (hw->phy.media_type) {
1724 	case e1000_media_type_copper:
1725 		if (hw->mac.get_link_status) {
1726 			/* Do the work to read phy */
1727 			e1000_check_for_link(hw);
1728 			link_check = !hw->mac.get_link_status;
1729 			if (link_check) /* ESB2 fix */
1730 				e1000_cfg_on_link_up(hw);
1731 		} else {
1732 			link_check = TRUE;
1733 		}
1734 		break;
1735 
1736 	case e1000_media_type_fiber:
1737 		e1000_check_for_link(hw);
1738 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1739 		break;
1740 
1741 	case e1000_media_type_internal_serdes:
1742 		e1000_check_for_link(hw);
1743 		link_check = sc->hw.mac.serdes_has_link;
1744 		break;
1745 
1746 	case e1000_media_type_unknown:
1747 	default:
1748 		break;
1749 	}
1750 
1751 	/* Now check for a transition */
1752 	if (link_check && sc->link_active == 0) {
1753 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1754 		    &sc->link_duplex);
1755 
1756 		/*
1757 		 * Check if we should enable/disable SPEED_MODE bit on
1758 		 * 82571EB/82572EI
1759 		 */
1760 		if (sc->link_speed != SPEED_1000 &&
1761 		    (hw->mac.type == e1000_82571 ||
1762 		     hw->mac.type == e1000_82572)) {
1763 			int tarc0;
1764 
1765 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1766 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1767 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1768 		}
1769 		if (bootverbose) {
1770 			device_printf(dev, "Link is up %d Mbps %s\n",
1771 			    sc->link_speed,
1772 			    ((sc->link_duplex == FULL_DUPLEX) ?
1773 			    "Full Duplex" : "Half Duplex"));
1774 		}
1775 		sc->link_active = 1;
1776 		sc->smartspeed = 0;
1777 		ifp->if_baudrate = sc->link_speed * 1000000;
1778 		ifp->if_link_state = LINK_STATE_UP;
1779 		if_link_state_change(ifp);
1780 	} else if (!link_check && sc->link_active == 1) {
1781 		ifp->if_baudrate = sc->link_speed = 0;
1782 		sc->link_duplex = 0;
1783 		if (bootverbose)
1784 			device_printf(dev, "Link is Down\n");
1785 		sc->link_active = 0;
1786 		ifp->if_link_state = LINK_STATE_DOWN;
1787 		if_link_state_change(ifp);
1788 	}
1789 }
1790 
1791 static void
1792 emx_stop(struct emx_softc *sc)
1793 {
1794 	struct ifnet *ifp = &sc->arpcom.ac_if;
1795 	int i;
1796 
1797 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1798 
1799 	emx_disable_intr(sc);
1800 
1801 	callout_stop(&sc->timer);
1802 
1803 	ifp->if_flags &= ~IFF_RUNNING;
1804 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1805 		struct emx_txdata *tdata = &sc->tx_data[i];
1806 
1807 		ifsq_clr_oactive(tdata->ifsq);
1808 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1809 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1810 	}
1811 
1812 	/*
1813 	 * Disable multiple receive queues.
1814 	 *
1815 	 * NOTE:
1816 	 * We should disable multiple receive queues before
1817 	 * resetting the hardware.
1818 	 */
1819 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1820 
1821 	e1000_reset_hw(&sc->hw);
1822 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1823 
1824 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1825 		emx_free_tx_ring(&sc->tx_data[i]);
1826 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1827 		emx_free_rx_ring(&sc->rx_data[i]);
1828 }
1829 
1830 static int
1831 emx_reset(struct emx_softc *sc)
1832 {
1833 	device_t dev = sc->dev;
1834 	uint16_t rx_buffer_size;
1835 	uint32_t pba;
1836 
1837 	/* Set up smart power down as default off on newer adapters. */
1838 	if (!emx_smart_pwr_down &&
1839 	    (sc->hw.mac.type == e1000_82571 ||
1840 	     sc->hw.mac.type == e1000_82572)) {
1841 		uint16_t phy_tmp = 0;
1842 
1843 		/* Speed up time to link by disabling smart power down. */
1844 		e1000_read_phy_reg(&sc->hw,
1845 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1846 		phy_tmp &= ~IGP02E1000_PM_SPD;
1847 		e1000_write_phy_reg(&sc->hw,
1848 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1849 	}
1850 
1851 	/*
1852 	 * Packet Buffer Allocation (PBA)
1853 	 * Writing PBA sets the receive portion of the buffer
1854 	 * the remainder is used for the transmit buffer.
1855 	 */
1856 	switch (sc->hw.mac.type) {
1857 	/* Total Packet Buffer on these is 48K */
1858 	case e1000_82571:
1859 	case e1000_82572:
1860 	case e1000_80003es2lan:
1861 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1862 		break;
1863 
1864 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1865 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1866 		break;
1867 
1868 	case e1000_82574:
1869 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1870 		break;
1871 
1872 	default:
1873 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1874 		if (sc->max_frame_size > 8192)
1875 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1876 		else
1877 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1878 	}
1879 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1880 
1881 	/*
1882 	 * These parameters control the automatic generation (Tx) and
1883 	 * response (Rx) to Ethernet PAUSE frames.
1884 	 * - High water mark should allow for at least two frames to be
1885 	 *   received after sending an XOFF.
1886 	 * - Low water mark works best when it is very near the high water mark.
1887 	 *   This allows the receiver to restart by sending XON when it has
1888 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1889 	 *   restart after one full frame is pulled from the buffer. There
1890 	 *   could be several smaller frames in the buffer and if so they will
1891 	 *   not trigger the XON until their total number reduces the buffer
1892 	 *   by 1500.
1893 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1894 	 */
1895 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1896 
1897 	sc->hw.fc.high_water = rx_buffer_size -
1898 			       roundup2(sc->max_frame_size, 1024);
1899 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1900 
1901 	if (sc->hw.mac.type == e1000_80003es2lan)
1902 		sc->hw.fc.pause_time = 0xFFFF;
1903 	else
1904 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1905 	sc->hw.fc.send_xon = TRUE;
1906 	sc->hw.fc.requested_mode = e1000_fc_full;
1907 
1908 	/* Issue a global reset */
1909 	e1000_reset_hw(&sc->hw);
1910 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1911 	emx_disable_aspm(sc);
1912 
1913 	if (e1000_init_hw(&sc->hw) < 0) {
1914 		device_printf(dev, "Hardware Initialization Failed\n");
1915 		return (EIO);
1916 	}
1917 
1918 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1919 	e1000_get_phy_info(&sc->hw);
1920 	e1000_check_for_link(&sc->hw);
1921 
1922 	return (0);
1923 }
1924 
1925 static void
1926 emx_setup_ifp(struct emx_softc *sc)
1927 {
1928 	struct ifnet *ifp = &sc->arpcom.ac_if;
1929 	int i;
1930 
1931 	if_initname(ifp, device_get_name(sc->dev),
1932 		    device_get_unit(sc->dev));
1933 	ifp->if_softc = sc;
1934 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1935 	ifp->if_init =  emx_init;
1936 	ifp->if_ioctl = emx_ioctl;
1937 	ifp->if_start = emx_start;
1938 #ifdef IFPOLL_ENABLE
1939 	ifp->if_npoll = emx_npoll;
1940 #endif
1941 	ifp->if_serialize = emx_serialize;
1942 	ifp->if_deserialize = emx_deserialize;
1943 	ifp->if_tryserialize = emx_tryserialize;
1944 #ifdef INVARIANTS
1945 	ifp->if_serialize_assert = emx_serialize_assert;
1946 #endif
1947 
1948 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
1949 	ifq_set_ready(&ifp->if_snd);
1950 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1951 
1952 	ifp->if_mapsubq = ifq_mapsubq_mask;
1953 	ifq_set_subq_mask(&ifp->if_snd, 0);
1954 
1955 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1956 
1957 	ifp->if_capabilities = IFCAP_HWCSUM |
1958 			       IFCAP_VLAN_HWTAGGING |
1959 			       IFCAP_VLAN_MTU |
1960 			       IFCAP_TSO;
1961 	if (sc->rx_ring_cnt > 1)
1962 		ifp->if_capabilities |= IFCAP_RSS;
1963 	ifp->if_capenable = ifp->if_capabilities;
1964 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
1965 
1966 	/*
1967 	 * Tell the upper layer(s) we support long frames.
