xref: /dflybsd-src/sys/dev/netif/emx/if_emx.c (revision 8bb2400d5e4f21e6ed6fe870515c2d9a1cdfb5c7)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_rss.h"
69 #include "opt_emx.h"
70 
71 #include <sys/param.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/interrupt.h>
75 #include <sys/kernel.h>
76 #include <sys/ktr.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/proc.h>
80 #include <sys/rman.h>
81 #include <sys/serialize.h>
82 #include <sys/serialize2.h>
83 #include <sys/socket.h>
84 #include <sys/sockio.h>
85 #include <sys/sysctl.h>
86 #include <sys/systm.h>
87 
88 #include <net/bpf.h>
89 #include <net/ethernet.h>
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/ifq_var.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 #include <net/if_poll.h>
100 
101 #include <netinet/in_systm.h>
102 #include <netinet/in.h>
103 #include <netinet/ip.h>
104 #include <netinet/tcp.h>
105 #include <netinet/udp.h>
106 
107 #include <bus/pci/pcivar.h>
108 #include <bus/pci/pcireg.h>
109 
110 #include <dev/netif/ig_hal/e1000_api.h>
111 #include <dev/netif/ig_hal/e1000_82571.h>
112 #include <dev/netif/emx/if_emx.h>
113 
114 #ifdef EMX_RSS_DEBUG
115 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
116 do { \
117 	if (sc->rss_debug >= lvl) \
118 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
119 } while (0)
120 #else	/* !EMX_RSS_DEBUG */
121 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
122 #endif	/* EMX_RSS_DEBUG */
123 
124 #define EMX_TX_SERIALIZE	1
125 #define EMX_RX_SERIALIZE	2
126 
127 #define EMX_NAME	"Intel(R) PRO/1000 "
128 
129 #define EMX_DEVICE(id)	\
130 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
131 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
132 
133 static const struct emx_device {
134 	uint16_t	vid;
135 	uint16_t	did;
136 	const char	*desc;
137 } emx_devices[] = {
138 	EMX_DEVICE(82571EB_COPPER),
139 	EMX_DEVICE(82571EB_FIBER),
140 	EMX_DEVICE(82571EB_SERDES),
141 	EMX_DEVICE(82571EB_SERDES_DUAL),
142 	EMX_DEVICE(82571EB_SERDES_QUAD),
143 	EMX_DEVICE(82571EB_QUAD_COPPER),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
145 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
146 	EMX_DEVICE(82571EB_QUAD_FIBER),
147 	EMX_DEVICE(82571PT_QUAD_COPPER),
148 
149 	EMX_DEVICE(82572EI_COPPER),
150 	EMX_DEVICE(82572EI_FIBER),
151 	EMX_DEVICE(82572EI_SERDES),
152 	EMX_DEVICE(82572EI),
153 
154 	EMX_DEVICE(82573E),
155 	EMX_DEVICE(82573E_IAMT),
156 	EMX_DEVICE(82573L),
157 
158 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
160 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
161 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
162 
163 	EMX_DEVICE(82574L),
164 	EMX_DEVICE(82574LA),
165 
166 	/* required last entry */
167 	EMX_DEVICE_NULL
168 };
169 
170 static int	emx_probe(device_t);
171 static int	emx_attach(device_t);
172 static int	emx_detach(device_t);
173 static int	emx_shutdown(device_t);
174 static int	emx_suspend(device_t);
175 static int	emx_resume(device_t);
176 
177 static void	emx_init(void *);
178 static void	emx_stop(struct emx_softc *);
179 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
180 static void	emx_start(struct ifnet *);
181 #ifdef IFPOLL_ENABLE
182 static void	emx_qpoll(struct ifnet *, struct ifpoll_info *);
183 #endif
184 static void	emx_watchdog(struct ifnet *);
185 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
186 static int	emx_media_change(struct ifnet *);
187 static void	emx_timer(void *);
188 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
189 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
190 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
191 #ifdef INVARIANTS
192 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
193 		    boolean_t);
194 #endif
195 
196 static void	emx_intr(void *);
197 static void	emx_intr_mask(void *);
198 static void	emx_intr_body(struct emx_softc *, boolean_t);
199 static void	emx_rxeof(struct emx_softc *, int, int);
200 static void	emx_txeof(struct emx_softc *);
201 static void	emx_tx_collect(struct emx_softc *);
202 static void	emx_tx_purge(struct emx_softc *);
203 static void	emx_enable_intr(struct emx_softc *);
204 static void	emx_disable_intr(struct emx_softc *);
205 
206 static int	emx_dma_alloc(struct emx_softc *);
207 static void	emx_dma_free(struct emx_softc *);
208 static void	emx_init_tx_ring(struct emx_softc *);
209 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
210 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
211 static int	emx_create_tx_ring(struct emx_softc *);
212 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
213 static void	emx_destroy_tx_ring(struct emx_softc *, int);
214 static void	emx_destroy_rx_ring(struct emx_softc *,
215 		    struct emx_rxdata *, int);
216 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
217 static int	emx_encap(struct emx_softc *, struct mbuf **);
218 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
219 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
220 		    uint32_t *, uint32_t *);
221 
222 static int 	emx_is_valid_eaddr(const uint8_t *);
223 static int	emx_reset(struct emx_softc *);
224 static void	emx_setup_ifp(struct emx_softc *);
225 static void	emx_init_tx_unit(struct emx_softc *);
226 static void	emx_init_rx_unit(struct emx_softc *);
227 static void	emx_update_stats(struct emx_softc *);
228 static void	emx_set_promisc(struct emx_softc *);
229 static void	emx_disable_promisc(struct emx_softc *);
230 static void	emx_set_multi(struct emx_softc *);
231 static void	emx_update_link_status(struct emx_softc *);
232 static void	emx_smartspeed(struct emx_softc *);
233 static void	emx_set_itr(struct emx_softc *, uint32_t);
234 static void	emx_disable_aspm(struct emx_softc *);
235 
236 static void	emx_print_debug_info(struct emx_softc *);
237 static void	emx_print_nvm_info(struct emx_softc *);
238 static void	emx_print_hw_stats(struct emx_softc *);
239 
240 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
241 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
242 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
243 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
244 static void	emx_add_sysctl(struct emx_softc *);
245 
246 static void	emx_serialize_skipmain(struct emx_softc *);
247 static void	emx_deserialize_skipmain(struct emx_softc *);
248 
249 /* Management and WOL Support */
250 static void	emx_get_mgmt(struct emx_softc *);
251 static void	emx_rel_mgmt(struct emx_softc *);
252 static void	emx_get_hw_control(struct emx_softc *);
253 static void	emx_rel_hw_control(struct emx_softc *);
254 static void	emx_enable_wol(device_t);
255 
256 static device_method_t emx_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		emx_probe),
259 	DEVMETHOD(device_attach,	emx_attach),
260 	DEVMETHOD(device_detach,	emx_detach),
261 	DEVMETHOD(device_shutdown,	emx_shutdown),
262 	DEVMETHOD(device_suspend,	emx_suspend),
263 	DEVMETHOD(device_resume,	emx_resume),
264 	{ 0, 0 }
265 };
266 
267 static driver_t emx_driver = {
268 	"emx",
269 	emx_methods,
270 	sizeof(struct emx_softc),
271 };
272 
273 static devclass_t emx_devclass;
274 
275 DECLARE_DUMMY_MODULE(if_emx);
276 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
277 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
278 
279 /*
280  * Tunables
281  */
282 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
283 static int	emx_rxd = EMX_DEFAULT_RXD;
284 static int	emx_txd = EMX_DEFAULT_TXD;
285 static int	emx_smart_pwr_down = 0;
286 static int	emx_rxr = 0;
287 
288 /* Controls whether promiscuous also shows bad packets */
289 static int	emx_debug_sbp = 0;
290 
291 static int	emx_82573_workaround = 1;
292 static int	emx_msi_enable = 1;
293 
294 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
295 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
296 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
297 TUNABLE_INT("hw.emx.txd", &emx_txd);
298 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
299 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
300 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
301 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
302 
303 /* Global used in WOL setup with multiport cards */
304 static int	emx_global_quad_port_a = 0;
305 
306 /* Set this to one to display debug statistics */
307 static int	emx_display_debug_stats = 0;
308 
309 #if !defined(KTR_IF_EMX)
310 #define KTR_IF_EMX	KTR_ALL
311 #endif
312 KTR_INFO_MASTER(if_emx);
313 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
314 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
315 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
316 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
317 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
318 #define logif(name)	KTR_LOG(if_emx_ ## name)
319 
320 static __inline void
321 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
322 {
323 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
324 	/* DD bit must be cleared */
325 	rxd->rxd_staterr = 0;
326 }
327 
328 static __inline void
329 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
330 {
331 	/* Ignore Checksum bit is set */
332 	if (staterr & E1000_RXD_STAT_IXSM)
333 		return;
334 
335 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
336 	    E1000_RXD_STAT_IPCS)
337 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
338 
339 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
340 	    E1000_RXD_STAT_TCPCS) {
341 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
342 					   CSUM_PSEUDO_HDR |
343 					   CSUM_FRAG_NOT_CHECKED;
344 		mp->m_pkthdr.csum_data = htons(0xffff);
345 	}
346 }
347 
348 static __inline struct pktinfo *
349 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
350 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
351 {
352 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
353 	case EMX_RXDMRQ_IPV4_TCP:
354 		pi->pi_netisr = NETISR_IP;
355 		pi->pi_flags = 0;
356 		pi->pi_l3proto = IPPROTO_TCP;
357 		break;
358 
359 	case EMX_RXDMRQ_IPV6_TCP:
360 		pi->pi_netisr = NETISR_IPV6;
361 		pi->pi_flags = 0;
362 		pi->pi_l3proto = IPPROTO_TCP;
363 		break;
364 
365 	case EMX_RXDMRQ_IPV4:
366 		if (staterr & E1000_RXD_STAT_IXSM)
367 			return NULL;
368 
369 		if ((staterr &
370 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
371 		    E1000_RXD_STAT_TCPCS) {
372 			pi->pi_netisr = NETISR_IP;
373 			pi->pi_flags = 0;
374 			pi->pi_l3proto = IPPROTO_UDP;
375 			break;
376 		}
377 		/* FALL THROUGH */
378 	default:
379 		return NULL;
380 	}
381 
382 	m->m_flags |= M_HASH;
383 	m->m_pkthdr.hash = toeplitz_hash(hash);
384 	return pi;
385 }
386 
387 static int
388 emx_probe(device_t dev)
389 {
390 	const struct emx_device *d;
391 	uint16_t vid, did;
392 
393 	vid = pci_get_vendor(dev);
394 	did = pci_get_device(dev);
395 
396 	for (d = emx_devices; d->desc != NULL; ++d) {
397 		if (vid == d->vid && did == d->did) {
398 			device_set_desc(dev, d->desc);
399 			device_set_async_attach(dev, TRUE);
400 			return 0;
401 		}
402 	}
403 	return ENXIO;
404 }
405 
406 static int
407 emx_attach(device_t dev)
408 {
409 	struct emx_softc *sc = device_get_softc(dev);
410 	struct ifnet *ifp = &sc->arpcom.ac_if;
411 	int error = 0, i, throttle, msi_enable;
412 	u_int intr_flags;
413 	uint16_t eeprom_data, device_id, apme_mask;
414 	driver_intr_t *intr_func;
415 
416 	lwkt_serialize_init(&sc->main_serialize);
417 	lwkt_serialize_init(&sc->tx_serialize);
418 	for (i = 0; i < EMX_NRX_RING; ++i)
419 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
420 
421 	i = 0;
422 	sc->serializes[i++] = &sc->main_serialize;
423 	sc->serializes[i++] = &sc->tx_serialize;
424 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
425 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
426 	KKASSERT(i == EMX_NSERIALIZE);
427 
428 	callout_init_mp(&sc->timer);
429 
430 	sc->dev = sc->osdep.dev = dev;
431 
432 	/*
433 	 * Determine hardware and mac type
434 	 */
435 	sc->hw.vendor_id = pci_get_vendor(dev);
436 	sc->hw.device_id = pci_get_device(dev);
437 	sc->hw.revision_id = pci_get_revid(dev);
438 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
439 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
440 
441 	if (e1000_set_mac_type(&sc->hw))
442 		return ENXIO;
443 
444 	/* Enable bus mastering */
445 	pci_enable_busmaster(dev);
446 
447 	/*
448 	 * Allocate IO memory
449 	 */
450 	sc->memory_rid = EMX_BAR_MEM;
451 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
452 					    &sc->memory_rid, RF_ACTIVE);
453 	if (sc->memory == NULL) {
454 		device_printf(dev, "Unable to allocate bus resource: memory\n");
455 		error = ENXIO;
456 		goto fail;
457 	}
458 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
459 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
460 
461 	/* XXX This is quite goofy, it is not actually used */
462 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
463 
464 	/*
465 	 * Don't enable MSI-X on 82574, see:
466 	 * 82574 specification update errata #15
467 	 *
468 	 * Don't enable MSI on 82571/82572, see:
469 	 * 82571/82572 specification update errata #63
470 	 */
471 	msi_enable = emx_msi_enable;
472 	if (msi_enable &&
473 	    (sc->hw.mac.type == e1000_82571 ||
474 	     sc->hw.mac.type == e1000_82572))
475 		msi_enable = 0;
476 
477 	/*
478 	 * Allocate interrupt
479 	 */
480 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
481 	    &sc->intr_rid, &intr_flags);
482 
483 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
484 		int unshared;
485 
486 		unshared = device_getenv_int(dev, "irq.unshared", 0);
487 		if (!unshared) {
488 			sc->flags |= EMX_FLAG_SHARED_INTR;
489 			if (bootverbose)
490 				device_printf(dev, "IRQ shared\n");
491 		} else {
492 			intr_flags &= ~RF_SHAREABLE;
493 			if (bootverbose)
494 				device_printf(dev, "IRQ unshared\n");
495 		}
496 	}
497 
498 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
499 	    intr_flags);
500 	if (sc->intr_res == NULL) {
501 		device_printf(dev, "Unable to allocate bus resource: "
502 		    "interrupt\n");
503 		error = ENXIO;
504 		goto fail;
505 	}
506 
507 	/* Save PCI command register for Shared Code */
508 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
509 	sc->hw.back = &sc->osdep;
510 
511 	/* Do Shared Code initialization */
512 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
513 		device_printf(dev, "Setup of Shared code failed\n");
514 		error = ENXIO;
515 		goto fail;
516 	}
517 	e1000_get_bus_info(&sc->hw);
518 
519 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
520 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
521 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
522 
523 	/*
524 	 * Interrupt throttle rate
525 	 */
526 	throttle = device_getenv_int(dev, "int_throttle_ceil",
527 	    emx_int_throttle_ceil);
528 	if (throttle == 0) {
529 		sc->int_throttle_ceil = 0;
530 	} else {
531 		if (throttle < 0)
532 			throttle = EMX_DEFAULT_ITR;
533 
534 		/* Recalculate the tunable value to get the exact frequency. */
535 		throttle = 1000000000 / 256 / throttle;
536 
537 		/* Upper 16bits of ITR is reserved and should be zero */
538 		if (throttle & 0xffff0000)
539 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
540 
541 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
542 	}
543 
544 	e1000_init_script_state_82541(&sc->hw, TRUE);
545 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
546 
547 	/* Copper options */
548 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
549 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
550 		sc->hw.phy.disable_polarity_correction = FALSE;
551 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
552 	}
553 
554 	/* Set the frame limits assuming standard ethernet sized frames. */
555 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
556 	sc->min_frame_size = ETHER_MIN_LEN;
557 
558 	/* This controls when hardware reports transmit completion status. */
559 	sc->hw.mac.report_tx_early = 1;
560 
561 	/* Calculate # of RX rings */
562 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
563 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
564 
565 	/* Allocate RX/TX rings' busdma(9) stuffs */
566 	error = emx_dma_alloc(sc);
567 	if (error)
568 		goto fail;
569 
570 	/* Allocate multicast array memory. */
571 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
572 	    M_DEVBUF, M_WAITOK);
573 
574 	/* Indicate SOL/IDER usage */
575 	if (e1000_check_reset_block(&sc->hw)) {
576 		device_printf(dev,
577 		    "PHY reset is blocked due to SOL/IDER session.\n");
578 	}
579 
580 	/*
581 	 * Start from a known state, this is important in reading the
582 	 * nvm and mac from that.
