xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision f1e3af6c0d9fb009456c1ad7a10c323acbf7022f)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
115 
116 #define DEBUG_HW 0
117 
118 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
119 #define EM_VER	" 7.3.4"
120 
121 #define _EM_DEVICE(id, ret)	\
122 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
124 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
126 
127 static const struct em_vendor_info em_vendor_info_array[] = {
128 	EM_DEVICE(82540EM),
129 	EM_DEVICE(82540EM_LOM),
130 	EM_DEVICE(82540EP),
131 	EM_DEVICE(82540EP_LOM),
132 	EM_DEVICE(82540EP_LP),
133 
134 	EM_DEVICE(82541EI),
135 	EM_DEVICE(82541ER),
136 	EM_DEVICE(82541ER_LOM),
137 	EM_DEVICE(82541EI_MOBILE),
138 	EM_DEVICE(82541GI),
139 	EM_DEVICE(82541GI_LF),
140 	EM_DEVICE(82541GI_MOBILE),
141 
142 	EM_DEVICE(82542),
143 
144 	EM_DEVICE(82543GC_FIBER),
145 	EM_DEVICE(82543GC_COPPER),
146 
147 	EM_DEVICE(82544EI_COPPER),
148 	EM_DEVICE(82544EI_FIBER),
149 	EM_DEVICE(82544GC_COPPER),
150 	EM_DEVICE(82544GC_LOM),
151 
152 	EM_DEVICE(82545EM_COPPER),
153 	EM_DEVICE(82545EM_FIBER),
154 	EM_DEVICE(82545GM_COPPER),
155 	EM_DEVICE(82545GM_FIBER),
156 	EM_DEVICE(82545GM_SERDES),
157 
158 	EM_DEVICE(82546EB_COPPER),
159 	EM_DEVICE(82546EB_FIBER),
160 	EM_DEVICE(82546EB_QUAD_COPPER),
161 	EM_DEVICE(82546GB_COPPER),
162 	EM_DEVICE(82546GB_FIBER),
163 	EM_DEVICE(82546GB_SERDES),
164 	EM_DEVICE(82546GB_PCIE),
165 	EM_DEVICE(82546GB_QUAD_COPPER),
166 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
167 
168 	EM_DEVICE(82547EI),
169 	EM_DEVICE(82547EI_MOBILE),
170 	EM_DEVICE(82547GI),
171 
172 	EM_EMX_DEVICE(82571EB_COPPER),
173 	EM_EMX_DEVICE(82571EB_FIBER),
174 	EM_EMX_DEVICE(82571EB_SERDES),
175 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
182 
183 	EM_EMX_DEVICE(82572EI_COPPER),
184 	EM_EMX_DEVICE(82572EI_FIBER),
185 	EM_EMX_DEVICE(82572EI_SERDES),
186 	EM_EMX_DEVICE(82572EI),
187 
188 	EM_EMX_DEVICE(82573E),
189 	EM_EMX_DEVICE(82573E_IAMT),
190 	EM_EMX_DEVICE(82573L),
191 
192 	EM_DEVICE(82583V),
193 
194 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
198 
199 	EM_DEVICE(ICH8_IGP_M_AMT),
200 	EM_DEVICE(ICH8_IGP_AMT),
201 	EM_DEVICE(ICH8_IGP_C),
202 	EM_DEVICE(ICH8_IFE),
203 	EM_DEVICE(ICH8_IFE_GT),
204 	EM_DEVICE(ICH8_IFE_G),
205 	EM_DEVICE(ICH8_IGP_M),
206 	EM_DEVICE(ICH8_82567V_3),
207 
208 	EM_DEVICE(ICH9_IGP_M_AMT),
209 	EM_DEVICE(ICH9_IGP_AMT),
210 	EM_DEVICE(ICH9_IGP_C),
211 	EM_DEVICE(ICH9_IGP_M),
212 	EM_DEVICE(ICH9_IGP_M_V),
213 	EM_DEVICE(ICH9_IFE),
214 	EM_DEVICE(ICH9_IFE_GT),
215 	EM_DEVICE(ICH9_IFE_G),
216 	EM_DEVICE(ICH9_BM),
217 
218 	EM_EMX_DEVICE(82574L),
219 	EM_EMX_DEVICE(82574LA),
220 
221 	EM_DEVICE(ICH10_R_BM_LM),
222 	EM_DEVICE(ICH10_R_BM_LF),
223 	EM_DEVICE(ICH10_R_BM_V),
224 	EM_DEVICE(ICH10_D_BM_LM),
225 	EM_DEVICE(ICH10_D_BM_LF),
226 	EM_DEVICE(ICH10_D_BM_V),
227 
228 	EM_DEVICE(PCH_M_HV_LM),
229 	EM_DEVICE(PCH_M_HV_LC),
230 	EM_DEVICE(PCH_D_HV_DM),
231 	EM_DEVICE(PCH_D_HV_DC),
232 
233 	EM_DEVICE(PCH2_LV_LM),
234 	EM_DEVICE(PCH2_LV_V),
235 
236 	/* required last entry */
237 	EM_DEVICE_NULL
238 };
239 
240 static int	em_probe(device_t);
241 static int	em_attach(device_t);
242 static int	em_detach(device_t);
243 static int	em_shutdown(device_t);
244 static int	em_suspend(device_t);
245 static int	em_resume(device_t);
246 
247 static void	em_init(void *);
248 static void	em_stop(struct adapter *);
249 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
250 static void	em_start(struct ifnet *, struct ifaltq_subque *);
251 #ifdef IFPOLL_ENABLE
252 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
253 static void	em_npoll_compat(struct ifnet *, void *, int);
254 #endif
255 static void	em_watchdog(struct ifnet *);
256 static void	em_media_status(struct ifnet *, struct ifmediareq *);
257 static int	em_media_change(struct ifnet *);
258 static void	em_timer(void *);
259 
260 static void	em_intr(void *);
261 static void	em_intr_mask(void *);
262 static void	em_intr_body(struct adapter *, boolean_t);
263 static void	em_rxeof(struct adapter *, int);
264 static void	em_txeof(struct adapter *);
265 static void	em_tx_collect(struct adapter *);
266 static void	em_tx_purge(struct adapter *);
267 static void	em_enable_intr(struct adapter *);
268 static void	em_disable_intr(struct adapter *);
269 
270 static int	em_dma_malloc(struct adapter *, bus_size_t,
271 		    struct em_dma_alloc *);
272 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
273 static void	em_init_tx_ring(struct adapter *);
274 static int	em_init_rx_ring(struct adapter *);
275 static int	em_create_tx_ring(struct adapter *);
276 static int	em_create_rx_ring(struct adapter *);
277 static void	em_destroy_tx_ring(struct adapter *, int);
278 static void	em_destroy_rx_ring(struct adapter *, int);
279 static int	em_newbuf(struct adapter *, int, int);
280 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
281 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
282 		    struct mbuf *);
283 static int	em_txcsum(struct adapter *, struct mbuf *,
284 		    uint32_t *, uint32_t *);
285 static int	em_tso_pullup(struct adapter *, struct mbuf **);
286 static int	em_tso_setup(struct adapter *, struct mbuf *,
287 		    uint32_t *, uint32_t *);
288 
289 static int	em_get_hw_info(struct adapter *);
290 static int 	em_is_valid_eaddr(const uint8_t *);
291 static int	em_alloc_pci_res(struct adapter *);
292 static void	em_free_pci_res(struct adapter *);
293 static int	em_reset(struct adapter *);
294 static void	em_setup_ifp(struct adapter *);
295 static void	em_init_tx_unit(struct adapter *);
296 static void	em_init_rx_unit(struct adapter *);
297 static void	em_update_stats(struct adapter *);
298 static void	em_set_promisc(struct adapter *);
299 static void	em_disable_promisc(struct adapter *);
300 static void	em_set_multi(struct adapter *);
301 static void	em_update_link_status(struct adapter *);
302 static void	em_smartspeed(struct adapter *);
303 static void	em_set_itr(struct adapter *, uint32_t);
304 static void	em_disable_aspm(struct adapter *);
305 
306 /* Hardware workarounds */
307 static int	em_82547_fifo_workaround(struct adapter *, int);
308 static void	em_82547_update_fifo_head(struct adapter *, int);
309 static int	em_82547_tx_fifo_reset(struct adapter *);
310 static void	em_82547_move_tail(void *);
311 static void	em_82547_move_tail_serialized(struct adapter *);
312 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
313 
314 static void	em_print_debug_info(struct adapter *);
315 static void	em_print_nvm_info(struct adapter *);
316 static void	em_print_hw_stats(struct adapter *);
317 
318 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
319 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
320 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
321 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
322 static void	em_add_sysctl(struct adapter *adapter);
323 
324 /* Management and WOL Support */
325 static void	em_get_mgmt(struct adapter *);
326 static void	em_rel_mgmt(struct adapter *);
327 static void	em_get_hw_control(struct adapter *);
328 static void	em_rel_hw_control(struct adapter *);
329 static void	em_enable_wol(device_t);
330 
331 static device_method_t em_methods[] = {
332 	/* Device interface */
333 	DEVMETHOD(device_probe,		em_probe),
334 	DEVMETHOD(device_attach,	em_attach),
335 	DEVMETHOD(device_detach,	em_detach),
336 	DEVMETHOD(device_shutdown,	em_shutdown),
337 	DEVMETHOD(device_suspend,	em_suspend),
338 	DEVMETHOD(device_resume,	em_resume),
339 	DEVMETHOD_END
340 };
341 
342 static driver_t em_driver = {
343 	"em",
344 	em_methods,
345 	sizeof(struct adapter),
346 };
347 
348 static devclass_t em_devclass;
349 
350 DECLARE_DUMMY_MODULE(if_em);
351 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
352 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
353 
354 /*
355  * Tunables
356  */
357 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
358 static int	em_rxd = EM_DEFAULT_RXD;
359 static int	em_txd = EM_DEFAULT_TXD;
360 static int	em_smart_pwr_down = 0;
361 
362 /* Controls whether promiscuous also shows bad packets */
363 static int	em_debug_sbp = FALSE;
364 
365 static int	em_82573_workaround = 1;
366 static int	em_msi_enable = 1;
367 
368 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
369 TUNABLE_INT("hw.em.rxd", &em_rxd);
370 TUNABLE_INT("hw.em.txd", &em_txd);
371 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
372 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
373 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
374 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
375 
376 /* Global used in WOL setup with multiport cards */
377 static int	em_global_quad_port_a = 0;
378 
379 /* Set this to one to display debug statistics */
380 static int	em_display_debug_stats = 0;
381 
382 #if !defined(KTR_IF_EM)
383 #define KTR_IF_EM	KTR_ALL
384 #endif
385 KTR_INFO_MASTER(if_em);
386 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
387 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
388 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
389 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
390 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
391 #define logif(name)	KTR_LOG(if_em_ ## name)
392 
393 static int
394 em_probe(device_t dev)
395 {
396 	const struct em_vendor_info *ent;
397 	uint16_t vid, did;
398 
399 	vid = pci_get_vendor(dev);
400 	did = pci_get_device(dev);
401 
402 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
403 		if (vid == ent->vendor_id && did == ent->device_id) {
404 			device_set_desc(dev, ent->desc);
405 			device_set_async_attach(dev, TRUE);
406 			return (ent->ret);
407 		}
408 	}
409 	return (ENXIO);
410 }
411 
412 static int
413 em_attach(device_t dev)
414 {
415 	struct adapter *adapter = device_get_softc(dev);
416 	struct ifnet *ifp = &adapter->arpcom.ac_if;
417 	int tsize, rsize;
418 	int error = 0;
419 	uint16_t eeprom_data, device_id, apme_mask;
420 	driver_intr_t *intr_func;
421 
422 	adapter->dev = adapter->osdep.dev = dev;
423 
424 	callout_init_mp(&adapter->timer);
425 	callout_init_mp(&adapter->tx_fifo_timer);
426 
427 	/* Determine hardware and mac info */
428 	error = em_get_hw_info(adapter);
429 	if (error) {
430 		device_printf(dev, "Identify hardware failed\n");
431 		goto fail;
432 	}
433 
434 	/* Setup PCI resources */
435 	error = em_alloc_pci_res(adapter);
436 	if (error) {
437 		device_printf(dev, "Allocation of PCI resources failed\n");
438 		goto fail;
439 	}
440 
441 	/*
442 	 * For ICH8 and family we need to map the flash memory,
443 	 * and this must happen after the MAC is identified.
444 	 */
445 	if (adapter->hw.mac.type == e1000_ich8lan ||
446 	    adapter->hw.mac.type == e1000_ich9lan ||
447 	    adapter->hw.mac.type == e1000_ich10lan ||
448 	    adapter->hw.mac.type == e1000_pchlan ||
449 	    adapter->hw.mac.type == e1000_pch2lan) {
450 		adapter->flash_rid = EM_BAR_FLASH;
451 
452 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
453 					&adapter->flash_rid, RF_ACTIVE);
454 		if (adapter->flash == NULL) {
455 			device_printf(dev, "Mapping of Flash failed\n");
456 			error = ENXIO;
457 			goto fail;
458 		}
459 		adapter->osdep.flash_bus_space_tag =
460 		    rman_get_bustag(adapter->flash);
461 		adapter->osdep.flash_bus_space_handle =
462 		    rman_get_bushandle(adapter->flash);
463 
464 		/*
465 		 * This is used in the shared code
466 		 * XXX this goof is actually not used.
467 		 */
468 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
469 	}
470 
471 	switch (adapter->hw.mac.type) {
472 	case e1000_82571:
473 	case e1000_82572:
474 		/*
475 		 * Pullup extra 4bytes into the first data segment, see:
476 		 * 82571/82572 specification update errata #7
477 		 *
478 		 * NOTE:
479 		 * 4bytes instead of 2bytes, which are mentioned in the
480 		 * errata, are pulled; mainly to keep rest of the data
481 		 * properly aligned.
482 		 */
483 		adapter->flags |= EM_FLAG_TSO_PULLEX;
484 		/* FALL THROUGH */
485 
486 	case e1000_82573:
487 	case e1000_82574:
488 	case e1000_80003es2lan:
489 		adapter->flags |= EM_FLAG_TSO;
490 		break;
491 
492 	default:
493 		break;
494 	}
495 
496 	/* Do Shared Code initialization */
497 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
498 		device_printf(dev, "Setup of Shared code failed\n");
499 		error = ENXIO;
500 		goto fail;
501 	}
502 
503 	e1000_get_bus_info(&adapter->hw);
504 
505 	/*
506 	 * Validate number of transmit and receive descriptors.  It
507 	 * must not exceed hardware maximum, and must be multiple
508 	 * of E1000_DBA_ALIGN.
509 	 */
510 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
511 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
512 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
513 	    em_txd < EM_MIN_TXD) {
514 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
515 		    EM_DEFAULT_TXD, em_txd);
516 		adapter->num_tx_desc = EM_DEFAULT_TXD;
517 	} else {
518 		adapter->num_tx_desc = em_txd;
519 	}
520 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
521 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
522 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
523 	    em_rxd < EM_MIN_RXD) {
524 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
525 		    EM_DEFAULT_RXD, em_rxd);
526 		adapter->num_rx_desc = EM_DEFAULT_RXD;
527 	} else {
528 		adapter->num_rx_desc = em_rxd;
529 	}
530 
531 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
532 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
533 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
534 	adapter->rx_buffer_len = MCLBYTES;
535 
536 	/*
537 	 * Interrupt throttle rate
538 	 */
539 	if (em_int_throttle_ceil == 0) {
540 		adapter->int_throttle_ceil = 0;
541 	} else {
542 		int throttle = em_int_throttle_ceil;
543 
544 		if (throttle < 0)
545 			throttle = EM_DEFAULT_ITR;
546 
547 		/* Recalculate the tunable value to get the exact frequency. */
548 		throttle = 1000000000 / 256 / throttle;
549 
550 		/* Upper 16bits of ITR is reserved and should be zero */
551 		if (throttle & 0xffff0000)
552 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
553 
554 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
555 	}
556 
557 	e1000_init_script_state_82541(&adapter->hw, TRUE);
558 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
559 
560 	/* Copper options */
561 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
562 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
563 		adapter->hw.phy.disable_polarity_correction = FALSE;
564 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
565 	}
566 
567 	/* Set the frame limits assuming standard ethernet sized frames. */
568 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
569 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
570 
571 	/* This controls when hardware reports transmit completion status. */
572 	adapter->hw.mac.report_tx_early = 1;
573 
574 	/*
575 	 * Create top level busdma tag
576 	 */
577 	error = bus_dma_tag_create(NULL, 1, 0,
578 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
579 			NULL, NULL,
580 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
581 			0, &adapter->parent_dtag);
582 	if (error) {
583 		device_printf(dev, "could not create top level DMA tag\n");
584 		goto fail;
585 	}
586 
587 	/*
588 	 * Allocate Transmit Descriptor ring
589 	 */
590 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
591 			 EM_DBA_ALIGN);
592 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
593 	if (error) {
594 		device_printf(dev, "Unable to allocate tx_desc memory\n");
595 		goto fail;
596 	}
597 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
598 
599 	/*
600 	 * Allocate Receive Descriptor ring
601 	 */
602 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
603 			 EM_DBA_ALIGN);
604 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
605 	if (error) {
606 		device_printf(dev, "Unable to allocate rx_desc memory\n");
607 		goto fail;
608 	}
609 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
610 
611 	/* Allocate multicast array memory. */
612 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
613 	    M_DEVBUF, M_WAITOK);
614 
615 	/* Indicate SOL/IDER usage */
616 	if (e1000_check_reset_block(&adapter->hw)) {
617 		device_printf(dev,
618 		    "PHY reset is blocked due to SOL/IDER session.\n");
619 	}
620 
621 	/*
622 	 * Start from a known state, this is important in reading the
623 	 * nvm and mac from that.
