xref: /dflybsd-src/sys/dev/netif/emx/if_emx.c (revision 99dd49c5973b0909b694a8c2c7cf30040b000ab1)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_polling.h"
68 #include "opt_serializer.h"
69 #include "opt_rss.h"
70 #include "opt_emx.h"
71 
72 #include <sys/param.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/interrupt.h>
76 #include <sys/kernel.h>
77 #include <sys/ktr.h>
78 #include <sys/malloc.h>
79 #include <sys/mbuf.h>
80 #include <sys/proc.h>
81 #include <sys/rman.h>
82 #include <sys/serialize.h>
83 #include <sys/serialize2.h>
84 #include <sys/socket.h>
85 #include <sys/sockio.h>
86 #include <sys/sysctl.h>
87 #include <sys/systm.h>
88 
89 #include <net/bpf.h>
90 #include <net/ethernet.h>
91 #include <net/if.h>
92 #include <net/if_arp.h>
93 #include <net/if_dl.h>
94 #include <net/if_media.h>
95 #include <net/ifq_var.h>
96 #include <net/toeplitz.h>
97 #include <net/toeplitz2.h>
98 #include <net/vlan/if_vlan_var.h>
99 #include <net/vlan/if_vlan_ether.h>
100 
101 #include <netinet/in_systm.h>
102 #include <netinet/in.h>
103 #include <netinet/ip.h>
104 #include <netinet/tcp.h>
105 #include <netinet/udp.h>
106 
107 #include <bus/pci/pcivar.h>
108 #include <bus/pci/pcireg.h>
109 
110 #include <dev/netif/ig_hal/e1000_api.h>
111 #include <dev/netif/ig_hal/e1000_82571.h>
112 #include <dev/netif/emx/if_emx.h>
113 
114 #ifdef EMX_RSS_DEBUG
115 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
116 do { \
117 	if (sc->rss_debug >= lvl) \
118 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
119 } while (0)
120 #else	/* !EMX_RSS_DEBUG */
121 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
122 #endif	/* EMX_RSS_DEBUG */
123 
124 #define EMX_NAME	"Intel(R) PRO/1000 "
125 
126 #define EMX_DEVICE(id)	\
127 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
128 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
129 
130 static const struct emx_device {
131 	uint16_t	vid;
132 	uint16_t	did;
133 	const char	*desc;
134 } emx_devices[] = {
135 	EMX_DEVICE(82571EB_COPPER),
136 	EMX_DEVICE(82571EB_FIBER),
137 	EMX_DEVICE(82571EB_SERDES),
138 	EMX_DEVICE(82571EB_SERDES_DUAL),
139 	EMX_DEVICE(82571EB_SERDES_QUAD),
140 	EMX_DEVICE(82571EB_QUAD_COPPER),
141 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
143 	EMX_DEVICE(82571EB_QUAD_FIBER),
144 	EMX_DEVICE(82571PT_QUAD_COPPER),
145 
146 	EMX_DEVICE(82572EI_COPPER),
147 	EMX_DEVICE(82572EI_FIBER),
148 	EMX_DEVICE(82572EI_SERDES),
149 	EMX_DEVICE(82572EI),
150 
151 	EMX_DEVICE(82573E),
152 	EMX_DEVICE(82573E_IAMT),
153 	EMX_DEVICE(82573L),
154 
155 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
156 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
157 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
159 
160 	EMX_DEVICE(82574L),
161 
162 	/* required last entry */
163 	EMX_DEVICE_NULL
164 };
165 
166 static int	emx_probe(device_t);
167 static int	emx_attach(device_t);
168 static int	emx_detach(device_t);
169 static int	emx_shutdown(device_t);
170 static int	emx_suspend(device_t);
171 static int	emx_resume(device_t);
172 
173 static void	emx_init(void *);
174 static void	emx_stop(struct emx_softc *);
175 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
176 static void	emx_start(struct ifnet *);
177 #ifdef DEVICE_POLLING
178 static void	emx_poll(struct ifnet *, enum poll_cmd, int);
179 #endif
180 static void	emx_watchdog(struct ifnet *);
181 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
182 static int	emx_media_change(struct ifnet *);
183 static void	emx_timer(void *);
184 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
185 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
186 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
187 #ifdef INVARIANTS
188 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
189 		    boolean_t);
190 #endif
191 
192 static void	emx_intr(void *);
193 static void	emx_rxeof(struct emx_softc *, int, int);
194 static void	emx_txeof(struct emx_softc *);
195 static void	emx_tx_collect(struct emx_softc *);
196 static void	emx_tx_purge(struct emx_softc *);
197 static void	emx_enable_intr(struct emx_softc *);
198 static void	emx_disable_intr(struct emx_softc *);
199 
200 static int	emx_dma_alloc(struct emx_softc *);
201 static void	emx_dma_free(struct emx_softc *);
202 static void	emx_init_tx_ring(struct emx_softc *);
203 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
204 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
205 static int	emx_create_tx_ring(struct emx_softc *);
206 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
207 static void	emx_destroy_tx_ring(struct emx_softc *, int);
208 static void	emx_destroy_rx_ring(struct emx_softc *,
209 		    struct emx_rxdata *, int);
210 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
211 static int	emx_encap(struct emx_softc *, struct mbuf **);
212 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
213 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
214 		    uint32_t *, uint32_t *);
215 
216 static int 	emx_is_valid_eaddr(const uint8_t *);
217 static int	emx_hw_init(struct emx_softc *);
218 static void	emx_setup_ifp(struct emx_softc *);
219 static void	emx_init_tx_unit(struct emx_softc *);
220 static void	emx_init_rx_unit(struct emx_softc *);
221 static void	emx_update_stats(struct emx_softc *);
222 static void	emx_set_promisc(struct emx_softc *);
223 static void	emx_disable_promisc(struct emx_softc *);
224 static void	emx_set_multi(struct emx_softc *);
225 static void	emx_update_link_status(struct emx_softc *);
226 static void	emx_smartspeed(struct emx_softc *);
227 
228 static void	emx_print_debug_info(struct emx_softc *);
229 static void	emx_print_nvm_info(struct emx_softc *);
230 static void	emx_print_hw_stats(struct emx_softc *);
231 
232 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
233 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
234 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
235 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
236 static void	emx_add_sysctl(struct emx_softc *);
237 
238 static void	emx_serialize_skipmain(struct emx_softc *);
239 static void	emx_deserialize_skipmain(struct emx_softc *);
240 static int	emx_tryserialize_skipmain(struct emx_softc *);
241 
242 /* Management and WOL Support */
243 static void	emx_get_mgmt(struct emx_softc *);
244 static void	emx_rel_mgmt(struct emx_softc *);
245 static void	emx_get_hw_control(struct emx_softc *);
246 static void	emx_rel_hw_control(struct emx_softc *);
247 static void	emx_enable_wol(device_t);
248 
249 static device_method_t emx_methods[] = {
250 	/* Device interface */
251 	DEVMETHOD(device_probe,		emx_probe),
252 	DEVMETHOD(device_attach,	emx_attach),
253 	DEVMETHOD(device_detach,	emx_detach),
254 	DEVMETHOD(device_shutdown,	emx_shutdown),
255 	DEVMETHOD(device_suspend,	emx_suspend),
256 	DEVMETHOD(device_resume,	emx_resume),
257 	{ 0, 0 }
258 };
259 
260 static driver_t emx_driver = {
261 	"emx",
262 	emx_methods,
263 	sizeof(struct emx_softc),
264 };
265 
266 static devclass_t emx_devclass;
267 
268 DECLARE_DUMMY_MODULE(if_emx);
269 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
270 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, 0, 0);
271 
272 /*
273  * Tunables
274  */
275 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
276 static int	emx_rxd = EMX_DEFAULT_RXD;
277 static int	emx_txd = EMX_DEFAULT_TXD;
278 static int	emx_smart_pwr_down = FALSE;
279 
280 /* Controls whether promiscuous also shows bad packets */
281 static int	emx_debug_sbp = FALSE;
282 
283 static int	emx_82573_workaround = TRUE;
284 
285 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
286 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
287 TUNABLE_INT("hw.emx.txd", &emx_txd);
288 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
289 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
290 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
291 
292 /* Global used in WOL setup with multiport cards */
293 static int	emx_global_quad_port_a = 0;
294 
295 /* Set this to one to display debug statistics */
296 static int	emx_display_debug_stats = 0;
297 
298 #if !defined(KTR_IF_EMX)
299 #define KTR_IF_EMX	KTR_ALL
300 #endif
301 KTR_INFO_MASTER(if_emx);
302 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin", 0);
303 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end", 0);
304 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet", 0);
305 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet", 0);
306 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean", 0);
307 #define logif(name)	KTR_LOG(if_emx_ ## name)
308 
309 static __inline void
310 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
311 {
312 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
313 	/* DD bit must be cleared */
314 	rxd->rxd_staterr = 0;
315 }
316 
317 static __inline void
318 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
319 {
320 	/* Ignore Checksum bit is set */
321 	if (staterr & E1000_RXD_STAT_IXSM)
322 		return;
323 
324 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
325 	    E1000_RXD_STAT_IPCS)
326 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
327 
328 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
329 	    E1000_RXD_STAT_TCPCS) {
330 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
331 					   CSUM_PSEUDO_HDR |
332 					   CSUM_FRAG_NOT_CHECKED;
333 		mp->m_pkthdr.csum_data = htons(0xffff);
334 	}
335 }
336 
337 static __inline struct pktinfo *
338 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
339 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
340 {
341 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
342 	case EMX_RXDMRQ_IPV4_TCP:
343 		pi->pi_netisr = NETISR_IP;
344 		pi->pi_flags = 0;
345 		pi->pi_l3proto = IPPROTO_TCP;
346 		break;
347 
348 	case EMX_RXDMRQ_IPV6_TCP:
349 		pi->pi_netisr = NETISR_IPV6;
350 		pi->pi_flags = 0;
351 		pi->pi_l3proto = IPPROTO_TCP;
352 		break;
353 
354 	case EMX_RXDMRQ_IPV4:
355 		if (staterr & E1000_RXD_STAT_IXSM)
356 			return NULL;
357 
358 		if ((staterr &
359 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
360 		    E1000_RXD_STAT_TCPCS) {
361 			pi->pi_netisr = NETISR_IP;
362 			pi->pi_flags = 0;
363 			pi->pi_l3proto = IPPROTO_UDP;
364 			break;
365 		}
366 		/* FALL THROUGH */
367 	default:
368 		return NULL;
369 	}
370 
371 	m->m_flags |= M_HASH;
372 	m->m_pkthdr.hash = toeplitz_hash(hash);
373 	return pi;
374 }
375 
376 static int
377 emx_probe(device_t dev)
378 {
379 	const struct emx_device *d;
380 	uint16_t vid, did;
381 
382 	vid = pci_get_vendor(dev);
383 	did = pci_get_device(dev);
384 
385 	for (d = emx_devices; d->desc != NULL; ++d) {
386 		if (vid == d->vid && did == d->did) {
387 			device_set_desc(dev, d->desc);
388 			device_set_async_attach(dev, TRUE);
389 			return 0;
390 		}
391 	}
392 	return ENXIO;
393 }
394 
395 static int
396 emx_attach(device_t dev)
397 {
398 	struct emx_softc *sc = device_get_softc(dev);
399 	struct ifnet *ifp = &sc->arpcom.ac_if;
400 	int error = 0, i;
401 	uint16_t eeprom_data, device_id;
402 
403 	lwkt_serialize_init(&sc->main_serialize);
404 	lwkt_serialize_init(&sc->tx_serialize);
405 	for (i = 0; i < EMX_NRX_RING; ++i)
406 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
407 
408 	i = 0;
409 	sc->serializes[i++] = &sc->main_serialize;
410 	sc->serializes[i++] = &sc->tx_serialize;
411 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
412 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
413 	KKASSERT(i == EMX_NSERIALIZE);
414 
415 	callout_init(&sc->timer);
416 
417 	sc->dev = sc->osdep.dev = dev;
418 
419 	/*
420 	 * Determine hardware and mac type
421 	 */
422 	sc->hw.vendor_id = pci_get_vendor(dev);
423 	sc->hw.device_id = pci_get_device(dev);
424 	sc->hw.revision_id = pci_get_revid(dev);
425 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
426 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
427 
428 	if (e1000_set_mac_type(&sc->hw))
429 		return ENXIO;
430 
431 	/* Enable bus mastering */
432 	pci_enable_busmaster(dev);
433 
434 	/*
435 	 * Allocate IO memory
436 	 */
437 	sc->memory_rid = EMX_BAR_MEM;
438 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
439 					    &sc->memory_rid, RF_ACTIVE);
440 	if (sc->memory == NULL) {
441 		device_printf(dev, "Unable to allocate bus resource: memory\n");
442 		error = ENXIO;
443 		goto fail;
444 	}
445 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
446 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
447 
448 	/* XXX This is quite goofy, it is not actually used */
449 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
450 
451 	/*
452 	 * Allocate interrupt
453 	 */
454 	sc->intr_rid = 0;
455 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
456 					      RF_SHAREABLE | RF_ACTIVE);
457 	if (sc->intr_res == NULL) {
458 		device_printf(dev, "Unable to allocate bus resource: "
459 		    "interrupt\n");
460 		error = ENXIO;
461 		goto fail;
462 	}
463 
464 	/* Save PCI command register for Shared Code */
465 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
466 	sc->hw.back = &sc->osdep;
467 
468 	/* Do Shared Code initialization */
469 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
470 		device_printf(dev, "Setup of Shared code failed\n");
471 		error = ENXIO;
472 		goto fail;
473 	}
474 	e1000_get_bus_info(&sc->hw);
475 
476 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
477 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
478 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
479 
480 	/*
481 	 * Interrupt throttle rate
482 	 */
483 	if (emx_int_throttle_ceil == 0) {
484 		sc->int_throttle_ceil = 0;
485 	} else {
486 		int throttle = emx_int_throttle_ceil;
487 
488 		if (throttle < 0)
489 			throttle = EMX_DEFAULT_ITR;
490 
491 		/* Recalculate the tunable value to get the exact frequency. */
492 		throttle = 1000000000 / 256 / throttle;
493 
494 		/* Upper 16bits of ITR is reserved and should be zero */
495 		if (throttle & 0xffff0000)
496 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
497 
498 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
499 	}
500 
501 	e1000_init_script_state_82541(&sc->hw, TRUE);
502 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
503 
504 	/* Copper options */
505 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
506 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
507 		sc->hw.phy.disable_polarity_correction = FALSE;
508 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
509 	}
510 
511 	/* Set the frame limits assuming standard ethernet sized frames. */
512 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
513 	sc->min_frame_size = ETHER_MIN_LEN;
514 
515 	/* This controls when hardware reports transmit completion status. */
516 	sc->hw.mac.report_tx_early = 1;
517 
518 #ifdef RSS
519 	/* Calculate # of RX rings */
520 	if (ncpus > 1)
521 		sc->rx_ring_cnt = EMX_NRX_RING;
522 	else
523 #endif
524 		sc->rx_ring_cnt = 1;
525 	sc->rx_ring_inuse = sc->rx_ring_cnt;
526 
527 	/* Allocate RX/TX rings' busdma(9) stuffs */
528 	error = emx_dma_alloc(sc);
529 	if (error)
530 		goto fail;
531 
532 	/* Make sure we have a good EEPROM before we read from it */
533 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
534 		/*
535 		 * Some PCI-E parts fail the first check due to
536 		 * the link being in sleep state, call it again,
537 		 * if it fails a second time its a real issue.