583 	 */
584 	e1000_reset_hw(&sc->hw);
585 
586 	/* Make sure we have a good EEPROM before we read from it */
587 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
588 		/*
589 		 * Some PCI-E parts fail the first check due to
590 		 * the link being in sleep state, call it again,
591 		 * if it fails a second time its a real issue.
592 		 */
593 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
594 			device_printf(dev,
595 			    "The EEPROM Checksum Is Not Valid\n");
596 			error = EIO;
597 			goto fail;
598 		}
599 	}
600 
601 	/* Copy the permanent MAC address out of the EEPROM */
602 	if (e1000_read_mac_addr(&sc->hw) < 0) {
603 		device_printf(dev, "EEPROM read error while reading MAC"
604 		    " address\n");
605 		error = EIO;
606 		goto fail;
607 	}
608 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
609 		device_printf(dev, "Invalid MAC address\n");
610 		error = EIO;
611 		goto fail;
612 	}
613 
614 	/* Determine if we have to control management hardware */
615 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
616 
617 	/*
618 	 * Setup Wake-on-Lan
619 	 */
620 	apme_mask = EMX_EEPROM_APME;
621 	eeprom_data = 0;
622 	switch (sc->hw.mac.type) {
623 	case e1000_82573:
624 		sc->has_amt = 1;
625 		/* FALL THROUGH */
626 
627 	case e1000_82571:
628 	case e1000_82572:
629 	case e1000_80003es2lan:
630 		if (sc->hw.bus.func == 1) {
631 			e1000_read_nvm(&sc->hw,
632 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
633 		} else {
634 			e1000_read_nvm(&sc->hw,
635 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
636 		}
637 		break;
638 
639 	default:
640 		e1000_read_nvm(&sc->hw,
641 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
642 		break;
643 	}
644 	if (eeprom_data & apme_mask)
645 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
646 
647 	/*
648          * We have the eeprom settings, now apply the special cases
649          * where the eeprom may be wrong or the board won't support
650          * wake on lan on a particular port
651 	 */
652 	device_id = pci_get_device(dev);
653         switch (device_id) {
654 	case E1000_DEV_ID_82571EB_FIBER:
655 		/*
656 		 * Wake events only supported on port A for dual fiber
657 		 * regardless of eeprom setting
658 		 */
659 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
660 		    E1000_STATUS_FUNC_1)
661 			sc->wol = 0;
662 		break;
663 
664 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
665 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
666 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
667                 /* if quad port sc, disable WoL on all but port A */
668 		if (emx_global_quad_port_a != 0)
669 			sc->wol = 0;
670 		/* Reset for multiple quad port adapters */
671 		if (++emx_global_quad_port_a == 4)
672 			emx_global_quad_port_a = 0;
673                 break;
674 	}
675 
676 	/* XXX disable wol */
677 	sc->wol = 0;
678 
679 	/* Setup OS specific network interface */
680 	emx_setup_ifp(sc);
681 
682 	/* Add sysctl tree, must after em_setup_ifp() */
683 	emx_add_sysctl(sc);
684 
685 	/* Reset the hardware */
686 	error = emx_reset(sc);
687 	if (error) {
688 		device_printf(dev, "Unable to reset the hardware\n");
689 		goto fail;
690 	}
691 
692 	/* Initialize statistics */
693 	emx_update_stats(sc);
694 
695 	sc->hw.mac.get_link_status = 1;
696 	emx_update_link_status(sc);
697 
698 	sc->spare_tx_desc = EMX_TX_SPARE;
699 
700 	/*
701 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
702 	 * and tx_int_nsegs:
703 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
704 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
705 	 */
706 	sc->oact_tx_desc = sc->num_tx_desc / 8;
707 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
708 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
709 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
710 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
711 
712 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
713 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
714 		sc->tx_int_nsegs = sc->oact_tx_desc;
715 
716 	/* Non-AMT based hardware can now take control from firmware */
717 	if (sc->has_manage && !sc->has_amt)
718 		emx_get_hw_control(sc);
719 
720 	/*
721 	 * Missing Interrupt Following ICR read:
722 	 *
723 	 * 82571/82572 specification update errata #76
724 	 * 82573 specification update errata #31
725 	 * 82574 specification update errata #12
726 	 */
727 	intr_func = emx_intr;
728 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
729 	    (sc->hw.mac.type == e1000_82571 ||
730 	     sc->hw.mac.type == e1000_82572 ||
731 	     sc->hw.mac.type == e1000_82573 ||
732 	     sc->hw.mac.type == e1000_82574))
733 		intr_func = emx_intr_mask;
734 
735 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
736 			       &sc->intr_tag, &sc->main_serialize);
737 	if (error) {
738 		device_printf(dev, "Failed to register interrupt handler");
739 		ether_ifdetach(&sc->arpcom.ac_if);
740 		goto fail;
741 	}
742 
743 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
744 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
745 	return (0);
746 fail:
747 	emx_detach(dev);
748 	return (error);
749 }
750 
751 static int
752 emx_detach(device_t dev)
753 {
754 	struct emx_softc *sc = device_get_softc(dev);
755 
756 	if (device_is_attached(dev)) {
757 		struct ifnet *ifp = &sc->arpcom.ac_if;
758 
759 		ifnet_serialize_all(ifp);
760 
761 		emx_stop(sc);
762 
763 		e1000_phy_hw_reset(&sc->hw);
764 
765 		emx_rel_mgmt(sc);
766 		emx_rel_hw_control(sc);
767 
768 		if (sc->wol) {
769 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
770 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
771 			emx_enable_wol(dev);
772 		}
773 
774 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
775 
776 		ifnet_deserialize_all(ifp);
777 
778 		ether_ifdetach(ifp);
779 	} else {
780 		emx_rel_hw_control(sc);
781 	}
782 	bus_generic_detach(dev);
783 
784 	if (sc->intr_res != NULL) {
785 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
786 				     sc->intr_res);
787 	}
788 
789 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
790 		pci_release_msi(dev);
791 
792 	if (sc->memory != NULL) {
793 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
794 				     sc->memory);
795 	}
796 
797 	emx_dma_free(sc);
798 
799 	/* Free sysctl tree */
800 	if (sc->sysctl_tree != NULL)
801 		sysctl_ctx_free(&sc->sysctl_ctx);
802 
803 	return (0);
804 }
805 
806 static int
807 emx_shutdown(device_t dev)
808 {
809 	return emx_suspend(dev);
810 }
811 
812 static int
813 emx_suspend(device_t dev)
814 {
815 	struct emx_softc *sc = device_get_softc(dev);
816 	struct ifnet *ifp = &sc->arpcom.ac_if;
817 
818 	ifnet_serialize_all(ifp);
819 
820 	emx_stop(sc);
821 
822 	emx_rel_mgmt(sc);
823 	emx_rel_hw_control(sc);
824 
825 	if (sc->wol) {
826 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
827 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
828 		emx_enable_wol(dev);
829 	}
830 
831 	ifnet_deserialize_all(ifp);
832 
833 	return bus_generic_suspend(dev);
834 }
835 
836 static int
837 emx_resume(device_t dev)
838 {
839 	struct emx_softc *sc = device_get_softc(dev);
840 	struct ifnet *ifp = &sc->arpcom.ac_if;
841 
842 	ifnet_serialize_all(ifp);
843 
844 	emx_init(sc);
845 	emx_get_mgmt(sc);
846 	if_devstart(ifp);
847 
848 	ifnet_deserialize_all(ifp);
849 
850 	return bus_generic_resume(dev);
851 }
852 
853 static void
854 emx_start(struct ifnet *ifp)
855 {
856 	struct emx_softc *sc = ifp->if_softc;
857 	struct mbuf *m_head;
858 
859 	ASSERT_SERIALIZED(&sc->tx_serialize);
860 
861 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
862 		return;
863 
864 	if (!sc->link_active) {
865 		ifq_purge(&ifp->if_snd);
866 		return;
867 	}
868 
869 	while (!ifq_is_empty(&ifp->if_snd)) {
870 		/* Now do we at least have a minimal? */
871 		if (EMX_IS_OACTIVE(sc)) {
872 			emx_tx_collect(sc);
873 			if (EMX_IS_OACTIVE(sc)) {
874 				ifp->if_flags |= IFF_OACTIVE;
875 				sc->no_tx_desc_avail1++;
876 				break;
877 			}
878 		}
879 
880 		logif(pkt_txqueue);
881 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
882 		if (m_head == NULL)
883 			break;
884 
885 		if (emx_encap(sc, &m_head)) {
886 			ifp->if_oerrors++;
887 			emx_tx_collect(sc);
888 			continue;
889 		}
890 
891 		/* Send a copy of the frame to the BPF listener */
892 		ETHER_BPF_MTAP(ifp, m_head);
893 
894 		/* Set timeout in case hardware has problems transmitting. */
895 		ifp->if_timer = EMX_TX_TIMEOUT;
896 	}
897 }
898 
899 static int
900 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
901 {
902 	struct emx_softc *sc = ifp->if_softc;
903 	struct ifreq *ifr = (struct ifreq *)data;
904 	uint16_t eeprom_data = 0;
905 	int max_frame_size, mask, reinit;
906 	int error = 0;
907 
908 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
909 
910 	switch (command) {
911 	case SIOCSIFMTU:
912 		switch (sc->hw.mac.type) {
913 		case e1000_82573:
914 			/*
915 			 * 82573 only supports jumbo frames
916 			 * if ASPM is disabled.
917 			 */
918 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
919 				       &eeprom_data);
920 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
921 				max_frame_size = ETHER_MAX_LEN;
922 				break;
923 			}
924 			/* FALL THROUGH */
925 
926 		/* Limit Jumbo Frame size */
927 		case e1000_82571:
928 		case e1000_82572:
929 		case e1000_82574:
930 		case e1000_80003es2lan:
931 			max_frame_size = 9234;
932 			break;
933 
934 		default:
935 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
936 			break;
937 		}
938 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
939 		    ETHER_CRC_LEN) {
940 			error = EINVAL;
941 			break;
942 		}
943 
944 		ifp->if_mtu = ifr->ifr_mtu;
945 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
946 				     ETHER_CRC_LEN;
947 
948 		if (ifp->if_flags & IFF_RUNNING)
949 			emx_init(sc);
950 		break;
951 
952 	case SIOCSIFFLAGS:
953 		if (ifp->if_flags & IFF_UP) {
954 			if ((ifp->if_flags & IFF_RUNNING)) {
955 				if ((ifp->if_flags ^ sc->if_flags) &
956 				    (IFF_PROMISC | IFF_ALLMULTI)) {
957 					emx_disable_promisc(sc);
958 					emx_set_promisc(sc);
959 				}
960 			} else {
961 				emx_init(sc);
962 			}
963 		} else if (ifp->if_flags & IFF_RUNNING) {
964 			emx_stop(sc);
965 		}
966 		sc->if_flags = ifp->if_flags;
967 		break;
968 
969 	case SIOCADDMULTI:
970 	case SIOCDELMULTI:
971 		if (ifp->if_flags & IFF_RUNNING) {
972 			emx_disable_intr(sc);
973 			emx_set_multi(sc);
974 #ifdef IFPOLL_ENABLE
975 			if (!(ifp->if_flags & IFF_NPOLLING))
976 #endif
977 				emx_enable_intr(sc);
978 		}
979 		break;
980 
981 	case SIOCSIFMEDIA:
982 		/* Check SOL/IDER usage */
983 		if (e1000_check_reset_block(&sc->hw)) {
984 			device_printf(sc->dev, "Media change is"
985 			    " blocked due to SOL/IDER session.\n");
986 			break;
987 		}
988 		/* FALL THROUGH */
989 
990 	case SIOCGIFMEDIA:
991 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
992 		break;
993 
994 	case SIOCSIFCAP:
995 		reinit = 0;
996 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
997 		if (mask & IFCAP_HWCSUM) {
998 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
999 			reinit = 1;
1000 		}
1001 		if (mask & IFCAP_VLAN_HWTAGGING) {
1002 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1003 			reinit = 1;
1004 		}
1005 		if (mask & IFCAP_RSS)
1006 			ifp->if_capenable ^= IFCAP_RSS;
1007 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1008 			emx_init(sc);
1009 		break;
1010 
1011 	default:
1012 		error = ether_ioctl(ifp, command, data);
1013 		break;
1014 	}
1015 	return (error);
1016 }
1017 
1018 static void
1019 emx_watchdog(struct ifnet *ifp)
1020 {
1021 	struct emx_softc *sc = ifp->if_softc;
1022 
1023 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1024 
1025 	/*
1026 	 * The timer is set to 5 every time start queues a packet.
