xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision d0a6ae340f6911686e3740553cb20e177881f93c)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2014, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/ig_hal/e1000_dragonfly.h>
115 #include <dev/netif/em/if_em.h>
116 
117 #define DEBUG_HW 0
118 
119 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
120 #define EM_VER	" 7.4.2"
121 
122 #define _EM_DEVICE(id, ret)	\
123 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
125 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
126 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
127 
128 static const struct em_vendor_info em_vendor_info_array[] = {
129 	EM_DEVICE(82540EM),
130 	EM_DEVICE(82540EM_LOM),
131 	EM_DEVICE(82540EP),
132 	EM_DEVICE(82540EP_LOM),
133 	EM_DEVICE(82540EP_LP),
134 
135 	EM_DEVICE(82541EI),
136 	EM_DEVICE(82541ER),
137 	EM_DEVICE(82541ER_LOM),
138 	EM_DEVICE(82541EI_MOBILE),
139 	EM_DEVICE(82541GI),
140 	EM_DEVICE(82541GI_LF),
141 	EM_DEVICE(82541GI_MOBILE),
142 
143 	EM_DEVICE(82542),
144 
145 	EM_DEVICE(82543GC_FIBER),
146 	EM_DEVICE(82543GC_COPPER),
147 
148 	EM_DEVICE(82544EI_COPPER),
149 	EM_DEVICE(82544EI_FIBER),
150 	EM_DEVICE(82544GC_COPPER),
151 	EM_DEVICE(82544GC_LOM),
152 
153 	EM_DEVICE(82545EM_COPPER),
154 	EM_DEVICE(82545EM_FIBER),
155 	EM_DEVICE(82545GM_COPPER),
156 	EM_DEVICE(82545GM_FIBER),
157 	EM_DEVICE(82545GM_SERDES),
158 
159 	EM_DEVICE(82546EB_COPPER),
160 	EM_DEVICE(82546EB_FIBER),
161 	EM_DEVICE(82546EB_QUAD_COPPER),
162 	EM_DEVICE(82546GB_COPPER),
163 	EM_DEVICE(82546GB_FIBER),
164 	EM_DEVICE(82546GB_SERDES),
165 	EM_DEVICE(82546GB_PCIE),
166 	EM_DEVICE(82546GB_QUAD_COPPER),
167 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168 
169 	EM_DEVICE(82547EI),
170 	EM_DEVICE(82547EI_MOBILE),
171 	EM_DEVICE(82547GI),
172 
173 	EM_EMX_DEVICE(82571EB_COPPER),
174 	EM_EMX_DEVICE(82571EB_FIBER),
175 	EM_EMX_DEVICE(82571EB_SERDES),
176 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183 
184 	EM_EMX_DEVICE(82572EI_COPPER),
185 	EM_EMX_DEVICE(82572EI_FIBER),
186 	EM_EMX_DEVICE(82572EI_SERDES),
187 	EM_EMX_DEVICE(82572EI),
188 
189 	EM_EMX_DEVICE(82573E),
190 	EM_EMX_DEVICE(82573E_IAMT),
191 	EM_EMX_DEVICE(82573L),
192 
193 	EM_DEVICE(82583V),
194 
195 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199 
200 	EM_DEVICE(ICH8_IGP_M_AMT),
201 	EM_DEVICE(ICH8_IGP_AMT),
202 	EM_DEVICE(ICH8_IGP_C),
203 	EM_DEVICE(ICH8_IFE),
204 	EM_DEVICE(ICH8_IFE_GT),
205 	EM_DEVICE(ICH8_IFE_G),
206 	EM_DEVICE(ICH8_IGP_M),
207 	EM_DEVICE(ICH8_82567V_3),
208 
209 	EM_DEVICE(ICH9_IGP_M_AMT),
210 	EM_DEVICE(ICH9_IGP_AMT),
211 	EM_DEVICE(ICH9_IGP_C),
212 	EM_DEVICE(ICH9_IGP_M),
213 	EM_DEVICE(ICH9_IGP_M_V),
214 	EM_DEVICE(ICH9_IFE),
215 	EM_DEVICE(ICH9_IFE_GT),
216 	EM_DEVICE(ICH9_IFE_G),
217 	EM_DEVICE(ICH9_BM),
218 
219 	EM_EMX_DEVICE(82574L),
220 	EM_EMX_DEVICE(82574LA),
221 
222 	EM_DEVICE(ICH10_R_BM_LM),
223 	EM_DEVICE(ICH10_R_BM_LF),
224 	EM_DEVICE(ICH10_R_BM_V),
225 	EM_DEVICE(ICH10_D_BM_LM),
226 	EM_DEVICE(ICH10_D_BM_LF),
227 	EM_DEVICE(ICH10_D_BM_V),
228 
229 	EM_DEVICE(PCH_M_HV_LM),
230 	EM_DEVICE(PCH_M_HV_LC),
231 	EM_DEVICE(PCH_D_HV_DM),
232 	EM_DEVICE(PCH_D_HV_DC),
233 
234 	EM_DEVICE(PCH2_LV_LM),
235 	EM_DEVICE(PCH2_LV_V),
236 
237 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 	EM_EMX_DEVICE(PCH_LPT_I217_V),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 	EM_EMX_DEVICE(PCH_I218_LM2),
242 	EM_EMX_DEVICE(PCH_I218_V2),
243 	EM_EMX_DEVICE(PCH_I218_LM3),
244 	EM_EMX_DEVICE(PCH_I218_V3),
245 	EM_EMX_DEVICE(PCH_SPT_I219_LM),
246 	EM_EMX_DEVICE(PCH_SPT_I219_V),
247 	EM_EMX_DEVICE(PCH_SPT_I219_LM2),
248 	EM_EMX_DEVICE(PCH_SPT_I219_V2),
249 	EM_EMX_DEVICE(PCH_SPT_I219_LM3),
250 	EM_EMX_DEVICE(PCH_SPT_I219_LM4),
251 	EM_EMX_DEVICE(PCH_SPT_I219_V4),
252 	EM_EMX_DEVICE(PCH_SPT_I219_LM5),
253 	EM_EMX_DEVICE(PCH_SPT_I219_V5),
254 
255 	/* required last entry */
256 	EM_DEVICE_NULL
257 };
258 
259 static int	em_probe(device_t);
260 static int	em_attach(device_t);
261 static int	em_detach(device_t);
262 static int	em_shutdown(device_t);
263 static int	em_suspend(device_t);
264 static int	em_resume(device_t);
265 
266 static void	em_init(void *);
267 static void	em_stop(struct adapter *);
268 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
269 static void	em_start(struct ifnet *, struct ifaltq_subque *);
270 #ifdef IFPOLL_ENABLE
271 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
272 static void	em_npoll_compat(struct ifnet *, void *, int);
273 #endif
274 static void	em_watchdog(struct ifnet *);
275 static void	em_media_status(struct ifnet *, struct ifmediareq *);
276 static int	em_media_change(struct ifnet *);
277 static void	em_timer(void *);
278 
279 static void	em_intr(void *);
280 static void	em_intr_mask(void *);
281 static void	em_intr_body(struct adapter *, boolean_t);
282 static void	em_rxeof(struct adapter *, int);
283 static void	em_txeof(struct adapter *);
284 static void	em_tx_collect(struct adapter *, boolean_t);
285 static void	em_tx_purge(struct adapter *);
286 static void	em_txgc_timer(void *);
287 static void	em_enable_intr(struct adapter *);
288 static void	em_disable_intr(struct adapter *);
289 
290 static int	em_dma_malloc(struct adapter *, bus_size_t,
291 		    struct em_dma_alloc *);
292 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
293 static void	em_init_tx_ring(struct adapter *);
294 static int	em_init_rx_ring(struct adapter *);
295 static int	em_create_tx_ring(struct adapter *);
296 static int	em_create_rx_ring(struct adapter *);
297 static void	em_destroy_tx_ring(struct adapter *, int);
298 static void	em_destroy_rx_ring(struct adapter *, int);
299 static int	em_newbuf(struct adapter *, int, int);
300 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
301 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
302 		    struct mbuf *);
303 static int	em_txcsum(struct adapter *, struct mbuf *,
304 		    uint32_t *, uint32_t *);
305 static int	em_tso_pullup(struct adapter *, struct mbuf **);
306 static int	em_tso_setup(struct adapter *, struct mbuf *,
307 		    uint32_t *, uint32_t *);
308 
309 static int	em_get_hw_info(struct adapter *);
310 static int 	em_is_valid_eaddr(const uint8_t *);
311 static int	em_alloc_pci_res(struct adapter *);
312 static void	em_free_pci_res(struct adapter *);
313 static int	em_reset(struct adapter *);
314 static void	em_setup_ifp(struct adapter *);
315 static void	em_init_tx_unit(struct adapter *);
316 static void	em_init_rx_unit(struct adapter *);
317 static void	em_update_stats(struct adapter *);
318 static void	em_set_promisc(struct adapter *);
319 static void	em_disable_promisc(struct adapter *);
320 static void	em_set_multi(struct adapter *);
321 static void	em_update_link_status(struct adapter *);
322 static void	em_smartspeed(struct adapter *);
323 static void	em_set_itr(struct adapter *, uint32_t);
324 static void	em_disable_aspm(struct adapter *);
325 
326 /* Hardware workarounds */
327 static int	em_82547_fifo_workaround(struct adapter *, int);
328 static void	em_82547_update_fifo_head(struct adapter *, int);
329 static int	em_82547_tx_fifo_reset(struct adapter *);
330 static void	em_82547_move_tail(void *);
331 static void	em_82547_move_tail_serialized(struct adapter *);
332 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
333 
334 static void	em_print_debug_info(struct adapter *);
335 static void	em_print_nvm_info(struct adapter *);
336 static void	em_print_hw_stats(struct adapter *);
337 
338 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
339 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
340 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
341 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
342 static void	em_add_sysctl(struct adapter *adapter);
343 
344 /* Management and WOL Support */
345 static void	em_get_mgmt(struct adapter *);
346 static void	em_rel_mgmt(struct adapter *);
347 static void	em_get_hw_control(struct adapter *);
348 static void	em_rel_hw_control(struct adapter *);
349 static void	em_enable_wol(device_t);
350 
351 static device_method_t em_methods[] = {
352 	/* Device interface */
353 	DEVMETHOD(device_probe,		em_probe),
354 	DEVMETHOD(device_attach,	em_attach),
355 	DEVMETHOD(device_detach,	em_detach),
356 	DEVMETHOD(device_shutdown,	em_shutdown),
357 	DEVMETHOD(device_suspend,	em_suspend),
358 	DEVMETHOD(device_resume,	em_resume),
359 	DEVMETHOD_END
360 };
361 
362 static driver_t em_driver = {
363 	"em",
364 	em_methods,
365 	sizeof(struct adapter),
366 };
367 
368 static devclass_t em_devclass;
369 
370 DECLARE_DUMMY_MODULE(if_em);
371 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
372 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
373 
374 /*
375  * Tunables
376  */
377 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
378 static int	em_rxd = EM_DEFAULT_RXD;
379 static int	em_txd = EM_DEFAULT_TXD;
380 static int	em_smart_pwr_down = 0;
381 
382 /* Controls whether promiscuous also shows bad packets */
383 static int	em_debug_sbp = FALSE;
384 
385 static int	em_82573_workaround = 1;
386 static int	em_msi_enable = 1;
387 
388 static char	em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
389 
390 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
391 TUNABLE_INT("hw.em.rxd", &em_rxd);
392 TUNABLE_INT("hw.em.txd", &em_txd);
393 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
394 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
395 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
396 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
397 TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
398 
399 /* Global used in WOL setup with multiport cards */
400 static int	em_global_quad_port_a = 0;
401 
402 /* Set this to one to display debug statistics */
403 static int	em_display_debug_stats = 0;
404 
405 #if !defined(KTR_IF_EM)
406 #define KTR_IF_EM	KTR_ALL
407 #endif
408 KTR_INFO_MASTER(if_em);
409 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
410 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
411 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
412 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
413 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
414 #define logif(name)	KTR_LOG(if_em_ ## name)
415 
416 static __inline void
417 em_tx_intr(struct adapter *adapter)
418 {
419 	struct ifnet *ifp = &adapter->arpcom.ac_if;
420 
421 	em_txeof(adapter);
422 	if (!ifq_is_empty(&ifp->if_snd))
423 		if_devstart(ifp);
424 }
425 
426 static __inline void
427 em_free_txbuffer(struct adapter *adapter, struct em_buffer *tx_buffer)
428 {
429 
430 	KKASSERT(tx_buffer->m_head != NULL);
431 	KKASSERT(adapter->tx_nmbuf > 0);
432 	adapter->tx_nmbuf--;
433 
434 	bus_dmamap_unload(adapter->txtag, tx_buffer->map);
435 	m_freem(tx_buffer->m_head);
436 	tx_buffer->m_head = NULL;
437 }
438 
439 static __inline void
440 em_try_txgc(struct adapter *adapter, int dec)
441 {
442 
443 	if (adapter->tx_running > 0) {
444 		adapter->tx_running -= dec;
445 		if (adapter->tx_running <= 0 && adapter->tx_nmbuf &&
446 		    adapter->num_tx_desc_avail < adapter->num_tx_desc &&
447 		    adapter->num_tx_desc_avail + adapter->tx_int_nsegs >
448 		    adapter->num_tx_desc)
449 			em_tx_collect(adapter, TRUE);
450 	}
451 }
452 
453 static void
454 em_txgc_timer(void *xadapter)
455 {
456 	struct adapter *adapter = xadapter;
457 	struct ifnet *ifp = &adapter->arpcom.ac_if;
458 
459 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
460 	    (IFF_RUNNING | IFF_UP))
461 		return;
462 
463 	if (!lwkt_serialize_try(ifp->if_serializer))
464 		goto done;
465 
466 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
467 	    (IFF_RUNNING | IFF_UP)) {
468 		lwkt_serialize_exit(ifp->if_serializer);
469 		return;
470 	}
471 	em_try_txgc(adapter, EM_TX_RUNNING_DEC);
472 
473 	lwkt_serialize_exit(ifp->if_serializer);
474 done:
475 	callout_reset(&adapter->tx_gc_timer, 1, em_txgc_timer, adapter);
476 }
477 
478 static int
479 em_probe(device_t dev)
480 {
481 	const struct em_vendor_info *ent;
482 	uint16_t vid, did;
483 
484 	vid = pci_get_vendor(dev);
485 	did = pci_get_device(dev);
486 
487 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
488 		if (vid == ent->vendor_id && did == ent->device_id) {
489 			device_set_desc(dev, ent->desc);
490 			device_set_async_attach(dev, TRUE);
491 			return (ent->ret);
492 		}
493 	}
494 	return (ENXIO);
495 }
496 
497 static int
498 em_attach(device_t dev)
499 {
500 	struct adapter *adapter = device_get_softc(dev);
501 	struct ifnet *ifp = &adapter->arpcom.ac_if;
502 	int tsize, rsize;
503 	int error = 0;
504 	uint16_t eeprom_data, device_id, apme_mask;
505 	driver_intr_t *intr_func;
506 	char flowctrl[IFM_ETH_FC_STRLEN];
507 
508 	adapter->dev = adapter->osdep.dev = dev;
509 
510 	callout_init_mp(&adapter->timer);
511 	callout_init_mp(&adapter->tx_fifo_timer);
512 	callout_init_mp(&adapter->tx_gc_timer);
513 
514 	ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
515 	    em_media_change, em_media_status);
516 
517 	/* Determine hardware and mac info */
518 	error = em_get_hw_info(adapter);
519 	if (error) {
520 		device_printf(dev, "Identify hardware failed\n");
521 		goto fail;
522 	}
523 
524 	/* Setup PCI resources */
525 	error = em_alloc_pci_res(adapter);
526 	if (error) {
527 		device_printf(dev, "Allocation of PCI resources failed\n");
528 		goto fail;
529 	}
530 
531 	/*
532 	 * For ICH8 and family we need to map the flash memory,
533 	 * and this must happen after the MAC is identified.
534 	 *
535 	 * (SPT does not map the flash with a separate BAR)
536 	 */
537 	if (adapter->hw.mac.type == e1000_ich8lan ||
538 	    adapter->hw.mac.type == e1000_ich9lan ||
539 	    adapter->hw.mac.type == e1000_ich10lan ||
540 	    adapter->hw.mac.type == e1000_pchlan ||
541 	    adapter->hw.mac.type == e1000_pch2lan ||
542 	    adapter->hw.mac.type == e1000_pch_lpt) {
543 		adapter->flash_rid = EM_BAR_FLASH;
544 
545 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
546 					&adapter->flash_rid, RF_ACTIVE);
547 		if (adapter->flash == NULL) {
548 			device_printf(dev, "Mapping of Flash failed\n");
549 			error = ENXIO;
550 			goto fail;
551 		}
552 		adapter->osdep.flash_bus_space_tag =
553 		    rman_get_bustag(adapter->flash);
554 		adapter->osdep.flash_bus_space_handle =
555 		    rman_get_bushandle(adapter->flash);
556 
557 		/*
558 		 * This is used in the shared code
559 		 * XXX this goof is actually not used.
560 		 */
561 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
562 	}
563 
564 	switch (adapter->hw.mac.type) {
565 	case e1000_82571:
566 	case e1000_82572:
567 	case e1000_pch_lpt:
568 	case e1000_pch_spt:
569 		/*
570 		 * Pullup extra 4bytes into the first data segment for
571 		 * TSO, see:
572 		 * 82571/82572 specification update errata #7
573 		 *
574 		 * Same applies to I217 (and maybe I218 and I219).