1968 	 */
1969 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1970 
1971 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1972 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1973 		struct emx_txdata *tdata = &sc->tx_data[i];
1974 
1975 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
1976 		ifsq_set_priv(ifsq, tdata);
1977 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
1978 		tdata->ifsq = ifsq;
1979 
1980 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
1981 	}
1982 
1983 	/*
1984 	 * Specify the media types supported by this sc and register
1985 	 * callbacks to update media and link information
1986 	 */
1987 	ifmedia_init(&sc->media, IFM_IMASK,
1988 		     emx_media_change, emx_media_status);
1989 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1990 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1991 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1992 			    0, NULL);
1993 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1994 	} else {
1995 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1996 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1997 			    0, NULL);
1998 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1999 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2000 			    0, NULL);
2001 		if (sc->hw.phy.type != e1000_phy_ife) {
2002 			ifmedia_add(&sc->media,
2003 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2004 			ifmedia_add(&sc->media,
2005 				IFM_ETHER | IFM_1000_T, 0, NULL);
2006 		}
2007 	}
2008 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2009 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
2010 }
2011 
2012 /*
2013  * Workaround for SmartSpeed on 82541 and 82547 controllers
2014  */
2015 static void
2016 emx_smartspeed(struct emx_softc *sc)
2017 {
2018 	uint16_t phy_tmp;
2019 
2020 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2021 	    sc->hw.mac.autoneg == 0 ||
2022 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2023 		return;
2024 
2025 	if (sc->smartspeed == 0) {
2026 		/*
2027 		 * If Master/Slave config fault is asserted twice,
2028 		 * we assume back-to-back
2029 		 */
2030 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2031 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2032 			return;
2033 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2034 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2035 			e1000_read_phy_reg(&sc->hw,
2036 			    PHY_1000T_CTRL, &phy_tmp);
2037 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2038 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2039 				e1000_write_phy_reg(&sc->hw,
2040 				    PHY_1000T_CTRL, phy_tmp);
2041 				sc->smartspeed++;
2042 				if (sc->hw.mac.autoneg &&
2043 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2044 				    !e1000_read_phy_reg(&sc->hw,
2045 				     PHY_CONTROL, &phy_tmp)) {
2046 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2047 						   MII_CR_RESTART_AUTO_NEG;
2048 					e1000_write_phy_reg(&sc->hw,
2049 					    PHY_CONTROL, phy_tmp);
2050 				}
2051 			}
2052 		}
2053 		return;
2054 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2055 		/* If still no link, perhaps using 2/3 pair cable */
2056 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2057 		phy_tmp |= CR_1000T_MS_ENABLE;
2058 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2059 		if (sc->hw.mac.autoneg &&
2060 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2061 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2062 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2063 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2064 		}
2065 	}
2066 
2067 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2068 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2069 		sc->smartspeed = 0;
2070 }
2071 
2072 static int
2073 emx_create_tx_ring(struct emx_txdata *tdata)
2074 {
2075 	device_t dev = tdata->sc->dev;
2076 	struct emx_txbuf *tx_buffer;
2077 	int error, i, tsize, ntxd;
2078 
2079 	/*
2080 	 * Validate number of transmit descriptors.  It must not exceed
2081 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2082 	 */
2083 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2084 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2085 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2086 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2087 		    EMX_DEFAULT_TXD, ntxd);
2088 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2089 	} else {
2090 		tdata->num_tx_desc = ntxd;
2091 	}
2092 
2093 	/*
2094 	 * Allocate Transmit Descriptor ring
2095 	 */
2096 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2097 			 EMX_DBA_ALIGN);
2098 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2099 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2100 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2101 				&tdata->tx_desc_paddr);
2102 	if (tdata->tx_desc_base == NULL) {
2103 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2104 		return ENOMEM;
2105 	}
2106 
2107 	tsize = __VM_CACHELINE_ALIGN(
2108 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2109 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2110 
2111 	/*
2112 	 * Create DMA tags for tx buffers
2113 	 */
2114 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2115 			1, 0,			/* alignment, bounds */
2116 			BUS_SPACE_MAXADDR,	/* lowaddr */
2117 			BUS_SPACE_MAXADDR,	/* highaddr */
2118 			NULL, NULL,		/* filter, filterarg */
2119 			EMX_TSO_SIZE,		/* maxsize */
2120 			EMX_MAX_SCATTER,	/* nsegments */
2121 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2122 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2123 			BUS_DMA_ONEBPAGE,	/* flags */
2124 			&tdata->txtag);
2125 	if (error) {
2126 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2127 		kfree(tdata->tx_buf, M_DEVBUF);
2128 		tdata->tx_buf = NULL;
2129 		return error;
2130 	}
2131 
2132 	/*
2133 	 * Create DMA maps for tx buffers
2134 	 */
2135 	for (i = 0; i < tdata->num_tx_desc; i++) {
2136 		tx_buffer = &tdata->tx_buf[i];
2137 
2138 		error = bus_dmamap_create(tdata->txtag,
2139 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2140 					  &tx_buffer->map);
2141 		if (error) {
2142 			device_printf(dev, "Unable to create TX DMA map\n");
2143 			emx_destroy_tx_ring(tdata, i);
2144 			return error;
2145 		}
2146 	}
2147 
2148 	/*
2149 	 * Setup TX parameters
2150 	 */
2151 	tdata->spare_tx_desc = EMX_TX_SPARE;
2152 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2153 
2154 	/*
2155 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2156 	 * and tx_intr_nsegs:
2157 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2158 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2159 	 */
2160 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2161 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2162 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2163 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2164 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2165 
2166 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2167 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2168 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2169 
2170 	/*
2171 	 * Pullup extra 4bytes into the first data segment, see:
2172 	 * 82571/82572 specification update errata #7
2173 	 *
2174 	 * NOTE:
2175 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2176 	 * are pulled; mainly to keep rest of the data properly aligned.
2177 	 */
2178 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2179 	    tdata->sc->hw.mac.type == e1000_82572)
2180 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2181 
2182 	return (0);
2183 }
2184 
2185 static void
2186 emx_init_tx_ring(struct emx_txdata *tdata)
2187 {
2188 	/* Clear the old ring contents */
2189 	bzero(tdata->tx_desc_base,
2190 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2191 
2192 	/* Reset state */
2193 	tdata->next_avail_tx_desc = 0;
2194 	tdata->next_tx_to_clean = 0;
2195 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2196 
2197 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2198 	if (tdata->sc->tx_ring_inuse > 1) {
2199 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2200 		if (bootverbose) {
2201 			if_printf(&tdata->sc->arpcom.ac_if,
2202 			    "TX %d force ctx setup\n", tdata->idx);
2203 		}
2204 	}
2205 }
2206 
2207 static void
2208 emx_init_tx_unit(struct emx_softc *sc)
2209 {
2210 	uint32_t tctl, tarc, tipg = 0;
2211 	int i;
2212 
2213 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2214 		struct emx_txdata *tdata = &sc->tx_data[i];
2215 		uint64_t bus_addr;
2216 
2217 		/* Setup the Base and Length of the Tx Descriptor Ring */
2218 		bus_addr = tdata->tx_desc_paddr;
2219 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2220 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2221 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2222 		    (uint32_t)(bus_addr >> 32));
2223 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2224 		    (uint32_t)bus_addr);
2225 		/* Setup the HW Tx Head and Tail descriptor pointers */
2226 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2227 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2228 	}
2229 
2230 	/* Set the default values for the Tx Inter Packet Gap timer */
2231 	switch (sc->hw.mac.type) {
2232 	case e1000_80003es2lan:
2233 		tipg = DEFAULT_82543_TIPG_IPGR1;
2234 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2235 		    E1000_TIPG_IPGR2_SHIFT;
2236 		break;
2237 
2238 	default:
2239 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2240 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2241 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2242 		else
2243 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2244 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2245 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2246 		break;
2247 	}
2248 
2249 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2250 
2251 	/* NOTE: 0 is not allowed for TIDV */
2252 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2253 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2254 
2255 	if (sc->hw.mac.type == e1000_82571 ||
2256 	    sc->hw.mac.type == e1000_82572) {
2257 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2258 		tarc |= EMX_TARC_SPEED_MODE;
2259 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2260 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2261 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2262 		tarc |= 1;
2263 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2264 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2265 		tarc |= 1;
2266 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2267 	}
2268 
2269 	/* Program the Transmit Control Register */
2270 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2271 	tctl &= ~E1000_TCTL_CT;
2272 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2273 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2274 	tctl |= E1000_TCTL_MULR;
2275 
2276 	/* This write will effectively turn on the transmit unit. */
2277 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2278 
2279 	if (sc->hw.mac.type == e1000_82571 ||
2280 	    sc->hw.mac.type == e1000_82572 ||
2281 	    sc->hw.mac.type == e1000_80003es2lan) {
2282 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2283 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2284 		tarc &= ~(1 << 28);
2285 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2286 	}
2287 
2288 	if (sc->tx_ring_inuse > 1) {
2289 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2290 		tarc &= ~EMX_TARC_COUNT_MASK;
2291 		tarc |= 1;
2292 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2293 
2294 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2295 		tarc &= ~EMX_TARC_COUNT_MASK;
2296 		tarc |= 1;
2297 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2298 	}
2299 }
2300 
2301 static void
2302 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2303 {
2304 	struct emx_txbuf *tx_buffer;
2305 	int i;
2306 
2307 	/* Free Transmit Descriptor ring */
2308 	if (tdata->tx_desc_base) {
2309 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2310 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2311 				tdata->tx_desc_dmap);
2312 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2313 
2314 		tdata->tx_desc_base = NULL;
2315 	}
2316 
2317 	if (tdata->tx_buf == NULL)
2318 		return;
2319 
2320 	for (i = 0; i < ndesc; i++) {
2321 		tx_buffer = &tdata->tx_buf[i];
2322 
2323 		KKASSERT(tx_buffer->m_head == NULL);
2324 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2325 	}
2326 	bus_dma_tag_destroy(tdata->txtag);
2327 
2328 	kfree(tdata->tx_buf, M_DEVBUF);
2329 	tdata->tx_buf = NULL;
2330 }
2331 
2332 /*
2333  * The offload context needs to be set when we transfer the first
2334  * packet of a particular protocol (TCP/UDP).  This routine has been
2335  * enhanced to deal with inserted VLAN headers.