1027 	 * Then txeof keeps resetting it as long as it cleans at
1028 	 * least one descriptor.
1029 	 * Finally, anytime all descriptors are clean the timer is
1030 	 * set to 0.
1031 	 */
1032 
1033 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
1034 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
1035 		/*
1036 		 * If we reach here, all TX jobs are completed and
1037 		 * the TX engine should have been idled for some time.
1038 		 * We don't need to call if_devstart() here.
1039 		 */
1040 		ifp->if_flags &= ~IFF_OACTIVE;
1041 		ifp->if_timer = 0;
1042 		return;
1043 	}
1044 
1045 	/*
1046 	 * If we are in this routine because of pause frames, then
1047 	 * don't reset the hardware.
1048 	 */
1049 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1050 		ifp->if_timer = EMX_TX_TIMEOUT;
1051 		return;
1052 	}
1053 
1054 	if (e1000_check_for_link(&sc->hw) == 0)
1055 		if_printf(ifp, "watchdog timeout -- resetting\n");
1056 
1057 	ifp->if_oerrors++;
1058 	sc->watchdog_events++;
1059 
1060 	emx_init(sc);
1061 
1062 	if (!ifq_is_empty(&ifp->if_snd))
1063 		if_devstart(ifp);
1064 }
1065 
1066 static void
1067 emx_init(void *xsc)
1068 {
1069 	struct emx_softc *sc = xsc;
1070 	struct ifnet *ifp = &sc->arpcom.ac_if;
1071 	device_t dev = sc->dev;
1072 	uint32_t pba;
1073 	int i;
1074 
1075 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1076 
1077 	emx_stop(sc);
1078 
1079 	/*
1080 	 * Packet Buffer Allocation (PBA)
1081 	 * Writing PBA sets the receive portion of the buffer
1082 	 * the remainder is used for the transmit buffer.
1083 	 */
1084 	switch (sc->hw.mac.type) {
1085 	/* Total Packet Buffer on these is 48K */
1086 	case e1000_82571:
1087 	case e1000_82572:
1088 	case e1000_80003es2lan:
1089 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1090 		break;
1091 
1092 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1093 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1094 		break;
1095 
1096 	case e1000_82574:
1097 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1098 		break;
1099 
1100 	default:
1101 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1102 		if (sc->max_frame_size > 8192)
1103 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1104 		else
1105 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1106 	}
1107 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1108 
1109 	/* Get the latest mac address, User can use a LAA */
1110         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1111 
1112 	/* Put the address into the Receive Address Array */
1113 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1114 
1115 	/*
1116 	 * With the 82571 sc, RAR[0] may be overwritten
1117 	 * when the other port is reset, we make a duplicate
1118 	 * in RAR[14] for that eventuality, this assures
1119 	 * the interface continues to function.
1120 	 */
1121 	if (sc->hw.mac.type == e1000_82571) {
1122 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1123 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1124 		    E1000_RAR_ENTRIES - 1);
1125 	}
1126 
1127 	/* Initialize the hardware */
1128 	if (emx_reset(sc)) {
1129 		device_printf(dev, "Unable to reset the hardware\n");
1130 		/* XXX emx_stop()? */
1131 		return;
1132 	}
1133 	emx_update_link_status(sc);
1134 
1135 	/* Setup VLAN support, basic and offload if available */
1136 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1137 
1138 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1139 		uint32_t ctrl;
1140 
1141 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1142 		ctrl |= E1000_CTRL_VME;
1143 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1144 	}
1145 
1146 	/* Set hardware offload abilities */
1147 	if (ifp->if_capenable & IFCAP_TXCSUM)
1148 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1149 	else
1150 		ifp->if_hwassist = 0;
1151 
1152 	/* Configure for OS presence */
1153 	emx_get_mgmt(sc);
1154 
1155 	/* Prepare transmit descriptors and buffers */
1156 	emx_init_tx_ring(sc);
1157 	emx_init_tx_unit(sc);
1158 
1159 	/* Setup Multicast table */
1160 	emx_set_multi(sc);
1161 
1162 	/* Prepare receive descriptors and buffers */
1163 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1164 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1165 			device_printf(dev,
1166 			    "Could not setup receive structures\n");
1167 			emx_stop(sc);
1168 			return;
1169 		}
1170 	}
1171 	emx_init_rx_unit(sc);
1172 
1173 	/* Don't lose promiscuous settings */
1174 	emx_set_promisc(sc);
1175 
1176 	ifp->if_flags |= IFF_RUNNING;
1177 	ifp->if_flags &= ~IFF_OACTIVE;
1178 
1179 	callout_reset(&sc->timer, hz, emx_timer, sc);
1180 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1181 
1182 	/* MSI/X configuration for 82574 */
1183 	if (sc->hw.mac.type == e1000_82574) {
1184 		int tmp;
1185 
1186 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1187 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1188 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1189 		/*
1190 		 * XXX MSIX
1191 		 * Set the IVAR - interrupt vector routing.
1192 		 * Each nibble represents a vector, high bit
1193 		 * is enable, other 3 bits are the MSIX table
1194 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1195 		 * Link (other) to 2, hence the magic number.
1196 		 */
1197 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1198 	}
1199 
1200 #ifdef IFPOLL_ENABLE
1201 	/*
1202 	 * Only enable interrupts if we are not polling, make sure
1203 	 * they are off otherwise.
1204 	 */
1205 	if (ifp->if_flags & IFF_NPOLLING)
1206 		emx_disable_intr(sc);
1207 	else
1208 #endif /* IFPOLL_ENABLE */
1209 		emx_enable_intr(sc);
1210 
1211 	/* AMT based hardware can now take control from firmware */
1212 	if (sc->has_manage && sc->has_amt)
1213 		emx_get_hw_control(sc);
1214 
1215 	/* Don't reset the phy next time init gets called */
1216 	sc->hw.phy.reset_disable = TRUE;
1217 }
1218 
1219 static void
1220 emx_intr(void *xsc)
1221 {
1222 	emx_intr_body(xsc, TRUE);
1223 }
1224 
1225 static void
1226 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1227 {
1228 	struct ifnet *ifp = &sc->arpcom.ac_if;
1229 	uint32_t reg_icr;
1230 
1231 	logif(intr_beg);
1232 	ASSERT_SERIALIZED(&sc->main_serialize);
1233 
1234 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1235 
1236 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1237 		logif(intr_end);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * XXX: some laptops trigger several spurious interrupts
1243 	 * on emx(4) when in the resume cycle. The ICR register
1244 	 * reports all-ones value in this case. Processing such
1245 	 * interrupts would lead to a freeze. I don't know why.
1246 	 */
1247 	if (reg_icr == 0xffffffff) {
1248 		logif(intr_end);
1249 		return;
1250 	}
1251 
1252 	if (ifp->if_flags & IFF_RUNNING) {
1253 		if (reg_icr &
1254 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1255 			int i;
1256 
1257 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1258 				lwkt_serialize_enter(
1259 				&sc->rx_data[i].rx_serialize);
1260 				emx_rxeof(sc, i, -1);
1261 				lwkt_serialize_exit(
1262 				&sc->rx_data[i].rx_serialize);
1263 			}
1264 		}
1265 		if (reg_icr & E1000_ICR_TXDW) {
1266 			lwkt_serialize_enter(&sc->tx_serialize);
1267 			emx_txeof(sc);
1268 			if (!ifq_is_empty(&ifp->if_snd))
1269 				if_devstart(ifp);
1270 			lwkt_serialize_exit(&sc->tx_serialize);
1271 		}
1272 	}
1273 
1274 	/* Link status change */
1275 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1276 		emx_serialize_skipmain(sc);
1277 
1278 		callout_stop(&sc->timer);
1279 		sc->hw.mac.get_link_status = 1;
1280 		emx_update_link_status(sc);
1281 
1282 		/* Deal with TX cruft when link lost */
1283 		emx_tx_purge(sc);
1284 
1285 		callout_reset(&sc->timer, hz, emx_timer, sc);
1286 
1287 		emx_deserialize_skipmain(sc);
1288 	}
1289 
1290 	if (reg_icr & E1000_ICR_RXO)
1291 		sc->rx_overruns++;
1292 
1293 	logif(intr_end);
1294 }
1295 
1296 static void
1297 emx_intr_mask(void *xsc)
1298 {
1299 	struct emx_softc *sc = xsc;
1300 
1301 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1302 	/*
1303 	 * NOTE:
1304 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1305 	 * so don't check it.
1306 	 */
1307 	emx_intr_body(sc, FALSE);
1308 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1309 }
1310 
1311 static void
1312 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1313 {
1314 	struct emx_softc *sc = ifp->if_softc;
1315 
1316 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1317 
1318 	emx_update_link_status(sc);
1319 
1320 	ifmr->ifm_status = IFM_AVALID;
1321 	ifmr->ifm_active = IFM_ETHER;
1322 
1323 	if (!sc->link_active)
1324 		return;
1325 
1326 	ifmr->ifm_status |= IFM_ACTIVE;
1327 
1328 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1329 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1330 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1331 	} else {
1332 		switch (sc->link_speed) {
1333 		case 10:
1334 			ifmr->ifm_active |= IFM_10_T;
1335 			break;
1336 		case 100:
1337 			ifmr->ifm_active |= IFM_100_TX;
1338 			break;
1339 
1340 		case 1000:
1341 			ifmr->ifm_active |= IFM_1000_T;
1342 			break;
1343 		}
1344 		if (sc->link_duplex == FULL_DUPLEX)
1345 			ifmr->ifm_active |= IFM_FDX;
1346 		else
1347 			ifmr->ifm_active |= IFM_HDX;
1348 	}
1349 }
1350 
1351 static int
1352 emx_media_change(struct ifnet *ifp)
1353 {
1354 	struct emx_softc *sc = ifp->if_softc;
1355 	struct ifmedia *ifm = &sc->media;
1356 
1357 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1358 
1359 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1360 		return (EINVAL);
1361 
1362 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1363 	case IFM_AUTO:
1364 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1365 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1366 		break;
1367 
1368 	case IFM_1000_LX:
1369 	case IFM_1000_SX:
1370 	case IFM_1000_T:
1371 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1372 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1373 		break;
1374 
1375 	case IFM_100_TX:
1376 		sc->hw.mac.autoneg = FALSE;
1377 		sc->hw.phy.autoneg_advertised = 0;
1378 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1379 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1380 		else
1381 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1382 		break;
1383 
1384 	case IFM_10_T:
1385 		sc->hw.mac.autoneg = FALSE;
1386 		sc->hw.phy.autoneg_advertised = 0;
1387 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1388 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1389 		else
1390 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1391 		break;
1392 
1393 	default:
1394 		if_printf(ifp, "Unsupported media type\n");
1395 		break;
1396 	}
1397 
1398 	/*
1399 	 * As the speed/duplex settings my have changed we need to
1400 	 * reset the PHY.
1401 	 */
1402 	sc->hw.phy.reset_disable = FALSE;
1403 
1404 	emx_init(sc);
1405 
1406 	return (0);
1407 }
1408 
1409 static int
1410 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1411 {
1412 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1413 	bus_dmamap_t map;
1414 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1415 	struct e1000_tx_desc *ctxd = NULL;
1416 	struct mbuf *m_head = *m_headp;
1417 	uint32_t txd_upper, txd_lower, cmd = 0;
1418 	int maxsegs, nsegs, i, j, first, last = 0, error;
1419 
1420 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1421 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1422 		/*
1423 		 * Make sure that ethernet header and ip.ip_hl are in
1424 		 * contiguous memory, since if TXCSUM is enabled, later
1425 		 * TX context descriptor's setup need to access ip.ip_hl.
1426 		 */
1427 		error = emx_txcsum_pullup(sc, m_headp);
1428 		if (error) {
1429 			KKASSERT(*m_headp == NULL);
1430 			return error;
1431 		}
1432 		m_head = *m_headp;
1433 	}
1434 
1435 	txd_upper = txd_lower = 0;
1436 
1437 	/*
1438 	 * Capture the first descriptor index, this descriptor
1439 	 * will have the index of the EOP which is the only one
1440 	 * that now gets a DONE bit writeback.
1441 	 */
1442 	first = sc->next_avail_tx_desc;
1443 	tx_buffer = &sc->tx_buf[first];
1444 	tx_buffer_mapped = tx_buffer;
1445 	map = tx_buffer->map;
1446 
1447 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1448 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc"));
1449 	if (maxsegs > EMX_MAX_SCATTER)
1450 		maxsegs = EMX_MAX_SCATTER;
1451 
1452 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1453 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1454 	if (error) {
1455 		if (error == ENOBUFS)
1456 			sc->mbuf_alloc_failed++;
1457 		else
1458 			sc->no_tx_dma_setup++;
1459 
1460 		m_freem(*m_headp);
1461 		*m_headp = NULL;
1462 		return error;
1463 	}
1464         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1465 
1466 	m_head = *m_headp;
1467 	sc->tx_nsegs += nsegs;
1468 
1469 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1470 		/* TX csum offloading will consume one TX desc */
1471 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1472 	}
1473 	i = sc->next_avail_tx_desc;
1474 
1475 	/* Set up our transmit descriptors */
1476 	for (j = 0; j < nsegs; j++) {
1477 		tx_buffer = &sc->tx_buf[i];
1478 		ctxd = &sc->tx_desc_base[i];
1479 
1480 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1481 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1482 					   txd_lower | segs[j].ds_len);
1483 		ctxd->upper.data = htole32(txd_upper);
1484 
1485 		last = i;
1486 		if (++i == sc->num_tx_desc)
1487 			i = 0;
1488 	}
1489 
1490 	sc->next_avail_tx_desc = i;
1491 
1492 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1493 	sc->num_tx_desc_avail -= nsegs;
1494 
1495         /* Handle VLAN tag */
1496 	if (m_head->m_flags & M_VLANTAG) {
1497 		/* Set the vlan id. */
1498 		ctxd->upper.fields.special =
1499 		    htole16(m_head->m_pkthdr.ether_vlantag);
1500 
1501 		/* Tell hardware to add tag */
1502 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1503 	}
1504 
1505 	tx_buffer->m_head = m_head;
1506 	tx_buffer_mapped->map = tx_buffer->map;
1507 	tx_buffer->map = map;
1508 
1509 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1510 		sc->tx_nsegs = 0;
1511 
1512 		/*
1513 		 * Report Status (RS) is turned on
1514 		 * every tx_int_nsegs descriptors.