538 		 */
539 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
540 			device_printf(dev,
541 			    "The EEPROM Checksum Is Not Valid\n");
542 			error = EIO;
543 			goto fail;
544 		}
545 	}
546 
547 	/* Initialize the hardware */
548 	error = emx_hw_init(sc);
549 	if (error) {
550 		device_printf(dev, "Unable to initialize the hardware\n");
551 		goto fail;
552 	}
553 
554 	/* Copy the permanent MAC address out of the EEPROM */
555 	if (e1000_read_mac_addr(&sc->hw) < 0) {
556 		device_printf(dev, "EEPROM read error while reading MAC"
557 		    " address\n");
558 		error = EIO;
559 		goto fail;
560 	}
561 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
562 		device_printf(dev, "Invalid MAC address\n");
563 		error = EIO;
564 		goto fail;
565 	}
566 
567 	/* Manually turn off all interrupts */
568 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
569 
570 	/* Setup OS specific network interface */
571 	emx_setup_ifp(sc);
572 
573 	/* Add sysctl tree, must after emx_setup_ifp() */
574 	emx_add_sysctl(sc);
575 
576 	/* Initialize statistics */
577 	emx_update_stats(sc);
578 
579 	sc->hw.mac.get_link_status = 1;
580 	emx_update_link_status(sc);
581 
582 	/* Indicate SOL/IDER usage */
583 	if (e1000_check_reset_block(&sc->hw)) {
584 		device_printf(dev,
585 		    "PHY reset is blocked due to SOL/IDER session.\n");
586 	}
587 
588 	/* Determine if we have to control management hardware */
589 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
590 
591 	/*
592 	 * Setup Wake-on-Lan
593 	 */
594 	switch (sc->hw.mac.type) {
595 	case e1000_82571:
596 	case e1000_80003es2lan:
597 		if (sc->hw.bus.func == 1) {
598 			e1000_read_nvm(&sc->hw,
599 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
600 		} else {
601 			e1000_read_nvm(&sc->hw,
602 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
603 		}
604 		eeprom_data &= EMX_EEPROM_APME;
605 		break;
606 
607 	default:
608 		/* APME bit in EEPROM is mapped to WUC.APME */
609 		eeprom_data =
610 		    E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
611 		break;
612 	}
613 	if (eeprom_data)
614 		sc->wol = E1000_WUFC_MAG;
615 	/*
616          * We have the eeprom settings, now apply the special cases
617          * where the eeprom may be wrong or the board won't support
618          * wake on lan on a particular port
619 	 */
620 	device_id = pci_get_device(dev);
621         switch (device_id) {
622 	case E1000_DEV_ID_82571EB_FIBER:
623 		/*
624 		 * Wake events only supported on port A for dual fiber
625 		 * regardless of eeprom setting
626 		 */
627 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
628 		    E1000_STATUS_FUNC_1)
629 			sc->wol = 0;
630 		break;
631 
632 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
633 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
634 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
635                 /* if quad port sc, disable WoL on all but port A */
636 		if (emx_global_quad_port_a != 0)
637 			sc->wol = 0;
638 		/* Reset for multiple quad port adapters */
639 		if (++emx_global_quad_port_a == 4)
640 			emx_global_quad_port_a = 0;
641                 break;
642 	}
643 
644 	/* XXX disable wol */
645 	sc->wol = 0;
646 
647 	sc->spare_tx_desc = EMX_TX_SPARE;
648 
649 	/*
650 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
651 	 * and tx_int_nsegs:
652 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
653 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
654 	 */
655 	sc->oact_tx_desc = sc->num_tx_desc / 8;
656 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
657 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
658 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
659 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
660 
661 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
662 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
663 		sc->tx_int_nsegs = sc->oact_tx_desc;
664 
665 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, emx_intr, sc,
666 			       &sc->intr_tag, &sc->main_serialize);
667 	if (error) {
668 		device_printf(dev, "Failed to register interrupt handler");
669 		ether_ifdetach(&sc->arpcom.ac_if);
670 		goto fail;
671 	}
672 
673 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->intr_res));
674 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
675 	return (0);
676 fail:
677 	emx_detach(dev);
678 	return (error);
679 }
680 
681 static int
682 emx_detach(device_t dev)
683 {
684 	struct emx_softc *sc = device_get_softc(dev);
685 
686 	if (device_is_attached(dev)) {
687 		struct ifnet *ifp = &sc->arpcom.ac_if;
688 
689 		ifnet_serialize_all(ifp);
690 
691 		emx_stop(sc);
692 
693 		e1000_phy_hw_reset(&sc->hw);
694 
695 		emx_rel_mgmt(sc);
696 
697 		if (sc->hw.mac.type == e1000_82573 &&
698 		    e1000_check_mng_mode(&sc->hw))
699 			emx_rel_hw_control(sc);
700 
701 		if (sc->wol) {
702 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
703 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
704 			emx_enable_wol(dev);
705 		}
706 
707 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
708 
709 		ifnet_deserialize_all(ifp);
710 
711 		ether_ifdetach(ifp);
712 	}
713 	bus_generic_detach(dev);
714 
715 	if (sc->intr_res != NULL) {
716 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
717 				     sc->intr_res);
718 	}
719 
720 	if (sc->memory != NULL) {
721 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
722 				     sc->memory);
723 	}
724 
725 	emx_dma_free(sc);
726 
727 	/* Free sysctl tree */
728 	if (sc->sysctl_tree != NULL)
729 		sysctl_ctx_free(&sc->sysctl_ctx);
730 
731 	return (0);
732 }
733 
734 static int
735 emx_shutdown(device_t dev)
736 {
737 	return emx_suspend(dev);
738 }
739 
740 static int
741 emx_suspend(device_t dev)
742 {
743 	struct emx_softc *sc = device_get_softc(dev);
744 	struct ifnet *ifp = &sc->arpcom.ac_if;
745 
746 	ifnet_serialize_all(ifp);
747 
748 	emx_stop(sc);
749 
750 	emx_rel_mgmt(sc);
751 
752         if (sc->hw.mac.type == e1000_82573 &&
753             e1000_check_mng_mode(&sc->hw))
754                 emx_rel_hw_control(sc);
755 
756         if (sc->wol) {
757 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
758 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
759 		emx_enable_wol(dev);
760         }
761 
762 	ifnet_deserialize_all(ifp);
763 
764 	return bus_generic_suspend(dev);
765 }
766 
767 static int
768 emx_resume(device_t dev)
769 {
770 	struct emx_softc *sc = device_get_softc(dev);
771 	struct ifnet *ifp = &sc->arpcom.ac_if;
772 
773 	ifnet_serialize_all(ifp);
774 
775 	emx_init(sc);
776 	emx_get_mgmt(sc);
777 	if_devstart(ifp);
778 
779 	ifnet_deserialize_all(ifp);
780 
781 	return bus_generic_resume(dev);
782 }
783 
784 static void
785 emx_start(struct ifnet *ifp)
786 {
787 	struct emx_softc *sc = ifp->if_softc;
788 	struct mbuf *m_head;
789 
790 	ASSERT_SERIALIZED(&sc->tx_serialize);
791 
792 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
793 		return;
794 
795 	if (!sc->link_active) {
796 		ifq_purge(&ifp->if_snd);
797 		return;
798 	}
799 
800 	while (!ifq_is_empty(&ifp->if_snd)) {
801 		/* Now do we at least have a minimal? */
802 		if (EMX_IS_OACTIVE(sc)) {
803 			emx_tx_collect(sc);
804 			if (EMX_IS_OACTIVE(sc)) {
805 				ifp->if_flags |= IFF_OACTIVE;
806 				sc->no_tx_desc_avail1++;
807 				break;
808 			}
809 		}
810 
811 		logif(pkt_txqueue);
812 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
813 		if (m_head == NULL)
814 			break;
815 
816 		if (emx_encap(sc, &m_head)) {
817 			ifp->if_oerrors++;
818 			emx_tx_collect(sc);
819 			continue;
820 		}
821 
822 		/* Send a copy of the frame to the BPF listener */
823 		ETHER_BPF_MTAP(ifp, m_head);
824 
825 		/* Set timeout in case hardware has problems transmitting. */
826 		ifp->if_timer = EMX_TX_TIMEOUT;
827 	}
828 }
829 
830 static int
831 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
832 {
833 	struct emx_softc *sc = ifp->if_softc;
834 	struct ifreq *ifr = (struct ifreq *)data;
835 	uint16_t eeprom_data = 0;
836 	int max_frame_size, mask, reinit;
837 	int error = 0;
838 
839 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
840 
841 	switch (command) {
842 	case SIOCSIFMTU:
843 		switch (sc->hw.mac.type) {
844 		case e1000_82573:
845 			/*
846 			 * 82573 only supports jumbo frames
847 			 * if ASPM is disabled.
848 			 */
849 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
850 				       &eeprom_data);
851 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
852 				max_frame_size = ETHER_MAX_LEN;
853 				break;
854 			}
855 			/* FALL THROUGH */
856 
857 		/* Limit Jumbo Frame size */
858 		case e1000_82571:
859 		case e1000_82572:
860 		case e1000_82574:
861 		case e1000_80003es2lan:
862 			max_frame_size = 9234;
863 			break;
864 
865 		default:
866 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
867 			break;
868 		}
869 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
870 		    ETHER_CRC_LEN) {
871 			error = EINVAL;
872 			break;
873 		}
874 
875 		ifp->if_mtu = ifr->ifr_mtu;
876 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
877 				     ETHER_CRC_LEN;
878 
879 		if (ifp->if_flags & IFF_RUNNING)
880 			emx_init(sc);
881 		break;
882 
883 	case SIOCSIFFLAGS:
884 		if (ifp->if_flags & IFF_UP) {
885 			if ((ifp->if_flags & IFF_RUNNING)) {
886 				if ((ifp->if_flags ^ sc->if_flags) &
887 				    (IFF_PROMISC | IFF_ALLMULTI)) {
888 					emx_disable_promisc(sc);
889 					emx_set_promisc(sc);
890 				}
891 			} else {
892 				emx_init(sc);
893 			}
894 		} else if (ifp->if_flags & IFF_RUNNING) {
895 			emx_stop(sc);
896 		}
897 		sc->if_flags = ifp->if_flags;
898 		break;
899 
900 	case SIOCADDMULTI:
901 	case SIOCDELMULTI:
902 		if (ifp->if_flags & IFF_RUNNING) {
903 			emx_disable_intr(sc);
904 			emx_set_multi(sc);
905 #ifdef DEVICE_POLLING
906 			if (!(ifp->if_flags & IFF_POLLING))
907 #endif
908 				emx_enable_intr(sc);
909 		}
910 		break;
911 
912 	case SIOCSIFMEDIA:
913 		/* Check SOL/IDER usage */
914 		if (e1000_check_reset_block(&sc->hw)) {
915 			device_printf(sc->dev, "Media change is"
916 			    " blocked due to SOL/IDER session.\n");
917 			break;
918 		}
919 		/* FALL THROUGH */
920 
921 	case SIOCGIFMEDIA:
922 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
923 		break;
924 
925 	case SIOCSIFCAP:
926 		reinit = 0;
927 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
928 		if (mask & IFCAP_HWCSUM) {
929 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
930 			reinit = 1;
931 		}
932 		if (mask & IFCAP_VLAN_HWTAGGING) {
933 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
934 			reinit = 1;
935 		}
936 		if (mask & IFCAP_RSS) {
937 			ifp->if_capenable ^= IFCAP_RSS;
938 			reinit = 1;
939 		}
940 		if (reinit && (ifp->if_flags & IFF_RUNNING))
941 			emx_init(sc);
942 		break;
943 
944 	default:
945 		error = ether_ioctl(ifp, command, data);
946 		break;
947 	}
948 	return (error);
949 }
950 
951 static void
952 emx_watchdog(struct ifnet *ifp)
953 {
954 	struct emx_softc *sc = ifp->if_softc;
955 
956 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
957 
958 	/*
959 	 * The timer is set to 5 every time start queues a packet.
960 	 * Then txeof keeps resetting it as long as it cleans at
961 	 * least one descriptor.
962 	 * Finally, anytime all descriptors are clean the timer is
963 	 * set to 0.
964 	 */
965 
966 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
967 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
968 		/*
969 		 * If we reach here, all TX jobs are completed and
970 		 * the TX engine should have been idled for some time.
971 		 * We don't need to call if_devstart() here.
972 		 */
973 		ifp->if_flags &= ~IFF_OACTIVE;
974 		ifp->if_timer = 0;
975 		return;
976 	}
977 
978 	/*
979 	 * If we are in this routine because of pause frames, then
980 	 * don't reset the hardware.