2336  *
2337  * If the new packet's ether header length, ip header length and
2338  * csum offloading type are same as the previous packet, we should
2339  * avoid allocating a new csum context descriptor; mainly to take
2340  * advantage of the pipeline effect of the TX data read request.
2341  *
2342  * This function returns number of TX descrptors allocated for
2343  * csum context.
2344  */
2345 static int
2346 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2347 	   uint32_t *txd_upper, uint32_t *txd_lower)
2348 {
2349 	struct e1000_context_desc *TXD;
2350 	int curr_txd, ehdrlen, csum_flags;
2351 	uint32_t cmd, hdr_len, ip_hlen;
2352 
2353 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2354 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2355 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2356 
2357 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2358 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2359 	    tdata->csum_flags == csum_flags) {
2360 		/*
2361 		 * Same csum offload context as the previous packets;
2362 		 * just return.
2363 		 */
2364 		*txd_upper = tdata->csum_txd_upper;
2365 		*txd_lower = tdata->csum_txd_lower;
2366 		return 0;
2367 	}
2368 
2369 	/*
2370 	 * Setup a new csum offload context.
2371 	 */
2372 
2373 	curr_txd = tdata->next_avail_tx_desc;
2374 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2375 
2376 	cmd = 0;
2377 
2378 	/* Setup of IP header checksum. */
2379 	if (csum_flags & CSUM_IP) {
2380 		/*
2381 		 * Start offset for header checksum calculation.
2382 		 * End offset for header checksum calculation.
2383 		 * Offset of place to put the checksum.
2384 		 */
2385 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2386 		TXD->lower_setup.ip_fields.ipcse =
2387 		    htole16(ehdrlen + ip_hlen - 1);
2388 		TXD->lower_setup.ip_fields.ipcso =
2389 		    ehdrlen + offsetof(struct ip, ip_sum);
2390 		cmd |= E1000_TXD_CMD_IP;
2391 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2392 	}
2393 	hdr_len = ehdrlen + ip_hlen;
2394 
2395 	if (csum_flags & CSUM_TCP) {
2396 		/*
2397 		 * Start offset for payload checksum calculation.
2398 		 * End offset for payload checksum calculation.
2399 		 * Offset of place to put the checksum.
2400 		 */
2401 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2402 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2403 		TXD->upper_setup.tcp_fields.tucso =
2404 		    hdr_len + offsetof(struct tcphdr, th_sum);
2405 		cmd |= E1000_TXD_CMD_TCP;
2406 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2407 	} else if (csum_flags & CSUM_UDP) {
2408 		/*
2409 		 * Start offset for header checksum calculation.
2410 		 * End offset for header checksum calculation.
2411 		 * Offset of place to put the checksum.
2412 		 */
2413 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2414 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2415 		TXD->upper_setup.tcp_fields.tucso =
2416 		    hdr_len + offsetof(struct udphdr, uh_sum);
2417 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2418 	}
2419 
2420 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2421 		     E1000_TXD_DTYP_D;		/* Data descr */
2422 
2423 	/* Save the information for this csum offloading context */
2424 	tdata->csum_lhlen = ehdrlen;
2425 	tdata->csum_iphlen = ip_hlen;
2426 	tdata->csum_flags = csum_flags;
2427 	tdata->csum_txd_upper = *txd_upper;
2428 	tdata->csum_txd_lower = *txd_lower;
2429 
2430 	TXD->tcp_seg_setup.data = htole32(0);
2431 	TXD->cmd_and_length =
2432 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2433 
2434 	if (++curr_txd == tdata->num_tx_desc)
2435 		curr_txd = 0;
2436 
2437 	KKASSERT(tdata->num_tx_desc_avail > 0);
2438 	tdata->num_tx_desc_avail--;
2439 
2440 	tdata->next_avail_tx_desc = curr_txd;
2441 	return 1;
2442 }
2443 
2444 static void
2445 emx_txeof(struct emx_txdata *tdata)
2446 {
2447 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2448 	struct emx_txbuf *tx_buffer;
2449 	int first, num_avail;
2450 
2451 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2452 		return;
2453 
2454 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2455 		return;
2456 
2457 	num_avail = tdata->num_tx_desc_avail;
2458 	first = tdata->next_tx_to_clean;
2459 
2460 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2461 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2462 		struct e1000_tx_desc *tx_desc;
2463 
2464 		tx_desc = &tdata->tx_desc_base[dd_idx];
2465 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2466 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2467 
2468 			if (++dd_idx == tdata->num_tx_desc)
2469 				dd_idx = 0;
2470 
2471 			while (first != dd_idx) {
2472 				logif(pkt_txclean);
2473 
2474 				num_avail++;
2475 
2476 				tx_buffer = &tdata->tx_buf[first];
2477 				if (tx_buffer->m_head) {
2478 					IFNET_STAT_INC(ifp, opackets, 1);
2479 					bus_dmamap_unload(tdata->txtag,
2480 							  tx_buffer->map);
2481 					m_freem(tx_buffer->m_head);
2482 					tx_buffer->m_head = NULL;
2483 				}
2484 
2485 				if (++first == tdata->num_tx_desc)
2486 					first = 0;
2487 			}
2488 		} else {
2489 			break;
2490 		}
2491 	}
2492 	tdata->next_tx_to_clean = first;
2493 	tdata->num_tx_desc_avail = num_avail;
2494 
2495 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2496 		tdata->tx_dd_head = 0;
2497 		tdata->tx_dd_tail = 0;
2498 	}
2499 
2500 	if (!EMX_IS_OACTIVE(tdata)) {
2501 		ifsq_clr_oactive(tdata->ifsq);
2502 
2503 		/* All clean, turn off the timer */
2504 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2505 			tdata->tx_watchdog.wd_timer = 0;
2506 	}
2507 }
2508 
2509 static void
2510 emx_tx_collect(struct emx_txdata *tdata)
2511 {
2512 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2513 	struct emx_txbuf *tx_buffer;
2514 	int tdh, first, num_avail, dd_idx = -1;
2515 
2516 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2517 		return;
2518 
2519 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2520 	if (tdh == tdata->next_tx_to_clean)
2521 		return;
2522 
2523 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2524 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2525 
2526 	num_avail = tdata->num_tx_desc_avail;
2527 	first = tdata->next_tx_to_clean;
2528 
2529 	while (first != tdh) {
2530 		logif(pkt_txclean);
2531 
2532 		num_avail++;
2533 
2534 		tx_buffer = &tdata->tx_buf[first];
2535 		if (tx_buffer->m_head) {
2536 			IFNET_STAT_INC(ifp, opackets, 1);
2537 			bus_dmamap_unload(tdata->txtag,
2538 					  tx_buffer->map);
2539 			m_freem(tx_buffer->m_head);
2540 			tx_buffer->m_head = NULL;
2541 		}
2542 
2543 		if (first == dd_idx) {
2544 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2545 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2546 				tdata->tx_dd_head = 0;
2547 				tdata->tx_dd_tail = 0;
2548 				dd_idx = -1;
2549 			} else {
2550 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2551 			}
2552 		}
2553 
2554 		if (++first == tdata->num_tx_desc)
2555 			first = 0;
2556 	}
2557 	tdata->next_tx_to_clean = first;
2558 	tdata->num_tx_desc_avail = num_avail;
2559 
2560 	if (!EMX_IS_OACTIVE(tdata)) {
2561 		ifsq_clr_oactive(tdata->ifsq);
2562 
2563 		/* All clean, turn off the timer */
2564 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2565 			tdata->tx_watchdog.wd_timer = 0;
2566 	}
2567 }
2568 
2569 /*
2570  * When Link is lost sometimes there is work still in the TX ring
2571  * which will result in a watchdog, rather than allow that do an
2572  * attempted cleanup and then reinit here.  Note that this has been
2573  * seens mostly with fiber adapters.
