xref: /dflybsd-src/sys/dev/netif/emx/if_emx.c (revision 767a43118674e3039d1f3dd7d3f2662a2eccf599)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #ifdef EMX_RSS_DEBUG
114 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
115 do { \
116 	if (sc->rss_debug >= lvl) \
117 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
118 } while (0)
119 #else	/* !EMX_RSS_DEBUG */
120 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
121 #endif	/* EMX_RSS_DEBUG */
122 
123 #define EMX_TX_SERIALIZE	1
124 #define EMX_RX_SERIALIZE	2
125 
126 #define EMX_NAME	"Intel(R) PRO/1000 "
127 
128 #define EMX_DEVICE(id)	\
129 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
130 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
131 
132 static const struct emx_device {
133 	uint16_t	vid;
134 	uint16_t	did;
135 	const char	*desc;
136 } emx_devices[] = {
137 	EMX_DEVICE(82571EB_COPPER),
138 	EMX_DEVICE(82571EB_FIBER),
139 	EMX_DEVICE(82571EB_SERDES),
140 	EMX_DEVICE(82571EB_SERDES_DUAL),
141 	EMX_DEVICE(82571EB_SERDES_QUAD),
142 	EMX_DEVICE(82571EB_QUAD_COPPER),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
145 	EMX_DEVICE(82571EB_QUAD_FIBER),
146 	EMX_DEVICE(82571PT_QUAD_COPPER),
147 
148 	EMX_DEVICE(82572EI_COPPER),
149 	EMX_DEVICE(82572EI_FIBER),
150 	EMX_DEVICE(82572EI_SERDES),
151 	EMX_DEVICE(82572EI),
152 
153 	EMX_DEVICE(82573E),
154 	EMX_DEVICE(82573E_IAMT),
155 	EMX_DEVICE(82573L),
156 
157 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
159 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
160 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
161 
162 	EMX_DEVICE(82574L),
163 	EMX_DEVICE(82574LA),
164 
165 	/* required last entry */
166 	EMX_DEVICE_NULL
167 };
168 
169 static int	emx_probe(device_t);
170 static int	emx_attach(device_t);
171 static int	emx_detach(device_t);
172 static int	emx_shutdown(device_t);
173 static int	emx_suspend(device_t);
174 static int	emx_resume(device_t);
175 
176 static void	emx_init(void *);
177 static void	emx_stop(struct emx_softc *);
178 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
179 static void	emx_start(struct ifnet *);
180 #ifdef IFPOLL_ENABLE
181 static void	emx_qpoll(struct ifnet *, struct ifpoll_info *);
182 #endif
183 static void	emx_watchdog(struct ifnet *);
184 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
185 static int	emx_media_change(struct ifnet *);
186 static void	emx_timer(void *);
187 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
188 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
189 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
190 #ifdef INVARIANTS
191 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
192 		    boolean_t);
193 #endif
194 
195 static void	emx_intr(void *);
196 static void	emx_intr_mask(void *);
197 static void	emx_intr_body(struct emx_softc *, boolean_t);
198 static void	emx_rxeof(struct emx_softc *, int, int);
199 static void	emx_txeof(struct emx_softc *);
200 static void	emx_tx_collect(struct emx_softc *);
201 static void	emx_tx_purge(struct emx_softc *);
202 static void	emx_enable_intr(struct emx_softc *);
203 static void	emx_disable_intr(struct emx_softc *);
204 
205 static int	emx_dma_alloc(struct emx_softc *);
206 static void	emx_dma_free(struct emx_softc *);
207 static void	emx_init_tx_ring(struct emx_softc *);
208 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
209 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
210 static int	emx_create_tx_ring(struct emx_softc *);
211 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
212 static void	emx_destroy_tx_ring(struct emx_softc *, int);
213 static void	emx_destroy_rx_ring(struct emx_softc *,
214 		    struct emx_rxdata *, int);
215 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
216 static int	emx_encap(struct emx_softc *, struct mbuf **);
217 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
218 		    uint32_t *, uint32_t *);
219 static int	emx_tso_pullup(struct emx_softc *, struct mbuf **);
220 static int	emx_tso_setup(struct emx_softc *, struct mbuf *,
221 		    uint32_t *, uint32_t *);
222 
223 static int 	emx_is_valid_eaddr(const uint8_t *);
224 static int	emx_reset(struct emx_softc *);
225 static void	emx_setup_ifp(struct emx_softc *);
226 static void	emx_init_tx_unit(struct emx_softc *);
227 static void	emx_init_rx_unit(struct emx_softc *);
228 static void	emx_update_stats(struct emx_softc *);
229 static void	emx_set_promisc(struct emx_softc *);
230 static void	emx_disable_promisc(struct emx_softc *);
231 static void	emx_set_multi(struct emx_softc *);
232 static void	emx_update_link_status(struct emx_softc *);
233 static void	emx_smartspeed(struct emx_softc *);
234 static void	emx_set_itr(struct emx_softc *, uint32_t);
235 static void	emx_disable_aspm(struct emx_softc *);
236 
237 static void	emx_print_debug_info(struct emx_softc *);
238 static void	emx_print_nvm_info(struct emx_softc *);
239 static void	emx_print_hw_stats(struct emx_softc *);
240 
241 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
242 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
243 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
244 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
245 static void	emx_add_sysctl(struct emx_softc *);
246 
247 static void	emx_serialize_skipmain(struct emx_softc *);
248 static void	emx_deserialize_skipmain(struct emx_softc *);
249 
250 /* Management and WOL Support */
251 static void	emx_get_mgmt(struct emx_softc *);
252 static void	emx_rel_mgmt(struct emx_softc *);
253 static void	emx_get_hw_control(struct emx_softc *);
254 static void	emx_rel_hw_control(struct emx_softc *);
255 static void	emx_enable_wol(device_t);
256 
257 static device_method_t emx_methods[] = {
258 	/* Device interface */
259 	DEVMETHOD(device_probe,		emx_probe),
260 	DEVMETHOD(device_attach,	emx_attach),
261 	DEVMETHOD(device_detach,	emx_detach),
262 	DEVMETHOD(device_shutdown,	emx_shutdown),
263 	DEVMETHOD(device_suspend,	emx_suspend),
264 	DEVMETHOD(device_resume,	emx_resume),
265 	{ 0, 0 }
266 };
267 
268 static driver_t emx_driver = {
269 	"emx",
270 	emx_methods,
271 	sizeof(struct emx_softc),
272 };
273 
274 static devclass_t emx_devclass;
275 
276 DECLARE_DUMMY_MODULE(if_emx);
277 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
278 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
279 
280 /*
281  * Tunables
282  */
283 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
284 static int	emx_rxd = EMX_DEFAULT_RXD;
285 static int	emx_txd = EMX_DEFAULT_TXD;
286 static int	emx_smart_pwr_down = 0;
287 static int	emx_rxr = 0;
288 
289 /* Controls whether promiscuous also shows bad packets */
290 static int	emx_debug_sbp = 0;
291 
292 static int	emx_82573_workaround = 1;
293 static int	emx_msi_enable = 1;
294 
295 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
296 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
297 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
298 TUNABLE_INT("hw.emx.txd", &emx_txd);
299 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
300 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
301 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
302 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
303 
304 /* Global used in WOL setup with multiport cards */
305 static int	emx_global_quad_port_a = 0;
306 
307 /* Set this to one to display debug statistics */
308 static int	emx_display_debug_stats = 0;
309 
310 #if !defined(KTR_IF_EMX)
311 #define KTR_IF_EMX	KTR_ALL
312 #endif
313 KTR_INFO_MASTER(if_emx);
314 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
315 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
316 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
317 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
318 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
319 #define logif(name)	KTR_LOG(if_emx_ ## name)
320 
321 static __inline void
322 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
323 {
324 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
325 	/* DD bit must be cleared */
326 	rxd->rxd_staterr = 0;
327 }
328 
329 static __inline void
330 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
331 {
332 	/* Ignore Checksum bit is set */
333 	if (staterr & E1000_RXD_STAT_IXSM)
334 		return;
335 
336 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
337 	    E1000_RXD_STAT_IPCS)
338 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
339 
340 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
341 	    E1000_RXD_STAT_TCPCS) {
342 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
343 					   CSUM_PSEUDO_HDR |
344 					   CSUM_FRAG_NOT_CHECKED;
345 		mp->m_pkthdr.csum_data = htons(0xffff);
346 	}
347 }
348 
349 static __inline struct pktinfo *
350 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
351 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
352 {
353 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
354 	case EMX_RXDMRQ_IPV4_TCP:
355 		pi->pi_netisr = NETISR_IP;
356 		pi->pi_flags = 0;
357 		pi->pi_l3proto = IPPROTO_TCP;
358 		break;
359 
360 	case EMX_RXDMRQ_IPV6_TCP:
361 		pi->pi_netisr = NETISR_IPV6;
362 		pi->pi_flags = 0;
363 		pi->pi_l3proto = IPPROTO_TCP;
364 		break;
365 
366 	case EMX_RXDMRQ_IPV4:
367 		if (staterr & E1000_RXD_STAT_IXSM)
368 			return NULL;
369 
370 		if ((staterr &
371 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
372 		    E1000_RXD_STAT_TCPCS) {
373 			pi->pi_netisr = NETISR_IP;
374 			pi->pi_flags = 0;
375 			pi->pi_l3proto = IPPROTO_UDP;
376 			break;
377 		}
378 		/* FALL THROUGH */
379 	default:
380 		return NULL;
381 	}
382 
383 	m->m_flags |= M_HASH;
384 	m->m_pkthdr.hash = toeplitz_hash(hash);
385 	return pi;
386 }
387 
388 static int
389 emx_probe(device_t dev)
390 {
391 	const struct emx_device *d;
392 	uint16_t vid, did;
393 
394 	vid = pci_get_vendor(dev);
395 	did = pci_get_device(dev);
396 
397 	for (d = emx_devices; d->desc != NULL; ++d) {
398 		if (vid == d->vid && did == d->did) {
399 			device_set_desc(dev, d->desc);
400 			device_set_async_attach(dev, TRUE);
401 			return 0;
402 		}
403 	}
404 	return ENXIO;
405 }
406 
407 static int
408 emx_attach(device_t dev)
409 {
410 	struct emx_softc *sc = device_get_softc(dev);
411 	struct ifnet *ifp = &sc->arpcom.ac_if;
412 	int error = 0, i, throttle, msi_enable;
413 	u_int intr_flags;
414 	uint16_t eeprom_data, device_id, apme_mask;
415 	driver_intr_t *intr_func;
416 
417 	lwkt_serialize_init(&sc->main_serialize);
418 	lwkt_serialize_init(&sc->tx_serialize);
419 	for (i = 0; i < EMX_NRX_RING; ++i)
420 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
421 
422 	i = 0;
423 	sc->serializes[i++] = &sc->main_serialize;
424 	sc->serializes[i++] = &sc->tx_serialize;
425 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
426 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
427 	KKASSERT(i == EMX_NSERIALIZE);
428 
429 	callout_init_mp(&sc->timer);
430 
431 	sc->dev = sc->osdep.dev = dev;
432 
433 	/*
434 	 * Determine hardware and mac type
435 	 */
436 	sc->hw.vendor_id = pci_get_vendor(dev);
437 	sc->hw.device_id = pci_get_device(dev);
438 	sc->hw.revision_id = pci_get_revid(dev);
439 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
440 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
441 
442 	if (e1000_set_mac_type(&sc->hw))
443 		return ENXIO;
444 
445 	/*
446 	 * Pullup extra 4bytes into the first data segment, see:
447 	 * 82571/82572 specification update errata #7
448 	 *
449 	 * NOTE:
450 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
451 	 * are pulled; mainly to keep rest of the data properly aligned.
452 	 */
453 	if (sc->hw.mac.type == e1000_82571 || sc->hw.mac.type == e1000_82572)
454 		sc->flags |= EMX_FLAG_TSO_PULLEX;
455 
456 	/* Enable bus mastering */
457 	pci_enable_busmaster(dev);
458 
459 	/*
460 	 * Allocate IO memory
461 	 */
462 	sc->memory_rid = EMX_BAR_MEM;
463 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
464 					    &sc->memory_rid, RF_ACTIVE);
465 	if (sc->memory == NULL) {
466 		device_printf(dev, "Unable to allocate bus resource: memory\n");
467 		error = ENXIO;
468 		goto fail;
469 	}
470 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
471 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
472 
473 	/* XXX This is quite goofy, it is not actually used */
474 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
475 
476 	/*
477 	 * Don't enable MSI-X on 82574, see:
478 	 * 82574 specification update errata #15
479 	 *
480 	 * Don't enable MSI on 82571/82572, see:
481 	 * 82571/82572 specification update errata #63
482 	 */
483 	msi_enable = emx_msi_enable;
484 	if (msi_enable &&
485 	    (sc->hw.mac.type == e1000_82571 ||
486 	     sc->hw.mac.type == e1000_82572))
487 		msi_enable = 0;
488 
489 	/*
490 	 * Allocate interrupt
491 	 */
492 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
493 	    &sc->intr_rid, &intr_flags);
494 
495 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
496 		int unshared;
497 
498 		unshared = device_getenv_int(dev, "irq.unshared", 0);
499 		if (!unshared) {
500 			sc->flags |= EMX_FLAG_SHARED_INTR;
501 			if (bootverbose)
502 				device_printf(dev, "IRQ shared\n");
503 		} else {
504 			intr_flags &= ~RF_SHAREABLE;
505 			if (bootverbose)
506 				device_printf(dev, "IRQ unshared\n");
507 		}
508 	}
509 
510 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
511 	    intr_flags);
512 	if (sc->intr_res == NULL) {
513 		device_printf(dev, "Unable to allocate bus resource: "
514 		    "interrupt\n");
515 		error = ENXIO;
516 		goto fail;
517 	}
518 
519 	/* Save PCI command register for Shared Code */
520 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
521 	sc->hw.back = &sc->osdep;
522 
523 	/* Do Shared Code initialization */
524 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
525 		device_printf(dev, "Setup of Shared code failed\n");
526 		error = ENXIO;
527 		goto fail;
528 	}
529 	e1000_get_bus_info(&sc->hw);
530 
531 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
532 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
533 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
534 
535 	/*
536 	 * Interrupt throttle rate
537 	 */
538 	throttle = device_getenv_int(dev, "int_throttle_ceil",
539 	    emx_int_throttle_ceil);
540 	if (throttle == 0) {
541 		sc->int_throttle_ceil = 0;
542 	} else {
543 		if (throttle < 0)
544 			throttle = EMX_DEFAULT_ITR;
545 
546 		/* Recalculate the tunable value to get the exact frequency. */
547 		throttle = 1000000000 / 256 / throttle;
548 
549 		/* Upper 16bits of ITR is reserved and should be zero */
550 		if (throttle & 0xffff0000)
551 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
552 
553 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
554 	}
555 
556 	e1000_init_script_state_82541(&sc->hw, TRUE);
557 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
558 
559 	/* Copper options */
560 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
561 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
562 		sc->hw.phy.disable_polarity_correction = FALSE;
563 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
564 	}
565 
566 	/* Set the frame limits assuming standard ethernet sized frames. */
567 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
568 	sc->min_frame_size = ETHER_MIN_LEN;
569 
570 	/* This controls when hardware reports transmit completion status. */
571 	sc->hw.mac.report_tx_early = 1;
572 
573 	/* Calculate # of RX rings */
574 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
575 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
576 
577 	/* Allocate RX/TX rings' busdma(9) stuffs */
578 	error = emx_dma_alloc(sc);
579 	if (error)
580 		goto fail;
581 
582 	/* Allocate multicast array memory. */
583 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
584 	    M_DEVBUF, M_WAITOK);
585 
586 	/* Indicate SOL/IDER usage */
587 	if (e1000_check_reset_block(&sc->hw)) {
588 		device_printf(dev,
589 		    "PHY reset is blocked due to SOL/IDER session.\n");
590 	}
591 
592 	/*
593 	 * Start from a known state, this is important in reading the
594 	 * nvm and mac from that.