575 		 *
576 		 * NOTE:
577 		 * 4bytes instead of 2bytes, which are mentioned in the
578 		 * errata, are pulled; mainly to keep rest of the data
579 		 * properly aligned.
580 		 */
581 		adapter->flags |= EM_FLAG_TSO_PULLEX;
582 		/* FALL THROUGH */
583 
584 	default:
585 		if (pci_is_pcie(dev))
586 			adapter->flags |= EM_FLAG_TSO;
587 		break;
588 	}
589 
590 	/* Do Shared Code initialization */
591 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
592 		device_printf(dev, "Setup of Shared code failed\n");
593 		error = ENXIO;
594 		goto fail;
595 	}
596 
597 	e1000_get_bus_info(&adapter->hw);
598 
599 	/*
600 	 * Validate number of transmit and receive descriptors.  It
601 	 * must not exceed hardware maximum, and must be multiple
602 	 * of E1000_DBA_ALIGN.
603 	 */
604 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
605 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
606 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
607 	    em_txd < EM_MIN_TXD) {
608 		if (adapter->hw.mac.type < e1000_82544)
609 			adapter->num_tx_desc = EM_MAX_TXD_82543;
610 		else
611 			adapter->num_tx_desc = EM_DEFAULT_TXD;
612 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
613 		    adapter->num_tx_desc, em_txd);
614 	} else {
615 		adapter->num_tx_desc = em_txd;
616 	}
617 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
618 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
619 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
620 	    em_rxd < EM_MIN_RXD) {
621 		if (adapter->hw.mac.type < e1000_82544)
622 			adapter->num_rx_desc = EM_MAX_RXD_82543;
623 		else
624 			adapter->num_rx_desc = EM_DEFAULT_RXD;
625 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
626 		    adapter->num_rx_desc, em_rxd);
627 	} else {
628 		adapter->num_rx_desc = em_rxd;
629 	}
630 
631 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
632 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
633 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
634 	adapter->rx_buffer_len = MCLBYTES;
635 
636 	/*
637 	 * Interrupt throttle rate
638 	 */
639 	if (em_int_throttle_ceil == 0) {
640 		adapter->int_throttle_ceil = 0;
641 	} else {
642 		int throttle = em_int_throttle_ceil;
643 
644 		if (throttle < 0)
645 			throttle = EM_DEFAULT_ITR;
646 
647 		/* Recalculate the tunable value to get the exact frequency. */
648 		throttle = 1000000000 / 256 / throttle;
649 
650 		/* Upper 16bits of ITR is reserved and should be zero */
651 		if (throttle & 0xffff0000)
652 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
653 
654 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
655 	}
656 
657 	e1000_init_script_state_82541(&adapter->hw, TRUE);
658 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
659 
660 	/* Copper options */
661 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
662 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
663 		adapter->hw.phy.disable_polarity_correction = FALSE;
664 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
665 	}
666 
667 	/* Set the frame limits assuming standard ethernet sized frames. */
668 	adapter->hw.mac.max_frame_size =
669 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
670 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
671 
672 	/* This controls when hardware reports transmit completion status. */
673 	adapter->hw.mac.report_tx_early = 1;
674 
675 	/*
676 	 * Create top level busdma tag
677 	 */
678 	error = bus_dma_tag_create(NULL, 1, 0,
679 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
680 			NULL, NULL,
681 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
682 			0, &adapter->parent_dtag);
683 	if (error) {
684 		device_printf(dev, "could not create top level DMA tag\n");
685 		goto fail;
686 	}
687 
688 	/*
689 	 * Allocate Transmit Descriptor ring
690 	 */
691 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
692 			 EM_DBA_ALIGN);
693 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
694 	if (error) {
695 		device_printf(dev, "Unable to allocate tx_desc memory\n");
696 		goto fail;
697 	}
698 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
699 
700 	/*
701 	 * Allocate Receive Descriptor ring
702 	 */
703 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
704 			 EM_DBA_ALIGN);
705 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
706 	if (error) {
707 		device_printf(dev, "Unable to allocate rx_desc memory\n");
708 		goto fail;
709 	}
710 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
711 
712 	/* Allocate multicast array memory. */
713 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
714 	    M_DEVBUF, M_WAITOK);
715 
716 	/* Indicate SOL/IDER usage */
717 	if (e1000_check_reset_block(&adapter->hw)) {
718 		device_printf(dev,
719 		    "PHY reset is blocked due to SOL/IDER session.\n");
720 	}
721 
722 	/* Disable EEE */
723 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
724 
725 	/*
726 	 * Start from a known state, this is important in reading the
727 	 * nvm and mac from that.
728 	 */
729 	e1000_reset_hw(&adapter->hw);
730 
731 	/* Make sure we have a good EEPROM before we read from it */
732 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
733 		/*
734 		 * Some PCI-E parts fail the first check due to
735 		 * the link being in sleep state, call it again,
736 		 * if it fails a second time its a real issue.
737 		 */
738 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
739 			device_printf(dev,
740 			    "The EEPROM Checksum Is Not Valid\n");
741 			error = EIO;
742 			goto fail;
743 		}
744 	}
745 
746 	/* Copy the permanent MAC address out of the EEPROM */
747 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
748 		device_printf(dev, "EEPROM read error while reading MAC"
749 		    " address\n");
750 		error = EIO;
751 		goto fail;
752 	}
753 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
754 		device_printf(dev, "Invalid MAC address\n");
755 		error = EIO;
756 		goto fail;
757 	}
758 
759 	/* Disable ULP support */
760 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
761 
762 	/* Allocate transmit descriptors and buffers */
763 	error = em_create_tx_ring(adapter);
764 	if (error) {
765 		device_printf(dev, "Could not setup transmit structures\n");
766 		goto fail;
767 	}
768 
769 	/* Allocate receive descriptors and buffers */
770 	error = em_create_rx_ring(adapter);
771 	if (error) {
772 		device_printf(dev, "Could not setup receive structures\n");
773 		goto fail;
774 	}
775 
776 	/* Manually turn off all interrupts */
777 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
778 
779 	/* Determine if we have to control management hardware */
780 	if (e1000_enable_mng_pass_thru(&adapter->hw))
781 		adapter->flags |= EM_FLAG_HAS_MGMT;
782 
783 	/*
784 	 * Setup Wake-on-Lan
785 	 */
786 	apme_mask = EM_EEPROM_APME;
787 	eeprom_data = 0;
788 	switch (adapter->hw.mac.type) {
789 	case e1000_82542:
790 	case e1000_82543:
791 		break;
792 
793 	case e1000_82573:
794 	case e1000_82583:
795 		adapter->flags |= EM_FLAG_HAS_AMT;
796 		/* FALL THROUGH */
797 
798 	case e1000_82546:
799 	case e1000_82546_rev_3:
800 	case e1000_82571:
801 	case e1000_82572:
802 	case e1000_80003es2lan:
803 		if (adapter->hw.bus.func == 1) {
804 			e1000_read_nvm(&adapter->hw,
805 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
806 		} else {
807 			e1000_read_nvm(&adapter->hw,
808 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
809 		}
810 		break;
811 
812 	case e1000_ich8lan:
813 	case e1000_ich9lan:
814 	case e1000_ich10lan:
815 	case e1000_pchlan:
816 	case e1000_pch2lan:
817 		apme_mask = E1000_WUC_APME;
818 		adapter->flags |= EM_FLAG_HAS_AMT;
819 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
820 		break;
821 
822 	default:
823 		e1000_read_nvm(&adapter->hw,
824 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
825 		break;
826 	}
827 	if (eeprom_data & apme_mask)
828 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
829 
830 	/*
831          * We have the eeprom settings, now apply the special cases
832          * where the eeprom may be wrong or the board won't support
833          * wake on lan on a particular port
834 	 */
835 	device_id = pci_get_device(dev);
836         switch (device_id) {
837 	case E1000_DEV_ID_82546GB_PCIE:
838 		adapter->wol = 0;
839 		break;
840 
841 	case E1000_DEV_ID_82546EB_FIBER:
842 	case E1000_DEV_ID_82546GB_FIBER:
843 	case E1000_DEV_ID_82571EB_FIBER:
844 		/*
845 		 * Wake events only supported on port A for dual fiber
846 		 * regardless of eeprom setting
847 		 */
848 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
849 		    E1000_STATUS_FUNC_1)
850 			adapter->wol = 0;
851 		break;
852 
853 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
854 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
855 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
856 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
857                 /* if quad port adapter, disable WoL on all but port A */
858 		if (em_global_quad_port_a != 0)
859 			adapter->wol = 0;
860 		/* Reset for multiple quad port adapters */
861 		if (++em_global_quad_port_a == 4)
862 			em_global_quad_port_a = 0;
863                 break;
864 	}
865 
866 	/* XXX disable wol */
867 	adapter->wol = 0;
868 
869 	/* Setup flow control. */
870 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
871 	    em_flowctrl);
872 	adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
873 	if (adapter->hw.mac.type == e1000_pchlan) {
874 		/* Only PAUSE reception is supported on PCH */
875 		adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
876 	}
877 
878 	/* Setup OS specific network interface */
879 	em_setup_ifp(adapter);
880 
881 	/* Add sysctl tree, must after em_setup_ifp() */
882 	em_add_sysctl(adapter);
883 
884 #ifdef IFPOLL_ENABLE
885 	/* Polling setup */
886 	ifpoll_compat_setup(&adapter->npoll,
887 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
888 	    device_get_unit(dev), ifp->if_serializer);
889 #endif
890 
891 	/* Reset the hardware */
892 	error = em_reset(adapter);
893 	if (error) {
894 		/*
895 		 * Some 82573 parts fail the first reset, call it again,
896 		 * if it fails a second time its a real issue.
897 		 */
898 		error = em_reset(adapter);
899 		if (error) {
900 			device_printf(dev, "Unable to reset the hardware\n");
901 			ether_ifdetach(ifp);
902 			goto fail;
903 		}
904 	}
905 
906 	/* Initialize statistics */
907 	em_update_stats(adapter);
908 
909 	adapter->hw.mac.get_link_status = 1;
910 	em_update_link_status(adapter);
911 
912 	/* Do we need workaround for 82544 PCI-X adapter? */
913 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
914 	    adapter->hw.mac.type == e1000_82544)
915 		adapter->pcix_82544 = TRUE;
916 	else
917 		adapter->pcix_82544 = FALSE;
918 
919 	if (adapter->pcix_82544) {
920 		/*
921 		 * 82544 on PCI-X may split one TX segment
922 		 * into two TX descs, so we double its number
923 		 * of spare TX desc here.
924 		 */
925 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
926 	} else {
927 		adapter->spare_tx_desc = EM_TX_SPARE;
928 	}
929 	if (adapter->flags & EM_FLAG_TSO)
930 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
931 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
932 
933 	/*
934 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
935 	 * and tx_int_nsegs:
936 	 * (spare_tx_desc + EM_TX_RESERVED) <=
937 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
938 	 */
939 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
940 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
941 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
942 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
943 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
944 
945 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
946 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
947 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
948 
949 	/* Non-AMT based hardware can now take control from firmware */
950 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
951 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
952 		em_get_hw_control(adapter);
953 
954 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
955 
956 	/*
957 	 * Missing Interrupt Following ICR read:
958 	 *
959 	 * 82571/82572 specification update errata #76
960 	 * 82573 specification update errata #31
961 	 * 82574 specification update errata #12
962 	 * 82583 specification update errata #4
963 	 */
964 	intr_func = em_intr;
965 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
966 	    (adapter->hw.mac.type == e1000_82571 ||
967 	     adapter->hw.mac.type == e1000_82572 ||
968 	     adapter->hw.mac.type == e1000_82573 ||
969 	     adapter->hw.mac.type == e1000_82574 ||
970 	     adapter->hw.mac.type == e1000_82583))
971 		intr_func = em_intr_mask;
972 
973 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
974 			       intr_func, adapter, &adapter->intr_tag,
975 			       ifp->if_serializer);
976 	if (error) {
977 		device_printf(dev, "Failed to register interrupt handler");
978 		ether_ifdetach(ifp);
979 		goto fail;
980 	}
981 	return (0);
982 fail:
983 	em_detach(dev);
984 	return (error);
985 }
986 
987 static int
988 em_detach(device_t dev)
989 {
990 	struct adapter *adapter = device_get_softc(dev);
991 
992 	if (device_is_attached(dev)) {
993 		struct ifnet *ifp = &adapter->arpcom.ac_if;
994 
995 		lwkt_serialize_enter(ifp->if_serializer);
996 
997 		em_stop(adapter);
998 
999 		e1000_phy_hw_reset(&adapter->hw);
1000 
1001 		em_rel_mgmt(adapter);
1002 		em_rel_hw_control(adapter);
1003 
1004 		if (adapter->wol) {
1005 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
1006 					E1000_WUC_PME_EN);
1007 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1008 			em_enable_wol(dev);
1009 		}
1010 
1011 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
1012 
1013 		lwkt_serialize_exit(ifp->if_serializer);
1014 
1015 		ether_ifdetach(ifp);
1016 	} else if (adapter->memory != NULL) {
1017 		em_rel_hw_control(adapter);
1018 	}
1019 
1020 	ifmedia_removeall(&adapter->media);
1021 	bus_generic_detach(dev);
1022 
1023 	em_free_pci_res(adapter);
1024 
1025 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
1026 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
1027 
1028 	/* Free Transmit Descriptor ring */
1029 	if (adapter->tx_desc_base)
1030 		em_dma_free(adapter, &adapter->txdma);
1031 
1032 	/* Free Receive Descriptor ring */
1033 	if (adapter->rx_desc_base)
1034 		em_dma_free(adapter, &adapter->rxdma);
1035 
1036 	/* Free top level busdma tag */
1037 	if (adapter->parent_dtag != NULL)
1038 		bus_dma_tag_destroy(adapter->parent_dtag);
1039 
1040 	if (adapter->mta != NULL)
1041 		kfree(adapter->mta, M_DEVBUF);
1042 
1043 	return (0);
1044 }
1045 
1046 static int
1047 em_shutdown(device_t dev)
1048 {
1049 	return em_suspend(dev);
1050 }
1051 
1052 static int
1053 em_suspend(device_t dev)
1054 {
1055 	struct adapter *adapter = device_get_softc(dev);
1056 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1057 
1058 	lwkt_serialize_enter(ifp->if_serializer);
1059 
1060 	em_stop(adapter);
1061 
1062 	em_rel_mgmt(adapter);
1063 	em_rel_hw_control(adapter);
1064 
1065 	if (adapter->wol) {
1066 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
1067 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1068 		em_enable_wol(dev);
1069 	}
1070 
1071 	lwkt_serialize_exit(ifp->if_serializer);
1072 
1073 	return bus_generic_suspend(dev);
1074 }
1075 
1076 static int
1077 em_resume(device_t dev)
1078 {
1079 	struct adapter *adapter = device_get_softc(dev);
1080 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1081 
1082 	lwkt_serialize_enter(ifp->if_serializer);
1083 
1084 	if (adapter->hw.mac.type == e1000_pch2lan)
1085 		e1000_resume_workarounds_pchlan(&adapter->hw);
1086 
1087 	em_init(adapter);
1088 	em_get_mgmt(adapter);
1089 	if_devstart(ifp);
1090 
1091 	lwkt_serialize_exit(ifp->if_serializer);
1092 
1093 	return bus_generic_resume(dev);
1094 }
1095 
1096 static void
1097 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1098 {
1099 	struct adapter *adapter = ifp->if_softc;
1100 	struct mbuf *m_head;
1101 	int idx = -1, nsegs = 0;
1102 
1103 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1104 	ASSERT_SERIALIZED(ifp->if_serializer);
1105 
1106 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1107 		return;
1108 
1109 	if (!adapter->link_active) {
1110 		ifq_purge(&ifp->if_snd);
1111 		return;
1112 	}
1113 
1114 	while (!ifq_is_empty(&ifp->if_snd)) {
1115 		/* Now do we at least have a minimal? */
1116 		if (EM_IS_OACTIVE(adapter)) {
1117 			em_tx_collect(adapter, FALSE);
1118 			if (EM_IS_OACTIVE(adapter)) {
1119 				ifq_set_oactive(&ifp->if_snd);
1120 				adapter->no_tx_desc_avail1++;
1121 				break;
1122 			}
1123 		}
1124 
1125 		logif(pkt_txqueue);
1126 		m_head = ifq_dequeue(&ifp->if_snd);
1127 		if (m_head == NULL)
1128 			break;
1129 
1130 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1131 			IFNET_STAT_INC(ifp, oerrors, 1);
1132 			em_tx_collect(adapter, FALSE);
1133 			continue;
1134 		}
1135 
1136 		/*
1137 		 * TX interrupt are aggressively aggregated, so increasing
1138 		 * opackets at TX interrupt time will make the opackets
1139 		 * statistics vastly inaccurate; we do the opackets increment
1140 		 * now.
1141 		 */
1142 		IFNET_STAT_INC(ifp, opackets, 1);
1143 
1144 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1145 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1146 			nsegs = 0;
1147 			idx = -1;
1148 		}
1149 
1150 		/* Send a copy of the frame to the BPF listener */
1151 		ETHER_BPF_MTAP(ifp, m_head);
1152 
1153 		/* Set timeout in case hardware has problems transmitting. */
1154 		ifp->if_timer = EM_TX_TIMEOUT;
1155 	}
1156 	if (idx >= 0)
1157 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1158 	adapter->tx_running = EM_TX_RUNNING;
1159 }
1160 
1161 static int
1162 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1163 {
1164 	struct adapter *adapter = ifp->if_softc;
1165 	struct ifreq *ifr = (struct ifreq *)data;
1166 	uint16_t eeprom_data = 0;
1167 	int max_frame_size, mask, reinit;
1168 	int error = 0;
1169 
1170 	ASSERT_SERIALIZED(ifp->if_serializer);
1171 
1172 	switch (command) {
1173 	case SIOCSIFMTU:
1174 		switch (adapter->hw.mac.type) {
1175 		case e1000_82573:
1176 			/*
1177 			 * 82573 only supports jumbo frames
1178 			 * if ASPM is disabled.
