xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision e219ee45bec4546377409eb2c04aa045f69ab87c)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
115 
116 #define DEBUG_HW 0
117 
118 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
119 #define EM_VER	" 7.3.4"
120 
121 #define _EM_DEVICE(id, ret)	\
122 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
124 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
126 
127 static const struct em_vendor_info em_vendor_info_array[] = {
128 	EM_DEVICE(82540EM),
129 	EM_DEVICE(82540EM_LOM),
130 	EM_DEVICE(82540EP),
131 	EM_DEVICE(82540EP_LOM),
132 	EM_DEVICE(82540EP_LP),
133 
134 	EM_DEVICE(82541EI),
135 	EM_DEVICE(82541ER),
136 	EM_DEVICE(82541ER_LOM),
137 	EM_DEVICE(82541EI_MOBILE),
138 	EM_DEVICE(82541GI),
139 	EM_DEVICE(82541GI_LF),
140 	EM_DEVICE(82541GI_MOBILE),
141 
142 	EM_DEVICE(82542),
143 
144 	EM_DEVICE(82543GC_FIBER),
145 	EM_DEVICE(82543GC_COPPER),
146 
147 	EM_DEVICE(82544EI_COPPER),
148 	EM_DEVICE(82544EI_FIBER),
149 	EM_DEVICE(82544GC_COPPER),
150 	EM_DEVICE(82544GC_LOM),
151 
152 	EM_DEVICE(82545EM_COPPER),
153 	EM_DEVICE(82545EM_FIBER),
154 	EM_DEVICE(82545GM_COPPER),
155 	EM_DEVICE(82545GM_FIBER),
156 	EM_DEVICE(82545GM_SERDES),
157 
158 	EM_DEVICE(82546EB_COPPER),
159 	EM_DEVICE(82546EB_FIBER),
160 	EM_DEVICE(82546EB_QUAD_COPPER),
161 	EM_DEVICE(82546GB_COPPER),
162 	EM_DEVICE(82546GB_FIBER),
163 	EM_DEVICE(82546GB_SERDES),
164 	EM_DEVICE(82546GB_PCIE),
165 	EM_DEVICE(82546GB_QUAD_COPPER),
166 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
167 
168 	EM_DEVICE(82547EI),
169 	EM_DEVICE(82547EI_MOBILE),
170 	EM_DEVICE(82547GI),
171 
172 	EM_EMX_DEVICE(82571EB_COPPER),
173 	EM_EMX_DEVICE(82571EB_FIBER),
174 	EM_EMX_DEVICE(82571EB_SERDES),
175 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
182 
183 	EM_EMX_DEVICE(82572EI_COPPER),
184 	EM_EMX_DEVICE(82572EI_FIBER),
185 	EM_EMX_DEVICE(82572EI_SERDES),
186 	EM_EMX_DEVICE(82572EI),
187 
188 	EM_EMX_DEVICE(82573E),
189 	EM_EMX_DEVICE(82573E_IAMT),
190 	EM_EMX_DEVICE(82573L),
191 
192 	EM_DEVICE(82583V),
193 
194 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
198 
199 	EM_DEVICE(ICH8_IGP_M_AMT),
200 	EM_DEVICE(ICH8_IGP_AMT),
201 	EM_DEVICE(ICH8_IGP_C),
202 	EM_DEVICE(ICH8_IFE),
203 	EM_DEVICE(ICH8_IFE_GT),
204 	EM_DEVICE(ICH8_IFE_G),
205 	EM_DEVICE(ICH8_IGP_M),
206 	EM_DEVICE(ICH8_82567V_3),
207 
208 	EM_DEVICE(ICH9_IGP_M_AMT),
209 	EM_DEVICE(ICH9_IGP_AMT),
210 	EM_DEVICE(ICH9_IGP_C),
211 	EM_DEVICE(ICH9_IGP_M),
212 	EM_DEVICE(ICH9_IGP_M_V),
213 	EM_DEVICE(ICH9_IFE),
214 	EM_DEVICE(ICH9_IFE_GT),
215 	EM_DEVICE(ICH9_IFE_G),
216 	EM_DEVICE(ICH9_BM),
217 
218 	EM_EMX_DEVICE(82574L),
219 	EM_EMX_DEVICE(82574LA),
220 
221 	EM_DEVICE(ICH10_R_BM_LM),
222 	EM_DEVICE(ICH10_R_BM_LF),
223 	EM_DEVICE(ICH10_R_BM_V),
224 	EM_DEVICE(ICH10_D_BM_LM),
225 	EM_DEVICE(ICH10_D_BM_LF),
226 	EM_DEVICE(ICH10_D_BM_V),
227 
228 	EM_DEVICE(PCH_M_HV_LM),
229 	EM_DEVICE(PCH_M_HV_LC),
230 	EM_DEVICE(PCH_D_HV_DM),
231 	EM_DEVICE(PCH_D_HV_DC),
232 
233 	EM_DEVICE(PCH2_LV_LM),
234 	EM_DEVICE(PCH2_LV_V),
235 
236 	/* required last entry */
237 	EM_DEVICE_NULL
238 };
239 
240 static int	em_probe(device_t);
241 static int	em_attach(device_t);
242 static int	em_detach(device_t);
243 static int	em_shutdown(device_t);
244 static int	em_suspend(device_t);
245 static int	em_resume(device_t);
246 
247 static void	em_init(void *);
248 static void	em_stop(struct adapter *);
249 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
250 static void	em_start(struct ifnet *, struct ifaltq_subque *);
251 #ifdef IFPOLL_ENABLE
252 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
253 static void	em_npoll_compat(struct ifnet *, void *, int);
254 #endif
255 static void	em_watchdog(struct ifnet *);
256 static void	em_media_status(struct ifnet *, struct ifmediareq *);
257 static int	em_media_change(struct ifnet *);
258 static void	em_timer(void *);
259 
260 static void	em_intr(void *);
261 static void	em_intr_mask(void *);
262 static void	em_intr_body(struct adapter *, boolean_t);
263 static void	em_rxeof(struct adapter *, int);
264 static void	em_txeof(struct adapter *);
265 static void	em_tx_collect(struct adapter *);
266 static void	em_tx_purge(struct adapter *);
267 static void	em_enable_intr(struct adapter *);
268 static void	em_disable_intr(struct adapter *);
269 
270 static int	em_dma_malloc(struct adapter *, bus_size_t,
271 		    struct em_dma_alloc *);
272 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
273 static void	em_init_tx_ring(struct adapter *);
274 static int	em_init_rx_ring(struct adapter *);
275 static int	em_create_tx_ring(struct adapter *);
276 static int	em_create_rx_ring(struct adapter *);
277 static void	em_destroy_tx_ring(struct adapter *, int);
278 static void	em_destroy_rx_ring(struct adapter *, int);
279 static int	em_newbuf(struct adapter *, int, int);
280 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
281 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
282 		    struct mbuf *);
283 static int	em_txcsum(struct adapter *, struct mbuf *,
284 		    uint32_t *, uint32_t *);
285 static int	em_tso_pullup(struct adapter *, struct mbuf **);
286 static int	em_tso_setup(struct adapter *, struct mbuf *,
287 		    uint32_t *, uint32_t *);
288 
289 static int	em_get_hw_info(struct adapter *);
290 static int 	em_is_valid_eaddr(const uint8_t *);
291 static int	em_alloc_pci_res(struct adapter *);
292 static void	em_free_pci_res(struct adapter *);
293 static int	em_reset(struct adapter *);
294 static void	em_setup_ifp(struct adapter *);
295 static void	em_init_tx_unit(struct adapter *);
296 static void	em_init_rx_unit(struct adapter *);
297 static void	em_update_stats(struct adapter *);
298 static void	em_set_promisc(struct adapter *);
299 static void	em_disable_promisc(struct adapter *);
300 static void	em_set_multi(struct adapter *);
301 static void	em_update_link_status(struct adapter *);
302 static void	em_smartspeed(struct adapter *);
303 static void	em_set_itr(struct adapter *, uint32_t);
304 static void	em_disable_aspm(struct adapter *);
305 
306 /* Hardware workarounds */
307 static int	em_82547_fifo_workaround(struct adapter *, int);
308 static void	em_82547_update_fifo_head(struct adapter *, int);
309 static int	em_82547_tx_fifo_reset(struct adapter *);
310 static void	em_82547_move_tail(void *);
311 static void	em_82547_move_tail_serialized(struct adapter *);
312 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
313 
314 static void	em_print_debug_info(struct adapter *);
315 static void	em_print_nvm_info(struct adapter *);
316 static void	em_print_hw_stats(struct adapter *);
317 
318 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
319 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
320 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
321 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
322 static void	em_add_sysctl(struct adapter *adapter);
323 
324 /* Management and WOL Support */
325 static void	em_get_mgmt(struct adapter *);
326 static void	em_rel_mgmt(struct adapter *);
327 static void	em_get_hw_control(struct adapter *);
328 static void	em_rel_hw_control(struct adapter *);
329 static void	em_enable_wol(device_t);
330 
331 static device_method_t em_methods[] = {
332 	/* Device interface */
333 	DEVMETHOD(device_probe,		em_probe),
334 	DEVMETHOD(device_attach,	em_attach),
335 	DEVMETHOD(device_detach,	em_detach),
336 	DEVMETHOD(device_shutdown,	em_shutdown),
337 	DEVMETHOD(device_suspend,	em_suspend),
338 	DEVMETHOD(device_resume,	em_resume),
339 	DEVMETHOD_END
340 };
341 
342 static driver_t em_driver = {
343 	"em",
344 	em_methods,
345 	sizeof(struct adapter),
346 };
347 
348 static devclass_t em_devclass;
349 
350 DECLARE_DUMMY_MODULE(if_em);
351 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
352 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
353 
354 /*
355  * Tunables
356  */
357 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
358 static int	em_rxd = EM_DEFAULT_RXD;
359 static int	em_txd = EM_DEFAULT_TXD;
360 static int	em_smart_pwr_down = 0;
361 
362 /* Controls whether promiscuous also shows bad packets */
363 static int	em_debug_sbp = FALSE;
364 
365 static int	em_82573_workaround = 1;
366 static int	em_msi_enable = 1;
367 
368 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
369 TUNABLE_INT("hw.em.rxd", &em_rxd);
370 TUNABLE_INT("hw.em.txd", &em_txd);
371 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
372 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
373 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
374 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
375 
376 /* Global used in WOL setup with multiport cards */
377 static int	em_global_quad_port_a = 0;
378 
379 /* Set this to one to display debug statistics */
380 static int	em_display_debug_stats = 0;
381 
382 #if !defined(KTR_IF_EM)
383 #define KTR_IF_EM	KTR_ALL
384 #endif
385 KTR_INFO_MASTER(if_em);
386 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
387 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
388 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
389 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
390 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
391 #define logif(name)	KTR_LOG(if_em_ ## name)
392 
393 static int
394 em_probe(device_t dev)
395 {
396 	const struct em_vendor_info *ent;
397 	uint16_t vid, did;
398 
399 	vid = pci_get_vendor(dev);
400 	did = pci_get_device(dev);
401 
402 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
403 		if (vid == ent->vendor_id && did == ent->device_id) {
404 			device_set_desc(dev, ent->desc);
405 			device_set_async_attach(dev, TRUE);
406 			return (ent->ret);
407 		}
408 	}
409 	return (ENXIO);
410 }
411 
412 static int
413 em_attach(device_t dev)
414 {
415 	struct adapter *adapter = device_get_softc(dev);
416 	struct ifnet *ifp = &adapter->arpcom.ac_if;
417 	int tsize, rsize;
418 	int error = 0;
419 	uint16_t eeprom_data, device_id, apme_mask;
420 	driver_intr_t *intr_func;
421 
422 	adapter->dev = adapter->osdep.dev = dev;
423 
424 	callout_init_mp(&adapter->timer);
425 	callout_init_mp(&adapter->tx_fifo_timer);
426 
427 	/* Determine hardware and mac info */
428 	error = em_get_hw_info(adapter);
429 	if (error) {
430 		device_printf(dev, "Identify hardware failed\n");
431 		goto fail;
432 	}
433 
434 	/* Setup PCI resources */
435 	error = em_alloc_pci_res(adapter);
436 	if (error) {
437 		device_printf(dev, "Allocation of PCI resources failed\n");
438 		goto fail;
439 	}
440 
441 	/*
442 	 * For ICH8 and family we need to map the flash memory,
443 	 * and this must happen after the MAC is identified.
444 	 */
445 	if (adapter->hw.mac.type == e1000_ich8lan ||
446 	    adapter->hw.mac.type == e1000_ich9lan ||
447 	    adapter->hw.mac.type == e1000_ich10lan ||
448 	    adapter->hw.mac.type == e1000_pchlan ||
449 	    adapter->hw.mac.type == e1000_pch2lan) {
450 		adapter->flash_rid = EM_BAR_FLASH;
451 
452 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
453 					&adapter->flash_rid, RF_ACTIVE);
454 		if (adapter->flash == NULL) {
455 			device_printf(dev, "Mapping of Flash failed\n");
456 			error = ENXIO;
457 			goto fail;
458 		}
459 		adapter->osdep.flash_bus_space_tag =
460 		    rman_get_bustag(adapter->flash);
461 		adapter->osdep.flash_bus_space_handle =
462 		    rman_get_bushandle(adapter->flash);
463 
464 		/*
465 		 * This is used in the shared code
466 		 * XXX this goof is actually not used.
467 		 */
468 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
469 	}
470 
471 	switch (adapter->hw.mac.type) {
472 	case e1000_82571:
473 	case e1000_82572:
474 		/*
475 		 * Pullup extra 4bytes into the first data segment, see:
476 		 * 82571/82572 specification update errata #7
477 		 *
478 		 * NOTE:
479 		 * 4bytes instead of 2bytes, which are mentioned in the
480 		 * errata, are pulled; mainly to keep rest of the data
481 		 * properly aligned.
482 		 */
483 		adapter->flags |= EM_FLAG_TSO_PULLEX;
484 		/* FALL THROUGH */
485 
486 	case e1000_82573:
487 	case e1000_82574:
488 	case e1000_80003es2lan:
489 		adapter->flags |= EM_FLAG_TSO;
490 		break;
491 
492 	default:
493 		break;
494 	}
495 
496 	/* Do Shared Code initialization */
497 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
498 		device_printf(dev, "Setup of Shared code failed\n");
499 		error = ENXIO;
500 		goto fail;
501 	}
502 
503 	e1000_get_bus_info(&adapter->hw);
504 
505 	/*
506 	 * Validate number of transmit and receive descriptors.  It
507 	 * must not exceed hardware maximum, and must be multiple
508 	 * of E1000_DBA_ALIGN.
509 	 */
510 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
511 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
512 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
513 	    em_txd < EM_MIN_TXD) {
514 		if (adapter->hw.mac.type < e1000_82544)
515 			adapter->num_tx_desc = EM_MAX_TXD_82543;
516 		else
517 			adapter->num_tx_desc = EM_DEFAULT_TXD;
518 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
519 		    adapter->num_tx_desc, em_txd);
520 	} else {
521 		adapter->num_tx_desc = em_txd;
522 	}
523 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
524 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
525 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
526 	    em_rxd < EM_MIN_RXD) {
527 		if (adapter->hw.mac.type < e1000_82544)
528 			adapter->num_rx_desc = EM_MAX_RXD_82543;
529 		else
530 			adapter->num_rx_desc = EM_DEFAULT_RXD;
531 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
532 		    adapter->num_rx_desc, em_rxd);
533 	} else {
534 		adapter->num_rx_desc = em_rxd;
535 	}
536 
537 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
538 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
539 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
540 	adapter->rx_buffer_len = MCLBYTES;
541 
542 	/*
543 	 * Interrupt throttle rate
544 	 */
545 	if (em_int_throttle_ceil == 0) {
546 		adapter->int_throttle_ceil = 0;
547 	} else {
548 		int throttle = em_int_throttle_ceil;
549 
550 		if (throttle < 0)
551 			throttle = EM_DEFAULT_ITR;
552 
553 		/* Recalculate the tunable value to get the exact frequency. */
554 		throttle = 1000000000 / 256 / throttle;
555 
556 		/* Upper 16bits of ITR is reserved and should be zero */
557 		if (throttle & 0xffff0000)
558 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
559 
560 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
561 	}
562 
563 	e1000_init_script_state_82541(&adapter->hw, TRUE);
564 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
565 
566 	/* Copper options */
567 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
568 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
569 		adapter->hw.phy.disable_polarity_correction = FALSE;
570 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
571 	}
572 
573 	/* Set the frame limits assuming standard ethernet sized frames. */
574 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
575 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
576 
577 	/* This controls when hardware reports transmit completion status. */
578 	adapter->hw.mac.report_tx_early = 1;
579 
580 	/*
581 	 * Create top level busdma tag
582 	 */
583 	error = bus_dma_tag_create(NULL, 1, 0,
584 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
585 			NULL, NULL,
586 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
587 			0, &adapter->parent_dtag);
588 	if (error) {
589 		device_printf(dev, "could not create top level DMA tag\n");
590 		goto fail;
591 	}
592 
593 	/*
594 	 * Allocate Transmit Descriptor ring
595 	 */
596 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
597 			 EM_DBA_ALIGN);
598 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
599 	if (error) {
600 		device_printf(dev, "Unable to allocate tx_desc memory\n");
601 		goto fail;
602 	}
603 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
604 
605 	/*
606 	 * Allocate Receive Descriptor ring
607 	 */
608 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
609 			 EM_DBA_ALIGN);
610 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
611 	if (error) {
612 		device_printf(dev, "Unable to allocate rx_desc memory\n");
613 		goto fail;
614 	}
615 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
616 
617 	/* Allocate multicast array memory. */
618 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
619 	    M_DEVBUF, M_WAITOK);
620 
621 	/* Indicate SOL/IDER usage */
622 	if (e1000_check_reset_block(&adapter->hw)) {
623 		device_printf(dev,
624 		    "PHY reset is blocked due to SOL/IDER session.\n");
625 	}
626 
627 	/*
628 	 * Start from a known state, this is important in reading the
629 	 * nvm and mac from that.
