xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision f3adbb3cdddf061a5f284c3d9b33d22fecdfcfaf)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/ifq_var.h>
121 #include <net/vlan/if_vlan_var.h>
122 #include <net/vlan/if_vlan_ether.h>
123 
124 #include <netinet/in_systm.h>
125 #include <netinet/in.h>
126 #include <netinet/ip.h>
127 #include <netinet/tcp.h>
128 #include <netinet/udp.h>
129 
130 #include <bus/pci/pcivar.h>
131 #include <bus/pci/pcireg.h>
132 
133 #include <dev/netif/ig_hal/e1000_api.h>
134 #include <dev/netif/ig_hal/e1000_82571.h>
135 #include <dev/netif/em/if_em.h>
136 
137 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
138 #define EM_VER	" 7.2.4"
139 
140 #define _EM_DEVICE(id, ret)	\
141 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
142 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
143 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
144 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
145 
146 static const struct em_vendor_info em_vendor_info_array[] = {
147 	EM_DEVICE(82540EM),
148 	EM_DEVICE(82540EM_LOM),
149 	EM_DEVICE(82540EP),
150 	EM_DEVICE(82540EP_LOM),
151 	EM_DEVICE(82540EP_LP),
152 
153 	EM_DEVICE(82541EI),
154 	EM_DEVICE(82541ER),
155 	EM_DEVICE(82541ER_LOM),
156 	EM_DEVICE(82541EI_MOBILE),
157 	EM_DEVICE(82541GI),
158 	EM_DEVICE(82541GI_LF),
159 	EM_DEVICE(82541GI_MOBILE),
160 
161 	EM_DEVICE(82542),
162 
163 	EM_DEVICE(82543GC_FIBER),
164 	EM_DEVICE(82543GC_COPPER),
165 
166 	EM_DEVICE(82544EI_COPPER),
167 	EM_DEVICE(82544EI_FIBER),
168 	EM_DEVICE(82544GC_COPPER),
169 	EM_DEVICE(82544GC_LOM),
170 
171 	EM_DEVICE(82545EM_COPPER),
172 	EM_DEVICE(82545EM_FIBER),
173 	EM_DEVICE(82545GM_COPPER),
174 	EM_DEVICE(82545GM_FIBER),
175 	EM_DEVICE(82545GM_SERDES),
176 
177 	EM_DEVICE(82546EB_COPPER),
178 	EM_DEVICE(82546EB_FIBER),
179 	EM_DEVICE(82546EB_QUAD_COPPER),
180 	EM_DEVICE(82546GB_COPPER),
181 	EM_DEVICE(82546GB_FIBER),
182 	EM_DEVICE(82546GB_SERDES),
183 	EM_DEVICE(82546GB_PCIE),
184 	EM_DEVICE(82546GB_QUAD_COPPER),
185 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
186 
187 	EM_DEVICE(82547EI),
188 	EM_DEVICE(82547EI_MOBILE),
189 	EM_DEVICE(82547GI),
190 
191 	EM_EMX_DEVICE(82571EB_COPPER),
192 	EM_EMX_DEVICE(82571EB_FIBER),
193 	EM_EMX_DEVICE(82571EB_SERDES),
194 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
195 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
196 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
197 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
198 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
199 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
200 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
201 
202 	EM_EMX_DEVICE(82572EI_COPPER),
203 	EM_EMX_DEVICE(82572EI_FIBER),
204 	EM_EMX_DEVICE(82572EI_SERDES),
205 	EM_EMX_DEVICE(82572EI),
206 
207 	EM_EMX_DEVICE(82573E),
208 	EM_EMX_DEVICE(82573E_IAMT),
209 	EM_EMX_DEVICE(82573L),
210 
211 	EM_DEVICE(82583V),
212 
213 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
214 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
215 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
216 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
217 
218 	EM_DEVICE(ICH8_IGP_M_AMT),
219 	EM_DEVICE(ICH8_IGP_AMT),
220 	EM_DEVICE(ICH8_IGP_C),
221 	EM_DEVICE(ICH8_IFE),
222 	EM_DEVICE(ICH8_IFE_GT),
223 	EM_DEVICE(ICH8_IFE_G),
224 	EM_DEVICE(ICH8_IGP_M),
225 	EM_DEVICE(ICH8_82567V_3),
226 
227 	EM_DEVICE(ICH9_IGP_M_AMT),
228 	EM_DEVICE(ICH9_IGP_AMT),
229 	EM_DEVICE(ICH9_IGP_C),
230 	EM_DEVICE(ICH9_IGP_M),
231 	EM_DEVICE(ICH9_IGP_M_V),
232 	EM_DEVICE(ICH9_IFE),
233 	EM_DEVICE(ICH9_IFE_GT),
234 	EM_DEVICE(ICH9_IFE_G),
235 	EM_DEVICE(ICH9_BM),
236 
237 	EM_EMX_DEVICE(82574L),
238 	EM_EMX_DEVICE(82574LA),
239 
240 	EM_DEVICE(ICH10_R_BM_LM),
241 	EM_DEVICE(ICH10_R_BM_LF),
242 	EM_DEVICE(ICH10_R_BM_V),
243 	EM_DEVICE(ICH10_D_BM_LM),
244 	EM_DEVICE(ICH10_D_BM_LF),
245 	EM_DEVICE(ICH10_D_BM_V),
246 
247 	EM_DEVICE(PCH_M_HV_LM),
248 	EM_DEVICE(PCH_M_HV_LC),
249 	EM_DEVICE(PCH_D_HV_DM),
250 	EM_DEVICE(PCH_D_HV_DC),
251 
252 	EM_DEVICE(PCH2_LV_LM),
253 	EM_DEVICE(PCH2_LV_V),
254 
255 	/* required last entry */
256 	EM_DEVICE_NULL
257 };
258 
259 static int	em_probe(device_t);
260 static int	em_attach(device_t);
261 static int	em_detach(device_t);
262 static int	em_shutdown(device_t);
263 static int	em_suspend(device_t);
264 static int	em_resume(device_t);
265 
266 static void	em_init(void *);
267 static void	em_stop(struct adapter *);
268 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
269 static void	em_start(struct ifnet *);
270 #ifdef DEVICE_POLLING
271 static void	em_poll(struct ifnet *, enum poll_cmd, int);
272 #endif
273 static void	em_watchdog(struct ifnet *);
274 static void	em_media_status(struct ifnet *, struct ifmediareq *);
275 static int	em_media_change(struct ifnet *);
276 static void	em_timer(void *);
277 
278 static void	em_intr(void *);
279 static void	em_intr_mask(void *);
280 static void	em_intr_body(struct adapter *, boolean_t);
281 static void	em_rxeof(struct adapter *, int);
282 static void	em_txeof(struct adapter *);
283 static void	em_tx_collect(struct adapter *);
284 static void	em_tx_purge(struct adapter *);
285 static void	em_enable_intr(struct adapter *);
286 static void	em_disable_intr(struct adapter *);
287 
288 static int	em_dma_malloc(struct adapter *, bus_size_t,
289 		    struct em_dma_alloc *);
290 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
291 static void	em_init_tx_ring(struct adapter *);
292 static int	em_init_rx_ring(struct adapter *);
293 static int	em_create_tx_ring(struct adapter *);
294 static int	em_create_rx_ring(struct adapter *);
295 static void	em_destroy_tx_ring(struct adapter *, int);
296 static void	em_destroy_rx_ring(struct adapter *, int);
297 static int	em_newbuf(struct adapter *, int, int);
298 static int	em_encap(struct adapter *, struct mbuf **);
299 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
300 		    struct mbuf *);
301 static int	em_txcsum_pullup(struct adapter *, struct mbuf **);
302 static int	em_txcsum(struct adapter *, struct mbuf *,
303 		    uint32_t *, uint32_t *);
304 
305 static int	em_get_hw_info(struct adapter *);
306 static int 	em_is_valid_eaddr(const uint8_t *);
307 static int	em_alloc_pci_res(struct adapter *);
308 static void	em_free_pci_res(struct adapter *);
309 static int	em_reset(struct adapter *);
310 static void	em_setup_ifp(struct adapter *);
311 static void	em_init_tx_unit(struct adapter *);
312 static void	em_init_rx_unit(struct adapter *);
313 static void	em_update_stats(struct adapter *);
314 static void	em_set_promisc(struct adapter *);
315 static void	em_disable_promisc(struct adapter *);
316 static void	em_set_multi(struct adapter *);
317 static void	em_update_link_status(struct adapter *);
318 static void	em_smartspeed(struct adapter *);
319 static void	em_set_itr(struct adapter *, uint32_t);
320 static void	em_disable_aspm(struct adapter *);
321 
322 /* Hardware workarounds */
323 static int	em_82547_fifo_workaround(struct adapter *, int);
324 static void	em_82547_update_fifo_head(struct adapter *, int);
325 static int	em_82547_tx_fifo_reset(struct adapter *);
326 static void	em_82547_move_tail(void *);
327 static void	em_82547_move_tail_serialized(struct adapter *);
328 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
329 
330 static void	em_print_debug_info(struct adapter *);
331 static void	em_print_nvm_info(struct adapter *);
332 static void	em_print_hw_stats(struct adapter *);
333 
334 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
335 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
336 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
337 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
338 static void	em_add_sysctl(struct adapter *adapter);
339 
340 /* Management and WOL Support */
341 static void	em_get_mgmt(struct adapter *);
342 static void	em_rel_mgmt(struct adapter *);
343 static void	em_get_hw_control(struct adapter *);
344 static void	em_rel_hw_control(struct adapter *);
345 static void	em_enable_wol(device_t);
346 
347 static device_method_t em_methods[] = {
348 	/* Device interface */
349 	DEVMETHOD(device_probe,		em_probe),
350 	DEVMETHOD(device_attach,	em_attach),
351 	DEVMETHOD(device_detach,	em_detach),
352 	DEVMETHOD(device_shutdown,	em_shutdown),
353 	DEVMETHOD(device_suspend,	em_suspend),
354 	DEVMETHOD(device_resume,	em_resume),
355 	{ 0, 0 }
356 };
357 
358 static driver_t em_driver = {
359 	"em",
360 	em_methods,
361 	sizeof(struct adapter),
362 };
363 
364 static devclass_t em_devclass;
365 
366 DECLARE_DUMMY_MODULE(if_em);
367 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
368 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
369 
370 /*
371  * Tunables
372  */
373 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
374 static int	em_rxd = EM_DEFAULT_RXD;
375 static int	em_txd = EM_DEFAULT_TXD;
376 static int	em_smart_pwr_down = 0;
377 
378 /* Controls whether promiscuous also shows bad packets */
379 static int	em_debug_sbp = FALSE;
380 
381 static int	em_82573_workaround = 1;
382 static int	em_msi_enable = 1;
383 
384 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
385 TUNABLE_INT("hw.em.rxd", &em_rxd);
386 TUNABLE_INT("hw.em.txd", &em_txd);
387 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
388 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
389 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
390 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
391 
392 /* Global used in WOL setup with multiport cards */
393 static int	em_global_quad_port_a = 0;
394 
395 /* Set this to one to display debug statistics */
396 static int	em_display_debug_stats = 0;
397 
398 #if !defined(KTR_IF_EM)
399 #define KTR_IF_EM	KTR_ALL
400 #endif
401 KTR_INFO_MASTER(if_em);
402 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
403 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
404 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
405 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
406 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
407 #define logif(name)	KTR_LOG(if_em_ ## name)
408 
409 static int
410 em_probe(device_t dev)
411 {
412 	const struct em_vendor_info *ent;
413 	uint16_t vid, did;
414 
415 	vid = pci_get_vendor(dev);
416 	did = pci_get_device(dev);
417 
418 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
419 		if (vid == ent->vendor_id && did == ent->device_id) {
420 			device_set_desc(dev, ent->desc);
421 			device_set_async_attach(dev, TRUE);
422 			return (ent->ret);
423 		}
424 	}
425 	return (ENXIO);
426 }
427 
428 static int
429 em_attach(device_t dev)
430 {
431 	struct adapter *adapter = device_get_softc(dev);
432 	struct ifnet *ifp = &adapter->arpcom.ac_if;
433 	int tsize, rsize;
434 	int error = 0;
435 	uint16_t eeprom_data, device_id, apme_mask;
436 	driver_intr_t *intr_func;
437 
438 	adapter->dev = adapter->osdep.dev = dev;
439 
440 	callout_init_mp(&adapter->timer);
441 	callout_init_mp(&adapter->tx_fifo_timer);
442 
443 	/* Determine hardware and mac info */
444 	error = em_get_hw_info(adapter);
445 	if (error) {
446 		device_printf(dev, "Identify hardware failed\n");
447 		goto fail;
448 	}
449 
450 	/* Setup PCI resources */
451 	error = em_alloc_pci_res(adapter);
452 	if (error) {
453 		device_printf(dev, "Allocation of PCI resources failed\n");
454 		goto fail;
455 	}
456 
457 	/*
458 	 * For ICH8 and family we need to map the flash memory,
459 	 * and this must happen after the MAC is identified.
460 	 */
461 	if (adapter->hw.mac.type == e1000_ich8lan ||
462 	    adapter->hw.mac.type == e1000_ich9lan ||
463 	    adapter->hw.mac.type == e1000_ich10lan ||
464 	    adapter->hw.mac.type == e1000_pchlan ||
465 	    adapter->hw.mac.type == e1000_pch2lan) {
466 		adapter->flash_rid = EM_BAR_FLASH;
467 
468 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
469 					&adapter->flash_rid, RF_ACTIVE);
470 		if (adapter->flash == NULL) {
471 			device_printf(dev, "Mapping of Flash failed\n");
472 			error = ENXIO;
473 			goto fail;
474 		}
475 		adapter->osdep.flash_bus_space_tag =
476 		    rman_get_bustag(adapter->flash);
477 		adapter->osdep.flash_bus_space_handle =
478 		    rman_get_bushandle(adapter->flash);
479 
480 		/*
481 		 * This is used in the shared code
482 		 * XXX this goof is actually not used.
483 		 */
484 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
485 	}
486 
487 	/* Do Shared Code initialization */
488 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
489 		device_printf(dev, "Setup of Shared code failed\n");
490 		error = ENXIO;
491 		goto fail;
492 	}
493 
494 	e1000_get_bus_info(&adapter->hw);
495 
496 	/*
497 	 * Validate number of transmit and receive descriptors.  It
498 	 * must not exceed hardware maximum, and must be multiple
499 	 * of E1000_DBA_ALIGN.