981 	 */
982 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
983 		ifp->if_timer = EMX_TX_TIMEOUT;
984 		return;
985 	}
986 
987 	if (e1000_check_for_link(&sc->hw) == 0)
988 		if_printf(ifp, "watchdog timeout -- resetting\n");
989 
990 	ifp->if_oerrors++;
991 	sc->watchdog_events++;
992 
993 	emx_init(sc);
994 
995 	if (!ifq_is_empty(&ifp->if_snd))
996 		if_devstart(ifp);
997 }
998 
999 static void
1000 emx_init(void *xsc)
1001 {
1002 	struct emx_softc *sc = xsc;
1003 	struct ifnet *ifp = &sc->arpcom.ac_if;
1004 	device_t dev = sc->dev;
1005 	uint32_t pba;
1006 	int i;
1007 
1008 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1009 
1010 	emx_stop(sc);
1011 
1012 	/*
1013 	 * Packet Buffer Allocation (PBA)
1014 	 * Writing PBA sets the receive portion of the buffer
1015 	 * the remainder is used for the transmit buffer.
1016 	 */
1017 	switch (sc->hw.mac.type) {
1018 	/* Total Packet Buffer on these is 48K */
1019 	case e1000_82571:
1020 	case e1000_82572:
1021 	case e1000_80003es2lan:
1022 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1023 		break;
1024 
1025 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1026 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1027 		break;
1028 
1029 	case e1000_82574:
1030 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1031 		break;
1032 
1033 	default:
1034 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1035 		if (sc->max_frame_size > 8192)
1036 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1037 		else
1038 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1039 	}
1040 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1041 
1042 	/* Get the latest mac address, User can use a LAA */
1043         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1044 
1045 	/* Put the address into the Receive Address Array */
1046 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1047 
1048 	/*
1049 	 * With the 82571 sc, RAR[0] may be overwritten
1050 	 * when the other port is reset, we make a duplicate
1051 	 * in RAR[14] for that eventuality, this assures
1052 	 * the interface continues to function.
1053 	 */
1054 	if (sc->hw.mac.type == e1000_82571) {
1055 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1056 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1057 		    E1000_RAR_ENTRIES - 1);
1058 	}
1059 
1060 	/* Initialize the hardware */
1061 	if (emx_hw_init(sc)) {
1062 		device_printf(dev, "Unable to initialize the hardware\n");
1063 		/* XXX emx_stop()? */
1064 		return;
1065 	}
1066 	emx_update_link_status(sc);
1067 
1068 	/* Setup VLAN support, basic and offload if available */
1069 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1070 
1071 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1072 		uint32_t ctrl;
1073 
1074 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1075 		ctrl |= E1000_CTRL_VME;
1076 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1077 	}
1078 
1079 	/* Set hardware offload abilities */
1080 	if (ifp->if_capenable & IFCAP_TXCSUM)
1081 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1082 	else
1083 		ifp->if_hwassist = 0;
1084 
1085 	/* Configure for OS presence */
1086 	emx_get_mgmt(sc);
1087 
1088 	/* Prepare transmit descriptors and buffers */
1089 	emx_init_tx_ring(sc);
1090 	emx_init_tx_unit(sc);
1091 
1092 	/* Setup Multicast table */
1093 	emx_set_multi(sc);
1094 
1095 	/*
1096 	 * Adjust # of RX ring to be used based on IFCAP_RSS
1097 	 */
1098 	if (ifp->if_capenable & IFCAP_RSS)
1099 		sc->rx_ring_inuse = sc->rx_ring_cnt;
1100 	else
1101 		sc->rx_ring_inuse = 1;
1102 
1103 	/* Prepare receive descriptors and buffers */
1104 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
1105 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1106 			device_printf(dev,
1107 			    "Could not setup receive structures\n");
1108 			emx_stop(sc);
1109 			return;
1110 		}
1111 	}
1112 	emx_init_rx_unit(sc);
1113 
1114 	/* Don't lose promiscuous settings */
1115 	emx_set_promisc(sc);
1116 
1117 	ifp->if_flags |= IFF_RUNNING;
1118 	ifp->if_flags &= ~IFF_OACTIVE;
1119 
1120 	callout_reset(&sc->timer, hz, emx_timer, sc);
1121 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1122 
1123 	/* MSI/X configuration for 82574 */
1124 	if (sc->hw.mac.type == e1000_82574) {
1125 		int tmp;
1126 
1127 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1128 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1129 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1130 		/*
1131 		 * Set the IVAR - interrupt vector routing.
1132 		 * Each nibble represents a vector, high bit
1133 		 * is enable, other 3 bits are the MSIX table
1134 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1135 		 * Link (other) to 2, hence the magic number.
1136 		 */
1137 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1138 	}
1139 
1140 #ifdef DEVICE_POLLING
1141 	/*
1142 	 * Only enable interrupts if we are not polling, make sure
1143 	 * they are off otherwise.
1144 	 */
1145 	if (ifp->if_flags & IFF_POLLING)
1146 		emx_disable_intr(sc);
1147 	else
1148 #endif /* DEVICE_POLLING */
1149 		emx_enable_intr(sc);
1150 
1151 	/* Don't reset the phy next time init gets called */
1152 	sc->hw.phy.reset_disable = TRUE;
1153 }
1154 
1155 #ifdef DEVICE_POLLING
1156 
1157 static void
1158 emx_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1159 {
1160 	struct emx_softc *sc = ifp->if_softc;
1161 	uint32_t reg_icr;
1162 
1163 	ASSERT_IFNET_SERIALIZED_MAIN(ifp);
1164 
1165 	switch (cmd) {
1166 	case POLL_REGISTER:
1167 		emx_disable_intr(sc);
1168 		break;
1169 
1170 	case POLL_DEREGISTER:
1171 		emx_enable_intr(sc);
1172 		break;
1173 
1174 	case POLL_AND_CHECK_STATUS:
1175 		reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1176 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1177 			if (emx_tryserialize_skipmain(sc)) {
1178 				callout_stop(&sc->timer);
1179 				sc->hw.mac.get_link_status = 1;
1180 				emx_update_link_status(sc);
1181 				callout_reset(&sc->timer, hz, emx_timer, sc);
1182 				emx_deserialize_skipmain(sc);
1183 			}
1184 		}
1185 		/* FALL THROUGH */
1186 	case POLL_ONLY:
1187 		if (ifp->if_flags & IFF_RUNNING) {
1188 			int i;
1189 
1190 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
1191 				if (lwkt_serialize_try(
1192 				    &sc->rx_data[i].rx_serialize)) {
1193 					emx_rxeof(sc, i, count);
1194 					lwkt_serialize_exit(
1195 					&sc->rx_data[i].rx_serialize);
1196 				}
1197 			}
1198 
1199 			if (lwkt_serialize_try(&sc->tx_serialize)) {
1200 				emx_txeof(sc);
1201 				if (!ifq_is_empty(&ifp->if_snd))
1202 					if_devstart(ifp);
1203 				lwkt_serialize_exit(&sc->tx_serialize);
1204 			}
1205 		}
1206 		break;
1207 	}
1208 }
1209 
1210 #endif /* DEVICE_POLLING */
1211 
1212 static void
1213 emx_intr(void *xsc)
1214 {
1215 	struct emx_softc *sc = xsc;
1216 	struct ifnet *ifp = &sc->arpcom.ac_if;
1217 	uint32_t reg_icr;
1218 
1219 	logif(intr_beg);
1220 	ASSERT_SERIALIZED(&sc->main_serialize);
1221 
1222 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1223 
1224 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1225 		logif(intr_end);
1226 		return;
1227 	}
1228 
1229 	/*
1230 	 * XXX: some laptops trigger several spurious interrupts
1231 	 * on emx(4) when in the resume cycle. The ICR register
1232 	 * reports all-ones value in this case. Processing such
1233 	 * interrupts would lead to a freeze. I don't know why.
1234 	 */
1235 	if (reg_icr == 0xffffffff) {
1236 		logif(intr_end);
1237 		return;
1238 	}
1239 
1240 	if (ifp->if_flags & IFF_RUNNING) {
1241 		if (reg_icr &
1242 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1243 			int i;
1244 
1245 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
1246 				lwkt_serialize_enter(
1247 				&sc->rx_data[i].rx_serialize);
1248 				emx_rxeof(sc, i, -1);
1249 				lwkt_serialize_exit(
1250 				&sc->rx_data[i].rx_serialize);
1251 			}
1252 		}
1253 		if (reg_icr & E1000_ICR_TXDW) {
1254 			lwkt_serialize_enter(&sc->tx_serialize);
1255 			emx_txeof(sc);
1256 			if (!ifq_is_empty(&ifp->if_snd))
1257 				if_devstart(ifp);
1258 			lwkt_serialize_exit(&sc->tx_serialize);
1259 		}
1260 	}
1261 
1262 	/* Link status change */
1263 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1264 		emx_serialize_skipmain(sc);
1265 
1266 		callout_stop(&sc->timer);
1267 		sc->hw.mac.get_link_status = 1;
1268 		emx_update_link_status(sc);
1269 
1270 		/* Deal with TX cruft when link lost */
1271 		emx_tx_purge(sc);
1272 
1273 		callout_reset(&sc->timer, hz, emx_timer, sc);
1274 
1275 		emx_deserialize_skipmain(sc);
1276 	}
1277 
1278 	if (reg_icr & E1000_ICR_RXO)
1279 		sc->rx_overruns++;
1280 
1281 	logif(intr_end);
1282 }
1283 
1284 static void
1285 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1286 {
1287 	struct emx_softc *sc = ifp->if_softc;
1288 
1289 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1290 
1291 	emx_update_link_status(sc);
1292 
1293 	ifmr->ifm_status = IFM_AVALID;
1294 	ifmr->ifm_active = IFM_ETHER;
1295 
1296 	if (!sc->link_active)
1297 		return;
1298 
1299 	ifmr->ifm_status |= IFM_ACTIVE;
1300 
1301 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1302 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1303 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1304 	} else {
1305 		switch (sc->link_speed) {
1306 		case 10:
1307 			ifmr->ifm_active |= IFM_10_T;
1308 			break;
1309 		case 100:
1310 			ifmr->ifm_active |= IFM_100_TX;
1311 			break;
1312 
1313 		case 1000:
1314 			ifmr->ifm_active |= IFM_1000_T;
1315 			break;
1316 		}
1317 		if (sc->link_duplex == FULL_DUPLEX)
1318 			ifmr->ifm_active |= IFM_FDX;
1319 		else
1320 			ifmr->ifm_active |= IFM_HDX;
1321 	}
1322 }
1323 
1324 static int
1325 emx_media_change(struct ifnet *ifp)
1326 {
1327 	struct emx_softc *sc = ifp->if_softc;
1328 	struct ifmedia *ifm = &sc->media;
1329 
1330 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1331 
1332 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1333 		return (EINVAL);
1334 
1335 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1336 	case IFM_AUTO:
1337 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1338 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1339 		break;
1340 
1341 	case IFM_1000_LX:
1342 	case IFM_1000_SX:
1343 	case IFM_1000_T:
1344 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1345 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1346 		break;
1347 
1348 	case IFM_100_TX:
1349 		sc->hw.mac.autoneg = FALSE;
1350 		sc->hw.phy.autoneg_advertised = 0;
1351 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1352 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1353 		else
1354 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1355 		break;
1356 
1357 	case IFM_10_T:
1358 		sc->hw.mac.autoneg = FALSE;
1359 		sc->hw.phy.autoneg_advertised = 0;
1360 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1361 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1362 		else
1363 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1364 		break;
1365 
1366 	default:
1367 		if_printf(ifp, "Unsupported media type\n");
1368 		break;
1369 	}
1370 
1371 	/*
1372 	 * As the speed/duplex settings my have changed we need to
1373 	 * reset the PHY.
1374 	 */
1375 	sc->hw.phy.reset_disable = FALSE;
1376 
1377 	emx_init(sc);
1378 
1379 	return (0);
1380 }
1381 
1382 static int
1383 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1384 {
1385 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1386 	bus_dmamap_t map;
1387 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1388 	struct e1000_tx_desc *ctxd = NULL;
1389 	struct mbuf *m_head = *m_headp;
1390 	uint32_t txd_upper, txd_lower, cmd = 0;
1391 	int maxsegs, nsegs, i, j, first, last = 0, error;
1392 
1393 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1394 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1395 		/*
1396 		 * Make sure that ethernet header and ip.ip_hl are in
1397 		 * contiguous memory, since if TXCSUM is enabled, later
1398 		 * TX context descriptor's setup need to access ip.ip_hl.
1399 		 */
1400 		error = emx_txcsum_pullup(sc, m_headp);
1401 		if (error) {
1402 			KKASSERT(*m_headp == NULL);
1403 			return error;
1404 		}
1405 		m_head = *m_headp;
1406 	}
1407 
1408 	txd_upper = txd_lower = 0;
1409 
1410 	/*
1411 	 * Capture the first descriptor index, this descriptor
1412 	 * will have the index of the EOP which is the only one
1413 	 * that now gets a DONE bit writeback.
1414 	 */
1415 	first = sc->next_avail_tx_desc;
1416 	tx_buffer = &sc->tx_buf[first];
1417 	tx_buffer_mapped = tx_buffer;
1418 	map = tx_buffer->map;
1419 
1420 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1421 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc\n"));
1422 	if (maxsegs > EMX_MAX_SCATTER)
1423 		maxsegs = EMX_MAX_SCATTER;
1424 
1425 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1426 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1427 	if (error) {
1428 		if (error == ENOBUFS)
1429 			sc->mbuf_alloc_failed++;
1430 		else
1431 			sc->no_tx_dma_setup++;
1432 
1433 		m_freem(*m_headp);
1434 		*m_headp = NULL;
1435 		return error;
1436 	}
1437         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1438 
1439 	m_head = *m_headp;
1440 	sc->tx_nsegs += nsegs;
1441 
1442 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1443 		/* TX csum offloading will consume one TX desc */
1444 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1445 	}
1446 	i = sc->next_avail_tx_desc;
1447 
1448 	/* Set up our transmit descriptors */
1449 	for (j = 0; j < nsegs; j++) {
1450 		tx_buffer = &sc->tx_buf[i];
1451 		ctxd = &sc->tx_desc_base[i];
1452 
1453 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1454 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1455 					   txd_lower | segs[j].ds_len);
1456 		ctxd->upper.data = htole32(txd_upper);
1457 
1458 		last = i;
1459 		if (++i == sc->num_tx_desc)
1460 			i = 0;
1461 	}
1462 
1463 	sc->next_avail_tx_desc = i;
1464 
1465 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1466 	sc->num_tx_desc_avail -= nsegs;
1467 
1468         /* Handle VLAN tag */
1469 	if (m_head->m_flags & M_VLANTAG) {
1470 		/* Set the vlan id. */
1471 		ctxd->upper.fields.special =
1472 		    htole16(m_head->m_pkthdr.ether_vlantag);
1473 
1474 		/* Tell hardware to add tag */
1475 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1476 	}
1477 
1478 	tx_buffer->m_head = m_head;
1479 	tx_buffer_mapped->map = tx_buffer->map;
1480 	tx_buffer->map = map;
1481 
1482 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1483 		sc->tx_nsegs = 0;
1484 
1485 		/*
1486 		 * Report Status (RS) is turned on
1487 		 * every tx_int_nsegs descriptors.