1179 			 */
1180 			e1000_read_nvm(&adapter->hw,
1181 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1182 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1183 				max_frame_size = ETHER_MAX_LEN;
1184 				break;
1185 			}
1186 			/* FALL THROUGH */
1187 
1188 		/* Limit Jumbo Frame size */
1189 		case e1000_82571:
1190 		case e1000_82572:
1191 		case e1000_ich9lan:
1192 		case e1000_ich10lan:
1193 		case e1000_pch2lan:
1194 		case e1000_pch_lpt:
1195 		case e1000_pch_spt:
1196 		case e1000_82574:
1197 		case e1000_82583:
1198 		case e1000_80003es2lan:
1199 			max_frame_size = 9234;
1200 			break;
1201 
1202 		case e1000_pchlan:
1203 			max_frame_size = 4096;
1204 			break;
1205 
1206 		/* Adapters that do not support jumbo frames */
1207 		case e1000_82542:
1208 		case e1000_ich8lan:
1209 			max_frame_size = ETHER_MAX_LEN;
1210 			break;
1211 
1212 		default:
1213 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1214 			break;
1215 		}
1216 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1217 		    ETHER_CRC_LEN) {
1218 			error = EINVAL;
1219 			break;
1220 		}
1221 
1222 		ifp->if_mtu = ifr->ifr_mtu;
1223 		adapter->hw.mac.max_frame_size =
1224 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1225 
1226 		if (ifp->if_flags & IFF_RUNNING)
1227 			em_init(adapter);
1228 		break;
1229 
1230 	case SIOCSIFFLAGS:
1231 		if (ifp->if_flags & IFF_UP) {
1232 			if ((ifp->if_flags & IFF_RUNNING)) {
1233 				if ((ifp->if_flags ^ adapter->if_flags) &
1234 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1235 					em_disable_promisc(adapter);
1236 					em_set_promisc(adapter);
1237 				}
1238 			} else {
1239 				em_init(adapter);
1240 			}
1241 		} else if (ifp->if_flags & IFF_RUNNING) {
1242 			em_stop(adapter);
1243 		}
1244 		adapter->if_flags = ifp->if_flags;
1245 		break;
1246 
1247 	case SIOCADDMULTI:
1248 	case SIOCDELMULTI:
1249 		if (ifp->if_flags & IFF_RUNNING) {
1250 			em_disable_intr(adapter);
1251 			em_set_multi(adapter);
1252 			if (adapter->hw.mac.type == e1000_82542 &&
1253 			    adapter->hw.revision_id == E1000_REVISION_2)
1254 				em_init_rx_unit(adapter);
1255 #ifdef IFPOLL_ENABLE
1256 			if (!(ifp->if_flags & IFF_NPOLLING))
1257 #endif
1258 				em_enable_intr(adapter);
1259 		}
1260 		break;
1261 
1262 	case SIOCSIFMEDIA:
1263 		/* Check SOL/IDER usage */
1264 		if (e1000_check_reset_block(&adapter->hw)) {
1265 			device_printf(adapter->dev, "Media change is"
1266 			    " blocked due to SOL/IDER session.\n");
1267 			break;
1268 		}
1269 		/* FALL THROUGH */
1270 
1271 	case SIOCGIFMEDIA:
1272 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1273 		break;
1274 
1275 	case SIOCSIFCAP:
1276 		reinit = 0;
1277 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1278 		if (mask & IFCAP_RXCSUM) {
1279 			ifp->if_capenable ^= IFCAP_RXCSUM;
1280 			reinit = 1;
1281 		}
1282 		if (mask & IFCAP_TXCSUM) {
1283 			ifp->if_capenable ^= IFCAP_TXCSUM;
1284 			if (ifp->if_capenable & IFCAP_TXCSUM)
1285 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1286 			else
1287 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1288 		}
1289 		if (mask & IFCAP_TSO) {
1290 			ifp->if_capenable ^= IFCAP_TSO;
1291 			if (ifp->if_capenable & IFCAP_TSO)
1292 				ifp->if_hwassist |= CSUM_TSO;
1293 			else
1294 				ifp->if_hwassist &= ~CSUM_TSO;
1295 		}
1296 		if (mask & IFCAP_VLAN_HWTAGGING) {
1297 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1298 			reinit = 1;
1299 		}
1300 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1301 			em_init(adapter);
1302 		break;
1303 
1304 	default:
1305 		error = ether_ioctl(ifp, command, data);
1306 		break;
1307 	}
1308 	return (error);
1309 }
1310 
1311 static void
1312 em_watchdog(struct ifnet *ifp)
1313 {
1314 	struct adapter *adapter = ifp->if_softc;
1315 
1316 	ASSERT_SERIALIZED(ifp->if_serializer);
1317 
1318 	/*
1319 	 * The timer is set to 5 every time start queues a packet.
1320 	 * Then txeof keeps resetting it as long as it cleans at
1321 	 * least one descriptor.
1322 	 * Finally, anytime all descriptors are clean the timer is
1323 	 * set to 0.
1324 	 */
1325 
1326 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1327 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1328 		/*
1329 		 * If we reach here, all TX jobs are completed and
1330 		 * the TX engine should have been idled for some time.
1331 		 * We don't need to call if_devstart() here.
1332 		 */
1333 		ifq_clr_oactive(&ifp->if_snd);
1334 		ifp->if_timer = 0;
1335 		return;
1336 	}
1337 
1338 	/*
1339 	 * If we are in this routine because of pause frames, then
1340 	 * don't reset the hardware.
1341 	 */
1342 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1343 	    E1000_STATUS_TXOFF) {
1344 		ifp->if_timer = EM_TX_TIMEOUT;
1345 		return;
1346 	}
1347 
1348 	if (e1000_check_for_link(&adapter->hw) == 0)
1349 		if_printf(ifp, "watchdog timeout -- resetting\n");
1350 
1351 	IFNET_STAT_INC(ifp, oerrors, 1);
1352 	adapter->watchdog_events++;
1353 
1354 	em_init(adapter);
1355 
1356 	if (!ifq_is_empty(&ifp->if_snd))
1357 		if_devstart(ifp);
1358 }
1359 
1360 static void
1361 em_init(void *xsc)
1362 {
1363 	struct adapter *adapter = xsc;
1364 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1365 	device_t dev = adapter->dev;
1366 
1367 	ASSERT_SERIALIZED(ifp->if_serializer);
1368 
1369 	em_stop(adapter);
1370 
1371 	/* Get the latest mac address, User can use a LAA */
1372         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1373 
1374 	/* Put the address into the Receive Address Array */
1375 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1376 
1377 	/*
1378 	 * With the 82571 adapter, RAR[0] may be overwritten
1379 	 * when the other port is reset, we make a duplicate
1380 	 * in RAR[14] for that eventuality, this assures
1381 	 * the interface continues to function.
1382 	 */
1383 	if (adapter->hw.mac.type == e1000_82571) {
1384 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1385 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1386 		    E1000_RAR_ENTRIES - 1);
1387 	}
1388 
1389 	/* Reset the hardware */
1390 	if (em_reset(adapter)) {
1391 		device_printf(dev, "Unable to reset the hardware\n");
1392 		/* XXX em_stop()? */
1393 		return;
1394 	}
1395 	em_update_link_status(adapter);
1396 
1397 	/* Setup VLAN support, basic and offload if available */
1398 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1399 
1400 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1401 		uint32_t ctrl;
1402 
1403 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1404 		ctrl |= E1000_CTRL_VME;
1405 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1406 	}
1407 
1408 	/* Configure for OS presence */
1409 	em_get_mgmt(adapter);
1410 
1411 	/* Prepare transmit descriptors and buffers */
1412 	em_init_tx_ring(adapter);
1413 	em_init_tx_unit(adapter);
1414 
1415 	/* Setup Multicast table */
1416 	em_set_multi(adapter);
1417 
1418 	/* Prepare receive descriptors and buffers */
1419 	if (em_init_rx_ring(adapter)) {
1420 		device_printf(dev, "Could not setup receive structures\n");
1421 		em_stop(adapter);
1422 		return;
1423 	}
1424 	em_init_rx_unit(adapter);
1425 
1426 	/* Don't lose promiscuous settings */
1427 	em_set_promisc(adapter);
1428 
1429 	/* Reset hardware counters */
1430 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1431 
1432 	/* MSI/X configuration for 82574 */
1433 	if (adapter->hw.mac.type == e1000_82574) {
1434 		int tmp;
1435 
1436 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1437 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1438 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1439 		/*
1440 		 * XXX MSIX
1441 		 * Set the IVAR - interrupt vector routing.
1442 		 * Each nibble represents a vector, high bit
1443 		 * is enable, other 3 bits are the MSIX table
1444 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1445 		 * Link (other) to 2, hence the magic number.
1446 		 */
1447 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1448 	}
1449 
1450 #ifdef IFPOLL_ENABLE
1451 	/*
1452 	 * Only enable interrupts if we are not polling, make sure
1453 	 * they are off otherwise.
1454 	 */
1455 	if (ifp->if_flags & IFF_NPOLLING)
1456 		em_disable_intr(adapter);
1457 	else
1458 #endif /* IFPOLL_ENABLE */
1459 		em_enable_intr(adapter);
1460 
1461 	/* AMT based hardware can now take control from firmware */
1462 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1463 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1464 	    adapter->hw.mac.type >= e1000_82571)
1465 		em_get_hw_control(adapter);
1466 
1467 	ifp->if_flags |= IFF_RUNNING;
1468 	ifq_clr_oactive(&ifp->if_snd);
1469 
1470 #ifdef IFPOLL_ENABLE
1471 	if ((ifp->if_flags & IFF_NPOLLING) == 0)
1472 #endif
1473 	{
1474 		callout_reset_bycpu(&adapter->tx_gc_timer, 1,
1475 		    em_txgc_timer, adapter,
1476 		    rman_get_cpuid(adapter->intr_res));
1477 	}
1478 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1479 }
1480 
1481 #ifdef IFPOLL_ENABLE
1482 
1483 static void
1484 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1485 {
1486 	struct adapter *adapter = ifp->if_softc;
1487 
1488 	ASSERT_SERIALIZED(ifp->if_serializer);
1489 
1490 	if (adapter->npoll.ifpc_stcount-- == 0) {
1491 		uint32_t reg_icr;
1492 
1493 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1494 
1495 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1496 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1497 			callout_stop(&adapter->timer);
1498 			adapter->hw.mac.get_link_status = 1;
1499 			em_update_link_status(adapter);
1500 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1501 		}
1502 	}
1503 
1504 	em_rxeof(adapter, count);
1505 
1506 	em_tx_intr(adapter);
1507 	em_try_txgc(adapter, 1);
1508 }
1509 
1510 static void
1511 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1512 {
1513 	struct adapter *adapter = ifp->if_softc;
1514 
1515 	ASSERT_SERIALIZED(ifp->if_serializer);
1516 
1517 	if (info != NULL) {
1518 		int cpuid = adapter->npoll.ifpc_cpuid;
1519 
1520                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1521 		info->ifpi_rx[cpuid].arg = NULL;
1522 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1523 
1524 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1525 	} else {
1526 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1527 	}
1528 	if (ifp->if_flags & IFF_RUNNING)
1529 		em_init(adapter);
1530 }
1531 
1532 #endif /* IFPOLL_ENABLE */
1533 
1534 static void
1535 em_intr(void *xsc)
1536 {
1537 	em_intr_body(xsc, TRUE);
1538 }
1539 
1540 static void
1541 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1542 {
1543 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1544 	uint32_t reg_icr;
1545 
1546 	logif(intr_beg);
1547 	ASSERT_SERIALIZED(ifp->if_serializer);
1548 
1549 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1550 
1551 	if (chk_asserted &&
1552 	    ((adapter->hw.mac.type >= e1000_82571 &&
1553 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1554 	     reg_icr == 0)) {
1555 		logif(intr_end);
1556 		return;
1557 	}
1558 
1559 	/*
1560 	 * XXX: some laptops trigger several spurious interrupts
1561 	 * on em(4) when in the resume cycle. The ICR register
1562 	 * reports all-ones value in this case. Processing such
1563 	 * interrupts would lead to a freeze. I don't know why.
1564 	 */
1565 	if (reg_icr == 0xffffffff) {
1566 		logif(intr_end);
1567 		return;
1568 	}
1569 
1570 	if (ifp->if_flags & IFF_RUNNING) {
1571 		if (reg_icr &
1572 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1573 			em_rxeof(adapter, -1);
1574 		if (reg_icr & E1000_ICR_TXDW)
1575 			em_tx_intr(adapter);
1576 	}
1577 
1578 	/* Link status change */
1579 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1580 		callout_stop(&adapter->timer);
1581 		adapter->hw.mac.get_link_status = 1;
1582 		em_update_link_status(adapter);
1583 
1584 		/* Deal with TX cruft when link lost */
1585 		em_tx_purge(adapter);
1586 
1587 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1588 	}
1589 
1590 	if (reg_icr & E1000_ICR_RXO)
1591 		adapter->rx_overruns++;
1592 
1593 	logif(intr_end);
1594 }
1595 
1596 static void
1597 em_intr_mask(void *xsc)
1598 {
1599 	struct adapter *adapter = xsc;
1600 
1601 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1602 	/*
1603 	 * NOTE:
1604 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1605 	 * so don't check it.
1606 	 */
1607 	em_intr_body(adapter, FALSE);
1608 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1609 }
1610 
1611 static void
1612 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1613 {
1614 	struct adapter *adapter = ifp->if_softc;
1615 
1616 	ASSERT_SERIALIZED(ifp->if_serializer);
1617 
1618 	em_update_link_status(adapter);
1619 
1620 	ifmr->ifm_status = IFM_AVALID;
1621 	ifmr->ifm_active = IFM_ETHER;
1622 
1623 	if (!adapter->link_active) {
1624 		if (adapter->hw.mac.autoneg)
1625 			ifmr->ifm_active |= IFM_NONE;
1626 		else
1627 			ifmr->ifm_active = adapter->media.ifm_media;
1628 		return;
1629 	}
1630 
1631 	ifmr->ifm_status |= IFM_ACTIVE;
1632 	if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1633 		ifmr->ifm_active |= adapter->ifm_flowctrl;
1634 
1635 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1636 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1637 		u_char fiber_type = IFM_1000_SX;
1638 
1639 		if (adapter->hw.mac.type == e1000_82545)
1640 			fiber_type = IFM_1000_LX;
1641 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1642 	} else {
1643 		switch (adapter->link_speed) {
1644 		case 10:
1645 			ifmr->ifm_active |= IFM_10_T;
1646 			break;
1647 		case 100:
1648 			ifmr->ifm_active |= IFM_100_TX;
1649 			break;
1650 
1651 		case 1000:
1652 			ifmr->ifm_active |= IFM_1000_T;
1653 			break;
1654 		}
1655 		if (adapter->link_duplex == FULL_DUPLEX)
1656 			ifmr->ifm_active |= IFM_FDX;
1657 		else
1658 			ifmr->ifm_active |= IFM_HDX;
1659 	}
1660 	if (ifmr->ifm_active & IFM_FDX) {
1661 		ifmr->ifm_active |=
1662 		    e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1663 	}
1664 }
1665 
1666 static int
1667 em_media_change(struct ifnet *ifp)
1668 {
1669 	struct adapter *adapter = ifp->if_softc;
1670 	struct ifmedia *ifm = &adapter->media;
1671 
1672 	ASSERT_SERIALIZED(ifp->if_serializer);
1673 
1674 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1675 		return (EINVAL);
1676 
1677 	if (adapter->hw.mac.type == e1000_pchlan &&
1678 	    (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1679 		if (bootverbose)
1680 			if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1681 		return EINVAL;
1682 	}
1683 
1684 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1685 	case IFM_AUTO:
1686 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1687 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1688 		break;
1689 
1690 	case IFM_1000_LX:
1691 	case IFM_1000_SX:
1692 	case IFM_1000_T:
1693 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1694 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1695 		break;
1696 
1697 	case IFM_100_TX:
1698 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1699 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1700 		} else {
1701 			if (IFM_OPTIONS(ifm->ifm_media) &
1702 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1703 				if (bootverbose) {
1704 					if_printf(ifp, "Flow control is not "
1705 					    "allowed for half-duplex\n");
1706 				}
1707 				return EINVAL;
1708 			}
1709 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1710 		}
1711 		adapter->hw.mac.autoneg = FALSE;
1712 		adapter->hw.phy.autoneg_advertised = 0;
1713 		break;
1714 
1715 	case IFM_10_T:
1716 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1717 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1718 		} else {
1719 			if (IFM_OPTIONS(ifm->ifm_media) &
1720 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1721 				if (bootverbose) {
1722 					if_printf(ifp, "Flow control is not "
1723 					    "allowed for half-duplex\n");
1724 				}
1725 				return EINVAL;
1726 			}
1727 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1728 		}
1729 		adapter->hw.mac.autoneg = FALSE;
1730 		adapter->hw.phy.autoneg_advertised = 0;
1731 		break;
1732 
1733 	default:
1734 		if (bootverbose) {
1735 			if_printf(ifp, "Unsupported media type %d\n",
1736 			    IFM_SUBTYPE(ifm->ifm_media));
1737 		}
1738 		return EINVAL;
1739 	}
1740 	adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1741 
1742 	if (ifp->if_flags & IFF_RUNNING)
1743 		em_init(adapter);
1744 
1745 	return (0);
1746 }
1747 
1748 static int
1749 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1750     int *segs_used, int *idx)
1751 {
1752 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1753 	bus_dmamap_t map;
1754 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1755 	struct e1000_tx_desc *ctxd = NULL;
1756 	struct mbuf *m_head = *m_headp;
1757 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1758 	int maxsegs, nsegs, i, j, first, last = 0, error;
1759 
1760 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1761 		error = em_tso_pullup(adapter, m_headp);
1762 		if (error)
1763 			return error;
1764 		m_head = *m_headp;
1765 	}
1766 
1767 	txd_upper = txd_lower = 0;
1768 	txd_used = 0;
1769 
1770 	/*
1771 	 * Capture the first descriptor index, this descriptor
1772 	 * will have the index of the EOP which is the only one
1773 	 * that now gets a DONE bit writeback.