1515 		 */
1516 		cmd = E1000_TXD_CMD_RS;
1517 
1518 		/*
1519 		 * Keep track of the descriptor, which will
1520 		 * be written back by hardware.
1521 		 */
1522 		sc->tx_dd[sc->tx_dd_tail] = last;
1523 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1524 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1525 	}
1526 
1527 	/*
1528 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1529 	 */
1530 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1531 
1532 	/*
1533 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1534 	 * the E1000 that this frame is available to transmit.
1535 	 */
1536 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1537 
1538 	return (0);
1539 }
1540 
1541 static void
1542 emx_set_promisc(struct emx_softc *sc)
1543 {
1544 	struct ifnet *ifp = &sc->arpcom.ac_if;
1545 	uint32_t reg_rctl;
1546 
1547 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1548 
1549 	if (ifp->if_flags & IFF_PROMISC) {
1550 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1551 		/* Turn this on if you want to see bad packets */
1552 		if (emx_debug_sbp)
1553 			reg_rctl |= E1000_RCTL_SBP;
1554 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1555 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1556 		reg_rctl |= E1000_RCTL_MPE;
1557 		reg_rctl &= ~E1000_RCTL_UPE;
1558 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1559 	}
1560 }
1561 
1562 static void
1563 emx_disable_promisc(struct emx_softc *sc)
1564 {
1565 	uint32_t reg_rctl;
1566 
1567 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1568 
1569 	reg_rctl &= ~E1000_RCTL_UPE;
1570 	reg_rctl &= ~E1000_RCTL_MPE;
1571 	reg_rctl &= ~E1000_RCTL_SBP;
1572 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1573 }
1574 
1575 static void
1576 emx_set_multi(struct emx_softc *sc)
1577 {
1578 	struct ifnet *ifp = &sc->arpcom.ac_if;
1579 	struct ifmultiaddr *ifma;
1580 	uint32_t reg_rctl = 0;
1581 	uint8_t *mta;
1582 	int mcnt = 0;
1583 
1584 	mta = sc->mta;
1585 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1586 
1587 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1588 		if (ifma->ifma_addr->sa_family != AF_LINK)
1589 			continue;
1590 
1591 		if (mcnt == EMX_MCAST_ADDR_MAX)
1592 			break;
1593 
1594 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1595 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1596 		mcnt++;
1597 	}
1598 
1599 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1600 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1601 		reg_rctl |= E1000_RCTL_MPE;
1602 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1603 	} else {
1604 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1605 	}
1606 }
1607 
1608 /*
1609  * This routine checks for link status and updates statistics.
1610  */
1611 static void
1612 emx_timer(void *xsc)
1613 {
1614 	struct emx_softc *sc = xsc;
1615 	struct ifnet *ifp = &sc->arpcom.ac_if;
1616 
1617 	ifnet_serialize_all(ifp);
1618 
1619 	emx_update_link_status(sc);
1620 	emx_update_stats(sc);
1621 
1622 	/* Reset LAA into RAR[0] on 82571 */
1623 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1624 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1625 
1626 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1627 		emx_print_hw_stats(sc);
1628 
1629 	emx_smartspeed(sc);
1630 
1631 	callout_reset(&sc->timer, hz, emx_timer, sc);
1632 
1633 	ifnet_deserialize_all(ifp);
1634 }
1635 
1636 static void
1637 emx_update_link_status(struct emx_softc *sc)
1638 {
1639 	struct e1000_hw *hw = &sc->hw;
1640 	struct ifnet *ifp = &sc->arpcom.ac_if;
1641 	device_t dev = sc->dev;
1642 	uint32_t link_check = 0;
1643 
1644 	/* Get the cached link value or read phy for real */
1645 	switch (hw->phy.media_type) {
1646 	case e1000_media_type_copper:
1647 		if (hw->mac.get_link_status) {
1648 			/* Do the work to read phy */
1649 			e1000_check_for_link(hw);
1650 			link_check = !hw->mac.get_link_status;
1651 			if (link_check) /* ESB2 fix */
1652 				e1000_cfg_on_link_up(hw);
1653 		} else {
1654 			link_check = TRUE;
1655 		}
1656 		break;
1657 
1658 	case e1000_media_type_fiber:
1659 		e1000_check_for_link(hw);
1660 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1661 		break;
1662 
1663 	case e1000_media_type_internal_serdes:
1664 		e1000_check_for_link(hw);
1665 		link_check = sc->hw.mac.serdes_has_link;
1666 		break;
1667 
1668 	case e1000_media_type_unknown:
1669 	default:
1670 		break;
1671 	}
1672 
1673 	/* Now check for a transition */
1674 	if (link_check && sc->link_active == 0) {
1675 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1676 		    &sc->link_duplex);
1677 
1678 		/*
1679 		 * Check if we should enable/disable SPEED_MODE bit on
1680 		 * 82571EB/82572EI
1681 		 */
1682 		if (sc->link_speed != SPEED_1000 &&
1683 		    (hw->mac.type == e1000_82571 ||
1684 		     hw->mac.type == e1000_82572)) {
1685 			int tarc0;
1686 
1687 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1688 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1689 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1690 		}
1691 		if (bootverbose) {
1692 			device_printf(dev, "Link is up %d Mbps %s\n",
1693 			    sc->link_speed,
1694 			    ((sc->link_duplex == FULL_DUPLEX) ?
1695 			    "Full Duplex" : "Half Duplex"));
1696 		}
1697 		sc->link_active = 1;
1698 		sc->smartspeed = 0;
1699 		ifp->if_baudrate = sc->link_speed * 1000000;
1700 		ifp->if_link_state = LINK_STATE_UP;
1701 		if_link_state_change(ifp);
1702 	} else if (!link_check && sc->link_active == 1) {
1703 		ifp->if_baudrate = sc->link_speed = 0;
1704 		sc->link_duplex = 0;
1705 		if (bootverbose)
1706 			device_printf(dev, "Link is Down\n");
1707 		sc->link_active = 0;
1708 #if 0
1709 		/* Link down, disable watchdog */
1710 		if->if_timer = 0;
1711 #endif
1712 		ifp->if_link_state = LINK_STATE_DOWN;
1713 		if_link_state_change(ifp);
1714 	}
1715 }
1716 
1717 static void
1718 emx_stop(struct emx_softc *sc)
1719 {
1720 	struct ifnet *ifp = &sc->arpcom.ac_if;
1721 	int i;
1722 
1723 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1724 
1725 	emx_disable_intr(sc);
1726 
1727 	callout_stop(&sc->timer);
1728 
1729 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1730 	ifp->if_timer = 0;
1731 
1732 	/*
1733 	 * Disable multiple receive queues.
1734 	 *
1735 	 * NOTE:
1736 	 * We should disable multiple receive queues before
1737 	 * resetting the hardware.
1738 	 */
1739 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1740 
1741 	e1000_reset_hw(&sc->hw);
1742 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1743 
1744 	for (i = 0; i < sc->num_tx_desc; i++) {
1745 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1746 
1747 		if (tx_buffer->m_head != NULL) {
1748 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1749 			m_freem(tx_buffer->m_head);
1750 			tx_buffer->m_head = NULL;
1751 		}
1752 	}
1753 
1754 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1755 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1756 
1757 	sc->csum_flags = 0;
1758 	sc->csum_ehlen = 0;
1759 	sc->csum_iphlen = 0;
1760 
1761 	sc->tx_dd_head = 0;
1762 	sc->tx_dd_tail = 0;
1763 	sc->tx_nsegs = 0;
1764 }
1765 
1766 static int
1767 emx_reset(struct emx_softc *sc)
1768 {
1769 	device_t dev = sc->dev;
1770 	uint16_t rx_buffer_size;
1771 
1772 	/* Set up smart power down as default off on newer adapters. */
1773 	if (!emx_smart_pwr_down &&
1774 	    (sc->hw.mac.type == e1000_82571 ||
1775 	     sc->hw.mac.type == e1000_82572)) {
1776 		uint16_t phy_tmp = 0;
1777 
1778 		/* Speed up time to link by disabling smart power down. */
1779 		e1000_read_phy_reg(&sc->hw,
1780 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1781 		phy_tmp &= ~IGP02E1000_PM_SPD;
1782 		e1000_write_phy_reg(&sc->hw,
1783 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1784 	}
1785 
1786 	/*
1787 	 * These parameters control the automatic generation (Tx) and
1788 	 * response (Rx) to Ethernet PAUSE frames.
1789 	 * - High water mark should allow for at least two frames to be
1790 	 *   received after sending an XOFF.
1791 	 * - Low water mark works best when it is very near the high water mark.
1792 	 *   This allows the receiver to restart by sending XON when it has
1793 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1794 	 *   restart after one full frame is pulled from the buffer. There
1795 	 *   could be several smaller frames in the buffer and if so they will
1796 	 *   not trigger the XON until their total number reduces the buffer
1797 	 *   by 1500.
1798 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1799 	 */
1800 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1801 
1802 	sc->hw.fc.high_water = rx_buffer_size -
1803 			       roundup2(sc->max_frame_size, 1024);
1804 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1805 
1806 	if (sc->hw.mac.type == e1000_80003es2lan)
1807 		sc->hw.fc.pause_time = 0xFFFF;
1808 	else
1809 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1810 	sc->hw.fc.send_xon = TRUE;
1811 	sc->hw.fc.requested_mode = e1000_fc_full;
1812 
1813 	/* Issue a global reset */
1814 	e1000_reset_hw(&sc->hw);
1815 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1816 	emx_disable_aspm(sc);
1817 
1818 	if (e1000_init_hw(&sc->hw) < 0) {
1819 		device_printf(dev, "Hardware Initialization Failed\n");
1820 		return (EIO);
1821 	}
1822 
1823 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1824 	e1000_get_phy_info(&sc->hw);
1825 	e1000_check_for_link(&sc->hw);
1826 
1827 	return (0);
1828 }
1829 
1830 static void
1831 emx_setup_ifp(struct emx_softc *sc)
1832 {
1833 	struct ifnet *ifp = &sc->arpcom.ac_if;
1834 
1835 	if_initname(ifp, device_get_name(sc->dev),
1836 		    device_get_unit(sc->dev));
1837 	ifp->if_softc = sc;
1838 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1839 	ifp->if_init =  emx_init;
1840 	ifp->if_ioctl = emx_ioctl;
1841 	ifp->if_start = emx_start;
1842 #ifdef IFPOLL_ENABLE
1843 	ifp->if_qpoll = emx_qpoll;
1844 #endif
1845 	ifp->if_watchdog = emx_watchdog;
1846 	ifp->if_serialize = emx_serialize;
1847 	ifp->if_deserialize = emx_deserialize;
1848 	ifp->if_tryserialize = emx_tryserialize;
1849 #ifdef INVARIANTS
1850 	ifp->if_serialize_assert = emx_serialize_assert;
1851 #endif
1852 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1853 	ifq_set_ready(&ifp->if_snd);
1854 
1855 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1856 
1857 	ifp->if_capabilities = IFCAP_HWCSUM |
1858 			       IFCAP_VLAN_HWTAGGING |
1859 			       IFCAP_VLAN_MTU;
1860 	if (sc->rx_ring_cnt > 1)
1861 		ifp->if_capabilities |= IFCAP_RSS;
1862 	ifp->if_capenable = ifp->if_capabilities;
1863 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1864 
1865 	/*
1866 	 * Tell the upper layer(s) we support long frames.