630 	 */
631 	e1000_reset_hw(&adapter->hw);
632 
633 	/* Make sure we have a good EEPROM before we read from it */
634 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
635 		/*
636 		 * Some PCI-E parts fail the first check due to
637 		 * the link being in sleep state, call it again,
638 		 * if it fails a second time its a real issue.
639 		 */
640 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
641 			device_printf(dev,
642 			    "The EEPROM Checksum Is Not Valid\n");
643 			error = EIO;
644 			goto fail;
645 		}
646 	}
647 
648 	/* Copy the permanent MAC address out of the EEPROM */
649 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
650 		device_printf(dev, "EEPROM read error while reading MAC"
651 		    " address\n");
652 		error = EIO;
653 		goto fail;
654 	}
655 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
656 		device_printf(dev, "Invalid MAC address\n");
657 		error = EIO;
658 		goto fail;
659 	}
660 
661 	/* Allocate transmit descriptors and buffers */
662 	error = em_create_tx_ring(adapter);
663 	if (error) {
664 		device_printf(dev, "Could not setup transmit structures\n");
665 		goto fail;
666 	}
667 
668 	/* Allocate receive descriptors and buffers */
669 	error = em_create_rx_ring(adapter);
670 	if (error) {
671 		device_printf(dev, "Could not setup receive structures\n");
672 		goto fail;
673 	}
674 
675 	/* Manually turn off all interrupts */
676 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
677 
678 	/* Determine if we have to control management hardware */
679 	if (e1000_enable_mng_pass_thru(&adapter->hw))
680 		adapter->flags |= EM_FLAG_HAS_MGMT;
681 
682 	/*
683 	 * Setup Wake-on-Lan
684 	 */
685 	apme_mask = EM_EEPROM_APME;
686 	eeprom_data = 0;
687 	switch (adapter->hw.mac.type) {
688 	case e1000_82542:
689 	case e1000_82543:
690 		break;
691 
692 	case e1000_82573:
693 	case e1000_82583:
694 		adapter->flags |= EM_FLAG_HAS_AMT;
695 		/* FALL THROUGH */
696 
697 	case e1000_82546:
698 	case e1000_82546_rev_3:
699 	case e1000_82571:
700 	case e1000_82572:
701 	case e1000_80003es2lan:
702 		if (adapter->hw.bus.func == 1) {
703 			e1000_read_nvm(&adapter->hw,
704 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
705 		} else {
706 			e1000_read_nvm(&adapter->hw,
707 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
708 		}
709 		break;
710 
711 	case e1000_ich8lan:
712 	case e1000_ich9lan:
713 	case e1000_ich10lan:
714 	case e1000_pchlan:
715 	case e1000_pch2lan:
716 		apme_mask = E1000_WUC_APME;
717 		adapter->flags |= EM_FLAG_HAS_AMT;
718 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
719 		break;
720 
721 	default:
722 		e1000_read_nvm(&adapter->hw,
723 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
724 		break;
725 	}
726 	if (eeprom_data & apme_mask)
727 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
728 
729 	/*
730          * We have the eeprom settings, now apply the special cases
731          * where the eeprom may be wrong or the board won't support
732          * wake on lan on a particular port
733 	 */
734 	device_id = pci_get_device(dev);
735         switch (device_id) {
736 	case E1000_DEV_ID_82546GB_PCIE:
737 		adapter->wol = 0;
738 		break;
739 
740 	case E1000_DEV_ID_82546EB_FIBER:
741 	case E1000_DEV_ID_82546GB_FIBER:
742 	case E1000_DEV_ID_82571EB_FIBER:
743 		/*
744 		 * Wake events only supported on port A for dual fiber
745 		 * regardless of eeprom setting
746 		 */
747 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
748 		    E1000_STATUS_FUNC_1)
749 			adapter->wol = 0;
750 		break;
751 
752 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
753 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
754 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
755 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
756                 /* if quad port adapter, disable WoL on all but port A */
757 		if (em_global_quad_port_a != 0)
758 			adapter->wol = 0;
759 		/* Reset for multiple quad port adapters */
760 		if (++em_global_quad_port_a == 4)
761 			em_global_quad_port_a = 0;
762                 break;
763 	}
764 
765 	/* XXX disable wol */
766 	adapter->wol = 0;
767 
768 	/* Setup OS specific network interface */
769 	em_setup_ifp(adapter);
770 
771 	/* Add sysctl tree, must after em_setup_ifp() */
772 	em_add_sysctl(adapter);
773 
774 #ifdef IFPOLL_ENABLE
775 	/* Polling setup */
776 	ifpoll_compat_setup(&adapter->npoll,
777 	    &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
778 	    ifp->if_serializer);
779 #endif
780 
781 	/* Reset the hardware */
782 	error = em_reset(adapter);
783 	if (error) {
784 		device_printf(dev, "Unable to reset the hardware\n");
785 		goto fail;
786 	}
787 
788 	/* Initialize statistics */
789 	em_update_stats(adapter);
790 
791 	adapter->hw.mac.get_link_status = 1;
792 	em_update_link_status(adapter);
793 
794 	/* Do we need workaround for 82544 PCI-X adapter? */
795 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
796 	    adapter->hw.mac.type == e1000_82544)
797 		adapter->pcix_82544 = TRUE;
798 	else
799 		adapter->pcix_82544 = FALSE;
800 
801 	if (adapter->pcix_82544) {
802 		/*
803 		 * 82544 on PCI-X may split one TX segment
804 		 * into two TX descs, so we double its number
805 		 * of spare TX desc here.
806 		 */
807 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
808 	} else {
809 		adapter->spare_tx_desc = EM_TX_SPARE;
810 	}
811 	if (adapter->flags & EM_FLAG_TSO)
812 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
813 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
814 
815 	/*
816 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
817 	 * and tx_int_nsegs:
818 	 * (spare_tx_desc + EM_TX_RESERVED) <=
819 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
820 	 */
821 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
822 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
823 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
824 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
825 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
826 
827 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
828 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
829 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
830 
831 	/* Non-AMT based hardware can now take control from firmware */
832 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
833 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
834 		em_get_hw_control(adapter);
835 
836 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
837 
838 	/*
839 	 * Missing Interrupt Following ICR read:
840 	 *
841 	 * 82571/82572 specification update errata #76
842 	 * 82573 specification update errata #31
843 	 * 82574 specification update errata #12
844 	 * 82583 specification update errata #4
845 	 */
846 	intr_func = em_intr;
847 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
848 	    (adapter->hw.mac.type == e1000_82571 ||
849 	     adapter->hw.mac.type == e1000_82572 ||
850 	     adapter->hw.mac.type == e1000_82573 ||
851 	     adapter->hw.mac.type == e1000_82574 ||
852 	     adapter->hw.mac.type == e1000_82583))
853 		intr_func = em_intr_mask;
854 
855 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
856 			       intr_func, adapter, &adapter->intr_tag,
857 			       ifp->if_serializer);
858 	if (error) {
859 		device_printf(dev, "Failed to register interrupt handler");
860 		ether_ifdetach(&adapter->arpcom.ac_if);
861 		goto fail;
862 	}
863 	return (0);
864 fail:
865 	em_detach(dev);
866 	return (error);
867 }
868 
869 static int
870 em_detach(device_t dev)
871 {
872 	struct adapter *adapter = device_get_softc(dev);
873 
874 	if (device_is_attached(dev)) {
875 		struct ifnet *ifp = &adapter->arpcom.ac_if;
876 
877 		lwkt_serialize_enter(ifp->if_serializer);
878 
879 		em_stop(adapter);
880 
881 		e1000_phy_hw_reset(&adapter->hw);
882 
883 		em_rel_mgmt(adapter);
884 		em_rel_hw_control(adapter);
885 
886 		if (adapter->wol) {
887 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
888 					E1000_WUC_PME_EN);
889 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
890 			em_enable_wol(dev);
891 		}
892 
893 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
894 
895 		lwkt_serialize_exit(ifp->if_serializer);
896 
897 		ether_ifdetach(ifp);
898 	} else if (adapter->memory != NULL) {
899 		em_rel_hw_control(adapter);
900 	}
901 	bus_generic_detach(dev);
902 
903 	em_free_pci_res(adapter);
904 
905 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
906 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
907 
908 	/* Free Transmit Descriptor ring */
909 	if (adapter->tx_desc_base)
910 		em_dma_free(adapter, &adapter->txdma);
911 
912 	/* Free Receive Descriptor ring */
913 	if (adapter->rx_desc_base)
914 		em_dma_free(adapter, &adapter->rxdma);
915 
916 	/* Free top level busdma tag */
917 	if (adapter->parent_dtag != NULL)
918 		bus_dma_tag_destroy(adapter->parent_dtag);
919 
920 	/* Free sysctl tree */
921 	if (adapter->sysctl_tree != NULL)
922 		sysctl_ctx_free(&adapter->sysctl_ctx);
923 
924 	if (adapter->mta != NULL)
925 		kfree(adapter->mta, M_DEVBUF);
926 
927 	return (0);
928 }
929 
930 static int
931 em_shutdown(device_t dev)
932 {
933 	return em_suspend(dev);
934 }
935 
936 static int
937 em_suspend(device_t dev)
938 {
939 	struct adapter *adapter = device_get_softc(dev);
940 	struct ifnet *ifp = &adapter->arpcom.ac_if;
941 
942 	lwkt_serialize_enter(ifp->if_serializer);
943 
944 	em_stop(adapter);
945 
946 	em_rel_mgmt(adapter);
947 	em_rel_hw_control(adapter);
948 
949 	if (adapter->wol) {
950 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
951 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
952 		em_enable_wol(dev);
953 	}
954 
955 	lwkt_serialize_exit(ifp->if_serializer);
956 
957 	return bus_generic_suspend(dev);
958 }
959 
960 static int
961 em_resume(device_t dev)
962 {
963 	struct adapter *adapter = device_get_softc(dev);
964 	struct ifnet *ifp = &adapter->arpcom.ac_if;
965 
966 	lwkt_serialize_enter(ifp->if_serializer);
967 
968 	if (adapter->hw.mac.type == e1000_pch2lan)
969 		e1000_resume_workarounds_pchlan(&adapter->hw);
970 
971 	em_init(adapter);
972 	em_get_mgmt(adapter);
973 	if_devstart(ifp);
974 
975 	lwkt_serialize_exit(ifp->if_serializer);
976 
977 	return bus_generic_resume(dev);
978 }
979 
980 static void
981 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
982 {
983 	struct adapter *adapter = ifp->if_softc;
984 	struct mbuf *m_head;
985 	int idx = -1, nsegs = 0;
986 
987 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
988 	ASSERT_SERIALIZED(ifp->if_serializer);
989 
990 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
991 		return;
992 
993 	if (!adapter->link_active) {
994 		ifq_purge(&ifp->if_snd);
995 		return;
996 	}
997 
998 	while (!ifq_is_empty(&ifp->if_snd)) {
999 		/* Now do we at least have a minimal? */
1000 		if (EM_IS_OACTIVE(adapter)) {
1001 			em_tx_collect(adapter);
1002 			if (EM_IS_OACTIVE(adapter)) {
1003 				ifq_set_oactive(&ifp->if_snd);
1004 				adapter->no_tx_desc_avail1++;
1005 				break;
1006 			}
1007 		}
1008 
1009 		logif(pkt_txqueue);
1010 		m_head = ifq_dequeue(&ifp->if_snd);
1011 		if (m_head == NULL)
1012 			break;
1013 
1014 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1015 			IFNET_STAT_INC(ifp, oerrors, 1);
1016 			em_tx_collect(adapter);
1017 			continue;
1018 		}
1019 
1020 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1021 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1022 			nsegs = 0;
1023 			idx = -1;
1024 		}
1025 
1026 		/* Send a copy of the frame to the BPF listener */
1027 		ETHER_BPF_MTAP(ifp, m_head);
1028 
1029 		/* Set timeout in case hardware has problems transmitting. */
1030 		ifp->if_timer = EM_TX_TIMEOUT;
1031 	}
1032 	if (idx >= 0)
1033 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1034 }
1035 
1036 static int
1037 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1038 {
1039 	struct adapter *adapter = ifp->if_softc;
1040 	struct ifreq *ifr = (struct ifreq *)data;
1041 	uint16_t eeprom_data = 0;
1042 	int max_frame_size, mask, reinit;
1043 	int error = 0;
1044 
1045 	ASSERT_SERIALIZED(ifp->if_serializer);
1046 
1047 	switch (command) {
1048 	case SIOCSIFMTU:
1049 		switch (adapter->hw.mac.type) {
1050 		case e1000_82573:
1051 			/*
1052 			 * 82573 only supports jumbo frames
1053 			 * if ASPM is disabled.