1774 	 */
1775 	first = adapter->next_avail_tx_desc;
1776 	tx_buffer = &adapter->tx_buffer_area[first];
1777 	tx_buffer_mapped = tx_buffer;
1778 	map = tx_buffer->map;
1779 
1780 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1781 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1782 		("not enough spare TX desc"));
1783 	if (adapter->pcix_82544) {
1784 		/* Half it; see the comment in em_attach() */
1785 		maxsegs >>= 1;
1786 	}
1787 	if (maxsegs > EM_MAX_SCATTER)
1788 		maxsegs = EM_MAX_SCATTER;
1789 
1790 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1791 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1792 	if (error) {
1793 		if (error == ENOBUFS)
1794 			adapter->mbuf_alloc_failed++;
1795 		else
1796 			adapter->no_tx_dma_setup++;
1797 
1798 		m_freem(*m_headp);
1799 		*m_headp = NULL;
1800 		return error;
1801 	}
1802         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1803 
1804 	m_head = *m_headp;
1805 	adapter->tx_nsegs += nsegs;
1806 	*segs_used += nsegs;
1807 
1808 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1809 		/* TSO will consume one TX desc */
1810 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1811 		adapter->tx_nsegs += i;
1812 		*segs_used += i;
1813 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1814 		/* TX csum offloading will consume one TX desc */
1815 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1816 		adapter->tx_nsegs += i;
1817 		*segs_used += i;
1818 	}
1819 
1820         /* Handle VLAN tag */
1821 	if (m_head->m_flags & M_VLANTAG) {
1822 		/* Set the vlan id. */
1823 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1824 		/* Tell hardware to add tag */
1825 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1826 	}
1827 
1828 	i = adapter->next_avail_tx_desc;
1829 
1830 	/* Set up our transmit descriptors */
1831 	for (j = 0; j < nsegs; j++) {
1832 		/* If adapter is 82544 and on PCIX bus */
1833 		if(adapter->pcix_82544) {
1834 			DESC_ARRAY desc_array;
1835 			uint32_t array_elements, counter;
1836 
1837 			/*
1838 			 * Check the Address and Length combination and
1839 			 * split the data accordingly
1840 			 */
1841 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1842 						segs[j].ds_len, &desc_array);
1843 			for (counter = 0; counter < array_elements; counter++) {
1844 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1845 
1846 				tx_buffer = &adapter->tx_buffer_area[i];
1847 				ctxd = &adapter->tx_desc_base[i];
1848 
1849 				ctxd->buffer_addr = htole64(
1850 				    desc_array.descriptor[counter].address);
1851 				ctxd->lower.data = htole32(
1852 				    E1000_TXD_CMD_IFCS | txd_lower |
1853 				    desc_array.descriptor[counter].length);
1854 				ctxd->upper.data = htole32(txd_upper);
1855 
1856 				last = i;
1857 				if (++i == adapter->num_tx_desc)
1858 					i = 0;
1859 
1860 				txd_used++;
1861                         }
1862 		} else {
1863 			tx_buffer = &adapter->tx_buffer_area[i];
1864 			ctxd = &adapter->tx_desc_base[i];
1865 
1866 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1867 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1868 						   txd_lower | segs[j].ds_len);
1869 			ctxd->upper.data = htole32(txd_upper);
1870 
1871 			last = i;
1872 			if (++i == adapter->num_tx_desc)
1873 				i = 0;
1874 		}
1875 	}
1876 
1877 	adapter->next_avail_tx_desc = i;
1878 	if (adapter->pcix_82544) {
1879 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1880 		adapter->num_tx_desc_avail -= txd_used;
1881 	} else {
1882 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1883 		adapter->num_tx_desc_avail -= nsegs;
1884 	}
1885 	adapter->tx_nmbuf++;
1886 
1887 	tx_buffer->m_head = m_head;
1888 	tx_buffer_mapped->map = tx_buffer->map;
1889 	tx_buffer->map = map;
1890 
1891 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1892 		adapter->tx_nsegs = 0;
1893 
1894 		/*
1895 		 * Report Status (RS) is turned on
1896 		 * every tx_int_nsegs descriptors.
1897 		 */
1898 		cmd = E1000_TXD_CMD_RS;
1899 
1900 		/*
1901 		 * Keep track of the descriptor, which will
1902 		 * be written back by hardware.
1903 		 */
1904 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1905 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1906 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1907 	}
1908 
1909 	/*
1910 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1911 	 */
1912 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1913 
1914 	if (adapter->hw.mac.type == e1000_82547) {
1915 		/*
1916 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1917 		 * E1000 that this frame is available to transmit.
1918 		 */
1919 		if (adapter->link_duplex == HALF_DUPLEX) {
1920 			em_82547_move_tail_serialized(adapter);
1921 		} else {
1922 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1923 			em_82547_update_fifo_head(adapter,
1924 			    m_head->m_pkthdr.len);
1925 		}
1926 	} else {
1927 		/*
1928 		 * Defer TDT updating, until enough descriptors are setup
1929 		 */
1930 		*idx = i;
1931 	}
1932 	return (0);
1933 }
1934 
1935 /*
1936  * 82547 workaround to avoid controller hang in half-duplex environment.
1937  * The workaround is to avoid queuing a large packet that would span
1938  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1939  * in this case.  We do that only when FIFO is quiescent.
1940  */
1941 static void
1942 em_82547_move_tail_serialized(struct adapter *adapter)
1943 {
1944 	struct e1000_tx_desc *tx_desc;
1945 	uint16_t hw_tdt, sw_tdt, length = 0;
1946 	bool eop = 0;
1947 
1948 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1949 
1950 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1951 	sw_tdt = adapter->next_avail_tx_desc;
1952 
1953 	while (hw_tdt != sw_tdt) {
1954 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1955 		length += tx_desc->lower.flags.length;
1956 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1957 		if (++hw_tdt == adapter->num_tx_desc)
1958 			hw_tdt = 0;
1959 
1960 		if (eop) {
1961 			if (em_82547_fifo_workaround(adapter, length)) {
1962 				adapter->tx_fifo_wrk_cnt++;
1963 				callout_reset(&adapter->tx_fifo_timer, 1,
1964 					em_82547_move_tail, adapter);
1965 				break;
1966 			}
1967 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1968 			em_82547_update_fifo_head(adapter, length);
1969 			length = 0;
1970 		}
1971 	}
1972 }
1973 
1974 static void
1975 em_82547_move_tail(void *xsc)
1976 {
1977 	struct adapter *adapter = xsc;
1978 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1979 
1980 	lwkt_serialize_enter(ifp->if_serializer);
1981 	em_82547_move_tail_serialized(adapter);
1982 	lwkt_serialize_exit(ifp->if_serializer);
1983 }
1984 
1985 static int
1986 em_82547_fifo_workaround(struct adapter *adapter, int len)
1987 {
1988 	int fifo_space, fifo_pkt_len;
1989 
1990 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1991 
1992 	if (adapter->link_duplex == HALF_DUPLEX) {
1993 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1994 
1995 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1996 			if (em_82547_tx_fifo_reset(adapter))
1997 				return (0);
1998 			else
1999 				return (1);
2000 		}
2001 	}
2002 	return (0);
2003 }
2004 
2005 static void
2006 em_82547_update_fifo_head(struct adapter *adapter, int len)
2007 {
2008 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
2009 
2010 	/* tx_fifo_head is always 16 byte aligned */
2011 	adapter->tx_fifo_head += fifo_pkt_len;
2012 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2013 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
2014 }
2015 
2016 static int
2017 em_82547_tx_fifo_reset(struct adapter *adapter)
2018 {
2019 	uint32_t tctl;
2020 
2021 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
2022 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
2023 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
2024 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
2025 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
2026 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
2027 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
2028 		/* Disable TX unit */
2029 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2030 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
2031 		    tctl & ~E1000_TCTL_EN);
2032 
2033 		/* Reset FIFO pointers */
2034 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
2035 		    adapter->tx_head_addr);
2036 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
2037 		    adapter->tx_head_addr);
2038 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
2039 		    adapter->tx_head_addr);
2040 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
2041 		    adapter->tx_head_addr);
2042 
2043 		/* Re-enable TX unit */
2044 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2045 		E1000_WRITE_FLUSH(&adapter->hw);
2046 
2047 		adapter->tx_fifo_head = 0;
2048 		adapter->tx_fifo_reset_cnt++;
2049 
2050 		return (TRUE);
2051 	} else {
2052 		return (FALSE);
2053 	}
2054 }
2055 
2056 static void
2057 em_set_promisc(struct adapter *adapter)
2058 {
2059 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2060 	uint32_t reg_rctl;
2061 
2062 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2063 
2064 	if (ifp->if_flags & IFF_PROMISC) {
2065 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2066 		/* Turn this on if you want to see bad packets */
2067 		if (em_debug_sbp)
2068 			reg_rctl |= E1000_RCTL_SBP;
2069 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2070 	} else if (ifp->if_flags & IFF_ALLMULTI) {
2071 		reg_rctl |= E1000_RCTL_MPE;
2072 		reg_rctl &= ~E1000_RCTL_UPE;
2073 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2074 	}
2075 }
2076 
2077 static void
2078 em_disable_promisc(struct adapter *adapter)
2079 {
2080 	uint32_t reg_rctl;
2081 
2082 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2083 
2084 	reg_rctl &= ~E1000_RCTL_UPE;
2085 	reg_rctl &= ~E1000_RCTL_MPE;
2086 	reg_rctl &= ~E1000_RCTL_SBP;
2087 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2088 }
2089 
2090 static void
2091 em_set_multi(struct adapter *adapter)
2092 {
2093 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2094 	struct ifmultiaddr *ifma;
2095 	uint32_t reg_rctl = 0;
2096 	uint8_t *mta;
2097 	int mcnt = 0;
2098 
2099 	mta = adapter->mta;
2100 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2101 
2102 	if (adapter->hw.mac.type == e1000_82542 &&
2103 	    adapter->hw.revision_id == E1000_REVISION_2) {
2104 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2105 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2106 			e1000_pci_clear_mwi(&adapter->hw);
2107 		reg_rctl |= E1000_RCTL_RST;
2108 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2109 		msec_delay(5);
2110 	}
2111 
2112 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2113 		if (ifma->ifma_addr->sa_family != AF_LINK)
2114 			continue;
2115 
2116 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2117 			break;
2118 
2119 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2120 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2121 		mcnt++;
2122 	}
2123 
2124 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2125 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2126 		reg_rctl |= E1000_RCTL_MPE;
2127 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2128 	} else {
2129 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2130 	}
2131 
2132 	if (adapter->hw.mac.type == e1000_82542 &&
2133 	    adapter->hw.revision_id == E1000_REVISION_2) {
2134 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2135 		reg_rctl &= ~E1000_RCTL_RST;
2136 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2137 		msec_delay(5);
2138 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2139 			e1000_pci_set_mwi(&adapter->hw);
2140 	}
2141 }
2142 
2143 /*
2144  * This routine checks for link status and updates statistics.
2145  */
2146 static void
2147 em_timer(void *xsc)
2148 {
2149 	struct adapter *adapter = xsc;
2150 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2151 
2152 	lwkt_serialize_enter(ifp->if_serializer);
2153 
2154 	em_update_link_status(adapter);
2155 	em_update_stats(adapter);
2156 
2157 	/* Reset LAA into RAR[0] on 82571 */
2158 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2159 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2160 
2161 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2162 		em_print_hw_stats(adapter);
2163 
2164 	em_smartspeed(adapter);
2165 
2166 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2167 
2168 	lwkt_serialize_exit(ifp->if_serializer);
2169 }
2170 
2171 static void
2172 em_update_link_status(struct adapter *adapter)
2173 {
2174 	struct e1000_hw *hw = &adapter->hw;
2175 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2176 	device_t dev = adapter->dev;
2177 	uint32_t link_check = 0;
2178 
2179 	/* Get the cached link value or read phy for real */
2180 	switch (hw->phy.media_type) {
2181 	case e1000_media_type_copper:
2182 		if (hw->mac.get_link_status) {
2183 			/* Do the work to read phy */
2184 			e1000_check_for_link(hw);
2185 			link_check = !hw->mac.get_link_status;
2186 			if (link_check) /* ESB2 fix */
2187 				e1000_cfg_on_link_up(hw);
2188 		} else {
2189 			link_check = TRUE;
2190 		}
2191 		break;
2192 
2193 	case e1000_media_type_fiber:
2194 		e1000_check_for_link(hw);
2195 		link_check =
2196 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2197 		break;
2198 
2199 	case e1000_media_type_internal_serdes:
2200 		e1000_check_for_link(hw);
2201 		link_check = adapter->hw.mac.serdes_has_link;
2202 		break;
2203 
2204 	case e1000_media_type_unknown:
2205 	default:
2206 		break;
2207 	}
2208 
2209 	/* Now check for a transition */
2210 	if (link_check && adapter->link_active == 0) {
2211 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2212 		    &adapter->link_duplex);
2213 
2214 		/*
2215 		 * Check if we should enable/disable SPEED_MODE bit on
2216 		 * 82571/82572
2217 		 */
2218 		if (adapter->link_speed != SPEED_1000 &&
2219 		    (hw->mac.type == e1000_82571 ||
2220 		     hw->mac.type == e1000_82572)) {
2221 			int tarc0;
2222 
2223 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2224 			tarc0 &= ~SPEED_MODE_BIT;
2225 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2226 		}
2227 		if (bootverbose) {
2228 			char flowctrl[IFM_ETH_FC_STRLEN];
2229 
2230 			e1000_fc2str(hw->fc.current_mode, flowctrl,
2231 			    sizeof(flowctrl));
2232 			device_printf(dev, "Link is up %d Mbps %s, "
2233 			    "Flow control: %s\n",
2234 			    adapter->link_speed,
2235 			    (adapter->link_duplex == FULL_DUPLEX) ?