595 	 */
596 	e1000_reset_hw(&sc->hw);
597 
598 	/* Make sure we have a good EEPROM before we read from it */
599 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
600 		/*
601 		 * Some PCI-E parts fail the first check due to
602 		 * the link being in sleep state, call it again,
603 		 * if it fails a second time its a real issue.
604 		 */
605 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
606 			device_printf(dev,
607 			    "The EEPROM Checksum Is Not Valid\n");
608 			error = EIO;
609 			goto fail;
610 		}
611 	}
612 
613 	/* Copy the permanent MAC address out of the EEPROM */
614 	if (e1000_read_mac_addr(&sc->hw) < 0) {
615 		device_printf(dev, "EEPROM read error while reading MAC"
616 		    " address\n");
617 		error = EIO;
618 		goto fail;
619 	}
620 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
621 		device_printf(dev, "Invalid MAC address\n");
622 		error = EIO;
623 		goto fail;
624 	}
625 
626 	/* Determine if we have to control management hardware */
627 	if (e1000_enable_mng_pass_thru(&sc->hw))
628 		sc->flags |= EMX_FLAG_HAS_MGMT;
629 
630 	/*
631 	 * Setup Wake-on-Lan
632 	 */
633 	apme_mask = EMX_EEPROM_APME;
634 	eeprom_data = 0;
635 	switch (sc->hw.mac.type) {
636 	case e1000_82573:
637 		sc->flags |= EMX_FLAG_HAS_AMT;
638 		/* FALL THROUGH */
639 
640 	case e1000_82571:
641 	case e1000_82572:
642 	case e1000_80003es2lan:
643 		if (sc->hw.bus.func == 1) {
644 			e1000_read_nvm(&sc->hw,
645 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
646 		} else {
647 			e1000_read_nvm(&sc->hw,
648 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
649 		}
650 		break;
651 
652 	default:
653 		e1000_read_nvm(&sc->hw,
654 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
655 		break;
656 	}
657 	if (eeprom_data & apme_mask)
658 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
659 
660 	/*
661          * We have the eeprom settings, now apply the special cases
662          * where the eeprom may be wrong or the board won't support
663          * wake on lan on a particular port
664 	 */
665 	device_id = pci_get_device(dev);
666         switch (device_id) {
667 	case E1000_DEV_ID_82571EB_FIBER:
668 		/*
669 		 * Wake events only supported on port A for dual fiber
670 		 * regardless of eeprom setting
671 		 */
672 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
673 		    E1000_STATUS_FUNC_1)
674 			sc->wol = 0;
675 		break;
676 
677 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
678 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
679 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
680                 /* if quad port sc, disable WoL on all but port A */
681 		if (emx_global_quad_port_a != 0)
682 			sc->wol = 0;
683 		/* Reset for multiple quad port adapters */
684 		if (++emx_global_quad_port_a == 4)
685 			emx_global_quad_port_a = 0;
686                 break;
687 	}
688 
689 	/* XXX disable wol */
690 	sc->wol = 0;
691 
692 	/* Setup OS specific network interface */
693 	emx_setup_ifp(sc);
694 
695 	/* Add sysctl tree, must after em_setup_ifp() */
696 	emx_add_sysctl(sc);
697 
698 	/* Reset the hardware */
699 	error = emx_reset(sc);
700 	if (error) {
701 		device_printf(dev, "Unable to reset the hardware\n");
702 		goto fail;
703 	}
704 
705 	/* Initialize statistics */
706 	emx_update_stats(sc);
707 
708 	sc->hw.mac.get_link_status = 1;
709 	emx_update_link_status(sc);
710 
711 	sc->spare_tx_desc = EMX_TX_SPARE;
712 
713 	/*
714 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
715 	 * and tx_int_nsegs:
716 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
717 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
718 	 */
719 	sc->oact_tx_desc = sc->num_tx_desc / 8;
720 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
721 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
722 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
723 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
724 
725 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
726 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
727 		sc->tx_int_nsegs = sc->oact_tx_desc;
728 
729 	/* Non-AMT based hardware can now take control from firmware */
730 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
731 	    EMX_FLAG_HAS_MGMT)
732 		emx_get_hw_control(sc);
733 
734 	/*
735 	 * Missing Interrupt Following ICR read:
736 	 *
737 	 * 82571/82572 specification update errata #76
738 	 * 82573 specification update errata #31
739 	 * 82574 specification update errata #12
740 	 */
741 	intr_func = emx_intr;
742 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
743 	    (sc->hw.mac.type == e1000_82571 ||
744 	     sc->hw.mac.type == e1000_82572 ||
745 	     sc->hw.mac.type == e1000_82573 ||
746 	     sc->hw.mac.type == e1000_82574))
747 		intr_func = emx_intr_mask;
748 
749 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
750 			       &sc->intr_tag, &sc->main_serialize);
751 	if (error) {
752 		device_printf(dev, "Failed to register interrupt handler");
753 		ether_ifdetach(&sc->arpcom.ac_if);
754 		goto fail;
755 	}
756 
757 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
758 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
759 	return (0);
760 fail:
761 	emx_detach(dev);
762 	return (error);
763 }
764 
765 static int
766 emx_detach(device_t dev)
767 {
768 	struct emx_softc *sc = device_get_softc(dev);
769 
770 	if (device_is_attached(dev)) {
771 		struct ifnet *ifp = &sc->arpcom.ac_if;
772 
773 		ifnet_serialize_all(ifp);
774 
775 		emx_stop(sc);
776 
777 		e1000_phy_hw_reset(&sc->hw);
778 
779 		emx_rel_mgmt(sc);
780 		emx_rel_hw_control(sc);
781 
782 		if (sc->wol) {
783 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
784 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
785 			emx_enable_wol(dev);
786 		}
787 
788 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
789 
790 		ifnet_deserialize_all(ifp);
791 
792 		ether_ifdetach(ifp);
793 	} else if (sc->memory != NULL) {
794 		emx_rel_hw_control(sc);
795 	}
796 	bus_generic_detach(dev);
797 
798 	if (sc->intr_res != NULL) {
799 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
800 				     sc->intr_res);
801 	}
802 
803 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
804 		pci_release_msi(dev);
805 
806 	if (sc->memory != NULL) {
807 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
808 				     sc->memory);
809 	}
810 
811 	emx_dma_free(sc);
812 
813 	/* Free sysctl tree */
814 	if (sc->sysctl_tree != NULL)
815 		sysctl_ctx_free(&sc->sysctl_ctx);
816 
817 	if (sc->mta != NULL)
818 		kfree(sc->mta, M_DEVBUF);
819 
820 	return (0);
821 }
822 
823 static int
824 emx_shutdown(device_t dev)
825 {
826 	return emx_suspend(dev);
827 }
828 
829 static int
830 emx_suspend(device_t dev)
831 {
832 	struct emx_softc *sc = device_get_softc(dev);
833 	struct ifnet *ifp = &sc->arpcom.ac_if;
834 
835 	ifnet_serialize_all(ifp);
836 
837 	emx_stop(sc);
838 
839 	emx_rel_mgmt(sc);
840 	emx_rel_hw_control(sc);
841 
842 	if (sc->wol) {
843 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
844 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
845 		emx_enable_wol(dev);
846 	}
847 
848 	ifnet_deserialize_all(ifp);
849 
850 	return bus_generic_suspend(dev);
851 }
852 
853 static int
854 emx_resume(device_t dev)
855 {
856 	struct emx_softc *sc = device_get_softc(dev);
857 	struct ifnet *ifp = &sc->arpcom.ac_if;
858 
859 	ifnet_serialize_all(ifp);
860 
861 	emx_init(sc);
862 	emx_get_mgmt(sc);
863 	if_devstart(ifp);
864 
865 	ifnet_deserialize_all(ifp);
866 
867 	return bus_generic_resume(dev);
868 }
869 
870 static void
871 emx_start(struct ifnet *ifp)
872 {
873 	struct emx_softc *sc = ifp->if_softc;
874 	struct mbuf *m_head;
875 
876 	ASSERT_SERIALIZED(&sc->tx_serialize);
877 
878 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
879 		return;
880 
881 	if (!sc->link_active) {
882 		ifq_purge(&ifp->if_snd);
883 		return;
884 	}
885 
886 	while (!ifq_is_empty(&ifp->if_snd)) {
887 		/* Now do we at least have a minimal? */
888 		if (EMX_IS_OACTIVE(sc)) {
889 			emx_tx_collect(sc);
890 			if (EMX_IS_OACTIVE(sc)) {
891 				ifp->if_flags |= IFF_OACTIVE;
892 				sc->no_tx_desc_avail1++;
893 				break;
894 			}
895 		}
896 
897 		logif(pkt_txqueue);
898 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
899 		if (m_head == NULL)
900 			break;
901 
902 		if (emx_encap(sc, &m_head)) {
903 			ifp->if_oerrors++;
904 			emx_tx_collect(sc);
905 			continue;
906 		}
907 
908 		/* Send a copy of the frame to the BPF listener */
909 		ETHER_BPF_MTAP(ifp, m_head);
910 
911 		/* Set timeout in case hardware has problems transmitting. */
912 		ifp->if_timer = EMX_TX_TIMEOUT;
913 	}
914 }
915 
916 static int
917 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
918 {
919 	struct emx_softc *sc = ifp->if_softc;
920 	struct ifreq *ifr = (struct ifreq *)data;
921 	uint16_t eeprom_data = 0;
922 	int max_frame_size, mask, reinit;
923 	int error = 0;
924 
925 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
926 
927 	switch (command) {
928 	case SIOCSIFMTU:
929 		switch (sc->hw.mac.type) {
930 		case e1000_82573:
931 			/*
932 			 * 82573 only supports jumbo frames
933 			 * if ASPM is disabled.
934 			 */
935 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
936 				       &eeprom_data);
937 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
938 				max_frame_size = ETHER_MAX_LEN;
939 				break;
940 			}
941 			/* FALL THROUGH */
942 
943 		/* Limit Jumbo Frame size */
944 		case e1000_82571:
945 		case e1000_82572:
946 		case e1000_82574:
947 		case e1000_80003es2lan:
948 			max_frame_size = 9234;
949 			break;
950 
951 		default:
952 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
953 			break;
954 		}
955 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
956 		    ETHER_CRC_LEN) {
957 			error = EINVAL;
958 			break;
959 		}
960 
961 		ifp->if_mtu = ifr->ifr_mtu;
962 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
963 				     ETHER_CRC_LEN;
964 
965 		if (ifp->if_flags & IFF_RUNNING)
966 			emx_init(sc);
967 		break;
968 
969 	case SIOCSIFFLAGS:
970 		if (ifp->if_flags & IFF_UP) {
971 			if ((ifp->if_flags & IFF_RUNNING)) {
972 				if ((ifp->if_flags ^ sc->if_flags) &
973 				    (IFF_PROMISC | IFF_ALLMULTI)) {
974 					emx_disable_promisc(sc);
975 					emx_set_promisc(sc);
976 				}
977 			} else {
978 				emx_init(sc);
979 			}
980 		} else if (ifp->if_flags & IFF_RUNNING) {
981 			emx_stop(sc);
982 		}
983 		sc->if_flags = ifp->if_flags;
984 		break;
985 
986 	case SIOCADDMULTI:
987 	case SIOCDELMULTI:
988 		if (ifp->if_flags & IFF_RUNNING) {
989 			emx_disable_intr(sc);
990 			emx_set_multi(sc);
991 #ifdef IFPOLL_ENABLE
992 			if (!(ifp->if_flags & IFF_NPOLLING))
993 #endif
994 				emx_enable_intr(sc);
995 		}
996 		break;
997 
998 	case SIOCSIFMEDIA:
999 		/* Check SOL/IDER usage */
1000 		if (e1000_check_reset_block(&sc->hw)) {
1001 			device_printf(sc->dev, "Media change is"
1002 			    " blocked due to SOL/IDER session.\n");
1003 			break;
1004 		}
1005 		/* FALL THROUGH */
1006 
1007 	case SIOCGIFMEDIA:
1008 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1009 		break;
1010 
1011 	case SIOCSIFCAP:
1012 		reinit = 0;
1013 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1014 		if (mask & IFCAP_RXCSUM) {
1015 			ifp->if_capenable ^= IFCAP_RXCSUM;
1016 			reinit = 1;
1017 		}
1018 		if (mask & IFCAP_VLAN_HWTAGGING) {
1019 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1020 			reinit = 1;
1021 		}
1022 		if (mask & IFCAP_TXCSUM) {
1023 			ifp->if_capenable ^= IFCAP_TXCSUM;
1024 			if (ifp->if_capenable & IFCAP_TXCSUM)
1025 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1026 			else
1027 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1028 		}
1029 		if (mask & IFCAP_TSO) {
1030 			ifp->if_capenable ^= IFCAP_TSO;
1031 			if (ifp->if_capenable & IFCAP_TSO)
1032 				ifp->if_hwassist |= CSUM_TSO;
1033 			else
1034 				ifp->if_hwassist &= ~CSUM_TSO;
1035 		}
1036 		if (mask & IFCAP_RSS)
1037 			ifp->if_capenable ^= IFCAP_RSS;
1038 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1039 			emx_init(sc);
1040 		break;
1041 
1042 	default:
1043 		error = ether_ioctl(ifp, command, data);
1044 		break;
1045 	}
1046 	return (error);
1047 }
1048 
1049 static void
1050 emx_watchdog(struct ifnet *ifp)
1051 {
1052 	struct emx_softc *sc = ifp->if_softc;
1053 
1054 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1055 
1056 	/*
1057 	 * The timer is set to 5 every time start queues a packet.