624 	 */
625 	e1000_reset_hw(&adapter->hw);
626 
627 	/* Make sure we have a good EEPROM before we read from it */
628 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
629 		/*
630 		 * Some PCI-E parts fail the first check due to
631 		 * the link being in sleep state, call it again,
632 		 * if it fails a second time its a real issue.
633 		 */
634 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
635 			device_printf(dev,
636 			    "The EEPROM Checksum Is Not Valid\n");
637 			error = EIO;
638 			goto fail;
639 		}
640 	}
641 
642 	/* Copy the permanent MAC address out of the EEPROM */
643 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
644 		device_printf(dev, "EEPROM read error while reading MAC"
645 		    " address\n");
646 		error = EIO;
647 		goto fail;
648 	}
649 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
650 		device_printf(dev, "Invalid MAC address\n");
651 		error = EIO;
652 		goto fail;
653 	}
654 
655 	/* Allocate transmit descriptors and buffers */
656 	error = em_create_tx_ring(adapter);
657 	if (error) {
658 		device_printf(dev, "Could not setup transmit structures\n");
659 		goto fail;
660 	}
661 
662 	/* Allocate receive descriptors and buffers */
663 	error = em_create_rx_ring(adapter);
664 	if (error) {
665 		device_printf(dev, "Could not setup receive structures\n");
666 		goto fail;
667 	}
668 
669 	/* Manually turn off all interrupts */
670 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
671 
672 	/* Determine if we have to control management hardware */
673 	if (e1000_enable_mng_pass_thru(&adapter->hw))
674 		adapter->flags |= EM_FLAG_HAS_MGMT;
675 
676 	/*
677 	 * Setup Wake-on-Lan
678 	 */
679 	apme_mask = EM_EEPROM_APME;
680 	eeprom_data = 0;
681 	switch (adapter->hw.mac.type) {
682 	case e1000_82542:
683 	case e1000_82543:
684 		break;
685 
686 	case e1000_82573:
687 	case e1000_82583:
688 		adapter->flags |= EM_FLAG_HAS_AMT;
689 		/* FALL THROUGH */
690 
691 	case e1000_82546:
692 	case e1000_82546_rev_3:
693 	case e1000_82571:
694 	case e1000_82572:
695 	case e1000_80003es2lan:
696 		if (adapter->hw.bus.func == 1) {
697 			e1000_read_nvm(&adapter->hw,
698 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
699 		} else {
700 			e1000_read_nvm(&adapter->hw,
701 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
702 		}
703 		break;
704 
705 	case e1000_ich8lan:
706 	case e1000_ich9lan:
707 	case e1000_ich10lan:
708 	case e1000_pchlan:
709 	case e1000_pch2lan:
710 		apme_mask = E1000_WUC_APME;
711 		adapter->flags |= EM_FLAG_HAS_AMT;
712 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
713 		break;
714 
715 	default:
716 		e1000_read_nvm(&adapter->hw,
717 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
718 		break;
719 	}
720 	if (eeprom_data & apme_mask)
721 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
722 
723 	/*
724          * We have the eeprom settings, now apply the special cases
725          * where the eeprom may be wrong or the board won't support
726          * wake on lan on a particular port
727 	 */
728 	device_id = pci_get_device(dev);
729         switch (device_id) {
730 	case E1000_DEV_ID_82546GB_PCIE:
731 		adapter->wol = 0;
732 		break;
733 
734 	case E1000_DEV_ID_82546EB_FIBER:
735 	case E1000_DEV_ID_82546GB_FIBER:
736 	case E1000_DEV_ID_82571EB_FIBER:
737 		/*
738 		 * Wake events only supported on port A for dual fiber
739 		 * regardless of eeprom setting
740 		 */
741 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
742 		    E1000_STATUS_FUNC_1)
743 			adapter->wol = 0;
744 		break;
745 
746 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
747 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
748 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
749 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
750                 /* if quad port adapter, disable WoL on all but port A */
751 		if (em_global_quad_port_a != 0)
752 			adapter->wol = 0;
753 		/* Reset for multiple quad port adapters */
754 		if (++em_global_quad_port_a == 4)
755 			em_global_quad_port_a = 0;
756                 break;
757 	}
758 
759 	/* XXX disable wol */
760 	adapter->wol = 0;
761 
762 	/* Setup OS specific network interface */
763 	em_setup_ifp(adapter);
764 
765 	/* Add sysctl tree, must after em_setup_ifp() */
766 	em_add_sysctl(adapter);
767 
768 #ifdef IFPOLL_ENABLE
769 	/* Polling setup */
770 	ifpoll_compat_setup(&adapter->npoll,
771 	    &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
772 	    ifp->if_serializer);
773 #endif
774 
775 	/* Reset the hardware */
776 	error = em_reset(adapter);
777 	if (error) {
778 		device_printf(dev, "Unable to reset the hardware\n");
779 		goto fail;
780 	}
781 
782 	/* Initialize statistics */
783 	em_update_stats(adapter);
784 
785 	adapter->hw.mac.get_link_status = 1;
786 	em_update_link_status(adapter);
787 
788 	/* Do we need workaround for 82544 PCI-X adapter? */
789 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
790 	    adapter->hw.mac.type == e1000_82544)
791 		adapter->pcix_82544 = TRUE;
792 	else
793 		adapter->pcix_82544 = FALSE;
794 
795 	if (adapter->pcix_82544) {
796 		/*
797 		 * 82544 on PCI-X may split one TX segment
798 		 * into two TX descs, so we double its number
799 		 * of spare TX desc here.
800 		 */
801 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
802 	} else {
803 		adapter->spare_tx_desc = EM_TX_SPARE;
804 	}
805 	if (adapter->flags & EM_FLAG_TSO)
806 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
807 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
808 
809 	/*
810 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
811 	 * and tx_int_nsegs:
812 	 * (spare_tx_desc + EM_TX_RESERVED) <=
813 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
814 	 */
815 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
816 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
817 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
818 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
819 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
820 
821 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
822 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
823 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
824 
825 	/* Non-AMT based hardware can now take control from firmware */
826 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
827 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
828 		em_get_hw_control(adapter);
829 
830 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
831 
832 	/*
833 	 * Missing Interrupt Following ICR read:
834 	 *
835 	 * 82571/82572 specification update errata #76
836 	 * 82573 specification update errata #31
837 	 * 82574 specification update errata #12
838 	 * 82583 specification update errata #4
839 	 */
840 	intr_func = em_intr;
841 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
842 	    (adapter->hw.mac.type == e1000_82571 ||
843 	     adapter->hw.mac.type == e1000_82572 ||
844 	     adapter->hw.mac.type == e1000_82573 ||
845 	     adapter->hw.mac.type == e1000_82574 ||
846 	     adapter->hw.mac.type == e1000_82583))
847 		intr_func = em_intr_mask;
848 
849 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
850 			       intr_func, adapter, &adapter->intr_tag,
851 			       ifp->if_serializer);
852 	if (error) {
853 		device_printf(dev, "Failed to register interrupt handler");
854 		ether_ifdetach(&adapter->arpcom.ac_if);
855 		goto fail;
856 	}
857 	return (0);
858 fail:
859 	em_detach(dev);
860 	return (error);
861 }
862 
863 static int
864 em_detach(device_t dev)
865 {
866 	struct adapter *adapter = device_get_softc(dev);
867 
868 	if (device_is_attached(dev)) {
869 		struct ifnet *ifp = &adapter->arpcom.ac_if;
870 
871 		lwkt_serialize_enter(ifp->if_serializer);
872 
873 		em_stop(adapter);
874 
875 		e1000_phy_hw_reset(&adapter->hw);
876 
877 		em_rel_mgmt(adapter);
878 		em_rel_hw_control(adapter);
879 
880 		if (adapter->wol) {
881 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
882 					E1000_WUC_PME_EN);
883 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
884 			em_enable_wol(dev);
885 		}
886 
887 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
888 
889 		lwkt_serialize_exit(ifp->if_serializer);
890 
891 		ether_ifdetach(ifp);
892 	} else if (adapter->memory != NULL) {
893 		em_rel_hw_control(adapter);
894 	}
895 	bus_generic_detach(dev);
896 
897 	em_free_pci_res(adapter);
898 
899 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
900 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
901 
902 	/* Free Transmit Descriptor ring */
903 	if (adapter->tx_desc_base)
904 		em_dma_free(adapter, &adapter->txdma);
905 
906 	/* Free Receive Descriptor ring */
907 	if (adapter->rx_desc_base)
908 		em_dma_free(adapter, &adapter->rxdma);
909 
910 	/* Free top level busdma tag */
911 	if (adapter->parent_dtag != NULL)
912 		bus_dma_tag_destroy(adapter->parent_dtag);
913 
914 	/* Free sysctl tree */
915 	if (adapter->sysctl_tree != NULL)
916 		sysctl_ctx_free(&adapter->sysctl_ctx);
917 
918 	if (adapter->mta != NULL)
919 		kfree(adapter->mta, M_DEVBUF);
920 
921 	return (0);
922 }
923 
924 static int
925 em_shutdown(device_t dev)
926 {
927 	return em_suspend(dev);
928 }
929 
930 static int
931 em_suspend(device_t dev)
932 {
933 	struct adapter *adapter = device_get_softc(dev);
934 	struct ifnet *ifp = &adapter->arpcom.ac_if;
935 
936 	lwkt_serialize_enter(ifp->if_serializer);
937 
938 	em_stop(adapter);
939 
940 	em_rel_mgmt(adapter);
941 	em_rel_hw_control(adapter);
942 
943 	if (adapter->wol) {
944 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
945 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
946 		em_enable_wol(dev);
947 	}
948 
949 	lwkt_serialize_exit(ifp->if_serializer);
950 
951 	return bus_generic_suspend(dev);
952 }
953 
954 static int
955 em_resume(device_t dev)
956 {
957 	struct adapter *adapter = device_get_softc(dev);
958 	struct ifnet *ifp = &adapter->arpcom.ac_if;
959 
960 	lwkt_serialize_enter(ifp->if_serializer);
961 
962 	if (adapter->hw.mac.type == e1000_pch2lan)
963 		e1000_resume_workarounds_pchlan(&adapter->hw);
964 
965 	em_init(adapter);
966 	em_get_mgmt(adapter);
967 	if_devstart(ifp);
968 
969 	lwkt_serialize_exit(ifp->if_serializer);
970 
971 	return bus_generic_resume(dev);
972 }
973 
974 static void
975 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
976 {
977 	struct adapter *adapter = ifp->if_softc;
978 	struct mbuf *m_head;
979 	int idx = -1, nsegs = 0;
980 
981 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
982 	ASSERT_SERIALIZED(ifp->if_serializer);
983 
984 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
985 		return;
986 
987 	if (!adapter->link_active) {
988 		ifq_purge(&ifp->if_snd);
989 		return;
990 	}
991 
992 	while (!ifq_is_empty(&ifp->if_snd)) {
993 		/* Now do we at least have a minimal? */
994 		if (EM_IS_OACTIVE(adapter)) {
995 			em_tx_collect(adapter);
996 			if (EM_IS_OACTIVE(adapter)) {
997 				ifq_set_oactive(&ifp->if_snd);
998 				adapter->no_tx_desc_avail1++;
999 				break;
1000 			}
1001 		}
1002 
1003 		logif(pkt_txqueue);
1004 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1005 		if (m_head == NULL)
1006 			break;
1007 
1008 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1009 			IFNET_STAT_INC(ifp, oerrors, 1);
1010 			em_tx_collect(adapter);
1011 			continue;
1012 		}
1013 
1014 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1015 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1016 			nsegs = 0;
1017 			idx = -1;
1018 		}
1019 
1020 		/* Send a copy of the frame to the BPF listener */
1021 		ETHER_BPF_MTAP(ifp, m_head);
1022 
1023 		/* Set timeout in case hardware has problems transmitting. */
1024 		ifp->if_timer = EM_TX_TIMEOUT;
1025 	}
1026 	if (idx >= 0)
1027 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1028 }
1029 
1030 static int
1031 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1032 {
1033 	struct adapter *adapter = ifp->if_softc;
1034 	struct ifreq *ifr = (struct ifreq *)data;
1035 	uint16_t eeprom_data = 0;
1036 	int max_frame_size, mask, reinit;
1037 	int error = 0;
1038 
1039 	ASSERT_SERIALIZED(ifp->if_serializer);
1040 
1041 	switch (command) {
1042 	case SIOCSIFMTU:
1043 		switch (adapter->hw.mac.type) {
1044 		case e1000_82573:
1045 			/*
1046 			 * 82573 only supports jumbo frames
1047 			 * if ASPM is disabled.
1048 			 */
1049 			e1000_read_nvm(&adapter->hw,
1050 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1051 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1052 				max_frame_size = ETHER_MAX_LEN;
1053 				break;
1054 			}
1055 			/* FALL THROUGH */
1056 
1057 		/* Limit Jumbo Frame size */
1058 		case e1000_82571:
1059 		case e1000_82572:
1060 		case e1000_ich9lan:
1061 		case e1000_ich10lan:
1062 		case e1000_pch2lan:
1063 		case e1000_82574:
1064 		case e1000_82583:
1065 		case e1000_80003es2lan:
1066 			max_frame_size = 9234;
1067 			break;
1068 
1069 		case e1000_pchlan:
1070 			max_frame_size = 4096;
1071 			break;
1072 
1073 		/* Adapters that do not support jumbo frames */
1074 		case e1000_82542:
1075 		case e1000_ich8lan:
1076 			max_frame_size = ETHER_MAX_LEN;
1077 			break;
1078 
1079 		default:
1080 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1081 			break;
1082 		}
1083 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1084 		    ETHER_CRC_LEN) {
1085 			error = EINVAL;
1086 			break;
1087 		}
1088 
1089 		ifp->if_mtu = ifr->ifr_mtu;
1090 		adapter->max_frame_size =
1091 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1092 
1093 		if (ifp->if_flags & IFF_RUNNING)
1094 			em_init(adapter);
1095 		break;
1096 
1097 	case SIOCSIFFLAGS:
1098 		if (ifp->if_flags & IFF_UP) {
1099 			if ((ifp->if_flags & IFF_RUNNING)) {
1100 				if ((ifp->if_flags ^ adapter->if_flags) &
1101 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1102 					em_disable_promisc(adapter);
1103 					em_set_promisc(adapter);
1104 				}
1105 			} else {
1106 				em_init(adapter);
1107 			}
1108 		} else if (ifp->if_flags & IFF_RUNNING) {
1109 			em_stop(adapter);
1110 		}
1111 		adapter->if_flags = ifp->if_flags;
1112 		break;
1113 
1114 	case SIOCADDMULTI:
1115 	case SIOCDELMULTI:
1116 		if (ifp->if_flags & IFF_RUNNING) {
1117 			em_disable_intr(adapter);
1118 			em_set_multi(adapter);
1119 			if (adapter->hw.mac.type == e1000_82542 &&
1120 			    adapter->hw.revision_id == E1000_REVISION_2)
1121 				em_init_rx_unit(adapter);
1122 #ifdef IFPOLL_ENABLE
1123 			if (!(ifp->if_flags & IFF_NPOLLING))
1124 #endif
1125 				em_enable_intr(adapter);
1126 		}
1127 		break;
1128 
1129 	case SIOCSIFMEDIA:
1130 		/* Check SOL/IDER usage */
1131 		if (e1000_check_reset_block(&adapter->hw)) {
1132 			device_printf(adapter->dev, "Media change is"
1133 			    " blocked due to SOL/IDER session.\n");
1134 			break;
1135 		}
1136 		/* FALL THROUGH */
1137 
1138 	case SIOCGIFMEDIA:
1139 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1140 		break;
1141 
1142 	case SIOCSIFCAP:
1143 		reinit = 0;
1144 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1145 		if (mask & IFCAP_RXCSUM) {
1146 			ifp->if_capenable ^= IFCAP_RXCSUM;
1147 			reinit = 1;
1148 		}
1149 		if (mask & IFCAP_TXCSUM) {
1150 			ifp->if_capenable ^= IFCAP_TXCSUM;
1151 			if (ifp->if_capenable & IFCAP_TXCSUM)
1152 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1153 			else
1154 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1155 		}
1156 		if (mask & IFCAP_TSO) {
1157 			ifp->if_capenable ^= IFCAP_TSO;
1158 			if (ifp->if_capenable & IFCAP_TSO)
1159 				ifp->if_hwassist |= CSUM_TSO;
1160 			else
1161 				ifp->if_hwassist &= ~CSUM_TSO;
1162 		}
1163 		if (mask & IFCAP_VLAN_HWTAGGING) {
1164 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1165 			reinit = 1;
1166 		}
1167 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1168 			em_init(adapter);
1169 		break;
1170 
1171 	default:
1172 		error = ether_ioctl(ifp, command, data);
1173 		break;
1174 	}
1175 	return (error);
1176 }
1177 
1178 static void
1179 em_watchdog(struct ifnet *ifp)
1180 {
1181 	struct adapter *adapter = ifp->if_softc;
1182 
1183 	ASSERT_SERIALIZED(ifp->if_serializer);
1184 
1185 	/*
1186 	 * The timer is set to 5 every time start queues a packet.