2236 			    "Full Duplex" : "Half Duplex",
2237 			    flowctrl);
2238 		}
2239 		if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2240 			e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2241 		adapter->link_active = 1;
2242 		adapter->smartspeed = 0;
2243 		ifp->if_baudrate = adapter->link_speed * 1000000;
2244 		ifp->if_link_state = LINK_STATE_UP;
2245 		if_link_state_change(ifp);
2246 	} else if (!link_check && adapter->link_active == 1) {
2247 		ifp->if_baudrate = adapter->link_speed = 0;
2248 		adapter->link_duplex = 0;
2249 		if (bootverbose)
2250 			device_printf(dev, "Link is Down\n");
2251 		adapter->link_active = 0;
2252 #if 0
2253 		/* Link down, disable watchdog */
2254 		if->if_timer = 0;
2255 #endif
2256 		ifp->if_link_state = LINK_STATE_DOWN;
2257 		if_link_state_change(ifp);
2258 	}
2259 }
2260 
2261 static void
2262 em_stop(struct adapter *adapter)
2263 {
2264 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2265 	int i;
2266 
2267 	ASSERT_SERIALIZED(ifp->if_serializer);
2268 
2269 	em_disable_intr(adapter);
2270 
2271 	callout_stop(&adapter->timer);
2272 	callout_stop(&adapter->tx_fifo_timer);
2273 
2274 	ifp->if_flags &= ~IFF_RUNNING;
2275 	ifq_clr_oactive(&ifp->if_snd);
2276 	ifp->if_timer = 0;
2277 	adapter->tx_running = 0;
2278 	callout_stop(&adapter->tx_gc_timer);
2279 
2280 	e1000_reset_hw(&adapter->hw);
2281 	if (adapter->hw.mac.type >= e1000_82544)
2282 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2283 
2284 	for (i = 0; i < adapter->num_tx_desc; i++) {
2285 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2286 
2287 		if (tx_buffer->m_head != NULL)
2288 			em_free_txbuffer(adapter, tx_buffer);
2289 	}
2290 
2291 	for (i = 0; i < adapter->num_rx_desc; i++) {
2292 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2293 
2294 		if (rx_buffer->m_head != NULL) {
2295 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2296 			m_freem(rx_buffer->m_head);
2297 			rx_buffer->m_head = NULL;
2298 		}
2299 	}
2300 
2301 	if (adapter->fmp != NULL)
2302 		m_freem(adapter->fmp);
2303 	adapter->fmp = NULL;
2304 	adapter->lmp = NULL;
2305 
2306 	adapter->csum_flags = 0;
2307 	adapter->csum_lhlen = 0;
2308 	adapter->csum_iphlen = 0;
2309 	adapter->csum_thlen = 0;
2310 	adapter->csum_mss = 0;
2311 	adapter->csum_pktlen = 0;
2312 
2313 	adapter->tx_dd_head = 0;
2314 	adapter->tx_dd_tail = 0;
2315 	adapter->tx_nsegs = 0;
2316 }
2317 
2318 static int
2319 em_get_hw_info(struct adapter *adapter)
2320 {
2321 	device_t dev = adapter->dev;
2322 
2323 	/* Save off the information about this board */
2324 	adapter->hw.vendor_id = pci_get_vendor(dev);
2325 	adapter->hw.device_id = pci_get_device(dev);
2326 	adapter->hw.revision_id = pci_get_revid(dev);
2327 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2328 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2329 
2330 	/* Do Shared Code Init and Setup */
2331 	if (e1000_set_mac_type(&adapter->hw))
2332 		return ENXIO;
2333 	return 0;
2334 }
2335 
2336 static int
2337 em_alloc_pci_res(struct adapter *adapter)
2338 {
2339 	device_t dev = adapter->dev;
2340 	u_int intr_flags;
2341 	int val, rid, msi_enable, cap;
2342 
2343 	/* Enable bus mastering */
2344 	pci_enable_busmaster(dev);
2345 
2346 	adapter->memory_rid = EM_BAR_MEM;
2347 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2348 				&adapter->memory_rid, RF_ACTIVE);
2349 	if (adapter->memory == NULL) {
2350 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2351 		return (ENXIO);
2352 	}
2353 	adapter->osdep.mem_bus_space_tag =
2354 	    rman_get_bustag(adapter->memory);
2355 	adapter->osdep.mem_bus_space_handle =
2356 	    rman_get_bushandle(adapter->memory);
2357 
2358 	/* XXX This is quite goofy, it is not actually used */
2359 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2360 
2361 	/* Only older adapters use IO mapping */
2362 	if (adapter->hw.mac.type > e1000_82543 &&
2363 	    adapter->hw.mac.type < e1000_82571) {
2364 		/* Figure our where our IO BAR is ? */
2365 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2366 			val = pci_read_config(dev, rid, 4);
2367 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2368 				adapter->io_rid = rid;
2369 				break;
2370 			}
2371 			rid += 4;
2372 			/* check for 64bit BAR */
2373 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2374 				rid += 4;
2375 		}
2376 		if (rid >= PCIR_CARDBUSCIS) {
2377 			device_printf(dev, "Unable to locate IO BAR\n");
2378 			return (ENXIO);
2379 		}
2380 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2381 					&adapter->io_rid, RF_ACTIVE);
2382 		if (adapter->ioport == NULL) {
2383 			device_printf(dev, "Unable to allocate bus resource: "
2384 			    "ioport\n");
2385 			return (ENXIO);
2386 		}
2387 		adapter->hw.io_base = 0;
2388 		adapter->osdep.io_bus_space_tag =
2389 		    rman_get_bustag(adapter->ioport);
2390 		adapter->osdep.io_bus_space_handle =
2391 		    rman_get_bushandle(adapter->ioport);
2392 	}
2393 
2394 	/*
2395 	 * Don't enable MSI-X on 82574, see:
2396 	 * 82574 specification update errata #15
2397 	 *
2398 	 * Don't enable MSI on PCI/PCI-X chips, see:
2399 	 * 82540 specification update errata #6
2400 	 * 82545 specification update errata #4
2401 	 *
2402 	 * Don't enable MSI on 82571/82572, see:
2403 	 * 82571/82572 specification update errata #63
2404 	 *
2405 	 * Some versions of I219 only have PCI AF.
2406 	 */
2407 	msi_enable = em_msi_enable;
2408 	if (msi_enable &&
2409 	    (!(pci_is_pcie(dev) ||
2410 	       pci_find_extcap(dev, PCIY_PCIAF, &cap) == 0) ||
2411 	     adapter->hw.mac.type == e1000_82571 ||
2412 	     adapter->hw.mac.type == e1000_82572))
2413 		msi_enable = 0;
2414 again:
2415 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2416 	    &adapter->intr_rid, &intr_flags);
2417 
2418 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2419 		int unshared;
2420 
2421 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2422 		if (!unshared) {
2423 			adapter->flags |= EM_FLAG_SHARED_INTR;
2424 			if (bootverbose)
2425 				device_printf(dev, "IRQ shared\n");
2426 		} else {
2427 			intr_flags &= ~RF_SHAREABLE;
2428 			if (bootverbose)
2429 				device_printf(dev, "IRQ unshared\n");
2430 		}
2431 	}
2432 
2433 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2434 	    &adapter->intr_rid, intr_flags);
2435 	if (adapter->intr_res == NULL) {
2436 		device_printf(dev, "Unable to allocate bus resource: %s\n",
2437 		    adapter->intr_type == PCI_INTR_TYPE_MSI ?
2438 		    "MSI" : "legacy intr");
2439 		if (!msi_enable) {
2440 			/* Retry with MSI. */
2441 			msi_enable = 1;
2442 			adapter->flags &= ~EM_FLAG_SHARED_INTR;
2443 			goto again;
2444 		}
2445 		return (ENXIO);
2446 	}
2447 
2448 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2449 	adapter->hw.back = &adapter->osdep;
2450 	return (0);
2451 }
2452 
2453 static void
2454 em_free_pci_res(struct adapter *adapter)
2455 {
2456 	device_t dev = adapter->dev;
2457 
2458 	if (adapter->intr_res != NULL) {
2459 		bus_release_resource(dev, SYS_RES_IRQ,
2460 		    adapter->intr_rid, adapter->intr_res);
2461 	}
2462 
2463 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2464 		pci_release_msi(dev);
2465 
2466 	if (adapter->memory != NULL) {
2467 		bus_release_resource(dev, SYS_RES_MEMORY,
2468 		    adapter->memory_rid, adapter->memory);
2469 	}
2470 
2471 	if (adapter->flash != NULL) {
2472 		bus_release_resource(dev, SYS_RES_MEMORY,
2473 		    adapter->flash_rid, adapter->flash);
2474 	}
2475 
2476 	if (adapter->ioport != NULL) {
2477 		bus_release_resource(dev, SYS_RES_IOPORT,
2478 		    adapter->io_rid, adapter->ioport);
2479 	}
2480 }
2481 
2482 static int
2483 em_reset(struct adapter *adapter)
2484 {
2485 	device_t dev = adapter->dev;
2486 	uint16_t rx_buffer_size;
2487 	uint32_t pba;
2488 
2489 	/* When hardware is reset, fifo_head is also reset */
2490 	adapter->tx_fifo_head = 0;
2491 
2492 	/* Set up smart power down as default off on newer adapters. */
2493 	if (!em_smart_pwr_down &&
2494 	    (adapter->hw.mac.type == e1000_82571 ||
2495 	     adapter->hw.mac.type == e1000_82572)) {
2496 		uint16_t phy_tmp = 0;
2497 
2498 		/* Speed up time to link by disabling smart power down. */
2499 		e1000_read_phy_reg(&adapter->hw,
2500 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2501 		phy_tmp &= ~IGP02E1000_PM_SPD;
2502 		e1000_write_phy_reg(&adapter->hw,
2503 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2504 	}
2505 
2506 	/*
2507 	 * Packet Buffer Allocation (PBA)
2508 	 * Writing PBA sets the receive portion of the buffer
2509 	 * the remainder is used for the transmit buffer.
2510 	 *
2511 	 * Devices before the 82547 had a Packet Buffer of 64K.
2512 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2513 	 * After the 82547 the buffer was reduced to 40K.
2514 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2515 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2516 	 */
2517 	switch (adapter->hw.mac.type) {
2518 	case e1000_82547:
2519 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2520 		if (adapter->hw.mac.max_frame_size > 8192)
2521 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2522 		else
2523 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2524 		adapter->tx_fifo_head = 0;
2525 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2526 		adapter->tx_fifo_size =
2527 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2528 		break;
2529 
2530 	/* Total Packet Buffer on these is 48K */
2531 	case e1000_82571:
2532 	case e1000_82572:
2533 	case e1000_80003es2lan:
2534 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2535 		break;
2536 
2537 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2538 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2539 		break;
2540 
2541 	case e1000_82574:
2542 	case e1000_82583:
2543 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2544 		break;
2545 
2546 	case e1000_ich8lan:
2547 		pba = E1000_PBA_8K;
2548 		break;
2549 
2550 	case e1000_ich9lan:
2551 	case e1000_ich10lan:
2552 #define E1000_PBA_10K	0x000A
2553 		pba = E1000_PBA_10K;
2554 		break;
2555 
2556 	case e1000_pchlan:
2557 	case e1000_pch2lan:
2558 	case e1000_pch_lpt:
2559 	case e1000_pch_spt:
2560 		pba = E1000_PBA_26K;
2561 		break;
2562 
2563 	default:
2564 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2565 		if (adapter->hw.mac.max_frame_size > 8192)
2566 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2567 		else
2568 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2569 	}
2570 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2571 
2572 	/*
2573 	 * These parameters control the automatic generation (Tx) and
2574 	 * response (Rx) to Ethernet PAUSE frames.
2575 	 * - High water mark should allow for at least two frames to be
2576 	 *   received after sending an XOFF.
2577 	 * - Low water mark works best when it is very near the high water mark.
2578 	 *   This allows the receiver to restart by sending XON when it has
2579 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2580 	 *   restart after one full frame is pulled from the buffer. There
2581 	 *   could be several smaller frames in the buffer and if so they will
2582 	 *   not trigger the XON until their total number reduces the buffer
2583 	 *   by 1500.
2584 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2585 	 */
2586 	rx_buffer_size =
2587 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2588 
2589 	adapter->hw.fc.high_water = rx_buffer_size -
2590 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2591 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2592 
2593 	if (adapter->hw.mac.type == e1000_80003es2lan)
2594 		adapter->hw.fc.pause_time = 0xFFFF;
2595 	else
2596 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2597 
2598 	adapter->hw.fc.send_xon = TRUE;
2599 
2600 	adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2601 
2602 	/*
2603 	 * Device specific overrides/settings
2604 	 */
2605 	switch (adapter->hw.mac.type) {
2606 	case e1000_pchlan:
2607 		KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2608 		    adapter->hw.fc.requested_mode == e1000_fc_none,
2609 		    ("unsupported flow control on PCH %d",
2610 		     adapter->hw.fc.requested_mode));
2611 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2612 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2613 			adapter->hw.fc.high_water = 0x3500;
2614 			adapter->hw.fc.low_water = 0x1500;
2615 		} else {
2616 			adapter->hw.fc.high_water = 0x5000;
2617 			adapter->hw.fc.low_water = 0x3000;
2618 		}
2619 		adapter->hw.fc.refresh_time = 0x1000;
2620 		break;
2621 
2622 	case e1000_pch2lan:
2623 	case e1000_pch_lpt:
2624 	case e1000_pch_spt:
2625 		adapter->hw.fc.high_water = 0x5C20;
2626 		adapter->hw.fc.low_water = 0x5048;
2627 		adapter->hw.fc.pause_time = 0x0650;
2628 		adapter->hw.fc.refresh_time = 0x0400;
2629 		/* Jumbos need adjusted PBA */
2630 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2631 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2632 		else
2633 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2634 		break;
2635 
2636 	case e1000_ich9lan:
2637 	case e1000_ich10lan:
2638 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2639 			adapter->hw.fc.high_water = 0x2800;
2640 			adapter->hw.fc.low_water =
2641 			    adapter->hw.fc.high_water - 8;
2642 			break;
2643 		}
2644 		/* FALL THROUGH */
2645 	default:
2646 		if (adapter->hw.mac.type == e1000_80003es2lan)
2647 			adapter->hw.fc.pause_time = 0xFFFF;
2648 		break;
2649 	}
2650 
2651 	/* Issue a global reset */
2652 	e1000_reset_hw(&adapter->hw);
2653 	if (adapter->hw.mac.type >= e1000_82544)
2654 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2655 	em_disable_aspm(adapter);
2656 
2657 	if (e1000_init_hw(&adapter->hw) < 0) {
2658 		device_printf(dev, "Hardware Initialization Failed\n");
2659 		return (EIO);
2660 	}
2661 
2662 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2663 	e1000_get_phy_info(&adapter->hw);
2664 	e1000_check_for_link(&adapter->hw);
2665 
2666 	return (0);
2667 }
2668 
2669 static void
2670 em_setup_ifp(struct adapter *adapter)
2671 {
2672 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2673 
2674 	if_initname(ifp, device_get_name(adapter->dev),
2675 		    device_get_unit(adapter->dev));
2676 	ifp->if_softc = adapter;
2677 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2678 	ifp->if_init =  em_init;
2679 	ifp->if_ioctl = em_ioctl;
2680 	ifp->if_start = em_start;
2681 #ifdef IFPOLL_ENABLE
2682 	ifp->if_npoll = em_npoll;
2683 #endif
2684 	ifp->if_watchdog = em_watchdog;
2685 	ifp->if_nmbclusters = adapter->num_rx_desc;
2686 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2687 	ifq_set_ready(&ifp->if_snd);
2688 
2689 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2690 
2691 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2692 	if (adapter->hw.mac.type >= e1000_82543)
2693 		ifp->if_capabilities |= IFCAP_HWCSUM;
2694 	if (adapter->flags & EM_FLAG_TSO)
2695 		ifp->if_capabilities |= IFCAP_TSO;
2696 	ifp->if_capenable = ifp->if_capabilities;
2697 
2698 	if (ifp->if_capenable & IFCAP_TXCSUM)
2699 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2700 	if (ifp->if_capenable & IFCAP_TSO)
2701 		ifp->if_hwassist |= CSUM_TSO;
2702 
2703 	/*
2704 	 * Tell the upper layer(s) we support long frames.