1058 	 * Then txeof keeps resetting it as long as it cleans at
1059 	 * least one descriptor.
1060 	 * Finally, anytime all descriptors are clean the timer is
1061 	 * set to 0.
1062 	 */
1063 
1064 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
1065 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
1066 		/*
1067 		 * If we reach here, all TX jobs are completed and
1068 		 * the TX engine should have been idled for some time.
1069 		 * We don't need to call if_devstart() here.
1070 		 */
1071 		ifp->if_flags &= ~IFF_OACTIVE;
1072 		ifp->if_timer = 0;
1073 		return;
1074 	}
1075 
1076 	/*
1077 	 * If we are in this routine because of pause frames, then
1078 	 * don't reset the hardware.
1079 	 */
1080 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1081 		ifp->if_timer = EMX_TX_TIMEOUT;
1082 		return;
1083 	}
1084 
1085 	if (e1000_check_for_link(&sc->hw) == 0)
1086 		if_printf(ifp, "watchdog timeout -- resetting\n");
1087 
1088 	ifp->if_oerrors++;
1089 	sc->watchdog_events++;
1090 
1091 	emx_init(sc);
1092 
1093 	if (!ifq_is_empty(&ifp->if_snd))
1094 		if_devstart(ifp);
1095 }
1096 
1097 static void
1098 emx_init(void *xsc)
1099 {
1100 	struct emx_softc *sc = xsc;
1101 	struct ifnet *ifp = &sc->arpcom.ac_if;
1102 	device_t dev = sc->dev;
1103 	uint32_t pba;
1104 	int i;
1105 
1106 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1107 
1108 	emx_stop(sc);
1109 
1110 	/*
1111 	 * Packet Buffer Allocation (PBA)
1112 	 * Writing PBA sets the receive portion of the buffer
1113 	 * the remainder is used for the transmit buffer.
1114 	 */
1115 	switch (sc->hw.mac.type) {
1116 	/* Total Packet Buffer on these is 48K */
1117 	case e1000_82571:
1118 	case e1000_82572:
1119 	case e1000_80003es2lan:
1120 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1121 		break;
1122 
1123 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1124 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1125 		break;
1126 
1127 	case e1000_82574:
1128 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1129 		break;
1130 
1131 	default:
1132 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1133 		if (sc->max_frame_size > 8192)
1134 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1135 		else
1136 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1137 	}
1138 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1139 
1140 	/* Get the latest mac address, User can use a LAA */
1141         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1142 
1143 	/* Put the address into the Receive Address Array */
1144 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1145 
1146 	/*
1147 	 * With the 82571 sc, RAR[0] may be overwritten
1148 	 * when the other port is reset, we make a duplicate
1149 	 * in RAR[14] for that eventuality, this assures
1150 	 * the interface continues to function.
1151 	 */
1152 	if (sc->hw.mac.type == e1000_82571) {
1153 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1154 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1155 		    E1000_RAR_ENTRIES - 1);
1156 	}
1157 
1158 	/* Initialize the hardware */
1159 	if (emx_reset(sc)) {
1160 		device_printf(dev, "Unable to reset the hardware\n");
1161 		/* XXX emx_stop()? */
1162 		return;
1163 	}
1164 	emx_update_link_status(sc);
1165 
1166 	/* Setup VLAN support, basic and offload if available */
1167 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1168 
1169 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1170 		uint32_t ctrl;
1171 
1172 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1173 		ctrl |= E1000_CTRL_VME;
1174 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1175 	}
1176 
1177 	/* Configure for OS presence */
1178 	emx_get_mgmt(sc);
1179 
1180 	/* Prepare transmit descriptors and buffers */
1181 	emx_init_tx_ring(sc);
1182 	emx_init_tx_unit(sc);
1183 
1184 	/* Setup Multicast table */
1185 	emx_set_multi(sc);
1186 
1187 	/* Prepare receive descriptors and buffers */
1188 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1189 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1190 			device_printf(dev,
1191 			    "Could not setup receive structures\n");
1192 			emx_stop(sc);
1193 			return;
1194 		}
1195 	}
1196 	emx_init_rx_unit(sc);
1197 
1198 	/* Don't lose promiscuous settings */
1199 	emx_set_promisc(sc);
1200 
1201 	ifp->if_flags |= IFF_RUNNING;
1202 	ifp->if_flags &= ~IFF_OACTIVE;
1203 
1204 	callout_reset(&sc->timer, hz, emx_timer, sc);
1205 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1206 
1207 	/* MSI/X configuration for 82574 */
1208 	if (sc->hw.mac.type == e1000_82574) {
1209 		int tmp;
1210 
1211 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1212 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1213 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1214 		/*
1215 		 * XXX MSIX
1216 		 * Set the IVAR - interrupt vector routing.
1217 		 * Each nibble represents a vector, high bit
1218 		 * is enable, other 3 bits are the MSIX table
1219 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1220 		 * Link (other) to 2, hence the magic number.
1221 		 */
1222 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1223 	}
1224 
1225 #ifdef IFPOLL_ENABLE
1226 	/*
1227 	 * Only enable interrupts if we are not polling, make sure
1228 	 * they are off otherwise.
1229 	 */
1230 	if (ifp->if_flags & IFF_NPOLLING)
1231 		emx_disable_intr(sc);
1232 	else
1233 #endif /* IFPOLL_ENABLE */
1234 		emx_enable_intr(sc);
1235 
1236 	/* AMT based hardware can now take control from firmware */
1237 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1238 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1239 		emx_get_hw_control(sc);
1240 
1241 	/* Don't reset the phy next time init gets called */
1242 	sc->hw.phy.reset_disable = TRUE;
1243 }
1244 
1245 static void
1246 emx_intr(void *xsc)
1247 {
1248 	emx_intr_body(xsc, TRUE);
1249 }
1250 
1251 static void
1252 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1253 {
1254 	struct ifnet *ifp = &sc->arpcom.ac_if;
1255 	uint32_t reg_icr;
1256 
1257 	logif(intr_beg);
1258 	ASSERT_SERIALIZED(&sc->main_serialize);
1259 
1260 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1261 
1262 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1263 		logif(intr_end);
1264 		return;
1265 	}
1266 
1267 	/*
1268 	 * XXX: some laptops trigger several spurious interrupts
1269 	 * on emx(4) when in the resume cycle. The ICR register
1270 	 * reports all-ones value in this case. Processing such
1271 	 * interrupts would lead to a freeze. I don't know why.
1272 	 */
1273 	if (reg_icr == 0xffffffff) {
1274 		logif(intr_end);
1275 		return;
1276 	}
1277 
1278 	if (ifp->if_flags & IFF_RUNNING) {
1279 		if (reg_icr &
1280 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1281 			int i;
1282 
1283 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1284 				lwkt_serialize_enter(
1285 				&sc->rx_data[i].rx_serialize);
1286 				emx_rxeof(sc, i, -1);
1287 				lwkt_serialize_exit(
1288 				&sc->rx_data[i].rx_serialize);
1289 			}
1290 		}
1291 		if (reg_icr & E1000_ICR_TXDW) {
1292 			lwkt_serialize_enter(&sc->tx_serialize);
1293 			emx_txeof(sc);
1294 			if (!ifq_is_empty(&ifp->if_snd))
1295 				if_devstart(ifp);
1296 			lwkt_serialize_exit(&sc->tx_serialize);
1297 		}
1298 	}
1299 
1300 	/* Link status change */
1301 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1302 		emx_serialize_skipmain(sc);
1303 
1304 		callout_stop(&sc->timer);
1305 		sc->hw.mac.get_link_status = 1;
1306 		emx_update_link_status(sc);
1307 
1308 		/* Deal with TX cruft when link lost */
1309 		emx_tx_purge(sc);
1310 
1311 		callout_reset(&sc->timer, hz, emx_timer, sc);
1312 
1313 		emx_deserialize_skipmain(sc);
1314 	}
1315 
1316 	if (reg_icr & E1000_ICR_RXO)
1317 		sc->rx_overruns++;
1318 
1319 	logif(intr_end);
1320 }
1321 
1322 static void
1323 emx_intr_mask(void *xsc)
1324 {
1325 	struct emx_softc *sc = xsc;
1326 
1327 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1328 	/*
1329 	 * NOTE:
1330 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1331 	 * so don't check it.
1332 	 */
1333 	emx_intr_body(sc, FALSE);
1334 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1335 }
1336 
1337 static void
1338 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1339 {
1340 	struct emx_softc *sc = ifp->if_softc;
1341 
1342 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1343 
1344 	emx_update_link_status(sc);
1345 
1346 	ifmr->ifm_status = IFM_AVALID;
1347 	ifmr->ifm_active = IFM_ETHER;
1348 
1349 	if (!sc->link_active)
1350 		return;
1351 
1352 	ifmr->ifm_status |= IFM_ACTIVE;
1353 
1354 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1355 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1356 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1357 	} else {
1358 		switch (sc->link_speed) {
1359 		case 10:
1360 			ifmr->ifm_active |= IFM_10_T;
1361 			break;
1362 		case 100:
1363 			ifmr->ifm_active |= IFM_100_TX;
1364 			break;
1365 
1366 		case 1000:
1367 			ifmr->ifm_active |= IFM_1000_T;
1368 			break;
1369 		}
1370 		if (sc->link_duplex == FULL_DUPLEX)
1371 			ifmr->ifm_active |= IFM_FDX;
1372 		else
1373 			ifmr->ifm_active |= IFM_HDX;
1374 	}
1375 }
1376 
1377 static int
1378 emx_media_change(struct ifnet *ifp)
1379 {
1380 	struct emx_softc *sc = ifp->if_softc;
1381 	struct ifmedia *ifm = &sc->media;
1382 
1383 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1384 
1385 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1386 		return (EINVAL);
1387 
1388 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1389 	case IFM_AUTO:
1390 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1391 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1392 		break;
1393 
1394 	case IFM_1000_LX:
1395 	case IFM_1000_SX:
1396 	case IFM_1000_T:
1397 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1398 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1399 		break;
1400 
1401 	case IFM_100_TX:
1402 		sc->hw.mac.autoneg = FALSE;
1403 		sc->hw.phy.autoneg_advertised = 0;
1404 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1405 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1406 		else
1407 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1408 		break;
1409 
1410 	case IFM_10_T:
1411 		sc->hw.mac.autoneg = FALSE;
1412 		sc->hw.phy.autoneg_advertised = 0;
1413 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1414 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1415 		else
1416 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1417 		break;
1418 
1419 	default:
1420 		if_printf(ifp, "Unsupported media type\n");
1421 		break;
1422 	}
1423 
1424 	/*
1425 	 * As the speed/duplex settings my have changed we need to
1426 	 * reset the PHY.
1427 	 */
1428 	sc->hw.phy.reset_disable = FALSE;
1429 
1430 	emx_init(sc);
1431 
1432 	return (0);
1433 }
1434 
1435 static int
1436 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1437 {
1438 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1439 	bus_dmamap_t map;
1440 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1441 	struct e1000_tx_desc *ctxd = NULL;
1442 	struct mbuf *m_head = *m_headp;
1443 	uint32_t txd_upper, txd_lower, cmd = 0;
1444 	int maxsegs, nsegs, i, j, first, last = 0, error;
1445 
1446 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1447 		error = emx_tso_pullup(sc, m_headp);
1448 		if (error)
1449 			return error;
1450 		m_head = *m_headp;
1451 	}
1452 
1453 	txd_upper = txd_lower = 0;
1454 
1455 	/*
1456 	 * Capture the first descriptor index, this descriptor
1457 	 * will have the index of the EOP which is the only one
1458 	 * that now gets a DONE bit writeback.
1459 	 */
1460 	first = sc->next_avail_tx_desc;
1461 	tx_buffer = &sc->tx_buf[first];
1462 	tx_buffer_mapped = tx_buffer;
1463 	map = tx_buffer->map;
1464 
1465 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1466 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc"));
1467 	if (maxsegs > EMX_MAX_SCATTER)
1468 		maxsegs = EMX_MAX_SCATTER;
1469 
1470 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1471 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1472 	if (error) {
1473 		if (error == ENOBUFS)
1474 			sc->mbuf_alloc_failed++;
1475 		else
1476 			sc->no_tx_dma_setup++;
1477 
1478 		m_freem(*m_headp);
1479 		*m_headp = NULL;
1480 		return error;
1481 	}
1482         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1483 
1484 	m_head = *m_headp;
1485 	sc->tx_nsegs += nsegs;
1486 
1487 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1488 		/* TSO will consume one TX desc */
1489 		sc->tx_nsegs += emx_tso_setup(sc, m_head,
1490 		    &txd_upper, &txd_lower);
1491 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1492 		/* TX csum offloading will consume one TX desc */
1493 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1494 	}
1495 	i = sc->next_avail_tx_desc;
1496 
1497 	/* Set up our transmit descriptors */
1498 	for (j = 0; j < nsegs; j++) {
1499 		tx_buffer = &sc->tx_buf[i];
1500 		ctxd = &sc->tx_desc_base[i];
1501 
1502 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1503 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1504 					   txd_lower | segs[j].ds_len);
1505 		ctxd->upper.data = htole32(txd_upper);
1506 
1507 		last = i;
1508 		if (++i == sc->num_tx_desc)
1509 			i = 0;
1510 	}
1511 
1512 	sc->next_avail_tx_desc = i;
1513 
1514 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1515 	sc->num_tx_desc_avail -= nsegs;
1516 
1517         /* Handle VLAN tag */
1518 	if (m_head->m_flags & M_VLANTAG) {
1519 		/* Set the vlan id. */
1520 		ctxd->upper.fields.special =
1521 		    htole16(m_head->m_pkthdr.ether_vlantag);
1522 
1523 		/* Tell hardware to add tag */
1524 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1525 	}
1526 
1527 	tx_buffer->m_head = m_head;
1528 	tx_buffer_mapped->map = tx_buffer->map;
1529 	tx_buffer->map = map;
1530 
1531 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1532 		sc->tx_nsegs = 0;
1533 
1534 		/*
1535 		 * Report Status (RS) is turned on
1536 		 * every tx_int_nsegs descriptors.
