xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision b2fed02821eae185283f34a8025115f92bec2893)
1 /*
2  *
3  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 2001-2006, Intel Corporation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  *  1. Redistributions of source code must retain the above copyright notice,
12  *     this list of conditions and the following disclaimer.
13  *
14  *  2. Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in the
16  *     documentation and/or other materials provided with the distribution.
17  *
18  *  3. Neither the name of the Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived from
20  *     this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
36  *
37  * This code is derived from software contributed to The DragonFly Project
38  * by Matthew Dillon <dillon@backplane.com>
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  * 3. Neither the name of The DragonFly Project nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific, prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
57  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
58  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
59  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
60  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
61  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
62  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.62 2008/01/10 10:44:28 matthias Exp $
68  * $FreeBSD$
69  */
70 /*
71  * SERIALIZATION API RULES:
72  *
73  * - If the driver uses the same serializer for the interrupt as for the
74  *   ifnet, most of the serialization will be done automatically for the
75  *   driver.
76  *
77  * - ifmedia entry points will be serialized by the ifmedia code using the
78  *   ifnet serializer.
79  *
80  * - if_* entry points except for if_input will be serialized by the IF
81  *   and protocol layers.
82  *
83  * - The device driver must be sure to serialize access from timeout code
84  *   installed by the device driver.
85  *
86  * - The device driver typically holds the serializer at the time it wishes
87  *   to call if_input.  If so, it should pass the serializer to if_input and
88  *   note that the serializer might be dropped temporarily by if_input
89  *   (e.g. in case it has to bridge the packet to another interface).
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 #include "opt_inet.h"
98 
99 #include <sys/param.h>
100 #include <sys/bus.h>
101 #include <sys/endian.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/module.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 
113 #include <net/bpf.h>
114 #include <net/ethernet.h>
115 #include <net/if.h>
116 #include <net/if_arp.h>
117 #include <net/if_dl.h>
118 #include <net/if_media.h>
119 #include <net/if_types.h>
120 #include <net/ifq_var.h>
121 #include <net/vlan/if_vlan_var.h>
122 
123 #ifdef INET
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/in_var.h>
127 #include <netinet/ip.h>
128 #include <netinet/tcp.h>
129 #include <netinet/udp.h>
130 #endif
131 
132 #include <dev/netif/em/if_em_hw.h>
133 #include <dev/netif/em/if_em.h>
134 
135 #define EM_X60_WORKAROUND
136 
137 /*********************************************************************
138  *  Set this to one to display debug statistics
139  *********************************************************************/
140 int	em_display_debug_stats = 0;
141 
142 /*********************************************************************
143  *  Driver version
144  *********************************************************************/
145 
146 char em_driver_version[] = "6.2.9";
147 
148 
149 /*********************************************************************
150  *  PCI Device ID Table
151  *
152  *  Used by probe to select devices to load on
153  *  Last field stores an index into em_strings
154  *  Last entry must be all 0s
155  *
156  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
157  *********************************************************************/
158 
159 static em_vendor_info_t em_vendor_info_array[] =
160 {
161 	/* Intel(R) PRO/1000 Network Connection */
162 	{ 0x8086, E1000_DEV_ID_82540EM,		PCI_ANY_ID, PCI_ANY_ID, 0},
163 	{ 0x8086, E1000_DEV_ID_82540EM_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
164 	{ 0x8086, E1000_DEV_ID_82540EP,		PCI_ANY_ID, PCI_ANY_ID, 0},
165 	{ 0x8086, E1000_DEV_ID_82540EP_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
166 	{ 0x8086, E1000_DEV_ID_82540EP_LP,	PCI_ANY_ID, PCI_ANY_ID, 0},
167 
168 	{ 0x8086, E1000_DEV_ID_82541EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
169 	{ 0x8086, E1000_DEV_ID_82541ER,		PCI_ANY_ID, PCI_ANY_ID, 0},
170 	{ 0x8086, E1000_DEV_ID_82541ER_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
171 	{ 0x8086, E1000_DEV_ID_82541EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
172 	{ 0x8086, E1000_DEV_ID_82541GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
173 	{ 0x8086, E1000_DEV_ID_82541GI_LF,	PCI_ANY_ID, PCI_ANY_ID, 0},
174 	{ 0x8086, E1000_DEV_ID_82541GI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
175 
176 	{ 0x8086, E1000_DEV_ID_82542,		PCI_ANY_ID, PCI_ANY_ID, 0},
177 
178 	{ 0x8086, E1000_DEV_ID_82543GC_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
179 	{ 0x8086, E1000_DEV_ID_82543GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
180 
181 	{ 0x8086, E1000_DEV_ID_82544EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
182 	{ 0x8086, E1000_DEV_ID_82544EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
183 	{ 0x8086, E1000_DEV_ID_82544GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
184 	{ 0x8086, E1000_DEV_ID_82544GC_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
185 
186 	{ 0x8086, E1000_DEV_ID_82545EM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
187 	{ 0x8086, E1000_DEV_ID_82545EM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
188 	{ 0x8086, E1000_DEV_ID_82545GM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
189 	{ 0x8086, E1000_DEV_ID_82545GM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
190 	{ 0x8086, E1000_DEV_ID_82545GM_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
191 
192 	{ 0x8086, E1000_DEV_ID_82546EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
193 	{ 0x8086, E1000_DEV_ID_82546EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
194 	{ 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
195 	{ 0x8086, E1000_DEV_ID_82546GB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
196 	{ 0x8086, E1000_DEV_ID_82546GB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
197 	{ 0x8086, E1000_DEV_ID_82546GB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
198 	{ 0x8086, E1000_DEV_ID_82546GB_PCIE,	PCI_ANY_ID, PCI_ANY_ID, 0},
199 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
200 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
201 						PCI_ANY_ID, PCI_ANY_ID, 0},
202 
203 	{ 0x8086, E1000_DEV_ID_82547EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
204 	{ 0x8086, E1000_DEV_ID_82547EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
205 	{ 0x8086, E1000_DEV_ID_82547GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
206 
207 	{ 0x8086, E1000_DEV_ID_82571EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
208 	{ 0x8086, E1000_DEV_ID_82571EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
209 	{ 0x8086, E1000_DEV_ID_82571EB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
210 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