2705 	 */
2706 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2707 
2708 	/*
2709 	 * Specify the media types supported by this adapter and register
2710 	 * callbacks to update media and link information
2711 	 */
2712 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2713 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2714 		u_char fiber_type = IFM_1000_SX; /* default type */
2715 
2716 		if (adapter->hw.mac.type == e1000_82545)
2717 			fiber_type = IFM_1000_LX;
2718 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2719 			    0, NULL);
2720 	} else {
2721 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2722 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2723 			    0, NULL);
2724 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2725 			    0, NULL);
2726 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2727 			    0, NULL);
2728 		if (adapter->hw.phy.type != e1000_phy_ife) {
2729 			ifmedia_add(&adapter->media,
2730 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2731 		}
2732 	}
2733 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2734 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2735 	    adapter->ifm_flowctrl);
2736 }
2737 
2738 
2739 /*
2740  * Workaround for SmartSpeed on 82541 and 82547 controllers
2741  */
2742 static void
2743 em_smartspeed(struct adapter *adapter)
2744 {
2745 	uint16_t phy_tmp;
2746 
2747 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2748 	    adapter->hw.mac.autoneg == 0 ||
2749 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2750 		return;
2751 
2752 	if (adapter->smartspeed == 0) {
2753 		/*
2754 		 * If Master/Slave config fault is asserted twice,
2755 		 * we assume back-to-back
2756 		 */
2757 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2758 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2759 			return;
2760 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2761 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2762 			e1000_read_phy_reg(&adapter->hw,
2763 			    PHY_1000T_CTRL, &phy_tmp);
2764 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2765 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2766 				e1000_write_phy_reg(&adapter->hw,
2767 				    PHY_1000T_CTRL, phy_tmp);
2768 				adapter->smartspeed++;
2769 				if (adapter->hw.mac.autoneg &&
2770 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2771 				    !e1000_read_phy_reg(&adapter->hw,
2772 				     PHY_CONTROL, &phy_tmp)) {
2773 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2774 						   MII_CR_RESTART_AUTO_NEG;
2775 					e1000_write_phy_reg(&adapter->hw,
2776 					    PHY_CONTROL, phy_tmp);
2777 				}
2778 			}
2779 		}
2780 		return;
2781 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2782 		/* If still no link, perhaps using 2/3 pair cable */
2783 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2784 		phy_tmp |= CR_1000T_MS_ENABLE;
2785 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2786 		if (adapter->hw.mac.autoneg &&
2787 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2788 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2789 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2790 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2791 		}
2792 	}
2793 
2794 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2795 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2796 		adapter->smartspeed = 0;
2797 }
2798 
2799 static int
2800 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2801 	      struct em_dma_alloc *dma)
2802 {
2803 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2804 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2805 				&dma->dma_tag, &dma->dma_map,
2806 				&dma->dma_paddr);
2807 	if (dma->dma_vaddr == NULL)
2808 		return ENOMEM;
2809 	else
2810 		return 0;
2811 }
2812 
2813 static void
2814 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2815 {
2816 	if (dma->dma_tag == NULL)
2817 		return;
2818 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2819 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2820 	bus_dma_tag_destroy(dma->dma_tag);
2821 }
2822 
2823 static int
2824 em_create_tx_ring(struct adapter *adapter)
2825 {
2826 	device_t dev = adapter->dev;
2827 	struct em_buffer *tx_buffer;
2828 	int error, i;
2829 
2830 	adapter->tx_buffer_area =
2831 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2832 			M_DEVBUF, M_WAITOK | M_ZERO);
2833 
2834 	/*
2835 	 * Create DMA tags for tx buffers
2836 	 */
2837 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2838 			1, 0,			/* alignment, bounds */
2839 			BUS_SPACE_MAXADDR,	/* lowaddr */
2840 			BUS_SPACE_MAXADDR,	/* highaddr */
2841 			NULL, NULL,		/* filter, filterarg */
2842 			EM_TSO_SIZE,		/* maxsize */
2843 			EM_MAX_SCATTER,		/* nsegments */
2844 			PAGE_SIZE,		/* maxsegsize */
2845 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2846 			BUS_DMA_ONEBPAGE,	/* flags */
2847 			&adapter->txtag);
2848 	if (error) {
2849 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2850 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2851 		adapter->tx_buffer_area = NULL;
2852 		return error;
2853 	}
2854 
2855 	/*
2856 	 * Create DMA maps for tx buffers
2857 	 */
2858 	for (i = 0; i < adapter->num_tx_desc; i++) {
2859 		tx_buffer = &adapter->tx_buffer_area[i];
2860 
2861 		error = bus_dmamap_create(adapter->txtag,
2862 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2863 					  &tx_buffer->map);
2864 		if (error) {
2865 			device_printf(dev, "Unable to create TX DMA map\n");
2866 			em_destroy_tx_ring(adapter, i);
2867 			return error;
2868 		}
2869 	}
2870 	return (0);
2871 }
2872 
2873 static void
2874 em_init_tx_ring(struct adapter *adapter)
2875 {
2876 	/* Clear the old ring contents */
2877 	bzero(adapter->tx_desc_base,
2878 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2879 
2880 	/* Reset state */
2881 	adapter->next_avail_tx_desc = 0;
2882 	adapter->next_tx_to_clean = 0;
2883 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2884 	adapter->tx_nmbuf = 0;
2885 	adapter->tx_running = 0;
2886 }
2887 
2888 static void
2889 em_init_tx_unit(struct adapter *adapter)
2890 {
2891 	uint32_t tctl, tarc, tipg = 0;
2892 	uint64_t bus_addr;
2893 
2894 	/* Setup the Base and Length of the Tx Descriptor Ring */
2895 	bus_addr = adapter->txdma.dma_paddr;
2896 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2897 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2898 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2899 	    (uint32_t)(bus_addr >> 32));
2900 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2901 	    (uint32_t)bus_addr);
2902 	/* Setup the HW Tx Head and Tail descriptor pointers */
2903 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2904 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2905 
2906 	/* Set the default values for the Tx Inter Packet Gap timer */
2907 	switch (adapter->hw.mac.type) {
2908 	case e1000_82542:
2909 		tipg = DEFAULT_82542_TIPG_IPGT;
2910 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2911 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2912 		break;
2913 
2914 	case e1000_80003es2lan:
2915 		tipg = DEFAULT_82543_TIPG_IPGR1;
2916 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2917 		    E1000_TIPG_IPGR2_SHIFT;
2918 		break;
2919 
2920 	default:
2921 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2922 		    adapter->hw.phy.media_type ==
2923 		    e1000_media_type_internal_serdes)
2924 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2925 		else
2926 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2927 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2928 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2929 		break;
2930 	}
2931 
2932 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2933 
2934 	/* NOTE: 0 is not allowed for TIDV */
2935 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2936 	if(adapter->hw.mac.type >= e1000_82540)
2937 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2938 
2939 	if (adapter->hw.mac.type == e1000_82571 ||
2940 	    adapter->hw.mac.type == e1000_82572) {
2941 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2942 		tarc |= SPEED_MODE_BIT;
2943 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2944 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2945 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2946 		tarc |= 1;
2947 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2948 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2949 		tarc |= 1;
2950 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2951 	}
2952 
2953 	/* Program the Transmit Control Register */
2954 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2955 	tctl &= ~E1000_TCTL_CT;
2956 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2957 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2958 
2959 	if (adapter->hw.mac.type >= e1000_82571)
2960 		tctl |= E1000_TCTL_MULR;
2961 
2962 	/* This write will effectively turn on the transmit unit. */
2963 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2964 
2965 	if (adapter->hw.mac.type == e1000_82571 ||
2966 	    adapter->hw.mac.type == e1000_82572 ||
2967 	    adapter->hw.mac.type == e1000_80003es2lan) {
2968 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2969 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2970 		tarc &= ~(1 << 28);
2971 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2972 	}
2973 }
2974 
2975 static void
2976 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2977 {
2978 	struct em_buffer *tx_buffer;
2979 	int i;
2980 
2981 	if (adapter->tx_buffer_area == NULL)
2982 		return;
2983 
2984 	for (i = 0; i < ndesc; i++) {
2985 		tx_buffer = &adapter->tx_buffer_area[i];
2986 
2987 		KKASSERT(tx_buffer->m_head == NULL);
2988 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2989 	}
2990 	bus_dma_tag_destroy(adapter->txtag);
2991 
2992 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2993 	adapter->tx_buffer_area = NULL;
2994 }
2995 
2996 /*
2997  * The offload context needs to be set when we transfer the first
2998  * packet of a particular protocol (TCP/UDP).  This routine has been
2999  * enhanced to deal with inserted VLAN headers.
3000  *
3001  * If the new packet's ether header length, ip header length and
3002  * csum offloading type are same as the previous packet, we should
3003  * avoid allocating a new csum context descriptor; mainly to take
3004  * advantage of the pipeline effect of the TX data read request.
3005  *
3006  * This function returns number of TX descrptors allocated for
3007  * csum context.
3008  */
3009 static int
3010 em_txcsum(struct adapter *adapter, struct mbuf *mp,
3011 	  uint32_t *txd_upper, uint32_t *txd_lower)
3012 {
3013 	struct e1000_context_desc *TXD;
3014 	int curr_txd, ehdrlen, csum_flags;
3015 	uint32_t cmd, hdr_len, ip_hlen;
3016 
3017 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
3018 	ip_hlen = mp->m_pkthdr.csum_iphlen;
3019 	ehdrlen = mp->m_pkthdr.csum_lhlen;
3020 
3021 	if (adapter->csum_lhlen == ehdrlen &&
3022 	    adapter->csum_iphlen == ip_hlen &&
3023 	    adapter->csum_flags == csum_flags) {
3024 		/*
3025 		 * Same csum offload context as the previous packets;
3026 		 * just return.
3027 		 */
3028 		*txd_upper = adapter->csum_txd_upper;
3029 		*txd_lower = adapter->csum_txd_lower;
3030 		return 0;
3031 	}
3032 
3033 	/*
3034 	 * Setup a new csum offload context.
3035 	 */
3036 
3037 	curr_txd = adapter->next_avail_tx_desc;
3038 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
3039 
3040 	cmd = 0;
3041 
3042 	/* Setup of IP header checksum. */
3043 	if (csum_flags & CSUM_IP) {
3044 		/*
3045 		 * Start offset for header checksum calculation.
3046 		 * End offset for header checksum calculation.
3047 		 * Offset of place to put the checksum.
3048 		 */
3049 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
3050 		TXD->lower_setup.ip_fields.ipcse =
3051 		    htole16(ehdrlen + ip_hlen - 1);
3052 		TXD->lower_setup.ip_fields.ipcso =
3053 		    ehdrlen + offsetof(struct ip, ip_sum);
3054 		cmd |= E1000_TXD_CMD_IP;
3055 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3056 	}
3057 	hdr_len = ehdrlen + ip_hlen;
3058 
3059 	if (csum_flags & CSUM_TCP) {
3060 		/*
3061 		 * Start offset for payload checksum calculation.
3062 		 * End offset for payload checksum calculation.
3063 		 * Offset of place to put the checksum.
3064 		 */
3065 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3066 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3067 		TXD->upper_setup.tcp_fields.tucso =
3068 		    hdr_len + offsetof(struct tcphdr, th_sum);
3069 		cmd |= E1000_TXD_CMD_TCP;
3070 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3071 	} else if (csum_flags & CSUM_UDP) {
3072 		/*
3073 		 * Start offset for header checksum calculation.
3074 		 * End offset for header checksum calculation.
3075 		 * Offset of place to put the checksum.
3076 		 */
3077 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3078 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3079 		TXD->upper_setup.tcp_fields.tucso =
3080 		    hdr_len + offsetof(struct udphdr, uh_sum);
3081 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3082 	}
3083 
3084 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3085 		     E1000_TXD_DTYP_D;		/* Data descr */
3086 
3087 	/* Save the information for this csum offloading context */
3088 	adapter->csum_lhlen = ehdrlen;
3089 	adapter->csum_iphlen = ip_hlen;
3090 	adapter->csum_flags = csum_flags;
3091 	adapter->csum_txd_upper = *txd_upper;
3092 	adapter->csum_txd_lower = *txd_lower;
3093 
3094 	TXD->tcp_seg_setup.data = htole32(0);
3095 	TXD->cmd_and_length =
3096 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
3097 
3098 	if (++curr_txd == adapter->num_tx_desc)
3099 		curr_txd = 0;
3100 
3101 	KKASSERT(adapter->num_tx_desc_avail > 0);
3102 	adapter->num_tx_desc_avail--;
3103 
3104 	adapter->next_avail_tx_desc = curr_txd;
3105 	return 1;
3106 }
3107 
3108 static void
3109 em_txeof(struct adapter *adapter)
3110 {
3111 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3112 	struct em_buffer *tx_buffer;
3113 	int first, num_avail;
3114 
3115 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
3116 		return;
3117 
3118 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3119 		return;
3120 
3121 	num_avail = adapter->num_tx_desc_avail;
3122 	first = adapter->next_tx_to_clean;
3123 
3124 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3125 		struct e1000_tx_desc *tx_desc;
3126 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3127 
3128 		tx_desc = &adapter->tx_desc_base[dd_idx];
3129 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3130 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3131 
3132 			if (++dd_idx == adapter->num_tx_desc)
3133 				dd_idx = 0;
3134 
3135 			while (first != dd_idx) {
3136 				logif(pkt_txclean);
3137 
3138 				KKASSERT(num_avail < adapter->num_tx_desc);
3139 				num_avail++;
3140 
3141 				tx_buffer = &adapter->tx_buffer_area[first];
3142 				if (tx_buffer->m_head != NULL)
3143 					em_free_txbuffer(adapter, tx_buffer);
3144 
3145 				if (++first == adapter->num_tx_desc)
3146 					first = 0;
3147 			}
3148 		} else {
3149 			break;
3150 		}
3151 	}
3152 	adapter->next_tx_to_clean = first;
3153 	adapter->num_tx_desc_avail = num_avail;
3154 
3155 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3156 		adapter->tx_dd_head = 0;
3157 		adapter->tx_dd_tail = 0;
3158 	}
3159 
3160 	if (!EM_IS_OACTIVE(adapter)) {
3161 		ifq_clr_oactive(&ifp->if_snd);
3162 
3163 		/* All clean, turn off the timer */
3164 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3165 			ifp->if_timer = 0;
3166 	}
3167 	adapter->tx_running = EM_TX_RUNNING;
3168 }
3169 
3170 static void
3171 em_tx_collect(struct adapter *adapter, boolean_t gc)
3172 {
3173 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3174 	struct em_buffer *tx_buffer;
3175 	int tdh, first, num_avail, dd_idx = -1;
3176 
3177 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3178 		return;
3179 
3180 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3181 	if (tdh == adapter->next_tx_to_clean) {
3182 		if (gc && adapter->tx_nmbuf > 0)
3183 			adapter->tx_running = EM_TX_RUNNING;
3184 		return;
3185 	}
3186 	if (gc)
3187 		adapter->tx_gc++;
3188 
3189 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3190 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3191 
3192 	num_avail = adapter->num_tx_desc_avail;
3193 	first = adapter->next_tx_to_clean;
3194 
3195 	while (first != tdh) {
3196 		logif(pkt_txclean);
3197 
3198 		KKASSERT(num_avail < adapter->num_tx_desc);
3199 		num_avail++;
3200 
3201 		tx_buffer = &adapter->tx_buffer_area[first];
3202 		if (tx_buffer->m_head != NULL)
3203 			em_free_txbuffer(adapter, tx_buffer);
3204 
3205 		if (first == dd_idx) {
3206 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3207 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3208 				adapter->tx_dd_head = 0;
3209 				adapter->tx_dd_tail = 0;
3210 				dd_idx = -1;
3211 			} else {
3212 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3213 			}
3214 		}
3215 
3216 		if (++first == adapter->num_tx_desc)
3217 			first = 0;
3218 	}
3219 	adapter->next_tx_to_clean = first;
3220 	adapter->num_tx_desc_avail = num_avail;
3221 
3222 	if (!EM_IS_OACTIVE(adapter)) {
3223 		ifq_clr_oactive(&ifp->if_snd);
3224 
3225 		/* All clean, turn off the timer */
3226 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3227 			ifp->if_timer = 0;
3228 	}
3229 	if (!gc || adapter->tx_nmbuf > 0)
3230 		adapter->tx_running = EM_TX_RUNNING;
3231 }
3232 
3233 /*
3234  * When Link is lost sometimes there is work still in the TX ring
3235  * which will result in a watchdog, rather than allow that do an
3236  * attempted cleanup and then reinit here.  Note that this has been
3237  * seens mostly with fiber adapters.
3238  */
3239 static void
3240 em_tx_purge(struct adapter *adapter)
3241 {
3242 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3243 
3244 	if (!adapter->link_active && ifp->if_timer) {
3245 		em_tx_collect(adapter, FALSE);
3246 		if (ifp->if_timer) {
3247 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3248 			ifp->if_timer = 0;
3249 			em_init(adapter);
3250 		}
3251 	}
3252 }
3253 
3254 static int
3255 em_newbuf(struct adapter *adapter, int i, int init)
3256 {
3257 	struct mbuf *m;
3258 	bus_dma_segment_t seg;
3259 	bus_dmamap_t map;
3260 	struct em_buffer *rx_buffer;
3261 	int error, nseg;
3262 
3263 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3264 	if (m == NULL) {
3265 		adapter->mbuf_cluster_failed++;
3266 		if (init) {
3267 			if_printf(&adapter->arpcom.ac_if,
3268 				  "Unable to allocate RX mbuf\n");
3269 		}
3270 		return (ENOBUFS);
3271 	}
3272 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3273 
3274 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3275 		m_adj(m, ETHER_ALIGN);
3276 
3277 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3278 			adapter->rx_sparemap, m,
3279 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3280 	if (error) {
3281 		m_freem(m);
3282 		if (init) {
3283 			if_printf(&adapter->arpcom.ac_if,
3284 				  "Unable to load RX mbuf\n");
3285 		}
3286 		return (error);
3287 	}
3288 
3289 	rx_buffer = &adapter->rx_buffer_area[i];
3290 	if (rx_buffer->m_head != NULL)
3291 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3292 
3293 	map = rx_buffer->map;
3294 	rx_buffer->map = adapter->rx_sparemap;
3295 	adapter->rx_sparemap = map;
3296 
3297 	rx_buffer->m_head = m;
3298 
3299 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3300 	return (0);
3301 }
3302 
3303 static int
3304 em_create_rx_ring(struct adapter *adapter)
3305 {
3306 	device_t dev = adapter->dev;
3307 	struct em_buffer *rx_buffer;
3308 	int i, error;
3309 
3310 	adapter->rx_buffer_area =
3311 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3312 			M_DEVBUF, M_WAITOK | M_ZERO);
3313 
3314 	/*
3315 	 * Create DMA tag for rx buffers
3316 	 */
3317 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3318 			1, 0,			/* alignment, bounds */
3319 			BUS_SPACE_MAXADDR,	/* lowaddr */
3320 			BUS_SPACE_MAXADDR,	/* highaddr */
3321 			NULL, NULL,		/* filter, filterarg */
3322 			MCLBYTES,		/* maxsize */
3323 			1,			/* nsegments */
3324 			MCLBYTES,		/* maxsegsize */
3325 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3326 			&adapter->rxtag);
3327 	if (error) {
3328 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3329 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3330 		adapter->rx_buffer_area = NULL;
3331 		return error;
3332 	}
3333 
3334 	/*
3335 	 * Create spare DMA map for rx buffers
3336 	 */
3337 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3338 				  &adapter->rx_sparemap);
3339 	if (error) {
3340 		device_printf(dev, "Unable to create spare RX DMA map\n");
3341 		bus_dma_tag_destroy(adapter->rxtag);
3342 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3343 		adapter->rx_buffer_area = NULL;
3344 		return error;
3345 	}
3346 
3347 	/*
3348 	 * Create DMA maps for rx buffers
3349 	 */
3350 	for (i = 0; i < adapter->num_rx_desc; i++) {
3351 		rx_buffer = &adapter->rx_buffer_area[i];
3352 
3353 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3354 					  &rx_buffer->map);
3355 		if (error) {
3356 			device_printf(dev, "Unable to create RX DMA map\n");
3357 			em_destroy_rx_ring(adapter, i);
3358 			return error;
3359 		}
3360 	}
3361 	return (0);
3362 }
3363 
3364 static int
3365 em_init_rx_ring(struct adapter *adapter)
3366 {
3367 	int i, error;
3368 
3369 	/* Reset descriptor ring */
3370 	bzero(adapter->rx_desc_base,
3371 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3372 
3373 	/* Allocate new ones. */
3374 	for (i = 0; i < adapter->num_rx_desc; i++) {
3375 		error = em_newbuf(adapter, i, 1);
3376 		if (error)
3377 			return (error);
3378 	}
3379 
3380 	/* Setup our descriptor pointers */
3381 	adapter->next_rx_desc_to_check = 0;
3382 
3383 	return (0);
3384 }
3385 
3386 static void
3387 em_init_rx_unit(struct adapter *adapter)
3388 {
3389 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3390 	uint64_t bus_addr;
3391 	uint32_t rctl;
3392 
3393 	/*
3394 	 * Make sure receives are disabled while setting
3395 	 * up the descriptor ring
3396 	 */
3397 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3398 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3399 
3400 	if (adapter->hw.mac.type >= e1000_82540) {
3401 		uint32_t itr;
3402 
3403 		/*
3404 		 * Set the interrupt throttling rate. Value is calculated
3405 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3406 		 */
3407 		if (adapter->int_throttle_ceil)
3408 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3409 		else
3410 			itr = 0;
3411 		em_set_itr(adapter, itr);
3412 	}
3413 
3414 	/* Disable accelerated ackknowledge */
3415 	if (adapter->hw.mac.type == e1000_82574) {
3416 		E1000_WRITE_REG(&adapter->hw,
3417 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3418 	}
3419 
3420 	/* Receive Checksum Offload for TCP and UDP */
3421 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3422 		uint32_t rxcsum;
3423 
3424 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3425 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3426 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3427 	}
3428 
3429 	/*
3430 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3431 	 * long latencies are observed, like Lenovo X60. This
3432 	 * change eliminates the problem, but since having positive
3433 	 * values in RDTR is a known source of problems on other
3434 	 * platforms another solution is being sought.