1867 	 */
1868 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1869 
1870 	/*
1871 	 * Specify the media types supported by this sc and register
1872 	 * callbacks to update media and link information
1873 	 */
1874 	ifmedia_init(&sc->media, IFM_IMASK,
1875 		     emx_media_change, emx_media_status);
1876 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1877 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1878 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1879 			    0, NULL);
1880 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1881 	} else {
1882 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1883 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1884 			    0, NULL);
1885 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1886 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1887 			    0, NULL);
1888 		if (sc->hw.phy.type != e1000_phy_ife) {
1889 			ifmedia_add(&sc->media,
1890 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1891 			ifmedia_add(&sc->media,
1892 				IFM_ETHER | IFM_1000_T, 0, NULL);
1893 		}
1894 	}
1895 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1896 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1897 }
1898 
1899 /*
1900  * Workaround for SmartSpeed on 82541 and 82547 controllers
1901  */
1902 static void
1903 emx_smartspeed(struct emx_softc *sc)
1904 {
1905 	uint16_t phy_tmp;
1906 
1907 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1908 	    sc->hw.mac.autoneg == 0 ||
1909 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1910 		return;
1911 
1912 	if (sc->smartspeed == 0) {
1913 		/*
1914 		 * If Master/Slave config fault is asserted twice,
1915 		 * we assume back-to-back
1916 		 */
1917 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1918 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1919 			return;
1920 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1921 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1922 			e1000_read_phy_reg(&sc->hw,
1923 			    PHY_1000T_CTRL, &phy_tmp);
1924 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1925 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1926 				e1000_write_phy_reg(&sc->hw,
1927 				    PHY_1000T_CTRL, phy_tmp);
1928 				sc->smartspeed++;
1929 				if (sc->hw.mac.autoneg &&
1930 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1931 				    !e1000_read_phy_reg(&sc->hw,
1932 				     PHY_CONTROL, &phy_tmp)) {
1933 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1934 						   MII_CR_RESTART_AUTO_NEG;
1935 					e1000_write_phy_reg(&sc->hw,
1936 					    PHY_CONTROL, phy_tmp);
1937 				}
1938 			}
1939 		}
1940 		return;
1941 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1942 		/* If still no link, perhaps using 2/3 pair cable */
1943 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1944 		phy_tmp |= CR_1000T_MS_ENABLE;
1945 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1946 		if (sc->hw.mac.autoneg &&
1947 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1948 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1949 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1950 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1951 		}
1952 	}
1953 
1954 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1955 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1956 		sc->smartspeed = 0;
1957 }
1958 
1959 static int
1960 emx_create_tx_ring(struct emx_softc *sc)
1961 {
1962 	device_t dev = sc->dev;
1963 	struct emx_txbuf *tx_buffer;
1964 	int error, i, tsize, ntxd;
1965 
1966 	/*
1967 	 * Validate number of transmit descriptors.  It must not exceed
1968 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1969 	 */
1970 	ntxd = device_getenv_int(dev, "txd", emx_txd);
1971 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1972 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
1973 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1974 		    EMX_DEFAULT_TXD, ntxd);
1975 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1976 	} else {
1977 		sc->num_tx_desc = ntxd;
1978 	}
1979 
1980 	/*
1981 	 * Allocate Transmit Descriptor ring
1982 	 */
1983 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1984 			 EMX_DBA_ALIGN);
1985 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1986 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1987 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1988 				&sc->tx_desc_paddr);
1989 	if (sc->tx_desc_base == NULL) {
1990 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1991 		return ENOMEM;
1992 	}
1993 
1994 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1995 			     M_DEVBUF, M_WAITOK | M_ZERO);
1996 
1997 	/*
1998 	 * Create DMA tags for tx buffers
1999 	 */
2000 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2001 			1, 0,			/* alignment, bounds */
2002 			BUS_SPACE_MAXADDR,	/* lowaddr */
2003 			BUS_SPACE_MAXADDR,	/* highaddr */
2004 			NULL, NULL,		/* filter, filterarg */
2005 			EMX_TSO_SIZE,		/* maxsize */
2006 			EMX_MAX_SCATTER,	/* nsegments */
2007 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2008 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2009 			BUS_DMA_ONEBPAGE,	/* flags */
2010 			&sc->txtag);
2011 	if (error) {
2012 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2013 		kfree(sc->tx_buf, M_DEVBUF);
2014 		sc->tx_buf = NULL;
2015 		return error;
2016 	}
2017 
2018 	/*
2019 	 * Create DMA maps for tx buffers
2020 	 */
2021 	for (i = 0; i < sc->num_tx_desc; i++) {
2022 		tx_buffer = &sc->tx_buf[i];
2023 
2024 		error = bus_dmamap_create(sc->txtag,
2025 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2026 					  &tx_buffer->map);
2027 		if (error) {
2028 			device_printf(dev, "Unable to create TX DMA map\n");
2029 			emx_destroy_tx_ring(sc, i);
2030 			return error;
2031 		}
2032 	}
2033 	return (0);
2034 }
2035 
2036 static void
2037 emx_init_tx_ring(struct emx_softc *sc)
2038 {
2039 	/* Clear the old ring contents */
2040 	bzero(sc->tx_desc_base,
2041 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
2042 
2043 	/* Reset state */
2044 	sc->next_avail_tx_desc = 0;
2045 	sc->next_tx_to_clean = 0;
2046 	sc->num_tx_desc_avail = sc->num_tx_desc;
2047 }
2048 
2049 static void
2050 emx_init_tx_unit(struct emx_softc *sc)
2051 {
2052 	uint32_t tctl, tarc, tipg = 0;
2053 	uint64_t bus_addr;
2054 
2055 	/* Setup the Base and Length of the Tx Descriptor Ring */
2056 	bus_addr = sc->tx_desc_paddr;
2057 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
2058 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
2059 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
2060 	    (uint32_t)(bus_addr >> 32));
2061 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2062 	    (uint32_t)bus_addr);
2063 	/* Setup the HW Tx Head and Tail descriptor pointers */
2064 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2065 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2066 
2067 	/* Set the default values for the Tx Inter Packet Gap timer */
2068 	switch (sc->hw.mac.type) {
2069 	case e1000_80003es2lan:
2070 		tipg = DEFAULT_82543_TIPG_IPGR1;
2071 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2072 		    E1000_TIPG_IPGR2_SHIFT;
2073 		break;
2074 
2075 	default:
2076 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2077 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2078 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2079 		else
2080 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2081 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2082 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2083 		break;
2084 	}
2085 
2086 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2087 
2088 	/* NOTE: 0 is not allowed for TIDV */
2089 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2090 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2091 
2092 	if (sc->hw.mac.type == e1000_82571 ||
2093 	    sc->hw.mac.type == e1000_82572) {
2094 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2095 		tarc |= EMX_TARC_SPEED_MODE;
2096 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2097 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2098 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2099 		tarc |= 1;
2100 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2101 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2102 		tarc |= 1;
2103 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2104 	}
2105 
2106 	/* Program the Transmit Control Register */
2107 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2108 	tctl &= ~E1000_TCTL_CT;
2109 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2110 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2111 	tctl |= E1000_TCTL_MULR;
2112 
2113 	/* This write will effectively turn on the transmit unit. */
2114 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2115 }
2116 
2117 static void
2118 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2119 {
2120 	struct emx_txbuf *tx_buffer;
2121 	int i;
2122 
2123 	/* Free Transmit Descriptor ring */
2124 	if (sc->tx_desc_base) {
2125 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2126 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2127 				sc->tx_desc_dmap);
2128 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2129 
2130 		sc->tx_desc_base = NULL;
2131 	}
2132 
2133 	if (sc->tx_buf == NULL)
2134 		return;
2135 
2136 	for (i = 0; i < ndesc; i++) {
2137 		tx_buffer = &sc->tx_buf[i];
2138 
2139 		KKASSERT(tx_buffer->m_head == NULL);
2140 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2141 	}
2142 	bus_dma_tag_destroy(sc->txtag);
2143 
2144 	kfree(sc->tx_buf, M_DEVBUF);
2145 	sc->tx_buf = NULL;
2146 }
2147 
2148 /*
2149  * The offload context needs to be set when we transfer the first
2150  * packet of a particular protocol (TCP/UDP).  This routine has been
2151  * enhanced to deal with inserted VLAN headers.
2152  *
2153  * If the new packet's ether header length, ip header length and
2154  * csum offloading type are same as the previous packet, we should
2155  * avoid allocating a new csum context descriptor; mainly to take
2156  * advantage of the pipeline effect of the TX data read request.
2157  *
2158  * This function returns number of TX descrptors allocated for
2159  * csum context.
2160  */
2161 static int
2162 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2163 	   uint32_t *txd_upper, uint32_t *txd_lower)
2164 {
2165 	struct e1000_context_desc *TXD;
2166 	struct emx_txbuf *tx_buffer;
2167 	struct ether_vlan_header *eh;
2168 	struct ip *ip;
2169 	int curr_txd, ehdrlen, csum_flags;
2170 	uint32_t cmd, hdr_len, ip_hlen;
2171 	uint16_t etype;
2172 
2173 	/*
2174 	 * Determine where frame payload starts.
2175 	 * Jump over vlan headers if already present,
2176 	 * helpful for QinQ too.
2177 	 */
2178 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2179 		("emx_txcsum_pullup is not called (eh)?"));
2180 	eh = mtod(mp, struct ether_vlan_header *);
2181 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2182 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2183 			("emx_txcsum_pullup is not called (evh)?"));
2184 		etype = ntohs(eh->evl_proto);
2185 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2186 	} else {
2187 		etype = ntohs(eh->evl_encap_proto);
2188 		ehdrlen = ETHER_HDR_LEN;
2189 	}
2190 
2191 	/*
2192 	 * We only support TCP/UDP for IPv4 for the moment.
2193 	 * TODO: Support SCTP too when it hits the tree.
2194 	 */
2195 	if (etype != ETHERTYPE_IP)
2196 		return 0;
2197 
2198 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2199 		("emx_txcsum_pullup is not called (eh+ip_vhl)?"));
2200 
2201 	/* NOTE: We could only safely access ip.ip_vhl part */
2202 	ip = (struct ip *)(mp->m_data + ehdrlen);
2203 	ip_hlen = ip->ip_hl << 2;
2204 
2205 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2206 
2207 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2208 	    sc->csum_flags == csum_flags) {
2209 		/*
2210 		 * Same csum offload context as the previous packets;
2211 		 * just return.
2212 		 */
2213 		*txd_upper = sc->csum_txd_upper;
2214 		*txd_lower = sc->csum_txd_lower;
2215 		return 0;
2216 	}
2217 
2218 	/*
2219 	 * Setup a new csum offload context.
2220 	 */
2221 
2222 	curr_txd = sc->next_avail_tx_desc;
2223 	tx_buffer = &sc->tx_buf[curr_txd];
2224 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2225 
2226 	cmd = 0;
2227 
2228 	/* Setup of IP header checksum. */
2229 	if (csum_flags & CSUM_IP) {
2230 		/*
2231 		 * Start offset for header checksum calculation.
2232 		 * End offset for header checksum calculation.
2233 		 * Offset of place to put the checksum.
2234 		 */
2235 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2236 		TXD->lower_setup.ip_fields.ipcse =
2237 		    htole16(ehdrlen + ip_hlen - 1);
2238 		TXD->lower_setup.ip_fields.ipcso =
2239 		    ehdrlen + offsetof(struct ip, ip_sum);
2240 		cmd |= E1000_TXD_CMD_IP;
2241 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2242 	}
2243 	hdr_len = ehdrlen + ip_hlen;
2244 
2245 	if (csum_flags & CSUM_TCP) {
2246 		/*
2247 		 * Start offset for payload checksum calculation.
2248 		 * End offset for payload checksum calculation.
2249 		 * Offset of place to put the checksum.
2250 		 */
2251 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2252 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2253 		TXD->upper_setup.tcp_fields.tucso =
2254 		    hdr_len + offsetof(struct tcphdr, th_sum);
2255 		cmd |= E1000_TXD_CMD_TCP;
2256 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2257 	} else if (csum_flags & CSUM_UDP) {
2258 		/*
2259 		 * Start offset for header checksum calculation.
2260 		 * End offset for header checksum calculation.
2261 		 * Offset of place to put the checksum.
2262 		 */
2263 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2264 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2265 		TXD->upper_setup.tcp_fields.tucso =
2266 		    hdr_len + offsetof(struct udphdr, uh_sum);
2267 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2268 	}
2269 
2270 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2271 		     E1000_TXD_DTYP_D;		/* Data descr */
2272 
2273 	/* Save the information for this csum offloading context */
2274 	sc->csum_ehlen = ehdrlen;
2275 	sc->csum_iphlen = ip_hlen;
2276 	sc->csum_flags = csum_flags;
2277 	sc->csum_txd_upper = *txd_upper;
2278 	sc->csum_txd_lower = *txd_lower;
2279 
2280 	TXD->tcp_seg_setup.data = htole32(0);
2281 	TXD->cmd_and_length =
2282 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2283 
2284 	if (++curr_txd == sc->num_tx_desc)
2285 		curr_txd = 0;
2286 
2287 	KKASSERT(sc->num_tx_desc_avail > 0);
2288 	sc->num_tx_desc_avail--;
2289 
2290 	sc->next_avail_tx_desc = curr_txd;
2291 	return 1;
2292 }
2293 
2294 static int
2295 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2296 {
2297 	struct mbuf *m = *m0;
2298 	struct ether_header *eh;
2299 	int len;
2300 
2301 	sc->tx_csum_try_pullup++;
2302 
2303 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2304 
2305 	if (__predict_false(!M_WRITABLE(m))) {
2306 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2307 			sc->tx_csum_drop1++;
2308 			m_freem(m);
2309 			*m0 = NULL;
2310 			return ENOBUFS;
2311 		}
2312 		eh = mtod(m, struct ether_header *);
2313 
2314 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2315 			len += EVL_ENCAPLEN;
2316 
2317 		if (m->m_len < len) {
2318 			sc->tx_csum_drop2++;
2319 			m_freem(m);
2320 			*m0 = NULL;
2321 			return ENOBUFS;
2322 		}
2323 		return 0;
2324 	}
2325 
2326 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2327 		sc->tx_csum_pullup1++;
2328 		m = m_pullup(m, ETHER_HDR_LEN);
2329 		if (m == NULL) {
2330 			sc->tx_csum_pullup1_failed++;
2331 			*m0 = NULL;
2332 			return ENOBUFS;
2333 		}
2334 		*m0 = m;
2335 	}
2336 	eh = mtod(m, struct ether_header *);
2337 
2338 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2339 		len += EVL_ENCAPLEN;
2340 
2341 	if (m->m_len < len) {
2342 		sc->tx_csum_pullup2++;
2343 		m = m_pullup(m, len);
2344 		if (m == NULL) {
2345 			sc->tx_csum_pullup2_failed++;
2346 			*m0 = NULL;
2347 			return ENOBUFS;
2348 		}
2349 		*m0 = m;
2350 	}
2351 	return 0;
2352 }
2353 
2354 static void
2355 emx_txeof(struct emx_softc *sc)
2356 {
2357 	struct ifnet *ifp = &sc->arpcom.ac_if;
2358 	struct emx_txbuf *tx_buffer;
2359 	int first, num_avail;
2360 
2361 	if (sc->tx_dd_head == sc->tx_dd_tail)
2362 		return;
2363 
2364 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2365 		return;
2366 
2367 	num_avail = sc->num_tx_desc_avail;
2368 	first = sc->next_tx_to_clean;
2369 
2370 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2371 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2372 		struct e1000_tx_desc *tx_desc;
2373 
2374 		tx_desc = &sc->tx_desc_base[dd_idx];
2375 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2376 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2377 
2378 			if (++dd_idx == sc->num_tx_desc)
2379 				dd_idx = 0;
2380 
2381 			while (first != dd_idx) {
2382 				logif(pkt_txclean);
2383 
2384 				num_avail++;
2385 
2386 				tx_buffer = &sc->tx_buf[first];
2387 				if (tx_buffer->m_head) {
2388 					ifp->if_opackets++;
2389 					bus_dmamap_unload(sc->txtag,
2390 							  tx_buffer->map);
2391 					m_freem(tx_buffer->m_head);
2392 					tx_buffer->m_head = NULL;
2393 				}
2394 
2395 				if (++first == sc->num_tx_desc)
2396 					first = 0;
2397 			}
2398 		} else {
2399 			break;
2400 		}
2401 	}
2402 	sc->next_tx_to_clean = first;
2403 	sc->num_tx_desc_avail = num_avail;
2404 
2405 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2406 		sc->tx_dd_head = 0;
2407 		sc->tx_dd_tail = 0;
2408 	}
2409 
2410 	if (!EMX_IS_OACTIVE(sc)) {
2411 		ifp->if_flags &= ~IFF_OACTIVE;
2412 
2413 		/* All clean, turn off the timer */
2414 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2415 			ifp->if_timer = 0;
2416 	}
2417 }
2418 
2419 static void
2420 emx_tx_collect(struct emx_softc *sc)
2421 {
2422 	struct ifnet *ifp = &sc->arpcom.ac_if;
2423 	struct emx_txbuf *tx_buffer;
2424 	int tdh, first, num_avail, dd_idx = -1;
2425 
2426 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2427 		return;
2428 
2429 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2430 	if (tdh == sc->next_tx_to_clean)
2431 		return;
2432 
2433 	if (sc->tx_dd_head != sc->tx_dd_tail)
2434 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2435 
2436 	num_avail = sc->num_tx_desc_avail;
2437 	first = sc->next_tx_to_clean;
2438 
2439 	while (first != tdh) {
2440 		logif(pkt_txclean);
2441 
2442 		num_avail++;
2443 
2444 		tx_buffer = &sc->tx_buf[first];
2445 		if (tx_buffer->m_head) {
2446 			ifp->if_opackets++;
2447 			bus_dmamap_unload(sc->txtag,
2448 					  tx_buffer->map);
2449 			m_freem(tx_buffer->m_head);
2450 			tx_buffer->m_head = NULL;
2451 		}
2452 
2453 		if (first == dd_idx) {
2454 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2455 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2456 				sc->tx_dd_head = 0;
2457 				sc->tx_dd_tail = 0;
2458 				dd_idx = -1;
2459 			} else {
2460 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2461 			}
2462 		}
2463 
2464 		if (++first == sc->num_tx_desc)
2465 			first = 0;
2466 	}
2467 	sc->next_tx_to_clean = first;
2468 	sc->num_tx_desc_avail = num_avail;
2469 
2470 	if (!EMX_IS_OACTIVE(sc)) {
2471 		ifp->if_flags &= ~IFF_OACTIVE;
2472 
2473 		/* All clean, turn off the timer */
2474 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2475 			ifp->if_timer = 0;
2476 	}
2477 }
2478 
2479 /*
2480  * When Link is lost sometimes there is work still in the TX ring
2481  * which will result in a watchdog, rather than allow that do an
2482  * attempted cleanup and then reinit here.  Note that this has been
2483  * seens mostly with fiber adapters.