211 						PCI_ANY_ID, PCI_ANY_ID, 0},
212 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE,
213 						PCI_ANY_ID, PCI_ANY_ID, 0},
214 
215 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
216 						PCI_ANY_ID, PCI_ANY_ID, 0},
217 	{ 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
218 						PCI_ANY_ID, PCI_ANY_ID, 0},
219 	{ 0x8086, E1000_DEV_ID_82572EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
220 	{ 0x8086, E1000_DEV_ID_82572EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
221 	{ 0x8086, E1000_DEV_ID_82572EI_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
222 	{ 0x8086, E1000_DEV_ID_82572EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
223 
224 	{ 0x8086, E1000_DEV_ID_82573E,		PCI_ANY_ID, PCI_ANY_ID, 0},
225 	{ 0x8086, E1000_DEV_ID_82573E_IAMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
226 	{ 0x8086, E1000_DEV_ID_82573L,		PCI_ANY_ID, PCI_ANY_ID, 0},
227 
228 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
229 						PCI_ANY_ID, PCI_ANY_ID, 0},
230 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
231 						PCI_ANY_ID, PCI_ANY_ID, 0},
232 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
233 						PCI_ANY_ID, PCI_ANY_ID, 0},
234 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
235 						PCI_ANY_ID, PCI_ANY_ID, 0},
236 
237 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
238 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
239 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
240 	{ 0x8086, E1000_DEV_ID_ICH8_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
241 	{ 0x8086, E1000_DEV_ID_ICH8_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
242 	{ 0x8086, E1000_DEV_ID_ICH8_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
243 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M,	PCI_ANY_ID, PCI_ANY_ID, 0},
244 
245 	{ 0x8086, E1000_DEV_ID_ICH9_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
246 	{ 0x8086, E1000_DEV_ID_ICH9_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
247 	{ 0x8086, E1000_DEV_ID_ICH9_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
248 	{ 0x8086, E1000_DEV_ID_ICH9_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
249 	{ 0x8086, E1000_DEV_ID_ICH9_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
250 
251 	{ 0x8086, E1000_DEV_ID_82575EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
252 	{ 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
253 						PCI_ANY_ID, PCI_ANY_ID, 0},
254 	{ 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
255 						PCI_ANY_ID, PCI_ANY_ID, 0},
256 	{ 0x8086, 0x101A, PCI_ANY_ID, PCI_ANY_ID, 0},
257 	{ 0x8086, 0x1014, PCI_ANY_ID, PCI_ANY_ID, 0},
258 	/* required last entry */
259 	{ 0, 0, 0, 0, 0}
260 };
261 
262 /*********************************************************************
263  *  Table of branding strings for all supported NICs.
264  *********************************************************************/
265 
266 static const char *em_strings[] = {
267 	"Intel(R) PRO/1000 Network Connection"
268 };
269 
270 /*********************************************************************
271  *  Function prototypes
272  *********************************************************************/
273 static int	em_probe(device_t);
274 static int	em_attach(device_t);
275 static int	em_detach(device_t);
276 static int	em_shutdown(device_t);
277 static void	em_intr(void *);
278 static int	em_suspend(device_t);
279 static int	em_resume(device_t);
280 static void	em_start(struct ifnet *);
281 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
282 static void	em_watchdog(struct ifnet *);
283 static void	em_init(void *);
284 static void	em_stop(void *);
285 static void	em_media_status(struct ifnet *, struct ifmediareq *);
286 static int	em_media_change(struct ifnet *);
287 static void	em_identify_hardware(struct adapter *);
288 static int	em_allocate_pci_resources(device_t);
289 static void	em_free_pci_resources(device_t);
290 static void	em_local_timer(void *);
291 static int	em_hardware_init(struct adapter *);
292 static void	em_setup_interface(device_t, struct adapter *);
293 static int	em_setup_transmit_structures(struct adapter *);
294 static void	em_initialize_transmit_unit(struct adapter *);
295 static int	em_setup_receive_structures(struct adapter *);
296 static void	em_initialize_receive_unit(struct adapter *);
297 static void	em_enable_intr(struct adapter *);
298 static void	em_disable_intr(struct adapter *);
299 static void	em_free_transmit_structures(struct adapter *);
300 static void	em_free_receive_structures(struct adapter *);
301 static void	em_update_stats_counters(struct adapter *);
302 static void	em_txeof(struct adapter *);
303 static int	em_allocate_receive_structures(struct adapter *);
304 static void	em_rxeof(struct adapter *, int);
305 static void	em_receive_checksum(struct adapter *, struct em_rx_desc *,
306 				    struct mbuf *);
307 static void	em_transmit_checksum_setup(struct adapter *, struct mbuf *,
308 					   uint32_t *, uint32_t *);
309 static void	em_set_promisc(struct adapter *);
310 static void	em_disable_promisc(struct adapter *);
311 static void	em_set_multi(struct adapter *);
312 static void	em_print_hw_stats(struct adapter *);
313 static void	em_update_link_status(struct adapter *);
314 static int	em_get_buf(int i, struct adapter *, struct mbuf *, int how);
315 static void	em_enable_vlans(struct adapter *);
316 static void	em_disable_vlans(struct adapter *);
317 static int	em_encap(struct adapter *, struct mbuf *);
318 static void	em_smartspeed(struct adapter *);
319 static int	em_82547_fifo_workaround(struct adapter *, int);
320 static void	em_82547_update_fifo_head(struct adapter *, int);
321 static int	em_82547_tx_fifo_reset(struct adapter *);
322 static void	em_82547_move_tail(void *);
323 static void	em_82547_move_tail_serialized(struct adapter *);
324 static int	em_dma_malloc(struct adapter *, bus_size_t,
325 			      struct em_dma_alloc *);
326 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
327 static void	em_print_debug_info(struct adapter *);
328 static int	em_is_valid_ether_addr(uint8_t *);
329 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
330 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
331 static uint32_t	em_fill_descriptors(bus_addr_t address, uint32_t length,
332 				   PDESC_ARRAY desc_array);
333 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
334 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
335 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
336 					const char *,
337 					struct em_int_delay_info *, int, int);
338 
339 /*********************************************************************
340  *  FreeBSD Device Interface Entry Points
341  *********************************************************************/
342 
343 static device_method_t em_methods[] = {
344 	/* Device interface */
345 	DEVMETHOD(device_probe, em_probe),
346 	DEVMETHOD(device_attach, em_attach),
347 	DEVMETHOD(device_detach, em_detach),
348 	DEVMETHOD(device_shutdown, em_shutdown),
349 	DEVMETHOD(device_suspend, em_suspend),
350 	DEVMETHOD(device_resume, em_resume),
351 	{0, 0}
352 };
353 
354 static driver_t em_driver = {
355 	"em", em_methods, sizeof(struct adapter),
356 };
357 
358 static devclass_t em_devclass;
359 
360 DECLARE_DUMMY_MODULE(if_em);
361 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
362 
363 /*********************************************************************
364  *  Tunable default values.