500 	 */
501 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
502 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
503 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
504 	    em_txd < EM_MIN_TXD) {
505 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
506 		    EM_DEFAULT_TXD, em_txd);
507 		adapter->num_tx_desc = EM_DEFAULT_TXD;
508 	} else {
509 		adapter->num_tx_desc = em_txd;
510 	}
511 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
512 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
513 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
514 	    em_rxd < EM_MIN_RXD) {
515 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
516 		    EM_DEFAULT_RXD, em_rxd);
517 		adapter->num_rx_desc = EM_DEFAULT_RXD;
518 	} else {
519 		adapter->num_rx_desc = em_rxd;
520 	}
521 
522 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
523 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
524 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
525 	adapter->rx_buffer_len = MCLBYTES;
526 
527 	/*
528 	 * Interrupt throttle rate
529 	 */
530 	if (em_int_throttle_ceil == 0) {
531 		adapter->int_throttle_ceil = 0;
532 	} else {
533 		int throttle = em_int_throttle_ceil;
534 
535 		if (throttle < 0)
536 			throttle = EM_DEFAULT_ITR;
537 
538 		/* Recalculate the tunable value to get the exact frequency. */
539 		throttle = 1000000000 / 256 / throttle;
540 
541 		/* Upper 16bits of ITR is reserved and should be zero */
542 		if (throttle & 0xffff0000)
543 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
544 
545 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
546 	}
547 
548 	e1000_init_script_state_82541(&adapter->hw, TRUE);
549 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
550 
551 	/* Copper options */
552 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
553 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
554 		adapter->hw.phy.disable_polarity_correction = FALSE;
555 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
556 	}
557 
558 	/* Set the frame limits assuming standard ethernet sized frames. */
559 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
560 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
561 
562 	/* This controls when hardware reports transmit completion status. */
563 	adapter->hw.mac.report_tx_early = 1;
564 
565 	/*
566 	 * Create top level busdma tag
567 	 */
568 	error = bus_dma_tag_create(NULL, 1, 0,
569 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
570 			NULL, NULL,
571 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
572 			0, &adapter->parent_dtag);
573 	if (error) {
574 		device_printf(dev, "could not create top level DMA tag\n");
575 		goto fail;
576 	}
577 
578 	/*
579 	 * Allocate Transmit Descriptor ring
580 	 */
581 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
582 			 EM_DBA_ALIGN);
583 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
584 	if (error) {
585 		device_printf(dev, "Unable to allocate tx_desc memory\n");
586 		goto fail;
587 	}
588 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
589 
590 	/*
591 	 * Allocate Receive Descriptor ring
592 	 */
593 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
594 			 EM_DBA_ALIGN);
595 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
596 	if (error) {
597 		device_printf(dev, "Unable to allocate rx_desc memory\n");
598 		goto fail;
599 	}
600 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
601 
602 	/* Allocate multicast array memory. */
603 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
604 	    M_DEVBUF, M_WAITOK);
605 
606 	/* Indicate SOL/IDER usage */
607 	if (e1000_check_reset_block(&adapter->hw)) {
608 		device_printf(dev,
609 		    "PHY reset is blocked due to SOL/IDER session.\n");
610 	}
611 
612 	/*
613 	 * Start from a known state, this is important in reading the
614 	 * nvm and mac from that.
615 	 */
616 	e1000_reset_hw(&adapter->hw);
617 
618 	/* Make sure we have a good EEPROM before we read from it */
619 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
620 		/*
621 		 * Some PCI-E parts fail the first check due to
622 		 * the link being in sleep state, call it again,
623 		 * if it fails a second time its a real issue.
624 		 */
625 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
626 			device_printf(dev,
627 			    "The EEPROM Checksum Is Not Valid\n");
628 			error = EIO;
629 			goto fail;
630 		}
631 	}
632 
633 	/* Copy the permanent MAC address out of the EEPROM */
634 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
635 		device_printf(dev, "EEPROM read error while reading MAC"
636 		    " address\n");
637 		error = EIO;
638 		goto fail;
639 	}
640 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
641 		device_printf(dev, "Invalid MAC address\n");
642 		error = EIO;
643 		goto fail;
644 	}
645 
646 	/* Allocate transmit descriptors and buffers */
647 	error = em_create_tx_ring(adapter);
648 	if (error) {
649 		device_printf(dev, "Could not setup transmit structures\n");
650 		goto fail;
651 	}
652 
653 	/* Allocate receive descriptors and buffers */
654 	error = em_create_rx_ring(adapter);
655 	if (error) {
656 		device_printf(dev, "Could not setup receive structures\n");
657 		goto fail;
658 	}
659 
660 	/* Manually turn off all interrupts */
661 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
662 
663 	/* Determine if we have to control management hardware */
664 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
665 
666 	/*
667 	 * Setup Wake-on-Lan
668 	 */
669 	apme_mask = EM_EEPROM_APME;
670 	eeprom_data = 0;
671 	switch (adapter->hw.mac.type) {
672 	case e1000_82542:
673 	case e1000_82543:
674 		break;
675 
676 	case e1000_82573:
677 	case e1000_82583:
678 		adapter->has_amt = 1;
679 		/* FALL THROUGH */
680 
681 	case e1000_82546:
682 	case e1000_82546_rev_3:
683 	case e1000_82571:
684 	case e1000_82572:
685 	case e1000_80003es2lan:
686 		if (adapter->hw.bus.func == 1) {
687 			e1000_read_nvm(&adapter->hw,
688 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
689 		} else {
690 			e1000_read_nvm(&adapter->hw,
691 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
692 		}
693 		break;
694 
695 	case e1000_ich8lan:
696 	case e1000_ich9lan:
697 	case e1000_ich10lan:
698 	case e1000_pchlan:
699 	case e1000_pch2lan:
700 		apme_mask = E1000_WUC_APME;
701 		adapter->has_amt = TRUE;
702 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
703 		break;
704 
705 	default:
706 		e1000_read_nvm(&adapter->hw,
707 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
708 		break;
709 	}
710 	if (eeprom_data & apme_mask)
711 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
712 
713 	/*
714          * We have the eeprom settings, now apply the special cases
715          * where the eeprom may be wrong or the board won't support
716          * wake on lan on a particular port
717 	 */
718 	device_id = pci_get_device(dev);
719         switch (device_id) {
720 	case E1000_DEV_ID_82546GB_PCIE:
721 		adapter->wol = 0;
722 		break;
723 
724 	case E1000_DEV_ID_82546EB_FIBER:
725 	case E1000_DEV_ID_82546GB_FIBER:
726 	case E1000_DEV_ID_82571EB_FIBER:
727 		/*
728 		 * Wake events only supported on port A for dual fiber
729 		 * regardless of eeprom setting
730 		 */
731 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
732 		    E1000_STATUS_FUNC_1)
733 			adapter->wol = 0;
734 		break;
735 
736 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
737 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
738 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
739 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
740                 /* if quad port adapter, disable WoL on all but port A */
741 		if (em_global_quad_port_a != 0)
742 			adapter->wol = 0;
743 		/* Reset for multiple quad port adapters */
744 		if (++em_global_quad_port_a == 4)
745 			em_global_quad_port_a = 0;
746                 break;
747 	}
748 
749 	/* XXX disable wol */
750 	adapter->wol = 0;
751 
752 	/* Setup OS specific network interface */
753 	em_setup_ifp(adapter);
754 
755 	/* Add sysctl tree, must after em_setup_ifp() */
756 	em_add_sysctl(adapter);
757 
758 	/* Reset the hardware */
759 	error = em_reset(adapter);
760 	if (error) {
761 		device_printf(dev, "Unable to reset the hardware\n");
762 		goto fail;
763 	}
764 
765 	/* Initialize statistics */
766 	em_update_stats(adapter);
767 
768 	adapter->hw.mac.get_link_status = 1;
769 	em_update_link_status(adapter);
770 
771 	/* Do we need workaround for 82544 PCI-X adapter? */
772 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
773 	    adapter->hw.mac.type == e1000_82544)
774 		adapter->pcix_82544 = TRUE;
775 	else
776 		adapter->pcix_82544 = FALSE;
777 
778 	if (adapter->pcix_82544) {
779 		/*
780 		 * 82544 on PCI-X may split one TX segment
781 		 * into two TX descs, so we double its number
782 		 * of spare TX desc here.
783 		 */
784 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
785 	} else {
786 		adapter->spare_tx_desc = EM_TX_SPARE;
787 	}
788 
789 	/*
790 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
791 	 * and tx_int_nsegs:
792 	 * (spare_tx_desc + EM_TX_RESERVED) <=
793 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
794 	 */
795 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
796 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
797 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
798 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
799 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
800 
801 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
802 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
803 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
804 
805 	/* Non-AMT based hardware can now take control from firmware */
806 	if (adapter->has_manage && !adapter->has_amt &&
807 	    adapter->hw.mac.type >= e1000_82571)
808 		em_get_hw_control(adapter);
809 
810 	/*
811 	 * Missing Interrupt Following ICR read:
812 	 *
813 	 * 82571/82572 specification update errata #76
814 	 * 82573 specification update errata #31
815 	 * 82574 specification update errata #12
816 	 * 82583 specification update errata #4
817 	 */
818 	intr_func = em_intr;
819 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
820 	    (adapter->hw.mac.type == e1000_82571 ||
821 	     adapter->hw.mac.type == e1000_82572 ||
822 	     adapter->hw.mac.type == e1000_82573 ||
823 	     adapter->hw.mac.type == e1000_82574 ||
824 	     adapter->hw.mac.type == e1000_82583))
825 		intr_func = em_intr_mask;
826 
827 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
828 			       intr_func, adapter, &adapter->intr_tag,
829 			       ifp->if_serializer);
830 	if (error) {
831 		device_printf(dev, "Failed to register interrupt handler");
832 		ether_ifdetach(&adapter->arpcom.ac_if);
833 		goto fail;
834 	}
835 
836 	ifp->if_cpuid = rman_get_cpuid(adapter->intr_res);
837 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
838 	return (0);
839 fail:
840 	em_detach(dev);
841 	return (error);
842 }
843 
844 static int
845 em_detach(device_t dev)
846 {
847 	struct adapter *adapter = device_get_softc(dev);
848 
849 	if (device_is_attached(dev)) {
850 		struct ifnet *ifp = &adapter->arpcom.ac_if;
851 
852 		lwkt_serialize_enter(ifp->if_serializer);
853 
854 		em_stop(adapter);
855 
856 		e1000_phy_hw_reset(&adapter->hw);
857 
858 		em_rel_mgmt(adapter);
859 		em_rel_hw_control(adapter);
860 
861 		if (adapter->wol) {
862 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
863 					E1000_WUC_PME_EN);
864 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
865 			em_enable_wol(dev);
866 		}
867 
868 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
869 
870 		lwkt_serialize_exit(ifp->if_serializer);
871 
872 		ether_ifdetach(ifp);
873 	} else if (adapter->memory != NULL) {
874 		em_rel_hw_control(adapter);
875 	}
876 	bus_generic_detach(dev);
877 
878 	em_free_pci_res(adapter);
879 
880 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
881 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
882 
883 	/* Free Transmit Descriptor ring */
884 	if (adapter->tx_desc_base)
885 		em_dma_free(adapter, &adapter->txdma);
886 
887 	/* Free Receive Descriptor ring */
888 	if (adapter->rx_desc_base)
889 		em_dma_free(adapter, &adapter->rxdma);
890 
891 	/* Free top level busdma tag */
892 	if (adapter->parent_dtag != NULL)
893 		bus_dma_tag_destroy(adapter->parent_dtag);
894 
895 	/* Free sysctl tree */
896 	if (adapter->sysctl_tree != NULL)
897 		sysctl_ctx_free(&adapter->sysctl_ctx);
898 
899 	if (adapter->mta != NULL)
900 		kfree(adapter->mta, M_DEVBUF);
901 
902 	return (0);
903 }
904 
905 static int
906 em_shutdown(device_t dev)
907 {
908 	return em_suspend(dev);
909 }
910 
911 static int
912 em_suspend(device_t dev)
913 {
914 	struct adapter *adapter = device_get_softc(dev);
915 	struct ifnet *ifp = &adapter->arpcom.ac_if;
916 
917 	lwkt_serialize_enter(ifp->if_serializer);
918 
919 	em_stop(adapter);
920 
921 	em_rel_mgmt(adapter);
922 	em_rel_hw_control(adapter);
923 
924 	if (adapter->wol) {
925 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
926 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
927 		em_enable_wol(dev);
928 	}
929 
930 	lwkt_serialize_exit(ifp->if_serializer);
931 
932 	return bus_generic_suspend(dev);
933 }
934 
935 static int
936 em_resume(device_t dev)
937 {
938 	struct adapter *adapter = device_get_softc(dev);
939 	struct ifnet *ifp = &adapter->arpcom.ac_if;
940 
941 	lwkt_serialize_enter(ifp->if_serializer);
942 
943 	em_init(adapter);
944 	em_get_mgmt(adapter);
945 	if_devstart(ifp);
946 
947 	lwkt_serialize_exit(ifp->if_serializer);
948 
949 	return bus_generic_resume(dev);
950 }
951 
952 static void
953 em_start(struct ifnet *ifp)
954 {
955 	struct adapter *adapter = ifp->if_softc;
956 	struct mbuf *m_head;
957 
958 	ASSERT_SERIALIZED(ifp->if_serializer);
959 
960 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
961 		return;
962 
963 	if (!adapter->link_active) {
964 		ifq_purge(&ifp->if_snd);
965 		return;
966 	}
967 
968 	while (!ifq_is_empty(&ifp->if_snd)) {
969 		/* Now do we at least have a minimal? */
970 		if (EM_IS_OACTIVE(adapter)) {
971 			em_tx_collect(adapter);
972 			if (EM_IS_OACTIVE(adapter)) {
973 				ifp->if_flags |= IFF_OACTIVE;
974 				adapter->no_tx_desc_avail1++;
975 				break;
976 			}
977 		}
978 
979 		logif(pkt_txqueue);
980 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
981 		if (m_head == NULL)
982 			break;
983 
984 		if (em_encap(adapter, &m_head)) {
985 			ifp->if_oerrors++;
986 			em_tx_collect(adapter);
987 			continue;
988 		}
989 
990 		/* Send a copy of the frame to the BPF listener */
991 		ETHER_BPF_MTAP(ifp, m_head);
992 
993 		/* Set timeout in case hardware has problems transmitting. */
994 		ifp->if_timer = EM_TX_TIMEOUT;
995 	}
996 }
997 
998 static int
999 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1000 {
1001 	struct adapter *adapter = ifp->if_softc;
1002 	struct ifreq *ifr = (struct ifreq *)data;
1003 	uint16_t eeprom_data = 0;
1004 	int max_frame_size, mask, reinit;
1005 	int error = 0;
1006 
1007 	ASSERT_SERIALIZED(ifp->if_serializer);
1008 
1009 	switch (command) {
1010 	case SIOCSIFMTU:
1011 		switch (adapter->hw.mac.type) {
1012 		case e1000_82573:
1013 			/*
1014 			 * 82573 only supports jumbo frames
1015 			 * if ASPM is disabled.
1016 			 */
1017 			e1000_read_nvm(&adapter->hw,
1018 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1019 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1020 				max_frame_size = ETHER_MAX_LEN;
1021 				break;
1022 			}
1023 			/* FALL THROUGH */
1024 
1025 		/* Limit Jumbo Frame size */
1026 		case e1000_82571:
1027 		case e1000_82572:
1028 		case e1000_ich9lan:
1029 		case e1000_ich10lan:
1030 		case e1000_pch2lan:
1031 		case e1000_82574:
1032 		case e1000_82583:
1033 		case e1000_80003es2lan:
1034 			max_frame_size = 9234;
1035 			break;
1036 
1037 		case e1000_pchlan:
1038 			max_frame_size = 4096;
1039 			break;
1040 
1041 		/* Adapters that do not support jumbo frames */
1042 		case e1000_82542:
1043 		case e1000_ich8lan:
1044 			max_frame_size = ETHER_MAX_LEN;
1045 			break;
1046 
1047 		default:
1048 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1049 			break;
1050 		}
1051 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1052 		    ETHER_CRC_LEN) {
1053 			error = EINVAL;
1054 			break;
1055 		}
1056 
1057 		ifp->if_mtu = ifr->ifr_mtu;
1058 		adapter->max_frame_size =
1059 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1060 
1061 		if (ifp->if_flags & IFF_RUNNING)
1062 			em_init(adapter);
1063 		break;
1064 
1065 	case SIOCSIFFLAGS:
1066 		if (ifp->if_flags & IFF_UP) {
1067 			if ((ifp->if_flags & IFF_RUNNING)) {
1068 				if ((ifp->if_flags ^ adapter->if_flags) &
1069 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1070 					em_disable_promisc(adapter);
1071 					em_set_promisc(adapter);
1072 				}
1073 			} else {
1074 				em_init(adapter);
1075 			}
1076 		} else if (ifp->if_flags & IFF_RUNNING) {
1077 			em_stop(adapter);
1078 		}
1079 		adapter->if_flags = ifp->if_flags;
1080 		break;
1081 
1082 	case SIOCADDMULTI:
1083 	case SIOCDELMULTI:
1084 		if (ifp->if_flags & IFF_RUNNING) {
1085 			em_disable_intr(adapter);
1086 			em_set_multi(adapter);
1087 			if (adapter->hw.mac.type == e1000_82542 &&
1088 			    adapter->hw.revision_id == E1000_REVISION_2)
1089 				em_init_rx_unit(adapter);
1090 #ifdef DEVICE_POLLING
1091 			if (!(ifp->if_flags & IFF_POLLING))
1092 #endif
1093 				em_enable_intr(adapter);
1094 		}
1095 		break;
1096 
1097 	case SIOCSIFMEDIA:
1098 		/* Check SOL/IDER usage */
1099 		if (e1000_check_reset_block(&adapter->hw)) {
1100 			device_printf(adapter->dev, "Media change is"
1101 			    " blocked due to SOL/IDER session.\n");
1102 			break;
1103 		}
1104 		/* FALL THROUGH */
1105 
1106 	case SIOCGIFMEDIA:
1107 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1108 		break;
1109 
1110 	case SIOCSIFCAP:
1111 		reinit = 0;
1112 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1113 		if (mask & IFCAP_HWCSUM) {
1114 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1115 			reinit = 1;
1116 		}
1117 		if (mask & IFCAP_VLAN_HWTAGGING) {
1118 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1119 			reinit = 1;
1120 		}
1121 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1122 			em_init(adapter);
1123 		break;
1124 
1125 	default:
1126 		error = ether_ioctl(ifp, command, data);
1127 		break;
1128 	}
1129 	return (error);
1130 }
1131 
1132 static void
1133 em_watchdog(struct ifnet *ifp)
1134 {
1135 	struct adapter *adapter = ifp->if_softc;
1136 
1137 	ASSERT_SERIALIZED(ifp->if_serializer);
1138 
1139 	/*
1140 	 * The timer is set to 5 every time start queues a packet.