1488 		 */
1489 		cmd = E1000_TXD_CMD_RS;
1490 
1491 		/*
1492 		 * Keep track of the descriptor, which will
1493 		 * be written back by hardware.
1494 		 */
1495 		sc->tx_dd[sc->tx_dd_tail] = last;
1496 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1497 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1498 	}
1499 
1500 	/*
1501 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1502 	 */
1503 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1504 
1505 	/*
1506 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1507 	 * the E1000 that this frame is available to transmit.
1508 	 */
1509 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1510 
1511 	return (0);
1512 }
1513 
1514 static void
1515 emx_set_promisc(struct emx_softc *sc)
1516 {
1517 	struct ifnet *ifp = &sc->arpcom.ac_if;
1518 	uint32_t reg_rctl;
1519 
1520 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1521 
1522 	if (ifp->if_flags & IFF_PROMISC) {
1523 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1524 		/* Turn this on if you want to see bad packets */
1525 		if (emx_debug_sbp)
1526 			reg_rctl |= E1000_RCTL_SBP;
1527 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1528 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1529 		reg_rctl |= E1000_RCTL_MPE;
1530 		reg_rctl &= ~E1000_RCTL_UPE;
1531 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1532 	}
1533 }
1534 
1535 static void
1536 emx_disable_promisc(struct emx_softc *sc)
1537 {
1538 	uint32_t reg_rctl;
1539 
1540 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1541 
1542 	reg_rctl &= ~E1000_RCTL_UPE;
1543 	reg_rctl &= ~E1000_RCTL_MPE;
1544 	reg_rctl &= ~E1000_RCTL_SBP;
1545 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1546 }
1547 
1548 static void
1549 emx_set_multi(struct emx_softc *sc)
1550 {
1551 	struct ifnet *ifp = &sc->arpcom.ac_if;
1552 	struct ifmultiaddr *ifma;
1553 	uint32_t reg_rctl = 0;
1554 	uint8_t  mta[512]; /* Largest MTS is 4096 bits */
1555 	int mcnt = 0;
1556 
1557 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1558 		if (ifma->ifma_addr->sa_family != AF_LINK)
1559 			continue;
1560 
1561 		if (mcnt == EMX_MCAST_ADDR_MAX)
1562 			break;
1563 
1564 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1565 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1566 		mcnt++;
1567 	}
1568 
1569 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1570 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1571 		reg_rctl |= E1000_RCTL_MPE;
1572 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1573 	} else {
1574 		e1000_update_mc_addr_list(&sc->hw, mta,
1575 		    mcnt, 1, sc->hw.mac.rar_entry_count);
1576 	}
1577 }
1578 
1579 /*
1580  * This routine checks for link status and updates statistics.
1581  */
1582 static void
1583 emx_timer(void *xsc)
1584 {
1585 	struct emx_softc *sc = xsc;
1586 	struct ifnet *ifp = &sc->arpcom.ac_if;
1587 
1588 	ifnet_serialize_all(ifp);
1589 
1590 	emx_update_link_status(sc);
1591 	emx_update_stats(sc);
1592 
1593 	/* Reset LAA into RAR[0] on 82571 */
1594 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1595 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1596 
1597 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1598 		emx_print_hw_stats(sc);
1599 
1600 	emx_smartspeed(sc);
1601 
1602 	callout_reset(&sc->timer, hz, emx_timer, sc);
1603 
1604 	ifnet_deserialize_all(ifp);
1605 }
1606 
1607 static void
1608 emx_update_link_status(struct emx_softc *sc)
1609 {
1610 	struct e1000_hw *hw = &sc->hw;
1611 	struct ifnet *ifp = &sc->arpcom.ac_if;
1612 	device_t dev = sc->dev;
1613 	uint32_t link_check = 0;
1614 
1615 	/* Get the cached link value or read phy for real */
1616 	switch (hw->phy.media_type) {
1617 	case e1000_media_type_copper:
1618 		if (hw->mac.get_link_status) {
1619 			/* Do the work to read phy */
1620 			e1000_check_for_link(hw);
1621 			link_check = !hw->mac.get_link_status;
1622 			if (link_check) /* ESB2 fix */
1623 				e1000_cfg_on_link_up(hw);
1624 		} else {
1625 			link_check = TRUE;
1626 		}
1627 		break;
1628 
1629 	case e1000_media_type_fiber:
1630 		e1000_check_for_link(hw);
1631 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1632 		break;
1633 
1634 	case e1000_media_type_internal_serdes:
1635 		e1000_check_for_link(hw);
1636 		link_check = sc->hw.mac.serdes_has_link;
1637 		break;
1638 
1639 	case e1000_media_type_unknown:
1640 	default:
1641 		break;
1642 	}
1643 
1644 	/* Now check for a transition */
1645 	if (link_check && sc->link_active == 0) {
1646 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1647 		    &sc->link_duplex);
1648 
1649 		/*
1650 		 * Check if we should enable/disable SPEED_MODE bit on
1651 		 * 82571EB/82572EI
1652 		 */
1653 		if (hw->mac.type == e1000_82571 ||
1654 		    hw->mac.type == e1000_82572) {
1655 			int tarc0;
1656 
1657 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1658 			if (sc->link_speed != SPEED_1000)
1659 				tarc0 &= ~EMX_TARC_SPEED_MODE;
1660 			else
1661 				tarc0 |= EMX_TARC_SPEED_MODE;
1662 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1663 		}
1664 		if (bootverbose) {
1665 			device_printf(dev, "Link is up %d Mbps %s\n",
1666 			    sc->link_speed,
1667 			    ((sc->link_duplex == FULL_DUPLEX) ?
1668 			    "Full Duplex" : "Half Duplex"));
1669 		}
1670 		sc->link_active = 1;
1671 		sc->smartspeed = 0;
1672 		ifp->if_baudrate = sc->link_speed * 1000000;
1673 		ifp->if_link_state = LINK_STATE_UP;
1674 		if_link_state_change(ifp);
1675 	} else if (!link_check && sc->link_active == 1) {
1676 		ifp->if_baudrate = sc->link_speed = 0;
1677 		sc->link_duplex = 0;
1678 		if (bootverbose)
1679 			device_printf(dev, "Link is Down\n");
1680 		sc->link_active = 0;
1681 #if 0
1682 		/* Link down, disable watchdog */
1683 		if->if_timer = 0;
1684 #endif
1685 		ifp->if_link_state = LINK_STATE_DOWN;
1686 		if_link_state_change(ifp);
1687 	}
1688 }
1689 
1690 static void
1691 emx_stop(struct emx_softc *sc)
1692 {
1693 	struct ifnet *ifp = &sc->arpcom.ac_if;
1694 	int i;
1695 
1696 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1697 
1698 	emx_disable_intr(sc);
1699 
1700 	callout_stop(&sc->timer);
1701 
1702 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1703 	ifp->if_timer = 0;
1704 
1705 	/*
1706 	 * Disable multiple receive queues.
1707 	 *
1708 	 * NOTE:
1709 	 * We should disable multiple receive queues before
1710 	 * resetting the hardware.
1711 	 */
1712 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1713 
1714 	e1000_reset_hw(&sc->hw);
1715 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1716 
1717 	for (i = 0; i < sc->num_tx_desc; i++) {
1718 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1719 
1720 		if (tx_buffer->m_head != NULL) {
1721 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1722 			m_freem(tx_buffer->m_head);
1723 			tx_buffer->m_head = NULL;
1724 		}
1725 	}
1726 
1727 	for (i = 0; i < sc->rx_ring_inuse; ++i)
1728 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1729 
1730 	sc->csum_flags = 0;
1731 	sc->csum_ehlen = 0;
1732 	sc->csum_iphlen = 0;
1733 
1734 	sc->tx_dd_head = 0;
1735 	sc->tx_dd_tail = 0;
1736 	sc->tx_nsegs = 0;
1737 }
1738 
1739 static int
1740 emx_hw_init(struct emx_softc *sc)
1741 {
1742 	device_t dev = sc->dev;
1743 	uint16_t rx_buffer_size;
1744 
1745 	/* Issue a global reset */
1746 	e1000_reset_hw(&sc->hw);
1747 
1748 	/* Get control from any management/hw control */
1749 	if (sc->hw.mac.type == e1000_82573 &&
1750 	    e1000_check_mng_mode(&sc->hw))
1751 		emx_get_hw_control(sc);
1752 
1753 	/* Set up smart power down as default off on newer adapters. */
1754 	if (!emx_smart_pwr_down &&
1755 	    (sc->hw.mac.type == e1000_82571 ||
1756 	     sc->hw.mac.type == e1000_82572)) {
1757 		uint16_t phy_tmp = 0;
1758 
1759 		/* Speed up time to link by disabling smart power down. */
1760 		e1000_read_phy_reg(&sc->hw,
1761 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1762 		phy_tmp &= ~IGP02E1000_PM_SPD;
1763 		e1000_write_phy_reg(&sc->hw,
1764 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1765 	}
1766 
1767 	/*
1768 	 * These parameters control the automatic generation (Tx) and
1769 	 * response (Rx) to Ethernet PAUSE frames.
1770 	 * - High water mark should allow for at least two frames to be
1771 	 *   received after sending an XOFF.
1772 	 * - Low water mark works best when it is very near the high water mark.
1773 	 *   This allows the receiver to restart by sending XON when it has
1774 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1775 	 *   restart after one full frame is pulled from the buffer. There
1776 	 *   could be several smaller frames in the buffer and if so they will
1777 	 *   not trigger the XON until their total number reduces the buffer
1778 	 *   by 1500.
1779 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1780 	 */
1781 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1782 
1783 	sc->hw.fc.high_water = rx_buffer_size -
1784 			       roundup2(sc->max_frame_size, 1024);
1785 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1786 
1787 	if (sc->hw.mac.type == e1000_80003es2lan)
1788 		sc->hw.fc.pause_time = 0xFFFF;
1789 	else
1790 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1791 	sc->hw.fc.send_xon = TRUE;
1792 	sc->hw.fc.requested_mode = e1000_fc_full;
1793 
1794 	if (e1000_init_hw(&sc->hw) < 0) {
1795 		device_printf(dev, "Hardware Initialization Failed\n");
1796 		return (EIO);
1797 	}
1798 
1799 	e1000_check_for_link(&sc->hw);
1800 
1801 	return (0);
1802 }
1803 
1804 static void
1805 emx_setup_ifp(struct emx_softc *sc)
1806 {
1807 	struct ifnet *ifp = &sc->arpcom.ac_if;
1808 
1809 	if_initname(ifp, device_get_name(sc->dev),
1810 		    device_get_unit(sc->dev));
1811 	ifp->if_softc = sc;
1812 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1813 	ifp->if_init =  emx_init;
1814 	ifp->if_ioctl = emx_ioctl;
1815 	ifp->if_start = emx_start;
1816 #ifdef DEVICE_POLLING
1817 	ifp->if_poll = emx_poll;
1818 #endif
1819 	ifp->if_watchdog = emx_watchdog;
1820 	ifp->if_serialize = emx_serialize;
1821 	ifp->if_deserialize = emx_deserialize;
1822 	ifp->if_tryserialize = emx_tryserialize;
1823 #ifdef INVARIANTS
1824 	ifp->if_serialize_assert = emx_serialize_assert;
1825 #endif
1826 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1827 	ifq_set_ready(&ifp->if_snd);
1828 
1829 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1830 
1831 	ifp->if_capabilities = IFCAP_HWCSUM |
1832 			       IFCAP_VLAN_HWTAGGING |
1833 			       IFCAP_VLAN_MTU;
1834 	if (sc->rx_ring_cnt > 1)
1835 		ifp->if_capabilities |= IFCAP_RSS;
1836 	ifp->if_capenable = ifp->if_capabilities;
1837 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1838 
1839 	/*
1840 	 * Tell the upper layer(s) we support long frames.