365  *********************************************************************/
366 
367 #define E1000_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
368 #define E1000_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
369 
370 static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
371 static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
372 static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
373 static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
374 static int em_int_throttle_ceil = 10000;
375 static int em_rxd = EM_DEFAULT_RXD;
376 static int em_txd = EM_DEFAULT_TXD;
377 static int em_smart_pwr_down = FALSE;
378 
379 TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
380 TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
381 TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
382 TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
383 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
384 TUNABLE_INT("hw.em.rxd", &em_rxd);
385 TUNABLE_INT("hw.em.txd", &em_txd);
386 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
387 
388 /*
389  * Kernel trace for characterization of operations
390  */
391 #if !defined(KTR_IF_EM)
392 #define KTR_IF_EM	KTR_ALL
393 #endif
394 KTR_INFO_MASTER(if_em);
395 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
396 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
397 #ifdef DEVICE_POLLING
398 KTR_INFO(KTR_IF_EM, if_em, poll_beg, 2, "poll begin", 0);
399 KTR_INFO(KTR_IF_EM, if_em, poll_end, 3, "poll end", 0);
400 #endif
401 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
402 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
403 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
404 #define logif(name)	KTR_LOG(if_em_ ## name)
405 
406 /*********************************************************************
407  *  Device identification routine
408  *
409  *  em_probe determines if the driver should be loaded on
410  *  adapter based on PCI vendor/device id of the adapter.
411  *
412  *  return 0 on success, positive on failure
413  *********************************************************************/
414 
415 static int
416 em_probe(device_t dev)
417 {
418 	em_vendor_info_t *ent;
419 
420 	uint16_t pci_vendor_id = 0;
421 	uint16_t pci_device_id = 0;
422 	uint16_t pci_subvendor_id = 0;
423 	uint16_t pci_subdevice_id = 0;
424 	char adapter_name[60];
425 
426 	INIT_DEBUGOUT("em_probe: begin");
427 
428 	pci_vendor_id = pci_get_vendor(dev);
429 	if (pci_vendor_id != EM_VENDOR_ID)
430 		return (ENXIO);
431 
432 	pci_device_id = pci_get_device(dev);
433 	pci_subvendor_id = pci_get_subvendor(dev);
434 	pci_subdevice_id = pci_get_subdevice(dev);
435 
436 	ent = em_vendor_info_array;
437 	while (ent->vendor_id != 0) {
438 		if ((pci_vendor_id == ent->vendor_id) &&
439 		    (pci_device_id == ent->device_id) &&
440 
441 		    ((pci_subvendor_id == ent->subvendor_id) ||
442 		     (ent->subvendor_id == PCI_ANY_ID)) &&
443 
444 		    ((pci_subdevice_id == ent->subdevice_id) ||
445 		     (ent->subdevice_id == PCI_ANY_ID))) {
446 			ksnprintf(adapter_name, sizeof(adapter_name),
447 				 "%s, Version - %s",  em_strings[ent->index],
448 				 em_driver_version);
449 			device_set_desc_copy(dev, adapter_name);
450 			device_set_async_attach(dev, TRUE);
451 			return (0);
452 		}
453 		ent++;
454 	}
455 
456 	return (ENXIO);
457 }
458 
459 /*********************************************************************
460  *  Device initialization routine
461  *
462  *  The attach entry point is called when the driver is being loaded.
463  *  This routine identifies the type of hardware, allocates all resources
464  *  and initializes the hardware.