1141 	 * Then txeof keeps resetting it as long as it cleans at
1142 	 * least one descriptor.
1143 	 * Finally, anytime all descriptors are clean the timer is
1144 	 * set to 0.
1145 	 */
1146 
1147 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1148 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1149 		/*
1150 		 * If we reach here, all TX jobs are completed and
1151 		 * the TX engine should have been idled for some time.
1152 		 * We don't need to call if_devstart() here.
1153 		 */
1154 		ifp->if_flags &= ~IFF_OACTIVE;
1155 		ifp->if_timer = 0;
1156 		return;
1157 	}
1158 
1159 	/*
1160 	 * If we are in this routine because of pause frames, then
1161 	 * don't reset the hardware.
1162 	 */
1163 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1164 	    E1000_STATUS_TXOFF) {
1165 		ifp->if_timer = EM_TX_TIMEOUT;
1166 		return;
1167 	}
1168 
1169 	if (e1000_check_for_link(&adapter->hw) == 0)
1170 		if_printf(ifp, "watchdog timeout -- resetting\n");
1171 
1172 	ifp->if_oerrors++;
1173 	adapter->watchdog_events++;
1174 
1175 	em_init(adapter);
1176 
1177 	if (!ifq_is_empty(&ifp->if_snd))
1178 		if_devstart(ifp);
1179 }
1180 
1181 static void
1182 em_init(void *xsc)
1183 {
1184 	struct adapter *adapter = xsc;
1185 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1186 	device_t dev = adapter->dev;
1187 	uint32_t pba;
1188 
1189 	ASSERT_SERIALIZED(ifp->if_serializer);
1190 
1191 	em_stop(adapter);
1192 
1193 	/*
1194 	 * Packet Buffer Allocation (PBA)
1195 	 * Writing PBA sets the receive portion of the buffer
1196 	 * the remainder is used for the transmit buffer.
1197 	 *
1198 	 * Devices before the 82547 had a Packet Buffer of 64K.
1199 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1200 	 * After the 82547 the buffer was reduced to 40K.
1201 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1202 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1203 	 */
1204 	switch (adapter->hw.mac.type) {
1205 	case e1000_82547:
1206 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1207 		if (adapter->max_frame_size > 8192)
1208 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1209 		else
1210 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1211 		adapter->tx_fifo_head = 0;
1212 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1213 		adapter->tx_fifo_size =
1214 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1215 		break;
1216 
1217 	/* Total Packet Buffer on these is 48K */
1218 	case e1000_82571:
1219 	case e1000_82572:
1220 	case e1000_80003es2lan:
1221 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1222 		break;
1223 
1224 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1225 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1226 		break;
1227 
1228 	case e1000_82574:
1229 	case e1000_82583:
1230 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1231 		break;
1232 
1233 	case e1000_ich8lan:
1234 		pba = E1000_PBA_8K;
1235 		break;
1236 
1237 	case e1000_ich9lan:
1238 	case e1000_ich10lan:
1239 #define E1000_PBA_10K	0x000A
1240 		pba = E1000_PBA_10K;
1241 		break;
1242 
1243 	case e1000_pchlan:
1244 	case e1000_pch2lan:
1245 		pba = E1000_PBA_26K;
1246 		break;
1247 
1248 	default:
1249 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1250 		if (adapter->max_frame_size > 8192)
1251 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1252 		else
1253 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1254 	}
1255 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1256 
1257 	/* Get the latest mac address, User can use a LAA */
1258         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1259 
1260 	/* Put the address into the Receive Address Array */
1261 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1262 
1263 	/*
1264 	 * With the 82571 adapter, RAR[0] may be overwritten
1265 	 * when the other port is reset, we make a duplicate
1266 	 * in RAR[14] for that eventuality, this assures
1267 	 * the interface continues to function.
1268 	 */
1269 	if (adapter->hw.mac.type == e1000_82571) {
1270 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1271 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1272 		    E1000_RAR_ENTRIES - 1);
1273 	}
1274 
1275 	/* Reset the hardware */
1276 	if (em_reset(adapter)) {
1277 		device_printf(dev, "Unable to reset the hardware\n");
1278 		/* XXX em_stop()? */
1279 		return;
1280 	}
1281 	em_update_link_status(adapter);
1282 
1283 	/* Setup VLAN support, basic and offload if available */
1284 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1285 
1286 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1287 		uint32_t ctrl;
1288 
1289 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1290 		ctrl |= E1000_CTRL_VME;
1291 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1292 	}
1293 
1294 	/* Set hardware offload abilities */
1295 	if (ifp->if_capenable & IFCAP_TXCSUM)
1296 		ifp->if_hwassist = EM_CSUM_FEATURES;
1297 	else
1298 		ifp->if_hwassist = 0;
1299 
1300 	/* Configure for OS presence */
1301 	em_get_mgmt(adapter);
1302 
1303 	/* Prepare transmit descriptors and buffers */
1304 	em_init_tx_ring(adapter);
1305 	em_init_tx_unit(adapter);
1306 
1307 	/* Setup Multicast table */
1308 	em_set_multi(adapter);
1309 
1310 	/* Prepare receive descriptors and buffers */
1311 	if (em_init_rx_ring(adapter)) {
1312 		device_printf(dev, "Could not setup receive structures\n");
1313 		em_stop(adapter);
1314 		return;
1315 	}
1316 	em_init_rx_unit(adapter);
1317 
1318 	/* Don't lose promiscuous settings */
1319 	em_set_promisc(adapter);
1320 
1321 	ifp->if_flags |= IFF_RUNNING;
1322 	ifp->if_flags &= ~IFF_OACTIVE;
1323 
1324 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1325 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1326 
1327 	/* MSI/X configuration for 82574 */
1328 	if (adapter->hw.mac.type == e1000_82574) {
1329 		int tmp;
1330 
1331 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1332 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1333 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1334 		/*
1335 		 * XXX MSIX
1336 		 * Set the IVAR - interrupt vector routing.
1337 		 * Each nibble represents a vector, high bit
1338 		 * is enable, other 3 bits are the MSIX table
1339 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1340 		 * Link (other) to 2, hence the magic number.
1341 		 */
1342 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1343 	}
1344 
1345 #ifdef DEVICE_POLLING
1346 	/*
1347 	 * Only enable interrupts if we are not polling, make sure
1348 	 * they are off otherwise.
1349 	 */
1350 	if (ifp->if_flags & IFF_POLLING)
1351 		em_disable_intr(adapter);
1352 	else
1353 #endif /* DEVICE_POLLING */
1354 		em_enable_intr(adapter);
1355 
1356 	/* AMT based hardware can now take control from firmware */
1357 	if (adapter->has_manage && adapter->has_amt &&
1358 	    adapter->hw.mac.type >= e1000_82571)
1359 		em_get_hw_control(adapter);
1360 
1361 	/* Don't reset the phy next time init gets called */
1362 	adapter->hw.phy.reset_disable = TRUE;
1363 }
1364 
1365 #ifdef DEVICE_POLLING
1366 
1367 static void
1368 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1369 {
1370 	struct adapter *adapter = ifp->if_softc;
1371 	uint32_t reg_icr;
1372 
1373 	ASSERT_SERIALIZED(ifp->if_serializer);
1374 
1375 	switch (cmd) {
1376 	case POLL_REGISTER:
1377 		em_disable_intr(adapter);
1378 		break;
1379 
1380 	case POLL_DEREGISTER:
1381 		em_enable_intr(adapter);
1382 		break;
1383 
1384 	case POLL_AND_CHECK_STATUS:
1385 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1386 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1387 			callout_stop(&adapter->timer);
1388 			adapter->hw.mac.get_link_status = 1;
1389 			em_update_link_status(adapter);
1390 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1391 		}
1392 		/* FALL THROUGH */
1393 	case POLL_ONLY:
1394 		if (ifp->if_flags & IFF_RUNNING) {
1395 			em_rxeof(adapter, count);
1396 			em_txeof(adapter);
1397 
1398 			if (!ifq_is_empty(&ifp->if_snd))
1399 				if_devstart(ifp);
1400 		}
1401 		break;
1402 	}
1403 }
1404 
1405 #endif /* DEVICE_POLLING */
1406 
1407 static void
1408 em_intr(void *xsc)
1409 {
1410 	em_intr_body(xsc, TRUE);
1411 }
1412 
1413 static void
1414 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1415 {
1416 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1417 	uint32_t reg_icr;
1418 
1419 	logif(intr_beg);
1420 	ASSERT_SERIALIZED(ifp->if_serializer);
1421 
1422 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1423 
1424 	if (chk_asserted &&
1425 	    ((adapter->hw.mac.type >= e1000_82571 &&
1426 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1427 	     reg_icr == 0)) {
1428 		logif(intr_end);
1429 		return;
1430 	}
1431 
1432 	/*
1433 	 * XXX: some laptops trigger several spurious interrupts
1434 	 * on em(4) when in the resume cycle. The ICR register
1435 	 * reports all-ones value in this case. Processing such
1436 	 * interrupts would lead to a freeze. I don't know why.
1437 	 */
1438 	if (reg_icr == 0xffffffff) {
1439 		logif(intr_end);
1440 		return;
1441 	}
1442 
1443 	if (ifp->if_flags & IFF_RUNNING) {
1444 		if (reg_icr &
1445 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1446 			em_rxeof(adapter, -1);
1447 		if (reg_icr & E1000_ICR_TXDW) {
1448 			em_txeof(adapter);
1449 			if (!ifq_is_empty(&ifp->if_snd))
1450 				if_devstart(ifp);
1451 		}
1452 	}
1453 
1454 	/* Link status change */
1455 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1456 		callout_stop(&adapter->timer);
1457 		adapter->hw.mac.get_link_status = 1;
1458 		em_update_link_status(adapter);
1459 
1460 		/* Deal with TX cruft when link lost */
1461 		em_tx_purge(adapter);
1462 
1463 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1464 	}
1465 
1466 	if (reg_icr & E1000_ICR_RXO)
1467 		adapter->rx_overruns++;
1468 
1469 	logif(intr_end);
1470 }
1471 
1472 static void
1473 em_intr_mask(void *xsc)
1474 {
1475 	struct adapter *adapter = xsc;
1476 
1477 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1478 	/*
1479 	 * NOTE:
1480 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1481 	 * so don't check it.
1482 	 */
1483 	em_intr_body(adapter, FALSE);
1484 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1485 }
1486 
1487 static void
1488 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1489 {
1490 	struct adapter *adapter = ifp->if_softc;
1491 	u_char fiber_type = IFM_1000_SX;
1492 
1493 	ASSERT_SERIALIZED(ifp->if_serializer);
1494 
1495 	em_update_link_status(adapter);
1496 
1497 	ifmr->ifm_status = IFM_AVALID;
1498 	ifmr->ifm_active = IFM_ETHER;
1499 
1500 	if (!adapter->link_active)
1501 		return;
1502 
1503 	ifmr->ifm_status |= IFM_ACTIVE;
1504 
1505 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1506 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1507 		if (adapter->hw.mac.type == e1000_82545)
1508 			fiber_type = IFM_1000_LX;
1509 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1510 	} else {
1511 		switch (adapter->link_speed) {
1512 		case 10:
1513 			ifmr->ifm_active |= IFM_10_T;
1514 			break;
1515 		case 100:
1516 			ifmr->ifm_active |= IFM_100_TX;
1517 			break;
1518 
1519 		case 1000:
1520 			ifmr->ifm_active |= IFM_1000_T;
1521 			break;
1522 		}
1523 		if (adapter->link_duplex == FULL_DUPLEX)
1524 			ifmr->ifm_active |= IFM_FDX;
1525 		else
1526 			ifmr->ifm_active |= IFM_HDX;
1527 	}
1528 }
1529 
1530 static int
1531 em_media_change(struct ifnet *ifp)
1532 {
1533 	struct adapter *adapter = ifp->if_softc;
1534 	struct ifmedia *ifm = &adapter->media;
1535 
1536 	ASSERT_SERIALIZED(ifp->if_serializer);
1537 
1538 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1539 		return (EINVAL);
1540 
1541 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1542 	case IFM_AUTO:
1543 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1544 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1545 		break;
1546 
1547 	case IFM_1000_LX:
1548 	case IFM_1000_SX:
1549 	case IFM_1000_T:
1550 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1551 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1552 		break;
1553 
1554 	case IFM_100_TX:
1555 		adapter->hw.mac.autoneg = FALSE;
1556 		adapter->hw.phy.autoneg_advertised = 0;
1557 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1558 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1559 		else
1560 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1561 		break;
1562 
1563 	case IFM_10_T:
1564 		adapter->hw.mac.autoneg = FALSE;
1565 		adapter->hw.phy.autoneg_advertised = 0;
1566 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1567 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1568 		else
1569 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1570 		break;
1571 
1572 	default:
1573 		if_printf(ifp, "Unsupported media type\n");
1574 		break;
1575 	}
1576 
1577 	/*
1578 	 * As the speed/duplex settings my have changed we need to
1579 	 * reset the PHY.
1580 	 */
1581 	adapter->hw.phy.reset_disable = FALSE;
1582 
1583 	em_init(adapter);
1584 
1585 	return (0);
1586 }
1587 
1588 static int
1589 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1590 {
1591 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1592 	bus_dmamap_t map;
1593 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1594 	struct e1000_tx_desc *ctxd = NULL;
1595 	struct mbuf *m_head = *m_headp;
1596 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1597 	int maxsegs, nsegs, i, j, first, last = 0, error;
1598 
1599 	if (m_head->m_len < EM_TXCSUM_MINHL &&
1600 	    (m_head->m_flags & EM_CSUM_FEATURES)) {
1601 		/*
1602 		 * Make sure that ethernet header and ip.ip_hl are in
1603 		 * contiguous memory, since if TXCSUM is enabled, later
1604 		 * TX context descriptor's setup need to access ip.ip_hl.
1605 		 */
1606 		error = em_txcsum_pullup(adapter, m_headp);
1607 		if (error) {
1608 			KKASSERT(*m_headp == NULL);
1609 			return error;
1610 		}
1611 		m_head = *m_headp;
1612 	}
1613 
1614 	txd_upper = txd_lower = 0;
1615 	txd_used = 0;
1616 
1617 	/*
1618 	 * Capture the first descriptor index, this descriptor
1619 	 * will have the index of the EOP which is the only one
1620 	 * that now gets a DONE bit writeback.