1054 			 */
1055 			e1000_read_nvm(&adapter->hw,
1056 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1057 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1058 				max_frame_size = ETHER_MAX_LEN;
1059 				break;
1060 			}
1061 			/* FALL THROUGH */
1062 
1063 		/* Limit Jumbo Frame size */
1064 		case e1000_82571:
1065 		case e1000_82572:
1066 		case e1000_ich9lan:
1067 		case e1000_ich10lan:
1068 		case e1000_pch2lan:
1069 		case e1000_82574:
1070 		case e1000_82583:
1071 		case e1000_80003es2lan:
1072 			max_frame_size = 9234;
1073 			break;
1074 
1075 		case e1000_pchlan:
1076 			max_frame_size = 4096;
1077 			break;
1078 
1079 		/* Adapters that do not support jumbo frames */
1080 		case e1000_82542:
1081 		case e1000_ich8lan:
1082 			max_frame_size = ETHER_MAX_LEN;
1083 			break;
1084 
1085 		default:
1086 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1087 			break;
1088 		}
1089 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1090 		    ETHER_CRC_LEN) {
1091 			error = EINVAL;
1092 			break;
1093 		}
1094 
1095 		ifp->if_mtu = ifr->ifr_mtu;
1096 		adapter->max_frame_size =
1097 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1098 
1099 		if (ifp->if_flags & IFF_RUNNING)
1100 			em_init(adapter);
1101 		break;
1102 
1103 	case SIOCSIFFLAGS:
1104 		if (ifp->if_flags & IFF_UP) {
1105 			if ((ifp->if_flags & IFF_RUNNING)) {
1106 				if ((ifp->if_flags ^ adapter->if_flags) &
1107 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1108 					em_disable_promisc(adapter);
1109 					em_set_promisc(adapter);
1110 				}
1111 			} else {
1112 				em_init(adapter);
1113 			}
1114 		} else if (ifp->if_flags & IFF_RUNNING) {
1115 			em_stop(adapter);
1116 		}
1117 		adapter->if_flags = ifp->if_flags;
1118 		break;
1119 
1120 	case SIOCADDMULTI:
1121 	case SIOCDELMULTI:
1122 		if (ifp->if_flags & IFF_RUNNING) {
1123 			em_disable_intr(adapter);
1124 			em_set_multi(adapter);
1125 			if (adapter->hw.mac.type == e1000_82542 &&
1126 			    adapter->hw.revision_id == E1000_REVISION_2)
1127 				em_init_rx_unit(adapter);
1128 #ifdef IFPOLL_ENABLE
1129 			if (!(ifp->if_flags & IFF_NPOLLING))
1130 #endif
1131 				em_enable_intr(adapter);
1132 		}
1133 		break;
1134 
1135 	case SIOCSIFMEDIA:
1136 		/* Check SOL/IDER usage */
1137 		if (e1000_check_reset_block(&adapter->hw)) {
1138 			device_printf(adapter->dev, "Media change is"
1139 			    " blocked due to SOL/IDER session.\n");
1140 			break;
1141 		}
1142 		/* FALL THROUGH */
1143 
1144 	case SIOCGIFMEDIA:
1145 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1146 		break;
1147 
1148 	case SIOCSIFCAP:
1149 		reinit = 0;
1150 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1151 		if (mask & IFCAP_RXCSUM) {
1152 			ifp->if_capenable ^= IFCAP_RXCSUM;
1153 			reinit = 1;
1154 		}
1155 		if (mask & IFCAP_TXCSUM) {
1156 			ifp->if_capenable ^= IFCAP_TXCSUM;
1157 			if (ifp->if_capenable & IFCAP_TXCSUM)
1158 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1159 			else
1160 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1161 		}
1162 		if (mask & IFCAP_TSO) {
1163 			ifp->if_capenable ^= IFCAP_TSO;
1164 			if (ifp->if_capenable & IFCAP_TSO)
1165 				ifp->if_hwassist |= CSUM_TSO;
1166 			else
1167 				ifp->if_hwassist &= ~CSUM_TSO;
1168 		}
1169 		if (mask & IFCAP_VLAN_HWTAGGING) {
1170 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1171 			reinit = 1;
1172 		}
1173 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1174 			em_init(adapter);
1175 		break;
1176 
1177 	default:
1178 		error = ether_ioctl(ifp, command, data);
1179 		break;
1180 	}
1181 	return (error);
1182 }
1183 
1184 static void
1185 em_watchdog(struct ifnet *ifp)
1186 {
1187 	struct adapter *adapter = ifp->if_softc;
1188 
1189 	ASSERT_SERIALIZED(ifp->if_serializer);
1190 
1191 	/*
1192 	 * The timer is set to 5 every time start queues a packet.
1193 	 * Then txeof keeps resetting it as long as it cleans at
1194 	 * least one descriptor.
1195 	 * Finally, anytime all descriptors are clean the timer is
1196 	 * set to 0.
1197 	 */
1198 
1199 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1200 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1201 		/*
1202 		 * If we reach here, all TX jobs are completed and
1203 		 * the TX engine should have been idled for some time.
1204 		 * We don't need to call if_devstart() here.
1205 		 */
1206 		ifq_clr_oactive(&ifp->if_snd);
1207 		ifp->if_timer = 0;
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * If we are in this routine because of pause frames, then
1213 	 * don't reset the hardware.
1214 	 */
1215 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1216 	    E1000_STATUS_TXOFF) {
1217 		ifp->if_timer = EM_TX_TIMEOUT;
1218 		return;
1219 	}
1220 
1221 	if (e1000_check_for_link(&adapter->hw) == 0)
1222 		if_printf(ifp, "watchdog timeout -- resetting\n");
1223 
1224 	IFNET_STAT_INC(ifp, oerrors, 1);
1225 	adapter->watchdog_events++;
1226 
1227 	em_init(adapter);
1228 
1229 	if (!ifq_is_empty(&ifp->if_snd))
1230 		if_devstart(ifp);
1231 }
1232 
1233 static void
1234 em_init(void *xsc)
1235 {
1236 	struct adapter *adapter = xsc;
1237 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1238 	device_t dev = adapter->dev;
1239 
1240 	ASSERT_SERIALIZED(ifp->if_serializer);
1241 
1242 	em_stop(adapter);
1243 
1244 	/* Get the latest mac address, User can use a LAA */
1245         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1246 
1247 	/* Put the address into the Receive Address Array */
1248 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1249 
1250 	/*
1251 	 * With the 82571 adapter, RAR[0] may be overwritten
1252 	 * when the other port is reset, we make a duplicate
1253 	 * in RAR[14] for that eventuality, this assures
1254 	 * the interface continues to function.
1255 	 */
1256 	if (adapter->hw.mac.type == e1000_82571) {
1257 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1258 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1259 		    E1000_RAR_ENTRIES - 1);
1260 	}
1261 
1262 	/* Reset the hardware */
1263 	if (em_reset(adapter)) {
1264 		device_printf(dev, "Unable to reset the hardware\n");
1265 		/* XXX em_stop()? */
1266 		return;
1267 	}
1268 	em_update_link_status(adapter);
1269 
1270 	/* Setup VLAN support, basic and offload if available */
1271 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1272 
1273 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1274 		uint32_t ctrl;
1275 
1276 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1277 		ctrl |= E1000_CTRL_VME;
1278 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1279 	}
1280 
1281 	/* Configure for OS presence */
1282 	em_get_mgmt(adapter);
1283 
1284 	/* Prepare transmit descriptors and buffers */
1285 	em_init_tx_ring(adapter);
1286 	em_init_tx_unit(adapter);
1287 
1288 	/* Setup Multicast table */
1289 	em_set_multi(adapter);
1290 
1291 	/* Prepare receive descriptors and buffers */
1292 	if (em_init_rx_ring(adapter)) {
1293 		device_printf(dev, "Could not setup receive structures\n");
1294 		em_stop(adapter);
1295 		return;
1296 	}
1297 	em_init_rx_unit(adapter);
1298 
1299 	/* Don't lose promiscuous settings */
1300 	em_set_promisc(adapter);
1301 
1302 	ifp->if_flags |= IFF_RUNNING;
1303 	ifq_clr_oactive(&ifp->if_snd);
1304 
1305 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1306 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1307 
1308 	/* MSI/X configuration for 82574 */
1309 	if (adapter->hw.mac.type == e1000_82574) {
1310 		int tmp;
1311 
1312 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1313 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1314 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1315 		/*
1316 		 * XXX MSIX
1317 		 * Set the IVAR - interrupt vector routing.
1318 		 * Each nibble represents a vector, high bit
1319 		 * is enable, other 3 bits are the MSIX table
1320 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1321 		 * Link (other) to 2, hence the magic number.
1322 		 */
1323 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1324 	}
1325 
1326 #ifdef IFPOLL_ENABLE
1327 	/*
1328 	 * Only enable interrupts if we are not polling, make sure
1329 	 * they are off otherwise.
1330 	 */
1331 	if (ifp->if_flags & IFF_NPOLLING)
1332 		em_disable_intr(adapter);
1333 	else
1334 #endif /* IFPOLL_ENABLE */
1335 		em_enable_intr(adapter);
1336 
1337 	/* AMT based hardware can now take control from firmware */
1338 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1339 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1340 	    adapter->hw.mac.type >= e1000_82571)
1341 		em_get_hw_control(adapter);
1342 }
1343 
1344 #ifdef IFPOLL_ENABLE
1345 
1346 static void
1347 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1348 {
1349 	struct adapter *adapter = ifp->if_softc;
1350 
1351 	ASSERT_SERIALIZED(ifp->if_serializer);
1352 
1353 	if (adapter->npoll.ifpc_stcount-- == 0) {
1354 		uint32_t reg_icr;
1355 
1356 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1357 
1358 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1359 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1360 			callout_stop(&adapter->timer);
1361 			adapter->hw.mac.get_link_status = 1;
1362 			em_update_link_status(adapter);
1363 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1364 		}
1365 	}
1366 
1367 	em_rxeof(adapter, count);
1368 	em_txeof(adapter);
1369 
1370 	if (!ifq_is_empty(&ifp->if_snd))
1371 		if_devstart(ifp);
1372 }
1373 
1374 static void
1375 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1376 {
1377 	struct adapter *adapter = ifp->if_softc;
1378 
1379 	ASSERT_SERIALIZED(ifp->if_serializer);
1380 
1381 	if (info != NULL) {
1382 		int cpuid = adapter->npoll.ifpc_cpuid;
1383 
1384                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1385 		info->ifpi_rx[cpuid].arg = NULL;
1386 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1387 
1388 		if (ifp->if_flags & IFF_RUNNING)
1389 			em_disable_intr(adapter);
1390 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1391 	} else {
1392 		if (ifp->if_flags & IFF_RUNNING)
1393 			em_enable_intr(adapter);
1394 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1395 	}
1396 }
1397 
1398 #endif /* IFPOLL_ENABLE */
1399 
1400 static void
1401 em_intr(void *xsc)
1402 {
1403 	em_intr_body(xsc, TRUE);
1404 }
1405 
1406 static void
1407 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1408 {
1409 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1410 	uint32_t reg_icr;
1411 
1412 	logif(intr_beg);
1413 	ASSERT_SERIALIZED(ifp->if_serializer);
1414 
1415 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1416 
1417 	if (chk_asserted &&
1418 	    ((adapter->hw.mac.type >= e1000_82571 &&
1419 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1420 	     reg_icr == 0)) {
1421 		logif(intr_end);
1422 		return;
1423 	}
1424 
1425 	/*
1426 	 * XXX: some laptops trigger several spurious interrupts
1427 	 * on em(4) when in the resume cycle. The ICR register
1428 	 * reports all-ones value in this case. Processing such
1429 	 * interrupts would lead to a freeze. I don't know why.
1430 	 */
1431 	if (reg_icr == 0xffffffff) {
1432 		logif(intr_end);
1433 		return;
1434 	}
1435 
1436 	if (ifp->if_flags & IFF_RUNNING) {
1437 		if (reg_icr &
1438 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1439 			em_rxeof(adapter, -1);
1440 		if (reg_icr & E1000_ICR_TXDW) {
1441 			em_txeof(adapter);
1442 			if (!ifq_is_empty(&ifp->if_snd))
1443 				if_devstart(ifp);
1444 		}
1445 	}
1446 
1447 	/* Link status change */
1448 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1449 		callout_stop(&adapter->timer);
1450 		adapter->hw.mac.get_link_status = 1;
1451 		em_update_link_status(adapter);
1452 
1453 		/* Deal with TX cruft when link lost */
1454 		em_tx_purge(adapter);
1455 
1456 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1457 	}
1458 
1459 	if (reg_icr & E1000_ICR_RXO)
1460 		adapter->rx_overruns++;
1461 
1462 	logif(intr_end);
1463 }
1464 
1465 static void
1466 em_intr_mask(void *xsc)
1467 {
1468 	struct adapter *adapter = xsc;
1469 
1470 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1471 	/*
1472 	 * NOTE:
1473 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1474 	 * so don't check it.
1475 	 */
1476 	em_intr_body(adapter, FALSE);
1477 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1478 }
1479 
1480 static void
1481 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1482 {
1483 	struct adapter *adapter = ifp->if_softc;
1484 	u_char fiber_type = IFM_1000_SX;
1485 
1486 	ASSERT_SERIALIZED(ifp->if_serializer);
1487 
1488 	em_update_link_status(adapter);
1489 
1490 	ifmr->ifm_status = IFM_AVALID;
1491 	ifmr->ifm_active = IFM_ETHER;
1492 
1493 	if (!adapter->link_active)
1494 		return;
1495 
1496 	ifmr->ifm_status |= IFM_ACTIVE;
1497 
1498 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1499 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1500 		if (adapter->hw.mac.type == e1000_82545)
1501 			fiber_type = IFM_1000_LX;
1502 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1503 	} else {
1504 		switch (adapter->link_speed) {
1505 		case 10:
1506 			ifmr->ifm_active |= IFM_10_T;
1507 			break;
1508 		case 100:
1509 			ifmr->ifm_active |= IFM_100_TX;
1510 			break;
1511 
1512 		case 1000:
1513 			ifmr->ifm_active |= IFM_1000_T;
1514 			break;
1515 		}
1516 		if (adapter->link_duplex == FULL_DUPLEX)
1517 			ifmr->ifm_active |= IFM_FDX;
1518 		else
1519 			ifmr->ifm_active |= IFM_HDX;
1520 	}
1521 }
1522 
1523 static int
1524 em_media_change(struct ifnet *ifp)
1525 {
1526 	struct adapter *adapter = ifp->if_softc;
1527 	struct ifmedia *ifm = &adapter->media;
1528 
1529 	ASSERT_SERIALIZED(ifp->if_serializer);
1530 
1531 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1532 		return (EINVAL);
1533 
1534 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1535 	case IFM_AUTO:
1536 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1537 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1538 		break;
1539 
1540 	case IFM_1000_LX:
1541 	case IFM_1000_SX:
1542 	case IFM_1000_T:
1543 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1544 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1545 		break;
1546 
1547 	case IFM_100_TX:
1548 		adapter->hw.mac.autoneg = FALSE;
1549 		adapter->hw.phy.autoneg_advertised = 0;
1550 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1551 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1552 		else
1553 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1554 		break;
1555 
1556 	case IFM_10_T:
1557 		adapter->hw.mac.autoneg = FALSE;
1558 		adapter->hw.phy.autoneg_advertised = 0;
1559 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1560 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1561 		else
1562 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1563 		break;
1564 
1565 	default:
1566 		if_printf(ifp, "Unsupported media type\n");
1567 		break;
1568 	}
1569 
1570 	em_init(adapter);
1571 
1572 	return (0);
1573 }
1574 
1575 static int
1576 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1577     int *segs_used, int *idx)
1578 {
1579 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1580 	bus_dmamap_t map;
1581 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1582 	struct e1000_tx_desc *ctxd = NULL;
1583 	struct mbuf *m_head = *m_headp;
1584 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1585 	int maxsegs, nsegs, i, j, first, last = 0, error;
1586 
1587 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1588 		error = em_tso_pullup(adapter, m_headp);
1589 		if (error)
1590 			return error;
1591 		m_head = *m_headp;
1592 	}
1593 
1594 	txd_upper = txd_lower = 0;
1595 	txd_used = 0;
1596 
1597 	/*
1598 	 * Capture the first descriptor index, this descriptor
1599 	 * will have the index of the EOP which is the only one
1600 	 * that now gets a DONE bit writeback.
1601 	 */
1602 	first = adapter->next_avail_tx_desc;
1603 	tx_buffer = &adapter->tx_buffer_area[first];
1604 	tx_buffer_mapped = tx_buffer;
1605 	map = tx_buffer->map;
1606 
1607 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1608 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1609 		("not enough spare TX desc"));
1610 	if (adapter->pcix_82544) {
1611 		/* Half it; see the comment in em_attach() */
1612 		maxsegs >>= 1;
1613 	}
1614 	if (maxsegs > EM_MAX_SCATTER)
1615 		maxsegs = EM_MAX_SCATTER;
1616 
1617 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1618 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1619 	if (error) {
1620 		if (error == ENOBUFS)
1621 			adapter->mbuf_alloc_failed++;
1622 		else
1623 			adapter->no_tx_dma_setup++;
1624 
1625 		m_freem(*m_headp);
1626 		*m_headp = NULL;
1627 		return error;
1628 	}
1629         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1630 
1631 	m_head = *m_headp;
1632 	adapter->tx_nsegs += nsegs;
1633 	*segs_used += nsegs;
1634 
1635 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1636 		/* TSO will consume one TX desc */
1637 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1638 		adapter->tx_nsegs += i;
1639 		*segs_used += i;
1640 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1641 		/* TX csum offloading will consume one TX desc */
1642 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1643 		adapter->tx_nsegs += i;
1644 		*segs_used += i;
1645 	}
1646 
1647         /* Handle VLAN tag */
1648 	if (m_head->m_flags & M_VLANTAG) {
1649 		/* Set the vlan id. */
1650 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1651 		/* Tell hardware to add tag */
1652 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1653 	}
1654 
1655 	i = adapter->next_avail_tx_desc;
1656 
1657 	/* Set up our transmit descriptors */
1658 	for (j = 0; j < nsegs; j++) {
1659 		/* If adapter is 82544 and on PCIX bus */
1660 		if(adapter->pcix_82544) {
1661 			DESC_ARRAY desc_array;
1662 			uint32_t array_elements, counter;
1663 
1664 			/*
1665 			 * Check the Address and Length combination and
1666 			 * split the data accordingly
1667 			 */
1668 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1669 						segs[j].ds_len, &desc_array);
1670 			for (counter = 0; counter < array_elements; counter++) {
1671 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1672 
1673 				tx_buffer = &adapter->tx_buffer_area[i];
1674 				ctxd = &adapter->tx_desc_base[i];
1675 
1676 				ctxd->buffer_addr = htole64(
1677 				    desc_array.descriptor[counter].address);
1678 				ctxd->lower.data = htole32(
1679 				    E1000_TXD_CMD_IFCS | txd_lower |
1680 				    desc_array.descriptor[counter].length);
1681 				ctxd->upper.data = htole32(txd_upper);
1682 
1683 				last = i;
1684 				if (++i == adapter->num_tx_desc)
1685 					i = 0;
1686 
1687 				txd_used++;
1688                         }
1689 		} else {
1690 			tx_buffer = &adapter->tx_buffer_area[i];
1691 			ctxd = &adapter->tx_desc_base[i];
1692 
1693 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1694 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1695 						   txd_lower | segs[j].ds_len);
1696 			ctxd->upper.data = htole32(txd_upper);
1697 
1698 			last = i;
1699 			if (++i == adapter->num_tx_desc)
1700 				i = 0;
1701 		}
1702 	}
1703 
1704 	adapter->next_avail_tx_desc = i;
1705 	if (adapter->pcix_82544) {
1706 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1707 		adapter->num_tx_desc_avail -= txd_used;
1708 	} else {
1709 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1710 		adapter->num_tx_desc_avail -= nsegs;
1711 	}
1712 
1713 	tx_buffer->m_head = m_head;
1714 	tx_buffer_mapped->map = tx_buffer->map;
1715 	tx_buffer->map = map;
1716 
1717 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1718 		adapter->tx_nsegs = 0;
1719 
1720 		/*
1721 		 * Report Status (RS) is turned on
1722 		 * every tx_int_nsegs descriptors.