1187 	 * Then txeof keeps resetting it as long as it cleans at
1188 	 * least one descriptor.
1189 	 * Finally, anytime all descriptors are clean the timer is
1190 	 * set to 0.
1191 	 */
1192 
1193 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1194 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1195 		/*
1196 		 * If we reach here, all TX jobs are completed and
1197 		 * the TX engine should have been idled for some time.
1198 		 * We don't need to call if_devstart() here.
1199 		 */
1200 		ifq_clr_oactive(&ifp->if_snd);
1201 		ifp->if_timer = 0;
1202 		return;
1203 	}
1204 
1205 	/*
1206 	 * If we are in this routine because of pause frames, then
1207 	 * don't reset the hardware.
1208 	 */
1209 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1210 	    E1000_STATUS_TXOFF) {
1211 		ifp->if_timer = EM_TX_TIMEOUT;
1212 		return;
1213 	}
1214 
1215 	if (e1000_check_for_link(&adapter->hw) == 0)
1216 		if_printf(ifp, "watchdog timeout -- resetting\n");
1217 
1218 	IFNET_STAT_INC(ifp, oerrors, 1);
1219 	adapter->watchdog_events++;
1220 
1221 	em_init(adapter);
1222 
1223 	if (!ifq_is_empty(&ifp->if_snd))
1224 		if_devstart(ifp);
1225 }
1226 
1227 static void
1228 em_init(void *xsc)
1229 {
1230 	struct adapter *adapter = xsc;
1231 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1232 	device_t dev = adapter->dev;
1233 
1234 	ASSERT_SERIALIZED(ifp->if_serializer);
1235 
1236 	em_stop(adapter);
1237 
1238 	/* Get the latest mac address, User can use a LAA */
1239         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1240 
1241 	/* Put the address into the Receive Address Array */
1242 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1243 
1244 	/*
1245 	 * With the 82571 adapter, RAR[0] may be overwritten
1246 	 * when the other port is reset, we make a duplicate
1247 	 * in RAR[14] for that eventuality, this assures
1248 	 * the interface continues to function.
1249 	 */
1250 	if (adapter->hw.mac.type == e1000_82571) {
1251 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1252 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1253 		    E1000_RAR_ENTRIES - 1);
1254 	}
1255 
1256 	/* Reset the hardware */
1257 	if (em_reset(adapter)) {
1258 		device_printf(dev, "Unable to reset the hardware\n");
1259 		/* XXX em_stop()? */
1260 		return;
1261 	}
1262 	em_update_link_status(adapter);
1263 
1264 	/* Setup VLAN support, basic and offload if available */
1265 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1266 
1267 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1268 		uint32_t ctrl;
1269 
1270 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1271 		ctrl |= E1000_CTRL_VME;
1272 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1273 	}
1274 
1275 	/* Configure for OS presence */
1276 	em_get_mgmt(adapter);
1277 
1278 	/* Prepare transmit descriptors and buffers */
1279 	em_init_tx_ring(adapter);
1280 	em_init_tx_unit(adapter);
1281 
1282 	/* Setup Multicast table */
1283 	em_set_multi(adapter);
1284 
1285 	/* Prepare receive descriptors and buffers */
1286 	if (em_init_rx_ring(adapter)) {
1287 		device_printf(dev, "Could not setup receive structures\n");
1288 		em_stop(adapter);
1289 		return;
1290 	}
1291 	em_init_rx_unit(adapter);
1292 
1293 	/* Don't lose promiscuous settings */
1294 	em_set_promisc(adapter);
1295 
1296 	ifp->if_flags |= IFF_RUNNING;
1297 	ifq_clr_oactive(&ifp->if_snd);
1298 
1299 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1300 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1301 
1302 	/* MSI/X configuration for 82574 */
1303 	if (adapter->hw.mac.type == e1000_82574) {
1304 		int tmp;
1305 
1306 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1307 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1308 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1309 		/*
1310 		 * XXX MSIX
1311 		 * Set the IVAR - interrupt vector routing.
1312 		 * Each nibble represents a vector, high bit
1313 		 * is enable, other 3 bits are the MSIX table
1314 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1315 		 * Link (other) to 2, hence the magic number.
1316 		 */
1317 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1318 	}
1319 
1320 #ifdef IFPOLL_ENABLE
1321 	/*
1322 	 * Only enable interrupts if we are not polling, make sure
1323 	 * they are off otherwise.
1324 	 */
1325 	if (ifp->if_flags & IFF_NPOLLING)
1326 		em_disable_intr(adapter);
1327 	else
1328 #endif /* IFPOLL_ENABLE */
1329 		em_enable_intr(adapter);
1330 
1331 	/* AMT based hardware can now take control from firmware */
1332 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1333 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1334 	    adapter->hw.mac.type >= e1000_82571)
1335 		em_get_hw_control(adapter);
1336 }
1337 
1338 #ifdef IFPOLL_ENABLE
1339 
1340 static void
1341 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1342 {
1343 	struct adapter *adapter = ifp->if_softc;
1344 
1345 	ASSERT_SERIALIZED(ifp->if_serializer);
1346 
1347 	if (adapter->npoll.ifpc_stcount-- == 0) {
1348 		uint32_t reg_icr;
1349 
1350 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1351 
1352 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1353 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1354 			callout_stop(&adapter->timer);
1355 			adapter->hw.mac.get_link_status = 1;
1356 			em_update_link_status(adapter);
1357 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1358 		}
1359 	}
1360 
1361 	em_rxeof(adapter, count);
1362 	em_txeof(adapter);
1363 
1364 	if (!ifq_is_empty(&ifp->if_snd))
1365 		if_devstart(ifp);
1366 }
1367 
1368 static void
1369 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1370 {
1371 	struct adapter *adapter = ifp->if_softc;
1372 
1373 	ASSERT_SERIALIZED(ifp->if_serializer);
1374 
1375 	if (info != NULL) {
1376 		int cpuid = adapter->npoll.ifpc_cpuid;
1377 
1378                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1379 		info->ifpi_rx[cpuid].arg = NULL;
1380 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1381 
1382 		if (ifp->if_flags & IFF_RUNNING)
1383 			em_disable_intr(adapter);
1384 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1385 	} else {
1386 		if (ifp->if_flags & IFF_RUNNING)
1387 			em_enable_intr(adapter);
1388 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1389 	}
1390 }
1391 
1392 #endif /* IFPOLL_ENABLE */
1393 
1394 static void
1395 em_intr(void *xsc)
1396 {
1397 	em_intr_body(xsc, TRUE);
1398 }
1399 
1400 static void
1401 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1402 {
1403 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1404 	uint32_t reg_icr;
1405 
1406 	logif(intr_beg);
1407 	ASSERT_SERIALIZED(ifp->if_serializer);
1408 
1409 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1410 
1411 	if (chk_asserted &&
1412 	    ((adapter->hw.mac.type >= e1000_82571 &&
1413 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1414 	     reg_icr == 0)) {
1415 		logif(intr_end);
1416 		return;
1417 	}
1418 
1419 	/*
1420 	 * XXX: some laptops trigger several spurious interrupts
1421 	 * on em(4) when in the resume cycle. The ICR register
1422 	 * reports all-ones value in this case. Processing such
1423 	 * interrupts would lead to a freeze. I don't know why.
1424 	 */
1425 	if (reg_icr == 0xffffffff) {
1426 		logif(intr_end);
1427 		return;
1428 	}
1429 
1430 	if (ifp->if_flags & IFF_RUNNING) {
1431 		if (reg_icr &
1432 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1433 			em_rxeof(adapter, -1);
1434 		if (reg_icr & E1000_ICR_TXDW) {
1435 			em_txeof(adapter);
1436 			if (!ifq_is_empty(&ifp->if_snd))
1437 				if_devstart(ifp);
1438 		}
1439 	}
1440 
1441 	/* Link status change */
1442 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1443 		callout_stop(&adapter->timer);
1444 		adapter->hw.mac.get_link_status = 1;
1445 		em_update_link_status(adapter);
1446 
1447 		/* Deal with TX cruft when link lost */
1448 		em_tx_purge(adapter);
1449 
1450 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1451 	}
1452 
1453 	if (reg_icr & E1000_ICR_RXO)
1454 		adapter->rx_overruns++;
1455 
1456 	logif(intr_end);
1457 }
1458 
1459 static void
1460 em_intr_mask(void *xsc)
1461 {
1462 	struct adapter *adapter = xsc;
1463 
1464 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1465 	/*
1466 	 * NOTE:
1467 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1468 	 * so don't check it.
1469 	 */
1470 	em_intr_body(adapter, FALSE);
1471 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1472 }
1473 
1474 static void
1475 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1476 {
1477 	struct adapter *adapter = ifp->if_softc;
1478 	u_char fiber_type = IFM_1000_SX;
1479 
1480 	ASSERT_SERIALIZED(ifp->if_serializer);
1481 
1482 	em_update_link_status(adapter);
1483 
1484 	ifmr->ifm_status = IFM_AVALID;
1485 	ifmr->ifm_active = IFM_ETHER;
1486 
1487 	if (!adapter->link_active)
1488 		return;
1489 
1490 	ifmr->ifm_status |= IFM_ACTIVE;
1491 
1492 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1493 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1494 		if (adapter->hw.mac.type == e1000_82545)
1495 			fiber_type = IFM_1000_LX;
1496 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1497 	} else {
1498 		switch (adapter->link_speed) {
1499 		case 10:
1500 			ifmr->ifm_active |= IFM_10_T;
1501 			break;
1502 		case 100:
1503 			ifmr->ifm_active |= IFM_100_TX;
1504 			break;
1505 
1506 		case 1000:
1507 			ifmr->ifm_active |= IFM_1000_T;
1508 			break;
1509 		}
1510 		if (adapter->link_duplex == FULL_DUPLEX)
1511 			ifmr->ifm_active |= IFM_FDX;
1512 		else
1513 			ifmr->ifm_active |= IFM_HDX;
1514 	}
1515 }
1516 
1517 static int
1518 em_media_change(struct ifnet *ifp)
1519 {
1520 	struct adapter *adapter = ifp->if_softc;
1521 	struct ifmedia *ifm = &adapter->media;
1522 
1523 	ASSERT_SERIALIZED(ifp->if_serializer);
1524 
1525 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1526 		return (EINVAL);
1527 
1528 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1529 	case IFM_AUTO:
1530 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1531 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1532 		break;
1533 
1534 	case IFM_1000_LX:
1535 	case IFM_1000_SX:
1536 	case IFM_1000_T:
1537 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1538 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1539 		break;
1540 
1541 	case IFM_100_TX:
1542 		adapter->hw.mac.autoneg = FALSE;
1543 		adapter->hw.phy.autoneg_advertised = 0;
1544 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1545 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1546 		else
1547 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1548 		break;
1549 
1550 	case IFM_10_T:
1551 		adapter->hw.mac.autoneg = FALSE;
1552 		adapter->hw.phy.autoneg_advertised = 0;
1553 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1554 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1555 		else
1556 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1557 		break;
1558 
1559 	default:
1560 		if_printf(ifp, "Unsupported media type\n");
1561 		break;
1562 	}
1563 
1564 	em_init(adapter);
1565 
1566 	return (0);
1567 }
1568 
1569 static int
1570 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1571     int *segs_used, int *idx)
1572 {
1573 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1574 	bus_dmamap_t map;
1575 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1576 	struct e1000_tx_desc *ctxd = NULL;
1577 	struct mbuf *m_head = *m_headp;
1578 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1579 	int maxsegs, nsegs, i, j, first, last = 0, error;
1580 
1581 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1582 		error = em_tso_pullup(adapter, m_headp);
1583 		if (error)
1584 			return error;
1585 		m_head = *m_headp;
1586 	}
1587 
1588 	txd_upper = txd_lower = 0;
1589 	txd_used = 0;
1590 
1591 	/*
1592 	 * Capture the first descriptor index, this descriptor
1593 	 * will have the index of the EOP which is the only one
1594 	 * that now gets a DONE bit writeback.
1595 	 */
1596 	first = adapter->next_avail_tx_desc;
1597 	tx_buffer = &adapter->tx_buffer_area[first];
1598 	tx_buffer_mapped = tx_buffer;
1599 	map = tx_buffer->map;
1600 
1601 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1602 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1603 		("not enough spare TX desc"));
1604 	if (adapter->pcix_82544) {
1605 		/* Half it; see the comment in em_attach() */
1606 		maxsegs >>= 1;
1607 	}
1608 	if (maxsegs > EM_MAX_SCATTER)
1609 		maxsegs = EM_MAX_SCATTER;
1610 
1611 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1612 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1613 	if (error) {
1614 		if (error == ENOBUFS)
1615 			adapter->mbuf_alloc_failed++;
1616 		else
1617 			adapter->no_tx_dma_setup++;
1618 
1619 		m_freem(*m_headp);
1620 		*m_headp = NULL;
1621 		return error;
1622 	}
1623         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1624 
1625 	m_head = *m_headp;
1626 	adapter->tx_nsegs += nsegs;
1627 	*segs_used += nsegs;
1628 
1629 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1630 		/* TSO will consume one TX desc */
1631 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1632 		adapter->tx_nsegs += i;
1633 		*segs_used += i;
1634 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1635 		/* TX csum offloading will consume one TX desc */
1636 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1637 		adapter->tx_nsegs += i;
1638 		*segs_used += i;
1639 	}
1640 	i = adapter->next_avail_tx_desc;
1641 
1642 	/* Set up our transmit descriptors */
1643 	for (j = 0; j < nsegs; j++) {
1644 		/* If adapter is 82544 and on PCIX bus */
1645 		if(adapter->pcix_82544) {
1646 			DESC_ARRAY desc_array;
1647 			uint32_t array_elements, counter;
1648 
1649 			/*
1650 			 * Check the Address and Length combination and
1651 			 * split the data accordingly
1652 			 */
1653 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1654 						segs[j].ds_len, &desc_array);
1655 			for (counter = 0; counter < array_elements; counter++) {
1656 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1657 
1658 				tx_buffer = &adapter->tx_buffer_area[i];
1659 				ctxd = &adapter->tx_desc_base[i];
1660 
1661 				ctxd->buffer_addr = htole64(
1662 				    desc_array.descriptor[counter].address);
1663 				ctxd->lower.data = htole32(
1664 				    E1000_TXD_CMD_IFCS | txd_lower |
1665 				    desc_array.descriptor[counter].length);
1666 				ctxd->upper.data = htole32(txd_upper);
1667 
1668 				last = i;
1669 				if (++i == adapter->num_tx_desc)
1670 					i = 0;
1671 
1672 				txd_used++;
1673                         }
1674 		} else {
1675 			tx_buffer = &adapter->tx_buffer_area[i];
1676 			ctxd = &adapter->tx_desc_base[i];
1677 
1678 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1679 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1680 						   txd_lower | segs[j].ds_len);
1681 			ctxd->upper.data = htole32(txd_upper);
1682 
1683 			last = i;
1684 			if (++i == adapter->num_tx_desc)
1685 				i = 0;
1686 		}
1687 	}
1688 
1689 	adapter->next_avail_tx_desc = i;
1690 	if (adapter->pcix_82544) {
1691 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1692 		adapter->num_tx_desc_avail -= txd_used;
1693 	} else {
1694 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1695 		adapter->num_tx_desc_avail -= nsegs;
1696 	}
1697 
1698         /* Handle VLAN tag */
1699 	if (m_head->m_flags & M_VLANTAG) {
1700 		/* Set the vlan id. */
1701 		ctxd->upper.fields.special =
1702 		    htole16(m_head->m_pkthdr.ether_vlantag);
1703 
1704 		/* Tell hardware to add tag */
1705 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1706 	}
1707 
1708 	tx_buffer->m_head = m_head;
1709 	tx_buffer_mapped->map = tx_buffer->map;
1710 	tx_buffer->map = map;
1711 
1712 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1713 		adapter->tx_nsegs = 0;
1714 
1715 		/*
1716 		 * Report Status (RS) is turned on
1717 		 * every tx_int_nsegs descriptors.