1621 	 */
1622 	first = adapter->next_avail_tx_desc;
1623 	tx_buffer = &adapter->tx_buffer_area[first];
1624 	tx_buffer_mapped = tx_buffer;
1625 	map = tx_buffer->map;
1626 
1627 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1628 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1629 		("not enough spare TX desc"));
1630 	if (adapter->pcix_82544) {
1631 		/* Half it; see the comment in em_attach() */
1632 		maxsegs >>= 1;
1633 	}
1634 	if (maxsegs > EM_MAX_SCATTER)
1635 		maxsegs = EM_MAX_SCATTER;
1636 
1637 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1638 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1639 	if (error) {
1640 		if (error == ENOBUFS)
1641 			adapter->mbuf_alloc_failed++;
1642 		else
1643 			adapter->no_tx_dma_setup++;
1644 
1645 		m_freem(*m_headp);
1646 		*m_headp = NULL;
1647 		return error;
1648 	}
1649         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1650 
1651 	m_head = *m_headp;
1652 	adapter->tx_nsegs += nsegs;
1653 
1654 	if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1655 		/* TX csum offloading will consume one TX desc */
1656 		adapter->tx_nsegs += em_txcsum(adapter, m_head,
1657 					       &txd_upper, &txd_lower);
1658 	}
1659 	i = adapter->next_avail_tx_desc;
1660 
1661 	/* Set up our transmit descriptors */
1662 	for (j = 0; j < nsegs; j++) {
1663 		/* If adapter is 82544 and on PCIX bus */
1664 		if(adapter->pcix_82544) {
1665 			DESC_ARRAY desc_array;
1666 			uint32_t array_elements, counter;
1667 
1668 			/*
1669 			 * Check the Address and Length combination and
1670 			 * split the data accordingly
1671 			 */
1672 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1673 						segs[j].ds_len, &desc_array);
1674 			for (counter = 0; counter < array_elements; counter++) {
1675 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1676 
1677 				tx_buffer = &adapter->tx_buffer_area[i];
1678 				ctxd = &adapter->tx_desc_base[i];
1679 
1680 				ctxd->buffer_addr = htole64(
1681 				    desc_array.descriptor[counter].address);
1682 				ctxd->lower.data = htole32(
1683 				    E1000_TXD_CMD_IFCS | txd_lower |
1684 				    desc_array.descriptor[counter].length);
1685 				ctxd->upper.data = htole32(txd_upper);
1686 
1687 				last = i;
1688 				if (++i == adapter->num_tx_desc)
1689 					i = 0;
1690 
1691 				txd_used++;
1692                         }
1693 		} else {
1694 			tx_buffer = &adapter->tx_buffer_area[i];
1695 			ctxd = &adapter->tx_desc_base[i];
1696 
1697 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1698 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1699 						   txd_lower | segs[j].ds_len);
1700 			ctxd->upper.data = htole32(txd_upper);
1701 
1702 			last = i;
1703 			if (++i == adapter->num_tx_desc)
1704 				i = 0;
1705 		}
1706 	}
1707 
1708 	adapter->next_avail_tx_desc = i;
1709 	if (adapter->pcix_82544) {
1710 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1711 		adapter->num_tx_desc_avail -= txd_used;
1712 	} else {
1713 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1714 		adapter->num_tx_desc_avail -= nsegs;
1715 	}
1716 
1717         /* Handle VLAN tag */
1718 	if (m_head->m_flags & M_VLANTAG) {
1719 		/* Set the vlan id. */
1720 		ctxd->upper.fields.special =
1721 		    htole16(m_head->m_pkthdr.ether_vlantag);
1722 
1723 		/* Tell hardware to add tag */
1724 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1725 	}
1726 
1727 	tx_buffer->m_head = m_head;
1728 	tx_buffer_mapped->map = tx_buffer->map;
1729 	tx_buffer->map = map;
1730 
1731 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1732 		adapter->tx_nsegs = 0;
1733 
1734 		/*
1735 		 * Report Status (RS) is turned on
1736 		 * every tx_int_nsegs descriptors.
1737 		 */
1738 		cmd = E1000_TXD_CMD_RS;
1739 
1740 		/*
1741 		 * Keep track of the descriptor, which will
1742 		 * be written back by hardware.
1743 		 */
1744 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1745 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1746 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1747 	}
1748 
1749 	/*
1750 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1751 	 */
1752 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1753 
1754 	/*
1755 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1756 	 * that this frame is available to transmit.
1757 	 */
1758 	if (adapter->hw.mac.type == e1000_82547 &&
1759 	    adapter->link_duplex == HALF_DUPLEX) {
1760 		em_82547_move_tail_serialized(adapter);
1761 	} else {
1762 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1763 		if (adapter->hw.mac.type == e1000_82547) {
1764 			em_82547_update_fifo_head(adapter,
1765 			    m_head->m_pkthdr.len);
1766 		}
1767 	}
1768 	return (0);
1769 }
1770 
1771 /*
1772  * 82547 workaround to avoid controller hang in half-duplex environment.
1773  * The workaround is to avoid queuing a large packet that would span
1774  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1775  * in this case.  We do that only when FIFO is quiescent.
1776  */
1777 static void
1778 em_82547_move_tail_serialized(struct adapter *adapter)
1779 {
1780 	struct e1000_tx_desc *tx_desc;
1781 	uint16_t hw_tdt, sw_tdt, length = 0;
1782 	bool eop = 0;
1783 
1784 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1785 
1786 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1787 	sw_tdt = adapter->next_avail_tx_desc;
1788 
1789 	while (hw_tdt != sw_tdt) {
1790 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1791 		length += tx_desc->lower.flags.length;
1792 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1793 		if (++hw_tdt == adapter->num_tx_desc)
1794 			hw_tdt = 0;
1795 
1796 		if (eop) {
1797 			if (em_82547_fifo_workaround(adapter, length)) {
1798 				adapter->tx_fifo_wrk_cnt++;
1799 				callout_reset(&adapter->tx_fifo_timer, 1,
1800 					em_82547_move_tail, adapter);
1801 				break;
1802 			}
1803 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1804 			em_82547_update_fifo_head(adapter, length);
1805 			length = 0;
1806 		}
1807 	}
1808 }
1809 
1810 static void
1811 em_82547_move_tail(void *xsc)
1812 {
1813 	struct adapter *adapter = xsc;
1814 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1815 
1816 	lwkt_serialize_enter(ifp->if_serializer);
1817 	em_82547_move_tail_serialized(adapter);
1818 	lwkt_serialize_exit(ifp->if_serializer);
1819 }
1820 
1821 static int
1822 em_82547_fifo_workaround(struct adapter *adapter, int len)
1823 {
1824 	int fifo_space, fifo_pkt_len;
1825 
1826 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1827 
1828 	if (adapter->link_duplex == HALF_DUPLEX) {
1829 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1830 
1831 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1832 			if (em_82547_tx_fifo_reset(adapter))
1833 				return (0);
1834 			else
1835 				return (1);
1836 		}
1837 	}
1838 	return (0);
1839 }
1840 
1841 static void
1842 em_82547_update_fifo_head(struct adapter *adapter, int len)
1843 {
1844 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1845 
1846 	/* tx_fifo_head is always 16 byte aligned */
1847 	adapter->tx_fifo_head += fifo_pkt_len;
1848 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1849 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1850 }
1851 
1852 static int
1853 em_82547_tx_fifo_reset(struct adapter *adapter)
1854 {
1855 	uint32_t tctl;
1856 
1857 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1858 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1859 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1860 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1861 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1862 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1863 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1864 		/* Disable TX unit */
1865 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1866 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1867 		    tctl & ~E1000_TCTL_EN);
1868 
1869 		/* Reset FIFO pointers */
1870 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1871 		    adapter->tx_head_addr);
1872 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1873 		    adapter->tx_head_addr);
1874 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1875 		    adapter->tx_head_addr);
1876 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1877 		    adapter->tx_head_addr);
1878 
1879 		/* Re-enable TX unit */
1880 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1881 		E1000_WRITE_FLUSH(&adapter->hw);
1882 
1883 		adapter->tx_fifo_head = 0;
1884 		adapter->tx_fifo_reset_cnt++;
1885 
1886 		return (TRUE);
1887 	} else {
1888 		return (FALSE);
1889 	}
1890 }
1891 
1892 static void
1893 em_set_promisc(struct adapter *adapter)
1894 {
1895 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1896 	uint32_t reg_rctl;
1897 
1898 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1899 
1900 	if (ifp->if_flags & IFF_PROMISC) {
1901 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1902 		/* Turn this on if you want to see bad packets */
1903 		if (em_debug_sbp)
1904 			reg_rctl |= E1000_RCTL_SBP;
1905 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1906 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1907 		reg_rctl |= E1000_RCTL_MPE;
1908 		reg_rctl &= ~E1000_RCTL_UPE;
1909 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1910 	}
1911 }
1912 
1913 static void
1914 em_disable_promisc(struct adapter *adapter)
1915 {
1916 	uint32_t reg_rctl;
1917 
1918 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1919 
1920 	reg_rctl &= ~E1000_RCTL_UPE;
1921 	reg_rctl &= ~E1000_RCTL_MPE;
1922 	reg_rctl &= ~E1000_RCTL_SBP;
1923 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1924 }
1925 
1926 static void
1927 em_set_multi(struct adapter *adapter)
1928 {
1929 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1930 	struct ifmultiaddr *ifma;
1931 	uint32_t reg_rctl = 0;
1932 	uint8_t *mta;
1933 	int mcnt = 0;
1934 
1935 	mta = adapter->mta;
1936 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1937 
1938 	if (adapter->hw.mac.type == e1000_82542 &&
1939 	    adapter->hw.revision_id == E1000_REVISION_2) {
1940 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1941 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1942 			e1000_pci_clear_mwi(&adapter->hw);
1943 		reg_rctl |= E1000_RCTL_RST;
1944 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1945 		msec_delay(5);
1946 	}
1947 
1948 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1949 		if (ifma->ifma_addr->sa_family != AF_LINK)
1950 			continue;
1951 
1952 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1953 			break;
1954 
1955 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1956 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1957 		mcnt++;
1958 	}
1959 
1960 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1961 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1962 		reg_rctl |= E1000_RCTL_MPE;
1963 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1964 	} else {
1965 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1966 	}
1967 
1968 	if (adapter->hw.mac.type == e1000_82542 &&
1969 	    adapter->hw.revision_id == E1000_REVISION_2) {
1970 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1971 		reg_rctl &= ~E1000_RCTL_RST;
1972 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1973 		msec_delay(5);
1974 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1975 			e1000_pci_set_mwi(&adapter->hw);
1976 	}
1977 }
1978 
1979 /*
1980  * This routine checks for link status and updates statistics.
1981  */
1982 static void
1983 em_timer(void *xsc)
1984 {
1985 	struct adapter *adapter = xsc;
1986 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1987 
1988 	lwkt_serialize_enter(ifp->if_serializer);
1989 
1990 	em_update_link_status(adapter);
1991 	em_update_stats(adapter);
1992 
1993 	/* Reset LAA into RAR[0] on 82571 */
1994 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1995 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1996 
1997 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1998 		em_print_hw_stats(adapter);
1999 
2000 	em_smartspeed(adapter);
2001 
2002 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2003 
2004 	lwkt_serialize_exit(ifp->if_serializer);
2005 }
2006 
2007 static void
2008 em_update_link_status(struct adapter *adapter)
2009 {
2010 	struct e1000_hw *hw = &adapter->hw;
2011 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2012 	device_t dev = adapter->dev;
2013 	uint32_t link_check = 0;
2014 
2015 	/* Get the cached link value or read phy for real */
2016 	switch (hw->phy.media_type) {
2017 	case e1000_media_type_copper:
2018 		if (hw->mac.get_link_status) {
2019 			/* Do the work to read phy */
2020 			e1000_check_for_link(hw);
2021 			link_check = !hw->mac.get_link_status;
2022 			if (link_check) /* ESB2 fix */
2023 				e1000_cfg_on_link_up(hw);
2024 		} else {
2025 			link_check = TRUE;
2026 		}
2027 		break;
2028 
2029 	case e1000_media_type_fiber:
2030 		e1000_check_for_link(hw);
2031 		link_check =
2032 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2033 		break;
2034 
2035 	case e1000_media_type_internal_serdes:
2036 		e1000_check_for_link(hw);
2037 		link_check = adapter->hw.mac.serdes_has_link;
2038 		break;
2039 
2040 	case e1000_media_type_unknown:
2041 	default:
2042 		break;
2043 	}
2044 
2045 	/* Now check for a transition */
2046 	if (link_check && adapter->link_active == 0) {
2047 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2048 		    &adapter->link_duplex);
2049 
2050 		/*
2051 		 * Check if we should enable/disable SPEED_MODE bit on
2052 		 * 82571/82572
2053 		 */
2054 		if (adapter->link_speed != SPEED_1000 &&
2055 		    (hw->mac.type == e1000_82571 ||
2056 		     hw->mac.type == e1000_82572)) {
2057 			int tarc0;
2058 
2059 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2060 			tarc0 &= ~SPEED_MODE_BIT;
2061 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2062 		}
2063 		if (bootverbose) {
2064 			device_printf(dev, "Link is up %d Mbps %s\n",
2065 			    adapter->link_speed,
2066 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2067 			    "Full Duplex" : "Half Duplex"));
2068 		}
2069 		adapter->link_active = 1;
2070 		adapter->smartspeed = 0;
2071 		ifp->if_baudrate = adapter->link_speed * 1000000;
2072 		ifp->if_link_state = LINK_STATE_UP;
2073 		if_link_state_change(ifp);
2074 	} else if (!link_check && adapter->link_active == 1) {
2075 		ifp->if_baudrate = adapter->link_speed = 0;
2076 		adapter->link_duplex = 0;
2077 		if (bootverbose)
2078 			device_printf(dev, "Link is Down\n");
2079 		adapter->link_active = 0;
2080 #if 0
2081 		/* Link down, disable watchdog */
2082 		if->if_timer = 0;
2083 #endif
2084 		ifp->if_link_state = LINK_STATE_DOWN;
2085 		if_link_state_change(ifp);
2086 	}
2087 }
2088 
2089 static void
2090 em_stop(struct adapter *adapter)
2091 {
2092 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2093 	int i;
2094 
2095 	ASSERT_SERIALIZED(ifp->if_serializer);
2096 
2097 	em_disable_intr(adapter);
2098 
2099 	callout_stop(&adapter->timer);
2100 	callout_stop(&adapter->tx_fifo_timer);
2101 
2102 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2103 	ifp->if_timer = 0;
2104 
2105 	e1000_reset_hw(&adapter->hw);
2106 	if (adapter->hw.mac.type >= e1000_82544)
2107 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2108 
2109 	for (i = 0; i < adapter->num_tx_desc; i++) {
2110 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2111 
2112 		if (tx_buffer->m_head != NULL) {
2113 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2114 			m_freem(tx_buffer->m_head);
2115 			tx_buffer->m_head = NULL;
2116 		}
2117 	}
2118 
2119 	for (i = 0; i < adapter->num_rx_desc; i++) {
2120 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2121 
2122 		if (rx_buffer->m_head != NULL) {
2123 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2124 			m_freem(rx_buffer->m_head);
2125 			rx_buffer->m_head = NULL;
2126 		}
2127 	}
2128 
2129 	if (adapter->fmp != NULL)
2130 		m_freem(adapter->fmp);
2131 	adapter->fmp = NULL;
2132 	adapter->lmp = NULL;
2133 
2134 	adapter->csum_flags = 0;
2135 	adapter->csum_ehlen = 0;
2136 	adapter->csum_iphlen = 0;
2137 
2138 	adapter->tx_dd_head = 0;
2139 	adapter->tx_dd_tail = 0;
2140 	adapter->tx_nsegs = 0;
2141 }
2142 
2143 static int
2144 em_get_hw_info(struct adapter *adapter)
2145 {
2146 	device_t dev = adapter->dev;
2147 
2148 	/* Save off the information about this board */
2149 	adapter->hw.vendor_id = pci_get_vendor(dev);
2150 	adapter->hw.device_id = pci_get_device(dev);
2151 	adapter->hw.revision_id = pci_get_revid(dev);
2152 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2153 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2154 
2155 	/* Do Shared Code Init and Setup */
2156 	if (e1000_set_mac_type(&adapter->hw))
2157 		return ENXIO;
2158 	return 0;
2159 }
2160 
2161 static int
2162 em_alloc_pci_res(struct adapter *adapter)
2163 {
2164 	device_t dev = adapter->dev;
2165 	u_int intr_flags;
2166 	int val, rid, msi_enable;
2167 
2168 	/* Enable bus mastering */
2169 	pci_enable_busmaster(dev);
2170 
2171 	adapter->memory_rid = EM_BAR_MEM;
2172 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2173 				&adapter->memory_rid, RF_ACTIVE);
2174 	if (adapter->memory == NULL) {
2175 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2176 		return (ENXIO);
2177 	}
2178 	adapter->osdep.mem_bus_space_tag =
2179 	    rman_get_bustag(adapter->memory);
2180 	adapter->osdep.mem_bus_space_handle =
2181 	    rman_get_bushandle(adapter->memory);
2182 
2183 	/* XXX This is quite goofy, it is not actually used */
2184 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2185 
2186 	/* Only older adapters use IO mapping */