1723 		 */
1724 		cmd = E1000_TXD_CMD_RS;
1725 
1726 		/*
1727 		 * Keep track of the descriptor, which will
1728 		 * be written back by hardware.
1729 		 */
1730 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1731 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1732 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1733 	}
1734 
1735 	/*
1736 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1737 	 */
1738 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1739 
1740 	if (adapter->hw.mac.type == e1000_82547) {
1741 		/*
1742 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1743 		 * E1000 that this frame is available to transmit.
1744 		 */
1745 		if (adapter->link_duplex == HALF_DUPLEX) {
1746 			em_82547_move_tail_serialized(adapter);
1747 		} else {
1748 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1749 			em_82547_update_fifo_head(adapter,
1750 			    m_head->m_pkthdr.len);
1751 		}
1752 	} else {
1753 		/*
1754 		 * Defer TDT updating, until enough descriptors are setup
1755 		 */
1756 		*idx = i;
1757 	}
1758 	return (0);
1759 }
1760 
1761 /*
1762  * 82547 workaround to avoid controller hang in half-duplex environment.
1763  * The workaround is to avoid queuing a large packet that would span
1764  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1765  * in this case.  We do that only when FIFO is quiescent.
1766  */
1767 static void
1768 em_82547_move_tail_serialized(struct adapter *adapter)
1769 {
1770 	struct e1000_tx_desc *tx_desc;
1771 	uint16_t hw_tdt, sw_tdt, length = 0;
1772 	bool eop = 0;
1773 
1774 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1775 
1776 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1777 	sw_tdt = adapter->next_avail_tx_desc;
1778 
1779 	while (hw_tdt != sw_tdt) {
1780 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1781 		length += tx_desc->lower.flags.length;
1782 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1783 		if (++hw_tdt == adapter->num_tx_desc)
1784 			hw_tdt = 0;
1785 
1786 		if (eop) {
1787 			if (em_82547_fifo_workaround(adapter, length)) {
1788 				adapter->tx_fifo_wrk_cnt++;
1789 				callout_reset(&adapter->tx_fifo_timer, 1,
1790 					em_82547_move_tail, adapter);
1791 				break;
1792 			}
1793 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1794 			em_82547_update_fifo_head(adapter, length);
1795 			length = 0;
1796 		}
1797 	}
1798 }
1799 
1800 static void
1801 em_82547_move_tail(void *xsc)
1802 {
1803 	struct adapter *adapter = xsc;
1804 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1805 
1806 	lwkt_serialize_enter(ifp->if_serializer);
1807 	em_82547_move_tail_serialized(adapter);
1808 	lwkt_serialize_exit(ifp->if_serializer);
1809 }
1810 
1811 static int
1812 em_82547_fifo_workaround(struct adapter *adapter, int len)
1813 {
1814 	int fifo_space, fifo_pkt_len;
1815 
1816 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1817 
1818 	if (adapter->link_duplex == HALF_DUPLEX) {
1819 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1820 
1821 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1822 			if (em_82547_tx_fifo_reset(adapter))
1823 				return (0);
1824 			else
1825 				return (1);
1826 		}
1827 	}
1828 	return (0);
1829 }
1830 
1831 static void
1832 em_82547_update_fifo_head(struct adapter *adapter, int len)
1833 {
1834 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1835 
1836 	/* tx_fifo_head is always 16 byte aligned */
1837 	adapter->tx_fifo_head += fifo_pkt_len;
1838 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1839 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1840 }
1841 
1842 static int
1843 em_82547_tx_fifo_reset(struct adapter *adapter)
1844 {
1845 	uint32_t tctl;
1846 
1847 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1848 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1849 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1850 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1851 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1852 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1853 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1854 		/* Disable TX unit */
1855 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1856 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1857 		    tctl & ~E1000_TCTL_EN);
1858 
1859 		/* Reset FIFO pointers */
1860 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1861 		    adapter->tx_head_addr);
1862 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1863 		    adapter->tx_head_addr);
1864 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1865 		    adapter->tx_head_addr);
1866 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1867 		    adapter->tx_head_addr);
1868 
1869 		/* Re-enable TX unit */
1870 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1871 		E1000_WRITE_FLUSH(&adapter->hw);
1872 
1873 		adapter->tx_fifo_head = 0;
1874 		adapter->tx_fifo_reset_cnt++;
1875 
1876 		return (TRUE);
1877 	} else {
1878 		return (FALSE);
1879 	}
1880 }
1881 
1882 static void
1883 em_set_promisc(struct adapter *adapter)
1884 {
1885 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1886 	uint32_t reg_rctl;
1887 
1888 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1889 
1890 	if (ifp->if_flags & IFF_PROMISC) {
1891 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1892 		/* Turn this on if you want to see bad packets */
1893 		if (em_debug_sbp)
1894 			reg_rctl |= E1000_RCTL_SBP;
1895 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1896 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1897 		reg_rctl |= E1000_RCTL_MPE;
1898 		reg_rctl &= ~E1000_RCTL_UPE;
1899 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1900 	}
1901 }
1902 
1903 static void
1904 em_disable_promisc(struct adapter *adapter)
1905 {
1906 	uint32_t reg_rctl;
1907 
1908 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1909 
1910 	reg_rctl &= ~E1000_RCTL_UPE;
1911 	reg_rctl &= ~E1000_RCTL_MPE;
1912 	reg_rctl &= ~E1000_RCTL_SBP;
1913 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1914 }
1915 
1916 static void
1917 em_set_multi(struct adapter *adapter)
1918 {
1919 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1920 	struct ifmultiaddr *ifma;
1921 	uint32_t reg_rctl = 0;
1922 	uint8_t *mta;
1923 	int mcnt = 0;
1924 
1925 	mta = adapter->mta;
1926 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1927 
1928 	if (adapter->hw.mac.type == e1000_82542 &&
1929 	    adapter->hw.revision_id == E1000_REVISION_2) {
1930 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1931 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1932 			e1000_pci_clear_mwi(&adapter->hw);
1933 		reg_rctl |= E1000_RCTL_RST;
1934 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1935 		msec_delay(5);
1936 	}
1937 
1938 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1939 		if (ifma->ifma_addr->sa_family != AF_LINK)
1940 			continue;
1941 
1942 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1943 			break;
1944 
1945 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1946 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1947 		mcnt++;
1948 	}
1949 
1950 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1951 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1952 		reg_rctl |= E1000_RCTL_MPE;
1953 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1954 	} else {
1955 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1956 	}
1957 
1958 	if (adapter->hw.mac.type == e1000_82542 &&
1959 	    adapter->hw.revision_id == E1000_REVISION_2) {
1960 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1961 		reg_rctl &= ~E1000_RCTL_RST;
1962 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1963 		msec_delay(5);
1964 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1965 			e1000_pci_set_mwi(&adapter->hw);
1966 	}
1967 }
1968 
1969 /*
1970  * This routine checks for link status and updates statistics.
1971  */
1972 static void
1973 em_timer(void *xsc)
1974 {
1975 	struct adapter *adapter = xsc;
1976 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1977 
1978 	lwkt_serialize_enter(ifp->if_serializer);
1979 
1980 	em_update_link_status(adapter);
1981 	em_update_stats(adapter);
1982 
1983 	/* Reset LAA into RAR[0] on 82571 */
1984 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1985 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1986 
1987 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1988 		em_print_hw_stats(adapter);
1989 
1990 	em_smartspeed(adapter);
1991 
1992 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1993 
1994 	lwkt_serialize_exit(ifp->if_serializer);
1995 }
1996 
1997 static void
1998 em_update_link_status(struct adapter *adapter)
1999 {
2000 	struct e1000_hw *hw = &adapter->hw;
2001 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2002 	device_t dev = adapter->dev;
2003 	uint32_t link_check = 0;
2004 
2005 	/* Get the cached link value or read phy for real */
2006 	switch (hw->phy.media_type) {
2007 	case e1000_media_type_copper:
2008 		if (hw->mac.get_link_status) {
2009 			/* Do the work to read phy */
2010 			e1000_check_for_link(hw);
2011 			link_check = !hw->mac.get_link_status;
2012 			if (link_check) /* ESB2 fix */
2013 				e1000_cfg_on_link_up(hw);
2014 		} else {
2015 			link_check = TRUE;
2016 		}
2017 		break;
2018 
2019 	case e1000_media_type_fiber:
2020 		e1000_check_for_link(hw);
2021 		link_check =
2022 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2023 		break;
2024 
2025 	case e1000_media_type_internal_serdes:
2026 		e1000_check_for_link(hw);
2027 		link_check = adapter->hw.mac.serdes_has_link;
2028 		break;
2029 
2030 	case e1000_media_type_unknown:
2031 	default:
2032 		break;
2033 	}
2034 
2035 	/* Now check for a transition */
2036 	if (link_check && adapter->link_active == 0) {
2037 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2038 		    &adapter->link_duplex);
2039 
2040 		/*
2041 		 * Check if we should enable/disable SPEED_MODE bit on
2042 		 * 82571/82572
2043 		 */
2044 		if (adapter->link_speed != SPEED_1000 &&
2045 		    (hw->mac.type == e1000_82571 ||
2046 		     hw->mac.type == e1000_82572)) {
2047 			int tarc0;
2048 
2049 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2050 			tarc0 &= ~SPEED_MODE_BIT;
2051 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2052 		}
2053 		if (bootverbose) {
2054 			device_printf(dev, "Link is up %d Mbps %s\n",
2055 			    adapter->link_speed,
2056 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2057 			    "Full Duplex" : "Half Duplex"));
2058 		}
2059 		adapter->link_active = 1;
2060 		adapter->smartspeed = 0;
2061 		ifp->if_baudrate = adapter->link_speed * 1000000;
2062 		ifp->if_link_state = LINK_STATE_UP;
2063 		if_link_state_change(ifp);
2064 	} else if (!link_check && adapter->link_active == 1) {
2065 		ifp->if_baudrate = adapter->link_speed = 0;
2066 		adapter->link_duplex = 0;
2067 		if (bootverbose)
2068 			device_printf(dev, "Link is Down\n");
2069 		adapter->link_active = 0;
2070 #if 0
2071 		/* Link down, disable watchdog */
2072 		if->if_timer = 0;
2073 #endif
2074 		ifp->if_link_state = LINK_STATE_DOWN;
2075 		if_link_state_change(ifp);
2076 	}
2077 }
2078 
2079 static void
2080 em_stop(struct adapter *adapter)
2081 {
2082 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2083 	int i;
2084 
2085 	ASSERT_SERIALIZED(ifp->if_serializer);
2086 
2087 	em_disable_intr(adapter);
2088 
2089 	callout_stop(&adapter->timer);
2090 	callout_stop(&adapter->tx_fifo_timer);
2091 
2092 	ifp->if_flags &= ~IFF_RUNNING;
2093 	ifq_clr_oactive(&ifp->if_snd);
2094 	ifp->if_timer = 0;
2095 
2096 	e1000_reset_hw(&adapter->hw);
2097 	if (adapter->hw.mac.type >= e1000_82544)
2098 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2099 
2100 	for (i = 0; i < adapter->num_tx_desc; i++) {
2101 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2102 
2103 		if (tx_buffer->m_head != NULL) {
2104 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2105 			m_freem(tx_buffer->m_head);
2106 			tx_buffer->m_head = NULL;
2107 		}
2108 	}
2109 
2110 	for (i = 0; i < adapter->num_rx_desc; i++) {
2111 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2112 
2113 		if (rx_buffer->m_head != NULL) {
2114 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2115 			m_freem(rx_buffer->m_head);
2116 			rx_buffer->m_head = NULL;
2117 		}
2118 	}
2119 
2120 	if (adapter->fmp != NULL)
2121 		m_freem(adapter->fmp);
2122 	adapter->fmp = NULL;
2123 	adapter->lmp = NULL;
2124 
2125 	adapter->csum_flags = 0;
2126 	adapter->csum_lhlen = 0;
2127 	adapter->csum_iphlen = 0;
2128 	adapter->csum_thlen = 0;
2129 	adapter->csum_mss = 0;
2130 	adapter->csum_pktlen = 0;
2131 
2132 	adapter->tx_dd_head = 0;
2133 	adapter->tx_dd_tail = 0;
2134 	adapter->tx_nsegs = 0;
2135 }
2136 
2137 static int
2138 em_get_hw_info(struct adapter *adapter)
2139 {
2140 	device_t dev = adapter->dev;
2141 
2142 	/* Save off the information about this board */
2143 	adapter->hw.vendor_id = pci_get_vendor(dev);
2144 	adapter->hw.device_id = pci_get_device(dev);
2145 	adapter->hw.revision_id = pci_get_revid(dev);
2146 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2147 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2148 
2149 	/* Do Shared Code Init and Setup */
2150 	if (e1000_set_mac_type(&adapter->hw))
2151 		return ENXIO;
2152 	return 0;
2153 }
2154 
2155 static int
2156 em_alloc_pci_res(struct adapter *adapter)
2157 {
2158 	device_t dev = adapter->dev;
2159 	u_int intr_flags;
2160 	int val, rid, msi_enable;
2161 
2162 	/* Enable bus mastering */
2163 	pci_enable_busmaster(dev);
2164 
2165 	adapter->memory_rid = EM_BAR_MEM;
2166 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2167 				&adapter->memory_rid, RF_ACTIVE);
2168 	if (adapter->memory == NULL) {
2169 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2170 		return (ENXIO);
2171 	}
2172 	adapter->osdep.mem_bus_space_tag =
2173 	    rman_get_bustag(adapter->memory);
2174 	adapter->osdep.mem_bus_space_handle =
2175 	    rman_get_bushandle(adapter->memory);
2176 
2177 	/* XXX This is quite goofy, it is not actually used */
2178 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2179 
2180 	/* Only older adapters use IO mapping */
2181 	if (adapter->hw.mac.type > e1000_82543 &&
2182 	    adapter->hw.mac.type < e1000_82571) {
2183 		/* Figure our where our IO BAR is ? */
2184 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2185 			val = pci_read_config(dev, rid, 4);
2186 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2187 				adapter->io_rid = rid;
2188 				break;
2189 			}
2190 			rid += 4;
2191 			/* check for 64bit BAR */
2192 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2193 				rid += 4;
2194 		}
2195 		if (rid >= PCIR_CARDBUSCIS) {
2196 			device_printf(dev, "Unable to locate IO BAR\n");
2197 			return (ENXIO);
2198 		}
2199 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2200 					&adapter->io_rid, RF_ACTIVE);
2201 		if (adapter->ioport == NULL) {
2202 			device_printf(dev, "Unable to allocate bus resource: "
2203 			    "ioport\n");
2204 			return (ENXIO);
2205 		}
2206 		adapter->hw.io_base = 0;
2207 		adapter->osdep.io_bus_space_tag =
2208 		    rman_get_bustag(adapter->ioport);
2209 		adapter->osdep.io_bus_space_handle =
2210 		    rman_get_bushandle(adapter->ioport);
2211 	}
2212 
2213 	/*
2214 	 * Don't enable MSI-X on 82574, see:
2215 	 * 82574 specification update errata #15
2216 	 *
2217 	 * Don't enable MSI on PCI/PCI-X chips, see:
2218 	 * 82540 specification update errata #6
2219 	 * 82545 specification update errata #4
2220 	 *
2221 	 * Don't enable MSI on 82571/82572, see:
2222 	 * 82571/82572 specification update errata #63
2223 	 */
2224 	msi_enable = em_msi_enable;
2225 	if (msi_enable &&
2226 	    (!pci_is_pcie(dev) ||
2227 	     adapter->hw.mac.type == e1000_82571 ||
2228 	     adapter->hw.mac.type == e1000_82572))
2229 		msi_enable = 0;
2230 
2231 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2232 	    &adapter->intr_rid, &intr_flags);
2233 
2234 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2235 		int unshared;
2236 
2237 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2238 		if (!unshared) {
2239 			adapter->flags |= EM_FLAG_SHARED_INTR;
2240 			if (bootverbose)
2241 				device_printf(dev, "IRQ shared\n");
2242 		} else {
2243 			intr_flags &= ~RF_SHAREABLE;
2244 			if (bootverbose)
2245 				device_printf(dev, "IRQ unshared\n");
2246 		}
2247 	}
2248 
2249 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2250 	    &adapter->intr_rid, intr_flags);
2251 	if (adapter->intr_res == NULL) {
2252 		device_printf(dev, "Unable to allocate bus resource: "
2253 		    "interrupt\n");
2254 		return (ENXIO);
2255 	}
2256 
2257 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2258 	adapter->hw.back = &adapter->osdep;
2259 	return (0);
2260 }
2261 
2262 static void
2263 em_free_pci_res(struct adapter *adapter)
2264 {
2265 	device_t dev = adapter->dev;
2266 
2267 	if (adapter->intr_res != NULL) {
2268 		bus_release_resource(dev, SYS_RES_IRQ,
2269 		    adapter->intr_rid, adapter->intr_res);
2270 	}
2271 
2272 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2273 		pci_release_msi(dev);
2274 
2275 	if (adapter->memory != NULL) {
2276 		bus_release_resource(dev, SYS_RES_MEMORY,
2277 		    adapter->memory_rid, adapter->memory);
2278 	}
2279 
2280 	if (adapter->flash != NULL) {
2281 		bus_release_resource(dev, SYS_RES_MEMORY,
2282 		    adapter->flash_rid, adapter->flash);
2283 	}
2284 
2285 	if (adapter->ioport != NULL) {
2286 		bus_release_resource(dev, SYS_RES_IOPORT,
2287 		    adapter->io_rid, adapter->ioport);
2288 	}
2289 }
2290 
2291 static int
2292 em_reset(struct adapter *adapter)
2293 {
2294 	device_t dev = adapter->dev;
2295 	uint16_t rx_buffer_size;
2296 	uint32_t pba;
2297 
2298 	/* When hardware is reset, fifo_head is also reset */
2299 	adapter->tx_fifo_head = 0;
2300 
2301 	/* Set up smart power down as default off on newer adapters. */
2302 	if (!em_smart_pwr_down &&
2303 	    (adapter->hw.mac.type == e1000_82571 ||
2304 	     adapter->hw.mac.type == e1000_82572)) {
2305 		uint16_t phy_tmp = 0;
2306 
2307 		/* Speed up time to link by disabling smart power down. */
2308 		e1000_read_phy_reg(&adapter->hw,
2309 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2310 		phy_tmp &= ~IGP02E1000_PM_SPD;
2311 		e1000_write_phy_reg(&adapter->hw,
2312 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2313 	}
2314 
2315 	/*
2316 	 * Packet Buffer Allocation (PBA)
2317 	 * Writing PBA sets the receive portion of the buffer
2318 	 * the remainder is used for the transmit buffer.