2574  */
2575 static void
2576 emx_tx_purge(struct emx_softc *sc)
2577 {
2578 	int i;
2579 
2580 	if (sc->link_active)
2581 		return;
2582 
2583 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2584 		struct emx_txdata *tdata = &sc->tx_data[i];
2585 
2586 		if (tdata->tx_watchdog.wd_timer) {
2587 			emx_tx_collect(tdata);
2588 			if (tdata->tx_watchdog.wd_timer) {
2589 				if_printf(&sc->arpcom.ac_if,
2590 				    "Link lost, TX pending, reinit\n");
2591 				emx_init(sc);
2592 				return;
2593 			}
2594 		}
2595 	}
2596 }
2597 
2598 static int
2599 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2600 {
2601 	struct mbuf *m;
2602 	bus_dma_segment_t seg;
2603 	bus_dmamap_t map;
2604 	struct emx_rxbuf *rx_buffer;
2605 	int error, nseg;
2606 
2607 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2608 	if (m == NULL) {
2609 		if (init) {
2610 			if_printf(&rdata->sc->arpcom.ac_if,
2611 				  "Unable to allocate RX mbuf\n");
2612 		}
2613 		return (ENOBUFS);
2614 	}
2615 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2616 
2617 	if (rdata->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2618 		m_adj(m, ETHER_ALIGN);
2619 
2620 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2621 			rdata->rx_sparemap, m,
2622 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2623 	if (error) {
2624 		m_freem(m);
2625 		if (init) {
2626 			if_printf(&rdata->sc->arpcom.ac_if,
2627 				  "Unable to load RX mbuf\n");
2628 		}
2629 		return (error);
2630 	}
2631 
2632 	rx_buffer = &rdata->rx_buf[i];
2633 	if (rx_buffer->m_head != NULL)
2634 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2635 
2636 	map = rx_buffer->map;
2637 	rx_buffer->map = rdata->rx_sparemap;
2638 	rdata->rx_sparemap = map;
2639 
2640 	rx_buffer->m_head = m;
2641 	rx_buffer->paddr = seg.ds_addr;
2642 
2643 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2644 	return (0);
2645 }
2646 
2647 static int
2648 emx_create_rx_ring(struct emx_rxdata *rdata)
2649 {
2650 	device_t dev = rdata->sc->dev;
2651 	struct emx_rxbuf *rx_buffer;
2652 	int i, error, rsize, nrxd;
2653 
2654 	/*
2655 	 * Validate number of receive descriptors.  It must not exceed
2656 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2657 	 */
2658 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2659 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2660 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2661 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2662 		    EMX_DEFAULT_RXD, nrxd);
2663 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2664 	} else {
2665 		rdata->num_rx_desc = nrxd;
2666 	}
2667 
2668 	/*
2669 	 * Allocate Receive Descriptor ring
2670 	 */
2671 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2672 			 EMX_DBA_ALIGN);
2673 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2674 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2675 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2676 				&rdata->rx_desc_paddr);
2677 	if (rdata->rx_desc == NULL) {
2678 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2679 		return ENOMEM;
2680 	}
2681 
2682 	rsize = __VM_CACHELINE_ALIGN(
2683 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2684 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2685 
2686 	/*
2687 	 * Create DMA tag for rx buffers
2688 	 */
2689 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2690 			1, 0,			/* alignment, bounds */
2691 			BUS_SPACE_MAXADDR,	/* lowaddr */
2692 			BUS_SPACE_MAXADDR,	/* highaddr */
2693 			NULL, NULL,		/* filter, filterarg */
2694 			MCLBYTES,		/* maxsize */
2695 			1,			/* nsegments */
2696 			MCLBYTES,		/* maxsegsize */
2697 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2698 			&rdata->rxtag);
2699 	if (error) {
2700 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2701 		kfree(rdata->rx_buf, M_DEVBUF);
2702 		rdata->rx_buf = NULL;
2703 		return error;
2704 	}
2705 
2706 	/*
2707 	 * Create spare DMA map for rx buffers
2708 	 */
2709 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2710 				  &rdata->rx_sparemap);
2711 	if (error) {
2712 		device_printf(dev, "Unable to create spare RX DMA map\n");
2713 		bus_dma_tag_destroy(rdata->rxtag);
2714 		kfree(rdata->rx_buf, M_DEVBUF);
2715 		rdata->rx_buf = NULL;
2716 		return error;
2717 	}
2718 
2719 	/*
2720 	 * Create DMA maps for rx buffers
2721 	 */
2722 	for (i = 0; i < rdata->num_rx_desc; i++) {
2723 		rx_buffer = &rdata->rx_buf[i];
2724 
2725 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2726 					  &rx_buffer->map);
2727 		if (error) {
2728 			device_printf(dev, "Unable to create RX DMA map\n");
2729 			emx_destroy_rx_ring(rdata, i);
2730 			return error;
2731 		}
2732 	}
2733 	return (0);
2734 }
2735 
2736 static void
2737 emx_free_rx_ring(struct emx_rxdata *rdata)
2738 {
2739 	int i;
2740 
2741 	for (i = 0; i < rdata->num_rx_desc; i++) {
2742 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2743 
2744 		if (rx_buffer->m_head != NULL) {
2745 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2746 			m_freem(rx_buffer->m_head);
2747 			rx_buffer->m_head = NULL;
2748 		}
2749 	}
2750 
2751 	if (rdata->fmp != NULL)
2752 		m_freem(rdata->fmp);
2753 	rdata->fmp = NULL;
2754 	rdata->lmp = NULL;
2755 }
2756 
2757 static void
2758 emx_free_tx_ring(struct emx_txdata *tdata)
2759 {
2760 	int i;
2761 
2762 	for (i = 0; i < tdata->num_tx_desc; i++) {
2763 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2764 
2765 		if (tx_buffer->m_head != NULL) {
2766 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2767 			m_freem(tx_buffer->m_head);
2768 			tx_buffer->m_head = NULL;
2769 		}
2770 	}
2771 
2772 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2773 
2774 	tdata->csum_flags = 0;
2775 	tdata->csum_lhlen = 0;
2776 	tdata->csum_iphlen = 0;
2777 	tdata->csum_thlen = 0;
2778 	tdata->csum_mss = 0;
2779 	tdata->csum_pktlen = 0;
2780 
2781 	tdata->tx_dd_head = 0;
2782 	tdata->tx_dd_tail = 0;
2783 	tdata->tx_nsegs = 0;
2784 }
2785 
2786 static int
2787 emx_init_rx_ring(struct emx_rxdata *rdata)
2788 {
2789 	int i, error;
2790 
2791 	/* Reset descriptor ring */
2792 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2793 
2794 	/* Allocate new ones. */
2795 	for (i = 0; i < rdata->num_rx_desc; i++) {
2796 		error = emx_newbuf(rdata, i, 1);
2797 		if (error)
2798 			return (error);
2799 	}
2800 
2801 	/* Setup our descriptor pointers */
2802 	rdata->next_rx_desc_to_check = 0;
2803 
2804 	return (0);
2805 }
2806 
2807 static void
2808 emx_init_rx_unit(struct emx_softc *sc)
2809 {
2810 	struct ifnet *ifp = &sc->arpcom.ac_if;
2811 	uint64_t bus_addr;
2812 	uint32_t rctl, itr, rfctl;
2813 	int i;
2814 
2815 	/*
2816 	 * Make sure receives are disabled while setting
2817 	 * up the descriptor ring
2818 	 */
2819 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2820 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2821 
2822 	/*
2823 	 * Set the interrupt throttling rate. Value is calculated
2824 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2825 	 */
2826 	if (sc->int_throttle_ceil)
2827 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2828 	else
2829 		itr = 0;
2830 	emx_set_itr(sc, itr);
2831 
2832 	/* Use extended RX descriptor */
2833 	rfctl = E1000_RFCTL_EXTEN;
2834 
2835 	/* Disable accelerated ackknowledge */
2836 	if (sc->hw.mac.type == e1000_82574)
2837 		rfctl |= E1000_RFCTL_ACK_DIS;
2838 
2839 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2840 
2841 	/*
2842 	 * Receive Checksum Offload for TCP and UDP
2843 	 *
2844 	 * Checksum offloading is also enabled if multiple receive
2845 	 * queue is to be supported, since we need it to figure out
2846 	 * packet type.
2847 	 */
2848 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2849 	    sc->rx_ring_cnt > 1) {
2850 		uint32_t rxcsum;
2851 
2852 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2853 
2854 		/*
2855 		 * NOTE:
2856 		 * PCSD must be enabled to enable multiple
2857 		 * receive queues.
2858 		 */
2859 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2860 			  E1000_RXCSUM_PCSD;
2861 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2862 	}
2863 
2864 	/*
2865 	 * Configure multiple receive queue (RSS)
2866 	 */
2867 	if (sc->rx_ring_cnt > 1) {
2868 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2869 		uint32_t reta;
2870 
2871 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2872 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2873 
2874 		/*
2875 		 * NOTE:
2876 		 * When we reach here, RSS has already been disabled
2877 		 * in emx_stop(), so we could safely configure RSS key
2878 		 * and redirect table.
2879 		 */
2880 
2881 		/*
2882 		 * Configure RSS key
2883 		 */
2884 		toeplitz_get_key(key, sizeof(key));
2885 		for (i = 0; i < EMX_NRSSRK; ++i) {
2886 			uint32_t rssrk;
2887 
2888 			rssrk = EMX_RSSRK_VAL(key, i);
2889 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2890 
2891 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2892 		}
2893 
2894 		/*
2895 		 * Configure RSS redirect table in following fashion:
2896 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2897 		 */
2898 		reta = 0;
2899 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2900 			uint32_t q;
2901 
2902 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2903 			reta |= q << (8 * i);
2904 		}
2905 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2906 
2907 		for (i = 0; i < EMX_NRETA; ++i)
2908 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2909 
2910 		/*
2911 		 * Enable multiple receive queues.
2912 		 * Enable IPv4 RSS standard hash functions.
2913 		 * Disable RSS interrupt.
2914 		 */
2915 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2916 				E1000_MRQC_ENABLE_RSS_2Q |
2917 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2918 				E1000_MRQC_RSS_FIELD_IPV4);
2919 	}
2920 
2921 	/*
2922 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2923 	 * long latencies are observed, like Lenovo X60. This
2924 	 * change eliminates the problem, but since having positive
2925 	 * values in RDTR is a known source of problems on other
2926 	 * platforms another solution is being sought.