1537 		 */
1538 		cmd = E1000_TXD_CMD_RS;
1539 
1540 		/*
1541 		 * Keep track of the descriptor, which will
1542 		 * be written back by hardware.
1543 		 */
1544 		sc->tx_dd[sc->tx_dd_tail] = last;
1545 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1546 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1547 	}
1548 
1549 	/*
1550 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1551 	 */
1552 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1553 
1554 	/*
1555 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1556 	 * the E1000 that this frame is available to transmit.
1557 	 */
1558 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1559 
1560 	return (0);
1561 }
1562 
1563 static void
1564 emx_set_promisc(struct emx_softc *sc)
1565 {
1566 	struct ifnet *ifp = &sc->arpcom.ac_if;
1567 	uint32_t reg_rctl;
1568 
1569 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1570 
1571 	if (ifp->if_flags & IFF_PROMISC) {
1572 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1573 		/* Turn this on if you want to see bad packets */
1574 		if (emx_debug_sbp)
1575 			reg_rctl |= E1000_RCTL_SBP;
1576 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1577 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1578 		reg_rctl |= E1000_RCTL_MPE;
1579 		reg_rctl &= ~E1000_RCTL_UPE;
1580 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1581 	}
1582 }
1583 
1584 static void
1585 emx_disable_promisc(struct emx_softc *sc)
1586 {
1587 	uint32_t reg_rctl;
1588 
1589 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1590 
1591 	reg_rctl &= ~E1000_RCTL_UPE;
1592 	reg_rctl &= ~E1000_RCTL_MPE;
1593 	reg_rctl &= ~E1000_RCTL_SBP;
1594 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1595 }
1596 
1597 static void
1598 emx_set_multi(struct emx_softc *sc)
1599 {
1600 	struct ifnet *ifp = &sc->arpcom.ac_if;
1601 	struct ifmultiaddr *ifma;
1602 	uint32_t reg_rctl = 0;
1603 	uint8_t *mta;
1604 	int mcnt = 0;
1605 
1606 	mta = sc->mta;
1607 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1608 
1609 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1610 		if (ifma->ifma_addr->sa_family != AF_LINK)
1611 			continue;
1612 
1613 		if (mcnt == EMX_MCAST_ADDR_MAX)
1614 			break;
1615 
1616 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1617 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1618 		mcnt++;
1619 	}
1620 
1621 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1622 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1623 		reg_rctl |= E1000_RCTL_MPE;
1624 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1625 	} else {
1626 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1627 	}
1628 }
1629 
1630 /*
1631  * This routine checks for link status and updates statistics.
1632  */
1633 static void
1634 emx_timer(void *xsc)
1635 {
1636 	struct emx_softc *sc = xsc;
1637 	struct ifnet *ifp = &sc->arpcom.ac_if;
1638 
1639 	lwkt_serialize_enter(&sc->main_serialize);
1640 
1641 	emx_update_link_status(sc);
1642 	emx_update_stats(sc);
1643 
1644 	/* Reset LAA into RAR[0] on 82571 */
1645 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1646 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1647 
1648 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1649 		emx_print_hw_stats(sc);
1650 
1651 	emx_smartspeed(sc);
1652 
1653 	callout_reset(&sc->timer, hz, emx_timer, sc);
1654 
1655 	lwkt_serialize_exit(&sc->main_serialize);
1656 }
1657 
1658 static void
1659 emx_update_link_status(struct emx_softc *sc)
1660 {
1661 	struct e1000_hw *hw = &sc->hw;
1662 	struct ifnet *ifp = &sc->arpcom.ac_if;
1663 	device_t dev = sc->dev;
1664 	uint32_t link_check = 0;
1665 
1666 	/* Get the cached link value or read phy for real */
1667 	switch (hw->phy.media_type) {
1668 	case e1000_media_type_copper:
1669 		if (hw->mac.get_link_status) {
1670 			/* Do the work to read phy */
1671 			e1000_check_for_link(hw);
1672 			link_check = !hw->mac.get_link_status;
1673 			if (link_check) /* ESB2 fix */
1674 				e1000_cfg_on_link_up(hw);
1675 		} else {
1676 			link_check = TRUE;
1677 		}
1678 		break;
1679 
1680 	case e1000_media_type_fiber:
1681 		e1000_check_for_link(hw);
1682 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1683 		break;
1684 
1685 	case e1000_media_type_internal_serdes:
1686 		e1000_check_for_link(hw);
1687 		link_check = sc->hw.mac.serdes_has_link;
1688 		break;
1689 
1690 	case e1000_media_type_unknown:
1691 	default:
1692 		break;
1693 	}
1694 
1695 	/* Now check for a transition */
1696 	if (link_check && sc->link_active == 0) {
1697 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1698 		    &sc->link_duplex);
1699 
1700 		/*
1701 		 * Check if we should enable/disable SPEED_MODE bit on
1702 		 * 82571EB/82572EI
1703 		 */
1704 		if (sc->link_speed != SPEED_1000 &&
1705 		    (hw->mac.type == e1000_82571 ||
1706 		     hw->mac.type == e1000_82572)) {
1707 			int tarc0;
1708 
1709 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1710 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1711 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1712 		}
1713 		if (bootverbose) {
1714 			device_printf(dev, "Link is up %d Mbps %s\n",
1715 			    sc->link_speed,
1716 			    ((sc->link_duplex == FULL_DUPLEX) ?
1717 			    "Full Duplex" : "Half Duplex"));
1718 		}
1719 		sc->link_active = 1;
1720 		sc->smartspeed = 0;
1721 		ifp->if_baudrate = sc->link_speed * 1000000;
1722 		ifp->if_link_state = LINK_STATE_UP;
1723 		if_link_state_change(ifp);
1724 	} else if (!link_check && sc->link_active == 1) {
1725 		ifp->if_baudrate = sc->link_speed = 0;
1726 		sc->link_duplex = 0;
1727 		if (bootverbose)
1728 			device_printf(dev, "Link is Down\n");
1729 		sc->link_active = 0;
1730 #if 0
1731 		/* Link down, disable watchdog */
1732 		if->if_timer = 0;
1733 #endif
1734 		ifp->if_link_state = LINK_STATE_DOWN;
1735 		if_link_state_change(ifp);
1736 	}
1737 }
1738 
1739 static void
1740 emx_stop(struct emx_softc *sc)
1741 {
1742 	struct ifnet *ifp = &sc->arpcom.ac_if;
1743 	int i;
1744 
1745 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1746 
1747 	emx_disable_intr(sc);
1748 
1749 	callout_stop(&sc->timer);
1750 
1751 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1752 	ifp->if_timer = 0;
1753 
1754 	/*
1755 	 * Disable multiple receive queues.
1756 	 *
1757 	 * NOTE:
1758 	 * We should disable multiple receive queues before
1759 	 * resetting the hardware.
1760 	 */
1761 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1762 
1763 	e1000_reset_hw(&sc->hw);
1764 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1765 
1766 	for (i = 0; i < sc->num_tx_desc; i++) {
1767 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1768 
1769 		if (tx_buffer->m_head != NULL) {
1770 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1771 			m_freem(tx_buffer->m_head);
1772 			tx_buffer->m_head = NULL;
1773 		}
1774 	}
1775 
1776 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1777 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1778 
1779 	sc->csum_flags = 0;
1780 	sc->csum_lhlen = 0;
1781 	sc->csum_iphlen = 0;
1782 	sc->csum_thlen = 0;
1783 	sc->csum_mss = 0;
1784 	sc->csum_pktlen = 0;
1785 
1786 	sc->tx_dd_head = 0;
1787 	sc->tx_dd_tail = 0;
1788 	sc->tx_nsegs = 0;
1789 }
1790 
1791 static int
1792 emx_reset(struct emx_softc *sc)
1793 {
1794 	device_t dev = sc->dev;
1795 	uint16_t rx_buffer_size;
1796 
1797 	/* Set up smart power down as default off on newer adapters. */
1798 	if (!emx_smart_pwr_down &&
1799 	    (sc->hw.mac.type == e1000_82571 ||
1800 	     sc->hw.mac.type == e1000_82572)) {
1801 		uint16_t phy_tmp = 0;
1802 
1803 		/* Speed up time to link by disabling smart power down. */
1804 		e1000_read_phy_reg(&sc->hw,
1805 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1806 		phy_tmp &= ~IGP02E1000_PM_SPD;
1807 		e1000_write_phy_reg(&sc->hw,
1808 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1809 	}
1810 
1811 	/*
1812 	 * These parameters control the automatic generation (Tx) and
1813 	 * response (Rx) to Ethernet PAUSE frames.
1814 	 * - High water mark should allow for at least two frames to be
1815 	 *   received after sending an XOFF.
1816 	 * - Low water mark works best when it is very near the high water mark.
1817 	 *   This allows the receiver to restart by sending XON when it has
1818 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1819 	 *   restart after one full frame is pulled from the buffer. There
1820 	 *   could be several smaller frames in the buffer and if so they will
1821 	 *   not trigger the XON until their total number reduces the buffer
1822 	 *   by 1500.
1823 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1824 	 */
1825 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1826 
1827 	sc->hw.fc.high_water = rx_buffer_size -
1828 			       roundup2(sc->max_frame_size, 1024);
1829 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1830 
1831 	if (sc->hw.mac.type == e1000_80003es2lan)
1832 		sc->hw.fc.pause_time = 0xFFFF;
1833 	else
1834 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1835 	sc->hw.fc.send_xon = TRUE;
1836 	sc->hw.fc.requested_mode = e1000_fc_full;
1837 
1838 	/* Issue a global reset */
1839 	e1000_reset_hw(&sc->hw);
1840 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1841 	emx_disable_aspm(sc);
1842 
1843 	if (e1000_init_hw(&sc->hw) < 0) {
1844 		device_printf(dev, "Hardware Initialization Failed\n");
1845 		return (EIO);
1846 	}
1847 
1848 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1849 	e1000_get_phy_info(&sc->hw);
1850 	e1000_check_for_link(&sc->hw);
1851 
1852 	return (0);
1853 }
1854 
1855 static void
1856 emx_setup_ifp(struct emx_softc *sc)
1857 {
1858 	struct ifnet *ifp = &sc->arpcom.ac_if;
1859 
1860 	if_initname(ifp, device_get_name(sc->dev),
1861 		    device_get_unit(sc->dev));
1862 	ifp->if_softc = sc;
1863 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1864 	ifp->if_init =  emx_init;
1865 	ifp->if_ioctl = emx_ioctl;
1866 	ifp->if_start = emx_start;
1867 #ifdef IFPOLL_ENABLE
1868 	ifp->if_qpoll = emx_qpoll;
1869 #endif
1870 	ifp->if_watchdog = emx_watchdog;
1871 	ifp->if_serialize = emx_serialize;
1872 	ifp->if_deserialize = emx_deserialize;
1873 	ifp->if_tryserialize = emx_tryserialize;
1874 #ifdef INVARIANTS
1875 	ifp->if_serialize_assert = emx_serialize_assert;
1876 #endif
1877 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1878 	ifq_set_ready(&ifp->if_snd);
1879 
1880 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1881 
1882 	ifp->if_capabilities = IFCAP_HWCSUM |
1883 			       IFCAP_VLAN_HWTAGGING |
1884 			       IFCAP_VLAN_MTU |
1885 			       IFCAP_TSO;
1886 	if (sc->rx_ring_cnt > 1)
1887 		ifp->if_capabilities |= IFCAP_RSS;
1888 	ifp->if_capenable = ifp->if_capabilities;
1889 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
1890 
1891 	/*
1892 	 * Tell the upper layer(s) we support long frames.