2187 	if (adapter->hw.mac.type > e1000_82543 &&
2188 	    adapter->hw.mac.type < e1000_82571) {
2189 		/* Figure our where our IO BAR is ? */
2190 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2191 			val = pci_read_config(dev, rid, 4);
2192 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2193 				adapter->io_rid = rid;
2194 				break;
2195 			}
2196 			rid += 4;
2197 			/* check for 64bit BAR */
2198 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2199 				rid += 4;
2200 		}
2201 		if (rid >= PCIR_CARDBUSCIS) {
2202 			device_printf(dev, "Unable to locate IO BAR\n");
2203 			return (ENXIO);
2204 		}
2205 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2206 					&adapter->io_rid, RF_ACTIVE);
2207 		if (adapter->ioport == NULL) {
2208 			device_printf(dev, "Unable to allocate bus resource: "
2209 			    "ioport\n");
2210 			return (ENXIO);
2211 		}
2212 		adapter->hw.io_base = 0;
2213 		adapter->osdep.io_bus_space_tag =
2214 		    rman_get_bustag(adapter->ioport);
2215 		adapter->osdep.io_bus_space_handle =
2216 		    rman_get_bushandle(adapter->ioport);
2217 	}
2218 
2219 	/*
2220 	 * Don't enable MSI-X on 82574, see:
2221 	 * 82574 specification update errata #15
2222 	 *
2223 	 * Don't enable MSI on PCI/PCI-X chips, see:
2224 	 * 82540 specification update errata #6
2225 	 * 82545 specification update errata #4
2226 	 *
2227 	 * Don't enable MSI on 82571/82572, see:
2228 	 * 82571/82572 specification update errata #63
2229 	 */
2230 	msi_enable = em_msi_enable;
2231 	if (msi_enable &&
2232 	    (!pci_is_pcie(dev) ||
2233 	     adapter->hw.mac.type == e1000_82571 ||
2234 	     adapter->hw.mac.type == e1000_82572))
2235 		msi_enable = 0;
2236 
2237 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2238 	    &adapter->intr_rid, &intr_flags);
2239 
2240 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2241 		int unshared;
2242 
2243 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2244 		if (!unshared) {
2245 			adapter->flags |= EM_FLAG_SHARED_INTR;
2246 			if (bootverbose)
2247 				device_printf(dev, "IRQ shared\n");
2248 		} else {
2249 			intr_flags &= ~RF_SHAREABLE;
2250 			if (bootverbose)
2251 				device_printf(dev, "IRQ unshared\n");
2252 		}
2253 	}
2254 
2255 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2256 	    &adapter->intr_rid, intr_flags);
2257 	if (adapter->intr_res == NULL) {
2258 		device_printf(dev, "Unable to allocate bus resource: "
2259 		    "interrupt\n");
2260 		return (ENXIO);
2261 	}
2262 
2263 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2264 	adapter->hw.back = &adapter->osdep;
2265 	return (0);
2266 }
2267 
2268 static void
2269 em_free_pci_res(struct adapter *adapter)
2270 {
2271 	device_t dev = adapter->dev;
2272 
2273 	if (adapter->intr_res != NULL) {
2274 		bus_release_resource(dev, SYS_RES_IRQ,
2275 		    adapter->intr_rid, adapter->intr_res);
2276 	}
2277 
2278 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2279 		pci_release_msi(dev);
2280 
2281 	if (adapter->memory != NULL) {
2282 		bus_release_resource(dev, SYS_RES_MEMORY,
2283 		    adapter->memory_rid, adapter->memory);
2284 	}
2285 
2286 	if (adapter->flash != NULL) {
2287 		bus_release_resource(dev, SYS_RES_MEMORY,
2288 		    adapter->flash_rid, adapter->flash);
2289 	}
2290 
2291 	if (adapter->ioport != NULL) {
2292 		bus_release_resource(dev, SYS_RES_IOPORT,
2293 		    adapter->io_rid, adapter->ioport);
2294 	}
2295 }
2296 
2297 static int
2298 em_reset(struct adapter *adapter)
2299 {
2300 	device_t dev = adapter->dev;
2301 	uint16_t rx_buffer_size;
2302 
2303 	/* When hardware is reset, fifo_head is also reset */
2304 	adapter->tx_fifo_head = 0;
2305 
2306 	/* Set up smart power down as default off on newer adapters. */
2307 	if (!em_smart_pwr_down &&
2308 	    (adapter->hw.mac.type == e1000_82571 ||
2309 	     adapter->hw.mac.type == e1000_82572)) {
2310 		uint16_t phy_tmp = 0;
2311 
2312 		/* Speed up time to link by disabling smart power down. */
2313 		e1000_read_phy_reg(&adapter->hw,
2314 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2315 		phy_tmp &= ~IGP02E1000_PM_SPD;
2316 		e1000_write_phy_reg(&adapter->hw,
2317 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2318 	}
2319 
2320 	/*
2321 	 * These parameters control the automatic generation (Tx) and
2322 	 * response (Rx) to Ethernet PAUSE frames.
2323 	 * - High water mark should allow for at least two frames to be
2324 	 *   received after sending an XOFF.
2325 	 * - Low water mark works best when it is very near the high water mark.
2326 	 *   This allows the receiver to restart by sending XON when it has
2327 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2328 	 *   restart after one full frame is pulled from the buffer. There
2329 	 *   could be several smaller frames in the buffer and if so they will
2330 	 *   not trigger the XON until their total number reduces the buffer
2331 	 *   by 1500.
2332 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2333 	 */
2334 	rx_buffer_size =
2335 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2336 
2337 	adapter->hw.fc.high_water = rx_buffer_size -
2338 				    roundup2(adapter->max_frame_size, 1024);
2339 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2340 
2341 	if (adapter->hw.mac.type == e1000_80003es2lan)
2342 		adapter->hw.fc.pause_time = 0xFFFF;
2343 	else
2344 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2345 
2346 	adapter->hw.fc.send_xon = TRUE;
2347 
2348 	adapter->hw.fc.requested_mode = e1000_fc_full;
2349 
2350 	/* Workaround: no TX flow ctrl for PCH */
2351 	if (adapter->hw.mac.type == e1000_pchlan)
2352 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2353 
2354 	/* Override - settings for PCH2LAN, ya its magic :) */
2355 	if (adapter->hw.mac.type == e1000_pch2lan) {
2356 		adapter->hw.fc.high_water = 0x5C20;
2357 		adapter->hw.fc.low_water = 0x5048;
2358 		adapter->hw.fc.pause_time = 0x0650;
2359 		adapter->hw.fc.refresh_time = 0x0400;
2360 
2361 		/* Jumbos need adjusted PBA */
2362 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2363 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2364 		else
2365 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2366 	}
2367 
2368 	/* Issue a global reset */
2369 	e1000_reset_hw(&adapter->hw);
2370 	if (adapter->hw.mac.type >= e1000_82544)
2371 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2372 	em_disable_aspm(adapter);
2373 
2374 	if (e1000_init_hw(&adapter->hw) < 0) {
2375 		device_printf(dev, "Hardware Initialization Failed\n");
2376 		return (EIO);
2377 	}
2378 
2379 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2380 	e1000_get_phy_info(&adapter->hw);
2381 	e1000_check_for_link(&adapter->hw);
2382 
2383 	return (0);
2384 }
2385 
2386 static void
2387 em_setup_ifp(struct adapter *adapter)
2388 {
2389 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2390 
2391 	if_initname(ifp, device_get_name(adapter->dev),
2392 		    device_get_unit(adapter->dev));
2393 	ifp->if_softc = adapter;
2394 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2395 	ifp->if_init =  em_init;
2396 	ifp->if_ioctl = em_ioctl;
2397 	ifp->if_start = em_start;
2398 #ifdef DEVICE_POLLING
2399 	ifp->if_poll = em_poll;
2400 #endif
2401 	ifp->if_watchdog = em_watchdog;
2402 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2403 	ifq_set_ready(&ifp->if_snd);
2404 
2405 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2406 
2407 	if (adapter->hw.mac.type >= e1000_82543)
2408 		ifp->if_capabilities = IFCAP_HWCSUM;
2409 
2410 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2411 	ifp->if_capenable = ifp->if_capabilities;
2412 
2413 	if (ifp->if_capenable & IFCAP_TXCSUM)
2414 		ifp->if_hwassist = EM_CSUM_FEATURES;
2415 
2416 	/*
2417 	 * Tell the upper layer(s) we support long frames.
2418 	 */
2419 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2420 
2421 	/*
2422 	 * Specify the media types supported by this adapter and register
2423 	 * callbacks to update media and link information
2424 	 */
2425 	ifmedia_init(&adapter->media, IFM_IMASK,
2426 		     em_media_change, em_media_status);
2427 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2428 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2429 		u_char fiber_type = IFM_1000_SX; /* default type */
2430 
2431 		if (adapter->hw.mac.type == e1000_82545)
2432 			fiber_type = IFM_1000_LX;
2433 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2434 			    0, NULL);
2435 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2436 	} else {
2437 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2438 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2439 			    0, NULL);
2440 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2441 			    0, NULL);
2442 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2443 			    0, NULL);
2444 		if (adapter->hw.phy.type != e1000_phy_ife) {
2445 			ifmedia_add(&adapter->media,
2446 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2447 			ifmedia_add(&adapter->media,
2448 				IFM_ETHER | IFM_1000_T, 0, NULL);
2449 		}
2450 	}
2451 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2452 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2453 }
2454 
2455 
2456 /*
2457  * Workaround for SmartSpeed on 82541 and 82547 controllers
2458  */
2459 static void
2460 em_smartspeed(struct adapter *adapter)
2461 {
2462 	uint16_t phy_tmp;
2463 
2464 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2465 	    adapter->hw.mac.autoneg == 0 ||
2466 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2467 		return;
2468 
2469 	if (adapter->smartspeed == 0) {
2470 		/*
2471 		 * If Master/Slave config fault is asserted twice,
2472 		 * we assume back-to-back
2473 		 */
2474 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2475 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2476 			return;
2477 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2478 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2479 			e1000_read_phy_reg(&adapter->hw,
2480 			    PHY_1000T_CTRL, &phy_tmp);
2481 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2482 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2483 				e1000_write_phy_reg(&adapter->hw,
2484 				    PHY_1000T_CTRL, phy_tmp);
2485 				adapter->smartspeed++;
2486 				if (adapter->hw.mac.autoneg &&
2487 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2488 				    !e1000_read_phy_reg(&adapter->hw,
2489 				     PHY_CONTROL, &phy_tmp)) {
2490 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2491 						   MII_CR_RESTART_AUTO_NEG;
2492 					e1000_write_phy_reg(&adapter->hw,
2493 					    PHY_CONTROL, phy_tmp);
2494 				}
2495 			}
2496 		}
2497 		return;
2498 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2499 		/* If still no link, perhaps using 2/3 pair cable */
2500 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2501 		phy_tmp |= CR_1000T_MS_ENABLE;
2502 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2503 		if (adapter->hw.mac.autoneg &&
2504 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2505 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2506 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2507 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2508 		}
2509 	}
2510 
2511 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2512 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2513 		adapter->smartspeed = 0;
2514 }
2515 
2516 static int
2517 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2518 	      struct em_dma_alloc *dma)
2519 {
2520 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2521 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2522 				&dma->dma_tag, &dma->dma_map,
2523 				&dma->dma_paddr);
2524 	if (dma->dma_vaddr == NULL)
2525 		return ENOMEM;
2526 	else
2527 		return 0;
2528 }
2529 
2530 static void
2531 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2532 {
2533 	if (dma->dma_tag == NULL)
2534 		return;
2535 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2536 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2537 	bus_dma_tag_destroy(dma->dma_tag);
2538 }
2539 
2540 static int
2541 em_create_tx_ring(struct adapter *adapter)
2542 {
2543 	device_t dev = adapter->dev;
2544 	struct em_buffer *tx_buffer;
2545 	int error, i;
2546 
2547 	adapter->tx_buffer_area =
2548 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2549 			M_DEVBUF, M_WAITOK | M_ZERO);
2550 
2551 	/*
2552 	 * Create DMA tags for tx buffers
2553 	 */
2554 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2555 			1, 0,			/* alignment, bounds */
2556 			BUS_SPACE_MAXADDR,	/* lowaddr */
2557 			BUS_SPACE_MAXADDR,	/* highaddr */
2558 			NULL, NULL,		/* filter, filterarg */
2559 			EM_TSO_SIZE,		/* maxsize */
2560 			EM_MAX_SCATTER,		/* nsegments */
2561 			EM_MAX_SEGSIZE,		/* maxsegsize */
2562 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2563 			BUS_DMA_ONEBPAGE,	/* flags */
2564 			&adapter->txtag);
2565 	if (error) {
2566 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2567 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2568 		adapter->tx_buffer_area = NULL;
2569 		return error;
2570 	}
2571 
2572 	/*
2573 	 * Create DMA maps for tx buffers
2574 	 */
2575 	for (i = 0; i < adapter->num_tx_desc; i++) {
2576 		tx_buffer = &adapter->tx_buffer_area[i];
2577 
2578 		error = bus_dmamap_create(adapter->txtag,
2579 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2580 					  &tx_buffer->map);
2581 		if (error) {
2582 			device_printf(dev, "Unable to create TX DMA map\n");
2583 			em_destroy_tx_ring(adapter, i);
2584 			return error;
2585 		}
2586 	}
2587 	return (0);
2588 }
2589 
2590 static void
2591 em_init_tx_ring(struct adapter *adapter)
2592 {
2593 	/* Clear the old ring contents */
2594 	bzero(adapter->tx_desc_base,
2595 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2596 
2597 	/* Reset state */
2598 	adapter->next_avail_tx_desc = 0;
2599 	adapter->next_tx_to_clean = 0;
2600 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2601 }
2602 
2603 static void
2604 em_init_tx_unit(struct adapter *adapter)
2605 {
2606 	uint32_t tctl, tarc, tipg = 0;
2607 	uint64_t bus_addr;
2608 
2609 	/* Setup the Base and Length of the Tx Descriptor Ring */
2610 	bus_addr = adapter->txdma.dma_paddr;
2611 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2612 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2613 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2614 	    (uint32_t)(bus_addr >> 32));
2615 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2616 	    (uint32_t)bus_addr);
2617 	/* Setup the HW Tx Head and Tail descriptor pointers */
2618 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2619 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2620 
2621 	/* Set the default values for the Tx Inter Packet Gap timer */
2622 	switch (adapter->hw.mac.type) {
2623 	case e1000_82542:
2624 		tipg = DEFAULT_82542_TIPG_IPGT;
2625 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2626 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2627 		break;
2628 
2629 	case e1000_80003es2lan:
2630 		tipg = DEFAULT_82543_TIPG_IPGR1;
2631 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2632 		    E1000_TIPG_IPGR2_SHIFT;
2633 		break;
2634 
2635 	default:
2636 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2637 		    adapter->hw.phy.media_type ==
2638 		    e1000_media_type_internal_serdes)
2639 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2640 		else
2641 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2642 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2643 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2644 		break;
2645 	}
2646 
2647 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2648 
2649 	/* NOTE: 0 is not allowed for TIDV */
2650 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2651 	if(adapter->hw.mac.type >= e1000_82540)
2652 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2653 
2654 	if (adapter->hw.mac.type == e1000_82571 ||
2655 	    adapter->hw.mac.type == e1000_82572) {
2656 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2657 		tarc |= SPEED_MODE_BIT;
2658 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2659 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2660 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2661 		tarc |= 1;
2662 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2663 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2664 		tarc |= 1;
2665 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2666 	}
2667 
2668 	/* Program the Transmit Control Register */
2669 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2670 	tctl &= ~E1000_TCTL_CT;
2671 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2672 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2673 
2674 	if (adapter->hw.mac.type >= e1000_82571)
2675 		tctl |= E1000_TCTL_MULR;
2676 
2677 	/* This write will effectively turn on the transmit unit. */
2678 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2679 }
2680 
2681 static void
2682 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2683 {
2684 	struct em_buffer *tx_buffer;
2685 	int i;
2686 
2687 	if (adapter->tx_buffer_area == NULL)
2688 		return;
2689 
2690 	for (i = 0; i < ndesc; i++) {
2691 		tx_buffer = &adapter->tx_buffer_area[i];
2692 
2693 		KKASSERT(tx_buffer->m_head == NULL);
2694 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2695 	}
2696 	bus_dma_tag_destroy(adapter->txtag);
2697 
2698 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2699 	adapter->tx_buffer_area = NULL;
2700 }
2701 
2702 /*
2703  * The offload context needs to be set when we transfer the first
2704  * packet of a particular protocol (TCP/UDP).  This routine has been
2705  * enhanced to deal with inserted VLAN headers.