1718 		 */
1719 		cmd = E1000_TXD_CMD_RS;
1720 
1721 		/*
1722 		 * Keep track of the descriptor, which will
1723 		 * be written back by hardware.
1724 		 */
1725 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1726 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1727 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1728 	}
1729 
1730 	/*
1731 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1732 	 */
1733 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1734 
1735 	if (adapter->hw.mac.type == e1000_82547) {
1736 		/*
1737 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1738 		 * E1000 that this frame is available to transmit.
1739 		 */
1740 		if (adapter->link_duplex == HALF_DUPLEX) {
1741 			em_82547_move_tail_serialized(adapter);
1742 		} else {
1743 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1744 			em_82547_update_fifo_head(adapter,
1745 			    m_head->m_pkthdr.len);
1746 		}
1747 	} else {
1748 		/*
1749 		 * Defer TDT updating, until enough descriptors are setup
1750 		 */
1751 		*idx = i;
1752 	}
1753 	return (0);
1754 }
1755 
1756 /*
1757  * 82547 workaround to avoid controller hang in half-duplex environment.
1758  * The workaround is to avoid queuing a large packet that would span
1759  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1760  * in this case.  We do that only when FIFO is quiescent.
1761  */
1762 static void
1763 em_82547_move_tail_serialized(struct adapter *adapter)
1764 {
1765 	struct e1000_tx_desc *tx_desc;
1766 	uint16_t hw_tdt, sw_tdt, length = 0;
1767 	bool eop = 0;
1768 
1769 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1770 
1771 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1772 	sw_tdt = adapter->next_avail_tx_desc;
1773 
1774 	while (hw_tdt != sw_tdt) {
1775 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1776 		length += tx_desc->lower.flags.length;
1777 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1778 		if (++hw_tdt == adapter->num_tx_desc)
1779 			hw_tdt = 0;
1780 
1781 		if (eop) {
1782 			if (em_82547_fifo_workaround(adapter, length)) {
1783 				adapter->tx_fifo_wrk_cnt++;
1784 				callout_reset(&adapter->tx_fifo_timer, 1,
1785 					em_82547_move_tail, adapter);
1786 				break;
1787 			}
1788 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1789 			em_82547_update_fifo_head(adapter, length);
1790 			length = 0;
1791 		}
1792 	}
1793 }
1794 
1795 static void
1796 em_82547_move_tail(void *xsc)
1797 {
1798 	struct adapter *adapter = xsc;
1799 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1800 
1801 	lwkt_serialize_enter(ifp->if_serializer);
1802 	em_82547_move_tail_serialized(adapter);
1803 	lwkt_serialize_exit(ifp->if_serializer);
1804 }
1805 
1806 static int
1807 em_82547_fifo_workaround(struct adapter *adapter, int len)
1808 {
1809 	int fifo_space, fifo_pkt_len;
1810 
1811 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1812 
1813 	if (adapter->link_duplex == HALF_DUPLEX) {
1814 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1815 
1816 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1817 			if (em_82547_tx_fifo_reset(adapter))
1818 				return (0);
1819 			else
1820 				return (1);
1821 		}
1822 	}
1823 	return (0);
1824 }
1825 
1826 static void
1827 em_82547_update_fifo_head(struct adapter *adapter, int len)
1828 {
1829 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1830 
1831 	/* tx_fifo_head is always 16 byte aligned */
1832 	adapter->tx_fifo_head += fifo_pkt_len;
1833 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1834 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1835 }
1836 
1837 static int
1838 em_82547_tx_fifo_reset(struct adapter *adapter)
1839 {
1840 	uint32_t tctl;
1841 
1842 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1843 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1844 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1845 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1846 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1847 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1848 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1849 		/* Disable TX unit */
1850 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1851 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1852 		    tctl & ~E1000_TCTL_EN);
1853 
1854 		/* Reset FIFO pointers */
1855 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1856 		    adapter->tx_head_addr);
1857 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1858 		    adapter->tx_head_addr);
1859 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1860 		    adapter->tx_head_addr);
1861 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1862 		    adapter->tx_head_addr);
1863 
1864 		/* Re-enable TX unit */
1865 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1866 		E1000_WRITE_FLUSH(&adapter->hw);
1867 
1868 		adapter->tx_fifo_head = 0;
1869 		adapter->tx_fifo_reset_cnt++;
1870 
1871 		return (TRUE);
1872 	} else {
1873 		return (FALSE);
1874 	}
1875 }
1876 
1877 static void
1878 em_set_promisc(struct adapter *adapter)
1879 {
1880 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1881 	uint32_t reg_rctl;
1882 
1883 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1884 
1885 	if (ifp->if_flags & IFF_PROMISC) {
1886 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1887 		/* Turn this on if you want to see bad packets */
1888 		if (em_debug_sbp)
1889 			reg_rctl |= E1000_RCTL_SBP;
1890 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1891 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1892 		reg_rctl |= E1000_RCTL_MPE;
1893 		reg_rctl &= ~E1000_RCTL_UPE;
1894 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1895 	}
1896 }
1897 
1898 static void
1899 em_disable_promisc(struct adapter *adapter)
1900 {
1901 	uint32_t reg_rctl;
1902 
1903 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1904 
1905 	reg_rctl &= ~E1000_RCTL_UPE;
1906 	reg_rctl &= ~E1000_RCTL_MPE;
1907 	reg_rctl &= ~E1000_RCTL_SBP;
1908 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1909 }
1910 
1911 static void
1912 em_set_multi(struct adapter *adapter)
1913 {
1914 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1915 	struct ifmultiaddr *ifma;
1916 	uint32_t reg_rctl = 0;
1917 	uint8_t *mta;
1918 	int mcnt = 0;
1919 
1920 	mta = adapter->mta;
1921 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1922 
1923 	if (adapter->hw.mac.type == e1000_82542 &&
1924 	    adapter->hw.revision_id == E1000_REVISION_2) {
1925 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1926 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1927 			e1000_pci_clear_mwi(&adapter->hw);
1928 		reg_rctl |= E1000_RCTL_RST;
1929 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1930 		msec_delay(5);
1931 	}
1932 
1933 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1934 		if (ifma->ifma_addr->sa_family != AF_LINK)
1935 			continue;
1936 
1937 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1938 			break;
1939 
1940 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1941 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1942 		mcnt++;
1943 	}
1944 
1945 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1946 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1947 		reg_rctl |= E1000_RCTL_MPE;
1948 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1949 	} else {
1950 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1951 	}
1952 
1953 	if (adapter->hw.mac.type == e1000_82542 &&
1954 	    adapter->hw.revision_id == E1000_REVISION_2) {
1955 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1956 		reg_rctl &= ~E1000_RCTL_RST;
1957 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1958 		msec_delay(5);
1959 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1960 			e1000_pci_set_mwi(&adapter->hw);
1961 	}
1962 }
1963 
1964 /*
1965  * This routine checks for link status and updates statistics.
1966  */
1967 static void
1968 em_timer(void *xsc)
1969 {
1970 	struct adapter *adapter = xsc;
1971 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1972 
1973 	lwkt_serialize_enter(ifp->if_serializer);
1974 
1975 	em_update_link_status(adapter);
1976 	em_update_stats(adapter);
1977 
1978 	/* Reset LAA into RAR[0] on 82571 */
1979 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1980 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1981 
1982 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1983 		em_print_hw_stats(adapter);
1984 
1985 	em_smartspeed(adapter);
1986 
1987 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1988 
1989 	lwkt_serialize_exit(ifp->if_serializer);
1990 }
1991 
1992 static void
1993 em_update_link_status(struct adapter *adapter)
1994 {
1995 	struct e1000_hw *hw = &adapter->hw;
1996 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1997 	device_t dev = adapter->dev;
1998 	uint32_t link_check = 0;
1999 
2000 	/* Get the cached link value or read phy for real */
2001 	switch (hw->phy.media_type) {
2002 	case e1000_media_type_copper:
2003 		if (hw->mac.get_link_status) {
2004 			/* Do the work to read phy */
2005 			e1000_check_for_link(hw);
2006 			link_check = !hw->mac.get_link_status;
2007 			if (link_check) /* ESB2 fix */
2008 				e1000_cfg_on_link_up(hw);
2009 		} else {
2010 			link_check = TRUE;
2011 		}
2012 		break;
2013 
2014 	case e1000_media_type_fiber:
2015 		e1000_check_for_link(hw);
2016 		link_check =
2017 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2018 		break;
2019 
2020 	case e1000_media_type_internal_serdes:
2021 		e1000_check_for_link(hw);
2022 		link_check = adapter->hw.mac.serdes_has_link;
2023 		break;
2024 
2025 	case e1000_media_type_unknown:
2026 	default:
2027 		break;
2028 	}
2029 
2030 	/* Now check for a transition */
2031 	if (link_check && adapter->link_active == 0) {
2032 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2033 		    &adapter->link_duplex);
2034 
2035 		/*
2036 		 * Check if we should enable/disable SPEED_MODE bit on
2037 		 * 82571/82572
2038 		 */
2039 		if (adapter->link_speed != SPEED_1000 &&
2040 		    (hw->mac.type == e1000_82571 ||
2041 		     hw->mac.type == e1000_82572)) {
2042 			int tarc0;
2043 
2044 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2045 			tarc0 &= ~SPEED_MODE_BIT;
2046 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2047 		}
2048 		if (bootverbose) {
2049 			device_printf(dev, "Link is up %d Mbps %s\n",
2050 			    adapter->link_speed,
2051 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2052 			    "Full Duplex" : "Half Duplex"));
2053 		}
2054 		adapter->link_active = 1;
2055 		adapter->smartspeed = 0;
2056 		ifp->if_baudrate = adapter->link_speed * 1000000;
2057 		ifp->if_link_state = LINK_STATE_UP;
2058 		if_link_state_change(ifp);
2059 	} else if (!link_check && adapter->link_active == 1) {
2060 		ifp->if_baudrate = adapter->link_speed = 0;
2061 		adapter->link_duplex = 0;
2062 		if (bootverbose)
2063 			device_printf(dev, "Link is Down\n");
2064 		adapter->link_active = 0;
2065 #if 0
2066 		/* Link down, disable watchdog */
2067 		if->if_timer = 0;
2068 #endif
2069 		ifp->if_link_state = LINK_STATE_DOWN;
2070 		if_link_state_change(ifp);
2071 	}
2072 }
2073 
2074 static void
2075 em_stop(struct adapter *adapter)
2076 {
2077 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2078 	int i;
2079 
2080 	ASSERT_SERIALIZED(ifp->if_serializer);
2081 
2082 	em_disable_intr(adapter);
2083 
2084 	callout_stop(&adapter->timer);
2085 	callout_stop(&adapter->tx_fifo_timer);
2086 
2087 	ifp->if_flags &= ~IFF_RUNNING;
2088 	ifq_clr_oactive(&ifp->if_snd);
2089 	ifp->if_timer = 0;
2090 
2091 	e1000_reset_hw(&adapter->hw);
2092 	if (adapter->hw.mac.type >= e1000_82544)
2093 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2094 
2095 	for (i = 0; i < adapter->num_tx_desc; i++) {
2096 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2097 
2098 		if (tx_buffer->m_head != NULL) {
2099 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2100 			m_freem(tx_buffer->m_head);
2101 			tx_buffer->m_head = NULL;
2102 		}
2103 	}
2104 
2105 	for (i = 0; i < adapter->num_rx_desc; i++) {
2106 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2107 
2108 		if (rx_buffer->m_head != NULL) {
2109 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2110 			m_freem(rx_buffer->m_head);
2111 			rx_buffer->m_head = NULL;
2112 		}
2113 	}
2114 
2115 	if (adapter->fmp != NULL)
2116 		m_freem(adapter->fmp);
2117 	adapter->fmp = NULL;
2118 	adapter->lmp = NULL;
2119 
2120 	adapter->csum_flags = 0;
2121 	adapter->csum_lhlen = 0;
2122 	adapter->csum_iphlen = 0;
2123 	adapter->csum_thlen = 0;
2124 	adapter->csum_mss = 0;
2125 	adapter->csum_pktlen = 0;
2126 
2127 	adapter->tx_dd_head = 0;
2128 	adapter->tx_dd_tail = 0;
2129 	adapter->tx_nsegs = 0;
2130 }
2131 
2132 static int
2133 em_get_hw_info(struct adapter *adapter)
2134 {
2135 	device_t dev = adapter->dev;
2136 
2137 	/* Save off the information about this board */
2138 	adapter->hw.vendor_id = pci_get_vendor(dev);
2139 	adapter->hw.device_id = pci_get_device(dev);
2140 	adapter->hw.revision_id = pci_get_revid(dev);
2141 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2142 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2143 
2144 	/* Do Shared Code Init and Setup */
2145 	if (e1000_set_mac_type(&adapter->hw))
2146 		return ENXIO;
2147 	return 0;
2148 }
2149 
2150 static int
2151 em_alloc_pci_res(struct adapter *adapter)
2152 {
2153 	device_t dev = adapter->dev;
2154 	u_int intr_flags;
2155 	int val, rid, msi_enable;
2156 
2157 	/* Enable bus mastering */
2158 	pci_enable_busmaster(dev);
2159 
2160 	adapter->memory_rid = EM_BAR_MEM;
2161 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2162 				&adapter->memory_rid, RF_ACTIVE);
2163 	if (adapter->memory == NULL) {
2164 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2165 		return (ENXIO);
2166 	}
2167 	adapter->osdep.mem_bus_space_tag =
2168 	    rman_get_bustag(adapter->memory);
2169 	adapter->osdep.mem_bus_space_handle =
2170 	    rman_get_bushandle(adapter->memory);
2171 
2172 	/* XXX This is quite goofy, it is not actually used */
2173 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2174 
2175 	/* Only older adapters use IO mapping */
2176 	if (adapter->hw.mac.type > e1000_82543 &&
2177 	    adapter->hw.mac.type < e1000_82571) {
2178 		/* Figure our where our IO BAR is ? */
2179 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2180 			val = pci_read_config(dev, rid, 4);
2181 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2182 				adapter->io_rid = rid;
2183 				break;
2184 			}
2185 			rid += 4;
2186 			/* check for 64bit BAR */
2187 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2188 				rid += 4;
2189 		}
2190 		if (rid >= PCIR_CARDBUSCIS) {
2191 			device_printf(dev, "Unable to locate IO BAR\n");
2192 			return (ENXIO);
2193 		}
2194 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2195 					&adapter->io_rid, RF_ACTIVE);
2196 		if (adapter->ioport == NULL) {
2197 			device_printf(dev, "Unable to allocate bus resource: "
2198 			    "ioport\n");
2199 			return (ENXIO);
2200 		}
2201 		adapter->hw.io_base = 0;
2202 		adapter->osdep.io_bus_space_tag =
2203 		    rman_get_bustag(adapter->ioport);
2204 		adapter->osdep.io_bus_space_handle =
2205 		    rman_get_bushandle(adapter->ioport);
2206 	}
2207 
2208 	/*
2209 	 * Don't enable MSI-X on 82574, see:
2210 	 * 82574 specification update errata #15
2211 	 *
2212 	 * Don't enable MSI on PCI/PCI-X chips, see:
2213 	 * 82540 specification update errata #6
2214 	 * 82545 specification update errata #4
2215 	 *
2216 	 * Don't enable MSI on 82571/82572, see:
2217 	 * 82571/82572 specification update errata #63
2218 	 */
2219 	msi_enable = em_msi_enable;
2220 	if (msi_enable &&
2221 	    (!pci_is_pcie(dev) ||
2222 	     adapter->hw.mac.type == e1000_82571 ||
2223 	     adapter->hw.mac.type == e1000_82572))
2224 		msi_enable = 0;
2225 
2226 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2227 	    &adapter->intr_rid, &intr_flags);
2228 
2229 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2230 		int unshared;
2231 
2232 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2233 		if (!unshared) {
2234 			adapter->flags |= EM_FLAG_SHARED_INTR;
2235 			if (bootverbose)
2236 				device_printf(dev, "IRQ shared\n");
2237 		} else {
2238 			intr_flags &= ~RF_SHAREABLE;
2239 			if (bootverbose)
2240 				device_printf(dev, "IRQ unshared\n");
2241 		}
2242 	}
2243 
2244 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2245 	    &adapter->intr_rid, intr_flags);
2246 	if (adapter->intr_res == NULL) {
2247 		device_printf(dev, "Unable to allocate bus resource: "
2248 		    "interrupt\n");
2249 		return (ENXIO);
2250 	}
2251 
2252 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2253 	adapter->hw.back = &adapter->osdep;
2254 	return (0);
2255 }
2256 
2257 static void
2258 em_free_pci_res(struct adapter *adapter)
2259 {
2260 	device_t dev = adapter->dev;
2261 
2262 	if (adapter->intr_res != NULL) {
2263 		bus_release_resource(dev, SYS_RES_IRQ,
2264 		    adapter->intr_rid, adapter->intr_res);
2265 	}
2266 
2267 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2268 		pci_release_msi(dev);
2269 
2270 	if (adapter->memory != NULL) {
2271 		bus_release_resource(dev, SYS_RES_MEMORY,
2272 		    adapter->memory_rid, adapter->memory);
2273 	}
2274 
2275 	if (adapter->flash != NULL) {
2276 		bus_release_resource(dev, SYS_RES_MEMORY,
2277 		    adapter->flash_rid, adapter->flash);
2278 	}
2279 
2280 	if (adapter->ioport != NULL) {
2281 		bus_release_resource(dev, SYS_RES_IOPORT,
2282 		    adapter->io_rid, adapter->ioport);
2283 	}
2284 }
2285 
2286 static int
2287 em_reset(struct adapter *adapter)
2288 {
2289 	device_t dev = adapter->dev;
2290 	uint16_t rx_buffer_size;
2291 	uint32_t pba;
2292 
2293 	/* When hardware is reset, fifo_head is also reset */
2294 	adapter->tx_fifo_head = 0;
2295 
2296 	/* Set up smart power down as default off on newer adapters. */
2297 	if (!em_smart_pwr_down &&
2298 	    (adapter->hw.mac.type == e1000_82571 ||
2299 	     adapter->hw.mac.type == e1000_82572)) {
2300 		uint16_t phy_tmp = 0;
2301 
2302 		/* Speed up time to link by disabling smart power down. */
2303 		e1000_read_phy_reg(&adapter->hw,
2304 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2305 		phy_tmp &= ~IGP02E1000_PM_SPD;
2306 		e1000_write_phy_reg(&adapter->hw,
2307 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2308 	}
2309 
2310 	/*
2311 	 * Packet Buffer Allocation (PBA)
2312 	 * Writing PBA sets the receive portion of the buffer
2313 	 * the remainder is used for the transmit buffer.