1893 	 */
1894 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1895 
1896 	/*
1897 	 * Specify the media types supported by this sc and register
1898 	 * callbacks to update media and link information
1899 	 */
1900 	ifmedia_init(&sc->media, IFM_IMASK,
1901 		     emx_media_change, emx_media_status);
1902 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1903 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1904 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1905 			    0, NULL);
1906 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1907 	} else {
1908 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1909 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1910 			    0, NULL);
1911 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1912 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1913 			    0, NULL);
1914 		if (sc->hw.phy.type != e1000_phy_ife) {
1915 			ifmedia_add(&sc->media,
1916 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1917 			ifmedia_add(&sc->media,
1918 				IFM_ETHER | IFM_1000_T, 0, NULL);
1919 		}
1920 	}
1921 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1922 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1923 }
1924 
1925 /*
1926  * Workaround for SmartSpeed on 82541 and 82547 controllers
1927  */
1928 static void
1929 emx_smartspeed(struct emx_softc *sc)
1930 {
1931 	uint16_t phy_tmp;
1932 
1933 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1934 	    sc->hw.mac.autoneg == 0 ||
1935 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1936 		return;
1937 
1938 	if (sc->smartspeed == 0) {
1939 		/*
1940 		 * If Master/Slave config fault is asserted twice,
1941 		 * we assume back-to-back
1942 		 */
1943 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1944 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1945 			return;
1946 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1947 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1948 			e1000_read_phy_reg(&sc->hw,
1949 			    PHY_1000T_CTRL, &phy_tmp);
1950 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1951 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1952 				e1000_write_phy_reg(&sc->hw,
1953 				    PHY_1000T_CTRL, phy_tmp);
1954 				sc->smartspeed++;
1955 				if (sc->hw.mac.autoneg &&
1956 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1957 				    !e1000_read_phy_reg(&sc->hw,
1958 				     PHY_CONTROL, &phy_tmp)) {
1959 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1960 						   MII_CR_RESTART_AUTO_NEG;
1961 					e1000_write_phy_reg(&sc->hw,
1962 					    PHY_CONTROL, phy_tmp);
1963 				}
1964 			}
1965 		}
1966 		return;
1967 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1968 		/* If still no link, perhaps using 2/3 pair cable */
1969 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1970 		phy_tmp |= CR_1000T_MS_ENABLE;
1971 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1972 		if (sc->hw.mac.autoneg &&
1973 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1974 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1975 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1976 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1977 		}
1978 	}
1979 
1980 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1981 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1982 		sc->smartspeed = 0;
1983 }
1984 
1985 static int
1986 emx_create_tx_ring(struct emx_softc *sc)
1987 {
1988 	device_t dev = sc->dev;
1989 	struct emx_txbuf *tx_buffer;
1990 	int error, i, tsize, ntxd;
1991 
1992 	/*
1993 	 * Validate number of transmit descriptors.  It must not exceed
1994 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1995 	 */
1996 	ntxd = device_getenv_int(dev, "txd", emx_txd);
1997 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1998 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
1999 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2000 		    EMX_DEFAULT_TXD, ntxd);
2001 		sc->num_tx_desc = EMX_DEFAULT_TXD;
2002 	} else {
2003 		sc->num_tx_desc = ntxd;
2004 	}
2005 
2006 	/*
2007 	 * Allocate Transmit Descriptor ring
2008 	 */
2009 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
2010 			 EMX_DBA_ALIGN);
2011 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
2012 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2013 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
2014 				&sc->tx_desc_paddr);
2015 	if (sc->tx_desc_base == NULL) {
2016 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2017 		return ENOMEM;
2018 	}
2019 
2020 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
2021 			     M_DEVBUF, M_WAITOK | M_ZERO);
2022 
2023 	/*
2024 	 * Create DMA tags for tx buffers
2025 	 */
2026 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2027 			1, 0,			/* alignment, bounds */
2028 			BUS_SPACE_MAXADDR,	/* lowaddr */
2029 			BUS_SPACE_MAXADDR,	/* highaddr */
2030 			NULL, NULL,		/* filter, filterarg */
2031 			EMX_TSO_SIZE,		/* maxsize */
2032 			EMX_MAX_SCATTER,	/* nsegments */
2033 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2034 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2035 			BUS_DMA_ONEBPAGE,	/* flags */
2036 			&sc->txtag);
2037 	if (error) {
2038 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2039 		kfree(sc->tx_buf, M_DEVBUF);
2040 		sc->tx_buf = NULL;
2041 		return error;
2042 	}
2043 
2044 	/*
2045 	 * Create DMA maps for tx buffers
2046 	 */
2047 	for (i = 0; i < sc->num_tx_desc; i++) {
2048 		tx_buffer = &sc->tx_buf[i];
2049 
2050 		error = bus_dmamap_create(sc->txtag,
2051 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2052 					  &tx_buffer->map);
2053 		if (error) {
2054 			device_printf(dev, "Unable to create TX DMA map\n");
2055 			emx_destroy_tx_ring(sc, i);
2056 			return error;
2057 		}
2058 	}
2059 	return (0);
2060 }
2061 
2062 static void
2063 emx_init_tx_ring(struct emx_softc *sc)
2064 {
2065 	/* Clear the old ring contents */
2066 	bzero(sc->tx_desc_base,
2067 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
2068 
2069 	/* Reset state */
2070 	sc->next_avail_tx_desc = 0;
2071 	sc->next_tx_to_clean = 0;
2072 	sc->num_tx_desc_avail = sc->num_tx_desc;
2073 }
2074 
2075 static void
2076 emx_init_tx_unit(struct emx_softc *sc)
2077 {
2078 	uint32_t tctl, tarc, tipg = 0;
2079 	uint64_t bus_addr;
2080 
2081 	/* Setup the Base and Length of the Tx Descriptor Ring */
2082 	bus_addr = sc->tx_desc_paddr;
2083 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
2084 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
2085 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
2086 	    (uint32_t)(bus_addr >> 32));
2087 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2088 	    (uint32_t)bus_addr);
2089 	/* Setup the HW Tx Head and Tail descriptor pointers */
2090 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2091 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2092 
2093 	/* Set the default values for the Tx Inter Packet Gap timer */
2094 	switch (sc->hw.mac.type) {
2095 	case e1000_80003es2lan:
2096 		tipg = DEFAULT_82543_TIPG_IPGR1;
2097 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2098 		    E1000_TIPG_IPGR2_SHIFT;
2099 		break;
2100 
2101 	default:
2102 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2103 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2104 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2105 		else
2106 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2107 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2108 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2109 		break;
2110 	}
2111 
2112 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2113 
2114 	/* NOTE: 0 is not allowed for TIDV */
2115 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2116 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2117 
2118 	if (sc->hw.mac.type == e1000_82571 ||
2119 	    sc->hw.mac.type == e1000_82572) {
2120 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2121 		tarc |= EMX_TARC_SPEED_MODE;
2122 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2123 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2124 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2125 		tarc |= 1;
2126 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2127 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2128 		tarc |= 1;
2129 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2130 	}
2131 
2132 	/* Program the Transmit Control Register */
2133 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2134 	tctl &= ~E1000_TCTL_CT;
2135 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2136 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2137 	tctl |= E1000_TCTL_MULR;
2138 
2139 	/* This write will effectively turn on the transmit unit. */
2140 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2141 }
2142 
2143 static void
2144 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2145 {
2146 	struct emx_txbuf *tx_buffer;
2147 	int i;
2148 
2149 	/* Free Transmit Descriptor ring */
2150 	if (sc->tx_desc_base) {
2151 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2152 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2153 				sc->tx_desc_dmap);
2154 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2155 
2156 		sc->tx_desc_base = NULL;
2157 	}
2158 
2159 	if (sc->tx_buf == NULL)
2160 		return;
2161 
2162 	for (i = 0; i < ndesc; i++) {
2163 		tx_buffer = &sc->tx_buf[i];
2164 
2165 		KKASSERT(tx_buffer->m_head == NULL);
2166 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2167 	}
2168 	bus_dma_tag_destroy(sc->txtag);
2169 
2170 	kfree(sc->tx_buf, M_DEVBUF);
2171 	sc->tx_buf = NULL;
2172 }
2173 
2174 /*
2175  * The offload context needs to be set when we transfer the first
2176  * packet of a particular protocol (TCP/UDP).  This routine has been
2177  * enhanced to deal with inserted VLAN headers.
2178  *
2179  * If the new packet's ether header length, ip header length and
2180  * csum offloading type are same as the previous packet, we should
2181  * avoid allocating a new csum context descriptor; mainly to take
2182  * advantage of the pipeline effect of the TX data read request.
2183  *
2184  * This function returns number of TX descrptors allocated for
2185  * csum context.
2186  */
2187 static int
2188 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2189 	   uint32_t *txd_upper, uint32_t *txd_lower)
2190 {
2191 	struct e1000_context_desc *TXD;
2192 	int curr_txd, ehdrlen, csum_flags;
2193 	uint32_t cmd, hdr_len, ip_hlen;
2194 
2195 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2196 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2197 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2198 
2199 	if (sc->csum_lhlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2200 	    sc->csum_flags == csum_flags) {
2201 		/*
2202 		 * Same csum offload context as the previous packets;
2203 		 * just return.
2204 		 */
2205 		*txd_upper = sc->csum_txd_upper;
2206 		*txd_lower = sc->csum_txd_lower;
2207 		return 0;
2208 	}
2209 
2210 	/*
2211 	 * Setup a new csum offload context.
2212 	 */
2213 
2214 	curr_txd = sc->next_avail_tx_desc;
2215 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2216 
2217 	cmd = 0;
2218 
2219 	/* Setup of IP header checksum. */
2220 	if (csum_flags & CSUM_IP) {
2221 		/*
2222 		 * Start offset for header checksum calculation.
2223 		 * End offset for header checksum calculation.
2224 		 * Offset of place to put the checksum.
2225 		 */
2226 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2227 		TXD->lower_setup.ip_fields.ipcse =
2228 		    htole16(ehdrlen + ip_hlen - 1);
2229 		TXD->lower_setup.ip_fields.ipcso =
2230 		    ehdrlen + offsetof(struct ip, ip_sum);
2231 		cmd |= E1000_TXD_CMD_IP;
2232 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2233 	}
2234 	hdr_len = ehdrlen + ip_hlen;
2235 
2236 	if (csum_flags & CSUM_TCP) {
2237 		/*
2238 		 * Start offset for payload checksum calculation.
2239 		 * End offset for payload checksum calculation.
2240 		 * Offset of place to put the checksum.
2241 		 */
2242 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2243 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2244 		TXD->upper_setup.tcp_fields.tucso =
2245 		    hdr_len + offsetof(struct tcphdr, th_sum);
2246 		cmd |= E1000_TXD_CMD_TCP;
2247 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2248 	} else if (csum_flags & CSUM_UDP) {
2249 		/*
2250 		 * Start offset for header checksum calculation.
2251 		 * End offset for header checksum calculation.
2252 		 * Offset of place to put the checksum.
2253 		 */
2254 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2255 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2256 		TXD->upper_setup.tcp_fields.tucso =
2257 		    hdr_len + offsetof(struct udphdr, uh_sum);
2258 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2259 	}
2260 
2261 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2262 		     E1000_TXD_DTYP_D;		/* Data descr */
2263 
2264 	/* Save the information for this csum offloading context */
2265 	sc->csum_lhlen = ehdrlen;
2266 	sc->csum_iphlen = ip_hlen;
2267 	sc->csum_flags = csum_flags;
2268 	sc->csum_txd_upper = *txd_upper;
2269 	sc->csum_txd_lower = *txd_lower;
2270 
2271 	TXD->tcp_seg_setup.data = htole32(0);
2272 	TXD->cmd_and_length =
2273 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2274 
2275 	if (++curr_txd == sc->num_tx_desc)
2276 		curr_txd = 0;
2277 
2278 	KKASSERT(sc->num_tx_desc_avail > 0);
2279 	sc->num_tx_desc_avail--;
2280 
2281 	sc->next_avail_tx_desc = curr_txd;
2282 	return 1;
2283 }
2284 
2285 static void
2286 emx_txeof(struct emx_softc *sc)
2287 {
2288 	struct ifnet *ifp = &sc->arpcom.ac_if;
2289 	struct emx_txbuf *tx_buffer;
2290 	int first, num_avail;
2291 
2292 	if (sc->tx_dd_head == sc->tx_dd_tail)
2293 		return;
2294 
2295 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2296 		return;
2297 
2298 	num_avail = sc->num_tx_desc_avail;
2299 	first = sc->next_tx_to_clean;
2300 
2301 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2302 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2303 		struct e1000_tx_desc *tx_desc;
2304 
2305 		tx_desc = &sc->tx_desc_base[dd_idx];
2306 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2307 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2308 
2309 			if (++dd_idx == sc->num_tx_desc)
2310 				dd_idx = 0;
2311 
2312 			while (first != dd_idx) {
2313 				logif(pkt_txclean);
2314 
2315 				num_avail++;
2316 
2317 				tx_buffer = &sc->tx_buf[first];
2318 				if (tx_buffer->m_head) {
2319 					ifp->if_opackets++;
2320 					bus_dmamap_unload(sc->txtag,
2321 							  tx_buffer->map);
2322 					m_freem(tx_buffer->m_head);
2323 					tx_buffer->m_head = NULL;
2324 				}
2325 
2326 				if (++first == sc->num_tx_desc)
2327 					first = 0;
2328 			}
2329 		} else {
2330 			break;
2331 		}
2332 	}
2333 	sc->next_tx_to_clean = first;
2334 	sc->num_tx_desc_avail = num_avail;
2335 
2336 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2337 		sc->tx_dd_head = 0;
2338 		sc->tx_dd_tail = 0;
2339 	}
2340 
2341 	if (!EMX_IS_OACTIVE(sc)) {
2342 		ifp->if_flags &= ~IFF_OACTIVE;
2343 
2344 		/* All clean, turn off the timer */
2345 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2346 			ifp->if_timer = 0;
2347 	}
2348 }
2349 
2350 static void
2351 emx_tx_collect(struct emx_softc *sc)
2352 {
2353 	struct ifnet *ifp = &sc->arpcom.ac_if;
2354 	struct emx_txbuf *tx_buffer;
2355 	int tdh, first, num_avail, dd_idx = -1;
2356 
2357 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2358 		return;
2359 
2360 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2361 	if (tdh == sc->next_tx_to_clean)
2362 		return;
2363 
2364 	if (sc->tx_dd_head != sc->tx_dd_tail)
2365 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2366 
2367 	num_avail = sc->num_tx_desc_avail;
2368 	first = sc->next_tx_to_clean;
2369 
2370 	while (first != tdh) {
2371 		logif(pkt_txclean);
2372 
2373 		num_avail++;
2374 
2375 		tx_buffer = &sc->tx_buf[first];
2376 		if (tx_buffer->m_head) {
2377 			ifp->if_opackets++;
2378 			bus_dmamap_unload(sc->txtag,
2379 					  tx_buffer->map);
2380 			m_freem(tx_buffer->m_head);
2381 			tx_buffer->m_head = NULL;
2382 		}
2383 
2384 		if (first == dd_idx) {
2385 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2386 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2387 				sc->tx_dd_head = 0;
2388 				sc->tx_dd_tail = 0;
2389 				dd_idx = -1;
2390 			} else {
2391 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2392 			}
2393 		}
2394 
2395 		if (++first == sc->num_tx_desc)
2396 			first = 0;
2397 	}
2398 	sc->next_tx_to_clean = first;
2399 	sc->num_tx_desc_avail = num_avail;
2400 
2401 	if (!EMX_IS_OACTIVE(sc)) {
2402 		ifp->if_flags &= ~IFF_OACTIVE;
2403 
2404 		/* All clean, turn off the timer */
2405 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2406 			ifp->if_timer = 0;
2407 	}
2408 }
2409 
2410 /*
2411  * When Link is lost sometimes there is work still in the TX ring
2412  * which will result in a watchdog, rather than allow that do an
2413  * attempted cleanup and then reinit here.  Note that this has been
2414  * seens mostly with fiber adapters.