2319 	 *
2320 	 * Devices before the 82547 had a Packet Buffer of 64K.
2321 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2322 	 * After the 82547 the buffer was reduced to 40K.
2323 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2324 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2325 	 */
2326 	switch (adapter->hw.mac.type) {
2327 	case e1000_82547:
2328 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2329 		if (adapter->max_frame_size > 8192)
2330 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2331 		else
2332 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2333 		adapter->tx_fifo_head = 0;
2334 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2335 		adapter->tx_fifo_size =
2336 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2337 		break;
2338 
2339 	/* Total Packet Buffer on these is 48K */
2340 	case e1000_82571:
2341 	case e1000_82572:
2342 	case e1000_80003es2lan:
2343 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2344 		break;
2345 
2346 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2347 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2348 		break;
2349 
2350 	case e1000_82574:
2351 	case e1000_82583:
2352 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2353 		break;
2354 
2355 	case e1000_ich8lan:
2356 		pba = E1000_PBA_8K;
2357 		break;
2358 
2359 	case e1000_ich9lan:
2360 	case e1000_ich10lan:
2361 #define E1000_PBA_10K	0x000A
2362 		pba = E1000_PBA_10K;
2363 		break;
2364 
2365 	case e1000_pchlan:
2366 	case e1000_pch2lan:
2367 		pba = E1000_PBA_26K;
2368 		break;
2369 
2370 	default:
2371 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2372 		if (adapter->max_frame_size > 8192)
2373 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2374 		else
2375 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2376 	}
2377 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2378 
2379 	/*
2380 	 * These parameters control the automatic generation (Tx) and
2381 	 * response (Rx) to Ethernet PAUSE frames.
2382 	 * - High water mark should allow for at least two frames to be
2383 	 *   received after sending an XOFF.
2384 	 * - Low water mark works best when it is very near the high water mark.
2385 	 *   This allows the receiver to restart by sending XON when it has
2386 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2387 	 *   restart after one full frame is pulled from the buffer. There
2388 	 *   could be several smaller frames in the buffer and if so they will
2389 	 *   not trigger the XON until their total number reduces the buffer
2390 	 *   by 1500.
2391 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2392 	 */
2393 	rx_buffer_size =
2394 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2395 
2396 	adapter->hw.fc.high_water = rx_buffer_size -
2397 				    roundup2(adapter->max_frame_size, 1024);
2398 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2399 
2400 	if (adapter->hw.mac.type == e1000_80003es2lan)
2401 		adapter->hw.fc.pause_time = 0xFFFF;
2402 	else
2403 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2404 
2405 	adapter->hw.fc.send_xon = TRUE;
2406 
2407 	adapter->hw.fc.requested_mode = e1000_fc_full;
2408 
2409 	/*
2410 	 * Device specific overrides/settings
2411 	 */
2412 	switch (adapter->hw.mac.type) {
2413 	case e1000_pchlan:
2414 		/* Workaround: no TX flow ctrl for PCH */
2415 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2416 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2417 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2418 			adapter->hw.fc.high_water = 0x3500;
2419 			adapter->hw.fc.low_water = 0x1500;
2420 		} else {
2421 			adapter->hw.fc.high_water = 0x5000;
2422 			adapter->hw.fc.low_water = 0x3000;
2423 		}
2424 		adapter->hw.fc.refresh_time = 0x1000;
2425 		break;
2426 
2427 	case e1000_pch2lan:
2428 		adapter->hw.fc.high_water = 0x5C20;
2429 		adapter->hw.fc.low_water = 0x5048;
2430 		adapter->hw.fc.pause_time = 0x0650;
2431 		adapter->hw.fc.refresh_time = 0x0400;
2432 		/* Jumbos need adjusted PBA */
2433 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2434 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2435 		else
2436 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2437 		break;
2438 
2439 	case e1000_ich9lan:
2440 	case e1000_ich10lan:
2441 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2442 			adapter->hw.fc.high_water = 0x2800;
2443 			adapter->hw.fc.low_water =
2444 			    adapter->hw.fc.high_water - 8;
2445 			break;
2446 		}
2447 		/* FALL THROUGH */
2448 	default:
2449 		if (adapter->hw.mac.type == e1000_80003es2lan)
2450 			adapter->hw.fc.pause_time = 0xFFFF;
2451 		break;
2452 	}
2453 
2454 	/* Issue a global reset */
2455 	e1000_reset_hw(&adapter->hw);
2456 	if (adapter->hw.mac.type >= e1000_82544)
2457 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2458 	em_disable_aspm(adapter);
2459 
2460 	if (e1000_init_hw(&adapter->hw) < 0) {
2461 		device_printf(dev, "Hardware Initialization Failed\n");
2462 		return (EIO);
2463 	}
2464 
2465 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2466 	e1000_get_phy_info(&adapter->hw);
2467 	e1000_check_for_link(&adapter->hw);
2468 
2469 	return (0);
2470 }
2471 
2472 static void
2473 em_setup_ifp(struct adapter *adapter)
2474 {
2475 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2476 
2477 	if_initname(ifp, device_get_name(adapter->dev),
2478 		    device_get_unit(adapter->dev));
2479 	ifp->if_softc = adapter;
2480 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2481 	ifp->if_init =  em_init;
2482 	ifp->if_ioctl = em_ioctl;
2483 	ifp->if_start = em_start;
2484 #ifdef IFPOLL_ENABLE
2485 	ifp->if_npoll = em_npoll;
2486 #endif
2487 	ifp->if_watchdog = em_watchdog;
2488 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2489 	ifq_set_ready(&ifp->if_snd);
2490 
2491 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2492 
2493 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2494 	if (adapter->hw.mac.type >= e1000_82543)
2495 		ifp->if_capabilities |= IFCAP_HWCSUM;
2496 	if (adapter->flags & EM_FLAG_TSO)
2497 		ifp->if_capabilities |= IFCAP_TSO;
2498 	ifp->if_capenable = ifp->if_capabilities;
2499 
2500 	if (ifp->if_capenable & IFCAP_TXCSUM)
2501 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2502 	if (ifp->if_capenable & IFCAP_TSO)
2503 		ifp->if_hwassist |= CSUM_TSO;
2504 
2505 	/*
2506 	 * Tell the upper layer(s) we support long frames.
2507 	 */
2508 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2509 
2510 	/*
2511 	 * Specify the media types supported by this adapter and register
2512 	 * callbacks to update media and link information
2513 	 */
2514 	ifmedia_init(&adapter->media, IFM_IMASK,
2515 		     em_media_change, em_media_status);
2516 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2517 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2518 		u_char fiber_type = IFM_1000_SX; /* default type */
2519 
2520 		if (adapter->hw.mac.type == e1000_82545)
2521 			fiber_type = IFM_1000_LX;
2522 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2523 			    0, NULL);
2524 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2525 	} else {
2526 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2527 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2528 			    0, NULL);
2529 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2530 			    0, NULL);
2531 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2532 			    0, NULL);
2533 		if (adapter->hw.phy.type != e1000_phy_ife) {
2534 			ifmedia_add(&adapter->media,
2535 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2536 			ifmedia_add(&adapter->media,
2537 				IFM_ETHER | IFM_1000_T, 0, NULL);
2538 		}
2539 	}
2540 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2541 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2542 }
2543 
2544 
2545 /*
2546  * Workaround for SmartSpeed on 82541 and 82547 controllers
2547  */
2548 static void
2549 em_smartspeed(struct adapter *adapter)
2550 {
2551 	uint16_t phy_tmp;
2552 
2553 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2554 	    adapter->hw.mac.autoneg == 0 ||
2555 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2556 		return;
2557 
2558 	if (adapter->smartspeed == 0) {
2559 		/*
2560 		 * If Master/Slave config fault is asserted twice,
2561 		 * we assume back-to-back
2562 		 */
2563 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2564 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2565 			return;
2566 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2567 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2568 			e1000_read_phy_reg(&adapter->hw,
2569 			    PHY_1000T_CTRL, &phy_tmp);
2570 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2571 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2572 				e1000_write_phy_reg(&adapter->hw,
2573 				    PHY_1000T_CTRL, phy_tmp);
2574 				adapter->smartspeed++;
2575 				if (adapter->hw.mac.autoneg &&
2576 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2577 				    !e1000_read_phy_reg(&adapter->hw,
2578 				     PHY_CONTROL, &phy_tmp)) {
2579 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2580 						   MII_CR_RESTART_AUTO_NEG;
2581 					e1000_write_phy_reg(&adapter->hw,
2582 					    PHY_CONTROL, phy_tmp);
2583 				}
2584 			}
2585 		}
2586 		return;
2587 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2588 		/* If still no link, perhaps using 2/3 pair cable */
2589 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2590 		phy_tmp |= CR_1000T_MS_ENABLE;
2591 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2592 		if (adapter->hw.mac.autoneg &&
2593 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2594 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2595 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2596 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2597 		}
2598 	}
2599 
2600 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2601 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2602 		adapter->smartspeed = 0;
2603 }
2604 
2605 static int
2606 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2607 	      struct em_dma_alloc *dma)
2608 {
2609 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2610 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2611 				&dma->dma_tag, &dma->dma_map,
2612 				&dma->dma_paddr);
2613 	if (dma->dma_vaddr == NULL)
2614 		return ENOMEM;
2615 	else
2616 		return 0;
2617 }
2618 
2619 static void
2620 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2621 {
2622 	if (dma->dma_tag == NULL)
2623 		return;
2624 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2625 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2626 	bus_dma_tag_destroy(dma->dma_tag);
2627 }
2628 
2629 static int
2630 em_create_tx_ring(struct adapter *adapter)
2631 {
2632 	device_t dev = adapter->dev;
2633 	struct em_buffer *tx_buffer;
2634 	int error, i;
2635 
2636 	adapter->tx_buffer_area =
2637 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2638 			M_DEVBUF, M_WAITOK | M_ZERO);
2639 
2640 	/*
2641 	 * Create DMA tags for tx buffers
2642 	 */
2643 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2644 			1, 0,			/* alignment, bounds */
2645 			BUS_SPACE_MAXADDR,	/* lowaddr */
2646 			BUS_SPACE_MAXADDR,	/* highaddr */
2647 			NULL, NULL,		/* filter, filterarg */
2648 			EM_TSO_SIZE,		/* maxsize */
2649 			EM_MAX_SCATTER,		/* nsegments */
2650 			PAGE_SIZE,		/* maxsegsize */
2651 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2652 			BUS_DMA_ONEBPAGE,	/* flags */
2653 			&adapter->txtag);
2654 	if (error) {
2655 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2656 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2657 		adapter->tx_buffer_area = NULL;
2658 		return error;
2659 	}
2660 
2661 	/*
2662 	 * Create DMA maps for tx buffers
2663 	 */
2664 	for (i = 0; i < adapter->num_tx_desc; i++) {
2665 		tx_buffer = &adapter->tx_buffer_area[i];
2666 
2667 		error = bus_dmamap_create(adapter->txtag,
2668 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2669 					  &tx_buffer->map);
2670 		if (error) {
2671 			device_printf(dev, "Unable to create TX DMA map\n");
2672 			em_destroy_tx_ring(adapter, i);
2673 			return error;
2674 		}
2675 	}
2676 	return (0);
2677 }
2678 
2679 static void
2680 em_init_tx_ring(struct adapter *adapter)
2681 {
2682 	/* Clear the old ring contents */
2683 	bzero(adapter->tx_desc_base,
2684 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2685 
2686 	/* Reset state */
2687 	adapter->next_avail_tx_desc = 0;
2688 	adapter->next_tx_to_clean = 0;
2689 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2690 }
2691 
2692 static void
2693 em_init_tx_unit(struct adapter *adapter)
2694 {
2695 	uint32_t tctl, tarc, tipg = 0;
2696 	uint64_t bus_addr;
2697 
2698 	/* Setup the Base and Length of the Tx Descriptor Ring */
2699 	bus_addr = adapter->txdma.dma_paddr;
2700 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2701 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2702 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2703 	    (uint32_t)(bus_addr >> 32));
2704 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2705 	    (uint32_t)bus_addr);
2706 	/* Setup the HW Tx Head and Tail descriptor pointers */
2707 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2708 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2709 
2710 	/* Set the default values for the Tx Inter Packet Gap timer */
2711 	switch (adapter->hw.mac.type) {
2712 	case e1000_82542:
2713 		tipg = DEFAULT_82542_TIPG_IPGT;
2714 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2715 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2716 		break;
2717 
2718 	case e1000_80003es2lan:
2719 		tipg = DEFAULT_82543_TIPG_IPGR1;
2720 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2721 		    E1000_TIPG_IPGR2_SHIFT;
2722 		break;
2723 
2724 	default:
2725 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2726 		    adapter->hw.phy.media_type ==
2727 		    e1000_media_type_internal_serdes)
2728 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2729 		else
2730 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2731 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2732 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2733 		break;
2734 	}
2735 
2736 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2737 
2738 	/* NOTE: 0 is not allowed for TIDV */
2739 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2740 	if(adapter->hw.mac.type >= e1000_82540)
2741 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2742 
2743 	if (adapter->hw.mac.type == e1000_82571 ||
2744 	    adapter->hw.mac.type == e1000_82572) {
2745 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2746 		tarc |= SPEED_MODE_BIT;
2747 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2748 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2749 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2750 		tarc |= 1;
2751 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2752 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2753 		tarc |= 1;
2754 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2755 	}
2756 
2757 	/* Program the Transmit Control Register */
2758 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2759 	tctl &= ~E1000_TCTL_CT;
2760 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2761 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2762 
2763 	if (adapter->hw.mac.type >= e1000_82571)
2764 		tctl |= E1000_TCTL_MULR;
2765 
2766 	/* This write will effectively turn on the transmit unit. */
2767 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2768 
2769 	if (adapter->hw.mac.type == e1000_82571 ||
2770 	    adapter->hw.mac.type == e1000_82572 ||
2771 	    adapter->hw.mac.type == e1000_80003es2lan) {
2772 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2773 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2774 		tarc &= ~(1 << 28);
2775 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2776 	}
2777 }
2778 
2779 static void
2780 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2781 {
2782 	struct em_buffer *tx_buffer;
2783 	int i;
2784 
2785 	if (adapter->tx_buffer_area == NULL)
2786 		return;
2787 
2788 	for (i = 0; i < ndesc; i++) {
2789 		tx_buffer = &adapter->tx_buffer_area[i];
2790 
2791 		KKASSERT(tx_buffer->m_head == NULL);
2792 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2793 	}
2794 	bus_dma_tag_destroy(adapter->txtag);
2795 
2796 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2797 	adapter->tx_buffer_area = NULL;
2798 }
2799 
2800 /*
2801  * The offload context needs to be set when we transfer the first
2802  * packet of a particular protocol (TCP/UDP).  This routine has been
2803  * enhanced to deal with inserted VLAN headers.