2484  */
2485 static void
2486 emx_tx_purge(struct emx_softc *sc)
2487 {
2488 	struct ifnet *ifp = &sc->arpcom.ac_if;
2489 
2490 	if (!sc->link_active && ifp->if_timer) {
2491 		emx_tx_collect(sc);
2492 		if (ifp->if_timer) {
2493 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2494 			ifp->if_timer = 0;
2495 			emx_init(sc);
2496 		}
2497 	}
2498 }
2499 
2500 static int
2501 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2502 {
2503 	struct mbuf *m;
2504 	bus_dma_segment_t seg;
2505 	bus_dmamap_t map;
2506 	struct emx_rxbuf *rx_buffer;
2507 	int error, nseg;
2508 
2509 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2510 	if (m == NULL) {
2511 		rdata->mbuf_cluster_failed++;
2512 		if (init) {
2513 			if_printf(&sc->arpcom.ac_if,
2514 				  "Unable to allocate RX mbuf\n");
2515 		}
2516 		return (ENOBUFS);
2517 	}
2518 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2519 
2520 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2521 		m_adj(m, ETHER_ALIGN);
2522 
2523 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2524 			rdata->rx_sparemap, m,
2525 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2526 	if (error) {
2527 		m_freem(m);
2528 		if (init) {
2529 			if_printf(&sc->arpcom.ac_if,
2530 				  "Unable to load RX mbuf\n");
2531 		}
2532 		return (error);
2533 	}
2534 
2535 	rx_buffer = &rdata->rx_buf[i];
2536 	if (rx_buffer->m_head != NULL)
2537 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2538 
2539 	map = rx_buffer->map;
2540 	rx_buffer->map = rdata->rx_sparemap;
2541 	rdata->rx_sparemap = map;
2542 
2543 	rx_buffer->m_head = m;
2544 	rx_buffer->paddr = seg.ds_addr;
2545 
2546 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2547 	return (0);
2548 }
2549 
2550 static int
2551 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2552 {
2553 	device_t dev = sc->dev;
2554 	struct emx_rxbuf *rx_buffer;
2555 	int i, error, rsize, nrxd;
2556 
2557 	/*
2558 	 * Validate number of receive descriptors.  It must not exceed
2559 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2560 	 */
2561 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2562 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2563 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2564 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2565 		    EMX_DEFAULT_RXD, nrxd);
2566 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2567 	} else {
2568 		rdata->num_rx_desc = nrxd;
2569 	}
2570 
2571 	/*
2572 	 * Allocate Receive Descriptor ring
2573 	 */
2574 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2575 			 EMX_DBA_ALIGN);
2576 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2577 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2578 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2579 				&rdata->rx_desc_paddr);
2580 	if (rdata->rx_desc == NULL) {
2581 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2582 		return ENOMEM;
2583 	}
2584 
2585 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2586 				M_DEVBUF, M_WAITOK | M_ZERO);
2587 
2588 	/*
2589 	 * Create DMA tag for rx buffers
2590 	 */
2591 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2592 			1, 0,			/* alignment, bounds */
2593 			BUS_SPACE_MAXADDR,	/* lowaddr */
2594 			BUS_SPACE_MAXADDR,	/* highaddr */
2595 			NULL, NULL,		/* filter, filterarg */
2596 			MCLBYTES,		/* maxsize */
2597 			1,			/* nsegments */
2598 			MCLBYTES,		/* maxsegsize */
2599 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2600 			&rdata->rxtag);
2601 	if (error) {
2602 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2603 		kfree(rdata->rx_buf, M_DEVBUF);
2604 		rdata->rx_buf = NULL;
2605 		return error;
2606 	}
2607 
2608 	/*
2609 	 * Create spare DMA map for rx buffers
2610 	 */
2611 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2612 				  &rdata->rx_sparemap);
2613 	if (error) {
2614 		device_printf(dev, "Unable to create spare RX DMA map\n");
2615 		bus_dma_tag_destroy(rdata->rxtag);
2616 		kfree(rdata->rx_buf, M_DEVBUF);
2617 		rdata->rx_buf = NULL;
2618 		return error;
2619 	}
2620 
2621 	/*
2622 	 * Create DMA maps for rx buffers
2623 	 */
2624 	for (i = 0; i < rdata->num_rx_desc; i++) {
2625 		rx_buffer = &rdata->rx_buf[i];
2626 
2627 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2628 					  &rx_buffer->map);
2629 		if (error) {
2630 			device_printf(dev, "Unable to create RX DMA map\n");
2631 			emx_destroy_rx_ring(sc, rdata, i);
2632 			return error;
2633 		}
2634 	}
2635 	return (0);
2636 }
2637 
2638 static void
2639 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2640 {
2641 	int i;
2642 
2643 	for (i = 0; i < rdata->num_rx_desc; i++) {
2644 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2645 
2646 		if (rx_buffer->m_head != NULL) {
2647 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2648 			m_freem(rx_buffer->m_head);
2649 			rx_buffer->m_head = NULL;
2650 		}
2651 	}
2652 
2653 	if (rdata->fmp != NULL)
2654 		m_freem(rdata->fmp);
2655 	rdata->fmp = NULL;
2656 	rdata->lmp = NULL;
2657 }
2658 
2659 static int
2660 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2661 {
2662 	int i, error;
2663 
2664 	/* Reset descriptor ring */
2665 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2666 
2667 	/* Allocate new ones. */
2668 	for (i = 0; i < rdata->num_rx_desc; i++) {
2669 		error = emx_newbuf(sc, rdata, i, 1);
2670 		if (error)
2671 			return (error);
2672 	}
2673 
2674 	/* Setup our descriptor pointers */
2675 	rdata->next_rx_desc_to_check = 0;
2676 
2677 	return (0);
2678 }
2679 
2680 static void
2681 emx_init_rx_unit(struct emx_softc *sc)
2682 {
2683 	struct ifnet *ifp = &sc->arpcom.ac_if;
2684 	uint64_t bus_addr;
2685 	uint32_t rctl, itr, rfctl;
2686 	int i;
2687 
2688 	/*
2689 	 * Make sure receives are disabled while setting
2690 	 * up the descriptor ring
2691 	 */
2692 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2693 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2694 
2695 	/*
2696 	 * Set the interrupt throttling rate. Value is calculated
2697 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2698 	 */
2699 	if (sc->int_throttle_ceil)
2700 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2701 	else
2702 		itr = 0;
2703 	emx_set_itr(sc, itr);
2704 
2705 	/* Use extended RX descriptor */
2706 	rfctl = E1000_RFCTL_EXTEN;
2707 
2708 	/* Disable accelerated ackknowledge */
2709 	if (sc->hw.mac.type == e1000_82574)
2710 		rfctl |= E1000_RFCTL_ACK_DIS;
2711 
2712 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2713 
2714 	/*
2715 	 * Receive Checksum Offload for TCP and UDP
2716 	 *
2717 	 * Checksum offloading is also enabled if multiple receive
2718 	 * queue is to be supported, since we need it to figure out
2719 	 * packet type.
2720 	 */
2721 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2722 	    sc->rx_ring_cnt > 1) {
2723 		uint32_t rxcsum;
2724 
2725 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2726 
2727 		/*
2728 		 * NOTE:
2729 		 * PCSD must be enabled to enable multiple
2730 		 * receive queues.
2731 		 */
2732 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2733 			  E1000_RXCSUM_PCSD;
2734 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2735 	}
2736 
2737 	/*
2738 	 * Configure multiple receive queue (RSS)
2739 	 */
2740 	if (sc->rx_ring_cnt > 1) {
2741 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2742 		uint32_t reta;
2743 
2744 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2745 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2746 
2747 		/*
2748 		 * NOTE:
2749 		 * When we reach here, RSS has already been disabled
2750 		 * in emx_stop(), so we could safely configure RSS key
2751 		 * and redirect table.
2752 		 */
2753 
2754 		/*
2755 		 * Configure RSS key
2756 		 */
2757 		toeplitz_get_key(key, sizeof(key));
2758 		for (i = 0; i < EMX_NRSSRK; ++i) {
2759 			uint32_t rssrk;
2760 
2761 			rssrk = EMX_RSSRK_VAL(key, i);
2762 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2763 
2764 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2765 		}
2766 
2767 		/*
2768 		 * Configure RSS redirect table in following fashion:
2769 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2770 		 */
2771 		reta = 0;
2772 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2773 			uint32_t q;
2774 
2775 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2776 			reta |= q << (8 * i);
2777 		}
2778 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2779 
2780 		for (i = 0; i < EMX_NRETA; ++i)
2781 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2782 
2783 		/*
2784 		 * Enable multiple receive queues.
2785 		 * Enable IPv4 RSS standard hash functions.
2786 		 * Disable RSS interrupt.
2787 		 */
2788 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2789 				E1000_MRQC_ENABLE_RSS_2Q |
2790 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2791 				E1000_MRQC_RSS_FIELD_IPV4);
2792 	}
2793 
2794 	/*
2795 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2796 	 * long latencies are observed, like Lenovo X60. This
2797 	 * change eliminates the problem, but since having positive
2798 	 * values in RDTR is a known source of problems on other
2799 	 * platforms another solution is being sought.
2800 	 */
2801 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2802 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2803 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2804 	}
2805 
2806 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2807 		struct emx_rxdata *rdata = &sc->rx_data[i];
2808 
2809 		/*
2810 		 * Setup the Base and Length of the Rx Descriptor Ring
2811 		 */
2812 		bus_addr = rdata->rx_desc_paddr;
2813 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2814 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2815 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2816 		    (uint32_t)(bus_addr >> 32));
2817 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2818 		    (uint32_t)bus_addr);
2819 
2820 		/*
2821 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2822 		 */
2823 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2824 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2825 		    sc->rx_data[i].num_rx_desc - 1);
2826 	}
2827 
2828 	/* Setup the Receive Control Register */
2829 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2830 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2831 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2832 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2833 
2834 	/* Make sure VLAN Filters are off */
2835 	rctl &= ~E1000_RCTL_VFE;
2836 
2837 	/* Don't store bad paket */
2838 	rctl &= ~E1000_RCTL_SBP;
2839 
2840 	/* MCLBYTES */
2841 	rctl |= E1000_RCTL_SZ_2048;
2842 
2843 	if (ifp->if_mtu > ETHERMTU)
2844 		rctl |= E1000_RCTL_LPE;
2845 	else
2846 		rctl &= ~E1000_RCTL_LPE;
2847 
2848 	/* Enable Receives */
2849 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2850 }
2851 
2852 static void
2853 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2854 {
2855 	struct emx_rxbuf *rx_buffer;
2856 	int i;
2857 
2858 	/* Free Receive Descriptor ring */
2859 	if (rdata->rx_desc) {
2860 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2861 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2862 				rdata->rx_desc_dmap);
2863 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2864 
2865 		rdata->rx_desc = NULL;
2866 	}
2867 
2868 	if (rdata->rx_buf == NULL)
2869 		return;
2870 
2871 	for (i = 0; i < ndesc; i++) {
2872 		rx_buffer = &rdata->rx_buf[i];
2873 
2874 		KKASSERT(rx_buffer->m_head == NULL);
2875 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2876 	}
2877 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2878 	bus_dma_tag_destroy(rdata->rxtag);
2879 
2880 	kfree(rdata->rx_buf, M_DEVBUF);
2881 	rdata->rx_buf = NULL;
2882 }
2883 
2884 static void
2885 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2886 {
2887 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2888 	struct ifnet *ifp = &sc->arpcom.ac_if;
2889 	uint32_t staterr;
2890 	emx_rxdesc_t *current_desc;
2891 	struct mbuf *mp;
2892 	int i;
2893 
2894 	i = rdata->next_rx_desc_to_check;
2895 	current_desc = &rdata->rx_desc[i];
2896 	staterr = le32toh(current_desc->rxd_staterr);
2897 
2898 	if (!(staterr & E1000_RXD_STAT_DD))
2899 		return;
2900 
2901 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2902 		struct pktinfo *pi = NULL, pi0;
2903 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2904 		struct mbuf *m = NULL;
2905 		int eop, len;
2906 
2907 		logif(pkt_receive);
2908 
2909 		mp = rx_buf->m_head;
2910 
2911 		/*
2912 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2913 		 * needs to access the last received byte in the mbuf.