2415  */
2416 static void
2417 emx_tx_purge(struct emx_softc *sc)
2418 {
2419 	struct ifnet *ifp = &sc->arpcom.ac_if;
2420 
2421 	if (!sc->link_active && ifp->if_timer) {
2422 		emx_tx_collect(sc);
2423 		if (ifp->if_timer) {
2424 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2425 			ifp->if_timer = 0;
2426 			emx_init(sc);
2427 		}
2428 	}
2429 }
2430 
2431 static int
2432 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2433 {
2434 	struct mbuf *m;
2435 	bus_dma_segment_t seg;
2436 	bus_dmamap_t map;
2437 	struct emx_rxbuf *rx_buffer;
2438 	int error, nseg;
2439 
2440 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2441 	if (m == NULL) {
2442 		rdata->mbuf_cluster_failed++;
2443 		if (init) {
2444 			if_printf(&sc->arpcom.ac_if,
2445 				  "Unable to allocate RX mbuf\n");
2446 		}
2447 		return (ENOBUFS);
2448 	}
2449 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2450 
2451 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2452 		m_adj(m, ETHER_ALIGN);
2453 
2454 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2455 			rdata->rx_sparemap, m,
2456 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2457 	if (error) {
2458 		m_freem(m);
2459 		if (init) {
2460 			if_printf(&sc->arpcom.ac_if,
2461 				  "Unable to load RX mbuf\n");
2462 		}
2463 		return (error);
2464 	}
2465 
2466 	rx_buffer = &rdata->rx_buf[i];
2467 	if (rx_buffer->m_head != NULL)
2468 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2469 
2470 	map = rx_buffer->map;
2471 	rx_buffer->map = rdata->rx_sparemap;
2472 	rdata->rx_sparemap = map;
2473 
2474 	rx_buffer->m_head = m;
2475 	rx_buffer->paddr = seg.ds_addr;
2476 
2477 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2478 	return (0);
2479 }
2480 
2481 static int
2482 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2483 {
2484 	device_t dev = sc->dev;
2485 	struct emx_rxbuf *rx_buffer;
2486 	int i, error, rsize, nrxd;
2487 
2488 	/*
2489 	 * Validate number of receive descriptors.  It must not exceed
2490 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2491 	 */
2492 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2493 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2494 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2495 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2496 		    EMX_DEFAULT_RXD, nrxd);
2497 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2498 	} else {
2499 		rdata->num_rx_desc = nrxd;
2500 	}
2501 
2502 	/*
2503 	 * Allocate Receive Descriptor ring
2504 	 */
2505 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2506 			 EMX_DBA_ALIGN);
2507 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2508 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2509 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2510 				&rdata->rx_desc_paddr);
2511 	if (rdata->rx_desc == NULL) {
2512 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2513 		return ENOMEM;
2514 	}
2515 
2516 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2517 				M_DEVBUF, M_WAITOK | M_ZERO);
2518 
2519 	/*
2520 	 * Create DMA tag for rx buffers
2521 	 */
2522 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2523 			1, 0,			/* alignment, bounds */
2524 			BUS_SPACE_MAXADDR,	/* lowaddr */
2525 			BUS_SPACE_MAXADDR,	/* highaddr */
2526 			NULL, NULL,		/* filter, filterarg */
2527 			MCLBYTES,		/* maxsize */
2528 			1,			/* nsegments */
2529 			MCLBYTES,		/* maxsegsize */
2530 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2531 			&rdata->rxtag);
2532 	if (error) {
2533 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2534 		kfree(rdata->rx_buf, M_DEVBUF);
2535 		rdata->rx_buf = NULL;
2536 		return error;
2537 	}
2538 
2539 	/*
2540 	 * Create spare DMA map for rx buffers
2541 	 */
2542 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2543 				  &rdata->rx_sparemap);
2544 	if (error) {
2545 		device_printf(dev, "Unable to create spare RX DMA map\n");
2546 		bus_dma_tag_destroy(rdata->rxtag);
2547 		kfree(rdata->rx_buf, M_DEVBUF);
2548 		rdata->rx_buf = NULL;
2549 		return error;
2550 	}
2551 
2552 	/*
2553 	 * Create DMA maps for rx buffers
2554 	 */
2555 	for (i = 0; i < rdata->num_rx_desc; i++) {
2556 		rx_buffer = &rdata->rx_buf[i];
2557 
2558 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2559 					  &rx_buffer->map);
2560 		if (error) {
2561 			device_printf(dev, "Unable to create RX DMA map\n");
2562 			emx_destroy_rx_ring(sc, rdata, i);
2563 			return error;
2564 		}
2565 	}
2566 	return (0);
2567 }
2568 
2569 static void
2570 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2571 {
2572 	int i;
2573 
2574 	for (i = 0; i < rdata->num_rx_desc; i++) {
2575 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2576 
2577 		if (rx_buffer->m_head != NULL) {
2578 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2579 			m_freem(rx_buffer->m_head);
2580 			rx_buffer->m_head = NULL;
2581 		}
2582 	}
2583 
2584 	if (rdata->fmp != NULL)
2585 		m_freem(rdata->fmp);
2586 	rdata->fmp = NULL;
2587 	rdata->lmp = NULL;
2588 }
2589 
2590 static int
2591 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2592 {
2593 	int i, error;
2594 
2595 	/* Reset descriptor ring */
2596 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2597 
2598 	/* Allocate new ones. */
2599 	for (i = 0; i < rdata->num_rx_desc; i++) {
2600 		error = emx_newbuf(sc, rdata, i, 1);
2601 		if (error)
2602 			return (error);
2603 	}
2604 
2605 	/* Setup our descriptor pointers */
2606 	rdata->next_rx_desc_to_check = 0;
2607 
2608 	return (0);
2609 }
2610 
2611 static void
2612 emx_init_rx_unit(struct emx_softc *sc)
2613 {
2614 	struct ifnet *ifp = &sc->arpcom.ac_if;
2615 	uint64_t bus_addr;
2616 	uint32_t rctl, itr, rfctl;
2617 	int i;
2618 
2619 	/*
2620 	 * Make sure receives are disabled while setting
2621 	 * up the descriptor ring
2622 	 */
2623 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2624 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2625 
2626 	/*
2627 	 * Set the interrupt throttling rate. Value is calculated
2628 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2629 	 */
2630 	if (sc->int_throttle_ceil)
2631 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2632 	else
2633 		itr = 0;
2634 	emx_set_itr(sc, itr);
2635 
2636 	/* Use extended RX descriptor */
2637 	rfctl = E1000_RFCTL_EXTEN;
2638 
2639 	/* Disable accelerated ackknowledge */
2640 	if (sc->hw.mac.type == e1000_82574)
2641 		rfctl |= E1000_RFCTL_ACK_DIS;
2642 
2643 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2644 
2645 	/*
2646 	 * Receive Checksum Offload for TCP and UDP
2647 	 *
2648 	 * Checksum offloading is also enabled if multiple receive
2649 	 * queue is to be supported, since we need it to figure out
2650 	 * packet type.
2651 	 */
2652 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2653 	    sc->rx_ring_cnt > 1) {
2654 		uint32_t rxcsum;
2655 
2656 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2657 
2658 		/*
2659 		 * NOTE:
2660 		 * PCSD must be enabled to enable multiple
2661 		 * receive queues.
2662 		 */
2663 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2664 			  E1000_RXCSUM_PCSD;
2665 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2666 	}
2667 
2668 	/*
2669 	 * Configure multiple receive queue (RSS)
2670 	 */
2671 	if (sc->rx_ring_cnt > 1) {
2672 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2673 		uint32_t reta;
2674 
2675 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2676 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2677 
2678 		/*
2679 		 * NOTE:
2680 		 * When we reach here, RSS has already been disabled
2681 		 * in emx_stop(), so we could safely configure RSS key
2682 		 * and redirect table.
2683 		 */
2684 
2685 		/*
2686 		 * Configure RSS key
2687 		 */
2688 		toeplitz_get_key(key, sizeof(key));
2689 		for (i = 0; i < EMX_NRSSRK; ++i) {
2690 			uint32_t rssrk;
2691 
2692 			rssrk = EMX_RSSRK_VAL(key, i);
2693 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2694 
2695 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2696 		}
2697 
2698 		/*
2699 		 * Configure RSS redirect table in following fashion:
2700 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2701 		 */
2702 		reta = 0;
2703 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2704 			uint32_t q;
2705 
2706 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2707 			reta |= q << (8 * i);
2708 		}
2709 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2710 
2711 		for (i = 0; i < EMX_NRETA; ++i)
2712 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2713 
2714 		/*
2715 		 * Enable multiple receive queues.
2716 		 * Enable IPv4 RSS standard hash functions.
2717 		 * Disable RSS interrupt.
2718 		 */
2719 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2720 				E1000_MRQC_ENABLE_RSS_2Q |
2721 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2722 				E1000_MRQC_RSS_FIELD_IPV4);
2723 	}
2724 
2725 	/*
2726 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2727 	 * long latencies are observed, like Lenovo X60. This
2728 	 * change eliminates the problem, but since having positive
2729 	 * values in RDTR is a known source of problems on other
2730 	 * platforms another solution is being sought.
2731 	 */
2732 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2733 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2734 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2735 	}
2736 
2737 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2738 		struct emx_rxdata *rdata = &sc->rx_data[i];
2739 
2740 		/*
2741 		 * Setup the Base and Length of the Rx Descriptor Ring
2742 		 */
2743 		bus_addr = rdata->rx_desc_paddr;
2744 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2745 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2746 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2747 		    (uint32_t)(bus_addr >> 32));
2748 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2749 		    (uint32_t)bus_addr);
2750 
2751 		/*
2752 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2753 		 */
2754 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2755 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2756 		    sc->rx_data[i].num_rx_desc - 1);
2757 	}
2758 
2759 	/* Setup the Receive Control Register */
2760 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2761 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2762 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2763 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2764 
2765 	/* Make sure VLAN Filters are off */
2766 	rctl &= ~E1000_RCTL_VFE;
2767 
2768 	/* Don't store bad paket */
2769 	rctl &= ~E1000_RCTL_SBP;
2770 
2771 	/* MCLBYTES */
2772 	rctl |= E1000_RCTL_SZ_2048;
2773 
2774 	if (ifp->if_mtu > ETHERMTU)
2775 		rctl |= E1000_RCTL_LPE;
2776 	else
2777 		rctl &= ~E1000_RCTL_LPE;
2778 
2779 	/* Enable Receives */
2780 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2781 }
2782 
2783 static void
2784 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2785 {
2786 	struct emx_rxbuf *rx_buffer;
2787 	int i;
2788 
2789 	/* Free Receive Descriptor ring */
2790 	if (rdata->rx_desc) {
2791 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2792 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2793 				rdata->rx_desc_dmap);
2794 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2795 
2796 		rdata->rx_desc = NULL;
2797 	}
2798 
2799 	if (rdata->rx_buf == NULL)
2800 		return;
2801 
2802 	for (i = 0; i < ndesc; i++) {
2803 		rx_buffer = &rdata->rx_buf[i];
2804 
2805 		KKASSERT(rx_buffer->m_head == NULL);
2806 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2807 	}
2808 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2809 	bus_dma_tag_destroy(rdata->rxtag);
2810 
2811 	kfree(rdata->rx_buf, M_DEVBUF);
2812 	rdata->rx_buf = NULL;
2813 }
2814 
2815 static void
2816 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2817 {
2818 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2819 	struct ifnet *ifp = &sc->arpcom.ac_if;
2820 	uint32_t staterr;
2821 	emx_rxdesc_t *current_desc;
2822 	struct mbuf *mp;
2823 	int i;
2824 
2825 	i = rdata->next_rx_desc_to_check;
2826 	current_desc = &rdata->rx_desc[i];
2827 	staterr = le32toh(current_desc->rxd_staterr);
2828 
2829 	if (!(staterr & E1000_RXD_STAT_DD))
2830 		return;
2831 
2832 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2833 		struct pktinfo *pi = NULL, pi0;
2834 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2835 		struct mbuf *m = NULL;
2836 		int eop, len;
2837 
2838 		logif(pkt_receive);
2839 
2840 		mp = rx_buf->m_head;
2841 
2842 		/*
2843 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2844 		 * needs to access the last received byte in the mbuf.
2845 		 */
2846 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2847 				BUS_DMASYNC_POSTREAD);
2848 
2849 		len = le16toh(current_desc->rxd_length);
2850 		if (staterr & E1000_RXD_STAT_EOP) {
2851 			count--;
2852 			eop = 1;
2853 		} else {
2854 			eop = 0;
2855 		}
2856 
2857 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2858 			uint16_t vlan = 0;
2859 			uint32_t mrq, rss_hash;
2860 
2861 			/*
2862 			 * Save several necessary information,
2863 			 * before emx_newbuf() destroy it.