2706  *
2707  * If the new packet's ether header length, ip header length and
2708  * csum offloading type are same as the previous packet, we should
2709  * avoid allocating a new csum context descriptor; mainly to take
2710  * advantage of the pipeline effect of the TX data read request.
2711  *
2712  * This function returns number of TX descrptors allocated for
2713  * csum context.
2714  */
2715 static int
2716 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2717 	  uint32_t *txd_upper, uint32_t *txd_lower)
2718 {
2719 	struct e1000_context_desc *TXD;
2720 	struct em_buffer *tx_buffer;
2721 	struct ether_vlan_header *eh;
2722 	struct ip *ip;
2723 	int curr_txd, ehdrlen, csum_flags;
2724 	uint32_t cmd, hdr_len, ip_hlen;
2725 	uint16_t etype;
2726 
2727 	/*
2728 	 * Determine where frame payload starts.
2729 	 * Jump over vlan headers if already present,
2730 	 * helpful for QinQ too.
2731 	 */
2732 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2733 		("em_txcsum_pullup is not called (eh)?"));
2734 	eh = mtod(mp, struct ether_vlan_header *);
2735 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2736 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2737 			("em_txcsum_pullup is not called (evh)?"));
2738 		etype = ntohs(eh->evl_proto);
2739 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2740 	} else {
2741 		etype = ntohs(eh->evl_encap_proto);
2742 		ehdrlen = ETHER_HDR_LEN;
2743 	}
2744 
2745 	/*
2746 	 * We only support TCP/UDP for IPv4 for the moment.
2747 	 * TODO: Support SCTP too when it hits the tree.
2748 	 */
2749 	if (etype != ETHERTYPE_IP)
2750 		return 0;
2751 
2752 	KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2753 		("em_txcsum_pullup is not called (eh+ip_vhl)?"));
2754 
2755 	/* NOTE: We could only safely access ip.ip_vhl part */
2756 	ip = (struct ip *)(mp->m_data + ehdrlen);
2757 	ip_hlen = ip->ip_hl << 2;
2758 
2759 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2760 
2761 	if (adapter->csum_ehlen == ehdrlen &&
2762 	    adapter->csum_iphlen == ip_hlen &&
2763 	    adapter->csum_flags == csum_flags) {
2764 		/*
2765 		 * Same csum offload context as the previous packets;
2766 		 * just return.
2767 		 */
2768 		*txd_upper = adapter->csum_txd_upper;
2769 		*txd_lower = adapter->csum_txd_lower;
2770 		return 0;
2771 	}
2772 
2773 	/*
2774 	 * Setup a new csum offload context.
2775 	 */
2776 
2777 	curr_txd = adapter->next_avail_tx_desc;
2778 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2779 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2780 
2781 	cmd = 0;
2782 
2783 	/* Setup of IP header checksum. */
2784 	if (csum_flags & CSUM_IP) {
2785 		/*
2786 		 * Start offset for header checksum calculation.
2787 		 * End offset for header checksum calculation.
2788 		 * Offset of place to put the checksum.
2789 		 */
2790 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2791 		TXD->lower_setup.ip_fields.ipcse =
2792 		    htole16(ehdrlen + ip_hlen - 1);
2793 		TXD->lower_setup.ip_fields.ipcso =
2794 		    ehdrlen + offsetof(struct ip, ip_sum);
2795 		cmd |= E1000_TXD_CMD_IP;
2796 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2797 	}
2798 	hdr_len = ehdrlen + ip_hlen;
2799 
2800 	if (csum_flags & CSUM_TCP) {
2801 		/*
2802 		 * Start offset for payload checksum calculation.
2803 		 * End offset for payload checksum calculation.
2804 		 * Offset of place to put the checksum.
2805 		 */
2806 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2807 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2808 		TXD->upper_setup.tcp_fields.tucso =
2809 		    hdr_len + offsetof(struct tcphdr, th_sum);
2810 		cmd |= E1000_TXD_CMD_TCP;
2811 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2812 	} else if (csum_flags & CSUM_UDP) {
2813 		/*
2814 		 * Start offset for header checksum calculation.
2815 		 * End offset for header checksum calculation.
2816 		 * Offset of place to put the checksum.
2817 		 */
2818 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2819 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2820 		TXD->upper_setup.tcp_fields.tucso =
2821 		    hdr_len + offsetof(struct udphdr, uh_sum);
2822 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2823 	}
2824 
2825 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2826 		     E1000_TXD_DTYP_D;		/* Data descr */
2827 
2828 	/* Save the information for this csum offloading context */
2829 	adapter->csum_ehlen = ehdrlen;
2830 	adapter->csum_iphlen = ip_hlen;
2831 	adapter->csum_flags = csum_flags;
2832 	adapter->csum_txd_upper = *txd_upper;
2833 	adapter->csum_txd_lower = *txd_lower;
2834 
2835 	TXD->tcp_seg_setup.data = htole32(0);
2836 	TXD->cmd_and_length =
2837 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2838 
2839 	if (++curr_txd == adapter->num_tx_desc)
2840 		curr_txd = 0;
2841 
2842 	KKASSERT(adapter->num_tx_desc_avail > 0);
2843 	adapter->num_tx_desc_avail--;
2844 
2845 	adapter->next_avail_tx_desc = curr_txd;
2846 	return 1;
2847 }
2848 
2849 static int
2850 em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2851 {
2852 	struct mbuf *m = *m0;
2853 	struct ether_header *eh;
2854 	int len;
2855 
2856 	adapter->tx_csum_try_pullup++;
2857 
2858 	len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2859 
2860 	if (__predict_false(!M_WRITABLE(m))) {
2861 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2862 			adapter->tx_csum_drop1++;
2863 			m_freem(m);
2864 			*m0 = NULL;
2865 			return ENOBUFS;
2866 		}
2867 		eh = mtod(m, struct ether_header *);
2868 
2869 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2870 			len += EVL_ENCAPLEN;
2871 
2872 		if (m->m_len < len) {
2873 			adapter->tx_csum_drop2++;
2874 			m_freem(m);
2875 			*m0 = NULL;
2876 			return ENOBUFS;
2877 		}
2878 		return 0;
2879 	}
2880 
2881 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2882 		adapter->tx_csum_pullup1++;
2883 		m = m_pullup(m, ETHER_HDR_LEN);
2884 		if (m == NULL) {
2885 			adapter->tx_csum_pullup1_failed++;
2886 			*m0 = NULL;
2887 			return ENOBUFS;
2888 		}
2889 		*m0 = m;
2890 	}
2891 	eh = mtod(m, struct ether_header *);
2892 
2893 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2894 		len += EVL_ENCAPLEN;
2895 
2896 	if (m->m_len < len) {
2897 		adapter->tx_csum_pullup2++;
2898 		m = m_pullup(m, len);
2899 		if (m == NULL) {
2900 			adapter->tx_csum_pullup2_failed++;
2901 			*m0 = NULL;
2902 			return ENOBUFS;
2903 		}
2904 		*m0 = m;
2905 	}
2906 	return 0;
2907 }
2908 
2909 static void
2910 em_txeof(struct adapter *adapter)
2911 {
2912 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2913 	struct em_buffer *tx_buffer;
2914 	int first, num_avail;
2915 
2916 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2917 		return;
2918 
2919 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2920 		return;
2921 
2922 	num_avail = adapter->num_tx_desc_avail;
2923 	first = adapter->next_tx_to_clean;
2924 
2925 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2926 		struct e1000_tx_desc *tx_desc;
2927 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2928 
2929 		tx_desc = &adapter->tx_desc_base[dd_idx];
2930 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2931 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2932 
2933 			if (++dd_idx == adapter->num_tx_desc)
2934 				dd_idx = 0;
2935 
2936 			while (first != dd_idx) {
2937 				logif(pkt_txclean);
2938 
2939 				num_avail++;
2940 
2941 				tx_buffer = &adapter->tx_buffer_area[first];
2942 				if (tx_buffer->m_head) {
2943 					ifp->if_opackets++;
2944 					bus_dmamap_unload(adapter->txtag,
2945 							  tx_buffer->map);
2946 					m_freem(tx_buffer->m_head);
2947 					tx_buffer->m_head = NULL;
2948 				}
2949 
2950 				if (++first == adapter->num_tx_desc)
2951 					first = 0;
2952 			}
2953 		} else {
2954 			break;
2955 		}
2956 	}
2957 	adapter->next_tx_to_clean = first;
2958 	adapter->num_tx_desc_avail = num_avail;
2959 
2960 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2961 		adapter->tx_dd_head = 0;
2962 		adapter->tx_dd_tail = 0;
2963 	}
2964 
2965 	if (!EM_IS_OACTIVE(adapter)) {
2966 		ifp->if_flags &= ~IFF_OACTIVE;
2967 
2968 		/* All clean, turn off the timer */
2969 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2970 			ifp->if_timer = 0;
2971 	}
2972 }
2973 
2974 static void
2975 em_tx_collect(struct adapter *adapter)
2976 {
2977 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2978 	struct em_buffer *tx_buffer;
2979 	int tdh, first, num_avail, dd_idx = -1;
2980 
2981 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2982 		return;
2983 
2984 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2985 	if (tdh == adapter->next_tx_to_clean)
2986 		return;
2987 
2988 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2989 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2990 
2991 	num_avail = adapter->num_tx_desc_avail;
2992 	first = adapter->next_tx_to_clean;
2993 
2994 	while (first != tdh) {
2995 		logif(pkt_txclean);
2996 
2997 		num_avail++;
2998 
2999 		tx_buffer = &adapter->tx_buffer_area[first];
3000 		if (tx_buffer->m_head) {
3001 			ifp->if_opackets++;
3002 			bus_dmamap_unload(adapter->txtag,
3003 					  tx_buffer->map);
3004 			m_freem(tx_buffer->m_head);
3005 			tx_buffer->m_head = NULL;
3006 		}
3007 
3008 		if (first == dd_idx) {
3009 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3010 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3011 				adapter->tx_dd_head = 0;
3012 				adapter->tx_dd_tail = 0;
3013 				dd_idx = -1;
3014 			} else {
3015 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3016 			}
3017 		}
3018 
3019 		if (++first == adapter->num_tx_desc)
3020 			first = 0;
3021 	}
3022 	adapter->next_tx_to_clean = first;
3023 	adapter->num_tx_desc_avail = num_avail;
3024 
3025 	if (!EM_IS_OACTIVE(adapter)) {
3026 		ifp->if_flags &= ~IFF_OACTIVE;
3027 
3028 		/* All clean, turn off the timer */
3029 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3030 			ifp->if_timer = 0;
3031 	}
3032 }
3033 
3034 /*
3035  * When Link is lost sometimes there is work still in the TX ring
3036  * which will result in a watchdog, rather than allow that do an
3037  * attempted cleanup and then reinit here.  Note that this has been
3038  * seens mostly with fiber adapters.
3039  */
3040 static void
3041 em_tx_purge(struct adapter *adapter)
3042 {
3043 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3044 
3045 	if (!adapter->link_active && ifp->if_timer) {
3046 		em_tx_collect(adapter);
3047 		if (ifp->if_timer) {
3048 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3049 			ifp->if_timer = 0;
3050 			em_init(adapter);
3051 		}
3052 	}
3053 }
3054 
3055 static int
3056 em_newbuf(struct adapter *adapter, int i, int init)
3057 {
3058 	struct mbuf *m;
3059 	bus_dma_segment_t seg;
3060 	bus_dmamap_t map;
3061 	struct em_buffer *rx_buffer;
3062 	int error, nseg;
3063 
3064 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3065 	if (m == NULL) {
3066 		adapter->mbuf_cluster_failed++;
3067 		if (init) {
3068 			if_printf(&adapter->arpcom.ac_if,
3069 				  "Unable to allocate RX mbuf\n");
3070 		}
3071 		return (ENOBUFS);
3072 	}
3073 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3074 
3075 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3076 		m_adj(m, ETHER_ALIGN);
3077 
3078 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3079 			adapter->rx_sparemap, m,
3080 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3081 	if (error) {
3082 		m_freem(m);
3083 		if (init) {
3084 			if_printf(&adapter->arpcom.ac_if,
3085 				  "Unable to load RX mbuf\n");
3086 		}
3087 		return (error);
3088 	}
3089 
3090 	rx_buffer = &adapter->rx_buffer_area[i];
3091 	if (rx_buffer->m_head != NULL)
3092 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3093 
3094 	map = rx_buffer->map;
3095 	rx_buffer->map = adapter->rx_sparemap;
3096 	adapter->rx_sparemap = map;
3097 
3098 	rx_buffer->m_head = m;
3099 
3100 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3101 	return (0);
3102 }
3103 
3104 static int
3105 em_create_rx_ring(struct adapter *adapter)
3106 {
3107 	device_t dev = adapter->dev;
3108 	struct em_buffer *rx_buffer;
3109 	int i, error;
3110 
3111 	adapter->rx_buffer_area =
3112 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3113 			M_DEVBUF, M_WAITOK | M_ZERO);
3114 
3115 	/*
3116 	 * Create DMA tag for rx buffers
3117 	 */
3118 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3119 			1, 0,			/* alignment, bounds */
3120 			BUS_SPACE_MAXADDR,	/* lowaddr */
3121 			BUS_SPACE_MAXADDR,	/* highaddr */
3122 			NULL, NULL,		/* filter, filterarg */
3123 			MCLBYTES,		/* maxsize */
3124 			1,			/* nsegments */
3125 			MCLBYTES,		/* maxsegsize */
3126 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3127 			&adapter->rxtag);
3128 	if (error) {
3129 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3130 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3131 		adapter->rx_buffer_area = NULL;
3132 		return error;
3133 	}
3134 
3135 	/*
3136 	 * Create spare DMA map for rx buffers
3137 	 */
3138 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3139 				  &adapter->rx_sparemap);
3140 	if (error) {
3141 		device_printf(dev, "Unable to create spare RX DMA map\n");
3142 		bus_dma_tag_destroy(adapter->rxtag);
3143 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3144 		adapter->rx_buffer_area = NULL;
3145 		return error;
3146 	}
3147 
3148 	/*
3149 	 * Create DMA maps for rx buffers
3150 	 */
3151 	for (i = 0; i < adapter->num_rx_desc; i++) {
3152 		rx_buffer = &adapter->rx_buffer_area[i];
3153 
3154 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3155 					  &rx_buffer->map);
3156 		if (error) {
3157 			device_printf(dev, "Unable to create RX DMA map\n");
3158 			em_destroy_rx_ring(adapter, i);
3159 			return error;
3160 		}
3161 	}
3162 	return (0);
3163 }
3164 
3165 static int
3166 em_init_rx_ring(struct adapter *adapter)
3167 {
3168 	int i, error;
3169 
3170 	/* Reset descriptor ring */
3171 	bzero(adapter->rx_desc_base,
3172 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3173 
3174 	/* Allocate new ones. */
3175 	for (i = 0; i < adapter->num_rx_desc; i++) {
3176 		error = em_newbuf(adapter, i, 1);
3177 		if (error)
3178 			return (error);
3179 	}
3180 
3181 	/* Setup our descriptor pointers */
3182 	adapter->next_rx_desc_to_check = 0;
3183 
3184 	return (0);
3185 }
3186 
3187 static void
3188 em_init_rx_unit(struct adapter *adapter)
3189 {
3190 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3191 	uint64_t bus_addr;
3192 	uint32_t rctl;
3193 
3194 	/*
3195 	 * Make sure receives are disabled while setting
3196 	 * up the descriptor ring
3197 	 */
3198 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3199 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3200 
3201 	if (adapter->hw.mac.type >= e1000_82540) {
3202 		uint32_t itr;
3203 
3204 		/*
3205 		 * Set the interrupt throttling rate. Value is calculated
3206 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3207 		 */
3208 		if (adapter->int_throttle_ceil)
3209 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3210 		else
3211 			itr = 0;
3212 		em_set_itr(adapter, itr);
3213 	}
3214 
3215 	/* Disable accelerated ackknowledge */
3216 	if (adapter->hw.mac.type == e1000_82574) {
3217 		E1000_WRITE_REG(&adapter->hw,
3218 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3219 	}
3220 
3221 	/* Receive Checksum Offload for TCP and UDP */
3222 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3223 		uint32_t rxcsum;
3224 
3225 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3226 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3227 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3228 	}
3229 
3230 	/*
3231 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3232 	 * long latencies are observed, like Lenovo X60. This
3233 	 * change eliminates the problem, but since having positive
3234 	 * values in RDTR is a known source of problems on other
3235 	 * platforms another solution is being sought.