1841 	 */
1842 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1843 
1844 	/*
1845 	 * Specify the media types supported by this sc and register
1846 	 * callbacks to update media and link information
1847 	 */
1848 	ifmedia_init(&sc->media, IFM_IMASK,
1849 		     emx_media_change, emx_media_status);
1850 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1851 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1852 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1853 			    0, NULL);
1854 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1855 	} else {
1856 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1857 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1858 			    0, NULL);
1859 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1860 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1861 			    0, NULL);
1862 		if (sc->hw.phy.type != e1000_phy_ife) {
1863 			ifmedia_add(&sc->media,
1864 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1865 			ifmedia_add(&sc->media,
1866 				IFM_ETHER | IFM_1000_T, 0, NULL);
1867 		}
1868 	}
1869 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1870 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1871 }
1872 
1873 /*
1874  * Workaround for SmartSpeed on 82541 and 82547 controllers
1875  */
1876 static void
1877 emx_smartspeed(struct emx_softc *sc)
1878 {
1879 	uint16_t phy_tmp;
1880 
1881 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1882 	    sc->hw.mac.autoneg == 0 ||
1883 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1884 		return;
1885 
1886 	if (sc->smartspeed == 0) {
1887 		/*
1888 		 * If Master/Slave config fault is asserted twice,
1889 		 * we assume back-to-back
1890 		 */
1891 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1892 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1893 			return;
1894 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1895 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1896 			e1000_read_phy_reg(&sc->hw,
1897 			    PHY_1000T_CTRL, &phy_tmp);
1898 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1899 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1900 				e1000_write_phy_reg(&sc->hw,
1901 				    PHY_1000T_CTRL, phy_tmp);
1902 				sc->smartspeed++;
1903 				if (sc->hw.mac.autoneg &&
1904 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1905 				    !e1000_read_phy_reg(&sc->hw,
1906 				     PHY_CONTROL, &phy_tmp)) {
1907 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1908 						   MII_CR_RESTART_AUTO_NEG;
1909 					e1000_write_phy_reg(&sc->hw,
1910 					    PHY_CONTROL, phy_tmp);
1911 				}
1912 			}
1913 		}
1914 		return;
1915 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1916 		/* If still no link, perhaps using 2/3 pair cable */
1917 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1918 		phy_tmp |= CR_1000T_MS_ENABLE;
1919 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1920 		if (sc->hw.mac.autoneg &&
1921 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1922 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1923 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1924 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1925 		}
1926 	}
1927 
1928 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1929 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1930 		sc->smartspeed = 0;
1931 }
1932 
1933 static int
1934 emx_create_tx_ring(struct emx_softc *sc)
1935 {
1936 	device_t dev = sc->dev;
1937 	struct emx_txbuf *tx_buffer;
1938 	int error, i, tsize;
1939 
1940 	/*
1941 	 * Validate number of transmit descriptors.  It must not exceed
1942 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1943 	 */
1944 	if ((emx_txd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1945 	    emx_txd > EMX_MAX_TXD || emx_txd < EMX_MIN_TXD) {
1946 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1947 		    EMX_DEFAULT_TXD, emx_txd);
1948 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1949 	} else {
1950 		sc->num_tx_desc = emx_txd;
1951 	}
1952 
1953 	/*
1954 	 * Allocate Transmit Descriptor ring
1955 	 */
1956 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1957 			 EMX_DBA_ALIGN);
1958 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1959 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1960 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1961 				&sc->tx_desc_paddr);
1962 	if (sc->tx_desc_base == NULL) {
1963 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1964 		return ENOMEM;
1965 	}
1966 
1967 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1968 			     M_DEVBUF, M_WAITOK | M_ZERO);
1969 
1970 	/*
1971 	 * Create DMA tags for tx buffers
1972 	 */
1973 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
1974 			1, 0,			/* alignment, bounds */
1975 			BUS_SPACE_MAXADDR,	/* lowaddr */
1976 			BUS_SPACE_MAXADDR,	/* highaddr */
1977 			NULL, NULL,		/* filter, filterarg */
1978 			EMX_TSO_SIZE,		/* maxsize */
1979 			EMX_MAX_SCATTER,	/* nsegments */
1980 			EMX_MAX_SEGSIZE,	/* maxsegsize */
1981 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1982 			BUS_DMA_ONEBPAGE,	/* flags */
1983 			&sc->txtag);
1984 	if (error) {
1985 		device_printf(dev, "Unable to allocate TX DMA tag\n");
1986 		kfree(sc->tx_buf, M_DEVBUF);
1987 		sc->tx_buf = NULL;
1988 		return error;
1989 	}
1990 
1991 	/*
1992 	 * Create DMA maps for tx buffers
1993 	 */
1994 	for (i = 0; i < sc->num_tx_desc; i++) {
1995 		tx_buffer = &sc->tx_buf[i];
1996 
1997 		error = bus_dmamap_create(sc->txtag,
1998 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1999 					  &tx_buffer->map);
2000 		if (error) {
2001 			device_printf(dev, "Unable to create TX DMA map\n");
2002 			emx_destroy_tx_ring(sc, i);
2003 			return error;
2004 		}
2005 	}
2006 	return (0);
2007 }
2008 
2009 static void
2010 emx_init_tx_ring(struct emx_softc *sc)
2011 {
2012 	/* Clear the old ring contents */
2013 	bzero(sc->tx_desc_base,
2014 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
2015 
2016 	/* Reset state */
2017 	sc->next_avail_tx_desc = 0;
2018 	sc->next_tx_to_clean = 0;
2019 	sc->num_tx_desc_avail = sc->num_tx_desc;
2020 }
2021 
2022 static void
2023 emx_init_tx_unit(struct emx_softc *sc)
2024 {
2025 	uint32_t tctl, tarc, tipg = 0;
2026 	uint64_t bus_addr;
2027 
2028 	/* Setup the Base and Length of the Tx Descriptor Ring */
2029 	bus_addr = sc->tx_desc_paddr;
2030 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
2031 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
2032 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
2033 	    (uint32_t)(bus_addr >> 32));
2034 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2035 	    (uint32_t)bus_addr);
2036 	/* Setup the HW Tx Head and Tail descriptor pointers */
2037 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2038 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2039 
2040 	/* Set the default values for the Tx Inter Packet Gap timer */
2041 	switch (sc->hw.mac.type) {
2042 	case e1000_80003es2lan:
2043 		tipg = DEFAULT_82543_TIPG_IPGR1;
2044 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2045 		    E1000_TIPG_IPGR2_SHIFT;
2046 		break;
2047 
2048 	default:
2049 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2050 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2051 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2052 		else
2053 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2054 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2055 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2056 		break;
2057 	}
2058 
2059 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2060 
2061 	/* NOTE: 0 is not allowed for TIDV */
2062 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2063 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2064 
2065 	if (sc->hw.mac.type == e1000_82571 ||
2066 	    sc->hw.mac.type == e1000_82572) {
2067 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2068 		tarc |= EMX_TARC_SPEED_MODE;
2069 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2070 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2071 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2072 		tarc |= 1;
2073 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2074 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2075 		tarc |= 1;
2076 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2077 	}
2078 
2079 	/* Program the Transmit Control Register */
2080 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2081 	tctl &= ~E1000_TCTL_CT;
2082 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2083 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2084 	tctl |= E1000_TCTL_MULR;
2085 
2086 	/* This write will effectively turn on the transmit unit. */
2087 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2088 }
2089 
2090 static void
2091 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2092 {
2093 	struct emx_txbuf *tx_buffer;
2094 	int i;
2095 
2096 	/* Free Transmit Descriptor ring */
2097 	if (sc->tx_desc_base) {
2098 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2099 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2100 				sc->tx_desc_dmap);
2101 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2102 
2103 		sc->tx_desc_base = NULL;
2104 	}
2105 
2106 	if (sc->tx_buf == NULL)
2107 		return;
2108 
2109 	for (i = 0; i < ndesc; i++) {
2110 		tx_buffer = &sc->tx_buf[i];
2111 
2112 		KKASSERT(tx_buffer->m_head == NULL);
2113 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2114 	}
2115 	bus_dma_tag_destroy(sc->txtag);
2116 
2117 	kfree(sc->tx_buf, M_DEVBUF);
2118 	sc->tx_buf = NULL;
2119 }
2120 
2121 /*
2122  * The offload context needs to be set when we transfer the first
2123  * packet of a particular protocol (TCP/UDP).  This routine has been
2124  * enhanced to deal with inserted VLAN headers.
2125  *
2126  * If the new packet's ether header length, ip header length and
2127  * csum offloading type are same as the previous packet, we should
2128  * avoid allocating a new csum context descriptor; mainly to take
2129  * advantage of the pipeline effect of the TX data read request.
2130  *
2131  * This function returns number of TX descrptors allocated for
2132  * csum context.
2133  */
2134 static int
2135 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2136 	   uint32_t *txd_upper, uint32_t *txd_lower)
2137 {
2138 	struct e1000_context_desc *TXD;
2139 	struct emx_txbuf *tx_buffer;
2140 	struct ether_vlan_header *eh;
2141 	struct ip *ip;
2142 	int curr_txd, ehdrlen, csum_flags;
2143 	uint32_t cmd, hdr_len, ip_hlen;
2144 	uint16_t etype;
2145 
2146 	/*
2147 	 * Determine where frame payload starts.
2148 	 * Jump over vlan headers if already present,
2149 	 * helpful for QinQ too.
2150 	 */
2151 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2152 		("emx_txcsum_pullup is not called (eh)?\n"));
2153 	eh = mtod(mp, struct ether_vlan_header *);
2154 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2155 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2156 			("emx_txcsum_pullup is not called (evh)?\n"));
2157 		etype = ntohs(eh->evl_proto);
2158 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2159 	} else {
2160 		etype = ntohs(eh->evl_encap_proto);
2161 		ehdrlen = ETHER_HDR_LEN;
2162 	}
2163 
2164 	/*
2165 	 * We only support TCP/UDP for IPv4 for the moment.
2166 	 * TODO: Support SCTP too when it hits the tree.
2167 	 */
2168 	if (etype != ETHERTYPE_IP)
2169 		return 0;
2170 
2171 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2172 		("emx_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2173 
2174 	/* NOTE: We could only safely access ip.ip_vhl part */
2175 	ip = (struct ip *)(mp->m_data + ehdrlen);
2176 	ip_hlen = ip->ip_hl << 2;
2177 
2178 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2179 
2180 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2181 	    sc->csum_flags == csum_flags) {
2182 		/*
2183 		 * Same csum offload context as the previous packets;
2184 		 * just return.
2185 		 */
2186 		*txd_upper = sc->csum_txd_upper;
2187 		*txd_lower = sc->csum_txd_lower;
2188 		return 0;
2189 	}
2190 
2191 	/*
2192 	 * Setup a new csum offload context.
2193 	 */
2194 
2195 	curr_txd = sc->next_avail_tx_desc;
2196 	tx_buffer = &sc->tx_buf[curr_txd];
2197 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2198 
2199 	cmd = 0;
2200 
2201 	/* Setup of IP header checksum. */
2202 	if (csum_flags & CSUM_IP) {
2203 		/*
2204 		 * Start offset for header checksum calculation.
2205 		 * End offset for header checksum calculation.
2206 		 * Offset of place to put the checksum.
2207 		 */
2208 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2209 		TXD->lower_setup.ip_fields.ipcse =
2210 		    htole16(ehdrlen + ip_hlen - 1);
2211 		TXD->lower_setup.ip_fields.ipcso =
2212 		    ehdrlen + offsetof(struct ip, ip_sum);
2213 		cmd |= E1000_TXD_CMD_IP;
2214 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2215 	}
2216 	hdr_len = ehdrlen + ip_hlen;
2217 
2218 	if (csum_flags & CSUM_TCP) {
2219 		/*
2220 		 * Start offset for payload checksum calculation.
2221 		 * End offset for payload checksum calculation.
2222 		 * Offset of place to put the checksum.
2223 		 */
2224 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2225 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2226 		TXD->upper_setup.tcp_fields.tucso =
2227 		    hdr_len + offsetof(struct tcphdr, th_sum);
2228 		cmd |= E1000_TXD_CMD_TCP;
2229 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2230 	} else if (csum_flags & CSUM_UDP) {
2231 		/*
2232 		 * Start offset for header checksum calculation.
2233 		 * End offset for header checksum calculation.
2234 		 * Offset of place to put the checksum.
2235 		 */
2236 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2237 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2238 		TXD->upper_setup.tcp_fields.tucso =
2239 		    hdr_len + offsetof(struct udphdr, uh_sum);
2240 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2241 	}
2242 
2243 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2244 		     E1000_TXD_DTYP_D;		/* Data descr */
2245 
2246 	/* Save the information for this csum offloading context */
2247 	sc->csum_ehlen = ehdrlen;
2248 	sc->csum_iphlen = ip_hlen;
2249 	sc->csum_flags = csum_flags;
2250 	sc->csum_txd_upper = *txd_upper;
2251 	sc->csum_txd_lower = *txd_lower;
2252 
2253 	TXD->tcp_seg_setup.data = htole32(0);
2254 	TXD->cmd_and_length =
2255 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2256 
2257 	if (++curr_txd == sc->num_tx_desc)
2258 		curr_txd = 0;
2259 
2260 	KKASSERT(sc->num_tx_desc_avail > 0);
2261 	sc->num_tx_desc_avail--;
2262 
2263 	sc->next_avail_tx_desc = curr_txd;
2264 	return 1;
2265 }
2266 
2267 static int
2268 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2269 {
2270 	struct mbuf *m = *m0;
2271 	struct ether_header *eh;
2272 	int len;
2273 
2274 	sc->tx_csum_try_pullup++;
2275 
2276 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2277 
2278 	if (__predict_false(!M_WRITABLE(m))) {
2279 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2280 			sc->tx_csum_drop1++;
2281 			m_freem(m);
2282 			*m0 = NULL;
2283 			return ENOBUFS;
2284 		}
2285 		eh = mtod(m, struct ether_header *);
2286 
2287 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2288 			len += EVL_ENCAPLEN;
2289 
2290 		if (m->m_len < len) {
2291 			sc->tx_csum_drop2++;
2292 			m_freem(m);
2293 			*m0 = NULL;
2294 			return ENOBUFS;
2295 		}
2296 		return 0;
2297 	}
2298 
2299 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2300 		sc->tx_csum_pullup1++;
2301 		m = m_pullup(m, ETHER_HDR_LEN);
2302 		if (m == NULL) {
2303 			sc->tx_csum_pullup1_failed++;
2304 			*m0 = NULL;
2305 			return ENOBUFS;
2306 		}
2307 		*m0 = m;
2308 	}
2309 	eh = mtod(m, struct ether_header *);
2310 
2311 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2312 		len += EVL_ENCAPLEN;
2313 
2314 	if (m->m_len < len) {
2315 		sc->tx_csum_pullup2++;
2316 		m = m_pullup(m, len);
2317 		if (m == NULL) {
2318 			sc->tx_csum_pullup2_failed++;
2319 			*m0 = NULL;
2320 			return ENOBUFS;
2321 		}
2322 		*m0 = m;
2323 	}
2324 	return 0;
2325 }
2326 
2327 static void
2328 emx_txeof(struct emx_softc *sc)
2329 {
2330 	struct ifnet *ifp = &sc->arpcom.ac_if;
2331 	struct emx_txbuf *tx_buffer;
2332 	int first, num_avail;
2333 
2334 	if (sc->tx_dd_head == sc->tx_dd_tail)
2335 		return;
2336 
2337 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2338 		return;
2339 
2340 	num_avail = sc->num_tx_desc_avail;
2341 	first = sc->next_tx_to_clean;
2342 
2343 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2344 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2345 		struct e1000_tx_desc *tx_desc;
2346 
2347 		tx_desc = &sc->tx_desc_base[dd_idx];
2348 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2349 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2350 
2351 			if (++dd_idx == sc->num_tx_desc)
2352 				dd_idx = 0;
2353 
2354 			while (first != dd_idx) {
2355 				logif(pkt_txclean);
2356 
2357 				num_avail++;
2358 
2359 				tx_buffer = &sc->tx_buf[first];
2360 				if (tx_buffer->m_head) {
2361 					ifp->if_opackets++;
2362 					bus_dmamap_unload(sc->txtag,
2363 							  tx_buffer->map);
2364 					m_freem(tx_buffer->m_head);
2365 					tx_buffer->m_head = NULL;
2366 				}
2367 
2368 				if (++first == sc->num_tx_desc)
2369 					first = 0;
2370 			}
2371 		} else {
2372 			break;
2373 		}
2374 	}
2375 	sc->next_tx_to_clean = first;
2376 	sc->num_tx_desc_avail = num_avail;
2377 
2378 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2379 		sc->tx_dd_head = 0;
2380 		sc->tx_dd_tail = 0;
2381 	}
2382 
2383 	if (!EMX_IS_OACTIVE(sc)) {
2384 		ifp->if_flags &= ~IFF_OACTIVE;
2385 
2386 		/* All clean, turn off the timer */
2387 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2388 			ifp->if_timer = 0;
2389 	}
2390 }
2391 
2392 static void
2393 emx_tx_collect(struct emx_softc *sc)
2394 {
2395 	struct ifnet *ifp = &sc->arpcom.ac_if;
2396 	struct emx_txbuf *tx_buffer;
2397 	int tdh, first, num_avail, dd_idx = -1;
2398 
2399 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2400 		return;
2401 
2402 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2403 	if (tdh == sc->next_tx_to_clean)
2404 		return;
2405 
2406 	if (sc->tx_dd_head != sc->tx_dd_tail)
2407 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2408 
2409 	num_avail = sc->num_tx_desc_avail;
2410 	first = sc->next_tx_to_clean;
2411 
2412 	while (first != tdh) {
2413 		logif(pkt_txclean);
2414 
2415 		num_avail++;
2416 
2417 		tx_buffer = &sc->tx_buf[first];
2418 		if (tx_buffer->m_head) {
2419 			ifp->if_opackets++;
2420 			bus_dmamap_unload(sc->txtag,
2421 					  tx_buffer->map);
2422 			m_freem(tx_buffer->m_head);
2423 			tx_buffer->m_head = NULL;
2424 		}
2425 
2426 		if (first == dd_idx) {
2427 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2428 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2429 				sc->tx_dd_head = 0;
2430 				sc->tx_dd_tail = 0;
2431 				dd_idx = -1;
2432 			} else {
2433 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2434 			}
2435 		}
2436 
2437 		if (++first == sc->num_tx_desc)
2438 			first = 0;
2439 	}
2440 	sc->next_tx_to_clean = first;
2441 	sc->num_tx_desc_avail = num_avail;
2442 
2443 	if (!EMX_IS_OACTIVE(sc)) {
2444 		ifp->if_flags &= ~IFF_OACTIVE;
2445 
2446 		/* All clean, turn off the timer */
2447 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2448 			ifp->if_timer = 0;
2449 	}
2450 }
2451 
2452 /*
2453  * When Link is lost sometimes there is work still in the TX ring
2454  * which will result in a watchdog, rather than allow that do an
2455  * attempted cleanup and then reinit here.  Note that this has been
2456  * seens mostly with fiber adapters.