3435 	 */
3436 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3437 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3438 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3439 	}
3440 
3441 	/*
3442 	 * Setup the Base and Length of the Rx Descriptor Ring
3443 	 */
3444 	bus_addr = adapter->rxdma.dma_paddr;
3445 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3446 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3447 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3448 	    (uint32_t)(bus_addr >> 32));
3449 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3450 	    (uint32_t)bus_addr);
3451 
3452 	/*
3453 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3454 	 */
3455 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3456 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3457 
3458 	/* Set PTHRESH for improved jumbo performance */
3459 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3460 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3461 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3462 	    (ifp->if_mtu > ETHERMTU)) {
3463 		uint32_t rxdctl;
3464 
3465 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3466 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3467 	}
3468 
3469 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3470 		if (ifp->if_mtu > ETHERMTU)
3471 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3472 		else
3473 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3474 	}
3475 
3476 	/* Setup the Receive Control Register */
3477 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3478 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3479 		E1000_RCTL_RDMTS_HALF |
3480 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3481 
3482 	/* Make sure VLAN Filters are off */
3483 	rctl &= ~E1000_RCTL_VFE;
3484 
3485 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3486 		rctl |= E1000_RCTL_SBP;
3487 	else
3488 		rctl &= ~E1000_RCTL_SBP;
3489 
3490 	switch (adapter->rx_buffer_len) {
3491 	default:
3492 	case 2048:
3493 		rctl |= E1000_RCTL_SZ_2048;
3494 		break;
3495 
3496 	case 4096:
3497 		rctl |= E1000_RCTL_SZ_4096 |
3498 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3499 		break;
3500 
3501 	case 8192:
3502 		rctl |= E1000_RCTL_SZ_8192 |
3503 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3504 		break;
3505 
3506 	case 16384:
3507 		rctl |= E1000_RCTL_SZ_16384 |
3508 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3509 		break;
3510 	}
3511 
3512 	if (ifp->if_mtu > ETHERMTU)
3513 		rctl |= E1000_RCTL_LPE;
3514 	else
3515 		rctl &= ~E1000_RCTL_LPE;
3516 
3517 	/* Enable Receives */
3518 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3519 }
3520 
3521 static void
3522 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3523 {
3524 	struct em_buffer *rx_buffer;
3525 	int i;
3526 
3527 	if (adapter->rx_buffer_area == NULL)
3528 		return;
3529 
3530 	for (i = 0; i < ndesc; i++) {
3531 		rx_buffer = &adapter->rx_buffer_area[i];
3532 
3533 		KKASSERT(rx_buffer->m_head == NULL);
3534 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3535 	}
3536 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3537 	bus_dma_tag_destroy(adapter->rxtag);
3538 
3539 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3540 	adapter->rx_buffer_area = NULL;
3541 }
3542 
3543 static void
3544 em_rxeof(struct adapter *adapter, int count)
3545 {
3546 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3547 	uint8_t status, accept_frame = 0, eop = 0;
3548 	uint16_t len, desc_len, prev_len_adj;
3549 	struct e1000_rx_desc *current_desc;
3550 	struct mbuf *mp;
3551 	int i;
3552 
3553 	i = adapter->next_rx_desc_to_check;
3554 	current_desc = &adapter->rx_desc_base[i];
3555 
3556 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3557 		return;
3558 
3559 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3560 		struct mbuf *m = NULL;
3561 
3562 		logif(pkt_receive);
3563 
3564 		mp = adapter->rx_buffer_area[i].m_head;
3565 
3566 		/*
3567 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3568 		 * needs to access the last received byte in the mbuf.
3569 		 */
3570 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3571 				BUS_DMASYNC_POSTREAD);
3572 
3573 		accept_frame = 1;
3574 		prev_len_adj = 0;
3575 		desc_len = le16toh(current_desc->length);
3576 		status = current_desc->status;
3577 		if (status & E1000_RXD_STAT_EOP) {
3578 			count--;
3579 			eop = 1;
3580 			if (desc_len < ETHER_CRC_LEN) {
3581 				len = 0;
3582 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3583 			} else {
3584 				len = desc_len - ETHER_CRC_LEN;
3585 			}
3586 		} else {
3587 			eop = 0;
3588 			len = desc_len;
3589 		}
3590 
3591 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3592 			uint8_t	last_byte;
3593 			uint32_t pkt_len = desc_len;
3594 
3595 			if (adapter->fmp != NULL)
3596 				pkt_len += adapter->fmp->m_pkthdr.len;
3597 
3598 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3599 			if (TBI_ACCEPT(&adapter->hw, status,
3600 			    current_desc->errors, pkt_len, last_byte,
3601 			    adapter->min_frame_size,
3602 			    adapter->hw.mac.max_frame_size)) {
3603 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3604 				    &adapter->stats, pkt_len,
3605 				    adapter->hw.mac.addr,
3606 				    adapter->hw.mac.max_frame_size);
3607 				if (len > 0)
3608 					len--;
3609 			} else {
3610 				accept_frame = 0;
3611 			}
3612 		}
3613 
3614 		if (accept_frame) {
3615 			if (em_newbuf(adapter, i, 0) != 0) {
3616 				IFNET_STAT_INC(ifp, iqdrops, 1);
3617 				goto discard;
3618 			}
3619 
3620 			/* Assign correct length to the current fragment */
3621 			mp->m_len = len;
3622 
3623 			if (adapter->fmp == NULL) {
3624 				mp->m_pkthdr.len = len;
3625 				adapter->fmp = mp; /* Store the first mbuf */
3626 				adapter->lmp = mp;
3627 			} else {
3628 				/*
3629 				 * Chain mbuf's together
3630 				 */
3631 
3632 				/*
3633 				 * Adjust length of previous mbuf in chain if
3634 				 * we received less than 4 bytes in the last
3635 				 * descriptor.
3636 				 */
3637 				if (prev_len_adj > 0) {
3638 					adapter->lmp->m_len -= prev_len_adj;
3639 					adapter->fmp->m_pkthdr.len -=
3640 					    prev_len_adj;
3641 				}
3642 				adapter->lmp->m_next = mp;
3643 				adapter->lmp = adapter->lmp->m_next;
3644 				adapter->fmp->m_pkthdr.len += len;
3645 			}
3646 
3647 			if (eop) {
3648 				adapter->fmp->m_pkthdr.rcvif = ifp;
3649 				IFNET_STAT_INC(ifp, ipackets, 1);
3650 
3651 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3652 					em_rxcsum(adapter, current_desc,
3653 						  adapter->fmp);
3654 				}
3655 
3656 				if (status & E1000_RXD_STAT_VP) {
3657 					adapter->fmp->m_pkthdr.ether_vlantag =
3658 					    (le16toh(current_desc->special) &
3659 					    E1000_RXD_SPC_VLAN_MASK);
3660 					adapter->fmp->m_flags |= M_VLANTAG;
3661 				}
3662 				m = adapter->fmp;
3663 				adapter->fmp = NULL;
3664 				adapter->lmp = NULL;
3665 			}
3666 		} else {
3667 			IFNET_STAT_INC(ifp, ierrors, 1);
3668 discard:
3669 #ifdef foo
3670 			/* Reuse loaded DMA map and just update mbuf chain */
3671 			mp = adapter->rx_buffer_area[i].m_head;
3672 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3673 			mp->m_data = mp->m_ext.ext_buf;
3674 			mp->m_next = NULL;
3675 			if (adapter->hw.mac.max_frame_size <=
3676 			    (MCLBYTES - ETHER_ALIGN))
3677 				m_adj(mp, ETHER_ALIGN);
3678 #endif
3679 			if (adapter->fmp != NULL) {
3680 				m_freem(adapter->fmp);
3681 				adapter->fmp = NULL;
3682 				adapter->lmp = NULL;
3683 			}
3684 			m = NULL;
3685 		}
3686 
3687 		/* Zero out the receive descriptors status. */
3688 		current_desc->status = 0;
3689 
3690 		if (m != NULL)
3691 			ifp->if_input(ifp, m, NULL, -1);
3692 
3693 		/* Advance our pointers to the next descriptor. */
3694 		if (++i == adapter->num_rx_desc)
3695 			i = 0;
3696 		current_desc = &adapter->rx_desc_base[i];
3697 	}
3698 	adapter->next_rx_desc_to_check = i;
3699 
3700 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3701 	if (--i < 0)
3702 		i = adapter->num_rx_desc - 1;
3703 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3704 }
3705 
3706 static void
3707 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3708 	  struct mbuf *mp)
3709 {
3710 	/* 82543 or newer only */
3711 	if (adapter->hw.mac.type < e1000_82543 ||
3712 	    /* Ignore Checksum bit is set */
3713 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3714 		return;
3715 
3716 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3717 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3718 		/* IP Checksum Good */
3719 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3720 	}
3721 
3722 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3723 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3724 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3725 					   CSUM_PSEUDO_HDR |
3726 					   CSUM_FRAG_NOT_CHECKED;
3727 		mp->m_pkthdr.csum_data = htons(0xffff);
3728 	}
3729 }
3730 
3731 static void
3732 em_enable_intr(struct adapter *adapter)
3733 {
3734 	uint32_t ims_mask = IMS_ENABLE_MASK;
3735 
3736 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3737 
3738 #if 0
3739 	/* XXX MSIX */
3740 	if (adapter->hw.mac.type == e1000_82574) {
3741 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3742 		ims_mask |= EM_MSIX_MASK;
3743         }
3744 #endif
3745 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3746 }
3747 
3748 static void
3749 em_disable_intr(struct adapter *adapter)
3750 {
3751 	uint32_t clear = 0xffffffff;
3752 
3753 	/*
3754 	 * The first version of 82542 had an errata where when link was forced
3755 	 * it would stay up even up even if the cable was disconnected.
3756 	 * Sequence errors were used to detect the disconnect and then the
3757 	 * driver would unforce the link.  This code in the in the ISR.  For
3758 	 * this to work correctly the Sequence error interrupt had to be
3759 	 * enabled all the time.
3760 	 */
3761 	if (adapter->hw.mac.type == e1000_82542 &&
3762 	    adapter->hw.revision_id == E1000_REVISION_2)
3763 		clear &= ~E1000_ICR_RXSEQ;
3764 	else if (adapter->hw.mac.type == e1000_82574)
3765 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3766 
3767 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3768 
3769 	adapter->npoll.ifpc_stcount = 0;
3770 
3771 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3772 }
3773 
3774 /*
3775  * Bit of a misnomer, what this really means is
3776  * to enable OS management of the system... aka
3777  * to disable special hardware management features
3778  */
3779 static void
3780 em_get_mgmt(struct adapter *adapter)
3781 {
3782 	/* A shared code workaround */
3783 #define E1000_82542_MANC2H E1000_MANC2H
3784 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3785 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3786 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3787 
3788 		/* disable hardware interception of ARP */
3789 		manc &= ~(E1000_MANC_ARP_EN);
3790 
3791                 /* enable receiving management packets to the host */
3792                 if (adapter->hw.mac.type >= e1000_82571) {
3793 			manc |= E1000_MANC_EN_MNG2HOST;
3794 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3795 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3796 			manc2h |= E1000_MNG2HOST_PORT_623;
3797 			manc2h |= E1000_MNG2HOST_PORT_664;
3798 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3799 		}
3800 
3801 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3802 	}
3803 }
3804 
3805 /*
3806  * Give control back to hardware management
3807  * controller if there is one.
3808  */
3809 static void
3810 em_rel_mgmt(struct adapter *adapter)
3811 {
3812 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3813 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3814 
3815 		/* re-enable hardware interception of ARP */
3816 		manc |= E1000_MANC_ARP_EN;
3817 
3818 		if (adapter->hw.mac.type >= e1000_82571)
3819 			manc &= ~E1000_MANC_EN_MNG2HOST;
3820 
3821 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3822 	}
3823 }
3824 
3825 /*
3826  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3827  * For ASF and Pass Through versions of f/w this means that
3828  * the driver is loaded.  For AMT version (only with 82573)
3829  * of the f/w this means that the network i/f is open.
3830  */
3831 static void
3832 em_get_hw_control(struct adapter *adapter)
3833 {
3834 	/* Let firmware know the driver has taken over */
3835 	if (adapter->hw.mac.type == e1000_82573) {
3836 		uint32_t swsm;
3837 
3838 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3839 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3840 		    swsm | E1000_SWSM_DRV_LOAD);
3841 	} else {
3842 		uint32_t ctrl_ext;
3843 
3844 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3845 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3846 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3847 	}
3848 	adapter->flags |= EM_FLAG_HW_CTRL;
3849 }
3850 
3851 /*
3852  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3853  * For ASF and Pass Through versions of f/w this means that the
3854  * driver is no longer loaded.  For AMT version (only with 82573)
3855  * of the f/w this means that the network i/f is closed.
3856  */
3857 static void
3858 em_rel_hw_control(struct adapter *adapter)
3859 {
3860 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3861 		return;
3862 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3863 
3864 	/* Let firmware taken over control of h/w */
3865 	if (adapter->hw.mac.type == e1000_82573) {
3866 		uint32_t swsm;
3867 
3868 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3869 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3870 		    swsm & ~E1000_SWSM_DRV_LOAD);
3871 	} else {
3872 		uint32_t ctrl_ext;
3873 
3874 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3875 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3876 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3877 	}
3878 }
3879 
3880 static int
3881 em_is_valid_eaddr(const uint8_t *addr)
3882 {
3883 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3884 
3885 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3886 		return (FALSE);
3887 
3888 	return (TRUE);
3889 }
3890 
3891 /*
3892  * Enable PCI Wake On Lan capability
3893  */
3894 static void
3895 em_enable_wol(device_t dev)
3896 {
3897 	uint16_t cap, status;
3898 	uint8_t id;
3899 
3900 	/* First find the capabilities pointer*/
3901 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3902 
3903 	/* Read the PM Capabilities */
3904 	id = pci_read_config(dev, cap, 1);
3905 	if (id != PCIY_PMG)     /* Something wrong */
3906 		return;
3907 
3908 	/*
3909 	 * OK, we have the power capabilities,
3910 	 * so now get the status register
3911 	 */
3912 	cap += PCIR_POWER_STATUS;
3913 	status = pci_read_config(dev, cap, 2);
3914 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3915 	pci_write_config(dev, cap, status, 2);
3916 }
3917 
3918 
3919 /*
3920  * 82544 Coexistence issue workaround.
3921  *    There are 2 issues.
3922  *       1. Transmit Hang issue.
3923  *    To detect this issue, following equation can be used...
3924  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3925  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3926  *
3927  *       2. DAC issue.
3928  *    To detect this issue, following equation can be used...
3929  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3930  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3931  *
3932  *    WORKAROUND:
3933  *	  Make sure we do not have ending address
3934  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3935  */
3936 static uint32_t
3937 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3938 {
3939 	uint32_t safe_terminator;
3940 
3941 	/*
3942 	 * Since issue is sensitive to length and address.
3943 	 * Let us first check the address...