3236 	 */
3237 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3238 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3239 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3240 	}
3241 
3242 	/*
3243 	 * Setup the Base and Length of the Rx Descriptor Ring
3244 	 */
3245 	bus_addr = adapter->rxdma.dma_paddr;
3246 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3247 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3248 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3249 	    (uint32_t)(bus_addr >> 32));
3250 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3251 	    (uint32_t)bus_addr);
3252 
3253 	/*
3254 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3255 	 */
3256 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3257 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3258 
3259 	/* Set early receive threshold on appropriate hw */
3260 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3261 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3262 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3263 	    (ifp->if_mtu > ETHERMTU)) {
3264 		uint32_t rxdctl;
3265 
3266 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3267 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3268 		E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3269 	}
3270 
3271 	if (adapter->hw.mac.type == e1000_pch2lan) {
3272 		if (ifp->if_mtu > ETHERMTU)
3273 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3274 		else
3275 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3276 	}
3277 
3278 	/* Setup the Receive Control Register */
3279 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3280 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3281 		E1000_RCTL_RDMTS_HALF |
3282 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3283 
3284 	/* Make sure VLAN Filters are off */
3285 	rctl &= ~E1000_RCTL_VFE;
3286 
3287 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3288 		rctl |= E1000_RCTL_SBP;
3289 	else
3290 		rctl &= ~E1000_RCTL_SBP;
3291 
3292 	switch (adapter->rx_buffer_len) {
3293 	default:
3294 	case 2048:
3295 		rctl |= E1000_RCTL_SZ_2048;
3296 		break;
3297 
3298 	case 4096:
3299 		rctl |= E1000_RCTL_SZ_4096 |
3300 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3301 		break;
3302 
3303 	case 8192:
3304 		rctl |= E1000_RCTL_SZ_8192 |
3305 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3306 		break;
3307 
3308 	case 16384:
3309 		rctl |= E1000_RCTL_SZ_16384 |
3310 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3311 		break;
3312 	}
3313 
3314 	if (ifp->if_mtu > ETHERMTU)
3315 		rctl |= E1000_RCTL_LPE;
3316 	else
3317 		rctl &= ~E1000_RCTL_LPE;
3318 
3319 	/* Enable Receives */
3320 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3321 }
3322 
3323 static void
3324 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3325 {
3326 	struct em_buffer *rx_buffer;
3327 	int i;
3328 
3329 	if (adapter->rx_buffer_area == NULL)
3330 		return;
3331 
3332 	for (i = 0; i < ndesc; i++) {
3333 		rx_buffer = &adapter->rx_buffer_area[i];
3334 
3335 		KKASSERT(rx_buffer->m_head == NULL);
3336 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3337 	}
3338 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3339 	bus_dma_tag_destroy(adapter->rxtag);
3340 
3341 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3342 	adapter->rx_buffer_area = NULL;
3343 }
3344 
3345 static void
3346 em_rxeof(struct adapter *adapter, int count)
3347 {
3348 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3349 	uint8_t status, accept_frame = 0, eop = 0;
3350 	uint16_t len, desc_len, prev_len_adj;
3351 	struct e1000_rx_desc *current_desc;
3352 	struct mbuf *mp;
3353 	int i;
3354 
3355 	i = adapter->next_rx_desc_to_check;
3356 	current_desc = &adapter->rx_desc_base[i];
3357 
3358 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3359 		return;
3360 
3361 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3362 		struct mbuf *m = NULL;
3363 
3364 		logif(pkt_receive);
3365 
3366 		mp = adapter->rx_buffer_area[i].m_head;
3367 
3368 		/*
3369 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3370 		 * needs to access the last received byte in the mbuf.
3371 		 */
3372 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3373 				BUS_DMASYNC_POSTREAD);
3374 
3375 		accept_frame = 1;
3376 		prev_len_adj = 0;
3377 		desc_len = le16toh(current_desc->length);
3378 		status = current_desc->status;
3379 		if (status & E1000_RXD_STAT_EOP) {
3380 			count--;
3381 			eop = 1;
3382 			if (desc_len < ETHER_CRC_LEN) {
3383 				len = 0;
3384 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3385 			} else {
3386 				len = desc_len - ETHER_CRC_LEN;
3387 			}
3388 		} else {
3389 			eop = 0;
3390 			len = desc_len;
3391 		}
3392 
3393 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3394 			uint8_t	last_byte;
3395 			uint32_t pkt_len = desc_len;
3396 
3397 			if (adapter->fmp != NULL)
3398 				pkt_len += adapter->fmp->m_pkthdr.len;
3399 
3400 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3401 			if (TBI_ACCEPT(&adapter->hw, status,
3402 			    current_desc->errors, pkt_len, last_byte,
3403 			    adapter->min_frame_size, adapter->max_frame_size)) {
3404 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3405 				    &adapter->stats, pkt_len,
3406 				    adapter->hw.mac.addr,
3407 				    adapter->max_frame_size);
3408 				if (len > 0)
3409 					len--;
3410 			} else {
3411 				accept_frame = 0;
3412 			}
3413 		}
3414 
3415 		if (accept_frame) {
3416 			if (em_newbuf(adapter, i, 0) != 0) {
3417 				ifp->if_iqdrops++;
3418 				goto discard;
3419 			}
3420 
3421 			/* Assign correct length to the current fragment */
3422 			mp->m_len = len;
3423 
3424 			if (adapter->fmp == NULL) {
3425 				mp->m_pkthdr.len = len;
3426 				adapter->fmp = mp; /* Store the first mbuf */
3427 				adapter->lmp = mp;
3428 			} else {
3429 				/*
3430 				 * Chain mbuf's together
3431 				 */
3432 
3433 				/*
3434 				 * Adjust length of previous mbuf in chain if
3435 				 * we received less than 4 bytes in the last
3436 				 * descriptor.
3437 				 */
3438 				if (prev_len_adj > 0) {
3439 					adapter->lmp->m_len -= prev_len_adj;
3440 					adapter->fmp->m_pkthdr.len -=
3441 					    prev_len_adj;
3442 				}
3443 				adapter->lmp->m_next = mp;
3444 				adapter->lmp = adapter->lmp->m_next;
3445 				adapter->fmp->m_pkthdr.len += len;
3446 			}
3447 
3448 			if (eop) {
3449 				adapter->fmp->m_pkthdr.rcvif = ifp;
3450 				ifp->if_ipackets++;
3451 
3452 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3453 					em_rxcsum(adapter, current_desc,
3454 						  adapter->fmp);
3455 				}
3456 
3457 				if (status & E1000_RXD_STAT_VP) {
3458 					adapter->fmp->m_pkthdr.ether_vlantag =
3459 					    (le16toh(current_desc->special) &
3460 					    E1000_RXD_SPC_VLAN_MASK);
3461 					adapter->fmp->m_flags |= M_VLANTAG;
3462 				}
3463 				m = adapter->fmp;
3464 				adapter->fmp = NULL;
3465 				adapter->lmp = NULL;
3466 			}
3467 		} else {
3468 			ifp->if_ierrors++;
3469 discard:
3470 #ifdef foo
3471 			/* Reuse loaded DMA map and just update mbuf chain */
3472 			mp = adapter->rx_buffer_area[i].m_head;
3473 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3474 			mp->m_data = mp->m_ext.ext_buf;
3475 			mp->m_next = NULL;
3476 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3477 				m_adj(mp, ETHER_ALIGN);
3478 #endif
3479 			if (adapter->fmp != NULL) {
3480 				m_freem(adapter->fmp);
3481 				adapter->fmp = NULL;
3482 				adapter->lmp = NULL;
3483 			}
3484 			m = NULL;
3485 		}
3486 
3487 		/* Zero out the receive descriptors status. */
3488 		current_desc->status = 0;
3489 
3490 		if (m != NULL)
3491 			ifp->if_input(ifp, m);
3492 
3493 		/* Advance our pointers to the next descriptor. */
3494 		if (++i == adapter->num_rx_desc)
3495 			i = 0;
3496 		current_desc = &adapter->rx_desc_base[i];
3497 	}
3498 	adapter->next_rx_desc_to_check = i;
3499 
3500 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3501 	if (--i < 0)
3502 		i = adapter->num_rx_desc - 1;
3503 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3504 }
3505 
3506 static void
3507 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3508 	  struct mbuf *mp)
3509 {
3510 	/* 82543 or newer only */
3511 	if (adapter->hw.mac.type < e1000_82543 ||
3512 	    /* Ignore Checksum bit is set */
3513 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3514 		return;
3515 
3516 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3517 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3518 		/* IP Checksum Good */
3519 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3520 	}
3521 
3522 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3523 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3524 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3525 					   CSUM_PSEUDO_HDR |
3526 					   CSUM_FRAG_NOT_CHECKED;
3527 		mp->m_pkthdr.csum_data = htons(0xffff);
3528 	}
3529 }
3530 
3531 static void
3532 em_enable_intr(struct adapter *adapter)
3533 {
3534 	uint32_t ims_mask = IMS_ENABLE_MASK;
3535 
3536 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3537 
3538 #if 0
3539 	/* XXX MSIX */
3540 	if (adapter->hw.mac.type == e1000_82574) {
3541 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3542 		ims_mask |= EM_MSIX_MASK;
3543         }
3544 #endif
3545 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3546 }
3547 
3548 static void
3549 em_disable_intr(struct adapter *adapter)
3550 {
3551 	uint32_t clear = 0xffffffff;
3552 
3553 	/*
3554 	 * The first version of 82542 had an errata where when link was forced
3555 	 * it would stay up even up even if the cable was disconnected.
3556 	 * Sequence errors were used to detect the disconnect and then the
3557 	 * driver would unforce the link.  This code in the in the ISR.  For
3558 	 * this to work correctly the Sequence error interrupt had to be
3559 	 * enabled all the time.
3560 	 */
3561 	if (adapter->hw.mac.type == e1000_82542 &&
3562 	    adapter->hw.revision_id == E1000_REVISION_2)
3563 		clear &= ~E1000_ICR_RXSEQ;
3564 	else if (adapter->hw.mac.type == e1000_82574)
3565 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3566 
3567 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3568 
3569 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3570 }
3571 
3572 /*
3573  * Bit of a misnomer, what this really means is
3574  * to enable OS management of the system... aka
3575  * to disable special hardware management features
3576  */
3577 static void
3578 em_get_mgmt(struct adapter *adapter)
3579 {
3580 	/* A shared code workaround */
3581 #define E1000_82542_MANC2H E1000_MANC2H
3582 	if (adapter->has_manage) {
3583 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3584 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3585 
3586 		/* disable hardware interception of ARP */
3587 		manc &= ~(E1000_MANC_ARP_EN);
3588 
3589                 /* enable receiving management packets to the host */
3590                 if (adapter->hw.mac.type >= e1000_82571) {
3591 			manc |= E1000_MANC_EN_MNG2HOST;
3592 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3593 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3594 			manc2h |= E1000_MNG2HOST_PORT_623;
3595 			manc2h |= E1000_MNG2HOST_PORT_664;
3596 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3597 		}
3598 
3599 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3600 	}
3601 }
3602 
3603 /*
3604  * Give control back to hardware management
3605  * controller if there is one.
3606  */
3607 static void
3608 em_rel_mgmt(struct adapter *adapter)
3609 {
3610 	if (adapter->has_manage) {
3611 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3612 
3613 		/* re-enable hardware interception of ARP */
3614 		manc |= E1000_MANC_ARP_EN;
3615 
3616 		if (adapter->hw.mac.type >= e1000_82571)
3617 			manc &= ~E1000_MANC_EN_MNG2HOST;
3618 
3619 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3620 	}
3621 }
3622 
3623 /*
3624  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3625  * For ASF and Pass Through versions of f/w this means that
3626  * the driver is loaded.  For AMT version (only with 82573)
3627  * of the f/w this means that the network i/f is open.
3628  */
3629 static void
3630 em_get_hw_control(struct adapter *adapter)
3631 {
3632 	/* Let firmware know the driver has taken over */
3633 	if (adapter->hw.mac.type == e1000_82573) {
3634 		uint32_t swsm;
3635 
3636 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3637 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3638 		    swsm | E1000_SWSM_DRV_LOAD);
3639 	} else {
3640 		uint32_t ctrl_ext;
3641 
3642 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3643 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3644 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3645 	}
3646 	adapter->control_hw = 1;
3647 }
3648 
3649 /*
3650  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3651  * For ASF and Pass Through versions of f/w this means that the
3652  * driver is no longer loaded.  For AMT version (only with 82573)
3653  * of the f/w this means that the network i/f is closed.
3654  */
3655 static void
3656 em_rel_hw_control(struct adapter *adapter)
3657 {
3658 	if (!adapter->control_hw)
3659 		return;
3660 	adapter->control_hw = 0;
3661 
3662 	/* Let firmware taken over control of h/w */
3663 	if (adapter->hw.mac.type == e1000_82573) {
3664 		uint32_t swsm;
3665 
3666 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3667 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3668 		    swsm & ~E1000_SWSM_DRV_LOAD);
3669 	} else {
3670 		uint32_t ctrl_ext;
3671 
3672 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3673 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3674 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3675 	}
3676 }
3677 
3678 static int
3679 em_is_valid_eaddr(const uint8_t *addr)
3680 {
3681 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3682 
3683 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3684 		return (FALSE);
3685 
3686 	return (TRUE);
3687 }
3688 
3689 /*
3690  * Enable PCI Wake On Lan capability
3691  */
3692 void
3693 em_enable_wol(device_t dev)
3694 {
3695 	uint16_t cap, status;
3696 	uint8_t id;
3697 
3698 	/* First find the capabilities pointer*/
3699 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3700 
3701 	/* Read the PM Capabilities */
3702 	id = pci_read_config(dev, cap, 1);
3703 	if (id != PCIY_PMG)     /* Something wrong */
3704 		return;
3705 
3706 	/*
3707 	 * OK, we have the power capabilities,
3708 	 * so now get the status register
3709 	 */
3710 	cap += PCIR_POWER_STATUS;
3711 	status = pci_read_config(dev, cap, 2);
3712 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3713 	pci_write_config(dev, cap, status, 2);
3714 }
3715 
3716 
3717 /*
3718  * 82544 Coexistence issue workaround.