2457  */
2458 static void
2459 emx_tx_purge(struct emx_softc *sc)
2460 {
2461 	struct ifnet *ifp = &sc->arpcom.ac_if;
2462 
2463 	if (!sc->link_active && ifp->if_timer) {
2464 		emx_tx_collect(sc);
2465 		if (ifp->if_timer) {
2466 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2467 			ifp->if_timer = 0;
2468 			emx_init(sc);
2469 		}
2470 	}
2471 }
2472 
2473 static int
2474 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2475 {
2476 	struct mbuf *m;
2477 	bus_dma_segment_t seg;
2478 	bus_dmamap_t map;
2479 	struct emx_rxbuf *rx_buffer;
2480 	int error, nseg;
2481 
2482 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2483 	if (m == NULL) {
2484 		rdata->mbuf_cluster_failed++;
2485 		if (init) {
2486 			if_printf(&sc->arpcom.ac_if,
2487 				  "Unable to allocate RX mbuf\n");
2488 		}
2489 		return (ENOBUFS);
2490 	}
2491 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2492 
2493 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2494 		m_adj(m, ETHER_ALIGN);
2495 
2496 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2497 			rdata->rx_sparemap, m,
2498 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2499 	if (error) {
2500 		m_freem(m);
2501 		if (init) {
2502 			if_printf(&sc->arpcom.ac_if,
2503 				  "Unable to load RX mbuf\n");
2504 		}
2505 		return (error);
2506 	}
2507 
2508 	rx_buffer = &rdata->rx_buf[i];
2509 	if (rx_buffer->m_head != NULL)
2510 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2511 
2512 	map = rx_buffer->map;
2513 	rx_buffer->map = rdata->rx_sparemap;
2514 	rdata->rx_sparemap = map;
2515 
2516 	rx_buffer->m_head = m;
2517 	rx_buffer->paddr = seg.ds_addr;
2518 
2519 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2520 	return (0);
2521 }
2522 
2523 static int
2524 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2525 {
2526 	device_t dev = sc->dev;
2527 	struct emx_rxbuf *rx_buffer;
2528 	int i, error, rsize;
2529 
2530 	/*
2531 	 * Validate number of receive descriptors.  It must not exceed
2532 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2533 	 */
2534 	if ((emx_rxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2535 	    emx_rxd > EMX_MAX_RXD || emx_rxd < EMX_MIN_RXD) {
2536 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2537 		    EMX_DEFAULT_RXD, emx_rxd);
2538 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2539 	} else {
2540 		rdata->num_rx_desc = emx_rxd;
2541 	}
2542 
2543 	/*
2544 	 * Allocate Receive Descriptor ring
2545 	 */
2546 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2547 			 EMX_DBA_ALIGN);
2548 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2549 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2550 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2551 				&rdata->rx_desc_paddr);
2552 	if (rdata->rx_desc == NULL) {
2553 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2554 		return ENOMEM;
2555 	}
2556 
2557 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2558 				M_DEVBUF, M_WAITOK | M_ZERO);
2559 
2560 	/*
2561 	 * Create DMA tag for rx buffers
2562 	 */
2563 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2564 			1, 0,			/* alignment, bounds */
2565 			BUS_SPACE_MAXADDR,	/* lowaddr */
2566 			BUS_SPACE_MAXADDR,	/* highaddr */
2567 			NULL, NULL,		/* filter, filterarg */
2568 			MCLBYTES,		/* maxsize */
2569 			1,			/* nsegments */
2570 			MCLBYTES,		/* maxsegsize */
2571 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2572 			&rdata->rxtag);
2573 	if (error) {
2574 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2575 		kfree(rdata->rx_buf, M_DEVBUF);
2576 		rdata->rx_buf = NULL;
2577 		return error;
2578 	}
2579 
2580 	/*
2581 	 * Create spare DMA map for rx buffers
2582 	 */
2583 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2584 				  &rdata->rx_sparemap);
2585 	if (error) {
2586 		device_printf(dev, "Unable to create spare RX DMA map\n");
2587 		bus_dma_tag_destroy(rdata->rxtag);
2588 		kfree(rdata->rx_buf, M_DEVBUF);
2589 		rdata->rx_buf = NULL;
2590 		return error;
2591 	}
2592 
2593 	/*
2594 	 * Create DMA maps for rx buffers
2595 	 */
2596 	for (i = 0; i < rdata->num_rx_desc; i++) {
2597 		rx_buffer = &rdata->rx_buf[i];
2598 
2599 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2600 					  &rx_buffer->map);
2601 		if (error) {
2602 			device_printf(dev, "Unable to create RX DMA map\n");
2603 			emx_destroy_rx_ring(sc, rdata, i);
2604 			return error;
2605 		}
2606 	}
2607 	return (0);
2608 }
2609 
2610 static void
2611 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2612 {
2613 	int i;
2614 
2615 	for (i = 0; i < rdata->num_rx_desc; i++) {
2616 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2617 
2618 		if (rx_buffer->m_head != NULL) {
2619 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2620 			m_freem(rx_buffer->m_head);
2621 			rx_buffer->m_head = NULL;
2622 		}
2623 	}
2624 
2625 	if (rdata->fmp != NULL)
2626 		m_freem(rdata->fmp);
2627 	rdata->fmp = NULL;
2628 	rdata->lmp = NULL;
2629 }
2630 
2631 static int
2632 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2633 {
2634 	int i, error;
2635 
2636 	/* Reset descriptor ring */
2637 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2638 
2639 	/* Allocate new ones. */
2640 	for (i = 0; i < rdata->num_rx_desc; i++) {
2641 		error = emx_newbuf(sc, rdata, i, 1);
2642 		if (error)
2643 			return (error);
2644 	}
2645 
2646 	/* Setup our descriptor pointers */
2647 	rdata->next_rx_desc_to_check = 0;
2648 
2649 	return (0);
2650 }
2651 
2652 static void
2653 emx_init_rx_unit(struct emx_softc *sc)
2654 {
2655 	struct ifnet *ifp = &sc->arpcom.ac_if;
2656 	uint64_t bus_addr;
2657 	uint32_t rctl, rxcsum, rfctl;
2658 	int i;
2659 
2660 	/*
2661 	 * Make sure receives are disabled while setting
2662 	 * up the descriptor ring
2663 	 */
2664 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2665 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2666 
2667 	/*
2668 	 * Set the interrupt throttling rate. Value is calculated
2669 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2670 	 */
2671 	if (sc->int_throttle_ceil) {
2672 		E1000_WRITE_REG(&sc->hw, E1000_ITR,
2673 			1000000000 / 256 / sc->int_throttle_ceil);
2674 	} else {
2675 		E1000_WRITE_REG(&sc->hw, E1000_ITR, 0);
2676 	}
2677 
2678 	/* Use extended RX descriptor */
2679 	rfctl = E1000_RFCTL_EXTEN;
2680 
2681 	/* Disable accelerated ackknowledge */
2682 	if (sc->hw.mac.type == e1000_82574)
2683 		rfctl |= E1000_RFCTL_ACK_DIS;
2684 
2685 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2686 
2687 	/* Setup the Base and Length of the Rx Descriptor Ring */
2688 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2689 		struct emx_rxdata *rdata = &sc->rx_data[i];
2690 
2691 		bus_addr = rdata->rx_desc_paddr;
2692 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2693 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2694 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2695 		    (uint32_t)(bus_addr >> 32));
2696 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2697 		    (uint32_t)bus_addr);
2698 	}
2699 
2700 	/* Setup the Receive Control Register */
2701 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2702 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2703 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2704 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2705 
2706 	/* Make sure VLAN Filters are off */
2707 	rctl &= ~E1000_RCTL_VFE;
2708 
2709 	/* Don't store bad paket */
2710 	rctl &= ~E1000_RCTL_SBP;
2711 
2712 	/* MCLBYTES */
2713 	rctl |= E1000_RCTL_SZ_2048;
2714 
2715 	if (ifp->if_mtu > ETHERMTU)
2716 		rctl |= E1000_RCTL_LPE;
2717 	else
2718 		rctl &= ~E1000_RCTL_LPE;
2719 
2720 	/*
2721 	 * Receive Checksum Offload for TCP and UDP
2722 	 *
2723 	 * Checksum offloading is also enabled if multiple receive
2724 	 * queue is to be supported, since we need it to figure out
2725 	 * packet type.
2726 	 */
2727 	if (ifp->if_capenable & (IFCAP_RSS | IFCAP_RXCSUM)) {
2728 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2729 
2730 		/*
2731 		 * NOTE:
2732 		 * PCSD must be enabled to enable multiple
2733 		 * receive queues.
2734 		 */
2735 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2736 			  E1000_RXCSUM_PCSD;
2737 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2738 	}
2739 
2740 	/*
2741 	 * Configure multiple receive queue (RSS)
2742 	 */
2743 	if (ifp->if_capenable & IFCAP_RSS) {
2744 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2745 		uint32_t reta;
2746 
2747 		KASSERT(sc->rx_ring_inuse == EMX_NRX_RING,
2748 			("invalid number of RX ring (%d)",
2749 			 sc->rx_ring_inuse));
2750 
2751 		/*
2752 		 * NOTE:
2753 		 * When we reach here, RSS has already been disabled
2754 		 * in emx_stop(), so we could safely configure RSS key
2755 		 * and redirect table.
2756 		 */
2757 
2758 		/*
2759 		 * Configure RSS key
2760 		 */
2761 		toeplitz_get_key(key, sizeof(key));
2762 		for (i = 0; i < EMX_NRSSRK; ++i) {
2763 			uint32_t rssrk;
2764 
2765 			rssrk = EMX_RSSRK_VAL(key, i);
2766 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2767 
2768 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2769 		}
2770 
2771 		/*
2772 		 * Configure RSS redirect table in following fashion:
2773 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2774 		 */
2775 		reta = 0;
2776 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2777 			uint32_t q;
2778 
2779 			q = (i % sc->rx_ring_inuse) << EMX_RETA_RINGIDX_SHIFT;
2780 			reta |= q << (8 * i);
2781 		}
2782 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2783 
2784 		for (i = 0; i < EMX_NRETA; ++i)
2785 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2786 
2787 		/*
2788 		 * Enable multiple receive queues.
2789 		 * Enable IPv4 RSS standard hash functions.
2790 		 * Disable RSS interrupt.
2791 		 */
2792 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2793 				E1000_MRQC_ENABLE_RSS_2Q |
2794 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2795 				E1000_MRQC_RSS_FIELD_IPV4);
2796 	}
2797 
2798 	/*
2799 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2800 	 * long latencies are observed, like Lenovo X60. This
2801 	 * change eliminates the problem, but since having positive
2802 	 * values in RDTR is a known source of problems on other
2803 	 * platforms another solution is being sought.