3944 	 */
3945 	if (length <= 4) {
3946 		desc_array->descriptor[0].address = address;
3947 		desc_array->descriptor[0].length = length;
3948 		desc_array->elements = 1;
3949 		return (desc_array->elements);
3950 	}
3951 
3952 	safe_terminator =
3953 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3954 
3955 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3956 	if (safe_terminator == 0 ||
3957 	    (safe_terminator > 4 && safe_terminator < 9) ||
3958 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3959 		desc_array->descriptor[0].address = address;
3960 		desc_array->descriptor[0].length = length;
3961 		desc_array->elements = 1;
3962 		return (desc_array->elements);
3963 	}
3964 
3965 	desc_array->descriptor[0].address = address;
3966 	desc_array->descriptor[0].length = length - 4;
3967 	desc_array->descriptor[1].address = address + (length - 4);
3968 	desc_array->descriptor[1].length = 4;
3969 	desc_array->elements = 2;
3970 	return (desc_array->elements);
3971 }
3972 
3973 static void
3974 em_update_stats(struct adapter *adapter)
3975 {
3976 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3977 
3978 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3979 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3980 		adapter->stats.symerrs +=
3981 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3982 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3983 	}
3984 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3985 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3986 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3987 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3988 
3989 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3990 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3991 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3992 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3993 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3994 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3995 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3996 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3997 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3998 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3999 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
4000 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
4001 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
4002 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
4003 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
4004 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
4005 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
4006 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
4007 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
4008 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
4009 
4010 	/* For the 64-bit byte counters the low dword must be read first. */
4011 	/* Both registers clear on the read of the high dword */
4012 
4013 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
4014 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
4015 
4016 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
4017 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
4018 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
4019 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
4020 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
4021 
4022 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
4023 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
4024 
4025 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
4026 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
4027 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
4028 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
4029 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
4030 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
4031 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
4032 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
4033 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
4034 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
4035 
4036 	if (adapter->hw.mac.type >= e1000_82543) {
4037 		adapter->stats.algnerrc +=
4038 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4039 		adapter->stats.rxerrc +=
4040 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4041 		adapter->stats.tncrs +=
4042 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4043 		adapter->stats.cexterr +=
4044 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4045 		adapter->stats.tsctc +=
4046 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4047 		adapter->stats.tsctfc +=
4048 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4049 	}
4050 
4051 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
4052 
4053 	/* Rx Errors */
4054 	IFNET_STAT_SET(ifp, ierrors,
4055 	    adapter->dropped_pkts + adapter->stats.rxerrc +
4056 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4057 	    adapter->stats.ruc + adapter->stats.roc +
4058 	    adapter->stats.mpc + adapter->stats.cexterr);
4059 
4060 	/* Tx Errors */
4061 	IFNET_STAT_SET(ifp, oerrors,
4062 	    adapter->stats.ecol + adapter->stats.latecol +
4063 	    adapter->watchdog_events);
4064 }
4065 
4066 static void
4067 em_print_debug_info(struct adapter *adapter)
4068 {
4069 	device_t dev = adapter->dev;
4070 	uint8_t *hw_addr = adapter->hw.hw_addr;
4071 
4072 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
4073 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
4074 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
4075 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
4076 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
4077 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
4078 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
4079 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
4080 	    adapter->hw.fc.high_water,
4081 	    adapter->hw.fc.low_water);
4082 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
4083 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
4084 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
4085 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
4086 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
4087 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
4088 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
4089 	    (long long)adapter->tx_fifo_wrk_cnt,
4090 	    (long long)adapter->tx_fifo_reset_cnt);
4091 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4092 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
4093 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
4094 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4095 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
4096 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
4097 	device_printf(dev, "Num Tx descriptors avail = %d\n",
4098 	    adapter->num_tx_desc_avail);
4099 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
4100 	    adapter->no_tx_desc_avail1);
4101 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4102 	    adapter->no_tx_desc_avail2);
4103 	device_printf(dev, "Std mbuf failed = %ld\n",
4104 	    adapter->mbuf_alloc_failed);
4105 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
4106 	    adapter->mbuf_cluster_failed);
4107 	device_printf(dev, "Driver dropped packets = %ld\n",
4108 	    adapter->dropped_pkts);
4109 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4110 	    adapter->no_tx_dma_setup);
4111 }
4112 
4113 static void
4114 em_print_hw_stats(struct adapter *adapter)
4115 {
4116 	device_t dev = adapter->dev;
4117 
4118 	device_printf(dev, "Excessive collisions = %lld\n",
4119 	    (long long)adapter->stats.ecol);
4120 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
4121 	device_printf(dev, "Symbol errors = %lld\n",
4122 	    (long long)adapter->stats.symerrs);
4123 #endif
4124 	device_printf(dev, "Sequence errors = %lld\n",
4125 	    (long long)adapter->stats.sec);
4126 	device_printf(dev, "Defer count = %lld\n",
4127 	    (long long)adapter->stats.dc);
4128 	device_printf(dev, "Missed Packets = %lld\n",
4129 	    (long long)adapter->stats.mpc);
4130 	device_printf(dev, "Receive No Buffers = %lld\n",
4131 	    (long long)adapter->stats.rnbc);
4132 	/* RLEC is inaccurate on some hardware, calculate our own. */
4133 	device_printf(dev, "Receive Length Errors = %lld\n",
4134 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4135 	device_printf(dev, "Receive errors = %lld\n",
4136 	    (long long)adapter->stats.rxerrc);
4137 	device_printf(dev, "Crc errors = %lld\n",
4138 	    (long long)adapter->stats.crcerrs);
4139 	device_printf(dev, "Alignment errors = %lld\n",
4140 	    (long long)adapter->stats.algnerrc);
4141 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4142 	    (long long)adapter->stats.cexterr);
4143 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4144 	device_printf(dev, "watchdog timeouts = %ld\n",
4145 	    adapter->watchdog_events);
4146 	device_printf(dev, "XON Rcvd = %lld\n",
4147 	    (long long)adapter->stats.xonrxc);
4148 	device_printf(dev, "XON Xmtd = %lld\n",
4149 	    (long long)adapter->stats.xontxc);
4150 	device_printf(dev, "XOFF Rcvd = %lld\n",
4151 	    (long long)adapter->stats.xoffrxc);
4152 	device_printf(dev, "XOFF Xmtd = %lld\n",
4153 	    (long long)adapter->stats.xofftxc);
4154 	device_printf(dev, "Good Packets Rcvd = %lld\n",
4155 	    (long long)adapter->stats.gprc);
4156 	device_printf(dev, "Good Packets Xmtd = %lld\n",
4157 	    (long long)adapter->stats.gptc);
4158 }
4159 
4160 static void
4161 em_print_nvm_info(struct adapter *adapter)
4162 {
4163 	uint16_t eeprom_data;
4164 	int i, j, row = 0;
4165 
4166 	/* Its a bit crude, but it gets the job done */
4167 	kprintf("\nInterface EEPROM Dump:\n");
4168 	kprintf("Offset\n0x0000  ");
4169 	for (i = 0, j = 0; i < 32; i++, j++) {
4170 		if (j == 8) { /* Make the offset block */
4171 			j = 0; ++row;
4172 			kprintf("\n0x00%x0  ",row);
4173 		}
4174 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4175 		kprintf("%04x ", eeprom_data);
4176 	}
4177 	kprintf("\n");
4178 }
4179 
4180 static int
4181 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4182 {
4183 	struct adapter *adapter;
4184 	struct ifnet *ifp;
4185 	int error, result;
4186 
4187 	result = -1;
4188 	error = sysctl_handle_int(oidp, &result, 0, req);
4189 	if (error || !req->newptr)
4190 		return (error);
4191 
4192 	adapter = (struct adapter *)arg1;
4193 	ifp = &adapter->arpcom.ac_if;
4194 
4195 	lwkt_serialize_enter(ifp->if_serializer);
4196 
4197 	if (result == 1)
4198 		em_print_debug_info(adapter);
4199 
4200 	/*
4201 	 * This value will cause a hex dump of the
4202 	 * first 32 16-bit words of the EEPROM to
4203 	 * the screen.
4204 	 */
4205 	if (result == 2)
4206 		em_print_nvm_info(adapter);
4207 
4208 	lwkt_serialize_exit(ifp->if_serializer);
4209 
4210 	return (error);
4211 }
4212 
4213 static int
4214 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4215 {
4216 	int error, result;
4217 
4218 	result = -1;
4219 	error = sysctl_handle_int(oidp, &result, 0, req);
4220 	if (error || !req->newptr)
4221 		return (error);
4222 
4223 	if (result == 1) {
4224 		struct adapter *adapter = (struct adapter *)arg1;
4225 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4226 
4227 		lwkt_serialize_enter(ifp->if_serializer);
4228 		em_print_hw_stats(adapter);
4229 		lwkt_serialize_exit(ifp->if_serializer);
4230 	}
4231 	return (error);
4232 }
4233 
4234 static void
4235 em_add_sysctl(struct adapter *adapter)
4236 {
4237 	struct sysctl_ctx_list *ctx;
4238 	struct sysctl_oid *tree;
4239 
4240 	ctx = device_get_sysctl_ctx(adapter->dev);
4241 	tree = device_get_sysctl_tree(adapter->dev);
4242 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4243 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4244 	    em_sysctl_debug_info, "I", "Debug Information");
4245 
4246 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4247 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4248 	    em_sysctl_stats, "I", "Statistics");
4249 
4250 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4251 	    OID_AUTO, "rxd", CTLFLAG_RD,
4252 	    &adapter->num_rx_desc, 0, NULL);
4253 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4254 	    OID_AUTO, "txd", CTLFLAG_RD,
4255 	    &adapter->num_tx_desc, 0, NULL);
4256 
4257 	if (adapter->hw.mac.type >= e1000_82540) {
4258 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4259 		    OID_AUTO, "int_throttle_ceil",
4260 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4261 		    em_sysctl_int_throttle, "I",
4262 		    "interrupt throttling rate");
4263 	}
4264 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4265 	    OID_AUTO, "int_tx_nsegs",
4266 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4267 	    em_sysctl_int_tx_nsegs, "I",
4268 	    "# segments per TX interrupt");
4269 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4270 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4271 	    &adapter->tx_wreg_nsegs, 0,
4272 	    "# segments before write to hardware register");
4273 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_nmbuf",
4274 	    CTLFLAG_RD, &adapter->tx_nmbuf, 0, "# of pending TX mbufs");
4275 	SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_gc",
4276 	    CTLFLAG_RW, &adapter->tx_gc, "# of TX GC");
4277 }
4278 
4279 static int
4280 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4281 {
4282 	struct adapter *adapter = (void *)arg1;
4283 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4284 	int error, throttle;
4285 
4286 	throttle = adapter->int_throttle_ceil;
4287 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4288 	if (error || req->newptr == NULL)
4289 		return error;
4290 	if (throttle < 0 || throttle > 1000000000 / 256)
4291 		return EINVAL;
4292 
4293 	if (throttle) {
4294 		/*
4295 		 * Set the interrupt throttling rate in 256ns increments,
4296 		 * recalculate sysctl value assignment to get exact frequency.
4297 		 */
4298 		throttle = 1000000000 / 256 / throttle;
4299 
4300 		/* Upper 16bits of ITR is reserved and should be zero */
4301 		if (throttle & 0xffff0000)
4302 			return EINVAL;
4303 	}
4304 
4305 	lwkt_serialize_enter(ifp->if_serializer);
4306 
4307 	if (throttle)
4308 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4309 	else
4310 		adapter->int_throttle_ceil = 0;
4311 
4312 	if (ifp->if_flags & IFF_RUNNING)
4313 		em_set_itr(adapter, throttle);
4314 
4315 	lwkt_serialize_exit(ifp->if_serializer);
4316 
4317 	if (bootverbose) {
4318 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4319 			  adapter->int_throttle_ceil);
4320 	}
4321 	return 0;
4322 }
4323 
4324 static int
4325 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4326 {
4327 	struct adapter *adapter = (void *)arg1;
4328 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4329 	int error, segs;
4330 
4331 	segs = adapter->tx_int_nsegs;
4332 	error = sysctl_handle_int(oidp, &segs, 0, req);
4333 	if (error || req->newptr == NULL)
4334 		return error;
4335 	if (segs <= 0)
4336 		return EINVAL;
4337 
4338 	lwkt_serialize_enter(ifp->if_serializer);
4339 
4340 	/*
4341 	 * Don't allow int_tx_nsegs to become:
4342 	 * o  Less the oact_tx_desc
4343 	 * o  Too large that no TX desc will cause TX interrupt to
4344 	 *    be generated (OACTIVE will never recover)
4345 	 * o  Too small that will cause tx_dd[] overflow
4346 	 */
4347 	if (segs < adapter->oact_tx_desc ||
4348 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4349 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4350 		error = EINVAL;
4351 	} else {
4352 		error = 0;
4353 		adapter->tx_int_nsegs = segs;
4354 	}
4355 
4356 	lwkt_serialize_exit(ifp->if_serializer);
4357 
4358 	return error;
4359 }
4360 
4361 static void
4362 em_set_itr(struct adapter *adapter, uint32_t itr)
4363 {
4364 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4365 	if (adapter->hw.mac.type == e1000_82574) {
4366 		int i;
4367 
4368 		/*
4369 		 * When using MSIX interrupts we need to
4370 		 * throttle using the EITR register
4371 		 */
4372 		for (i = 0; i < 4; ++i) {
4373 			E1000_WRITE_REG(&adapter->hw,
4374 			    E1000_EITR_82574(i), itr);
4375 		}
4376 	}
4377 }
4378 
4379 static void
4380 em_disable_aspm(struct adapter *adapter)
4381 {
4382 	uint16_t link_cap, link_ctrl, disable;
4383 	uint8_t pcie_ptr, reg;
4384 	device_t dev = adapter->dev;
4385 
4386 	switch (adapter->hw.mac.type) {
4387 	case e1000_82571:
4388 	case e1000_82572:
4389 	case e1000_82573:
4390 		/*
4391 		 * 82573 specification update
4392 		 * errata #8 disable L0s
4393 		 * errata #41 disable L1
4394 		 *
4395 		 * 82571/82572 specification update
4396 		 # errata #13 disable L1
4397 		 * errata #68 disable L0s
4398 		 */
4399 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4400 		break;
4401 
4402 	case e1000_82574:
4403 	case e1000_82583:
4404 		/*
4405 		 * 82574 specification update errata #20
4406 		 * 82583 specification update errata #9
4407 		 *
4408 		 * There is no need to disable L1
4409 		 */
4410 		disable = PCIEM_LNKCTL_ASPM_L0S;
4411 		break;
4412 
4413 	default:
4414 		return;
4415 	}
4416 
4417 	pcie_ptr = pci_get_pciecap_ptr(dev);
4418 	if (pcie_ptr == 0)
4419 		return;
4420 
4421 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4422 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4423 		return;
4424 
4425 	if (bootverbose) {
4426 		if_printf(&adapter->arpcom.ac_if,
4427 		    "disable ASPM %#02x\n", disable);
4428 	}
4429 
4430 	reg = pcie_ptr + PCIER_LINKCTRL;
4431 	link_ctrl = pci_read_config(dev, reg, 2);
4432 	link_ctrl &= ~disable;
4433 	pci_write_config(dev, reg, link_ctrl, 2);
4434 }
4435 
4436 static int
4437 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4438 {
4439 	int iphlen, hoff, thoff, ex = 0;
4440 	struct mbuf *m;
4441 	struct ip *ip;
4442 
4443 	m = *mp;
4444 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4445 
4446 	iphlen = m->m_pkthdr.csum_iphlen;
4447 	thoff = m->m_pkthdr.csum_thlen;
4448 	hoff = m->m_pkthdr.csum_lhlen;
4449 
4450 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4451 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4452 	KASSERT(hoff > 0, ("invalid ether hlen"));
4453 
4454 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4455 		ex = 4;
4456 
4457 	if (m->m_len < hoff + iphlen + thoff + ex) {
4458 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4459 		if (m == NULL) {
4460 			*mp = NULL;
4461 			return ENOBUFS;
4462 		}
4463 		*mp = m;
4464 	}
4465 	ip = mtodoff(m, struct ip *, hoff);
4466 	ip->ip_len = 0;
4467 
4468 	return 0;
4469 }
4470 
4471 static int
4472 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4473     uint32_t *txd_upper, uint32_t *txd_lower)
4474 {
4475 	struct e1000_context_desc *TXD;
4476 	int hoff, iphlen, thoff, hlen;
4477 	int mss, pktlen, curr_txd;
4478 
4479 	iphlen = mp->m_pkthdr.csum_iphlen;
4480 	thoff = mp->m_pkthdr.csum_thlen;
4481 	hoff = mp->m_pkthdr.csum_lhlen;
4482 	mss = mp->m_pkthdr.tso_segsz;
4483 	pktlen = mp->m_pkthdr.len;
4484 
4485 	if (adapter->csum_flags == CSUM_TSO &&
4486 	    adapter->csum_iphlen == iphlen &&
4487 	    adapter->csum_lhlen == hoff &&
4488 	    adapter->csum_thlen == thoff &&
4489 	    adapter->csum_mss == mss &&
4490 	    adapter->csum_pktlen == pktlen) {
4491 		*txd_upper = adapter->csum_txd_upper;
4492 		*txd_lower = adapter->csum_txd_lower;
4493 		return 0;
4494 	}
4495 	hlen = hoff + iphlen + thoff;
4496 
4497 	/*
4498 	 * Setup a new TSO context.
4499 	 */
4500 
4501 	curr_txd = adapter->next_avail_tx_desc;
4502 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4503 
4504 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4505 		     E1000_TXD_DTYP_D |		/* Data descr type */
4506 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4507 
4508 	/* IP and/or TCP header checksum calculation and insertion. */
4509 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4510 
4511 	/*
4512 	 * Start offset for header checksum calculation.
4513 	 * End offset for header checksum calculation.
4514 	 * Offset of place put the checksum.
4515 	 */
4516 	TXD->lower_setup.ip_fields.ipcss = hoff;
4517 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4518 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4519 
4520 	/*
4521 	 * Start offset for payload checksum calculation.
4522 	 * End offset for payload checksum calculation.
4523 	 * Offset of place to put the checksum.
4524 	 */
4525 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4526 	TXD->upper_setup.tcp_fields.tucse = 0;
4527 	TXD->upper_setup.tcp_fields.tucso =
4528 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4529 
4530 	/*
4531 	 * Payload size per packet w/o any headers.
4532 	 * Length of all headers up to payload.
4533 	 */
4534 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4535 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4536 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4537 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4538 				E1000_TXD_CMD_TSE |	/* TSE context */
4539 				E1000_TXD_CMD_IP |	/* Do IP csum */
4540 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4541 				(pktlen - hlen));	/* Total len */
4542 
4543 	/* Save the information for this TSO context */
4544 	adapter->csum_flags = CSUM_TSO;
4545 	adapter->csum_lhlen = hoff;
4546 	adapter->csum_iphlen = iphlen;
4547 	adapter->csum_thlen = thoff;
4548 	adapter->csum_mss = mss;
4549 	adapter->csum_pktlen = pktlen;
4550 	adapter->csum_txd_upper = *txd_upper;
4551 	adapter->csum_txd_lower = *txd_lower;
4552 
4553 	if (++curr_txd == adapter->num_tx_desc)
4554 		curr_txd = 0;
4555 
4556 	KKASSERT(adapter->num_tx_desc_avail > 0);
4557 	adapter->num_tx_desc_avail--;
4558 
4559 	adapter->next_avail_tx_desc = curr_txd;
4560 	return 1;
4561 }
4562