2927 	 */
2928 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2929 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2930 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2931 	}
2932 
2933 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2934 		struct emx_rxdata *rdata = &sc->rx_data[i];
2935 
2936 		/*
2937 		 * Setup the Base and Length of the Rx Descriptor Ring
2938 		 */
2939 		bus_addr = rdata->rx_desc_paddr;
2940 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2941 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2942 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2943 		    (uint32_t)(bus_addr >> 32));
2944 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2945 		    (uint32_t)bus_addr);
2946 
2947 		/*
2948 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2949 		 */
2950 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2951 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2952 		    sc->rx_data[i].num_rx_desc - 1);
2953 	}
2954 
2955 	/* Setup the Receive Control Register */
2956 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2957 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2958 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2959 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2960 
2961 	/* Make sure VLAN Filters are off */
2962 	rctl &= ~E1000_RCTL_VFE;
2963 
2964 	/* Don't store bad paket */
2965 	rctl &= ~E1000_RCTL_SBP;
2966 
2967 	/* MCLBYTES */
2968 	rctl |= E1000_RCTL_SZ_2048;
2969 
2970 	if (ifp->if_mtu > ETHERMTU)
2971 		rctl |= E1000_RCTL_LPE;
2972 	else
2973 		rctl &= ~E1000_RCTL_LPE;
2974 
2975 	/* Enable Receives */
2976 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2977 }
2978 
2979 static void
2980 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
2981 {
2982 	struct emx_rxbuf *rx_buffer;
2983 	int i;
2984 
2985 	/* Free Receive Descriptor ring */
2986 	if (rdata->rx_desc) {
2987 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2988 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2989 				rdata->rx_desc_dmap);
2990 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2991 
2992 		rdata->rx_desc = NULL;
2993 	}
2994 
2995 	if (rdata->rx_buf == NULL)
2996 		return;
2997 
2998 	for (i = 0; i < ndesc; i++) {
2999 		rx_buffer = &rdata->rx_buf[i];
3000 
3001 		KKASSERT(rx_buffer->m_head == NULL);
3002 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3003 	}
3004 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3005 	bus_dma_tag_destroy(rdata->rxtag);
3006 
3007 	kfree(rdata->rx_buf, M_DEVBUF);
3008 	rdata->rx_buf = NULL;
3009 }
3010 
3011 static void
3012 emx_rxeof(struct emx_rxdata *rdata, int count)
3013 {
3014 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3015 	uint32_t staterr;
3016 	emx_rxdesc_t *current_desc;
3017 	struct mbuf *mp;
3018 	int i;
3019 
3020 	i = rdata->next_rx_desc_to_check;
3021 	current_desc = &rdata->rx_desc[i];
3022 	staterr = le32toh(current_desc->rxd_staterr);
3023 
3024 	if (!(staterr & E1000_RXD_STAT_DD))
3025 		return;
3026 
3027 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3028 		struct pktinfo *pi = NULL, pi0;
3029 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3030 		struct mbuf *m = NULL;
3031 		int eop, len;
3032 
3033 		logif(pkt_receive);
3034 
3035 		mp = rx_buf->m_head;
3036 
3037 		/*
3038 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3039 		 * needs to access the last received byte in the mbuf.
3040 		 */
3041 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3042 				BUS_DMASYNC_POSTREAD);
3043 
3044 		len = le16toh(current_desc->rxd_length);
3045 		if (staterr & E1000_RXD_STAT_EOP) {
3046 			count--;
3047 			eop = 1;
3048 		} else {
3049 			eop = 0;
3050 		}
3051 
3052 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3053 			uint16_t vlan = 0;
3054 			uint32_t mrq, rss_hash;
3055 
3056 			/*
3057 			 * Save several necessary information,
3058 			 * before emx_newbuf() destroy it.
3059 			 */
3060 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3061 				vlan = le16toh(current_desc->rxd_vlan);
3062 
3063 			mrq = le32toh(current_desc->rxd_mrq);
3064 			rss_hash = le32toh(current_desc->rxd_rss);
3065 
3066 			EMX_RSS_DPRINTF(rdata->sc, 10,
3067 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3068 			    rdata->idx, mrq, rss_hash);
3069 
3070 			if (emx_newbuf(rdata, i, 0) != 0) {
3071 				IFNET_STAT_INC(ifp, iqdrops, 1);
3072 				goto discard;
3073 			}
3074 
3075 			/* Assign correct length to the current fragment */
3076 			mp->m_len = len;
3077 
3078 			if (rdata->fmp == NULL) {
3079 				mp->m_pkthdr.len = len;
3080 				rdata->fmp = mp; /* Store the first mbuf */
3081 				rdata->lmp = mp;
3082 			} else {
3083 				/*
3084 				 * Chain mbuf's together
3085 				 */
3086 				rdata->lmp->m_next = mp;
3087 				rdata->lmp = rdata->lmp->m_next;
3088 				rdata->fmp->m_pkthdr.len += len;
3089 			}
3090 
3091 			if (eop) {
3092 				rdata->fmp->m_pkthdr.rcvif = ifp;
3093 				IFNET_STAT_INC(ifp, ipackets, 1);
3094 
3095 				if (ifp->if_capenable & IFCAP_RXCSUM)
3096 					emx_rxcsum(staterr, rdata->fmp);
3097 
3098 				if (staterr & E1000_RXD_STAT_VP) {
3099 					rdata->fmp->m_pkthdr.ether_vlantag =
3100 					    vlan;
3101 					rdata->fmp->m_flags |= M_VLANTAG;
3102 				}
3103 				m = rdata->fmp;
3104 				rdata->fmp = NULL;
3105 				rdata->lmp = NULL;
3106 
3107 				if (ifp->if_capenable & IFCAP_RSS) {
3108 					pi = emx_rssinfo(m, &pi0, mrq,
3109 							 rss_hash, staterr);
3110 				}
3111 #ifdef EMX_RSS_DEBUG
3112 				rdata->rx_pkts++;
3113 #endif
3114 			}
3115 		} else {
3116 			IFNET_STAT_INC(ifp, ierrors, 1);
3117 discard:
3118 			emx_setup_rxdesc(current_desc, rx_buf);
3119 			if (rdata->fmp != NULL) {
3120 				m_freem(rdata->fmp);
3121 				rdata->fmp = NULL;
3122 				rdata->lmp = NULL;
3123 			}
3124 			m = NULL;
3125 		}
3126 
3127 		if (m != NULL)
3128 			ether_input_pkt(ifp, m, pi);
3129 
3130 		/* Advance our pointers to the next descriptor. */
3131 		if (++i == rdata->num_rx_desc)
3132 			i = 0;
3133 
3134 		current_desc = &rdata->rx_desc[i];
3135 		staterr = le32toh(current_desc->rxd_staterr);
3136 	}
3137 	rdata->next_rx_desc_to_check = i;
3138 
3139 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3140 	if (--i < 0)
3141 		i = rdata->num_rx_desc - 1;
3142 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3143 }
3144 
3145 static void
3146 emx_enable_intr(struct emx_softc *sc)
3147 {
3148 	uint32_t ims_mask = IMS_ENABLE_MASK;
3149 
3150 	lwkt_serialize_handler_enable(&sc->main_serialize);
3151 
3152 #if 0
3153 	if (sc->hw.mac.type == e1000_82574) {
3154 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3155 		ims_mask |= EM_MSIX_MASK;
3156 	}
3157 #endif
3158 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3159 }
3160 
3161 static void
3162 emx_disable_intr(struct emx_softc *sc)
3163 {
3164 	if (sc->hw.mac.type == e1000_82574)
3165 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3166 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3167 
3168 	lwkt_serialize_handler_disable(&sc->main_serialize);
3169 }
3170 
3171 /*
3172  * Bit of a misnomer, what this really means is
3173  * to enable OS management of the system... aka
3174  * to disable special hardware management features
3175  */
3176 static void
3177 emx_get_mgmt(struct emx_softc *sc)
3178 {
3179 	/* A shared code workaround */
3180 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3181 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3182 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3183 
3184 		/* disable hardware interception of ARP */
3185 		manc &= ~(E1000_MANC_ARP_EN);
3186 
3187                 /* enable receiving management packets to the host */
3188 		manc |= E1000_MANC_EN_MNG2HOST;
3189 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3190 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3191 		manc2h |= E1000_MNG2HOST_PORT_623;
3192 		manc2h |= E1000_MNG2HOST_PORT_664;
3193 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3194 
3195 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3196 	}
3197 }
3198 
3199 /*
3200  * Give control back to hardware management
3201  * controller if there is one.
3202  */
3203 static void
3204 emx_rel_mgmt(struct emx_softc *sc)
3205 {
3206 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3207 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3208 
3209 		/* re-enable hardware interception of ARP */
3210 		manc |= E1000_MANC_ARP_EN;
3211 		manc &= ~E1000_MANC_EN_MNG2HOST;
3212 
3213 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3214 	}
3215 }
3216 
3217 /*
3218  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3219  * For ASF and Pass Through versions of f/w this means that
3220  * the driver is loaded.  For AMT version (only with 82573)
3221  * of the f/w this means that the network i/f is open.
3222  */
3223 static void
3224 emx_get_hw_control(struct emx_softc *sc)
3225 {
3226 	/* Let firmware know the driver has taken over */
3227 	if (sc->hw.mac.type == e1000_82573) {
3228 		uint32_t swsm;
3229 
3230 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3231 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3232 		    swsm | E1000_SWSM_DRV_LOAD);
3233 	} else {
3234 		uint32_t ctrl_ext;
3235 
3236 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3237 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3238 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3239 	}
3240 	sc->flags |= EMX_FLAG_HW_CTRL;
3241 }
3242 
3243 /*
3244  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3245  * For ASF and Pass Through versions of f/w this means that the
3246  * driver is no longer loaded.  For AMT version (only with 82573)
3247  * of the f/w this means that the network i/f is closed.