2864 			 */
2865 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2866 				vlan = le16toh(current_desc->rxd_vlan);
2867 
2868 			mrq = le32toh(current_desc->rxd_mrq);
2869 			rss_hash = le32toh(current_desc->rxd_rss);
2870 
2871 			EMX_RSS_DPRINTF(sc, 10,
2872 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2873 			    ring_idx, mrq, rss_hash);
2874 
2875 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2876 				ifp->if_iqdrops++;
2877 				goto discard;
2878 			}
2879 
2880 			/* Assign correct length to the current fragment */
2881 			mp->m_len = len;
2882 
2883 			if (rdata->fmp == NULL) {
2884 				mp->m_pkthdr.len = len;
2885 				rdata->fmp = mp; /* Store the first mbuf */
2886 				rdata->lmp = mp;
2887 			} else {
2888 				/*
2889 				 * Chain mbuf's together
2890 				 */
2891 				rdata->lmp->m_next = mp;
2892 				rdata->lmp = rdata->lmp->m_next;
2893 				rdata->fmp->m_pkthdr.len += len;
2894 			}
2895 
2896 			if (eop) {
2897 				rdata->fmp->m_pkthdr.rcvif = ifp;
2898 				ifp->if_ipackets++;
2899 
2900 				if (ifp->if_capenable & IFCAP_RXCSUM)
2901 					emx_rxcsum(staterr, rdata->fmp);
2902 
2903 				if (staterr & E1000_RXD_STAT_VP) {
2904 					rdata->fmp->m_pkthdr.ether_vlantag =
2905 					    vlan;
2906 					rdata->fmp->m_flags |= M_VLANTAG;
2907 				}
2908 				m = rdata->fmp;
2909 				rdata->fmp = NULL;
2910 				rdata->lmp = NULL;
2911 
2912 				if (ifp->if_capenable & IFCAP_RSS) {
2913 					pi = emx_rssinfo(m, &pi0, mrq,
2914 							 rss_hash, staterr);
2915 				}
2916 #ifdef EMX_RSS_DEBUG
2917 				rdata->rx_pkts++;
2918 #endif
2919 			}
2920 		} else {
2921 			ifp->if_ierrors++;
2922 discard:
2923 			emx_setup_rxdesc(current_desc, rx_buf);
2924 			if (rdata->fmp != NULL) {
2925 				m_freem(rdata->fmp);
2926 				rdata->fmp = NULL;
2927 				rdata->lmp = NULL;
2928 			}
2929 			m = NULL;
2930 		}
2931 
2932 		if (m != NULL)
2933 			ether_input_pkt(ifp, m, pi);
2934 
2935 		/* Advance our pointers to the next descriptor. */
2936 		if (++i == rdata->num_rx_desc)
2937 			i = 0;
2938 
2939 		current_desc = &rdata->rx_desc[i];
2940 		staterr = le32toh(current_desc->rxd_staterr);
2941 	}
2942 	rdata->next_rx_desc_to_check = i;
2943 
2944 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2945 	if (--i < 0)
2946 		i = rdata->num_rx_desc - 1;
2947 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2948 }
2949 
2950 static void
2951 emx_enable_intr(struct emx_softc *sc)
2952 {
2953 	uint32_t ims_mask = IMS_ENABLE_MASK;
2954 
2955 	lwkt_serialize_handler_enable(&sc->main_serialize);
2956 
2957 #if 0
2958 	if (sc->hw.mac.type == e1000_82574) {
2959 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
2960 		ims_mask |= EM_MSIX_MASK;
2961 	}
2962 #endif
2963 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
2964 }
2965 
2966 static void
2967 emx_disable_intr(struct emx_softc *sc)
2968 {
2969 	if (sc->hw.mac.type == e1000_82574)
2970 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
2971 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2972 
2973 	lwkt_serialize_handler_disable(&sc->main_serialize);
2974 }
2975 
2976 /*
2977  * Bit of a misnomer, what this really means is
2978  * to enable OS management of the system... aka
2979  * to disable special hardware management features
2980  */
2981 static void
2982 emx_get_mgmt(struct emx_softc *sc)
2983 {
2984 	/* A shared code workaround */
2985 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
2986 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2987 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2988 
2989 		/* disable hardware interception of ARP */
2990 		manc &= ~(E1000_MANC_ARP_EN);
2991 
2992                 /* enable receiving management packets to the host */
2993 		manc |= E1000_MANC_EN_MNG2HOST;
2994 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2995 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2996 		manc2h |= E1000_MNG2HOST_PORT_623;
2997 		manc2h |= E1000_MNG2HOST_PORT_664;
2998 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2999 
3000 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3001 	}
3002 }
3003 
3004 /*
3005  * Give control back to hardware management
3006  * controller if there is one.
3007  */
3008 static void
3009 emx_rel_mgmt(struct emx_softc *sc)
3010 {
3011 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3012 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3013 
3014 		/* re-enable hardware interception of ARP */
3015 		manc |= E1000_MANC_ARP_EN;
3016 		manc &= ~E1000_MANC_EN_MNG2HOST;
3017 
3018 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3019 	}
3020 }
3021 
3022 /*
3023  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3024  * For ASF and Pass Through versions of f/w this means that
3025  * the driver is loaded.  For AMT version (only with 82573)
3026  * of the f/w this means that the network i/f is open.
3027  */
3028 static void
3029 emx_get_hw_control(struct emx_softc *sc)
3030 {
3031 	/* Let firmware know the driver has taken over */
3032 	if (sc->hw.mac.type == e1000_82573) {
3033 		uint32_t swsm;
3034 
3035 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3036 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3037 		    swsm | E1000_SWSM_DRV_LOAD);
3038 	} else {
3039 		uint32_t ctrl_ext;
3040 
3041 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3042 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3043 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3044 	}
3045 	sc->flags |= EMX_FLAG_HW_CTRL;
3046 }
3047 
3048 /*
3049  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3050  * For ASF and Pass Through versions of f/w this means that the
3051  * driver is no longer loaded.  For AMT version (only with 82573)
3052  * of the f/w this means that the network i/f is closed.
3053  */
3054 static void
3055 emx_rel_hw_control(struct emx_softc *sc)
3056 {
3057 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3058 		return;
3059 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3060 
3061 	/* Let firmware taken over control of h/w */
3062 	if (sc->hw.mac.type == e1000_82573) {
3063 		uint32_t swsm;
3064 
3065 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3066 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3067 		    swsm & ~E1000_SWSM_DRV_LOAD);
3068 	} else {
3069 		uint32_t ctrl_ext;
3070 
3071 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3072 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3073 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3074 	}
3075 }
3076 
3077 static int
3078 emx_is_valid_eaddr(const uint8_t *addr)
3079 {
3080 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3081 
3082 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3083 		return (FALSE);
3084 
3085 	return (TRUE);
3086 }
3087 
3088 /*
3089  * Enable PCI Wake On Lan capability
3090  */
3091 void
3092 emx_enable_wol(device_t dev)
3093 {
3094 	uint16_t cap, status;
3095 	uint8_t id;
3096 
3097 	/* First find the capabilities pointer*/
3098 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3099 
3100 	/* Read the PM Capabilities */
3101 	id = pci_read_config(dev, cap, 1);
3102 	if (id != PCIY_PMG)     /* Something wrong */
3103 		return;
3104 
3105 	/*
3106 	 * OK, we have the power capabilities,
3107 	 * so now get the status register
3108 	 */
3109 	cap += PCIR_POWER_STATUS;
3110 	status = pci_read_config(dev, cap, 2);
3111 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3112 	pci_write_config(dev, cap, status, 2);
3113 }
3114 
3115 static void
3116 emx_update_stats(struct emx_softc *sc)
3117 {
3118 	struct ifnet *ifp = &sc->arpcom.ac_if;
3119 
3120 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3121 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3122 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3123 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3124 	}
3125 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3126 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3127 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3128 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3129 
3130 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3131 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3132 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3133 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3134 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3135 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3136 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3137 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3138 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3139 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3140 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3141 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3142 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3143 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3144 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3145 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3146 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3147 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3148 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3149 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3150 
3151 	/* For the 64-bit byte counters the low dword must be read first. */
3152 	/* Both registers clear on the read of the high dword */
3153 
3154 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3155 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3156 
3157 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3158 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3159 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3160 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3161 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3162 
3163 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3164 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3165 
3166 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3167 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3168 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3169 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3170 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3171 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3172 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3173 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3174 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3175 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3176 
3177 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3178 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3179 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3180 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3181 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3182 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3183 
3184 	ifp->if_collisions = sc->stats.colc;
3185 
3186 	/* Rx Errors */
3187 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3188 			  sc->stats.crcerrs + sc->stats.algnerrc +
3189 			  sc->stats.ruc + sc->stats.roc +
3190 			  sc->stats.mpc + sc->stats.cexterr;
3191 
3192 	/* Tx Errors */
3193 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3194 			  sc->watchdog_events;
3195 }
3196 
3197 static void
3198 emx_print_debug_info(struct emx_softc *sc)
3199 {
3200 	device_t dev = sc->dev;
3201 	uint8_t *hw_addr = sc->hw.hw_addr;
3202 
3203 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3204 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3205 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3206 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3207 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3208 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3209 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3210 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3211 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3212 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3213 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3214 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3215 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3216 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3217 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3218 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3219 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3220 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3221 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3222 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3223 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3224 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3225 	    sc->num_tx_desc_avail);
3226 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3227 	    sc->no_tx_desc_avail1);
3228 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3229 	    sc->no_tx_desc_avail2);
3230 	device_printf(dev, "Std mbuf failed = %ld\n",
3231 	    sc->mbuf_alloc_failed);
3232 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3233 	    sc->rx_data[0].mbuf_cluster_failed);
3234 	device_printf(dev, "Driver dropped packets = %ld\n",
3235 	    sc->dropped_pkts);
3236 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3237 	    sc->no_tx_dma_setup);
3238 
3239 	device_printf(dev, "TSO segments %lu\n", sc->tso_segments);
3240 	device_printf(dev, "TSO ctx reused %lu\n", sc->tso_ctx_reused);
3241 }
3242 
3243 static void
3244 emx_print_hw_stats(struct emx_softc *sc)
3245 {
3246 	device_t dev = sc->dev;
3247 
3248 	device_printf(dev, "Excessive collisions = %lld\n",
3249 	    (long long)sc->stats.ecol);
3250 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3251 	device_printf(dev, "Symbol errors = %lld\n",
3252 	    (long long)sc->stats.symerrs);
3253 #endif
3254 	device_printf(dev, "Sequence errors = %lld\n",
3255 	    (long long)sc->stats.sec);
3256 	device_printf(dev, "Defer count = %lld\n",
3257 	    (long long)sc->stats.dc);
3258 	device_printf(dev, "Missed Packets = %lld\n",
3259 	    (long long)sc->stats.mpc);
3260 	device_printf(dev, "Receive No Buffers = %lld\n",
3261 	    (long long)sc->stats.rnbc);
3262 	/* RLEC is inaccurate on some hardware, calculate our own. */
3263 	device_printf(dev, "Receive Length Errors = %lld\n",
3264 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3265 	device_printf(dev, "Receive errors = %lld\n",
3266 	    (long long)sc->stats.rxerrc);
3267 	device_printf(dev, "Crc errors = %lld\n",
3268 	    (long long)sc->stats.crcerrs);
3269 	device_printf(dev, "Alignment errors = %lld\n",
3270 	    (long long)sc->stats.algnerrc);
3271 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3272 	    (long long)sc->stats.cexterr);
3273 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3274 	device_printf(dev, "watchdog timeouts = %ld\n",
3275 	    sc->watchdog_events);
3276 	device_printf(dev, "XON Rcvd = %lld\n",
3277 	    (long long)sc->stats.xonrxc);
3278 	device_printf(dev, "XON Xmtd = %lld\n",
3279 	    (long long)sc->stats.xontxc);
3280 	device_printf(dev, "XOFF Rcvd = %lld\n",
3281 	    (long long)sc->stats.xoffrxc);
3282 	device_printf(dev, "XOFF Xmtd = %lld\n",
3283 	    (long long)sc->stats.xofftxc);
3284 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3285 	    (long long)sc->stats.gprc);
3286 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3287 	    (long long)sc->stats.gptc);
3288 }
3289 
3290 static void
3291 emx_print_nvm_info(struct emx_softc *sc)
3292 {
3293 	uint16_t eeprom_data;
3294 	int i, j, row = 0;
3295 
3296 	/* Its a bit crude, but it gets the job done */
3297 	kprintf("\nInterface EEPROM Dump:\n");
3298 	kprintf("Offset\n0x0000  ");
3299 	for (i = 0, j = 0; i < 32; i++, j++) {
3300 		if (j == 8) { /* Make the offset block */
3301 			j = 0; ++row;
3302 			kprintf("\n0x00%x0  ",row);
3303 		}
3304 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3305 		kprintf("%04x ", eeprom_data);
3306 	}
3307 	kprintf("\n");
3308 }
3309 
3310 static int
3311 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3312 {
3313 	struct emx_softc *sc;
3314 	struct ifnet *ifp;
3315 	int error, result;
3316 
3317 	result = -1;
3318 	error = sysctl_handle_int(oidp, &result, 0, req);
3319 	if (error || !req->newptr)
3320 		return (error);
3321 
3322 	sc = (struct emx_softc *)arg1;
3323 	ifp = &sc->arpcom.ac_if;
3324 
3325 	ifnet_serialize_all(ifp);
3326 
3327 	if (result == 1)
3328 		emx_print_debug_info(sc);
3329 
3330 	/*
3331 	 * This value will cause a hex dump of the
3332 	 * first 32 16-bit words of the EEPROM to
3333 	 * the screen.
3334 	 */
3335 	if (result == 2)
3336 		emx_print_nvm_info(sc);
3337 
3338 	ifnet_deserialize_all(ifp);
3339 
3340 	return (error);
3341 }
3342 
3343 static int
3344 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3345 {
3346 	int error, result;
3347 
3348 	result = -1;
3349 	error = sysctl_handle_int(oidp, &result, 0, req);
3350 	if (error || !req->newptr)
3351 		return (error);
3352 
3353 	if (result == 1) {
3354 		struct emx_softc *sc = (struct emx_softc *)arg1;
3355 		struct ifnet *ifp = &sc->arpcom.ac_if;
3356 
3357 		ifnet_serialize_all(ifp);
3358 		emx_print_hw_stats(sc);
3359 		ifnet_deserialize_all(ifp);
3360 	}
3361 	return (error);
3362 }
3363 
3364 static void
3365 emx_add_sysctl(struct emx_softc *sc)
3366 {
3367 #ifdef EMX_RSS_DEBUG
3368 	char rx_pkt[32];
3369 	int i;
3370 #endif
3371 
3372 	sysctl_ctx_init(&sc->sysctl_ctx);
3373 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3374 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3375 				device_get_nameunit(sc->dev),
3376 				CTLFLAG_RD, 0, "");
3377 	if (sc->sysctl_tree == NULL) {
3378 		device_printf(sc->dev, "can't add sysctl node\n");
3379 		return;
3380 	}
3381 
3382 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3383 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3384 			emx_sysctl_debug_info, "I", "Debug Information");
3385 
3386 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3387 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3388 			emx_sysctl_stats, "I", "Statistics");
3389 
3390 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3391 		       OID_AUTO, "rxd", CTLFLAG_RD,
3392 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3393 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3394 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3395 
3396 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3397 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3398 			sc, 0, emx_sysctl_int_throttle, "I",
3399 			"interrupt throttling rate");
3400 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3401 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3402 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3403 			"# segments per TX interrupt");
3404 
3405 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3406 		       OID_AUTO, "rx_ring_cnt", CTLFLAG_RD,
3407 		       &sc->rx_ring_cnt, 0, "RX ring count");
3408 
3409 #ifdef EMX_RSS_DEBUG
3410 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3411 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3412 		       0, "RSS debug level");
3413 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3414 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3415 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3416 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3417 				rx_pkt, CTLFLAG_RW,
3418 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3419 	}
3420 #endif
3421 }
3422 
3423 static int
3424 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3425 {
3426 	struct emx_softc *sc = (void *)arg1;
3427 	struct ifnet *ifp = &sc->arpcom.ac_if;
3428 	int error, throttle;
3429 
3430 	throttle = sc->int_throttle_ceil;
3431 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3432 	if (error || req->newptr == NULL)
3433 		return error;
3434 	if (throttle < 0 || throttle > 1000000000 / 256)
3435 		return EINVAL;
3436 
3437 	if (throttle) {
3438 		/*
3439 		 * Set the interrupt throttling rate in 256ns increments,
3440 		 * recalculate sysctl value assignment to get exact frequency.