2804 	 */
2805 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2806 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2807 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2808 	}
2809 
2810 	/*
2811 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2812 	 */
2813 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2814 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2815 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2816 		    sc->rx_data[i].num_rx_desc - 1);
2817 	}
2818 
2819 	/* Enable Receives */
2820 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2821 }
2822 
2823 static void
2824 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2825 {
2826 	struct emx_rxbuf *rx_buffer;
2827 	int i;
2828 
2829 	/* Free Receive Descriptor ring */
2830 	if (rdata->rx_desc) {
2831 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2832 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2833 				rdata->rx_desc_dmap);
2834 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2835 
2836 		rdata->rx_desc = NULL;
2837 	}
2838 
2839 	if (rdata->rx_buf == NULL)
2840 		return;
2841 
2842 	for (i = 0; i < ndesc; i++) {
2843 		rx_buffer = &rdata->rx_buf[i];
2844 
2845 		KKASSERT(rx_buffer->m_head == NULL);
2846 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2847 	}
2848 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2849 	bus_dma_tag_destroy(rdata->rxtag);
2850 
2851 	kfree(rdata->rx_buf, M_DEVBUF);
2852 	rdata->rx_buf = NULL;
2853 }
2854 
2855 static void
2856 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2857 {
2858 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2859 	struct ifnet *ifp = &sc->arpcom.ac_if;
2860 	uint32_t staterr;
2861 	emx_rxdesc_t *current_desc;
2862 	struct mbuf *mp;
2863 	int i;
2864 	struct mbuf_chain chain[MAXCPU];
2865 
2866 	i = rdata->next_rx_desc_to_check;
2867 	current_desc = &rdata->rx_desc[i];
2868 	staterr = le32toh(current_desc->rxd_staterr);
2869 
2870 	if (!(staterr & E1000_RXD_STAT_DD))
2871 		return;
2872 
2873 	ether_input_chain_init(chain);
2874 
2875 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2876 		struct pktinfo *pi = NULL, pi0;
2877 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2878 		struct mbuf *m = NULL;
2879 		int eop, len;
2880 
2881 		logif(pkt_receive);
2882 
2883 		mp = rx_buf->m_head;
2884 
2885 		/*
2886 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2887 		 * needs to access the last received byte in the mbuf.
2888 		 */
2889 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2890 				BUS_DMASYNC_POSTREAD);
2891 
2892 		len = le16toh(current_desc->rxd_length);
2893 		if (staterr & E1000_RXD_STAT_EOP) {
2894 			count--;
2895 			eop = 1;
2896 		} else {
2897 			eop = 0;
2898 		}
2899 
2900 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2901 			uint16_t vlan = 0;
2902 			uint32_t mrq, rss_hash;
2903 
2904 			/*
2905 			 * Save several necessary information,
2906 			 * before emx_newbuf() destroy it.
2907 			 */
2908 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2909 				vlan = le16toh(current_desc->rxd_vlan);
2910 
2911 			mrq = le32toh(current_desc->rxd_mrq);
2912 			rss_hash = le32toh(current_desc->rxd_rss);
2913 
2914 			EMX_RSS_DPRINTF(sc, 10,
2915 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2916 			    ring_idx, mrq, rss_hash);
2917 
2918 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2919 				ifp->if_iqdrops++;
2920 				goto discard;
2921 			}
2922 
2923 			/* Assign correct length to the current fragment */
2924 			mp->m_len = len;
2925 
2926 			if (rdata->fmp == NULL) {
2927 				mp->m_pkthdr.len = len;
2928 				rdata->fmp = mp; /* Store the first mbuf */
2929 				rdata->lmp = mp;
2930 			} else {
2931 				/*
2932 				 * Chain mbuf's together
2933 				 */
2934 				rdata->lmp->m_next = mp;
2935 				rdata->lmp = rdata->lmp->m_next;
2936 				rdata->fmp->m_pkthdr.len += len;
2937 			}
2938 
2939 			if (eop) {
2940 				rdata->fmp->m_pkthdr.rcvif = ifp;
2941 				ifp->if_ipackets++;
2942 
2943 				if (ifp->if_capenable & IFCAP_RXCSUM)
2944 					emx_rxcsum(staterr, rdata->fmp);
2945 
2946 				if (staterr & E1000_RXD_STAT_VP) {
2947 					rdata->fmp->m_pkthdr.ether_vlantag =
2948 					    vlan;
2949 					rdata->fmp->m_flags |= M_VLANTAG;
2950 				}
2951 				m = rdata->fmp;
2952 				rdata->fmp = NULL;
2953 				rdata->lmp = NULL;
2954 
2955 				if (ifp->if_capenable & IFCAP_RSS) {
2956 					pi = emx_rssinfo(m, &pi0, mrq,
2957 							 rss_hash, staterr);
2958 				}
2959 #ifdef EMX_RSS_DEBUG
2960 				rdata->rx_pkts++;
2961 #endif
2962 			}
2963 		} else {
2964 			ifp->if_ierrors++;
2965 discard:
2966 			emx_setup_rxdesc(current_desc, rx_buf);
2967 			if (rdata->fmp != NULL) {
2968 				m_freem(rdata->fmp);
2969 				rdata->fmp = NULL;
2970 				rdata->lmp = NULL;
2971 			}
2972 			m = NULL;
2973 		}
2974 
2975 		if (m != NULL)
2976 			ether_input_chain(ifp, m, pi, chain);
2977 
2978 		/* Advance our pointers to the next descriptor. */
2979 		if (++i == rdata->num_rx_desc)
2980 			i = 0;
2981 
2982 		current_desc = &rdata->rx_desc[i];
2983 		staterr = le32toh(current_desc->rxd_staterr);
2984 	}
2985 	rdata->next_rx_desc_to_check = i;
2986 
2987 	ether_input_dispatch(chain);
2988 
2989 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2990 	if (--i < 0)
2991 		i = rdata->num_rx_desc - 1;
2992 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2993 }
2994 
2995 static void
2996 emx_enable_intr(struct emx_softc *sc)
2997 {
2998 	lwkt_serialize_handler_enable(&sc->main_serialize);
2999 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
3000 }
3001 
3002 static void
3003 emx_disable_intr(struct emx_softc *sc)
3004 {
3005 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3006 	lwkt_serialize_handler_disable(&sc->main_serialize);
3007 }
3008 
3009 /*
3010  * Bit of a misnomer, what this really means is
3011  * to enable OS management of the system... aka
3012  * to disable special hardware management features
3013  */
3014 static void
3015 emx_get_mgmt(struct emx_softc *sc)
3016 {
3017 	/* A shared code workaround */
3018 	if (sc->has_manage) {
3019 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3020 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3021 
3022 		/* disable hardware interception of ARP */
3023 		manc &= ~(E1000_MANC_ARP_EN);
3024 
3025                 /* enable receiving management packets to the host */
3026 		manc |= E1000_MANC_EN_MNG2HOST;
3027 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3028 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3029 		manc2h |= E1000_MNG2HOST_PORT_623;
3030 		manc2h |= E1000_MNG2HOST_PORT_664;
3031 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3032 
3033 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3034 	}
3035 }
3036 
3037 /*
3038  * Give control back to hardware management
3039  * controller if there is one.
3040  */
3041 static void
3042 emx_rel_mgmt(struct emx_softc *sc)
3043 {
3044 	if (sc->has_manage) {
3045 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3046 
3047 		/* re-enable hardware interception of ARP */
3048 		manc |= E1000_MANC_ARP_EN;
3049 		manc &= ~E1000_MANC_EN_MNG2HOST;
3050 
3051 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3052 	}
3053 }
3054 
3055 /*
3056  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3057  * For ASF and Pass Through versions of f/w this means that
3058  * the driver is loaded.  For AMT version (only with 82573)
3059  * of the f/w this means that the network i/f is open.
3060  */
3061 static void
3062 emx_get_hw_control(struct emx_softc *sc)
3063 {
3064 	uint32_t ctrl_ext, swsm;
3065 
3066 	/* Let firmware know the driver has taken over */
3067 	switch (sc->hw.mac.type) {
3068 	case e1000_82573:
3069 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3070 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3071 		    swsm | E1000_SWSM_DRV_LOAD);
3072 		break;
3073 
3074 	case e1000_82571:
3075 	case e1000_82572:
3076 	case e1000_80003es2lan:
3077 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3078 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3079 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3080 		break;
3081 
3082 	default:
3083 		break;
3084 	}
3085 }
3086 
3087 /*
3088  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3089  * For ASF and Pass Through versions of f/w this means that the
3090  * driver is no longer loaded.  For AMT version (only with 82573)
3091  * of the f/w this means that the network i/f is closed.
3092  */
3093 static void
3094 emx_rel_hw_control(struct emx_softc *sc)
3095 {
3096 	uint32_t ctrl_ext, swsm;
3097 
3098 	/* Let firmware taken over control of h/w */
3099 	switch (sc->hw.mac.type) {
3100 	case e1000_82573:
3101 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3102 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3103 		    swsm & ~E1000_SWSM_DRV_LOAD);
3104 		break;
3105 
3106 	case e1000_82571:
3107 	case e1000_82572:
3108 	case e1000_80003es2lan:
3109 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3110 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3111 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3112 		break;
3113 
3114 	default:
3115 		break;
3116 	}
3117 }
3118 
3119 static int
3120 emx_is_valid_eaddr(const uint8_t *addr)
3121 {
3122 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3123 
3124 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3125 		return (FALSE);
3126 
3127 	return (TRUE);
3128 }
3129 
3130 /*
3131  * Enable PCI Wake On Lan capability
3132  */
3133 void
3134 emx_enable_wol(device_t dev)
3135 {
3136 	uint16_t cap, status;
3137 	uint8_t id;
3138 
3139 	/* First find the capabilities pointer*/
3140 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3141 
3142 	/* Read the PM Capabilities */
3143 	id = pci_read_config(dev, cap, 1);
3144 	if (id != PCIY_PMG)     /* Something wrong */
3145 		return;
3146 
3147 	/*
3148 	 * OK, we have the power capabilities,
3149 	 * so now get the status register
3150 	 */
3151 	cap += PCIR_POWER_STATUS;
3152 	status = pci_read_config(dev, cap, 2);
3153 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3154 	pci_write_config(dev, cap, status, 2);
3155 }
3156 
3157 static void
3158 emx_update_stats(struct emx_softc *sc)
3159 {
3160 	struct ifnet *ifp = &sc->arpcom.ac_if;
3161 
3162 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3163 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3164 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3165 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3166 	}
3167 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3168 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3169 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3170 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3171 
3172 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3173 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3174 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3175 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3176 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3177 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3178 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3179 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3180 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3181 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3182 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3183 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3184 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3185 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3186 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3187 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3188 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3189 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3190 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3191 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3192 
3193 	/* For the 64-bit byte counters the low dword must be read first. */
3194 	/* Both registers clear on the read of the high dword */
3195 
3196 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3197 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3198 
3199 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3200 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3201 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3202 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3203 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3204 
3205 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3206 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3207 
3208 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3209 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3210 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3211 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3212 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3213 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3214 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3215 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3216 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3217 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3218 
3219 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3220 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3221 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3222 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3223 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3224 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3225 
3226 	ifp->if_collisions = sc->stats.colc;
3227 
3228 	/* Rx Errors */
3229 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3230 			  sc->stats.crcerrs + sc->stats.algnerrc +
3231 			  sc->stats.ruc + sc->stats.roc +
3232 			  sc->stats.mpc + sc->stats.cexterr;
3233 
3234 	/* Tx Errors */
3235 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3236 			  sc->watchdog_events;
3237 }
3238 
3239 static void
3240 emx_print_debug_info(struct emx_softc *sc)
3241 {
3242 	device_t dev = sc->dev;
3243 	uint8_t *hw_addr = sc->hw.hw_addr;
3244 
3245 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3246 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3247 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3248 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3249 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3250 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3251 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3252 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3253 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3254 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3255 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3256 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3257 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3258 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3259 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3260 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3261 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3262 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3263 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3264 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3265 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3266 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3267 	    sc->num_tx_desc_avail);
3268 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3269 	    sc->no_tx_desc_avail1);
3270 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3271 	    sc->no_tx_desc_avail2);
3272 	device_printf(dev, "Std mbuf failed = %ld\n",
3273 	    sc->mbuf_alloc_failed);
3274 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3275 	    sc->rx_data[0].mbuf_cluster_failed);
3276 	device_printf(dev, "Driver dropped packets = %ld\n",
3277 	    sc->dropped_pkts);
3278 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3279 	    sc->no_tx_dma_setup);
3280 
3281 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3282 	    sc->tx_csum_try_pullup);
3283 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3284 	    sc->tx_csum_pullup1);
3285 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3286 	    sc->tx_csum_pullup1_failed);
3287 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3288 	    sc->tx_csum_pullup2);
3289 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3290 	    sc->tx_csum_pullup2_failed);
3291 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3292 	    sc->tx_csum_drop1);
3293 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3294 	    sc->tx_csum_drop2);
3295 }
3296 
3297 static void
3298 emx_print_hw_stats(struct emx_softc *sc)
3299 {
3300 	device_t dev = sc->dev;
3301 
3302 	device_printf(dev, "Excessive collisions = %lld\n",
3303 	    (long long)sc->stats.ecol);
3304 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3305 	device_printf(dev, "Symbol errors = %lld\n",
3306 	    (long long)sc->stats.symerrs);
3307 #endif
3308 	device_printf(dev, "Sequence errors = %lld\n",
3309 	    (long long)sc->stats.sec);
3310 	device_printf(dev, "Defer count = %lld\n",
3311 	    (long long)sc->stats.dc);
3312 	device_printf(dev, "Missed Packets = %lld\n",
3313 	    (long long)sc->stats.mpc);
3314 	device_printf(dev, "Receive No Buffers = %lld\n",
3315 	    (long long)sc->stats.rnbc);
3316 	/* RLEC is inaccurate on some hardware, calculate our own. */
3317 	device_printf(dev, "Receive Length Errors = %lld\n",
3318 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3319 	device_printf(dev, "Receive errors = %lld\n",
3320 	    (long long)sc->stats.rxerrc);
3321 	device_printf(dev, "Crc errors = %lld\n",
3322 	    (long long)sc->stats.crcerrs);
3323 	device_printf(dev, "Alignment errors = %lld\n",
3324 	    (long long)sc->stats.algnerrc);
3325 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3326 	    (long long)sc->stats.cexterr);
3327 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3328 	device_printf(dev, "watchdog timeouts = %ld\n",
3329 	    sc->watchdog_events);
3330 	device_printf(dev, "XON Rcvd = %lld\n",
3331 	    (long long)sc->stats.xonrxc);
3332 	device_printf(dev, "XON Xmtd = %lld\n",
3333 	    (long long)sc->stats.xontxc);
3334 	device_printf(dev, "XOFF Rcvd = %lld\n",
3335 	    (long long)sc->stats.xoffrxc);
3336 	device_printf(dev, "XOFF Xmtd = %lld\n",
3337 	    (long long)sc->stats.xofftxc);
3338 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3339 	    (long long)sc->stats.gprc);
3340 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3341 	    (long long)sc->stats.gptc);
3342 }
3343 
3344 static void
3345 emx_print_nvm_info(struct emx_softc *sc)
3346 {
3347 	uint16_t eeprom_data;
3348 	int i, j, row = 0;
3349 
3350 	/* Its a bit crude, but it gets the job done */
3351 	kprintf("\nInterface EEPROM Dump:\n");
3352 	kprintf("Offset\n0x0000  ");
3353 	for (i = 0, j = 0; i < 32; i++, j++) {
3354 		if (j == 8) { /* Make the offset block */
3355 			j = 0; ++row;
3356 			kprintf("\n0x00%x0  ",row);
3357 		}
3358 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3359 		kprintf("%04x ", eeprom_data);
3360 	}
3361 	kprintf("\n");
3362 }
3363 
3364 static int
3365 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3366 {
3367 	struct emx_softc *sc;
3368 	struct ifnet *ifp;
3369 	int error, result;
3370 
3371 	result = -1;
3372 	error = sysctl_handle_int(oidp, &result, 0, req);
3373 	if (error || !req->newptr)
3374 		return (error);
3375 
3376 	sc = (struct emx_softc *)arg1;
3377 	ifp = &sc->arpcom.ac_if;
3378 
3379 	ifnet_serialize_all(ifp);
3380 
3381 	if (result == 1)
3382 		emx_print_debug_info(sc);
3383 
3384 	/*
3385 	 * This value will cause a hex dump of the
3386 	 * first 32 16-bit words of the EEPROM to
3387 	 * the screen.