3248  */
3249 static void
3250 emx_rel_hw_control(struct emx_softc *sc)
3251 {
3252 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3253 		return;
3254 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3255 
3256 	/* Let firmware taken over control of h/w */
3257 	if (sc->hw.mac.type == e1000_82573) {
3258 		uint32_t swsm;
3259 
3260 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3261 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3262 		    swsm & ~E1000_SWSM_DRV_LOAD);
3263 	} else {
3264 		uint32_t ctrl_ext;
3265 
3266 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3267 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3268 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3269 	}
3270 }
3271 
3272 static int
3273 emx_is_valid_eaddr(const uint8_t *addr)
3274 {
3275 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3276 
3277 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3278 		return (FALSE);
3279 
3280 	return (TRUE);
3281 }
3282 
3283 /*
3284  * Enable PCI Wake On Lan capability
3285  */
3286 void
3287 emx_enable_wol(device_t dev)
3288 {
3289 	uint16_t cap, status;
3290 	uint8_t id;
3291 
3292 	/* First find the capabilities pointer*/
3293 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3294 
3295 	/* Read the PM Capabilities */
3296 	id = pci_read_config(dev, cap, 1);
3297 	if (id != PCIY_PMG)     /* Something wrong */
3298 		return;
3299 
3300 	/*
3301 	 * OK, we have the power capabilities,
3302 	 * so now get the status register
3303 	 */
3304 	cap += PCIR_POWER_STATUS;
3305 	status = pci_read_config(dev, cap, 2);
3306 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3307 	pci_write_config(dev, cap, status, 2);
3308 }
3309 
3310 static void
3311 emx_update_stats(struct emx_softc *sc)
3312 {
3313 	struct ifnet *ifp = &sc->arpcom.ac_if;
3314 
3315 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3316 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3317 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3318 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3319 	}
3320 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3321 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3322 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3323 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3324 
3325 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3326 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3327 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3328 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3329 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3330 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3331 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3332 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3333 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3334 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3335 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3336 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3337 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3338 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3339 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3340 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3341 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3342 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3343 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3344 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3345 
3346 	/* For the 64-bit byte counters the low dword must be read first. */
3347 	/* Both registers clear on the read of the high dword */
3348 
3349 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3350 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3351 
3352 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3353 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3354 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3355 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3356 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3357 
3358 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3359 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3360 
3361 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3362 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3363 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3364 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3365 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3366 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3367 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3368 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3369 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3370 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3371 
3372 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3373 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3374 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3375 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3376 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3377 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3378 
3379 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3380 
3381 	/* Rx Errors */
3382 	IFNET_STAT_SET(ifp, ierrors,
3383 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3384 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3385 
3386 	/* Tx Errors */
3387 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3388 }
3389 
3390 static void
3391 emx_print_debug_info(struct emx_softc *sc)
3392 {
3393 	device_t dev = sc->dev;
3394 	uint8_t *hw_addr = sc->hw.hw_addr;
3395 	int i;
3396 
3397 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3398 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3399 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3400 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3401 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3402 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3403 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3404 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3405 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3406 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3407 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3408 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3409 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3410 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3411 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3412 
3413 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3414 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3415 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3416 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3417 	}
3418 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3419 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3420 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3421 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3422 	}
3423 
3424 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3425 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3426 		    sc->tx_data[i].num_tx_desc_avail);
3427 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3428 		    sc->tx_data[i].tso_segments);
3429 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3430 		    sc->tx_data[i].tso_ctx_reused);
3431 	}
3432 }
3433 
3434 static void
3435 emx_print_hw_stats(struct emx_softc *sc)
3436 {
3437 	device_t dev = sc->dev;
3438 
3439 	device_printf(dev, "Excessive collisions = %lld\n",
3440 	    (long long)sc->stats.ecol);
3441 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3442 	device_printf(dev, "Symbol errors = %lld\n",
3443 	    (long long)sc->stats.symerrs);
3444 #endif
3445 	device_printf(dev, "Sequence errors = %lld\n",
3446 	    (long long)sc->stats.sec);
3447 	device_printf(dev, "Defer count = %lld\n",
3448 	    (long long)sc->stats.dc);
3449 	device_printf(dev, "Missed Packets = %lld\n",
3450 	    (long long)sc->stats.mpc);
3451 	device_printf(dev, "Receive No Buffers = %lld\n",
3452 	    (long long)sc->stats.rnbc);
3453 	/* RLEC is inaccurate on some hardware, calculate our own. */
3454 	device_printf(dev, "Receive Length Errors = %lld\n",
3455 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3456 	device_printf(dev, "Receive errors = %lld\n",
3457 	    (long long)sc->stats.rxerrc);
3458 	device_printf(dev, "Crc errors = %lld\n",
3459 	    (long long)sc->stats.crcerrs);
3460 	device_printf(dev, "Alignment errors = %lld\n",
3461 	    (long long)sc->stats.algnerrc);
3462 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3463 	    (long long)sc->stats.cexterr);
3464 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3465 	device_printf(dev, "XON Rcvd = %lld\n",
3466 	    (long long)sc->stats.xonrxc);
3467 	device_printf(dev, "XON Xmtd = %lld\n",
3468 	    (long long)sc->stats.xontxc);
3469 	device_printf(dev, "XOFF Rcvd = %lld\n",
3470 	    (long long)sc->stats.xoffrxc);
3471 	device_printf(dev, "XOFF Xmtd = %lld\n",
3472 	    (long long)sc->stats.xofftxc);
3473 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3474 	    (long long)sc->stats.gprc);
3475 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3476 	    (long long)sc->stats.gptc);
3477 }
3478 
3479 static void
3480 emx_print_nvm_info(struct emx_softc *sc)
3481 {
3482 	uint16_t eeprom_data;
3483 	int i, j, row = 0;
3484 
3485 	/* Its a bit crude, but it gets the job done */
3486 	kprintf("\nInterface EEPROM Dump:\n");
3487 	kprintf("Offset\n0x0000  ");
3488 	for (i = 0, j = 0; i < 32; i++, j++) {
3489 		if (j == 8) { /* Make the offset block */
3490 			j = 0; ++row;
3491 			kprintf("\n0x00%x0  ",row);
3492 		}
3493 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3494 		kprintf("%04x ", eeprom_data);
3495 	}
3496 	kprintf("\n");
3497 }
3498 
3499 static int
3500 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3501 {
3502 	struct emx_softc *sc;
3503 	struct ifnet *ifp;
3504 	int error, result;
3505 
3506 	result = -1;
3507 	error = sysctl_handle_int(oidp, &result, 0, req);
3508 	if (error || !req->newptr)
3509 		return (error);
3510 
3511 	sc = (struct emx_softc *)arg1;
3512 	ifp = &sc->arpcom.ac_if;
3513 
3514 	ifnet_serialize_all(ifp);
3515 
3516 	if (result == 1)
3517 		emx_print_debug_info(sc);
3518 
3519 	/*
3520 	 * This value will cause a hex dump of the
3521 	 * first 32 16-bit words of the EEPROM to
3522 	 * the screen.
3523 	 */
3524 	if (result == 2)
3525 		emx_print_nvm_info(sc);
3526 
3527 	ifnet_deserialize_all(ifp);
3528 
3529 	return (error);
3530 }
3531 
3532 static int
3533 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3534 {
3535 	int error, result;
3536 
3537 	result = -1;
3538 	error = sysctl_handle_int(oidp, &result, 0, req);
3539 	if (error || !req->newptr)
3540 		return (error);
3541 
3542 	if (result == 1) {
3543 		struct emx_softc *sc = (struct emx_softc *)arg1;
3544 		struct ifnet *ifp = &sc->arpcom.ac_if;
3545 
3546 		ifnet_serialize_all(ifp);
3547 		emx_print_hw_stats(sc);
3548 		ifnet_deserialize_all(ifp);
3549 	}
3550 	return (error);
3551 }
3552 
3553 static void
3554 emx_add_sysctl(struct emx_softc *sc)
3555 {
3556 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3557 	char pkt_desc[32];
3558 	int i;
3559 #endif
3560 
3561 	sysctl_ctx_init(&sc->sysctl_ctx);
3562 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3563 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3564 				device_get_nameunit(sc->dev),
3565 				CTLFLAG_RD, 0, "");
3566 	if (sc->sysctl_tree == NULL) {
3567 		device_printf(sc->dev, "can't add sysctl node\n");
3568 		return;
3569 	}
3570 
3571 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3572 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3573 			emx_sysctl_debug_info, "I", "Debug Information");
3574 
3575 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3576 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3577 			emx_sysctl_stats, "I", "Statistics");
3578 
3579 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3580 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3581 	    "# of RX descs");
3582 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3583 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3584 	    "# of TX descs");
3585 
3586 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3587 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3588 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3589 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3590 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3591 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3592 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3593 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3594 	    emx_sysctl_tx_wreg_nsegs, "I",
3595 	    "# segments sent before write to hardware register");
3596 
3597 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3598 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3599 	    "# of RX rings");
3600 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3601 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3602 	    "# of TX rings");
3603 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3604 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3605 	    "# of TX rings used");
3606 
3607 #ifdef IFPOLL_ENABLE
3608 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3609 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3610 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3611 			"NPOLLING RX cpu offset");
3612 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3613 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3614 			sc, 0, emx_sysctl_npoll_txoff, "I",
3615 			"NPOLLING TX cpu offset");
3616 #endif
3617 
3618 #ifdef EMX_RSS_DEBUG
3619 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3620 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3621 		       0, "RSS debug level");
3622 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3623 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3624 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
3625 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3626 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3627 		    "RXed packets");
3628 	}
3629 #endif
3630 #ifdef EMX_TSS_DEBUG
3631 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3632 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3633 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
3634 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3635 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3636 		    "TXed packets");
3637 	}
3638 #endif
3639 }
3640 
3641 static int
3642 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3643 {
3644 	struct emx_softc *sc = (void *)arg1;
3645 	struct ifnet *ifp = &sc->arpcom.ac_if;
3646 	int error, throttle;
3647 
3648 	throttle = sc->int_throttle_ceil;
3649 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3650 	if (error || req->newptr == NULL)
3651 		return error;
3652 	if (throttle < 0 || throttle > 1000000000 / 256)
3653 		return EINVAL;
3654 
3655 	if (throttle) {
3656 		/*
3657 		 * Set the interrupt throttling rate in 256ns increments,
3658 		 * recalculate sysctl value assignment to get exact frequency.