465  *
466  *  return 0 on success, positive on failure
467  *********************************************************************/
468 
469 static int
470 em_attach(device_t dev)
471 {
472 	struct adapter *adapter;
473 	int tsize, rsize;
474 	int error = 0;
475 
476 	INIT_DEBUGOUT("em_attach: begin");
477 
478 	adapter = device_get_softc(dev);
479 
480 	callout_init(&adapter->timer);
481 	callout_init(&adapter->tx_fifo_timer);
482 
483 	adapter->dev = dev;
484 	adapter->osdep.dev = dev;
485 
486 	/* SYSCTL stuff */
487 	sysctl_ctx_init(&adapter->sysctl_ctx);
488 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
489 					       SYSCTL_STATIC_CHILDREN(_hw),
490 					       OID_AUTO,
491 					       device_get_nameunit(dev),
492 					       CTLFLAG_RD,
493 					       0, "");
494 
495 	if (adapter->sysctl_tree == NULL) {
496 		device_printf(dev, "Unable to create sysctl tree\n");
497 		return EIO;
498 	}
499 
500 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
501 			SYSCTL_CHILDREN(adapter->sysctl_tree),
502 			OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW,
503 			(void *)adapter, 0,
504 			em_sysctl_debug_info, "I", "Debug Information");
505 
506 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
507 			SYSCTL_CHILDREN(adapter->sysctl_tree),
508 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW,
509 			(void *)adapter, 0,
510 			em_sysctl_stats, "I", "Statistics");
511 
512 	/* Determine hardware revision */
513 	em_identify_hardware(adapter);
514 
515 	/* Set up some sysctls for the tunable interrupt delays */
516 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
517 				"receive interrupt delay in usecs",
518 				&adapter->rx_int_delay,
519 				E1000_REG_OFFSET(&adapter->hw, RDTR),
520 				em_rx_int_delay_dflt);
521 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
522 				"transmit interrupt delay in usecs",
523 				&adapter->tx_int_delay,
524 				E1000_REG_OFFSET(&adapter->hw, TIDV),
525 				em_tx_int_delay_dflt);
526 	if (adapter->hw.mac_type >= em_82540) {
527 		em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
528 					"receive interrupt delay limit in usecs",
529 					&adapter->rx_abs_int_delay,
530 					E1000_REG_OFFSET(&adapter->hw, RADV),
531 					em_rx_abs_int_delay_dflt);
532 		em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
533 					"transmit interrupt delay limit in usecs",
534 					&adapter->tx_abs_int_delay,
535 					E1000_REG_OFFSET(&adapter->hw, TADV),
536 					em_tx_abs_int_delay_dflt);
537 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
538 			SYSCTL_CHILDREN(adapter->sysctl_tree),
539 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
540 			adapter, 0, em_sysctl_int_throttle, "I", NULL);
541 	}
542 
543 	/*
544 	 * Validate number of transmit and receive descriptors. It
545 	 * must not exceed hardware maximum, and must be multiple
546 	 * of EM_DBA_ALIGN.
547 	 */
548 	if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 ||
549 	    (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) ||
550 	    (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) ||
551 	    (em_txd < EM_MIN_TXD)) {
552 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
553 			      EM_DEFAULT_TXD, em_txd);
554 		adapter->num_tx_desc = EM_DEFAULT_TXD;
555 	} else {
556 		adapter->num_tx_desc = em_txd;
557 	}
558 
559 	if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 ||
560 	    (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) ||
561 	    (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) ||
562 	    (em_rxd < EM_MIN_RXD)) {
563 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
564 			      EM_DEFAULT_RXD, em_rxd);
565 		adapter->num_rx_desc = EM_DEFAULT_RXD;
566 	} else {
567 		adapter->num_rx_desc = em_rxd;
568 	}
569 
570 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "rxd",
571 		       CTLFLAG_RD, &adapter->num_rx_desc, 0, NULL);
572 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "txd",
573 		       CTLFLAG_RD, &adapter->num_tx_desc, 0, NULL);
574 
575 	adapter->hw.autoneg = DO_AUTO_NEG;
576 	adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
577 	adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
578 	adapter->hw.tbi_compatibility_en = TRUE;
579 	adapter->rx_buffer_len = EM_RXBUFFER_2048;
580 
581 	adapter->hw.phy_init_script = 1;
582 	adapter->hw.phy_reset_disable = FALSE;
583 
584 #ifndef EM_MASTER_SLAVE
585 	adapter->hw.master_slave = em_ms_hw_default;
586 #else
587 	adapter->hw.master_slave = EM_MASTER_SLAVE;
588 #endif
589 
590 	/*
591 	 * Set the max frame size assuming standard ethernet
592 	 * sized frames.
593 	 */
594 	adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
595 
596 	adapter->hw.min_frame_size =
597 	    MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
598 
599 	/*
600 	 * This controls when hardware reports transmit completion
601 	 * status.
602 	 */
603 	adapter->hw.report_tx_early = 1;
604 
605 	error = em_allocate_pci_resources(dev);
606 	if (error)
607 		goto fail;
608 
609 	/* Initialize eeprom parameters */
610 	em_init_eeprom_params(&adapter->hw);
611 
612 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc),
613 			 EM_DBA_ALIGN);
614 
615 	/* Allocate Transmit Descriptor ring */
616 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
617 	if (error) {
618 		device_printf(dev, "Unable to allocate TxDescriptor memory\n");
619 		goto fail;
620 	}
621 	adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr;
622 
623 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc),
624 			 EM_DBA_ALIGN);
625 
626 	/* Allocate Receive Descriptor ring */
627 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
628 	if (error) {
629 		device_printf(dev, "Unable to allocate rx_desc memory\n");
630 		goto fail;
631 	}
632 	adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr;
633 
634 	/* Initialize the hardware */
635 	if (em_hardware_init(adapter)) {
636 		device_printf(dev, "Unable to initialize the hardware\n");
637 		error = EIO;
638 		goto fail;
639 	}
640 
641 	/* Copy the permanent MAC address out of the EEPROM */
642 	if (em_read_mac_addr(&adapter->hw) < 0) {
643 		device_printf(dev,
644 			      "EEPROM read error while reading MAC address\n");
645 		error = EIO;
646 		goto fail;
647 	}
648 
649 	if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
650 		device_printf(dev, "Invalid MAC address\n");
651 		error = EIO;
652 		goto fail;
653 	}
654 
655 	/* Setup OS specific network interface */
656 	em_setup_interface(dev, adapter);
657 
658 	/* Initialize statistics */
659 	em_clear_hw_cntrs(&adapter->hw);
660 	em_update_stats_counters(adapter);
661 	adapter->hw.get_link_status = 1;
662 	em_update_link_status(adapter);
663 
664 	/* Indicate SOL/IDER usage */
665 	if (em_check_phy_reset_block(&adapter->hw)) {
666 		device_printf(dev, "PHY reset is blocked due to "
667 			      "SOL/IDER session.\n");
668 	}
669 
670 	/* Identify 82544 on PCIX */
671 	em_get_bus_info(&adapter->hw);
672 	if (adapter->hw.bus_type == em_bus_type_pcix &&
673 	    adapter->hw.mac_type == em_82544)
674 		adapter->pcix_82544 = TRUE;
675 	else
676 		adapter->pcix_82544 = FALSE;
677 
678 	error = bus_setup_intr(dev, adapter->res_interrupt, INTR_NETSAFE,
679 			   em_intr, adapter,
680 			   &adapter->int_handler_tag,
681 			   adapter->interface_data.ac_if.if_serializer);
682 	if (error) {
683 		device_printf(dev, "Error registering interrupt handler!\n");
684 		ether_ifdetach(&adapter->interface_data.ac_if);
685 		goto fail;
686 	}
687 
688 	INIT_DEBUGOUT("em_attach: end");
689 	return(0);
690 
691 fail:
692 	em_detach(dev);
693 	return(error);
694 }
695 
696 /*********************************************************************
697  *  Device removal routine
698  *
699  *  The detach entry point is called when the driver is being removed.