2314 	 *
2315 	 * Devices before the 82547 had a Packet Buffer of 64K.
2316 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2317 	 * After the 82547 the buffer was reduced to 40K.
2318 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2319 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2320 	 */
2321 	switch (adapter->hw.mac.type) {
2322 	case e1000_82547:
2323 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2324 		if (adapter->max_frame_size > 8192)
2325 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2326 		else
2327 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2328 		adapter->tx_fifo_head = 0;
2329 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2330 		adapter->tx_fifo_size =
2331 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2332 		break;
2333 
2334 	/* Total Packet Buffer on these is 48K */
2335 	case e1000_82571:
2336 	case e1000_82572:
2337 	case e1000_80003es2lan:
2338 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2339 		break;
2340 
2341 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2342 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2343 		break;
2344 
2345 	case e1000_82574:
2346 	case e1000_82583:
2347 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2348 		break;
2349 
2350 	case e1000_ich8lan:
2351 		pba = E1000_PBA_8K;
2352 		break;
2353 
2354 	case e1000_ich9lan:
2355 	case e1000_ich10lan:
2356 #define E1000_PBA_10K	0x000A
2357 		pba = E1000_PBA_10K;
2358 		break;
2359 
2360 	case e1000_pchlan:
2361 	case e1000_pch2lan:
2362 		pba = E1000_PBA_26K;
2363 		break;
2364 
2365 	default:
2366 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2367 		if (adapter->max_frame_size > 8192)
2368 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2369 		else
2370 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2371 	}
2372 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2373 
2374 	/*
2375 	 * These parameters control the automatic generation (Tx) and
2376 	 * response (Rx) to Ethernet PAUSE frames.
2377 	 * - High water mark should allow for at least two frames to be
2378 	 *   received after sending an XOFF.
2379 	 * - Low water mark works best when it is very near the high water mark.
2380 	 *   This allows the receiver to restart by sending XON when it has
2381 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2382 	 *   restart after one full frame is pulled from the buffer. There
2383 	 *   could be several smaller frames in the buffer and if so they will
2384 	 *   not trigger the XON until their total number reduces the buffer
2385 	 *   by 1500.
2386 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2387 	 */
2388 	rx_buffer_size =
2389 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2390 
2391 	adapter->hw.fc.high_water = rx_buffer_size -
2392 				    roundup2(adapter->max_frame_size, 1024);
2393 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2394 
2395 	if (adapter->hw.mac.type == e1000_80003es2lan)
2396 		adapter->hw.fc.pause_time = 0xFFFF;
2397 	else
2398 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2399 
2400 	adapter->hw.fc.send_xon = TRUE;
2401 
2402 	adapter->hw.fc.requested_mode = e1000_fc_full;
2403 
2404 	/*
2405 	 * Device specific overrides/settings
2406 	 */
2407 	switch (adapter->hw.mac.type) {
2408 	case e1000_pchlan:
2409 		/* Workaround: no TX flow ctrl for PCH */
2410 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2411 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2412 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2413 			adapter->hw.fc.high_water = 0x3500;
2414 			adapter->hw.fc.low_water = 0x1500;
2415 		} else {
2416 			adapter->hw.fc.high_water = 0x5000;
2417 			adapter->hw.fc.low_water = 0x3000;
2418 		}
2419 		adapter->hw.fc.refresh_time = 0x1000;
2420 		break;
2421 
2422 	case e1000_pch2lan:
2423 		adapter->hw.fc.high_water = 0x5C20;
2424 		adapter->hw.fc.low_water = 0x5048;
2425 		adapter->hw.fc.pause_time = 0x0650;
2426 		adapter->hw.fc.refresh_time = 0x0400;
2427 		/* Jumbos need adjusted PBA */
2428 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2429 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2430 		else
2431 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2432 		break;
2433 
2434 	case e1000_ich9lan:
2435 	case e1000_ich10lan:
2436 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2437 			adapter->hw.fc.high_water = 0x2800;
2438 			adapter->hw.fc.low_water =
2439 			    adapter->hw.fc.high_water - 8;
2440 			break;
2441 		}
2442 		/* FALL THROUGH */
2443 	default:
2444 		if (adapter->hw.mac.type == e1000_80003es2lan)
2445 			adapter->hw.fc.pause_time = 0xFFFF;
2446 		break;
2447 	}
2448 
2449 	/* Issue a global reset */
2450 	e1000_reset_hw(&adapter->hw);
2451 	if (adapter->hw.mac.type >= e1000_82544)
2452 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2453 	em_disable_aspm(adapter);
2454 
2455 	if (e1000_init_hw(&adapter->hw) < 0) {
2456 		device_printf(dev, "Hardware Initialization Failed\n");
2457 		return (EIO);
2458 	}
2459 
2460 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2461 	e1000_get_phy_info(&adapter->hw);
2462 	e1000_check_for_link(&adapter->hw);
2463 
2464 	return (0);
2465 }
2466 
2467 static void
2468 em_setup_ifp(struct adapter *adapter)
2469 {
2470 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2471 
2472 	if_initname(ifp, device_get_name(adapter->dev),
2473 		    device_get_unit(adapter->dev));
2474 	ifp->if_softc = adapter;
2475 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2476 	ifp->if_init =  em_init;
2477 	ifp->if_ioctl = em_ioctl;
2478 	ifp->if_start = em_start;
2479 #ifdef IFPOLL_ENABLE
2480 	ifp->if_npoll = em_npoll;
2481 #endif
2482 	ifp->if_watchdog = em_watchdog;
2483 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2484 	ifq_set_ready(&ifp->if_snd);
2485 
2486 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2487 
2488 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2489 	if (adapter->hw.mac.type >= e1000_82543)
2490 		ifp->if_capabilities |= IFCAP_HWCSUM;
2491 	if (adapter->flags & EM_FLAG_TSO)
2492 		ifp->if_capabilities |= IFCAP_TSO;
2493 	ifp->if_capenable = ifp->if_capabilities;
2494 
2495 	if (ifp->if_capenable & IFCAP_TXCSUM)
2496 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2497 	if (ifp->if_capenable & IFCAP_TSO)
2498 		ifp->if_hwassist |= CSUM_TSO;
2499 
2500 	/*
2501 	 * Tell the upper layer(s) we support long frames.
2502 	 */
2503 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2504 
2505 	/*
2506 	 * Specify the media types supported by this adapter and register
2507 	 * callbacks to update media and link information
2508 	 */
2509 	ifmedia_init(&adapter->media, IFM_IMASK,
2510 		     em_media_change, em_media_status);
2511 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2512 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2513 		u_char fiber_type = IFM_1000_SX; /* default type */
2514 
2515 		if (adapter->hw.mac.type == e1000_82545)
2516 			fiber_type = IFM_1000_LX;
2517 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2518 			    0, NULL);
2519 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2520 	} else {
2521 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2522 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2523 			    0, NULL);
2524 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2525 			    0, NULL);
2526 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2527 			    0, NULL);
2528 		if (adapter->hw.phy.type != e1000_phy_ife) {
2529 			ifmedia_add(&adapter->media,
2530 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2531 			ifmedia_add(&adapter->media,
2532 				IFM_ETHER | IFM_1000_T, 0, NULL);
2533 		}
2534 	}
2535 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2536 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2537 }
2538 
2539 
2540 /*
2541  * Workaround for SmartSpeed on 82541 and 82547 controllers
2542  */
2543 static void
2544 em_smartspeed(struct adapter *adapter)
2545 {
2546 	uint16_t phy_tmp;
2547 
2548 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2549 	    adapter->hw.mac.autoneg == 0 ||
2550 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2551 		return;
2552 
2553 	if (adapter->smartspeed == 0) {
2554 		/*
2555 		 * If Master/Slave config fault is asserted twice,
2556 		 * we assume back-to-back
2557 		 */
2558 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2559 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2560 			return;
2561 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2562 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2563 			e1000_read_phy_reg(&adapter->hw,
2564 			    PHY_1000T_CTRL, &phy_tmp);
2565 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2566 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2567 				e1000_write_phy_reg(&adapter->hw,
2568 				    PHY_1000T_CTRL, phy_tmp);
2569 				adapter->smartspeed++;
2570 				if (adapter->hw.mac.autoneg &&
2571 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2572 				    !e1000_read_phy_reg(&adapter->hw,
2573 				     PHY_CONTROL, &phy_tmp)) {
2574 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2575 						   MII_CR_RESTART_AUTO_NEG;
2576 					e1000_write_phy_reg(&adapter->hw,
2577 					    PHY_CONTROL, phy_tmp);
2578 				}
2579 			}
2580 		}
2581 		return;
2582 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2583 		/* If still no link, perhaps using 2/3 pair cable */
2584 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2585 		phy_tmp |= CR_1000T_MS_ENABLE;
2586 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2587 		if (adapter->hw.mac.autoneg &&
2588 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2589 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2590 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2591 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2592 		}
2593 	}
2594 
2595 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2596 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2597 		adapter->smartspeed = 0;
2598 }
2599 
2600 static int
2601 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2602 	      struct em_dma_alloc *dma)
2603 {
2604 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2605 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2606 				&dma->dma_tag, &dma->dma_map,
2607 				&dma->dma_paddr);
2608 	if (dma->dma_vaddr == NULL)
2609 		return ENOMEM;
2610 	else
2611 		return 0;
2612 }
2613 
2614 static void
2615 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2616 {
2617 	if (dma->dma_tag == NULL)
2618 		return;
2619 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2620 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2621 	bus_dma_tag_destroy(dma->dma_tag);
2622 }
2623 
2624 static int
2625 em_create_tx_ring(struct adapter *adapter)
2626 {
2627 	device_t dev = adapter->dev;
2628 	struct em_buffer *tx_buffer;
2629 	int error, i;
2630 
2631 	adapter->tx_buffer_area =
2632 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2633 			M_DEVBUF, M_WAITOK | M_ZERO);
2634 
2635 	/*
2636 	 * Create DMA tags for tx buffers
2637 	 */
2638 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2639 			1, 0,			/* alignment, bounds */
2640 			BUS_SPACE_MAXADDR,	/* lowaddr */
2641 			BUS_SPACE_MAXADDR,	/* highaddr */
2642 			NULL, NULL,		/* filter, filterarg */
2643 			EM_TSO_SIZE,		/* maxsize */
2644 			EM_MAX_SCATTER,		/* nsegments */
2645 			PAGE_SIZE,		/* maxsegsize */
2646 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2647 			BUS_DMA_ONEBPAGE,	/* flags */
2648 			&adapter->txtag);
2649 	if (error) {
2650 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2651 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2652 		adapter->tx_buffer_area = NULL;
2653 		return error;
2654 	}
2655 
2656 	/*
2657 	 * Create DMA maps for tx buffers
2658 	 */
2659 	for (i = 0; i < adapter->num_tx_desc; i++) {
2660 		tx_buffer = &adapter->tx_buffer_area[i];
2661 
2662 		error = bus_dmamap_create(adapter->txtag,
2663 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2664 					  &tx_buffer->map);
2665 		if (error) {
2666 			device_printf(dev, "Unable to create TX DMA map\n");
2667 			em_destroy_tx_ring(adapter, i);
2668 			return error;
2669 		}
2670 	}
2671 	return (0);
2672 }
2673 
2674 static void
2675 em_init_tx_ring(struct adapter *adapter)
2676 {
2677 	/* Clear the old ring contents */
2678 	bzero(adapter->tx_desc_base,
2679 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2680 
2681 	/* Reset state */
2682 	adapter->next_avail_tx_desc = 0;
2683 	adapter->next_tx_to_clean = 0;
2684 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2685 }
2686 
2687 static void
2688 em_init_tx_unit(struct adapter *adapter)
2689 {
2690 	uint32_t tctl, tarc, tipg = 0;
2691 	uint64_t bus_addr;
2692 
2693 	/* Setup the Base and Length of the Tx Descriptor Ring */
2694 	bus_addr = adapter->txdma.dma_paddr;
2695 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2696 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2697 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2698 	    (uint32_t)(bus_addr >> 32));
2699 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2700 	    (uint32_t)bus_addr);
2701 	/* Setup the HW Tx Head and Tail descriptor pointers */
2702 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2703 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2704 
2705 	/* Set the default values for the Tx Inter Packet Gap timer */
2706 	switch (adapter->hw.mac.type) {
2707 	case e1000_82542:
2708 		tipg = DEFAULT_82542_TIPG_IPGT;
2709 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2710 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2711 		break;
2712 
2713 	case e1000_80003es2lan:
2714 		tipg = DEFAULT_82543_TIPG_IPGR1;
2715 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2716 		    E1000_TIPG_IPGR2_SHIFT;
2717 		break;
2718 
2719 	default:
2720 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2721 		    adapter->hw.phy.media_type ==
2722 		    e1000_media_type_internal_serdes)
2723 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2724 		else
2725 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2726 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2727 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2728 		break;
2729 	}
2730 
2731 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2732 
2733 	/* NOTE: 0 is not allowed for TIDV */
2734 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2735 	if(adapter->hw.mac.type >= e1000_82540)
2736 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2737 
2738 	if (adapter->hw.mac.type == e1000_82571 ||
2739 	    adapter->hw.mac.type == e1000_82572) {
2740 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2741 		tarc |= SPEED_MODE_BIT;
2742 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2743 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2744 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2745 		tarc |= 1;
2746 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2747 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2748 		tarc |= 1;
2749 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2750 	}
2751 
2752 	/* Program the Transmit Control Register */
2753 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2754 	tctl &= ~E1000_TCTL_CT;
2755 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2756 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2757 
2758 	if (adapter->hw.mac.type >= e1000_82571)
2759 		tctl |= E1000_TCTL_MULR;
2760 
2761 	/* This write will effectively turn on the transmit unit. */
2762 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2763 
2764 	if (adapter->hw.mac.type == e1000_82571 ||
2765 	    adapter->hw.mac.type == e1000_82572 ||
2766 	    adapter->hw.mac.type == e1000_80003es2lan) {
2767 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2768 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2769 		tarc &= ~(1 << 28);
2770 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2771 	}
2772 }
2773 
2774 static void
2775 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2776 {
2777 	struct em_buffer *tx_buffer;
2778 	int i;
2779 
2780 	if (adapter->tx_buffer_area == NULL)
2781 		return;
2782 
2783 	for (i = 0; i < ndesc; i++) {
2784 		tx_buffer = &adapter->tx_buffer_area[i];
2785 
2786 		KKASSERT(tx_buffer->m_head == NULL);
2787 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2788 	}
2789 	bus_dma_tag_destroy(adapter->txtag);
2790 
2791 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2792 	adapter->tx_buffer_area = NULL;
2793 }
2794 
2795 /*
2796  * The offload context needs to be set when we transfer the first
2797  * packet of a particular protocol (TCP/UDP).  This routine has been
2798  * enhanced to deal with inserted VLAN headers.