2914 		 */
2915 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2916 				BUS_DMASYNC_POSTREAD);
2917 
2918 		len = le16toh(current_desc->rxd_length);
2919 		if (staterr & E1000_RXD_STAT_EOP) {
2920 			count--;
2921 			eop = 1;
2922 		} else {
2923 			eop = 0;
2924 		}
2925 
2926 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2927 			uint16_t vlan = 0;
2928 			uint32_t mrq, rss_hash;
2929 
2930 			/*
2931 			 * Save several necessary information,
2932 			 * before emx_newbuf() destroy it.
2933 			 */
2934 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2935 				vlan = le16toh(current_desc->rxd_vlan);
2936 
2937 			mrq = le32toh(current_desc->rxd_mrq);
2938 			rss_hash = le32toh(current_desc->rxd_rss);
2939 
2940 			EMX_RSS_DPRINTF(sc, 10,
2941 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2942 			    ring_idx, mrq, rss_hash);
2943 
2944 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2945 				ifp->if_iqdrops++;
2946 				goto discard;
2947 			}
2948 
2949 			/* Assign correct length to the current fragment */
2950 			mp->m_len = len;
2951 
2952 			if (rdata->fmp == NULL) {
2953 				mp->m_pkthdr.len = len;
2954 				rdata->fmp = mp; /* Store the first mbuf */
2955 				rdata->lmp = mp;
2956 			} else {
2957 				/*
2958 				 * Chain mbuf's together
2959 				 */
2960 				rdata->lmp->m_next = mp;
2961 				rdata->lmp = rdata->lmp->m_next;
2962 				rdata->fmp->m_pkthdr.len += len;
2963 			}
2964 
2965 			if (eop) {
2966 				rdata->fmp->m_pkthdr.rcvif = ifp;
2967 				ifp->if_ipackets++;
2968 
2969 				if (ifp->if_capenable & IFCAP_RXCSUM)
2970 					emx_rxcsum(staterr, rdata->fmp);
2971 
2972 				if (staterr & E1000_RXD_STAT_VP) {
2973 					rdata->fmp->m_pkthdr.ether_vlantag =
2974 					    vlan;
2975 					rdata->fmp->m_flags |= M_VLANTAG;
2976 				}
2977 				m = rdata->fmp;
2978 				rdata->fmp = NULL;
2979 				rdata->lmp = NULL;
2980 
2981 				if (ifp->if_capenable & IFCAP_RSS) {
2982 					pi = emx_rssinfo(m, &pi0, mrq,
2983 							 rss_hash, staterr);
2984 				}
2985 #ifdef EMX_RSS_DEBUG
2986 				rdata->rx_pkts++;
2987 #endif
2988 			}
2989 		} else {
2990 			ifp->if_ierrors++;
2991 discard:
2992 			emx_setup_rxdesc(current_desc, rx_buf);
2993 			if (rdata->fmp != NULL) {
2994 				m_freem(rdata->fmp);
2995 				rdata->fmp = NULL;
2996 				rdata->lmp = NULL;
2997 			}
2998 			m = NULL;
2999 		}
3000 
3001 		if (m != NULL)
3002 			ether_input_pkt(ifp, m, pi);
3003 
3004 		/* Advance our pointers to the next descriptor. */
3005 		if (++i == rdata->num_rx_desc)
3006 			i = 0;
3007 
3008 		current_desc = &rdata->rx_desc[i];
3009 		staterr = le32toh(current_desc->rxd_staterr);
3010 	}
3011 	rdata->next_rx_desc_to_check = i;
3012 
3013 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3014 	if (--i < 0)
3015 		i = rdata->num_rx_desc - 1;
3016 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
3017 }
3018 
3019 static void
3020 emx_enable_intr(struct emx_softc *sc)
3021 {
3022 	uint32_t ims_mask = IMS_ENABLE_MASK;
3023 
3024 	lwkt_serialize_handler_enable(&sc->main_serialize);
3025 
3026 #if 0
3027 	if (sc->hw.mac.type == e1000_82574) {
3028 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3029 		ims_mask |= EM_MSIX_MASK;
3030 	}
3031 #endif
3032 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3033 }
3034 
3035 static void
3036 emx_disable_intr(struct emx_softc *sc)
3037 {
3038 	if (sc->hw.mac.type == e1000_82574)
3039 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3040 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3041 
3042 	lwkt_serialize_handler_disable(&sc->main_serialize);
3043 }
3044 
3045 /*
3046  * Bit of a misnomer, what this really means is
3047  * to enable OS management of the system... aka
3048  * to disable special hardware management features
3049  */
3050 static void
3051 emx_get_mgmt(struct emx_softc *sc)
3052 {
3053 	/* A shared code workaround */
3054 	if (sc->has_manage) {
3055 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3056 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3057 
3058 		/* disable hardware interception of ARP */
3059 		manc &= ~(E1000_MANC_ARP_EN);
3060 
3061                 /* enable receiving management packets to the host */
3062 		manc |= E1000_MANC_EN_MNG2HOST;
3063 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3064 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3065 		manc2h |= E1000_MNG2HOST_PORT_623;
3066 		manc2h |= E1000_MNG2HOST_PORT_664;
3067 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3068 
3069 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3070 	}
3071 }
3072 
3073 /*
3074  * Give control back to hardware management
3075  * controller if there is one.
3076  */
3077 static void
3078 emx_rel_mgmt(struct emx_softc *sc)
3079 {
3080 	if (sc->has_manage) {
3081 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3082 
3083 		/* re-enable hardware interception of ARP */
3084 		manc |= E1000_MANC_ARP_EN;
3085 		manc &= ~E1000_MANC_EN_MNG2HOST;
3086 
3087 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3088 	}
3089 }
3090 
3091 /*
3092  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3093  * For ASF and Pass Through versions of f/w this means that
3094  * the driver is loaded.  For AMT version (only with 82573)
3095  * of the f/w this means that the network i/f is open.
3096  */
3097 static void
3098 emx_get_hw_control(struct emx_softc *sc)
3099 {
3100 	/* Let firmware know the driver has taken over */
3101 	if (sc->hw.mac.type == e1000_82573) {
3102 		uint32_t swsm;
3103 
3104 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3105 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3106 		    swsm | E1000_SWSM_DRV_LOAD);
3107 	} else {
3108 		uint32_t ctrl_ext;
3109 
3110 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3111 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3112 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3113 	}
3114 	sc->control_hw = 1;
3115 }
3116 
3117 /*
3118  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3119  * For ASF and Pass Through versions of f/w this means that the
3120  * driver is no longer loaded.  For AMT version (only with 82573)
3121  * of the f/w this means that the network i/f is closed.
3122  */
3123 static void
3124 emx_rel_hw_control(struct emx_softc *sc)
3125 {
3126 	if (!sc->control_hw)
3127 		return;
3128 	sc->control_hw = 0;
3129 
3130 	/* Let firmware taken over control of h/w */
3131 	if (sc->hw.mac.type == e1000_82573) {
3132 		uint32_t swsm;
3133 
3134 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3135 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3136 		    swsm & ~E1000_SWSM_DRV_LOAD);
3137 	} else {
3138 		uint32_t ctrl_ext;
3139 
3140 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3141 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3142 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3143 	}
3144 }
3145 
3146 static int
3147 emx_is_valid_eaddr(const uint8_t *addr)
3148 {
3149 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3150 
3151 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3152 		return (FALSE);
3153 
3154 	return (TRUE);
3155 }
3156 
3157 /*
3158  * Enable PCI Wake On Lan capability
3159  */
3160 void
3161 emx_enable_wol(device_t dev)
3162 {
3163 	uint16_t cap, status;
3164 	uint8_t id;
3165 
3166 	/* First find the capabilities pointer*/
3167 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3168 
3169 	/* Read the PM Capabilities */
3170 	id = pci_read_config(dev, cap, 1);
3171 	if (id != PCIY_PMG)     /* Something wrong */
3172 		return;
3173 
3174 	/*
3175 	 * OK, we have the power capabilities,
3176 	 * so now get the status register
3177 	 */
3178 	cap += PCIR_POWER_STATUS;
3179 	status = pci_read_config(dev, cap, 2);
3180 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3181 	pci_write_config(dev, cap, status, 2);
3182 }
3183 
3184 static void
3185 emx_update_stats(struct emx_softc *sc)
3186 {
3187 	struct ifnet *ifp = &sc->arpcom.ac_if;
3188 
3189 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3190 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3191 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3192 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3193 	}
3194 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3195 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3196 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3197 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3198 
3199 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3200 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3201 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3202 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3203 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3204 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3205 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3206 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3207 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3208 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3209 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3210 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3211 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3212 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3213 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3214 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3215 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3216 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3217 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3218 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3219 
3220 	/* For the 64-bit byte counters the low dword must be read first. */
3221 	/* Both registers clear on the read of the high dword */
3222 
3223 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3224 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3225 
3226 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3227 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3228 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3229 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3230 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3231 
3232 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3233 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3234 
3235 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3236 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3237 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3238 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3239 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3240 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3241 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3242 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3243 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3244 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3245 
3246 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3247 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3248 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3249 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3250 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3251 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3252 
3253 	ifp->if_collisions = sc->stats.colc;
3254 
3255 	/* Rx Errors */
3256 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3257 			  sc->stats.crcerrs + sc->stats.algnerrc +
3258 			  sc->stats.ruc + sc->stats.roc +
3259 			  sc->stats.mpc + sc->stats.cexterr;
3260 
3261 	/* Tx Errors */
3262 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3263 			  sc->watchdog_events;
3264 }
3265 
3266 static void
3267 emx_print_debug_info(struct emx_softc *sc)
3268 {
3269 	device_t dev = sc->dev;
3270 	uint8_t *hw_addr = sc->hw.hw_addr;
3271 
3272 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3273 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3274 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3275 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3276 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3277 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3278 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3279 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3280 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3281 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3282 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3283 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3284 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3285 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3286 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3287 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3288 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3289 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3290 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3291 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3292 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3293 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3294 	    sc->num_tx_desc_avail);
3295 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3296 	    sc->no_tx_desc_avail1);
3297 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3298 	    sc->no_tx_desc_avail2);
3299 	device_printf(dev, "Std mbuf failed = %ld\n",
3300 	    sc->mbuf_alloc_failed);
3301 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3302 	    sc->rx_data[0].mbuf_cluster_failed);
3303 	device_printf(dev, "Driver dropped packets = %ld\n",
3304 	    sc->dropped_pkts);
3305 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3306 	    sc->no_tx_dma_setup);
3307 
3308 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3309 	    sc->tx_csum_try_pullup);
3310 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3311 	    sc->tx_csum_pullup1);
3312 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3313 	    sc->tx_csum_pullup1_failed);
3314 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3315 	    sc->tx_csum_pullup2);
3316 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3317 	    sc->tx_csum_pullup2_failed);
3318 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3319 	    sc->tx_csum_drop1);
3320 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3321 	    sc->tx_csum_drop2);
3322 }
3323 
3324 static void
3325 emx_print_hw_stats(struct emx_softc *sc)
3326 {
3327 	device_t dev = sc->dev;
3328 
3329 	device_printf(dev, "Excessive collisions = %lld\n",
3330 	    (long long)sc->stats.ecol);
3331 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3332 	device_printf(dev, "Symbol errors = %lld\n",
3333 	    (long long)sc->stats.symerrs);
3334 #endif
3335 	device_printf(dev, "Sequence errors = %lld\n",
3336 	    (long long)sc->stats.sec);
3337 	device_printf(dev, "Defer count = %lld\n",
3338 	    (long long)sc->stats.dc);
3339 	device_printf(dev, "Missed Packets = %lld\n",
3340 	    (long long)sc->stats.mpc);
3341 	device_printf(dev, "Receive No Buffers = %lld\n",
3342 	    (long long)sc->stats.rnbc);
3343 	/* RLEC is inaccurate on some hardware, calculate our own. */
3344 	device_printf(dev, "Receive Length Errors = %lld\n",
3345 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3346 	device_printf(dev, "Receive errors = %lld\n",
3347 	    (long long)sc->stats.rxerrc);
3348 	device_printf(dev, "Crc errors = %lld\n",
3349 	    (long long)sc->stats.crcerrs);
3350 	device_printf(dev, "Alignment errors = %lld\n",
3351 	    (long long)sc->stats.algnerrc);
3352 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3353 	    (long long)sc->stats.cexterr);
3354 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3355 	device_printf(dev, "watchdog timeouts = %ld\n",
3356 	    sc->watchdog_events);
3357 	device_printf(dev, "XON Rcvd = %lld\n",
3358 	    (long long)sc->stats.xonrxc);
3359 	device_printf(dev, "XON Xmtd = %lld\n",
3360 	    (long long)sc->stats.xontxc);
3361 	device_printf(dev, "XOFF Rcvd = %lld\n",
3362 	    (long long)sc->stats.xoffrxc);
3363 	device_printf(dev, "XOFF Xmtd = %lld\n",
3364 	    (long long)sc->stats.xofftxc);
3365 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3366 	    (long long)sc->stats.gprc);
3367 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3368 	    (long long)sc->stats.gptc);
3369 }
3370 
3371 static void
3372 emx_print_nvm_info(struct emx_softc *sc)
3373 {
3374 	uint16_t eeprom_data;
3375 	int i, j, row = 0;
3376 
3377 	/* Its a bit crude, but it gets the job done */
3378 	kprintf("\nInterface EEPROM Dump:\n");
3379 	kprintf("Offset\n0x0000  ");
3380 	for (i = 0, j = 0; i < 32; i++, j++) {
3381 		if (j == 8) { /* Make the offset block */
3382 			j = 0; ++row;
3383 			kprintf("\n0x00%x0  ",row);
3384 		}
3385 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3386 		kprintf("%04x ", eeprom_data);
3387 	}
3388 	kprintf("\n");
3389 }
3390 
3391 static int
3392 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3393 {
3394 	struct emx_softc *sc;
3395 	struct ifnet *ifp;
3396 	int error, result;
3397 
3398 	result = -1;
3399 	error = sysctl_handle_int(oidp, &result, 0, req);
3400 	if (error || !req->newptr)
3401 		return (error);
3402 
3403 	sc = (struct emx_softc *)arg1;
3404 	ifp = &sc->arpcom.ac_if;
3405 
3406 	ifnet_serialize_all(ifp);
3407 
3408 	if (result == 1)
3409 		emx_print_debug_info(sc);
3410 
3411 	/*
3412 	 * This value will cause a hex dump of the
3413 	 * first 32 16-bit words of the EEPROM to
3414 	 * the screen.