700  *  This routine stops the adapter and deallocates all the resources
701  *  that were allocated for driver operation.
702  *
703  *  return 0 on success, positive on failure
704  *********************************************************************/
705 
706 static int
707 em_detach(device_t dev)
708 {
709 	struct adapter *adapter = device_get_softc(dev);
710 
711 	INIT_DEBUGOUT("em_detach: begin");
712 
713 	if (device_is_attached(dev)) {
714 		struct ifnet *ifp = &adapter->interface_data.ac_if;
715 
716 		lwkt_serialize_enter(ifp->if_serializer);
717 		adapter->in_detach = 1;
718 		em_stop(adapter);
719 		em_phy_hw_reset(&adapter->hw);
720 		bus_teardown_intr(dev, adapter->res_interrupt,
721 				  adapter->int_handler_tag);
722 		lwkt_serialize_exit(ifp->if_serializer);
723 
724 		ether_ifdetach(ifp);
725 	}
726 	bus_generic_detach(dev);
727 
728 	em_free_pci_resources(dev);
729 
730 	/* Free Transmit Descriptor ring */
731 	if (adapter->tx_desc_base != NULL) {
732 		em_dma_free(adapter, &adapter->txdma);
733 		adapter->tx_desc_base = NULL;
734 	}
735 
736 	/* Free Receive Descriptor ring */
737 	if (adapter->rx_desc_base != NULL) {
738 		em_dma_free(adapter, &adapter->rxdma);
739 		adapter->rx_desc_base = NULL;
740 	}
741 
742 	/* Free sysctl tree */
743 	if (adapter->sysctl_tree != NULL) {
744 		adapter->sysctl_tree = NULL;
745 		sysctl_ctx_free(&adapter->sysctl_ctx);
746 	}
747 
748 	return (0);
749 }
750 
751 /*********************************************************************
752  *
753  *  Shutdown entry point
754  *
755  **********************************************************************/
756 
757 static int
758 em_shutdown(device_t dev)
759 {
760 	struct adapter *adapter = device_get_softc(dev);
761 	struct ifnet *ifp = &adapter->interface_data.ac_if;
762 
763 	lwkt_serialize_enter(ifp->if_serializer);
764 	em_stop(adapter);
765 	lwkt_serialize_exit(ifp->if_serializer);
766 
767 	return (0);
768 }
769 
770 /*
771  * Suspend/resume device methods.
772  */
773 static int
774 em_suspend(device_t dev)
775 {
776 	struct adapter *adapter = device_get_softc(dev);
777 	struct ifnet *ifp = &adapter->interface_data.ac_if;
778 
779 	lwkt_serialize_enter(ifp->if_serializer);
780 	em_stop(adapter);
781 	lwkt_serialize_exit(ifp->if_serializer);
782 	return (0);
783 }
784 
785 static int
786 em_resume(device_t dev)
787 {
788 	struct adapter *adapter = device_get_softc(dev);
789 	struct ifnet *ifp = &adapter->interface_data.ac_if;
790 
791 	lwkt_serialize_enter(ifp->if_serializer);
792 	ifp->if_flags &= ~IFF_RUNNING;
793 	em_init(adapter);
794 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
795 		em_start(ifp);
796 	lwkt_serialize_exit(ifp->if_serializer);
797 
798 	return bus_generic_resume(dev);
799 }
800 
801 /*********************************************************************
802  *  Transmit entry point
803  *
804  *  em_start is called by the stack to initiate a transmit.
805  *  The driver will remain in this routine as long as there are
806  *  packets to transmit and transmit resources are available.
807  *  In case resources are not available stack is notified and
808  *  the packet is requeued.
809  **********************************************************************/
810 
811 static void
812 em_start(struct ifnet *ifp)
813 {
814 	struct mbuf *m_head;
815 	struct adapter *adapter = ifp->if_softc;
816 
817 	ASSERT_SERIALIZED(ifp->if_serializer);
818 
819 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
820 		return;
821 	if (!adapter->link_active)
822 		return;
823 	while (!ifq_is_empty(&ifp->if_snd)) {
824 		m_head = ifq_poll(&ifp->if_snd);
825 
826 		if (m_head == NULL)
827 			break;
828 
829 		logif(pkt_txqueue);
830 		if (em_encap(adapter, m_head)) {
831 			ifp->if_flags |= IFF_OACTIVE;
832 			break;
833 		}
834 		ifq_dequeue(&ifp->if_snd, m_head);
835 
836 		/* Send a copy of the frame to the BPF listener */
837 		BPF_MTAP(ifp, m_head);
838 
839 		/* Set timeout in case hardware has problems transmitting. */
840 		ifp->if_timer = EM_TX_TIMEOUT;
841 	}
842 }
843 
844 /*********************************************************************
845  *  Ioctl entry point
846  *
847  *  em_ioctl is called when the user wants to configure the
848  *  interface.