2799  *
2800  * If the new packet's ether header length, ip header length and
2801  * csum offloading type are same as the previous packet, we should
2802  * avoid allocating a new csum context descriptor; mainly to take
2803  * advantage of the pipeline effect of the TX data read request.
2804  *
2805  * This function returns number of TX descrptors allocated for
2806  * csum context.
2807  */
2808 static int
2809 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2810 	  uint32_t *txd_upper, uint32_t *txd_lower)
2811 {
2812 	struct e1000_context_desc *TXD;
2813 	int curr_txd, ehdrlen, csum_flags;
2814 	uint32_t cmd, hdr_len, ip_hlen;
2815 
2816 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2817 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2818 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2819 
2820 	if (adapter->csum_lhlen == ehdrlen &&
2821 	    adapter->csum_iphlen == ip_hlen &&
2822 	    adapter->csum_flags == csum_flags) {
2823 		/*
2824 		 * Same csum offload context as the previous packets;
2825 		 * just return.
2826 		 */
2827 		*txd_upper = adapter->csum_txd_upper;
2828 		*txd_lower = adapter->csum_txd_lower;
2829 		return 0;
2830 	}
2831 
2832 	/*
2833 	 * Setup a new csum offload context.
2834 	 */
2835 
2836 	curr_txd = adapter->next_avail_tx_desc;
2837 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2838 
2839 	cmd = 0;
2840 
2841 	/* Setup of IP header checksum. */
2842 	if (csum_flags & CSUM_IP) {
2843 		/*
2844 		 * Start offset for header checksum calculation.
2845 		 * End offset for header checksum calculation.
2846 		 * Offset of place to put the checksum.
2847 		 */
2848 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2849 		TXD->lower_setup.ip_fields.ipcse =
2850 		    htole16(ehdrlen + ip_hlen - 1);
2851 		TXD->lower_setup.ip_fields.ipcso =
2852 		    ehdrlen + offsetof(struct ip, ip_sum);
2853 		cmd |= E1000_TXD_CMD_IP;
2854 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2855 	}
2856 	hdr_len = ehdrlen + ip_hlen;
2857 
2858 	if (csum_flags & CSUM_TCP) {
2859 		/*
2860 		 * Start offset for payload checksum calculation.
2861 		 * End offset for payload checksum calculation.
2862 		 * Offset of place to put the checksum.
2863 		 */
2864 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2865 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2866 		TXD->upper_setup.tcp_fields.tucso =
2867 		    hdr_len + offsetof(struct tcphdr, th_sum);
2868 		cmd |= E1000_TXD_CMD_TCP;
2869 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2870 	} else if (csum_flags & CSUM_UDP) {
2871 		/*
2872 		 * Start offset for header checksum calculation.
2873 		 * End offset for header checksum calculation.
2874 		 * Offset of place to put the checksum.
2875 		 */
2876 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2877 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2878 		TXD->upper_setup.tcp_fields.tucso =
2879 		    hdr_len + offsetof(struct udphdr, uh_sum);
2880 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2881 	}
2882 
2883 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2884 		     E1000_TXD_DTYP_D;		/* Data descr */
2885 
2886 	/* Save the information for this csum offloading context */
2887 	adapter->csum_lhlen = ehdrlen;
2888 	adapter->csum_iphlen = ip_hlen;
2889 	adapter->csum_flags = csum_flags;
2890 	adapter->csum_txd_upper = *txd_upper;
2891 	adapter->csum_txd_lower = *txd_lower;
2892 
2893 	TXD->tcp_seg_setup.data = htole32(0);
2894 	TXD->cmd_and_length =
2895 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2896 
2897 	if (++curr_txd == adapter->num_tx_desc)
2898 		curr_txd = 0;
2899 
2900 	KKASSERT(adapter->num_tx_desc_avail > 0);
2901 	adapter->num_tx_desc_avail--;
2902 
2903 	adapter->next_avail_tx_desc = curr_txd;
2904 	return 1;
2905 }
2906 
2907 static void
2908 em_txeof(struct adapter *adapter)
2909 {
2910 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2911 	struct em_buffer *tx_buffer;
2912 	int first, num_avail;
2913 
2914 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2915 		return;
2916 
2917 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2918 		return;
2919 
2920 	num_avail = adapter->num_tx_desc_avail;
2921 	first = adapter->next_tx_to_clean;
2922 
2923 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2924 		struct e1000_tx_desc *tx_desc;
2925 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2926 
2927 		tx_desc = &adapter->tx_desc_base[dd_idx];
2928 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2929 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2930 
2931 			if (++dd_idx == adapter->num_tx_desc)
2932 				dd_idx = 0;
2933 
2934 			while (first != dd_idx) {
2935 				logif(pkt_txclean);
2936 
2937 				num_avail++;
2938 
2939 				tx_buffer = &adapter->tx_buffer_area[first];
2940 				if (tx_buffer->m_head) {
2941 					IFNET_STAT_INC(ifp, opackets, 1);
2942 					bus_dmamap_unload(adapter->txtag,
2943 							  tx_buffer->map);
2944 					m_freem(tx_buffer->m_head);
2945 					tx_buffer->m_head = NULL;
2946 				}
2947 
2948 				if (++first == adapter->num_tx_desc)
2949 					first = 0;
2950 			}
2951 		} else {
2952 			break;
2953 		}
2954 	}
2955 	adapter->next_tx_to_clean = first;
2956 	adapter->num_tx_desc_avail = num_avail;
2957 
2958 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2959 		adapter->tx_dd_head = 0;
2960 		adapter->tx_dd_tail = 0;
2961 	}
2962 
2963 	if (!EM_IS_OACTIVE(adapter)) {
2964 		ifq_clr_oactive(&ifp->if_snd);
2965 
2966 		/* All clean, turn off the timer */
2967 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2968 			ifp->if_timer = 0;
2969 	}
2970 }
2971 
2972 static void
2973 em_tx_collect(struct adapter *adapter)
2974 {
2975 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2976 	struct em_buffer *tx_buffer;
2977 	int tdh, first, num_avail, dd_idx = -1;
2978 
2979 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2980 		return;
2981 
2982 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2983 	if (tdh == adapter->next_tx_to_clean)
2984 		return;
2985 
2986 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2987 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2988 
2989 	num_avail = adapter->num_tx_desc_avail;
2990 	first = adapter->next_tx_to_clean;
2991 
2992 	while (first != tdh) {
2993 		logif(pkt_txclean);
2994 
2995 		num_avail++;
2996 
2997 		tx_buffer = &adapter->tx_buffer_area[first];
2998 		if (tx_buffer->m_head) {
2999 			IFNET_STAT_INC(ifp, opackets, 1);
3000 			bus_dmamap_unload(adapter->txtag,
3001 					  tx_buffer->map);
3002 			m_freem(tx_buffer->m_head);
3003 			tx_buffer->m_head = NULL;
3004 		}
3005 
3006 		if (first == dd_idx) {
3007 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3008 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3009 				adapter->tx_dd_head = 0;
3010 				adapter->tx_dd_tail = 0;
3011 				dd_idx = -1;
3012 			} else {
3013 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3014 			}
3015 		}
3016 
3017 		if (++first == adapter->num_tx_desc)
3018 			first = 0;
3019 	}
3020 	adapter->next_tx_to_clean = first;
3021 	adapter->num_tx_desc_avail = num_avail;
3022 
3023 	if (!EM_IS_OACTIVE(adapter)) {
3024 		ifq_clr_oactive(&ifp->if_snd);
3025 
3026 		/* All clean, turn off the timer */
3027 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3028 			ifp->if_timer = 0;
3029 	}
3030 }
3031 
3032 /*
3033  * When Link is lost sometimes there is work still in the TX ring
3034  * which will result in a watchdog, rather than allow that do an
3035  * attempted cleanup and then reinit here.  Note that this has been
3036  * seens mostly with fiber adapters.
3037  */
3038 static void
3039 em_tx_purge(struct adapter *adapter)
3040 {
3041 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3042 
3043 	if (!adapter->link_active && ifp->if_timer) {
3044 		em_tx_collect(adapter);
3045 		if (ifp->if_timer) {
3046 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3047 			ifp->if_timer = 0;
3048 			em_init(adapter);
3049 		}
3050 	}
3051 }
3052 
3053 static int
3054 em_newbuf(struct adapter *adapter, int i, int init)
3055 {
3056 	struct mbuf *m;
3057 	bus_dma_segment_t seg;
3058 	bus_dmamap_t map;
3059 	struct em_buffer *rx_buffer;
3060 	int error, nseg;
3061 
3062 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3063 	if (m == NULL) {
3064 		adapter->mbuf_cluster_failed++;
3065 		if (init) {
3066 			if_printf(&adapter->arpcom.ac_if,
3067 				  "Unable to allocate RX mbuf\n");
3068 		}
3069 		return (ENOBUFS);
3070 	}
3071 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3072 
3073 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3074 		m_adj(m, ETHER_ALIGN);
3075 
3076 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3077 			adapter->rx_sparemap, m,
3078 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3079 	if (error) {
3080 		m_freem(m);
3081 		if (init) {
3082 			if_printf(&adapter->arpcom.ac_if,
3083 				  "Unable to load RX mbuf\n");
3084 		}
3085 		return (error);
3086 	}
3087 
3088 	rx_buffer = &adapter->rx_buffer_area[i];
3089 	if (rx_buffer->m_head != NULL)
3090 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3091 
3092 	map = rx_buffer->map;
3093 	rx_buffer->map = adapter->rx_sparemap;
3094 	adapter->rx_sparemap = map;
3095 
3096 	rx_buffer->m_head = m;
3097 
3098 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3099 	return (0);
3100 }
3101 
3102 static int
3103 em_create_rx_ring(struct adapter *adapter)
3104 {
3105 	device_t dev = adapter->dev;
3106 	struct em_buffer *rx_buffer;
3107 	int i, error;
3108 
3109 	adapter->rx_buffer_area =
3110 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3111 			M_DEVBUF, M_WAITOK | M_ZERO);
3112 
3113 	/*
3114 	 * Create DMA tag for rx buffers
3115 	 */
3116 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3117 			1, 0,			/* alignment, bounds */
3118 			BUS_SPACE_MAXADDR,	/* lowaddr */
3119 			BUS_SPACE_MAXADDR,	/* highaddr */
3120 			NULL, NULL,		/* filter, filterarg */
3121 			MCLBYTES,		/* maxsize */
3122 			1,			/* nsegments */
3123 			MCLBYTES,		/* maxsegsize */
3124 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3125 			&adapter->rxtag);
3126 	if (error) {
3127 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3128 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3129 		adapter->rx_buffer_area = NULL;
3130 		return error;
3131 	}
3132 
3133 	/*
3134 	 * Create spare DMA map for rx buffers
3135 	 */
3136 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3137 				  &adapter->rx_sparemap);
3138 	if (error) {
3139 		device_printf(dev, "Unable to create spare RX DMA map\n");
3140 		bus_dma_tag_destroy(adapter->rxtag);
3141 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3142 		adapter->rx_buffer_area = NULL;
3143 		return error;
3144 	}
3145 
3146 	/*
3147 	 * Create DMA maps for rx buffers
3148 	 */
3149 	for (i = 0; i < adapter->num_rx_desc; i++) {
3150 		rx_buffer = &adapter->rx_buffer_area[i];
3151 
3152 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3153 					  &rx_buffer->map);
3154 		if (error) {
3155 			device_printf(dev, "Unable to create RX DMA map\n");
3156 			em_destroy_rx_ring(adapter, i);
3157 			return error;
3158 		}
3159 	}
3160 	return (0);
3161 }
3162 
3163 static int
3164 em_init_rx_ring(struct adapter *adapter)
3165 {
3166 	int i, error;
3167 
3168 	/* Reset descriptor ring */
3169 	bzero(adapter->rx_desc_base,
3170 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3171 
3172 	/* Allocate new ones. */
3173 	for (i = 0; i < adapter->num_rx_desc; i++) {
3174 		error = em_newbuf(adapter, i, 1);
3175 		if (error)
3176 			return (error);
3177 	}
3178 
3179 	/* Setup our descriptor pointers */
3180 	adapter->next_rx_desc_to_check = 0;
3181 
3182 	return (0);
3183 }
3184 
3185 static void
3186 em_init_rx_unit(struct adapter *adapter)
3187 {
3188 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3189 	uint64_t bus_addr;
3190 	uint32_t rctl;
3191 
3192 	/*
3193 	 * Make sure receives are disabled while setting
3194 	 * up the descriptor ring
3195 	 */
3196 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3197 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3198 
3199 	if (adapter->hw.mac.type >= e1000_82540) {
3200 		uint32_t itr;
3201 
3202 		/*
3203 		 * Set the interrupt throttling rate. Value is calculated
3204 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3205 		 */
3206 		if (adapter->int_throttle_ceil)
3207 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3208 		else
3209 			itr = 0;
3210 		em_set_itr(adapter, itr);
3211 	}
3212 
3213 	/* Disable accelerated ackknowledge */
3214 	if (adapter->hw.mac.type == e1000_82574) {
3215 		E1000_WRITE_REG(&adapter->hw,
3216 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3217 	}
3218 
3219 	/* Receive Checksum Offload for TCP and UDP */
3220 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3221 		uint32_t rxcsum;
3222 
3223 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3224 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3225 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3226 	}
3227 
3228 	/*
3229 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3230 	 * long latencies are observed, like Lenovo X60. This
3231 	 * change eliminates the problem, but since having positive
3232 	 * values in RDTR is a known source of problems on other
3233 	 * platforms another solution is being sought.