3441 		 */
3442 		throttle = 1000000000 / 256 / throttle;
3443 
3444 		/* Upper 16bits of ITR is reserved and should be zero */
3445 		if (throttle & 0xffff0000)
3446 			return EINVAL;
3447 	}
3448 
3449 	ifnet_serialize_all(ifp);
3450 
3451 	if (throttle)
3452 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3453 	else
3454 		sc->int_throttle_ceil = 0;
3455 
3456 	if (ifp->if_flags & IFF_RUNNING)
3457 		emx_set_itr(sc, throttle);
3458 
3459 	ifnet_deserialize_all(ifp);
3460 
3461 	if (bootverbose) {
3462 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3463 			  sc->int_throttle_ceil);
3464 	}
3465 	return 0;
3466 }
3467 
3468 static int
3469 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3470 {
3471 	struct emx_softc *sc = (void *)arg1;
3472 	struct ifnet *ifp = &sc->arpcom.ac_if;
3473 	int error, segs;
3474 
3475 	segs = sc->tx_int_nsegs;
3476 	error = sysctl_handle_int(oidp, &segs, 0, req);
3477 	if (error || req->newptr == NULL)
3478 		return error;
3479 	if (segs <= 0)
3480 		return EINVAL;
3481 
3482 	ifnet_serialize_all(ifp);
3483 
3484 	/*
3485 	 * Don't allow int_tx_nsegs to become:
3486 	 * o  Less the oact_tx_desc
3487 	 * o  Too large that no TX desc will cause TX interrupt to
3488 	 *    be generated (OACTIVE will never recover)
3489 	 * o  Too small that will cause tx_dd[] overflow
3490 	 */
3491 	if (segs < sc->oact_tx_desc ||
3492 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3493 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3494 		error = EINVAL;
3495 	} else {
3496 		error = 0;
3497 		sc->tx_int_nsegs = segs;
3498 	}
3499 
3500 	ifnet_deserialize_all(ifp);
3501 
3502 	return error;
3503 }
3504 
3505 static int
3506 emx_dma_alloc(struct emx_softc *sc)
3507 {
3508 	int error, i;
3509 
3510 	/*
3511 	 * Create top level busdma tag
3512 	 */
3513 	error = bus_dma_tag_create(NULL, 1, 0,
3514 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3515 			NULL, NULL,
3516 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3517 			0, &sc->parent_dtag);
3518 	if (error) {
3519 		device_printf(sc->dev, "could not create top level DMA tag\n");
3520 		return error;
3521 	}
3522 
3523 	/*
3524 	 * Allocate transmit descriptors ring and buffers
3525 	 */
3526 	error = emx_create_tx_ring(sc);
3527 	if (error) {
3528 		device_printf(sc->dev, "Could not setup transmit structures\n");
3529 		return error;
3530 	}
3531 
3532 	/*
3533 	 * Allocate receive descriptors ring and buffers
3534 	 */
3535 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3536 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3537 		if (error) {
3538 			device_printf(sc->dev,
3539 			    "Could not setup receive structures\n");
3540 			return error;
3541 		}
3542 	}
3543 	return 0;
3544 }
3545 
3546 static void
3547 emx_dma_free(struct emx_softc *sc)
3548 {
3549 	int i;
3550 
3551 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3552 
3553 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3554 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3555 				    sc->rx_data[i].num_rx_desc);
3556 	}
3557 
3558 	/* Free top level busdma tag */
3559 	if (sc->parent_dtag != NULL)
3560 		bus_dma_tag_destroy(sc->parent_dtag);
3561 }
3562 
3563 static void
3564 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3565 {
3566 	struct emx_softc *sc = ifp->if_softc;
3567 
3568 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE,
3569 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3570 }
3571 
3572 static void
3573 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3574 {
3575 	struct emx_softc *sc = ifp->if_softc;
3576 
3577 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE,
3578 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3579 }
3580 
3581 static int
3582 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3583 {
3584 	struct emx_softc *sc = ifp->if_softc;
3585 
3586 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE,
3587 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3588 }
3589 
3590 static void
3591 emx_serialize_skipmain(struct emx_softc *sc)
3592 {
3593 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3594 }
3595 
3596 static void
3597 emx_deserialize_skipmain(struct emx_softc *sc)
3598 {
3599 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3600 }
3601 
3602 #ifdef INVARIANTS
3603 
3604 static void
3605 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3606     boolean_t serialized)
3607 {
3608 	struct emx_softc *sc = ifp->if_softc;
3609 
3610 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3611 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz, serialized);
3612 }
3613 
3614 #endif	/* INVARIANTS */
3615 
3616 #ifdef IFPOLL_ENABLE
3617 
3618 static void
3619 emx_qpoll_status(struct ifnet *ifp, int pollhz __unused)
3620 {
3621 	struct emx_softc *sc = ifp->if_softc;
3622 	uint32_t reg_icr;
3623 
3624 	ASSERT_SERIALIZED(&sc->main_serialize);
3625 
3626 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3627 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3628 		callout_stop(&sc->timer);
3629 		sc->hw.mac.get_link_status = 1;
3630 		emx_update_link_status(sc);
3631 		callout_reset(&sc->timer, hz, emx_timer, sc);
3632 	}
3633 }
3634 
3635 static void
3636 emx_qpoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3637 {
3638 	struct emx_softc *sc = ifp->if_softc;
3639 
3640 	ASSERT_SERIALIZED(&sc->tx_serialize);
3641 
3642 	emx_txeof(sc);
3643 	if (!ifq_is_empty(&ifp->if_snd))
3644 		if_devstart(ifp);
3645 }
3646 
3647 static void
3648 emx_qpoll_rx(struct ifnet *ifp, void *arg, int cycle)
3649 {
3650 	struct emx_softc *sc = ifp->if_softc;
3651 	struct emx_rxdata *rdata = arg;
3652 
3653 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3654 
3655 	emx_rxeof(sc, rdata - sc->rx_data, cycle);
3656 }
3657 
3658 static void
3659 emx_qpoll(struct ifnet *ifp, struct ifpoll_info *info)
3660 {
3661 	struct emx_softc *sc = ifp->if_softc;
3662 
3663 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3664 
3665 	if (info) {
3666 		int i;
3667 
3668 		info->ifpi_status.status_func = emx_qpoll_status;
3669 		info->ifpi_status.serializer = &sc->main_serialize;
3670 
3671 		info->ifpi_tx[0].poll_func = emx_qpoll_tx;
3672 		info->ifpi_tx[0].arg = NULL;
3673 		info->ifpi_tx[0].serializer = &sc->tx_serialize;
3674 
3675 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3676 			info->ifpi_rx[i].poll_func = emx_qpoll_rx;
3677 			info->ifpi_rx[i].arg = &sc->rx_data[i];
3678 			info->ifpi_rx[i].serializer =
3679 				&sc->rx_data[i].rx_serialize;
3680 		}
3681 
3682 		if (ifp->if_flags & IFF_RUNNING)
3683 			emx_disable_intr(sc);
3684 	} else if (ifp->if_flags & IFF_RUNNING) {
3685 		emx_enable_intr(sc);
3686 	}
3687 }
3688 
3689 #endif	/* IFPOLL_ENABLE */
3690 
3691 static void
3692 emx_set_itr(struct emx_softc *sc, uint32_t itr)
3693 {
3694 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3695 	if (sc->hw.mac.type == e1000_82574) {
3696 		int i;
3697 
3698 		/*
3699 		 * When using MSIX interrupts we need to
3700 		 * throttle using the EITR register
3701 		 */
3702 		for (i = 0; i < 4; ++i)
3703 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3704 	}
3705 }
3706 
3707 /*
3708  * Disable the L0s, 82574L Errata #20
3709  */
3710 static void
3711 emx_disable_aspm(struct emx_softc *sc)
3712 {
3713 	uint16_t link_cap, link_ctrl, disable;
3714 	uint8_t pcie_ptr, reg;
3715 	device_t dev = sc->dev;
3716 
3717 	switch (sc->hw.mac.type) {
3718 	case e1000_82571:
3719 	case e1000_82572:
3720 	case e1000_82573:
3721 		/*
3722 		 * 82573 specification update
3723 		 * errata #8 disable L0s
3724 		 * errata #41 disable L1
3725 		 *
3726 		 * 82571/82572 specification update
3727 		 # errata #13 disable L1
3728 		 * errata #68 disable L0s
3729 		 */
3730 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
3731 		break;
3732 
3733 	case e1000_82574:
3734 		/*
3735 		 * 82574 specification update errata #20
3736 		 *
3737 		 * There is no need to disable L1
3738 		 */
3739 		disable = PCIEM_LNKCTL_ASPM_L0S;
3740 		break;
3741 
3742 	default:
3743 		return;
3744 	}
3745 
3746 	pcie_ptr = pci_get_pciecap_ptr(dev);
3747 	if (pcie_ptr == 0)
3748 		return;
3749 
3750 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
3751 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
3752 		return;
3753 
3754 	if (bootverbose)
3755 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
3756 
3757 	reg = pcie_ptr + PCIER_LINKCTRL;
3758 	link_ctrl = pci_read_config(dev, reg, 2);
3759 	link_ctrl &= ~disable;
3760 	pci_write_config(dev, reg, link_ctrl, 2);
3761 }
3762 
3763 static int
3764 emx_tso_pullup(struct emx_softc *sc, struct mbuf **mp)
3765 {
3766 	int iphlen, hoff, thoff, ex = 0;
3767 	struct mbuf *m;
3768 	struct ip *ip;
3769 
3770 	m = *mp;
3771 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
3772 
3773 	iphlen = m->m_pkthdr.csum_iphlen;
3774 	thoff = m->m_pkthdr.csum_thlen;
3775 	hoff = m->m_pkthdr.csum_lhlen;
3776 
3777 	KASSERT(iphlen > 0, ("invalid ip hlen"));
3778 	KASSERT(thoff > 0, ("invalid tcp hlen"));
3779 	KASSERT(hoff > 0, ("invalid ether hlen"));
3780 
3781 	if (sc->flags & EMX_FLAG_TSO_PULLEX)
3782 		ex = 4;
3783 
3784 	if (m->m_len < hoff + iphlen + thoff + ex) {
3785 		m = m_pullup(m, hoff + iphlen + thoff + ex);
3786 		if (m == NULL) {
3787 			*mp = NULL;
3788 			return ENOBUFS;
3789 		}
3790 		*mp = m;
3791 	}
3792 	ip = mtodoff(m, struct ip *, hoff);
3793 	ip->ip_len = 0;
3794 
3795 	return 0;
3796 }
3797 
3798 static int
3799 emx_tso_setup(struct emx_softc *sc, struct mbuf *mp,
3800     uint32_t *txd_upper, uint32_t *txd_lower)
3801 {
3802 	struct e1000_context_desc *TXD;
3803 	int hoff, iphlen, thoff, hlen;
3804 	int mss, pktlen, curr_txd;
3805 
3806 #ifdef EMX_TSO_DEBUG
3807 	sc->tso_segments++;
3808 #endif
3809 
3810 	iphlen = mp->m_pkthdr.csum_iphlen;
3811 	thoff = mp->m_pkthdr.csum_thlen;
3812 	hoff = mp->m_pkthdr.csum_lhlen;
3813 	mss = mp->m_pkthdr.tso_segsz;
3814 	pktlen = mp->m_pkthdr.len;
3815 
3816 	if (sc->csum_flags == CSUM_TSO &&
3817 	    sc->csum_iphlen == iphlen &&
3818 	    sc->csum_lhlen == hoff &&
3819 	    sc->csum_thlen == thoff &&
3820 	    sc->csum_mss == mss &&
3821 	    sc->csum_pktlen == pktlen) {
3822 		*txd_upper = sc->csum_txd_upper;
3823 		*txd_lower = sc->csum_txd_lower;
3824 #ifdef EMX_TSO_DEBUG
3825 		sc->tso_ctx_reused++;
3826 #endif
3827 		return 0;
3828 	}
3829 	hlen = hoff + iphlen + thoff;
3830 
3831 	/*
3832 	 * Setup a new TSO context.
3833 	 */
3834 
3835 	curr_txd = sc->next_avail_tx_desc;
3836 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
3837 
3838 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3839 		     E1000_TXD_DTYP_D |		/* Data descr type */
3840 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
3841 
3842 	/* IP and/or TCP header checksum calculation and insertion. */
3843 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
3844 
3845 	/*
3846 	 * Start offset for header checksum calculation.
3847 	 * End offset for header checksum calculation.
3848 	 * Offset of place put the checksum.
3849 	 */
3850 	TXD->lower_setup.ip_fields.ipcss = hoff;
3851 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
3852 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
3853 
3854 	/*
3855 	 * Start offset for payload checksum calculation.
3856 	 * End offset for payload checksum calculation.
3857 	 * Offset of place to put the checksum.
3858 	 */
3859 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
3860 	TXD->upper_setup.tcp_fields.tucse = 0;
3861 	TXD->upper_setup.tcp_fields.tucso =
3862 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
3863 
3864 	/*
3865 	 * Payload size per packet w/o any headers.
3866 	 * Length of all headers up to payload.
3867 	 */
3868 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
3869 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
3870 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
3871 				E1000_TXD_CMD_DEXT |	/* Extended descr */
3872 				E1000_TXD_CMD_TSE |	/* TSE context */
3873 				E1000_TXD_CMD_IP |	/* Do IP csum */
3874 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
3875 				(pktlen - hlen));	/* Total len */
3876 
3877 	/* Save the information for this TSO context */
3878 	sc->csum_flags = CSUM_TSO;
3879 	sc->csum_lhlen = hoff;
3880 	sc->csum_iphlen = iphlen;
3881 	sc->csum_thlen = thoff;
3882 	sc->csum_mss = mss;
3883 	sc->csum_pktlen = pktlen;
3884 	sc->csum_txd_upper = *txd_upper;
3885 	sc->csum_txd_lower = *txd_lower;
3886 
3887 	if (++curr_txd == sc->num_tx_desc)
3888 		curr_txd = 0;
3889 
3890 	KKASSERT(sc->num_tx_desc_avail > 0);
3891 	sc->num_tx_desc_avail--;
3892 
3893 	sc->next_avail_tx_desc = curr_txd;
3894 	return 1;
3895 }
3896