849  *
850  *  return 0 on success, positive on failure
851  **********************************************************************/
852 
853 static int
854 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
855 {
856 	int max_frame_size, mask, error = 0, reinit = 0;
857 	struct ifreq *ifr = (struct ifreq *) data;
858 	struct adapter *adapter = ifp->if_softc;
859 	uint16_t eeprom_data = 0;
860 
861 	ASSERT_SERIALIZED(ifp->if_serializer);
862 
863 	if (adapter->in_detach)
864 		return 0;
865 
866 	switch (command) {
867 	case SIOCSIFMTU:
868 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
869 		switch (adapter->hw.mac_type) {
870 		case em_82573:
871 			/*
872 			 * 82573 only supports jumbo frames
873 			 * if ASPM is disabled.
874 			 */
875 			em_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3,
876 			    1, &eeprom_data);
877 			if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
878 				max_frame_size = ETHER_MAX_LEN;
879 				break;
880 			}
881 			/* Allow Jumbo frames */
882 			/* FALLTHROUGH */
883 		case em_82571:
884 		case em_82572:
885 		case em_ich9lan:
886 		case em_80003es2lan:	/* Limit Jumbo Frame size */
887 			max_frame_size = 9234;
888 			break;
889 		case em_ich8lan:
890 			/* ICH8 does not support jumbo frames */
891 			max_frame_size = ETHER_MAX_LEN;
892 			break;
893 		default:
894 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
895 			break;
896 		}
897 		if (ifr->ifr_mtu >
898 			max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
899 			error = EINVAL;
900 		} else {
901 			ifp->if_mtu = ifr->ifr_mtu;
902 			adapter->hw.max_frame_size =
903 			ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
904 			ifp->if_flags &= ~IFF_RUNNING;
905 			em_init(adapter);
906 		}
907 		break;
908 	case SIOCSIFFLAGS:
909 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS "
910 			       "(Set Interface Flags)");
911 		if (ifp->if_flags & IFF_UP) {
912 			if (!(ifp->if_flags & IFF_RUNNING)) {
913 				em_init(adapter);
914 			} else if ((ifp->if_flags ^ adapter->if_flags) &
915 				   IFF_PROMISC) {
916 				em_disable_promisc(adapter);
917 				em_set_promisc(adapter);
918 			}
919 		} else {
920 			if (ifp->if_flags & IFF_RUNNING)
921 				em_stop(adapter);
922 		}
923 		adapter->if_flags = ifp->if_flags;
924 		break;
925 	case SIOCADDMULTI:
926 	case SIOCDELMULTI:
927 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
928 		if (ifp->if_flags & IFF_RUNNING) {
929 			em_disable_intr(adapter);
930 			em_set_multi(adapter);
931 			if (adapter->hw.mac_type == em_82542_rev2_0)
932 				em_initialize_receive_unit(adapter);
933 #ifdef DEVICE_POLLING
934 			/* Do not enable interrupt if polling(4) is enabled */
935 			if ((ifp->if_flags & IFF_POLLING) == 0)
936 #endif
937 			em_enable_intr(adapter);
938 		}
939 		break;
940 	case SIOCSIFMEDIA:
941 		/* Check SOL/IDER usage */
942 		if (em_check_phy_reset_block(&adapter->hw)) {
943 			if_printf(ifp, "Media change is blocked due to "
944 				  "SOL/IDER session.\n");
945 			break;
946 		}
947 		/* FALLTHROUGH */
948 	case SIOCGIFMEDIA:
949 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA "
950 			       "(Get/Set Interface Media)");
951 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
952 		break;
953 	case SIOCSIFCAP:
954 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
955 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
956 		if (mask & IFCAP_HWCSUM) {
957 			ifp->if_capenable ^= IFCAP_HWCSUM;
958 			reinit = 1;
959 		}
960 		if (mask & IFCAP_VLAN_HWTAGGING) {
961 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
962 			reinit = 1;
963 		}
964 		if (reinit && (ifp->if_flags & IFF_RUNNING)) {
965 			ifp->if_flags &= ~IFF_RUNNING;
966 			em_init(adapter);
967 		}
968 		break;
969 	default:
970 		error = ether_ioctl(ifp, command, data);
971 		break;
972 	}
973 
974 	return (error);
975 }
976 
977 /*********************************************************************
978  *  Watchdog entry point
979  *
980  *  This routine is called whenever hardware quits transmitting.
981  *
982  **********************************************************************/
983 
984 static void
985 em_watchdog(struct ifnet *ifp)
986 {
987 	struct adapter *adapter = ifp->if_softc;
988 
989 	/*
990 	 * If we are in this routine because of pause frames, then
991 	 * don't reset the hardware.
992 	 */
993 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
994 		ifp->if_timer = EM_TX_TIMEOUT;
995 		return;
996 	}
997 
998 	if (em_check_for_link(&adapter->hw) == 0)
999 		if_printf(ifp, "watchdog timeout -- resetting\n");
1000 
1001 	ifp->if_flags &= ~IFF_RUNNING;
1002 	em_init(adapter);
1003 
1004 	adapter->watchdog_timeouts++;
1005 }
1006 
1007 /*********************************************************************
1008  *  Init entry point
1009  *
1010  *  This routine is used in two ways. It is used by the stack as
1011  *  init entry point in network interface structure. It is also used
1012  *  by the driver as a hw/sw initialization routine to get to a
1013  *  consistent state.
1014  *
1015  *  return 0 on success, positive on failure
1016  **********************************************************************/
1017 
1018 static void
1019 em_init(void *arg)
1020 {
1021 	struct adapter *adapter = arg;
1022 	uint32_t pba;
1023 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1024 
1025 	ASSERT_SERIALIZED(ifp->if_serializer);
1026 
1027 	INIT_DEBUGOUT("em_init: begin");
1028 
1029 	if (ifp->if_flags & IFF_RUNNING)
1030 		return;
1031 
1032 	em_stop(adapter);
1033 
1034 	/*
1035 	 * Packet Buffer Allocation (PBA)
1036 	 * Writing PBA sets the receive portion of the buffer
1037 	 * the remainder is used for the transmit buffer.