3234 	 */
3235 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3236 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3237 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3238 	}
3239 
3240 	/*
3241 	 * Setup the Base and Length of the Rx Descriptor Ring
3242 	 */
3243 	bus_addr = adapter->rxdma.dma_paddr;
3244 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3245 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3246 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3247 	    (uint32_t)(bus_addr >> 32));
3248 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3249 	    (uint32_t)bus_addr);
3250 
3251 	/*
3252 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3253 	 */
3254 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3255 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3256 
3257 	/* Set PTHRESH for improved jumbo performance */
3258 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3259 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3260 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3261 	    (ifp->if_mtu > ETHERMTU)) {
3262 		uint32_t rxdctl;
3263 
3264 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3265 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3266 	}
3267 
3268 	if (adapter->hw.mac.type == e1000_pch2lan) {
3269 		if (ifp->if_mtu > ETHERMTU)
3270 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3271 		else
3272 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3273 	}
3274 
3275 	/* Setup the Receive Control Register */
3276 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3277 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3278 		E1000_RCTL_RDMTS_HALF |
3279 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3280 
3281 	/* Make sure VLAN Filters are off */
3282 	rctl &= ~E1000_RCTL_VFE;
3283 
3284 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3285 		rctl |= E1000_RCTL_SBP;
3286 	else
3287 		rctl &= ~E1000_RCTL_SBP;
3288 
3289 	switch (adapter->rx_buffer_len) {
3290 	default:
3291 	case 2048:
3292 		rctl |= E1000_RCTL_SZ_2048;
3293 		break;
3294 
3295 	case 4096:
3296 		rctl |= E1000_RCTL_SZ_4096 |
3297 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3298 		break;
3299 
3300 	case 8192:
3301 		rctl |= E1000_RCTL_SZ_8192 |
3302 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3303 		break;
3304 
3305 	case 16384:
3306 		rctl |= E1000_RCTL_SZ_16384 |
3307 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3308 		break;
3309 	}
3310 
3311 	if (ifp->if_mtu > ETHERMTU)
3312 		rctl |= E1000_RCTL_LPE;
3313 	else
3314 		rctl &= ~E1000_RCTL_LPE;
3315 
3316 	/* Enable Receives */
3317 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3318 }
3319 
3320 static void
3321 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3322 {
3323 	struct em_buffer *rx_buffer;
3324 	int i;
3325 
3326 	if (adapter->rx_buffer_area == NULL)
3327 		return;
3328 
3329 	for (i = 0; i < ndesc; i++) {
3330 		rx_buffer = &adapter->rx_buffer_area[i];
3331 
3332 		KKASSERT(rx_buffer->m_head == NULL);
3333 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3334 	}
3335 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3336 	bus_dma_tag_destroy(adapter->rxtag);
3337 
3338 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3339 	adapter->rx_buffer_area = NULL;
3340 }
3341 
3342 static void
3343 em_rxeof(struct adapter *adapter, int count)
3344 {
3345 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3346 	uint8_t status, accept_frame = 0, eop = 0;
3347 	uint16_t len, desc_len, prev_len_adj;
3348 	struct e1000_rx_desc *current_desc;
3349 	struct mbuf *mp;
3350 	int i;
3351 
3352 	i = adapter->next_rx_desc_to_check;
3353 	current_desc = &adapter->rx_desc_base[i];
3354 
3355 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3356 		return;
3357 
3358 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3359 		struct mbuf *m = NULL;
3360 
3361 		logif(pkt_receive);
3362 
3363 		mp = adapter->rx_buffer_area[i].m_head;
3364 
3365 		/*
3366 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3367 		 * needs to access the last received byte in the mbuf.
3368 		 */
3369 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3370 				BUS_DMASYNC_POSTREAD);
3371 
3372 		accept_frame = 1;
3373 		prev_len_adj = 0;
3374 		desc_len = le16toh(current_desc->length);
3375 		status = current_desc->status;
3376 		if (status & E1000_RXD_STAT_EOP) {
3377 			count--;
3378 			eop = 1;
3379 			if (desc_len < ETHER_CRC_LEN) {
3380 				len = 0;
3381 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3382 			} else {
3383 				len = desc_len - ETHER_CRC_LEN;
3384 			}
3385 		} else {
3386 			eop = 0;
3387 			len = desc_len;
3388 		}
3389 
3390 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3391 			uint8_t	last_byte;
3392 			uint32_t pkt_len = desc_len;
3393 
3394 			if (adapter->fmp != NULL)
3395 				pkt_len += adapter->fmp->m_pkthdr.len;
3396 
3397 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3398 			if (TBI_ACCEPT(&adapter->hw, status,
3399 			    current_desc->errors, pkt_len, last_byte,
3400 			    adapter->min_frame_size, adapter->max_frame_size)) {
3401 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3402 				    &adapter->stats, pkt_len,
3403 				    adapter->hw.mac.addr,
3404 				    adapter->max_frame_size);
3405 				if (len > 0)
3406 					len--;
3407 			} else {
3408 				accept_frame = 0;
3409 			}
3410 		}
3411 
3412 		if (accept_frame) {
3413 			if (em_newbuf(adapter, i, 0) != 0) {
3414 				IFNET_STAT_INC(ifp, iqdrops, 1);
3415 				goto discard;
3416 			}
3417 
3418 			/* Assign correct length to the current fragment */
3419 			mp->m_len = len;
3420 
3421 			if (adapter->fmp == NULL) {
3422 				mp->m_pkthdr.len = len;
3423 				adapter->fmp = mp; /* Store the first mbuf */
3424 				adapter->lmp = mp;
3425 			} else {
3426 				/*
3427 				 * Chain mbuf's together
3428 				 */
3429 
3430 				/*
3431 				 * Adjust length of previous mbuf in chain if
3432 				 * we received less than 4 bytes in the last
3433 				 * descriptor.
3434 				 */
3435 				if (prev_len_adj > 0) {
3436 					adapter->lmp->m_len -= prev_len_adj;
3437 					adapter->fmp->m_pkthdr.len -=
3438 					    prev_len_adj;
3439 				}
3440 				adapter->lmp->m_next = mp;
3441 				adapter->lmp = adapter->lmp->m_next;
3442 				adapter->fmp->m_pkthdr.len += len;
3443 			}
3444 
3445 			if (eop) {
3446 				adapter->fmp->m_pkthdr.rcvif = ifp;
3447 				IFNET_STAT_INC(ifp, ipackets, 1);
3448 
3449 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3450 					em_rxcsum(adapter, current_desc,
3451 						  adapter->fmp);
3452 				}
3453 
3454 				if (status & E1000_RXD_STAT_VP) {
3455 					adapter->fmp->m_pkthdr.ether_vlantag =
3456 					    (le16toh(current_desc->special) &
3457 					    E1000_RXD_SPC_VLAN_MASK);
3458 					adapter->fmp->m_flags |= M_VLANTAG;
3459 				}
3460 				m = adapter->fmp;
3461 				adapter->fmp = NULL;
3462 				adapter->lmp = NULL;
3463 			}
3464 		} else {
3465 			IFNET_STAT_INC(ifp, ierrors, 1);
3466 discard:
3467 #ifdef foo
3468 			/* Reuse loaded DMA map and just update mbuf chain */
3469 			mp = adapter->rx_buffer_area[i].m_head;
3470 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3471 			mp->m_data = mp->m_ext.ext_buf;
3472 			mp->m_next = NULL;
3473 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3474 				m_adj(mp, ETHER_ALIGN);
3475 #endif
3476 			if (adapter->fmp != NULL) {
3477 				m_freem(adapter->fmp);
3478 				adapter->fmp = NULL;
3479 				adapter->lmp = NULL;
3480 			}
3481 			m = NULL;
3482 		}
3483 
3484 		/* Zero out the receive descriptors status. */
3485 		current_desc->status = 0;
3486 
3487 		if (m != NULL)
3488 			ifp->if_input(ifp, m);
3489 
3490 		/* Advance our pointers to the next descriptor. */
3491 		if (++i == adapter->num_rx_desc)
3492 			i = 0;
3493 		current_desc = &adapter->rx_desc_base[i];
3494 	}
3495 	adapter->next_rx_desc_to_check = i;
3496 
3497 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3498 	if (--i < 0)
3499 		i = adapter->num_rx_desc - 1;
3500 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3501 }
3502 
3503 static void
3504 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3505 	  struct mbuf *mp)
3506 {
3507 	/* 82543 or newer only */
3508 	if (adapter->hw.mac.type < e1000_82543 ||
3509 	    /* Ignore Checksum bit is set */
3510 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3511 		return;
3512 
3513 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3514 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3515 		/* IP Checksum Good */
3516 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3517 	}
3518 
3519 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3520 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3521 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3522 					   CSUM_PSEUDO_HDR |
3523 					   CSUM_FRAG_NOT_CHECKED;
3524 		mp->m_pkthdr.csum_data = htons(0xffff);
3525 	}
3526 }
3527 
3528 static void
3529 em_enable_intr(struct adapter *adapter)
3530 {
3531 	uint32_t ims_mask = IMS_ENABLE_MASK;
3532 
3533 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3534 
3535 #if 0
3536 	/* XXX MSIX */
3537 	if (adapter->hw.mac.type == e1000_82574) {
3538 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3539 		ims_mask |= EM_MSIX_MASK;
3540         }
3541 #endif
3542 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3543 }
3544 
3545 static void
3546 em_disable_intr(struct adapter *adapter)
3547 {
3548 	uint32_t clear = 0xffffffff;
3549 
3550 	/*
3551 	 * The first version of 82542 had an errata where when link was forced
3552 	 * it would stay up even up even if the cable was disconnected.
3553 	 * Sequence errors were used to detect the disconnect and then the
3554 	 * driver would unforce the link.  This code in the in the ISR.  For
3555 	 * this to work correctly the Sequence error interrupt had to be
3556 	 * enabled all the time.
3557 	 */
3558 	if (adapter->hw.mac.type == e1000_82542 &&
3559 	    adapter->hw.revision_id == E1000_REVISION_2)
3560 		clear &= ~E1000_ICR_RXSEQ;
3561 	else if (adapter->hw.mac.type == e1000_82574)
3562 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3563 
3564 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3565 
3566 	adapter->npoll.ifpc_stcount = 0;
3567 
3568 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3569 }
3570 
3571 /*
3572  * Bit of a misnomer, what this really means is
3573  * to enable OS management of the system... aka
3574  * to disable special hardware management features
3575  */
3576 static void
3577 em_get_mgmt(struct adapter *adapter)
3578 {
3579 	/* A shared code workaround */
3580 #define E1000_82542_MANC2H E1000_MANC2H
3581 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3582 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3583 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3584 
3585 		/* disable hardware interception of ARP */
3586 		manc &= ~(E1000_MANC_ARP_EN);
3587 
3588                 /* enable receiving management packets to the host */
3589                 if (adapter->hw.mac.type >= e1000_82571) {
3590 			manc |= E1000_MANC_EN_MNG2HOST;
3591 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3592 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3593 			manc2h |= E1000_MNG2HOST_PORT_623;
3594 			manc2h |= E1000_MNG2HOST_PORT_664;
3595 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3596 		}
3597 
3598 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3599 	}
3600 }
3601 
3602 /*
3603  * Give control back to hardware management
3604  * controller if there is one.
3605  */
3606 static void
3607 em_rel_mgmt(struct adapter *adapter)
3608 {
3609 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3610 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3611 
3612 		/* re-enable hardware interception of ARP */
3613 		manc |= E1000_MANC_ARP_EN;
3614 
3615 		if (adapter->hw.mac.type >= e1000_82571)
3616 			manc &= ~E1000_MANC_EN_MNG2HOST;
3617 
3618 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3619 	}
3620 }
3621 
3622 /*
3623  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3624  * For ASF and Pass Through versions of f/w this means that
3625  * the driver is loaded.  For AMT version (only with 82573)
3626  * of the f/w this means that the network i/f is open.
3627  */
3628 static void
3629 em_get_hw_control(struct adapter *adapter)
3630 {
3631 	/* Let firmware know the driver has taken over */
3632 	if (adapter->hw.mac.type == e1000_82573) {
3633 		uint32_t swsm;
3634 
3635 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3636 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3637 		    swsm | E1000_SWSM_DRV_LOAD);
3638 	} else {
3639 		uint32_t ctrl_ext;
3640 
3641 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3642 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3643 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3644 	}
3645 	adapter->flags |= EM_FLAG_HW_CTRL;
3646 }
3647 
3648 /*
3649  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3650  * For ASF and Pass Through versions of f/w this means that the
3651  * driver is no longer loaded.  For AMT version (only with 82573)
3652  * of the f/w this means that the network i/f is closed.
3653  */
3654 static void
3655 em_rel_hw_control(struct adapter *adapter)
3656 {
3657 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3658 		return;
3659 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3660 
3661 	/* Let firmware taken over control of h/w */
3662 	if (adapter->hw.mac.type == e1000_82573) {
3663 		uint32_t swsm;
3664 
3665 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3666 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3667 		    swsm & ~E1000_SWSM_DRV_LOAD);
3668 	} else {
3669 		uint32_t ctrl_ext;
3670 
3671 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3672 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3673 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3674 	}
3675 }
3676 
3677 static int
3678 em_is_valid_eaddr(const uint8_t *addr)
3679 {
3680 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3681 
3682 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3683 		return (FALSE);
3684 
3685 	return (TRUE);
3686 }
3687 
3688 /*
3689  * Enable PCI Wake On Lan capability
3690  */
3691 void
3692 em_enable_wol(device_t dev)
3693 {
3694 	uint16_t cap, status;
3695 	uint8_t id;
3696 
3697 	/* First find the capabilities pointer*/
3698 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3699 
3700 	/* Read the PM Capabilities */
3701 	id = pci_read_config(dev, cap, 1);
3702 	if (id != PCIY_PMG)     /* Something wrong */
3703 		return;
3704 
3705 	/*
3706 	 * OK, we have the power capabilities,
3707 	 * so now get the status register
3708 	 */
3709 	cap += PCIR_POWER_STATUS;
3710 	status = pci_read_config(dev, cap, 2);
3711 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3712 	pci_write_config(dev, cap, status, 2);
3713 }
3714 
3715 
3716 /*
3717  * 82544 Coexistence issue workaround.
3718  *    There are 2 issues.
3719  *       1. Transmit Hang issue.
3720  *    To detect this issue, following equation can be used...
3721  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3722  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3723  *
3724  *       2. DAC issue.
3725  *    To detect this issue, following equation can be used...
3726  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3727  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3728  *
3729  *    WORKAROUND:
3730  *	  Make sure we do not have ending address
3731  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3732  */
3733 static uint32_t
3734 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3735 {
3736 	uint32_t safe_terminator;
3737 
3738 	/*
3739 	 * Since issue is sensitive to length and address.
3740 	 * Let us first check the address...