2804  *
2805  * If the new packet's ether header length, ip header length and
2806  * csum offloading type are same as the previous packet, we should
2807  * avoid allocating a new csum context descriptor; mainly to take
2808  * advantage of the pipeline effect of the TX data read request.
2809  *
2810  * This function returns number of TX descrptors allocated for
2811  * csum context.
2812  */
2813 static int
2814 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2815 	  uint32_t *txd_upper, uint32_t *txd_lower)
2816 {
2817 	struct e1000_context_desc *TXD;
2818 	int curr_txd, ehdrlen, csum_flags;
2819 	uint32_t cmd, hdr_len, ip_hlen;
2820 
2821 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2822 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2823 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2824 
2825 	if (adapter->csum_lhlen == ehdrlen &&
2826 	    adapter->csum_iphlen == ip_hlen &&
2827 	    adapter->csum_flags == csum_flags) {
2828 		/*
2829 		 * Same csum offload context as the previous packets;
2830 		 * just return.
2831 		 */
2832 		*txd_upper = adapter->csum_txd_upper;
2833 		*txd_lower = adapter->csum_txd_lower;
2834 		return 0;
2835 	}
2836 
2837 	/*
2838 	 * Setup a new csum offload context.
2839 	 */
2840 
2841 	curr_txd = adapter->next_avail_tx_desc;
2842 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2843 
2844 	cmd = 0;
2845 
2846 	/* Setup of IP header checksum. */
2847 	if (csum_flags & CSUM_IP) {
2848 		/*
2849 		 * Start offset for header checksum calculation.
2850 		 * End offset for header checksum calculation.
2851 		 * Offset of place to put the checksum.
2852 		 */
2853 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2854 		TXD->lower_setup.ip_fields.ipcse =
2855 		    htole16(ehdrlen + ip_hlen - 1);
2856 		TXD->lower_setup.ip_fields.ipcso =
2857 		    ehdrlen + offsetof(struct ip, ip_sum);
2858 		cmd |= E1000_TXD_CMD_IP;
2859 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2860 	}
2861 	hdr_len = ehdrlen + ip_hlen;
2862 
2863 	if (csum_flags & CSUM_TCP) {
2864 		/*
2865 		 * Start offset for payload checksum calculation.
2866 		 * End offset for payload checksum calculation.
2867 		 * Offset of place to put the checksum.
2868 		 */
2869 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2870 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2871 		TXD->upper_setup.tcp_fields.tucso =
2872 		    hdr_len + offsetof(struct tcphdr, th_sum);
2873 		cmd |= E1000_TXD_CMD_TCP;
2874 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2875 	} else if (csum_flags & CSUM_UDP) {
2876 		/*
2877 		 * Start offset for header checksum calculation.
2878 		 * End offset for header checksum calculation.
2879 		 * Offset of place to put the checksum.
2880 		 */
2881 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2882 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2883 		TXD->upper_setup.tcp_fields.tucso =
2884 		    hdr_len + offsetof(struct udphdr, uh_sum);
2885 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2886 	}
2887 
2888 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2889 		     E1000_TXD_DTYP_D;		/* Data descr */
2890 
2891 	/* Save the information for this csum offloading context */
2892 	adapter->csum_lhlen = ehdrlen;
2893 	adapter->csum_iphlen = ip_hlen;
2894 	adapter->csum_flags = csum_flags;
2895 	adapter->csum_txd_upper = *txd_upper;
2896 	adapter->csum_txd_lower = *txd_lower;
2897 
2898 	TXD->tcp_seg_setup.data = htole32(0);
2899 	TXD->cmd_and_length =
2900 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2901 
2902 	if (++curr_txd == adapter->num_tx_desc)
2903 		curr_txd = 0;
2904 
2905 	KKASSERT(adapter->num_tx_desc_avail > 0);
2906 	adapter->num_tx_desc_avail--;
2907 
2908 	adapter->next_avail_tx_desc = curr_txd;
2909 	return 1;
2910 }
2911 
2912 static void
2913 em_txeof(struct adapter *adapter)
2914 {
2915 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2916 	struct em_buffer *tx_buffer;
2917 	int first, num_avail;
2918 
2919 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2920 		return;
2921 
2922 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2923 		return;
2924 
2925 	num_avail = adapter->num_tx_desc_avail;
2926 	first = adapter->next_tx_to_clean;
2927 
2928 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2929 		struct e1000_tx_desc *tx_desc;
2930 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2931 
2932 		tx_desc = &adapter->tx_desc_base[dd_idx];
2933 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2934 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2935 
2936 			if (++dd_idx == adapter->num_tx_desc)
2937 				dd_idx = 0;
2938 
2939 			while (first != dd_idx) {
2940 				logif(pkt_txclean);
2941 
2942 				num_avail++;
2943 
2944 				tx_buffer = &adapter->tx_buffer_area[first];
2945 				if (tx_buffer->m_head) {
2946 					IFNET_STAT_INC(ifp, opackets, 1);
2947 					bus_dmamap_unload(adapter->txtag,
2948 							  tx_buffer->map);
2949 					m_freem(tx_buffer->m_head);
2950 					tx_buffer->m_head = NULL;
2951 				}
2952 
2953 				if (++first == adapter->num_tx_desc)
2954 					first = 0;
2955 			}
2956 		} else {
2957 			break;
2958 		}
2959 	}
2960 	adapter->next_tx_to_clean = first;
2961 	adapter->num_tx_desc_avail = num_avail;
2962 
2963 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2964 		adapter->tx_dd_head = 0;
2965 		adapter->tx_dd_tail = 0;
2966 	}
2967 
2968 	if (!EM_IS_OACTIVE(adapter)) {
2969 		ifq_clr_oactive(&ifp->if_snd);
2970 
2971 		/* All clean, turn off the timer */
2972 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2973 			ifp->if_timer = 0;
2974 	}
2975 }
2976 
2977 static void
2978 em_tx_collect(struct adapter *adapter)
2979 {
2980 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2981 	struct em_buffer *tx_buffer;
2982 	int tdh, first, num_avail, dd_idx = -1;
2983 
2984 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2985 		return;
2986 
2987 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2988 	if (tdh == adapter->next_tx_to_clean)
2989 		return;
2990 
2991 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2992 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2993 
2994 	num_avail = adapter->num_tx_desc_avail;
2995 	first = adapter->next_tx_to_clean;
2996 
2997 	while (first != tdh) {
2998 		logif(pkt_txclean);
2999 
3000 		num_avail++;
3001 
3002 		tx_buffer = &adapter->tx_buffer_area[first];
3003 		if (tx_buffer->m_head) {
3004 			IFNET_STAT_INC(ifp, opackets, 1);
3005 			bus_dmamap_unload(adapter->txtag,
3006 					  tx_buffer->map);
3007 			m_freem(tx_buffer->m_head);
3008 			tx_buffer->m_head = NULL;
3009 		}
3010 
3011 		if (first == dd_idx) {
3012 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3013 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3014 				adapter->tx_dd_head = 0;
3015 				adapter->tx_dd_tail = 0;
3016 				dd_idx = -1;
3017 			} else {
3018 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3019 			}
3020 		}
3021 
3022 		if (++first == adapter->num_tx_desc)
3023 			first = 0;
3024 	}
3025 	adapter->next_tx_to_clean = first;
3026 	adapter->num_tx_desc_avail = num_avail;
3027 
3028 	if (!EM_IS_OACTIVE(adapter)) {
3029 		ifq_clr_oactive(&ifp->if_snd);
3030 
3031 		/* All clean, turn off the timer */
3032 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3033 			ifp->if_timer = 0;
3034 	}
3035 }
3036 
3037 /*
3038  * When Link is lost sometimes there is work still in the TX ring
3039  * which will result in a watchdog, rather than allow that do an
3040  * attempted cleanup and then reinit here.  Note that this has been
3041  * seens mostly with fiber adapters.
3042  */
3043 static void
3044 em_tx_purge(struct adapter *adapter)
3045 {
3046 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3047 
3048 	if (!adapter->link_active && ifp->if_timer) {
3049 		em_tx_collect(adapter);
3050 		if (ifp->if_timer) {
3051 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3052 			ifp->if_timer = 0;
3053 			em_init(adapter);
3054 		}
3055 	}
3056 }
3057 
3058 static int
3059 em_newbuf(struct adapter *adapter, int i, int init)
3060 {
3061 	struct mbuf *m;
3062 	bus_dma_segment_t seg;
3063 	bus_dmamap_t map;
3064 	struct em_buffer *rx_buffer;
3065 	int error, nseg;
3066 
3067 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3068 	if (m == NULL) {
3069 		adapter->mbuf_cluster_failed++;
3070 		if (init) {
3071 			if_printf(&adapter->arpcom.ac_if,
3072 				  "Unable to allocate RX mbuf\n");
3073 		}
3074 		return (ENOBUFS);
3075 	}
3076 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3077 
3078 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3079 		m_adj(m, ETHER_ALIGN);
3080 
3081 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3082 			adapter->rx_sparemap, m,
3083 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3084 	if (error) {
3085 		m_freem(m);
3086 		if (init) {
3087 			if_printf(&adapter->arpcom.ac_if,
3088 				  "Unable to load RX mbuf\n");
3089 		}
3090 		return (error);
3091 	}
3092 
3093 	rx_buffer = &adapter->rx_buffer_area[i];
3094 	if (rx_buffer->m_head != NULL)
3095 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3096 
3097 	map = rx_buffer->map;
3098 	rx_buffer->map = adapter->rx_sparemap;
3099 	adapter->rx_sparemap = map;
3100 
3101 	rx_buffer->m_head = m;
3102 
3103 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3104 	return (0);
3105 }
3106 
3107 static int
3108 em_create_rx_ring(struct adapter *adapter)
3109 {
3110 	device_t dev = adapter->dev;
3111 	struct em_buffer *rx_buffer;
3112 	int i, error;
3113 
3114 	adapter->rx_buffer_area =
3115 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3116 			M_DEVBUF, M_WAITOK | M_ZERO);
3117 
3118 	/*
3119 	 * Create DMA tag for rx buffers
3120 	 */
3121 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3122 			1, 0,			/* alignment, bounds */
3123 			BUS_SPACE_MAXADDR,	/* lowaddr */
3124 			BUS_SPACE_MAXADDR,	/* highaddr */
3125 			NULL, NULL,		/* filter, filterarg */
3126 			MCLBYTES,		/* maxsize */
3127 			1,			/* nsegments */
3128 			MCLBYTES,		/* maxsegsize */
3129 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3130 			&adapter->rxtag);
3131 	if (error) {
3132 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3133 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3134 		adapter->rx_buffer_area = NULL;
3135 		return error;
3136 	}
3137 
3138 	/*
3139 	 * Create spare DMA map for rx buffers
3140 	 */
3141 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3142 				  &adapter->rx_sparemap);
3143 	if (error) {
3144 		device_printf(dev, "Unable to create spare RX DMA map\n");
3145 		bus_dma_tag_destroy(adapter->rxtag);
3146 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3147 		adapter->rx_buffer_area = NULL;
3148 		return error;
3149 	}
3150 
3151 	/*
3152 	 * Create DMA maps for rx buffers
3153 	 */
3154 	for (i = 0; i < adapter->num_rx_desc; i++) {
3155 		rx_buffer = &adapter->rx_buffer_area[i];
3156 
3157 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3158 					  &rx_buffer->map);
3159 		if (error) {
3160 			device_printf(dev, "Unable to create RX DMA map\n");
3161 			em_destroy_rx_ring(adapter, i);
3162 			return error;
3163 		}
3164 	}
3165 	return (0);
3166 }
3167 
3168 static int
3169 em_init_rx_ring(struct adapter *adapter)
3170 {
3171 	int i, error;
3172 
3173 	/* Reset descriptor ring */
3174 	bzero(adapter->rx_desc_base,
3175 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3176 
3177 	/* Allocate new ones. */
3178 	for (i = 0; i < adapter->num_rx_desc; i++) {
3179 		error = em_newbuf(adapter, i, 1);
3180 		if (error)
3181 			return (error);
3182 	}
3183 
3184 	/* Setup our descriptor pointers */
3185 	adapter->next_rx_desc_to_check = 0;
3186 
3187 	return (0);
3188 }
3189 
3190 static void
3191 em_init_rx_unit(struct adapter *adapter)
3192 {
3193 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3194 	uint64_t bus_addr;
3195 	uint32_t rctl;
3196 
3197 	/*
3198 	 * Make sure receives are disabled while setting
3199 	 * up the descriptor ring
3200 	 */
3201 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3202 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3203 
3204 	if (adapter->hw.mac.type >= e1000_82540) {
3205 		uint32_t itr;
3206 
3207 		/*
3208 		 * Set the interrupt throttling rate. Value is calculated
3209 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3210 		 */
3211 		if (adapter->int_throttle_ceil)
3212 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3213 		else
3214 			itr = 0;
3215 		em_set_itr(adapter, itr);
3216 	}
3217 
3218 	/* Disable accelerated ackknowledge */
3219 	if (adapter->hw.mac.type == e1000_82574) {
3220 		E1000_WRITE_REG(&adapter->hw,
3221 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3222 	}
3223 
3224 	/* Receive Checksum Offload for TCP and UDP */
3225 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3226 		uint32_t rxcsum;
3227 
3228 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3229 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3230 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3231 	}
3232 
3233 	/*
3234 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3235 	 * long latencies are observed, like Lenovo X60. This
3236 	 * change eliminates the problem, but since having positive
3237 	 * values in RDTR is a known source of problems on other
3238 	 * platforms another solution is being sought.