1038 	 *
1039 	 * Devices before the 82547 had a Packet Buffer of 64K.
1040 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1041 	 * After the 82547 the buffer was reduced to 40K.
1042 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1043 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1044 	 */
1045 	switch (adapter->hw.mac_type) {
1046 	case em_82547:
1047 	case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1048 		if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1049 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1050 		else
1051 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1052 
1053 		adapter->tx_fifo_head = 0;
1054 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1055 		adapter->tx_fifo_size =
1056 			(E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1057 		break;
1058 	/* Total Packet Buffer on these is 48K */
1059 	case em_82571:
1060 	case em_82572:
1061 	case em_80003es2lan:
1062 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1063 		break;
1064 	case em_82573: /* 82573: Total Packet Buffer is 32K */
1065 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1066 		break;
1067 	case em_ich8lan:
1068 		pba = E1000_PBA_8K;
1069 		break;
1070 	case em_ich9lan:
1071 #define E1000_PBA_10K   0x000A
1072 		pba = E1000_PBA_10K;
1073 		break;
1074 	default:
1075 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1076 		if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1077 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1078 		else
1079 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1080 	}
1081 
1082 	INIT_DEBUGOUT1("em_init: pba=%dK",pba);
1083 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
1084 
1085 	/* Get the latest mac address, User can use a LAA */
1086 	bcopy(adapter->interface_data.ac_enaddr, adapter->hw.mac_addr,
1087 	      ETHER_ADDR_LEN);
1088 
1089 	/* Initialize the hardware */
1090 	if (em_hardware_init(adapter)) {
1091 		if_printf(ifp, "Unable to initialize the hardware\n");
1092 		return;
1093 	}
1094 	em_update_link_status(adapter);
1095 
1096 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1097 		em_enable_vlans(adapter);
1098 
1099 	/* Set hardware offload abilities */
1100 	if (adapter->hw.mac_type >= em_82543) {
1101 		if (ifp->if_capenable & IFCAP_TXCSUM)
1102 			ifp->if_hwassist = EM_CHECKSUM_FEATURES;
1103 		else
1104 			ifp->if_hwassist = 0;
1105 	}
1106 
1107 	/* Prepare transmit descriptors and buffers */
1108 	if (em_setup_transmit_structures(adapter)) {
1109 		if_printf(ifp, "Could not setup transmit structures\n");
1110 		em_stop(adapter);
1111 		return;
1112 	}
1113 	em_initialize_transmit_unit(adapter);
1114 
1115 	/* Setup Multicast table */
1116 	em_set_multi(adapter);
1117 
1118 	/* Prepare receive descriptors and buffers */
1119 	if (em_setup_receive_structures(adapter)) {
1120 		if_printf(ifp, "Could not setup receive structures\n");
1121 		em_stop(adapter);
1122 		return;
1123 	}
1124 	em_initialize_receive_unit(adapter);
1125 
1126 	/* Don't lose promiscuous settings */
1127 	em_set_promisc(adapter);
1128 
1129 	ifp->if_flags |= IFF_RUNNING;
1130 	ifp->if_flags &= ~IFF_OACTIVE;
1131 
1132 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1133 	em_clear_hw_cntrs(&adapter->hw);
1134 
1135 #ifdef DEVICE_POLLING
1136 	/* Do not enable interrupt if polling(4) is enabled */
1137 	if (ifp->if_flags & IFF_POLLING)
1138 		em_disable_intr(adapter);
1139 	else
1140 #endif
1141 	em_enable_intr(adapter);
1142 
1143 	/* Don't reset the phy next time init gets called */
1144 	adapter->hw.phy_reset_disable = TRUE;
1145 }
1146 
1147 #ifdef DEVICE_POLLING
1148 
1149 static void
1150 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1151 {
1152 	struct adapter *adapter = ifp->if_softc;
1153 	uint32_t reg_icr;
1154 
1155 	logif(poll_beg);
1156 
1157 	ASSERT_SERIALIZED(ifp->if_serializer);
1158 
1159 	switch(cmd) {
1160 	case POLL_REGISTER:
1161 		em_disable_intr(adapter);
1162 		break;
1163 	case POLL_DEREGISTER:
1164 		em_enable_intr(adapter);
1165 		break;
1166 	case POLL_AND_CHECK_STATUS:
1167 		reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1168 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1169 			callout_stop(&adapter->timer);
1170 			adapter->hw.get_link_status = 1;
1171 			em_check_for_link(&adapter->hw);
1172 			em_update_link_status(adapter);
1173 			callout_reset(&adapter->timer, hz, em_local_timer,
1174 				      adapter);
1175 		}
1176 		/* fall through */
1177 	case POLL_ONLY:
1178 		if (ifp->if_flags & IFF_RUNNING) {
1179 			em_rxeof(adapter, count);
1180 			em_txeof(adapter);
1181 
1182 			if (!ifq_is_empty(&ifp->if_snd))
1183 				em_start(ifp);
1184 		}
1185 		break;
1186 	}
1187 	logif(poll_end);
1188 }
1189 
1190 #endif /* DEVICE_POLLING */
1191 
1192 /*********************************************************************
1193  *
1194  *  Interrupt Service routine
1195  *
1196  *********************************************************************/
1197 static void
1198 em_intr(void *arg)
1199 {
1200 	uint32_t reg_icr;
1201 	struct ifnet *ifp;
1202 	struct adapter *adapter = arg;
1203 
1204 	ifp = &adapter->interface_data.ac_if;
1205 
1206 	logif(intr_beg);
1207 	ASSERT_SERIALIZED(ifp->if_serializer);
1208 
1209 	reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1210 	if ((adapter->hw.mac_type >= em_82571 &&
1211 	     (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1212 	    reg_icr == 0) {
1213 		logif(intr_end);
1214 		return;
1215 	}
1216 
1217 	/*
1218 	 * XXX: some laptops trigger several spurious interrupts on em(4)
1219 	 * when in the resume cycle. The ICR register reports all-ones
1220 	 * value in this case. Processing such interrupts would lead to
1221 	 * a freeze. I don't know why.