3659 		 */
3660 		throttle = 1000000000 / 256 / throttle;
3661 
3662 		/* Upper 16bits of ITR is reserved and should be zero */
3663 		if (throttle & 0xffff0000)
3664 			return EINVAL;
3665 	}
3666 
3667 	ifnet_serialize_all(ifp);
3668 
3669 	if (throttle)
3670 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3671 	else
3672 		sc->int_throttle_ceil = 0;
3673 
3674 	if (ifp->if_flags & IFF_RUNNING)
3675 		emx_set_itr(sc, throttle);
3676 
3677 	ifnet_deserialize_all(ifp);
3678 
3679 	if (bootverbose) {
3680 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3681 			  sc->int_throttle_ceil);
3682 	}
3683 	return 0;
3684 }
3685 
3686 static int
3687 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3688 {
3689 	struct emx_softc *sc = (void *)arg1;
3690 	struct ifnet *ifp = &sc->arpcom.ac_if;
3691 	struct emx_txdata *tdata = &sc->tx_data[0];
3692 	int error, segs;
3693 
3694 	segs = tdata->tx_intr_nsegs;
3695 	error = sysctl_handle_int(oidp, &segs, 0, req);
3696 	if (error || req->newptr == NULL)
3697 		return error;
3698 	if (segs <= 0)
3699 		return EINVAL;
3700 
3701 	ifnet_serialize_all(ifp);
3702 
3703 	/*
3704 	 * Don't allow tx_intr_nsegs to become:
3705 	 * o  Less the oact_tx_desc
3706 	 * o  Too large that no TX desc will cause TX interrupt to
3707 	 *    be generated (OACTIVE will never recover)
3708 	 * o  Too small that will cause tx_dd[] overflow
3709 	 */
3710 	if (segs < tdata->oact_tx_desc ||
3711 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3712 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3713 		error = EINVAL;
3714 	} else {
3715 		int i;
3716 
3717 		error = 0;
3718 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3719 			sc->tx_data[i].tx_intr_nsegs = segs;
3720 	}
3721 
3722 	ifnet_deserialize_all(ifp);
3723 
3724 	return error;
3725 }
3726 
3727 static int
3728 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3729 {
3730 	struct emx_softc *sc = (void *)arg1;
3731 	struct ifnet *ifp = &sc->arpcom.ac_if;
3732 	int error, nsegs, i;
3733 
3734 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3735 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3736 	if (error || req->newptr == NULL)
3737 		return error;
3738 
3739 	ifnet_serialize_all(ifp);
3740 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3741 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3742 	ifnet_deserialize_all(ifp);
3743 
3744 	return 0;
3745 }
3746 
3747 #ifdef IFPOLL_ENABLE
3748 
3749 static int
3750 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3751 {
3752 	struct emx_softc *sc = (void *)arg1;
3753 	struct ifnet *ifp = &sc->arpcom.ac_if;
3754 	int error, off;
3755 
3756 	off = sc->rx_npoll_off;
3757 	error = sysctl_handle_int(oidp, &off, 0, req);
3758 	if (error || req->newptr == NULL)
3759 		return error;
3760 	if (off < 0)
3761 		return EINVAL;
3762 
3763 	ifnet_serialize_all(ifp);
3764 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3765 		error = EINVAL;
3766 	} else {
3767 		error = 0;
3768 		sc->rx_npoll_off = off;
3769 	}
3770 	ifnet_deserialize_all(ifp);
3771 
3772 	return error;
3773 }
3774 
3775 static int
3776 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3777 {
3778 	struct emx_softc *sc = (void *)arg1;
3779 	struct ifnet *ifp = &sc->arpcom.ac_if;
3780 	int error, off;
3781 
3782 	off = sc->tx_npoll_off;
3783 	error = sysctl_handle_int(oidp, &off, 0, req);
3784 	if (error || req->newptr == NULL)
3785 		return error;
3786 	if (off < 0)
3787 		return EINVAL;
3788 
3789 	ifnet_serialize_all(ifp);
3790 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3791 		error = EINVAL;
3792 	} else {
3793 		error = 0;
3794 		sc->tx_npoll_off = off;
3795 	}
3796 	ifnet_deserialize_all(ifp);
3797 
3798 	return error;
3799 }
3800 
3801 #endif	/* IFPOLL_ENABLE */
3802 
3803 static int
3804 emx_dma_alloc(struct emx_softc *sc)
3805 {
3806 	int error, i;
3807 
3808 	/*
3809 	 * Create top level busdma tag
3810 	 */
3811 	error = bus_dma_tag_create(NULL, 1, 0,
3812 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3813 			NULL, NULL,
3814 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3815 			0, &sc->parent_dtag);
3816 	if (error) {
3817 		device_printf(sc->dev, "could not create top level DMA tag\n");
3818 		return error;
3819 	}
3820 
3821 	/*
3822 	 * Allocate transmit descriptors ring and buffers
3823 	 */
3824 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3825 		error = emx_create_tx_ring(&sc->tx_data[i]);
3826 		if (error) {
3827 			device_printf(sc->dev,
3828 			    "Could not setup transmit structures\n");
3829 			return error;
3830 		}
3831 	}
3832 
3833 	/*
3834 	 * Allocate receive descriptors ring and buffers
3835 	 */
3836 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3837 		error = emx_create_rx_ring(&sc->rx_data[i]);
3838 		if (error) {
3839 			device_printf(sc->dev,
3840 			    "Could not setup receive structures\n");
3841 			return error;
3842 		}
3843 	}
3844 	return 0;
3845 }
3846 
3847 static void
3848 emx_dma_free(struct emx_softc *sc)
3849 {
3850 	int i;
3851 
3852 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3853 		emx_destroy_tx_ring(&sc->tx_data[i],
3854 		    sc->tx_data[i].num_tx_desc);
3855 	}
3856 
3857 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3858 		emx_destroy_rx_ring(&sc->rx_data[i],
3859 		    sc->rx_data[i].num_rx_desc);
3860 	}
3861 
3862 	/* Free top level busdma tag */
3863 	if (sc->parent_dtag != NULL)
3864 		bus_dma_tag_destroy(sc->parent_dtag);
3865 }
3866 
3867 static void
3868 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3869 {
3870 	struct emx_softc *sc = ifp->if_softc;
3871 
3872 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
3873 }
3874 
3875 static void
3876 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3877 {
3878 	struct emx_softc *sc = ifp->if_softc;
3879 
3880 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
3881 }
3882 
3883 static int
3884 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3885 {
3886 	struct emx_softc *sc = ifp->if_softc;
3887 
3888 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
3889 }
3890 
3891 static void
3892 emx_serialize_skipmain(struct emx_softc *sc)
3893 {
3894 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3895 }
3896 
3897 static void
3898 emx_deserialize_skipmain(struct emx_softc *sc)
3899 {
3900 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3901 }
3902 
3903 #ifdef INVARIANTS
3904 
3905 static void
3906 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3907     boolean_t serialized)
3908 {
3909 	struct emx_softc *sc = ifp->if_softc;
3910 
3911 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3912 	    slz, serialized);
3913 }
3914 
3915 #endif	/* INVARIANTS */
3916 
3917 #ifdef IFPOLL_ENABLE
3918 
3919 static void
3920 emx_npoll_status(struct ifnet *ifp)
3921 {
3922 	struct emx_softc *sc = ifp->if_softc;
3923 	uint32_t reg_icr;
3924 
3925 	ASSERT_SERIALIZED(&sc->main_serialize);
3926 
3927 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3928 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3929 		callout_stop(&sc->timer);
3930 		sc->hw.mac.get_link_status = 1;
3931 		emx_update_link_status(sc);
3932 		callout_reset(&sc->timer, hz, emx_timer, sc);
3933 	}
3934 }
3935 
3936 static void
3937 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3938 {
3939 	struct emx_txdata *tdata = arg;
3940 
3941 	ASSERT_SERIALIZED(&tdata->tx_serialize);
3942 
3943 	emx_txeof(tdata);
3944 	if (!ifsq_is_empty(tdata->ifsq))
3945 		ifsq_devstart(tdata->ifsq);
3946 }
3947 
3948 static void
3949 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3950 {
3951 	struct emx_rxdata *rdata = arg;
3952 
3953 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3954 
3955 	emx_rxeof(rdata, cycle);
3956 }
3957 
3958 static void
3959 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3960 {
3961 	struct emx_softc *sc = ifp->if_softc;
3962 	int i, txr_cnt;
3963 
3964 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3965 