3719  *    There are 2 issues.
3720  *       1. Transmit Hang issue.
3721  *    To detect this issue, following equation can be used...
3722  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3723  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3724  *
3725  *       2. DAC issue.
3726  *    To detect this issue, following equation can be used...
3727  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3728  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3729  *
3730  *    WORKAROUND:
3731  *	  Make sure we do not have ending address
3732  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3733  */
3734 static uint32_t
3735 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3736 {
3737 	uint32_t safe_terminator;
3738 
3739 	/*
3740 	 * Since issue is sensitive to length and address.
3741 	 * Let us first check the address...
3742 	 */
3743 	if (length <= 4) {
3744 		desc_array->descriptor[0].address = address;
3745 		desc_array->descriptor[0].length = length;
3746 		desc_array->elements = 1;
3747 		return (desc_array->elements);
3748 	}
3749 
3750 	safe_terminator =
3751 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3752 
3753 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3754 	if (safe_terminator == 0 ||
3755 	    (safe_terminator > 4 && safe_terminator < 9) ||
3756 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3757 		desc_array->descriptor[0].address = address;
3758 		desc_array->descriptor[0].length = length;
3759 		desc_array->elements = 1;
3760 		return (desc_array->elements);
3761 	}
3762 
3763 	desc_array->descriptor[0].address = address;
3764 	desc_array->descriptor[0].length = length - 4;
3765 	desc_array->descriptor[1].address = address + (length - 4);
3766 	desc_array->descriptor[1].length = 4;
3767 	desc_array->elements = 2;
3768 	return (desc_array->elements);
3769 }
3770 
3771 static void
3772 em_update_stats(struct adapter *adapter)
3773 {
3774 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3775 
3776 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3777 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3778 		adapter->stats.symerrs +=
3779 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3780 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3781 	}
3782 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3783 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3784 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3785 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3786 
3787 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3788 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3789 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3790 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3791 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3792 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3793 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3794 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3795 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3796 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3797 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3798 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3799 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3800 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3801 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3802 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3803 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3804 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3805 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3806 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3807 
3808 	/* For the 64-bit byte counters the low dword must be read first. */
3809 	/* Both registers clear on the read of the high dword */
3810 
3811 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3812 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3813 
3814 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3815 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3816 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3817 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3818 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3819 
3820 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3821 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3822 
3823 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3824 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3825 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3826 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3827 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3828 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3829 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3830 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3831 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3832 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3833 
3834 	if (adapter->hw.mac.type >= e1000_82543) {
3835 		adapter->stats.algnerrc +=
3836 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3837 		adapter->stats.rxerrc +=
3838 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3839 		adapter->stats.tncrs +=
3840 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3841 		adapter->stats.cexterr +=
3842 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3843 		adapter->stats.tsctc +=
3844 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3845 		adapter->stats.tsctfc +=
3846 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3847 	}
3848 
3849 	ifp->if_collisions = adapter->stats.colc;
3850 
3851 	/* Rx Errors */
3852 	ifp->if_ierrors =
3853 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3854 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3855 	    adapter->stats.ruc + adapter->stats.roc +
3856 	    adapter->stats.mpc + adapter->stats.cexterr;
3857 
3858 	/* Tx Errors */
3859 	ifp->if_oerrors =
3860 	    adapter->stats.ecol + adapter->stats.latecol +
3861 	    adapter->watchdog_events;
3862 }
3863 
3864 static void
3865 em_print_debug_info(struct adapter *adapter)
3866 {
3867 	device_t dev = adapter->dev;
3868 	uint8_t *hw_addr = adapter->hw.hw_addr;
3869 
3870 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3871 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3872 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3873 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3874 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3875 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3876 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3877 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3878 	    adapter->hw.fc.high_water,
3879 	    adapter->hw.fc.low_water);
3880 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3881 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3882 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3883 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3884 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3885 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3886 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3887 	    (long long)adapter->tx_fifo_wrk_cnt,
3888 	    (long long)adapter->tx_fifo_reset_cnt);
3889 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3890 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3891 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3892 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3893 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3894 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3895 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3896 	    adapter->num_tx_desc_avail);
3897 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3898 	    adapter->no_tx_desc_avail1);
3899 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3900 	    adapter->no_tx_desc_avail2);
3901 	device_printf(dev, "Std mbuf failed = %ld\n",
3902 	    adapter->mbuf_alloc_failed);
3903 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3904 	    adapter->mbuf_cluster_failed);
3905 	device_printf(dev, "Driver dropped packets = %ld\n",
3906 	    adapter->dropped_pkts);
3907 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3908 	    adapter->no_tx_dma_setup);
3909 
3910 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3911 	    adapter->tx_csum_try_pullup);
3912 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3913 	    adapter->tx_csum_pullup1);
3914 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3915 	    adapter->tx_csum_pullup1_failed);
3916 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3917 	    adapter->tx_csum_pullup2);
3918 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3919 	    adapter->tx_csum_pullup2_failed);
3920 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3921 	    adapter->tx_csum_drop1);
3922 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3923 	    adapter->tx_csum_drop2);
3924 }
3925 
3926 static void
3927 em_print_hw_stats(struct adapter *adapter)
3928 {
3929 	device_t dev = adapter->dev;
3930 
3931 	device_printf(dev, "Excessive collisions = %lld\n",
3932 	    (long long)adapter->stats.ecol);
3933 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3934 	device_printf(dev, "Symbol errors = %lld\n",
3935 	    (long long)adapter->stats.symerrs);
3936 #endif
3937 	device_printf(dev, "Sequence errors = %lld\n",
3938 	    (long long)adapter->stats.sec);
3939 	device_printf(dev, "Defer count = %lld\n",
3940 	    (long long)adapter->stats.dc);
3941 	device_printf(dev, "Missed Packets = %lld\n",
3942 	    (long long)adapter->stats.mpc);
3943 	device_printf(dev, "Receive No Buffers = %lld\n",
3944 	    (long long)adapter->stats.rnbc);
3945 	/* RLEC is inaccurate on some hardware, calculate our own. */
3946 	device_printf(dev, "Receive Length Errors = %lld\n",
3947 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3948 	device_printf(dev, "Receive errors = %lld\n",
3949 	    (long long)adapter->stats.rxerrc);
3950 	device_printf(dev, "Crc errors = %lld\n",
3951 	    (long long)adapter->stats.crcerrs);
3952 	device_printf(dev, "Alignment errors = %lld\n",
3953 	    (long long)adapter->stats.algnerrc);
3954 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3955 	    (long long)adapter->stats.cexterr);
3956 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3957 	device_printf(dev, "watchdog timeouts = %ld\n",
3958 	    adapter->watchdog_events);
3959 	device_printf(dev, "XON Rcvd = %lld\n",
3960 	    (long long)adapter->stats.xonrxc);
3961 	device_printf(dev, "XON Xmtd = %lld\n",
3962 	    (long long)adapter->stats.xontxc);
3963 	device_printf(dev, "XOFF Rcvd = %lld\n",
3964 	    (long long)adapter->stats.xoffrxc);
3965 	device_printf(dev, "XOFF Xmtd = %lld\n",
3966 	    (long long)adapter->stats.xofftxc);
3967 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3968 	    (long long)adapter->stats.gprc);
3969 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3970 	    (long long)adapter->stats.gptc);
3971 }
3972 
3973 static void
3974 em_print_nvm_info(struct adapter *adapter)
3975 {
3976 	uint16_t eeprom_data;
3977 	int i, j, row = 0;
3978 
3979 	/* Its a bit crude, but it gets the job done */
3980 	kprintf("\nInterface EEPROM Dump:\n");
3981 	kprintf("Offset\n0x0000  ");
3982 	for (i = 0, j = 0; i < 32; i++, j++) {
3983 		if (j == 8) { /* Make the offset block */
3984 			j = 0; ++row;
3985 			kprintf("\n0x00%x0  ",row);
3986 		}
3987 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3988 		kprintf("%04x ", eeprom_data);
3989 	}
3990 	kprintf("\n");
3991 }
3992 
3993 static int
3994 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3995 {
3996 	struct adapter *adapter;
3997 	struct ifnet *ifp;
3998 	int error, result;
3999 
4000 	result = -1;
4001 	error = sysctl_handle_int(oidp, &result, 0, req);
4002 	if (error || !req->newptr)
4003 		return (error);
4004 
4005 	adapter = (struct adapter *)arg1;
4006 	ifp = &adapter->arpcom.ac_if;
4007 
4008 	lwkt_serialize_enter(ifp->if_serializer);
4009 
4010 	if (result == 1)
4011 		em_print_debug_info(adapter);
4012 
4013 	/*
4014 	 * This value will cause a hex dump of the
4015 	 * first 32 16-bit words of the EEPROM to
4016 	 * the screen.
4017 	 */
4018 	if (result == 2)
4019 		em_print_nvm_info(adapter);
4020 
4021 	lwkt_serialize_exit(ifp->if_serializer);
4022 
4023 	return (error);
4024 }
4025 
4026 static int
4027 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4028 {
4029 	int error, result;
4030 
4031 	result = -1;
4032 	error = sysctl_handle_int(oidp, &result, 0, req);
4033 	if (error || !req->newptr)
4034 		return (error);
4035 
4036 	if (result == 1) {
4037 		struct adapter *adapter = (struct adapter *)arg1;
4038 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4039 
4040 		lwkt_serialize_enter(ifp->if_serializer);
4041 		em_print_hw_stats(adapter);
4042 		lwkt_serialize_exit(ifp->if_serializer);
4043 	}
4044 	return (error);
4045 }
4046 
4047 static void
4048 em_add_sysctl(struct adapter *adapter)
4049 {
4050 	sysctl_ctx_init(&adapter->sysctl_ctx);
4051 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4052 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4053 					device_get_nameunit(adapter->dev),
4054 					CTLFLAG_RD, 0, "");
4055 	if (adapter->sysctl_tree == NULL) {
4056 		device_printf(adapter->dev, "can't add sysctl node\n");
4057 	} else {
4058 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4059 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4060 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4061 		    em_sysctl_debug_info, "I", "Debug Information");
4062 
4063 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4064 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4065 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4066 		    em_sysctl_stats, "I", "Statistics");
4067 
4068 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4069 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4070 		    OID_AUTO, "rxd", CTLFLAG_RD,
4071 		    &adapter->num_rx_desc, 0, NULL);
4072 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4073 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4074 		    OID_AUTO, "txd", CTLFLAG_RD,
4075 		    &adapter->num_tx_desc, 0, NULL);
4076 
4077 		if (adapter->hw.mac.type >= e1000_82540) {
4078 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4079 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4080 			    OID_AUTO, "int_throttle_ceil",
4081 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4082 			    em_sysctl_int_throttle, "I",
4083 			    "interrupt throttling rate");
4084 		}
4085 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4086 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4087 		    OID_AUTO, "int_tx_nsegs",
4088 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4089 		    em_sysctl_int_tx_nsegs, "I",
4090 		    "# segments per TX interrupt");
4091 	}
4092 }
4093 
4094 static int
4095 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4096 {
4097 	struct adapter *adapter = (void *)arg1;
4098 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4099 	int error, throttle;
4100 
4101 	throttle = adapter->int_throttle_ceil;
4102 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4103 	if (error || req->newptr == NULL)
4104 		return error;
4105 	if (throttle < 0 || throttle > 1000000000 / 256)
4106 		return EINVAL;
4107 
4108 	if (throttle) {
4109 		/*
4110 		 * Set the interrupt throttling rate in 256ns increments,
4111 		 * recalculate sysctl value assignment to get exact frequency.
4112 		 */
4113 		throttle = 1000000000 / 256 / throttle;
4114 
4115 		/* Upper 16bits of ITR is reserved and should be zero */
4116 		if (throttle & 0xffff0000)
4117 			return EINVAL;
4118 	}
4119 
4120 	lwkt_serialize_enter(ifp->if_serializer);
4121 
4122 	if (throttle)
4123 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4124 	else
4125 		adapter->int_throttle_ceil = 0;
4126 
4127 	if (ifp->if_flags & IFF_RUNNING)
4128 		em_set_itr(adapter, throttle);
4129 
4130 	lwkt_serialize_exit(ifp->if_serializer);
4131 
4132 	if (bootverbose) {
4133 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4134 			  adapter->int_throttle_ceil);
4135 	}
4136 	return 0;
4137 }
4138 
4139 static int
4140 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4141 {
4142 	struct adapter *adapter = (void *)arg1;
4143 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4144 	int error, segs;
4145 
4146 	segs = adapter->tx_int_nsegs;
4147 	error = sysctl_handle_int(oidp, &segs, 0, req);
4148 	if (error || req->newptr == NULL)
4149 		return error;
4150 	if (segs <= 0)
4151 		return EINVAL;
4152 
4153 	lwkt_serialize_enter(ifp->if_serializer);
4154 
4155 	/*
4156 	 * Don't allow int_tx_nsegs to become:
4157 	 * o  Less the oact_tx_desc
4158 	 * o  Too large that no TX desc will cause TX interrupt to
4159 	 *    be generated (OACTIVE will never recover)
4160 	 * o  Too small that will cause tx_dd[] overflow
4161 	 */
4162 	if (segs < adapter->oact_tx_desc ||
4163 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4164 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4165 		error = EINVAL;
4166 	} else {
4167 		error = 0;
4168 		adapter->tx_int_nsegs = segs;
4169 	}
4170 
4171 	lwkt_serialize_exit(ifp->if_serializer);
4172 
4173 	return error;
4174 }
4175 
4176 static void
4177 em_set_itr(struct adapter *adapter, uint32_t itr)
4178 {
4179 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4180 	if (adapter->hw.mac.type == e1000_82574) {
4181 		int i;
4182 
4183 		/*
4184 		 * When using MSIX interrupts we need to
4185 		 * throttle using the EITR register
4186 		 */
4187 		for (i = 0; i < 4; ++i) {
4188 			E1000_WRITE_REG(&adapter->hw,
4189 			    E1000_EITR_82574(i), itr);
4190 		}
4191 	}
4192 }
4193 
4194 static void
4195 em_disable_aspm(struct adapter *adapter)
4196 {
4197 	uint16_t link_cap, link_ctrl, disable;
4198 	uint8_t pcie_ptr, reg;
4199 	device_t dev = adapter->dev;
4200 
4201 	switch (adapter->hw.mac.type) {
4202 	case e1000_82571:
4203 	case e1000_82572:
4204 	case e1000_82573:
4205 		/*
4206 		 * 82573 specification update
4207 		 * errata #8 disable L0s
4208 		 * errata #41 disable L1
4209 		 *
4210 		 * 82571/82572 specification update
4211 		 # errata #13 disable L1
4212 		 * errata #68 disable L0s
4213 		 */
4214 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4215 		break;
4216 
4217 	case e1000_82574:
4218 	case e1000_82583:
4219 		/*
4220 		 * 82574 specification update errata #20
4221 		 * 82583 specification update errata #9
4222 		 *
4223 		 * There is no need to disable L1
4224 		 */
4225 		disable = PCIEM_LNKCTL_ASPM_L0S;
4226 		break;
4227 
4228 	default:
4229 		return;
4230 	}
4231 
4232 	pcie_ptr = pci_get_pciecap_ptr(dev);
4233 	if (pcie_ptr == 0)
4234 		return;
4235 
4236 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4237 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4238 		return;
4239 
4240 	if (bootverbose) {
4241 		if_printf(&adapter->arpcom.ac_if,
4242 		    "disable ASPM %#02x\n", disable);
4243 	}
4244 
4245 	reg = pcie_ptr + PCIER_LINKCTRL;
4246 	link_ctrl = pci_read_config(dev, reg, 2);
4247 	link_ctrl &= ~disable;
4248 	pci_write_config(dev, reg, link_ctrl, 2);
4249 }
4250