3415 	 */
3416 	if (result == 2)
3417 		emx_print_nvm_info(sc);
3418 
3419 	ifnet_deserialize_all(ifp);
3420 
3421 	return (error);
3422 }
3423 
3424 static int
3425 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3426 {
3427 	int error, result;
3428 
3429 	result = -1;
3430 	error = sysctl_handle_int(oidp, &result, 0, req);
3431 	if (error || !req->newptr)
3432 		return (error);
3433 
3434 	if (result == 1) {
3435 		struct emx_softc *sc = (struct emx_softc *)arg1;
3436 		struct ifnet *ifp = &sc->arpcom.ac_if;
3437 
3438 		ifnet_serialize_all(ifp);
3439 		emx_print_hw_stats(sc);
3440 		ifnet_deserialize_all(ifp);
3441 	}
3442 	return (error);
3443 }
3444 
3445 static void
3446 emx_add_sysctl(struct emx_softc *sc)
3447 {
3448 #ifdef EMX_RSS_DEBUG
3449 	char rx_pkt[32];
3450 	int i;
3451 #endif
3452 
3453 	sysctl_ctx_init(&sc->sysctl_ctx);
3454 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3455 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3456 				device_get_nameunit(sc->dev),
3457 				CTLFLAG_RD, 0, "");
3458 	if (sc->sysctl_tree == NULL) {
3459 		device_printf(sc->dev, "can't add sysctl node\n");
3460 		return;
3461 	}
3462 
3463 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3464 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3465 			emx_sysctl_debug_info, "I", "Debug Information");
3466 
3467 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3468 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3469 			emx_sysctl_stats, "I", "Statistics");
3470 
3471 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3472 		       OID_AUTO, "rxd", CTLFLAG_RD,
3473 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3474 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3475 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3476 
3477 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3478 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3479 			sc, 0, emx_sysctl_int_throttle, "I",
3480 			"interrupt throttling rate");
3481 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3482 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3483 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3484 			"# segments per TX interrupt");
3485 
3486 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3487 		       OID_AUTO, "rx_ring_cnt", CTLFLAG_RD,
3488 		       &sc->rx_ring_cnt, 0, "RX ring count");
3489 
3490 #ifdef EMX_RSS_DEBUG
3491 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3492 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3493 		       0, "RSS debug level");
3494 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3495 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3496 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3497 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3498 				rx_pkt, CTLFLAG_RW,
3499 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3500 	}
3501 #endif
3502 }
3503 
3504 static int
3505 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3506 {
3507 	struct emx_softc *sc = (void *)arg1;
3508 	struct ifnet *ifp = &sc->arpcom.ac_if;
3509 	int error, throttle;
3510 
3511 	throttle = sc->int_throttle_ceil;
3512 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3513 	if (error || req->newptr == NULL)
3514 		return error;
3515 	if (throttle < 0 || throttle > 1000000000 / 256)
3516 		return EINVAL;
3517 
3518 	if (throttle) {
3519 		/*
3520 		 * Set the interrupt throttling rate in 256ns increments,
3521 		 * recalculate sysctl value assignment to get exact frequency.
3522 		 */
3523 		throttle = 1000000000 / 256 / throttle;
3524 
3525 		/* Upper 16bits of ITR is reserved and should be zero */
3526 		if (throttle & 0xffff0000)
3527 			return EINVAL;
3528 	}
3529 
3530 	ifnet_serialize_all(ifp);
3531 
3532 	if (throttle)
3533 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3534 	else
3535 		sc->int_throttle_ceil = 0;
3536 
3537 	if (ifp->if_flags & IFF_RUNNING)
3538 		emx_set_itr(sc, throttle);
3539 
3540 	ifnet_deserialize_all(ifp);
3541 
3542 	if (bootverbose) {
3543 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3544 			  sc->int_throttle_ceil);
3545 	}
3546 	return 0;
3547 }
3548 
3549 static int
3550 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3551 {
3552 	struct emx_softc *sc = (void *)arg1;
3553 	struct ifnet *ifp = &sc->arpcom.ac_if;
3554 	int error, segs;
3555 
3556 	segs = sc->tx_int_nsegs;
3557 	error = sysctl_handle_int(oidp, &segs, 0, req);
3558 	if (error || req->newptr == NULL)
3559 		return error;
3560 	if (segs <= 0)
3561 		return EINVAL;
3562 
3563 	ifnet_serialize_all(ifp);
3564 
3565 	/*
3566 	 * Don't allow int_tx_nsegs to become:
3567 	 * o  Less the oact_tx_desc
3568 	 * o  Too large that no TX desc will cause TX interrupt to
3569 	 *    be generated (OACTIVE will never recover)
3570 	 * o  Too small that will cause tx_dd[] overflow
3571 	 */
3572 	if (segs < sc->oact_tx_desc ||
3573 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3574 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3575 		error = EINVAL;
3576 	} else {
3577 		error = 0;
3578 		sc->tx_int_nsegs = segs;
3579 	}
3580 
3581 	ifnet_deserialize_all(ifp);
3582 
3583 	return error;
3584 }
3585 
3586 static int
3587 emx_dma_alloc(struct emx_softc *sc)
3588 {
3589 	int error, i;
3590 
3591 	/*
3592 	 * Create top level busdma tag
3593 	 */
3594 	error = bus_dma_tag_create(NULL, 1, 0,
3595 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3596 			NULL, NULL,
3597 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3598 			0, &sc->parent_dtag);
3599 	if (error) {
3600 		device_printf(sc->dev, "could not create top level DMA tag\n");
3601 		return error;
3602 	}
3603 
3604 	/*
3605 	 * Allocate transmit descriptors ring and buffers
3606 	 */
3607 	error = emx_create_tx_ring(sc);
3608 	if (error) {
3609 		device_printf(sc->dev, "Could not setup transmit structures\n");
3610 		return error;
3611 	}
3612 
3613 	/*
3614 	 * Allocate receive descriptors ring and buffers
3615 	 */
3616 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3617 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3618 		if (error) {
3619 			device_printf(sc->dev,
3620 			    "Could not setup receive structures\n");
3621 			return error;
3622 		}
3623 	}
3624 	return 0;
3625 }
3626 
3627 static void
3628 emx_dma_free(struct emx_softc *sc)
3629 {
3630 	int i;
3631 
3632 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3633 
3634 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3635 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3636 				    sc->rx_data[i].num_rx_desc);
3637 	}
3638 
3639 	/* Free top level busdma tag */
3640 	if (sc->parent_dtag != NULL)
3641 		bus_dma_tag_destroy(sc->parent_dtag);
3642 }
3643 
3644 static void
3645 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3646 {
3647 	struct emx_softc *sc = ifp->if_softc;
3648 
3649 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE,
3650 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3651 }
3652 
3653 static void
3654 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3655 {
3656 	struct emx_softc *sc = ifp->if_softc;
3657 
3658 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE,
3659 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3660 }
3661 
3662 static int
3663 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3664 {
3665 	struct emx_softc *sc = ifp->if_softc;
3666 
3667 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE,
3668 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3669 }
3670 
3671 static void
3672 emx_serialize_skipmain(struct emx_softc *sc)
3673 {
3674 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3675 }
3676 
3677 static void
3678 emx_deserialize_skipmain(struct emx_softc *sc)
3679 {
3680 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3681 }
3682 
3683 #ifdef INVARIANTS
3684 
3685 static void
3686 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3687     boolean_t serialized)
3688 {
3689 	struct emx_softc *sc = ifp->if_softc;
3690 
3691 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3692 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz, serialized);
3693 }
3694 
3695 #endif	/* INVARIANTS */
3696 
3697 #ifdef IFPOLL_ENABLE
3698 
3699 static void
3700 emx_qpoll_status(struct ifnet *ifp, int pollhz __unused)
3701 {
3702 	struct emx_softc *sc = ifp->if_softc;
3703 	uint32_t reg_icr;
3704 
3705 	ASSERT_SERIALIZED(&sc->main_serialize);
3706 
3707 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3708 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3709 		emx_serialize_skipmain(sc);
3710 
3711 		callout_stop(&sc->timer);
3712 		sc->hw.mac.get_link_status = 1;
3713 		emx_update_link_status(sc);
3714 		callout_reset(&sc->timer, hz, emx_timer, sc);
3715 
3716 		emx_deserialize_skipmain(sc);
3717 	}
3718 }
3719 
3720 static void
3721 emx_qpoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3722 {
3723 	struct emx_softc *sc = ifp->if_softc;
3724 
3725 	ASSERT_SERIALIZED(&sc->tx_serialize);
3726 
3727 	emx_txeof(sc);
3728 	if (!ifq_is_empty(&ifp->if_snd))
3729 		if_devstart(ifp);
3730 }
3731 
3732 static void
3733 emx_qpoll_rx(struct ifnet *ifp, void *arg, int cycle)
3734 {
3735 	struct emx_softc *sc = ifp->if_softc;
3736 	struct emx_rxdata *rdata = arg;
3737 
3738 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3739 
3740 	emx_rxeof(sc, rdata - sc->rx_data, cycle);
3741 }
3742 
3743 static void
3744 emx_qpoll(struct ifnet *ifp, struct ifpoll_info *info)
3745 {
3746 	struct emx_softc *sc = ifp->if_softc;
3747 
3748 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3749 
3750 	if (info) {
3751 		int i;
3752 
3753 		info->ifpi_status.status_func = emx_qpoll_status;
3754 		info->ifpi_status.serializer = &sc->main_serialize;
3755 
3756 		info->ifpi_tx[0].poll_func = emx_qpoll_tx;
3757 		info->ifpi_tx[0].arg = NULL;
3758 		info->ifpi_tx[0].serializer = &sc->tx_serialize;
3759 
3760 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3761 			info->ifpi_rx[i].poll_func = emx_qpoll_rx;
3762 			info->ifpi_rx[i].arg = &sc->rx_data[i];
3763 			info->ifpi_rx[i].serializer =
3764 				&sc->rx_data[i].rx_serialize;
3765 		}
3766 
3767 		if (ifp->if_flags & IFF_RUNNING)
3768 			emx_disable_intr(sc);
3769 	} else if (ifp->if_flags & IFF_RUNNING) {
3770 		emx_enable_intr(sc);
3771 	}
3772 }
3773 
3774 #endif	/* IFPOLL_ENABLE */
3775 
3776 static void
3777 emx_set_itr(struct emx_softc *sc, uint32_t itr)
3778 {
3779 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3780 	if (sc->hw.mac.type == e1000_82574) {
3781 		int i;
3782 
3783 		/*
3784 		 * When using MSIX interrupts we need to
3785 		 * throttle using the EITR register
3786 		 */
3787 		for (i = 0; i < 4; ++i)
3788 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3789 	}
3790 }
3791 
3792 /*
3793  * Disable the L0s, 82574L Errata #20
3794  */
3795 static void
3796 emx_disable_aspm(struct emx_softc *sc)
3797 {
3798 	uint16_t link_cap, link_ctrl, disable;
3799 	uint8_t pcie_ptr, reg;
3800 	device_t dev = sc->dev;
3801 
3802 	switch (sc->hw.mac.type) {
3803 	case e1000_82571:
3804 	case e1000_82572:
3805 	case e1000_82573:
3806 		/*
3807 		 * 82573 specification update
3808 		 * errata #8 disable L0s
3809 		 * errata #41 disable L1
3810 		 *
3811 		 * 82571/82572 specification update
3812 		 # errata #13 disable L1
3813 		 * errata #68 disable L0s
3814 		 */
3815 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
3816 		break;
3817 
3818 	case e1000_82574:
3819 		/*
3820 		 * 82574 specification update errata #20
3821 		 *
3822 		 * There is no need to disable L1
3823 		 */
3824 		disable = PCIEM_LNKCTL_ASPM_L0S;
3825 		break;
3826 
3827 	default:
3828 		return;
3829 	}
3830 
3831 	pcie_ptr = pci_get_pciecap_ptr(dev);
3832 	if (pcie_ptr == 0)
3833 		return;
3834 
3835 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
3836 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
3837 		return;
3838 
3839 	if (bootverbose)
3840 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
3841 
3842 	reg = pcie_ptr + PCIER_LINKCTRL;
3843 	link_ctrl = pci_read_config(dev, reg, 2);
3844 	link_ctrl &= ~disable;
3845 	pci_write_config(dev, reg, link_ctrl, 2);
3846 }
3847