3741 	 */
3742 	if (length <= 4) {
3743 		desc_array->descriptor[0].address = address;
3744 		desc_array->descriptor[0].length = length;
3745 		desc_array->elements = 1;
3746 		return (desc_array->elements);
3747 	}
3748 
3749 	safe_terminator =
3750 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3751 
3752 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3753 	if (safe_terminator == 0 ||
3754 	    (safe_terminator > 4 && safe_terminator < 9) ||
3755 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3756 		desc_array->descriptor[0].address = address;
3757 		desc_array->descriptor[0].length = length;
3758 		desc_array->elements = 1;
3759 		return (desc_array->elements);
3760 	}
3761 
3762 	desc_array->descriptor[0].address = address;
3763 	desc_array->descriptor[0].length = length - 4;
3764 	desc_array->descriptor[1].address = address + (length - 4);
3765 	desc_array->descriptor[1].length = 4;
3766 	desc_array->elements = 2;
3767 	return (desc_array->elements);
3768 }
3769 
3770 static void
3771 em_update_stats(struct adapter *adapter)
3772 {
3773 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3774 
3775 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3776 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3777 		adapter->stats.symerrs +=
3778 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3779 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3780 	}
3781 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3782 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3783 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3784 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3785 
3786 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3787 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3788 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3789 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3790 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3791 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3792 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3793 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3794 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3795 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3796 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3797 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3798 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3799 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3800 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3801 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3802 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3803 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3804 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3805 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3806 
3807 	/* For the 64-bit byte counters the low dword must be read first. */
3808 	/* Both registers clear on the read of the high dword */
3809 
3810 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3811 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3812 
3813 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3814 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3815 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3816 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3817 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3818 
3819 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3820 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3821 
3822 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3823 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3824 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3825 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3826 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3827 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3828 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3829 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3830 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3831 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3832 
3833 	if (adapter->hw.mac.type >= e1000_82543) {
3834 		adapter->stats.algnerrc +=
3835 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3836 		adapter->stats.rxerrc +=
3837 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3838 		adapter->stats.tncrs +=
3839 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3840 		adapter->stats.cexterr +=
3841 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3842 		adapter->stats.tsctc +=
3843 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3844 		adapter->stats.tsctfc +=
3845 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3846 	}
3847 
3848 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3849 
3850 	/* Rx Errors */
3851 	IFNET_STAT_SET(ifp, ierrors,
3852 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3853 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3854 	    adapter->stats.ruc + adapter->stats.roc +
3855 	    adapter->stats.mpc + adapter->stats.cexterr);
3856 
3857 	/* Tx Errors */
3858 	IFNET_STAT_SET(ifp, oerrors,
3859 	    adapter->stats.ecol + adapter->stats.latecol +
3860 	    adapter->watchdog_events);
3861 }
3862 
3863 static void
3864 em_print_debug_info(struct adapter *adapter)
3865 {
3866 	device_t dev = adapter->dev;
3867 	uint8_t *hw_addr = adapter->hw.hw_addr;
3868 
3869 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3870 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3871 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3872 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3873 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3874 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3875 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3876 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3877 	    adapter->hw.fc.high_water,
3878 	    adapter->hw.fc.low_water);
3879 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3880 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3881 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3882 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3883 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3884 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3885 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3886 	    (long long)adapter->tx_fifo_wrk_cnt,
3887 	    (long long)adapter->tx_fifo_reset_cnt);
3888 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3889 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3890 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3891 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3892 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3893 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3894 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3895 	    adapter->num_tx_desc_avail);
3896 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3897 	    adapter->no_tx_desc_avail1);
3898 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3899 	    adapter->no_tx_desc_avail2);
3900 	device_printf(dev, "Std mbuf failed = %ld\n",
3901 	    adapter->mbuf_alloc_failed);
3902 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3903 	    adapter->mbuf_cluster_failed);
3904 	device_printf(dev, "Driver dropped packets = %ld\n",
3905 	    adapter->dropped_pkts);
3906 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3907 	    adapter->no_tx_dma_setup);
3908 }
3909 
3910 static void
3911 em_print_hw_stats(struct adapter *adapter)
3912 {
3913 	device_t dev = adapter->dev;
3914 
3915 	device_printf(dev, "Excessive collisions = %lld\n",
3916 	    (long long)adapter->stats.ecol);
3917 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3918 	device_printf(dev, "Symbol errors = %lld\n",
3919 	    (long long)adapter->stats.symerrs);
3920 #endif
3921 	device_printf(dev, "Sequence errors = %lld\n",
3922 	    (long long)adapter->stats.sec);
3923 	device_printf(dev, "Defer count = %lld\n",
3924 	    (long long)adapter->stats.dc);
3925 	device_printf(dev, "Missed Packets = %lld\n",
3926 	    (long long)adapter->stats.mpc);
3927 	device_printf(dev, "Receive No Buffers = %lld\n",
3928 	    (long long)adapter->stats.rnbc);
3929 	/* RLEC is inaccurate on some hardware, calculate our own. */
3930 	device_printf(dev, "Receive Length Errors = %lld\n",
3931 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3932 	device_printf(dev, "Receive errors = %lld\n",
3933 	    (long long)adapter->stats.rxerrc);
3934 	device_printf(dev, "Crc errors = %lld\n",
3935 	    (long long)adapter->stats.crcerrs);
3936 	device_printf(dev, "Alignment errors = %lld\n",
3937 	    (long long)adapter->stats.algnerrc);
3938 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3939 	    (long long)adapter->stats.cexterr);
3940 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3941 	device_printf(dev, "watchdog timeouts = %ld\n",
3942 	    adapter->watchdog_events);
3943 	device_printf(dev, "XON Rcvd = %lld\n",
3944 	    (long long)adapter->stats.xonrxc);
3945 	device_printf(dev, "XON Xmtd = %lld\n",
3946 	    (long long)adapter->stats.xontxc);
3947 	device_printf(dev, "XOFF Rcvd = %lld\n",
3948 	    (long long)adapter->stats.xoffrxc);
3949 	device_printf(dev, "XOFF Xmtd = %lld\n",
3950 	    (long long)adapter->stats.xofftxc);
3951 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3952 	    (long long)adapter->stats.gprc);
3953 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3954 	    (long long)adapter->stats.gptc);
3955 }
3956 
3957 static void
3958 em_print_nvm_info(struct adapter *adapter)
3959 {
3960 	uint16_t eeprom_data;
3961 	int i, j, row = 0;
3962 
3963 	/* Its a bit crude, but it gets the job done */
3964 	kprintf("\nInterface EEPROM Dump:\n");
3965 	kprintf("Offset\n0x0000  ");
3966 	for (i = 0, j = 0; i < 32; i++, j++) {
3967 		if (j == 8) { /* Make the offset block */
3968 			j = 0; ++row;
3969 			kprintf("\n0x00%x0  ",row);
3970 		}
3971 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3972 		kprintf("%04x ", eeprom_data);
3973 	}
3974 	kprintf("\n");
3975 }
3976 
3977 static int
3978 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3979 {
3980 	struct adapter *adapter;
3981 	struct ifnet *ifp;
3982 	int error, result;
3983 
3984 	result = -1;
3985 	error = sysctl_handle_int(oidp, &result, 0, req);
3986 	if (error || !req->newptr)
3987 		return (error);
3988 
3989 	adapter = (struct adapter *)arg1;
3990 	ifp = &adapter->arpcom.ac_if;
3991 
3992 	lwkt_serialize_enter(ifp->if_serializer);
3993 
3994 	if (result == 1)
3995 		em_print_debug_info(adapter);
3996 
3997 	/*
3998 	 * This value will cause a hex dump of the
3999 	 * first 32 16-bit words of the EEPROM to
4000 	 * the screen.
4001 	 */
4002 	if (result == 2)
4003 		em_print_nvm_info(adapter);
4004 
4005 	lwkt_serialize_exit(ifp->if_serializer);
4006 
4007 	return (error);
4008 }
4009 
4010 static int
4011 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4012 {
4013 	int error, result;
4014 
4015 	result = -1;
4016 	error = sysctl_handle_int(oidp, &result, 0, req);
4017 	if (error || !req->newptr)
4018 		return (error);
4019 
4020 	if (result == 1) {
4021 		struct adapter *adapter = (struct adapter *)arg1;
4022 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4023 
4024 		lwkt_serialize_enter(ifp->if_serializer);
4025 		em_print_hw_stats(adapter);
4026 		lwkt_serialize_exit(ifp->if_serializer);
4027 	}
4028 	return (error);
4029 }
4030 
4031 static void
4032 em_add_sysctl(struct adapter *adapter)
4033 {
4034 	sysctl_ctx_init(&adapter->sysctl_ctx);
4035 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4036 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4037 					device_get_nameunit(adapter->dev),
4038 					CTLFLAG_RD, 0, "");
4039 	if (adapter->sysctl_tree == NULL) {
4040 		device_printf(adapter->dev, "can't add sysctl node\n");
4041 	} else {
4042 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4043 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4044 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4045 		    em_sysctl_debug_info, "I", "Debug Information");
4046 
4047 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4048 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4049 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4050 		    em_sysctl_stats, "I", "Statistics");
4051 
4052 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4053 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4054 		    OID_AUTO, "rxd", CTLFLAG_RD,
4055 		    &adapter->num_rx_desc, 0, NULL);
4056 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4057 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4058 		    OID_AUTO, "txd", CTLFLAG_RD,
4059 		    &adapter->num_tx_desc, 0, NULL);
4060 
4061 		if (adapter->hw.mac.type >= e1000_82540) {
4062 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4063 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4064 			    OID_AUTO, "int_throttle_ceil",
4065 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4066 			    em_sysctl_int_throttle, "I",
4067 			    "interrupt throttling rate");
4068 		}
4069 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4070 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4071 		    OID_AUTO, "int_tx_nsegs",
4072 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4073 		    em_sysctl_int_tx_nsegs, "I",
4074 		    "# segments per TX interrupt");
4075 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4076 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4077 	            OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4078 		    &adapter->tx_wreg_nsegs, 0,
4079 		    "# segments before write to hardware register");
4080 	}
4081 }
4082 
4083 static int
4084 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4085 {
4086 	struct adapter *adapter = (void *)arg1;
4087 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4088 	int error, throttle;
4089 
4090 	throttle = adapter->int_throttle_ceil;
4091 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4092 	if (error || req->newptr == NULL)
4093 		return error;
4094 	if (throttle < 0 || throttle > 1000000000 / 256)
4095 		return EINVAL;
4096 
4097 	if (throttle) {
4098 		/*
4099 		 * Set the interrupt throttling rate in 256ns increments,
4100 		 * recalculate sysctl value assignment to get exact frequency.
4101 		 */
4102 		throttle = 1000000000 / 256 / throttle;
4103 
4104 		/* Upper 16bits of ITR is reserved and should be zero */
4105 		if (throttle & 0xffff0000)
4106 			return EINVAL;
4107 	}
4108 
4109 	lwkt_serialize_enter(ifp->if_serializer);
4110 
4111 	if (throttle)
4112 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4113 	else
4114 		adapter->int_throttle_ceil = 0;
4115 
4116 	if (ifp->if_flags & IFF_RUNNING)
4117 		em_set_itr(adapter, throttle);
4118 
4119 	lwkt_serialize_exit(ifp->if_serializer);
4120 
4121 	if (bootverbose) {
4122 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4123 			  adapter->int_throttle_ceil);
4124 	}
4125 	return 0;
4126 }
4127 
4128 static int
4129 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4130 {
4131 	struct adapter *adapter = (void *)arg1;
4132 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4133 	int error, segs;
4134 
4135 	segs = adapter->tx_int_nsegs;
4136 	error = sysctl_handle_int(oidp, &segs, 0, req);
4137 	if (error || req->newptr == NULL)
4138 		return error;
4139 	if (segs <= 0)
4140 		return EINVAL;
4141 
4142 	lwkt_serialize_enter(ifp->if_serializer);
4143 
4144 	/*
4145 	 * Don't allow int_tx_nsegs to become:
4146 	 * o  Less the oact_tx_desc
4147 	 * o  Too large that no TX desc will cause TX interrupt to
4148 	 *    be generated (OACTIVE will never recover)
4149 	 * o  Too small that will cause tx_dd[] overflow
4150 	 */
4151 	if (segs < adapter->oact_tx_desc ||
4152 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4153 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4154 		error = EINVAL;
4155 	} else {
4156 		error = 0;
4157 		adapter->tx_int_nsegs = segs;
4158 	}
4159 
4160 	lwkt_serialize_exit(ifp->if_serializer);
4161 
4162 	return error;
4163 }
4164 
4165 static void
4166 em_set_itr(struct adapter *adapter, uint32_t itr)
4167 {
4168 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4169 	if (adapter->hw.mac.type == e1000_82574) {
4170 		int i;
4171 
4172 		/*
4173 		 * When using MSIX interrupts we need to
4174 		 * throttle using the EITR register
4175 		 */
4176 		for (i = 0; i < 4; ++i) {
4177 			E1000_WRITE_REG(&adapter->hw,
4178 			    E1000_EITR_82574(i), itr);
4179 		}
4180 	}
4181 }
4182 
4183 static void
4184 em_disable_aspm(struct adapter *adapter)
4185 {
4186 	uint16_t link_cap, link_ctrl, disable;
4187 	uint8_t pcie_ptr, reg;
4188 	device_t dev = adapter->dev;
4189 
4190 	switch (adapter->hw.mac.type) {
4191 	case e1000_82571:
4192 	case e1000_82572:
4193 	case e1000_82573:
4194 		/*
4195 		 * 82573 specification update
4196 		 * errata #8 disable L0s
4197 		 * errata #41 disable L1
4198 		 *
4199 		 * 82571/82572 specification update
4200 		 # errata #13 disable L1
4201 		 * errata #68 disable L0s
4202 		 */
4203 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4204 		break;
4205 
4206 	case e1000_82574:
4207 	case e1000_82583:
4208 		/*
4209 		 * 82574 specification update errata #20
4210 		 * 82583 specification update errata #9
4211 		 *
4212 		 * There is no need to disable L1
4213 		 */
4214 		disable = PCIEM_LNKCTL_ASPM_L0S;
4215 		break;
4216 
4217 	default:
4218 		return;
4219 	}
4220 
4221 	pcie_ptr = pci_get_pciecap_ptr(dev);
4222 	if (pcie_ptr == 0)
4223 		return;
4224 
4225 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4226 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4227 		return;
4228 
4229 	if (bootverbose) {
4230 		if_printf(&adapter->arpcom.ac_if,
4231 		    "disable ASPM %#02x\n", disable);
4232 	}
4233 
4234 	reg = pcie_ptr + PCIER_LINKCTRL;
4235 	link_ctrl = pci_read_config(dev, reg, 2);
4236 	link_ctrl &= ~disable;
4237 	pci_write_config(dev, reg, link_ctrl, 2);
4238 }
4239 
4240 static int
4241 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4242 {
4243 	int iphlen, hoff, thoff, ex = 0;
4244 	struct mbuf *m;
4245 	struct ip *ip;
4246 
4247 	m = *mp;
4248 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4249 
4250 	iphlen = m->m_pkthdr.csum_iphlen;
4251 	thoff = m->m_pkthdr.csum_thlen;
4252 	hoff = m->m_pkthdr.csum_lhlen;
4253 
4254 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4255 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4256 	KASSERT(hoff > 0, ("invalid ether hlen"));
4257 
4258 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4259 		ex = 4;
4260 
4261 	if (m->m_len < hoff + iphlen + thoff + ex) {
4262 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4263 		if (m == NULL) {
4264 			*mp = NULL;
4265 			return ENOBUFS;
4266 		}
4267 		*mp = m;
4268 	}
4269 	ip = mtodoff(m, struct ip *, hoff);
4270 	ip->ip_len = 0;
4271 
4272 	return 0;
4273 }
4274 
4275 static int
4276 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4277     uint32_t *txd_upper, uint32_t *txd_lower)
4278 {
4279 	struct e1000_context_desc *TXD;
4280 	int hoff, iphlen, thoff, hlen;
4281 	int mss, pktlen, curr_txd;
4282 
4283 	iphlen = mp->m_pkthdr.csum_iphlen;
4284 	thoff = mp->m_pkthdr.csum_thlen;
4285 	hoff = mp->m_pkthdr.csum_lhlen;
4286 	mss = mp->m_pkthdr.tso_segsz;
4287 	pktlen = mp->m_pkthdr.len;
4288 
4289 	if (adapter->csum_flags == CSUM_TSO &&
4290 	    adapter->csum_iphlen == iphlen &&
4291 	    adapter->csum_lhlen == hoff &&
4292 	    adapter->csum_thlen == thoff &&
4293 	    adapter->csum_mss == mss &&
4294 	    adapter->csum_pktlen == pktlen) {
4295 		*txd_upper = adapter->csum_txd_upper;
4296 		*txd_lower = adapter->csum_txd_lower;
4297 		return 0;
4298 	}
4299 	hlen = hoff + iphlen + thoff;
4300 
4301 	/*
4302 	 * Setup a new TSO context.
4303 	 */
4304 
4305 	curr_txd = adapter->next_avail_tx_desc;
4306 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4307 
4308 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4309 		     E1000_TXD_DTYP_D |		/* Data descr type */
4310 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4311 
4312 	/* IP and/or TCP header checksum calculation and insertion. */
4313 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4314 
4315 	/*
4316 	 * Start offset for header checksum calculation.
4317 	 * End offset for header checksum calculation.
4318 	 * Offset of place put the checksum.
4319 	 */
4320 	TXD->lower_setup.ip_fields.ipcss = hoff;
4321 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4322 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4323 
4324 	/*
4325 	 * Start offset for payload checksum calculation.
4326 	 * End offset for payload checksum calculation.
4327 	 * Offset of place to put the checksum.
4328 	 */
4329 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4330 	TXD->upper_setup.tcp_fields.tucse = 0;
4331 	TXD->upper_setup.tcp_fields.tucso =
4332 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4333 
4334 	/*
4335 	 * Payload size per packet w/o any headers.
4336 	 * Length of all headers up to payload.
4337 	 */
4338 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4339 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4340 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4341 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4342 				E1000_TXD_CMD_TSE |	/* TSE context */
4343 				E1000_TXD_CMD_IP |	/* Do IP csum */
4344 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4345 				(pktlen - hlen));	/* Total len */
4346 
4347 	/* Save the information for this TSO context */
4348 	adapter->csum_flags = CSUM_TSO;
4349 	adapter->csum_lhlen = hoff;
4350 	adapter->csum_iphlen = iphlen;
4351 	adapter->csum_thlen = thoff;
4352 	adapter->csum_mss = mss;
4353 	adapter->csum_pktlen = pktlen;
4354 	adapter->csum_txd_upper = *txd_upper;
4355 	adapter->csum_txd_lower = *txd_lower;
4356 
4357 	if (++curr_txd == adapter->num_tx_desc)
4358 		curr_txd = 0;
4359 
4360 	KKASSERT(adapter->num_tx_desc_avail > 0);
4361 	adapter->num_tx_desc_avail--;
4362 
4363 	adapter->next_avail_tx_desc = curr_txd;
4364 	return 1;
4365 }
4366