3388 	 */
3389 	if (result == 2)
3390 		emx_print_nvm_info(sc);
3391 
3392 	ifnet_deserialize_all(ifp);
3393 
3394 	return (error);
3395 }
3396 
3397 static int
3398 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3399 {
3400 	int error, result;
3401 
3402 	result = -1;
3403 	error = sysctl_handle_int(oidp, &result, 0, req);
3404 	if (error || !req->newptr)
3405 		return (error);
3406 
3407 	if (result == 1) {
3408 		struct emx_softc *sc = (struct emx_softc *)arg1;
3409 		struct ifnet *ifp = &sc->arpcom.ac_if;
3410 
3411 		ifnet_serialize_all(ifp);
3412 		emx_print_hw_stats(sc);
3413 		ifnet_deserialize_all(ifp);
3414 	}
3415 	return (error);
3416 }
3417 
3418 static void
3419 emx_add_sysctl(struct emx_softc *sc)
3420 {
3421 #ifdef PROFILE_SERIALIZER
3422 	struct ifnet *ifp = &sc->arpcom.ac_if;
3423 #endif
3424 #ifdef EMX_RSS_DEBUG
3425 	char rx_pkt[32];
3426 	int i;
3427 #endif
3428 
3429 	sysctl_ctx_init(&sc->sysctl_ctx);
3430 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3431 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3432 				device_get_nameunit(sc->dev),
3433 				CTLFLAG_RD, 0, "");
3434 	if (sc->sysctl_tree == NULL) {
3435 		device_printf(sc->dev, "can't add sysctl node\n");
3436 		return;
3437 	}
3438 
3439 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3440 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3441 			emx_sysctl_debug_info, "I", "Debug Information");
3442 
3443 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3444 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3445 			emx_sysctl_stats, "I", "Statistics");
3446 
3447 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3448 		       OID_AUTO, "rxd", CTLFLAG_RD,
3449 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3450 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3451 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3452 
3453 #ifdef notyet
3454 #ifdef PROFILE_SERIALIZER
3455 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3456 			OID_AUTO, "serializer_sleep", CTLFLAG_RW,
3457 			&ifp->if_serializer->sleep_cnt, 0, NULL);
3458 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3459 			OID_AUTO, "serializer_tryfail", CTLFLAG_RW,
3460 			&ifp->if_serializer->tryfail_cnt, 0, NULL);
3461 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3462 			OID_AUTO, "serializer_enter", CTLFLAG_RW,
3463 			&ifp->if_serializer->enter_cnt, 0, NULL);
3464 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3465 			OID_AUTO, "serializer_try", CTLFLAG_RW,
3466 			&ifp->if_serializer->try_cnt, 0, NULL);
3467 #endif
3468 #endif
3469 
3470 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3471 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3472 			sc, 0, emx_sysctl_int_throttle, "I",
3473 			"interrupt throttling rate");
3474 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3475 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3476 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3477 			"# segments per TX interrupt");
3478 
3479 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3480 		       OID_AUTO, "rx_ring_inuse", CTLFLAG_RD,
3481 		       &sc->rx_ring_inuse, 0, "RX ring in use");
3482 
3483 #ifdef EMX_RSS_DEBUG
3484 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3485 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3486 		       0, "RSS debug level");
3487 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3488 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3489 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3490 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3491 				rx_pkt, CTLFLAG_RW,
3492 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3493 	}
3494 #endif
3495 }
3496 
3497 static int
3498 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3499 {
3500 	struct emx_softc *sc = (void *)arg1;
3501 	struct ifnet *ifp = &sc->arpcom.ac_if;
3502 	int error, throttle;
3503 
3504 	throttle = sc->int_throttle_ceil;
3505 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3506 	if (error || req->newptr == NULL)
3507 		return error;
3508 	if (throttle < 0 || throttle > 1000000000 / 256)
3509 		return EINVAL;
3510 
3511 	if (throttle) {
3512 		/*
3513 		 * Set the interrupt throttling rate in 256ns increments,
3514 		 * recalculate sysctl value assignment to get exact frequency.
3515 		 */
3516 		throttle = 1000000000 / 256 / throttle;
3517 
3518 		/* Upper 16bits of ITR is reserved and should be zero */
3519 		if (throttle & 0xffff0000)
3520 			return EINVAL;
3521 	}
3522 
3523 	ifnet_serialize_all(ifp);
3524 
3525 	if (throttle)
3526 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3527 	else
3528 		sc->int_throttle_ceil = 0;
3529 
3530 	if (ifp->if_flags & IFF_RUNNING)
3531 		E1000_WRITE_REG(&sc->hw, E1000_ITR, throttle);
3532 
3533 	ifnet_deserialize_all(ifp);
3534 
3535 	if (bootverbose) {
3536 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3537 			  sc->int_throttle_ceil);
3538 	}
3539 	return 0;
3540 }
3541 
3542 static int
3543 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3544 {
3545 	struct emx_softc *sc = (void *)arg1;
3546 	struct ifnet *ifp = &sc->arpcom.ac_if;
3547 	int error, segs;
3548 
3549 	segs = sc->tx_int_nsegs;
3550 	error = sysctl_handle_int(oidp, &segs, 0, req);
3551 	if (error || req->newptr == NULL)
3552 		return error;
3553 	if (segs <= 0)
3554 		return EINVAL;
3555 
3556 	ifnet_serialize_all(ifp);
3557 
3558 	/*
3559 	 * Don't allow int_tx_nsegs to become:
3560 	 * o  Less the oact_tx_desc
3561 	 * o  Too large that no TX desc will cause TX interrupt to
3562 	 *    be generated (OACTIVE will never recover)
3563 	 * o  Too small that will cause tx_dd[] overflow
3564 	 */
3565 	if (segs < sc->oact_tx_desc ||
3566 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3567 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3568 		error = EINVAL;
3569 	} else {
3570 		error = 0;
3571 		sc->tx_int_nsegs = segs;
3572 	}
3573 
3574 	ifnet_deserialize_all(ifp);
3575 
3576 	return error;
3577 }
3578 
3579 static int
3580 emx_dma_alloc(struct emx_softc *sc)
3581 {
3582 	int error, i;
3583 
3584 	/*
3585 	 * Create top level busdma tag
3586 	 */
3587 	error = bus_dma_tag_create(NULL, 1, 0,
3588 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3589 			NULL, NULL,
3590 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3591 			0, &sc->parent_dtag);
3592 	if (error) {
3593 		device_printf(sc->dev, "could not create top level DMA tag\n");
3594 		return error;
3595 	}
3596 
3597 	/*
3598 	 * Allocate transmit descriptors ring and buffers
3599 	 */
3600 	error = emx_create_tx_ring(sc);
3601 	if (error) {
3602 		device_printf(sc->dev, "Could not setup transmit structures\n");
3603 		return error;
3604 	}
3605 
3606 	/*
3607 	 * Allocate receive descriptors ring and buffers
3608 	 */
3609 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3610 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3611 		if (error) {
3612 			device_printf(sc->dev,
3613 			    "Could not setup receive structures\n");
3614 			return error;
3615 		}
3616 	}
3617 	return 0;
3618 }
3619 
3620 static void
3621 emx_dma_free(struct emx_softc *sc)
3622 {
3623 	int i;
3624 
3625 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3626 
3627 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3628 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3629 				    sc->rx_data[i].num_rx_desc);
3630 	}
3631 
3632 	/* Free top level busdma tag */
3633 	if (sc->parent_dtag != NULL)
3634 		bus_dma_tag_destroy(sc->parent_dtag);
3635 }
3636 
3637 static void
3638 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3639 {
3640 	struct emx_softc *sc = ifp->if_softc;
3641 
3642 	switch (slz) {
3643 	case IFNET_SERIALIZE_ALL:
3644 		lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 0);
3645 		break;
3646 
3647 	case IFNET_SERIALIZE_MAIN:
3648 		lwkt_serialize_enter(&sc->main_serialize);
3649 		break;
3650 
3651 	case IFNET_SERIALIZE_TX:
3652 		lwkt_serialize_enter(&sc->tx_serialize);
3653 		break;
3654 
3655 	case IFNET_SERIALIZE_RX(0):
3656 		lwkt_serialize_enter(&sc->rx_data[0].rx_serialize);
3657 		break;
3658 
3659 	case IFNET_SERIALIZE_RX(1):
3660 		lwkt_serialize_enter(&sc->rx_data[1].rx_serialize);
3661 		break;
3662 
3663 	default:
3664 		panic("%s unsupported serialize type\n", ifp->if_xname);
3665 	}
3666 }
3667 
3668 static void
3669 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3670 {
3671 	struct emx_softc *sc = ifp->if_softc;
3672 
3673 	switch (slz) {
3674 	case IFNET_SERIALIZE_ALL:
3675 		lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 0);
3676 		break;
3677 
3678 	case IFNET_SERIALIZE_MAIN:
3679 		lwkt_serialize_exit(&sc->main_serialize);
3680 		break;
3681 
3682 	case IFNET_SERIALIZE_TX:
3683 		lwkt_serialize_exit(&sc->tx_serialize);
3684 		break;
3685 
3686 	case IFNET_SERIALIZE_RX(0):
3687 		lwkt_serialize_exit(&sc->rx_data[0].rx_serialize);
3688 		break;
3689 
3690 	case IFNET_SERIALIZE_RX(1):
3691 		lwkt_serialize_exit(&sc->rx_data[1].rx_serialize);
3692 		break;
3693 
3694 	default:
3695 		panic("%s unsupported serialize type\n", ifp->if_xname);
3696 	}
3697 }
3698 
3699 static int
3700 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3701 {
3702 	struct emx_softc *sc = ifp->if_softc;
3703 
3704 	switch (slz) {
3705 	case IFNET_SERIALIZE_ALL:
3706 		return lwkt_serialize_array_try(sc->serializes,
3707 						EMX_NSERIALIZE, 0);
3708 
3709 	case IFNET_SERIALIZE_MAIN:
3710 		return lwkt_serialize_try(&sc->main_serialize);
3711 
3712 	case IFNET_SERIALIZE_TX:
3713 		return lwkt_serialize_try(&sc->tx_serialize);
3714 
3715 	case IFNET_SERIALIZE_RX(0):
3716 		return lwkt_serialize_try(&sc->rx_data[0].rx_serialize);
3717 
3718 	case IFNET_SERIALIZE_RX(1):
3719 		return lwkt_serialize_try(&sc->rx_data[1].rx_serialize);
3720 
3721 	default:
3722 		panic("%s unsupported serialize type\n", ifp->if_xname);
3723 	}
3724 }
3725 
3726 static void
3727 emx_serialize_skipmain(struct emx_softc *sc)
3728 {
3729 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3730 }
3731 
3732 static int
3733 emx_tryserialize_skipmain(struct emx_softc *sc)
3734 {
3735 	return lwkt_serialize_array_try(sc->serializes, EMX_NSERIALIZE, 1);
3736 }
3737 
3738 static void
3739 emx_deserialize_skipmain(struct emx_softc *sc)
3740 {
3741 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3742 }
3743 
3744 #ifdef INVARIANTS
3745 
3746 static void
3747 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3748 		     boolean_t serialized)
3749 {
3750 	struct emx_softc *sc = ifp->if_softc;
3751 	int i;
3752 
3753 	switch (slz) {
3754 	case IFNET_SERIALIZE_ALL:
3755 		if (serialized) {
3756 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3757 				ASSERT_SERIALIZED(sc->serializes[i]);
3758 		} else {
3759 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3760 				ASSERT_NOT_SERIALIZED(sc->serializes[i]);
3761 		}
3762 		break;
3763 
3764 	case IFNET_SERIALIZE_MAIN:
3765 		if (serialized)
3766 			ASSERT_SERIALIZED(&sc->main_serialize);
3767 		else
3768 			ASSERT_NOT_SERIALIZED(&sc->main_serialize);
3769 		break;
3770 
3771 	case IFNET_SERIALIZE_TX:
3772 		if (serialized)
3773 			ASSERT_SERIALIZED(&sc->tx_serialize);
3774 		else
3775 			ASSERT_NOT_SERIALIZED(&sc->tx_serialize);
3776 		break;
3777 
3778 	case IFNET_SERIALIZE_RX(0):
3779 		if (serialized)
3780 			ASSERT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3781 		else
3782 			ASSERT_NOT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3783 		break;
3784 
3785 	case IFNET_SERIALIZE_RX(1):
3786 		if (serialized)
3787 			ASSERT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3788 		else
3789 			ASSERT_NOT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3790 		break;
3791 
3792 	default:
3793 		panic("%s unsupported serialize type\n", ifp->if_xname);
3794 	}
3795 }
3796 
3797 #endif	/* INVARIANTS */
3798