3239 	 */
3240 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3241 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3242 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3243 	}
3244 
3245 	/*
3246 	 * Setup the Base and Length of the Rx Descriptor Ring
3247 	 */
3248 	bus_addr = adapter->rxdma.dma_paddr;
3249 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3250 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3251 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3252 	    (uint32_t)(bus_addr >> 32));
3253 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3254 	    (uint32_t)bus_addr);
3255 
3256 	/*
3257 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3258 	 */
3259 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3260 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3261 
3262 	/* Set PTHRESH for improved jumbo performance */
3263 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3264 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3265 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3266 	    (ifp->if_mtu > ETHERMTU)) {
3267 		uint32_t rxdctl;
3268 
3269 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3270 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3271 	}
3272 
3273 	if (adapter->hw.mac.type == e1000_pch2lan) {
3274 		if (ifp->if_mtu > ETHERMTU)
3275 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3276 		else
3277 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3278 	}
3279 
3280 	/* Setup the Receive Control Register */
3281 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3282 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3283 		E1000_RCTL_RDMTS_HALF |
3284 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3285 
3286 	/* Make sure VLAN Filters are off */
3287 	rctl &= ~E1000_RCTL_VFE;
3288 
3289 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3290 		rctl |= E1000_RCTL_SBP;
3291 	else
3292 		rctl &= ~E1000_RCTL_SBP;
3293 
3294 	switch (adapter->rx_buffer_len) {
3295 	default:
3296 	case 2048:
3297 		rctl |= E1000_RCTL_SZ_2048;
3298 		break;
3299 
3300 	case 4096:
3301 		rctl |= E1000_RCTL_SZ_4096 |
3302 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3303 		break;
3304 
3305 	case 8192:
3306 		rctl |= E1000_RCTL_SZ_8192 |
3307 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3308 		break;
3309 
3310 	case 16384:
3311 		rctl |= E1000_RCTL_SZ_16384 |
3312 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3313 		break;
3314 	}
3315 
3316 	if (ifp->if_mtu > ETHERMTU)
3317 		rctl |= E1000_RCTL_LPE;
3318 	else
3319 		rctl &= ~E1000_RCTL_LPE;
3320 
3321 	/* Enable Receives */
3322 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3323 }
3324 
3325 static void
3326 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3327 {
3328 	struct em_buffer *rx_buffer;
3329 	int i;
3330 
3331 	if (adapter->rx_buffer_area == NULL)
3332 		return;
3333 
3334 	for (i = 0; i < ndesc; i++) {
3335 		rx_buffer = &adapter->rx_buffer_area[i];
3336 
3337 		KKASSERT(rx_buffer->m_head == NULL);
3338 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3339 	}
3340 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3341 	bus_dma_tag_destroy(adapter->rxtag);
3342 
3343 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3344 	adapter->rx_buffer_area = NULL;
3345 }
3346 
3347 static void
3348 em_rxeof(struct adapter *adapter, int count)
3349 {
3350 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3351 	uint8_t status, accept_frame = 0, eop = 0;
3352 	uint16_t len, desc_len, prev_len_adj;
3353 	struct e1000_rx_desc *current_desc;
3354 	struct mbuf *mp;
3355 	int i;
3356 
3357 	i = adapter->next_rx_desc_to_check;
3358 	current_desc = &adapter->rx_desc_base[i];
3359 
3360 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3361 		return;
3362 
3363 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3364 		struct mbuf *m = NULL;
3365 
3366 		logif(pkt_receive);
3367 
3368 		mp = adapter->rx_buffer_area[i].m_head;
3369 
3370 		/*
3371 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3372 		 * needs to access the last received byte in the mbuf.
3373 		 */
3374 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3375 				BUS_DMASYNC_POSTREAD);
3376 
3377 		accept_frame = 1;
3378 		prev_len_adj = 0;
3379 		desc_len = le16toh(current_desc->length);
3380 		status = current_desc->status;
3381 		if (status & E1000_RXD_STAT_EOP) {
3382 			count--;
3383 			eop = 1;
3384 			if (desc_len < ETHER_CRC_LEN) {
3385 				len = 0;
3386 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3387 			} else {
3388 				len = desc_len - ETHER_CRC_LEN;
3389 			}
3390 		} else {
3391 			eop = 0;
3392 			len = desc_len;
3393 		}
3394 
3395 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3396 			uint8_t	last_byte;
3397 			uint32_t pkt_len = desc_len;
3398 
3399 			if (adapter->fmp != NULL)
3400 				pkt_len += adapter->fmp->m_pkthdr.len;
3401 
3402 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3403 			if (TBI_ACCEPT(&adapter->hw, status,
3404 			    current_desc->errors, pkt_len, last_byte,
3405 			    adapter->min_frame_size, adapter->max_frame_size)) {
3406 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3407 				    &adapter->stats, pkt_len,
3408 				    adapter->hw.mac.addr,
3409 				    adapter->max_frame_size);
3410 				if (len > 0)
3411 					len--;
3412 			} else {
3413 				accept_frame = 0;
3414 			}
3415 		}
3416 
3417 		if (accept_frame) {
3418 			if (em_newbuf(adapter, i, 0) != 0) {
3419 				IFNET_STAT_INC(ifp, iqdrops, 1);
3420 				goto discard;
3421 			}
3422 
3423 			/* Assign correct length to the current fragment */
3424 			mp->m_len = len;
3425 
3426 			if (adapter->fmp == NULL) {
3427 				mp->m_pkthdr.len = len;
3428 				adapter->fmp = mp; /* Store the first mbuf */
3429 				adapter->lmp = mp;
3430 			} else {
3431 				/*
3432 				 * Chain mbuf's together
3433 				 */
3434 
3435 				/*
3436 				 * Adjust length of previous mbuf in chain if
3437 				 * we received less than 4 bytes in the last
3438 				 * descriptor.
3439 				 */
3440 				if (prev_len_adj > 0) {
3441 					adapter->lmp->m_len -= prev_len_adj;
3442 					adapter->fmp->m_pkthdr.len -=
3443 					    prev_len_adj;
3444 				}
3445 				adapter->lmp->m_next = mp;
3446 				adapter->lmp = adapter->lmp->m_next;
3447 				adapter->fmp->m_pkthdr.len += len;
3448 			}
3449 
3450 			if (eop) {
3451 				adapter->fmp->m_pkthdr.rcvif = ifp;
3452 				IFNET_STAT_INC(ifp, ipackets, 1);
3453 
3454 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3455 					em_rxcsum(adapter, current_desc,
3456 						  adapter->fmp);
3457 				}
3458 
3459 				if (status & E1000_RXD_STAT_VP) {
3460 					adapter->fmp->m_pkthdr.ether_vlantag =
3461 					    (le16toh(current_desc->special) &
3462 					    E1000_RXD_SPC_VLAN_MASK);
3463 					adapter->fmp->m_flags |= M_VLANTAG;
3464 				}
3465 				m = adapter->fmp;
3466 				adapter->fmp = NULL;
3467 				adapter->lmp = NULL;
3468 			}
3469 		} else {
3470 			IFNET_STAT_INC(ifp, ierrors, 1);
3471 discard:
3472 #ifdef foo
3473 			/* Reuse loaded DMA map and just update mbuf chain */
3474 			mp = adapter->rx_buffer_area[i].m_head;
3475 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3476 			mp->m_data = mp->m_ext.ext_buf;
3477 			mp->m_next = NULL;
3478 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3479 				m_adj(mp, ETHER_ALIGN);
3480 #endif
3481 			if (adapter->fmp != NULL) {
3482 				m_freem(adapter->fmp);
3483 				adapter->fmp = NULL;
3484 				adapter->lmp = NULL;
3485 			}
3486 			m = NULL;
3487 		}
3488 
3489 		/* Zero out the receive descriptors status. */
3490 		current_desc->status = 0;
3491 
3492 		if (m != NULL)
3493 			ifp->if_input(ifp, m);
3494 
3495 		/* Advance our pointers to the next descriptor. */
3496 		if (++i == adapter->num_rx_desc)
3497 			i = 0;
3498 		current_desc = &adapter->rx_desc_base[i];
3499 	}
3500 	adapter->next_rx_desc_to_check = i;
3501 
3502 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3503 	if (--i < 0)
3504 		i = adapter->num_rx_desc - 1;
3505 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3506 }
3507 
3508 static void
3509 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3510 	  struct mbuf *mp)
3511 {
3512 	/* 82543 or newer only */
3513 	if (adapter->hw.mac.type < e1000_82543 ||
3514 	    /* Ignore Checksum bit is set */
3515 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3516 		return;
3517 
3518 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3519 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3520 		/* IP Checksum Good */
3521 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3522 	}
3523 
3524 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3525 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3526 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3527 					   CSUM_PSEUDO_HDR |
3528 					   CSUM_FRAG_NOT_CHECKED;
3529 		mp->m_pkthdr.csum_data = htons(0xffff);
3530 	}
3531 }
3532 
3533 static void
3534 em_enable_intr(struct adapter *adapter)
3535 {
3536 	uint32_t ims_mask = IMS_ENABLE_MASK;
3537 
3538 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3539 
3540 #if 0
3541 	/* XXX MSIX */
3542 	if (adapter->hw.mac.type == e1000_82574) {
3543 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3544 		ims_mask |= EM_MSIX_MASK;
3545         }
3546 #endif
3547 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3548 }
3549 
3550 static void
3551 em_disable_intr(struct adapter *adapter)
3552 {
3553 	uint32_t clear = 0xffffffff;
3554 
3555 	/*
3556 	 * The first version of 82542 had an errata where when link was forced
3557 	 * it would stay up even up even if the cable was disconnected.
3558 	 * Sequence errors were used to detect the disconnect and then the
3559 	 * driver would unforce the link.  This code in the in the ISR.  For
3560 	 * this to work correctly the Sequence error interrupt had to be
3561 	 * enabled all the time.
3562 	 */
3563 	if (adapter->hw.mac.type == e1000_82542 &&
3564 	    adapter->hw.revision_id == E1000_REVISION_2)
3565 		clear &= ~E1000_ICR_RXSEQ;
3566 	else if (adapter->hw.mac.type == e1000_82574)
3567 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3568 
3569 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3570 
3571 	adapter->npoll.ifpc_stcount = 0;
3572 
3573 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3574 }
3575 
3576 /*
3577  * Bit of a misnomer, what this really means is
3578  * to enable OS management of the system... aka
3579  * to disable special hardware management features
3580  */
3581 static void
3582 em_get_mgmt(struct adapter *adapter)
3583 {
3584 	/* A shared code workaround */
3585 #define E1000_82542_MANC2H E1000_MANC2H
3586 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3587 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3588 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3589 
3590 		/* disable hardware interception of ARP */
3591 		manc &= ~(E1000_MANC_ARP_EN);
3592 
3593                 /* enable receiving management packets to the host */
3594                 if (adapter->hw.mac.type >= e1000_82571) {
3595 			manc |= E1000_MANC_EN_MNG2HOST;
3596 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3597 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3598 			manc2h |= E1000_MNG2HOST_PORT_623;
3599 			manc2h |= E1000_MNG2HOST_PORT_664;
3600 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3601 		}
3602 
3603 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3604 	}
3605 }
3606 
3607 /*
3608  * Give control back to hardware management
3609  * controller if there is one.
3610  */
3611 static void
3612 em_rel_mgmt(struct adapter *adapter)
3613 {
3614 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3615 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3616 
3617 		/* re-enable hardware interception of ARP */
3618 		manc |= E1000_MANC_ARP_EN;
3619 
3620 		if (adapter->hw.mac.type >= e1000_82571)
3621 			manc &= ~E1000_MANC_EN_MNG2HOST;
3622 
3623 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3624 	}
3625 }
3626 
3627 /*
3628  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3629  * For ASF and Pass Through versions of f/w this means that
3630  * the driver is loaded.  For AMT version (only with 82573)
3631  * of the f/w this means that the network i/f is open.
3632  */
3633 static void
3634 em_get_hw_control(struct adapter *adapter)
3635 {
3636 	/* Let firmware know the driver has taken over */
3637 	if (adapter->hw.mac.type == e1000_82573) {
3638 		uint32_t swsm;
3639 
3640 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3641 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3642 		    swsm | E1000_SWSM_DRV_LOAD);
3643 	} else {
3644 		uint32_t ctrl_ext;
3645 
3646 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3647 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3648 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3649 	}
3650 	adapter->flags |= EM_FLAG_HW_CTRL;
3651 }
3652 
3653 /*
3654  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3655  * For ASF and Pass Through versions of f/w this means that the
3656  * driver is no longer loaded.  For AMT version (only with 82573)
3657  * of the f/w this means that the network i/f is closed.
3658  */
3659 static void
3660 em_rel_hw_control(struct adapter *adapter)
3661 {
3662 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3663 		return;
3664 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3665 
3666 	/* Let firmware taken over control of h/w */
3667 	if (adapter->hw.mac.type == e1000_82573) {
3668 		uint32_t swsm;
3669 
3670 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3671 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3672 		    swsm & ~E1000_SWSM_DRV_LOAD);
3673 	} else {
3674 		uint32_t ctrl_ext;
3675 
3676 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3677 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3678 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3679 	}
3680 }
3681 
3682 static int
3683 em_is_valid_eaddr(const uint8_t *addr)
3684 {
3685 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3686 
3687 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3688 		return (FALSE);
3689 
3690 	return (TRUE);
3691 }
3692 
3693 /*
3694  * Enable PCI Wake On Lan capability
3695  */
3696 void
3697 em_enable_wol(device_t dev)
3698 {
3699 	uint16_t cap, status;
3700 	uint8_t id;
3701 
3702 	/* First find the capabilities pointer*/
3703 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3704 
3705 	/* Read the PM Capabilities */
3706 	id = pci_read_config(dev, cap, 1);
3707 	if (id != PCIY_PMG)     /* Something wrong */
3708 		return;
3709 
3710 	/*
3711 	 * OK, we have the power capabilities,
3712 	 * so now get the status register
3713 	 */
3714 	cap += PCIR_POWER_STATUS;
3715 	status = pci_read_config(dev, cap, 2);
3716 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3717 	pci_write_config(dev, cap, status, 2);
3718 }
3719 
3720 
3721 /*
3722  * 82544 Coexistence issue workaround.
3723  *    There are 2 issues.
3724  *       1. Transmit Hang issue.
3725  *    To detect this issue, following equation can be used...
3726  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3727  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3728  *
3729  *       2. DAC issue.
3730  *    To detect this issue, following equation can be used...
3731  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3732  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3733  *
3734  *    WORKAROUND:
3735  *	  Make sure we do not have ending address
3736  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3737  */
3738 static uint32_t
3739 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3740 {
3741 	uint32_t safe_terminator;
3742 
3743 	/*
3744 	 * Since issue is sensitive to length and address.
3745 	 * Let us first check the address...