3966 	if (info) {
3967 		int off;
3968 
3969 		info->ifpi_status.status_func = emx_npoll_status;
3970 		info->ifpi_status.serializer = &sc->main_serialize;
3971 
3972 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
3973 		off = sc->tx_npoll_off;
3974 		for (i = 0; i < txr_cnt; ++i) {
3975 			struct emx_txdata *tdata = &sc->tx_data[i];
3976 			int idx = i + off;
3977 
3978 			KKASSERT(idx < ncpus2);
3979 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
3980 			info->ifpi_tx[idx].arg = tdata;
3981 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
3982 			ifsq_set_cpuid(tdata->ifsq, idx);
3983 		}
3984 
3985 		off = sc->rx_npoll_off;
3986 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3987 			struct emx_rxdata *rdata = &sc->rx_data[i];
3988 			int idx = i + off;
3989 
3990 			KKASSERT(idx < ncpus2);
3991 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
3992 			info->ifpi_rx[idx].arg = rdata;
3993 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
3994 		}
3995 
3996 		if (ifp->if_flags & IFF_RUNNING) {
3997 			if (txr_cnt == sc->tx_ring_inuse)
3998 				emx_disable_intr(sc);
3999 			else
4000 				emx_init(sc);
4001 		}
4002 	} else {
4003 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4004 			struct emx_txdata *tdata = &sc->tx_data[i];
4005 
4006 			ifsq_set_cpuid(tdata->ifsq,
4007 			    rman_get_cpuid(sc->intr_res));
4008 		}
4009 
4010 		if (ifp->if_flags & IFF_RUNNING) {
4011 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4012 			if (txr_cnt == sc->tx_ring_inuse)
4013 				emx_enable_intr(sc);
4014 			else
4015 				emx_init(sc);
4016 		}
4017 	}
4018 }
4019 
4020 #endif	/* IFPOLL_ENABLE */
4021 
4022 static void
4023 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4024 {
4025 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4026 	if (sc->hw.mac.type == e1000_82574) {
4027 		int i;
4028 
4029 		/*
4030 		 * When using MSIX interrupts we need to
4031 		 * throttle using the EITR register
4032 		 */
4033 		for (i = 0; i < 4; ++i)
4034 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4035 	}
4036 }
4037 
4038 /*
4039  * Disable the L0s, 82574L Errata #20
4040  */
4041 static void
4042 emx_disable_aspm(struct emx_softc *sc)
4043 {
4044 	uint16_t link_cap, link_ctrl, disable;
4045 	uint8_t pcie_ptr, reg;
4046 	device_t dev = sc->dev;
4047 
4048 	switch (sc->hw.mac.type) {
4049 	case e1000_82571:
4050 	case e1000_82572:
4051 	case e1000_82573:
4052 		/*
4053 		 * 82573 specification update
4054 		 * errata #8 disable L0s
4055 		 * errata #41 disable L1
4056 		 *
4057 		 * 82571/82572 specification update
4058 		 # errata #13 disable L1
4059 		 * errata #68 disable L0s
4060 		 */
4061 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4062 		break;
4063 
4064 	case e1000_82574:
4065 		/*
4066 		 * 82574 specification update errata #20
4067 		 *
4068 		 * There is no need to disable L1
4069 		 */
4070 		disable = PCIEM_LNKCTL_ASPM_L0S;
4071 		break;
4072 
4073 	default:
4074 		return;
4075 	}
4076 
4077 	pcie_ptr = pci_get_pciecap_ptr(dev);
4078 	if (pcie_ptr == 0)
4079 		return;
4080 
4081 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4082 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4083 		return;
4084 
4085 	if (bootverbose)
4086 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4087 
4088 	reg = pcie_ptr + PCIER_LINKCTRL;
4089 	link_ctrl = pci_read_config(dev, reg, 2);
4090 	link_ctrl &= ~disable;
4091 	pci_write_config(dev, reg, link_ctrl, 2);
4092 }
4093 
4094 static int
4095 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4096 {
4097 	int iphlen, hoff, thoff, ex = 0;
4098 	struct mbuf *m;
4099 	struct ip *ip;
4100 
4101 	m = *mp;
4102 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4103 
4104 	iphlen = m->m_pkthdr.csum_iphlen;
4105 	thoff = m->m_pkthdr.csum_thlen;
4106 	hoff = m->m_pkthdr.csum_lhlen;
4107 
4108 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4109 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4110 	KASSERT(hoff > 0, ("invalid ether hlen"));
4111 
4112 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4113 		ex = 4;
4114 
4115 	if (m->m_len < hoff + iphlen + thoff + ex) {
4116 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4117 		if (m == NULL) {
4118 			*mp = NULL;
4119 			return ENOBUFS;
4120 		}
4121 		*mp = m;
4122 	}
4123 	ip = mtodoff(m, struct ip *, hoff);
4124 	ip->ip_len = 0;
4125 
4126 	return 0;
4127 }
4128 
4129 static int
4130 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4131     uint32_t *txd_upper, uint32_t *txd_lower)
4132 {
4133 	struct e1000_context_desc *TXD;
4134 	int hoff, iphlen, thoff, hlen;
4135 	int mss, pktlen, curr_txd;
4136 
4137 #ifdef EMX_TSO_DEBUG
4138 	tdata->tso_segments++;
4139 #endif
4140 
4141 	iphlen = mp->m_pkthdr.csum_iphlen;
4142 	thoff = mp->m_pkthdr.csum_thlen;
4143 	hoff = mp->m_pkthdr.csum_lhlen;
4144 	mss = mp->m_pkthdr.tso_segsz;
4145 	pktlen = mp->m_pkthdr.len;
4146 
4147 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4148 	    tdata->csum_flags == CSUM_TSO &&
4149 	    tdata->csum_iphlen == iphlen &&
4150 	    tdata->csum_lhlen == hoff &&
4151 	    tdata->csum_thlen == thoff &&
4152 	    tdata->csum_mss == mss &&
4153 	    tdata->csum_pktlen == pktlen) {
4154 		*txd_upper = tdata->csum_txd_upper;
4155 		*txd_lower = tdata->csum_txd_lower;
4156 #ifdef EMX_TSO_DEBUG
4157 		tdata->tso_ctx_reused++;
4158 #endif
4159 		return 0;
4160 	}
4161 	hlen = hoff + iphlen + thoff;
4162 
4163 	/*
4164 	 * Setup a new TSO context.
4165 	 */
4166 
4167 	curr_txd = tdata->next_avail_tx_desc;
4168 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4169 
4170 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4171 		     E1000_TXD_DTYP_D |		/* Data descr type */
4172 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4173 
4174 	/* IP and/or TCP header checksum calculation and insertion. */
4175 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4176 
4177 	/*
4178 	 * Start offset for header checksum calculation.
4179 	 * End offset for header checksum calculation.
4180 	 * Offset of place put the checksum.
4181 	 */
4182 	TXD->lower_setup.ip_fields.ipcss = hoff;
4183 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4184 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4185 
4186 	/*
4187 	 * Start offset for payload checksum calculation.
4188 	 * End offset for payload checksum calculation.
4189 	 * Offset of place to put the checksum.
4190 	 */
4191 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4192 	TXD->upper_setup.tcp_fields.tucse = 0;
4193 	TXD->upper_setup.tcp_fields.tucso =
4194 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4195 
4196 	/*
4197 	 * Payload size per packet w/o any headers.
4198 	 * Length of all headers up to payload.
4199 	 */
4200 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4201 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4202 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4203 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4204 				E1000_TXD_CMD_TSE |	/* TSE context */
4205 				E1000_TXD_CMD_IP |	/* Do IP csum */
4206 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4207 				(pktlen - hlen));	/* Total len */
4208 
4209 	/* Save the information for this TSO context */
4210 	tdata->csum_flags = CSUM_TSO;
4211 	tdata->csum_lhlen = hoff;
4212 	tdata->csum_iphlen = iphlen;
4213 	tdata->csum_thlen = thoff;
4214 	tdata->csum_mss = mss;
4215 	tdata->csum_pktlen = pktlen;
4216 	tdata->csum_txd_upper = *txd_upper;
4217 	tdata->csum_txd_lower = *txd_lower;
4218 
4219 	if (++curr_txd == tdata->num_tx_desc)
4220 		curr_txd = 0;
4221 
4222 	KKASSERT(tdata->num_tx_desc_avail > 0);
4223 	tdata->num_tx_desc_avail--;
4224 
4225 	tdata->next_avail_tx_desc = curr_txd;
4226 	return 1;
4227 }
4228 
4229 static int
4230 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4231 {
4232 	if (polling)
4233 		return sc->tx_ring_cnt;
4234 	else
4235 		return 1;
4236 }
4237