3746 	 */
3747 	if (length <= 4) {
3748 		desc_array->descriptor[0].address = address;
3749 		desc_array->descriptor[0].length = length;
3750 		desc_array->elements = 1;
3751 		return (desc_array->elements);
3752 	}
3753 
3754 	safe_terminator =
3755 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3756 
3757 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3758 	if (safe_terminator == 0 ||
3759 	    (safe_terminator > 4 && safe_terminator < 9) ||
3760 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3761 		desc_array->descriptor[0].address = address;
3762 		desc_array->descriptor[0].length = length;
3763 		desc_array->elements = 1;
3764 		return (desc_array->elements);
3765 	}
3766 
3767 	desc_array->descriptor[0].address = address;
3768 	desc_array->descriptor[0].length = length - 4;
3769 	desc_array->descriptor[1].address = address + (length - 4);
3770 	desc_array->descriptor[1].length = 4;
3771 	desc_array->elements = 2;
3772 	return (desc_array->elements);
3773 }
3774 
3775 static void
3776 em_update_stats(struct adapter *adapter)
3777 {
3778 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3779 
3780 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3781 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3782 		adapter->stats.symerrs +=
3783 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3784 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3785 	}
3786 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3787 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3788 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3789 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3790 
3791 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3792 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3793 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3794 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3795 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3796 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3797 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3798 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3799 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3800 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3801 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3802 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3803 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3804 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3805 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3806 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3807 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3808 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3809 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3810 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3811 
3812 	/* For the 64-bit byte counters the low dword must be read first. */
3813 	/* Both registers clear on the read of the high dword */
3814 
3815 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3816 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3817 
3818 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3819 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3820 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3821 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3822 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3823 
3824 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3825 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3826 
3827 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3828 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3829 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3830 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3831 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3832 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3833 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3834 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3835 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3836 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3837 
3838 	if (adapter->hw.mac.type >= e1000_82543) {
3839 		adapter->stats.algnerrc +=
3840 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3841 		adapter->stats.rxerrc +=
3842 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3843 		adapter->stats.tncrs +=
3844 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3845 		adapter->stats.cexterr +=
3846 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3847 		adapter->stats.tsctc +=
3848 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3849 		adapter->stats.tsctfc +=
3850 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3851 	}
3852 
3853 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3854 
3855 	/* Rx Errors */
3856 	IFNET_STAT_SET(ifp, ierrors,
3857 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3858 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3859 	    adapter->stats.ruc + adapter->stats.roc +
3860 	    adapter->stats.mpc + adapter->stats.cexterr);
3861 
3862 	/* Tx Errors */
3863 	IFNET_STAT_SET(ifp, oerrors,
3864 	    adapter->stats.ecol + adapter->stats.latecol +
3865 	    adapter->watchdog_events);
3866 }
3867 
3868 static void
3869 em_print_debug_info(struct adapter *adapter)
3870 {
3871 	device_t dev = adapter->dev;
3872 	uint8_t *hw_addr = adapter->hw.hw_addr;
3873 
3874 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3875 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3876 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3877 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3878 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3879 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3880 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3881 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3882 	    adapter->hw.fc.high_water,
3883 	    adapter->hw.fc.low_water);
3884 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3885 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3886 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3887 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3888 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3889 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3890 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3891 	    (long long)adapter->tx_fifo_wrk_cnt,
3892 	    (long long)adapter->tx_fifo_reset_cnt);
3893 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3894 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3895 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3896 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3897 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3898 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3899 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3900 	    adapter->num_tx_desc_avail);
3901 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3902 	    adapter->no_tx_desc_avail1);
3903 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3904 	    adapter->no_tx_desc_avail2);
3905 	device_printf(dev, "Std mbuf failed = %ld\n",
3906 	    adapter->mbuf_alloc_failed);
3907 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3908 	    adapter->mbuf_cluster_failed);
3909 	device_printf(dev, "Driver dropped packets = %ld\n",
3910 	    adapter->dropped_pkts);
3911 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3912 	    adapter->no_tx_dma_setup);
3913 }
3914 
3915 static void
3916 em_print_hw_stats(struct adapter *adapter)
3917 {
3918 	device_t dev = adapter->dev;
3919 
3920 	device_printf(dev, "Excessive collisions = %lld\n",
3921 	    (long long)adapter->stats.ecol);
3922 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3923 	device_printf(dev, "Symbol errors = %lld\n",
3924 	    (long long)adapter->stats.symerrs);
3925 #endif
3926 	device_printf(dev, "Sequence errors = %lld\n",
3927 	    (long long)adapter->stats.sec);
3928 	device_printf(dev, "Defer count = %lld\n",
3929 	    (long long)adapter->stats.dc);
3930 	device_printf(dev, "Missed Packets = %lld\n",
3931 	    (long long)adapter->stats.mpc);
3932 	device_printf(dev, "Receive No Buffers = %lld\n",
3933 	    (long long)adapter->stats.rnbc);
3934 	/* RLEC is inaccurate on some hardware, calculate our own. */
3935 	device_printf(dev, "Receive Length Errors = %lld\n",
3936 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3937 	device_printf(dev, "Receive errors = %lld\n",
3938 	    (long long)adapter->stats.rxerrc);
3939 	device_printf(dev, "Crc errors = %lld\n",
3940 	    (long long)adapter->stats.crcerrs);
3941 	device_printf(dev, "Alignment errors = %lld\n",
3942 	    (long long)adapter->stats.algnerrc);
3943 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3944 	    (long long)adapter->stats.cexterr);
3945 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3946 	device_printf(dev, "watchdog timeouts = %ld\n",
3947 	    adapter->watchdog_events);
3948 	device_printf(dev, "XON Rcvd = %lld\n",
3949 	    (long long)adapter->stats.xonrxc);
3950 	device_printf(dev, "XON Xmtd = %lld\n",
3951 	    (long long)adapter->stats.xontxc);
3952 	device_printf(dev, "XOFF Rcvd = %lld\n",
3953 	    (long long)adapter->stats.xoffrxc);
3954 	device_printf(dev, "XOFF Xmtd = %lld\n",
3955 	    (long long)adapter->stats.xofftxc);
3956 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3957 	    (long long)adapter->stats.gprc);
3958 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3959 	    (long long)adapter->stats.gptc);
3960 }
3961 
3962 static void
3963 em_print_nvm_info(struct adapter *adapter)
3964 {
3965 	uint16_t eeprom_data;
3966 	int i, j, row = 0;
3967 
3968 	/* Its a bit crude, but it gets the job done */
3969 	kprintf("\nInterface EEPROM Dump:\n");
3970 	kprintf("Offset\n0x0000  ");
3971 	for (i = 0, j = 0; i < 32; i++, j++) {
3972 		if (j == 8) { /* Make the offset block */
3973 			j = 0; ++row;
3974 			kprintf("\n0x00%x0  ",row);
3975 		}
3976 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3977 		kprintf("%04x ", eeprom_data);
3978 	}
3979 	kprintf("\n");
3980 }
3981 
3982 static int
3983 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3984 {
3985 	struct adapter *adapter;
3986 	struct ifnet *ifp;
3987 	int error, result;
3988 
3989 	result = -1;
3990 	error = sysctl_handle_int(oidp, &result, 0, req);
3991 	if (error || !req->newptr)
3992 		return (error);
3993 
3994 	adapter = (struct adapter *)arg1;
3995 	ifp = &adapter->arpcom.ac_if;
3996 
3997 	lwkt_serialize_enter(ifp->if_serializer);
3998 
3999 	if (result == 1)
4000 		em_print_debug_info(adapter);
4001 
4002 	/*
4003 	 * This value will cause a hex dump of the
4004 	 * first 32 16-bit words of the EEPROM to
4005 	 * the screen.
4006 	 */
4007 	if (result == 2)
4008 		em_print_nvm_info(adapter);
4009 
4010 	lwkt_serialize_exit(ifp->if_serializer);
4011 
4012 	return (error);
4013 }
4014 
4015 static int
4016 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4017 {
4018 	int error, result;
4019 
4020 	result = -1;
4021 	error = sysctl_handle_int(oidp, &result, 0, req);
4022 	if (error || !req->newptr)
4023 		return (error);
4024 
4025 	if (result == 1) {
4026 		struct adapter *adapter = (struct adapter *)arg1;
4027 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4028 
4029 		lwkt_serialize_enter(ifp->if_serializer);
4030 		em_print_hw_stats(adapter);
4031 		lwkt_serialize_exit(ifp->if_serializer);
4032 	}
4033 	return (error);
4034 }
4035 
4036 static void
4037 em_add_sysctl(struct adapter *adapter)
4038 {
4039 	sysctl_ctx_init(&adapter->sysctl_ctx);
4040 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4041 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4042 					device_get_nameunit(adapter->dev),
4043 					CTLFLAG_RD, 0, "");
4044 	if (adapter->sysctl_tree == NULL) {
4045 		device_printf(adapter->dev, "can't add sysctl node\n");
4046 	} else {
4047 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4048 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4049 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4050 		    em_sysctl_debug_info, "I", "Debug Information");
4051 
4052 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4053 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4054 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4055 		    em_sysctl_stats, "I", "Statistics");
4056 
4057 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4058 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4059 		    OID_AUTO, "rxd", CTLFLAG_RD,
4060 		    &adapter->num_rx_desc, 0, NULL);
4061 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4062 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4063 		    OID_AUTO, "txd", CTLFLAG_RD,
4064 		    &adapter->num_tx_desc, 0, NULL);
4065 
4066 		if (adapter->hw.mac.type >= e1000_82540) {
4067 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4068 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4069 			    OID_AUTO, "int_throttle_ceil",
4070 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4071 			    em_sysctl_int_throttle, "I",
4072 			    "interrupt throttling rate");
4073 		}
4074 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4075 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4076 		    OID_AUTO, "int_tx_nsegs",
4077 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4078 		    em_sysctl_int_tx_nsegs, "I",
4079 		    "# segments per TX interrupt");
4080 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4081 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4082 	            OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4083 		    &adapter->tx_wreg_nsegs, 0,
4084 		    "# segments before write to hardware register");
4085 	}
4086 }
4087 
4088 static int
4089 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4090 {
4091 	struct adapter *adapter = (void *)arg1;
4092 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4093 	int error, throttle;
4094 
4095 	throttle = adapter->int_throttle_ceil;
4096 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4097 	if (error || req->newptr == NULL)
4098 		return error;
4099 	if (throttle < 0 || throttle > 1000000000 / 256)
4100 		return EINVAL;
4101 
4102 	if (throttle) {
4103 		/*
4104 		 * Set the interrupt throttling rate in 256ns increments,
4105 		 * recalculate sysctl value assignment to get exact frequency.
4106 		 */
4107 		throttle = 1000000000 / 256 / throttle;
4108 
4109 		/* Upper 16bits of ITR is reserved and should be zero */
4110 		if (throttle & 0xffff0000)
4111 			return EINVAL;
4112 	}
4113 
4114 	lwkt_serialize_enter(ifp->if_serializer);
4115 
4116 	if (throttle)
4117 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4118 	else
4119 		adapter->int_throttle_ceil = 0;
4120 
4121 	if (ifp->if_flags & IFF_RUNNING)
4122 		em_set_itr(adapter, throttle);
4123 
4124 	lwkt_serialize_exit(ifp->if_serializer);
4125 
4126 	if (bootverbose) {
4127 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4128 			  adapter->int_throttle_ceil);
4129 	}
4130 	return 0;
4131 }
4132 
4133 static int
4134 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4135 {
4136 	struct adapter *adapter = (void *)arg1;
4137 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4138 	int error, segs;
4139 
4140 	segs = adapter->tx_int_nsegs;
4141 	error = sysctl_handle_int(oidp, &segs, 0, req);
4142 	if (error || req->newptr == NULL)
4143 		return error;
4144 	if (segs <= 0)
4145 		return EINVAL;
4146 
4147 	lwkt_serialize_enter(ifp->if_serializer);
4148 
4149 	/*
4150 	 * Don't allow int_tx_nsegs to become:
4151 	 * o  Less the oact_tx_desc
4152 	 * o  Too large that no TX desc will cause TX interrupt to
4153 	 *    be generated (OACTIVE will never recover)
4154 	 * o  Too small that will cause tx_dd[] overflow
4155 	 */
4156 	if (segs < adapter->oact_tx_desc ||
4157 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4158 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4159 		error = EINVAL;
4160 	} else {
4161 		error = 0;
4162 		adapter->tx_int_nsegs = segs;
4163 	}
4164 
4165 	lwkt_serialize_exit(ifp->if_serializer);
4166 
4167 	return error;
4168 }
4169 
4170 static void
4171 em_set_itr(struct adapter *adapter, uint32_t itr)
4172 {
4173 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4174 	if (adapter->hw.mac.type == e1000_82574) {
4175 		int i;
4176 
4177 		/*
4178 		 * When using MSIX interrupts we need to
4179 		 * throttle using the EITR register
4180 		 */
4181 		for (i = 0; i < 4; ++i) {
4182 			E1000_WRITE_REG(&adapter->hw,
4183 			    E1000_EITR_82574(i), itr);
4184 		}
4185 	}
4186 }
4187 
4188 static void
4189 em_disable_aspm(struct adapter *adapter)
4190 {
4191 	uint16_t link_cap, link_ctrl, disable;
4192 	uint8_t pcie_ptr, reg;
4193 	device_t dev = adapter->dev;
4194 
4195 	switch (adapter->hw.mac.type) {
4196 	case e1000_82571:
4197 	case e1000_82572:
4198 	case e1000_82573:
4199 		/*
4200 		 * 82573 specification update
4201 		 * errata #8 disable L0s
4202 		 * errata #41 disable L1
4203 		 *
4204 		 * 82571/82572 specification update
4205 		 # errata #13 disable L1
4206 		 * errata #68 disable L0s
4207 		 */
4208 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4209 		break;
4210 
4211 	case e1000_82574:
4212 	case e1000_82583:
4213 		/*
4214 		 * 82574 specification update errata #20
4215 		 * 82583 specification update errata #9
4216 		 *
4217 		 * There is no need to disable L1
4218 		 */
4219 		disable = PCIEM_LNKCTL_ASPM_L0S;
4220 		break;
4221 
4222 	default:
4223 		return;
4224 	}
4225 
4226 	pcie_ptr = pci_get_pciecap_ptr(dev);
4227 	if (pcie_ptr == 0)
4228 		return;
4229 
4230 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4231 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4232 		return;
4233 
4234 	if (bootverbose) {
4235 		if_printf(&adapter->arpcom.ac_if,
4236 		    "disable ASPM %#02x\n", disable);
4237 	}
4238 
4239 	reg = pcie_ptr + PCIER_LINKCTRL;
4240 	link_ctrl = pci_read_config(dev, reg, 2);
4241 	link_ctrl &= ~disable;
4242 	pci_write_config(dev, reg, link_ctrl, 2);
4243 }
4244 
4245 static int
4246 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4247 {
4248 	int iphlen, hoff, thoff, ex = 0;
4249 	struct mbuf *m;
4250 	struct ip *ip;
4251 
4252 	m = *mp;
4253 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4254 
4255 	iphlen = m->m_pkthdr.csum_iphlen;
4256 	thoff = m->m_pkthdr.csum_thlen;
4257 	hoff = m->m_pkthdr.csum_lhlen;
4258 
4259 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4260 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4261 	KASSERT(hoff > 0, ("invalid ether hlen"));
4262 
4263 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4264 		ex = 4;
4265 
4266 	if (m->m_len < hoff + iphlen + thoff + ex) {
4267 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4268 		if (m == NULL) {
4269 			*mp = NULL;
4270 			return ENOBUFS;
4271 		}
4272 		*mp = m;
4273 	}
4274 	ip = mtodoff(m, struct ip *, hoff);
4275 	ip->ip_len = 0;
4276 
4277 	return 0;
4278 }
4279 
4280 static int
4281 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4282     uint32_t *txd_upper, uint32_t *txd_lower)
4283 {
4284 	struct e1000_context_desc *TXD;
4285 	int hoff, iphlen, thoff, hlen;
4286 	int mss, pktlen, curr_txd;
4287 
4288 	iphlen = mp->m_pkthdr.csum_iphlen;
4289 	thoff = mp->m_pkthdr.csum_thlen;
4290 	hoff = mp->m_pkthdr.csum_lhlen;
4291 	mss = mp->m_pkthdr.tso_segsz;
4292 	pktlen = mp->m_pkthdr.len;
4293 
4294 	if (adapter->csum_flags == CSUM_TSO &&
4295 	    adapter->csum_iphlen == iphlen &&
4296 	    adapter->csum_lhlen == hoff &&
4297 	    adapter->csum_thlen == thoff &&
4298 	    adapter->csum_mss == mss &&
4299 	    adapter->csum_pktlen == pktlen) {
4300 		*txd_upper = adapter->csum_txd_upper;
4301 		*txd_lower = adapter->csum_txd_lower;
4302 		return 0;
4303 	}
4304 	hlen = hoff + iphlen + thoff;
4305 
4306 	/*
4307 	 * Setup a new TSO context.
4308 	 */
4309 
4310 	curr_txd = adapter->next_avail_tx_desc;
4311 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4312 
4313 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4314 		     E1000_TXD_DTYP_D |		/* Data descr type */
4315 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4316 
4317 	/* IP and/or TCP header checksum calculation and insertion. */
4318 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4319 
4320 	/*
4321 	 * Start offset for header checksum calculation.
4322 	 * End offset for header checksum calculation.
4323 	 * Offset of place put the checksum.
4324 	 */
4325 	TXD->lower_setup.ip_fields.ipcss = hoff;
4326 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4327 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4328 
4329 	/*
4330 	 * Start offset for payload checksum calculation.
4331 	 * End offset for payload checksum calculation.
4332 	 * Offset of place to put the checksum.
4333 	 */
4334 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4335 	TXD->upper_setup.tcp_fields.tucse = 0;
4336 	TXD->upper_setup.tcp_fields.tucso =
4337 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4338 
4339 	/*
4340 	 * Payload size per packet w/o any headers.
4341 	 * Length of all headers up to payload.
4342 	 */
4343 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4344 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4345 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4346 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4347 				E1000_TXD_CMD_TSE |	/* TSE context */
4348 				E1000_TXD_CMD_IP |	/* Do IP csum */
4349 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4350 				(pktlen - hlen));	/* Total len */
4351 
4352 	/* Save the information for this TSO context */
4353 	adapter->csum_flags = CSUM_TSO;
4354 	adapter->csum_lhlen = hoff;
4355 	adapter->csum_iphlen = iphlen;
4356 	adapter->csum_thlen = thoff;
4357 	adapter->csum_mss = mss;
4358 	adapter->csum_pktlen = pktlen;
4359 	adapter->csum_txd_upper = *txd_upper;
4360 	adapter->csum_txd_lower = *txd_lower;
4361 
4362 	if (++curr_txd == adapter->num_tx_desc)
4363 		curr_txd = 0;
4364 
4365 	KKASSERT(adapter->num_tx_desc_avail > 0);
4366 	adapter->num_tx_desc_avail--;
4367 
4368 	adapter->next_avail_tx_desc = curr_txd;
4369 	return 1;
4370 }
4371