1222 	 */
1223 	if (reg_icr == 0xffffffff) {
1224 		logif(intr_end);
1225 		return;
1226 	}
1227 
1228 	/*
1229 	 * note: do not attempt to improve efficiency by looping.  This
1230 	 * only results in unnecessary piecemeal collection of received
1231 	 * packets and unnecessary piecemeal cleanups of the transmit ring.
1232 	 */
1233 	if (ifp->if_flags & IFF_RUNNING) {
1234 		em_rxeof(adapter, -1);
1235 		em_txeof(adapter);
1236 	}
1237 
1238 	/* Link status change */
1239 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1240 		callout_stop(&adapter->timer);
1241 		adapter->hw.get_link_status = 1;
1242 		em_check_for_link(&adapter->hw);
1243 		em_update_link_status(adapter);
1244 		callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1245 	}
1246 
1247 	if (reg_icr & E1000_ICR_RXO)
1248 		adapter->rx_overruns++;
1249 
1250 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1251 		em_start(ifp);
1252 	logif(intr_end);
1253 }
1254 
1255 /*********************************************************************
1256  *
1257  *  Media Ioctl callback
1258  *
1259  *  This routine is called whenever the user queries the status of
1260  *  the interface using ifconfig.
1261  *
1262  **********************************************************************/
1263 static void
1264 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1265 {
1266 	struct adapter *adapter = ifp->if_softc;
1267 	u_char fiber_type = IFM_1000_SX;
1268 
1269 	INIT_DEBUGOUT("em_media_status: begin");
1270 
1271 	ASSERT_SERIALIZED(ifp->if_serializer);
1272 
1273 	em_check_for_link(&adapter->hw);
1274 	em_update_link_status(adapter);
1275 
1276 	ifmr->ifm_status = IFM_AVALID;
1277 	ifmr->ifm_active = IFM_ETHER;
1278 
1279 	if (!adapter->link_active)
1280 		return;
1281 
1282 	ifmr->ifm_status |= IFM_ACTIVE;
1283 
1284 	if (adapter->hw.media_type == em_media_type_fiber ||
1285 	    adapter->hw.media_type == em_media_type_internal_serdes) {
1286 		if (adapter->hw.mac_type == em_82545)
1287 			fiber_type = IFM_1000_LX;
1288 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1289 	} else {
1290 		switch (adapter->link_speed) {
1291 		case 10:
1292 			ifmr->ifm_active |= IFM_10_T;
1293 			break;
1294 		case 100:
1295 			ifmr->ifm_active |= IFM_100_TX;
1296 			break;
1297 		case 1000:
1298 			ifmr->ifm_active |= IFM_1000_T;
1299 			break;
1300 		}
1301 		if (adapter->link_duplex == FULL_DUPLEX)
1302 			ifmr->ifm_active |= IFM_FDX;
1303 		else
1304 			ifmr->ifm_active |= IFM_HDX;
1305 	}
1306 }
1307 
1308 /*********************************************************************
1309  *
1310  *  Media Ioctl callback
1311  *
1312  *  This routine is called when the user changes speed/duplex using
1313  *  media/mediopt option with ifconfig.
1314  *
1315  **********************************************************************/
1316 static int
1317 em_media_change(struct ifnet *ifp)
1318 {
1319 	struct adapter *adapter = ifp->if_softc;
1320 	struct ifmedia *ifm = &adapter->media;
1321 
1322 	INIT_DEBUGOUT("em_media_change: begin");
1323 
1324 	ASSERT_SERIALIZED(ifp->if_serializer);
1325 
1326 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1327 		return (EINVAL);
1328 
1329 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1330 	case IFM_AUTO:
1331 		adapter->hw.autoneg = DO_AUTO_NEG;
1332 		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1333 		break;
1334 	case IFM_1000_LX:
1335 	case IFM_1000_SX:
1336 	case IFM_1000_T:
1337 		adapter->hw.autoneg = DO_AUTO_NEG;
1338 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
1339 		break;
1340 	case IFM_100_TX:
1341 		adapter->hw.autoneg = FALSE;
1342 		adapter->hw.autoneg_advertised = 0;
1343 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1344 			adapter->hw.forced_speed_duplex = em_100_full;
1345 		else
1346 			adapter->hw.forced_speed_duplex = em_100_half;
1347 		break;
1348 	case IFM_10_T:
1349 		adapter->hw.autoneg = FALSE;
1350 		adapter->hw.autoneg_advertised = 0;
1351 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1352 			adapter->hw.forced_speed_duplex = em_10_full;
1353 		else
1354 			adapter->hw.forced_speed_duplex = em_10_half;
1355 		break;
1356 	default:
1357 		if_printf(ifp, "Unsupported media type\n");
1358 	}
1359 	/*
1360 	 * As the speed/duplex settings may have changed we need to
1361 	 * reset the PHY.
1362 	 */
1363 	adapter->hw.phy_reset_disable = FALSE;
1364 
1365 	ifp->if_flags &= ~IFF_RUNNING;
1366 	em_init(adapter);
1367 
1368 	return(0);
1369 }
1370 
1371 static void
1372 em_tx_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1373 	 int error)
1374 {
1375 	struct em_q *q = arg;
1376 
1377 	if (error)
1378 		return;
1379 	KASSERT(nsegs <= EM_MAX_SCATTER,
1380 		("Too many DMA segments returned when mapping tx packet"));
1381 	q->nsegs = nsegs;
1382 	bcopy(seg, q->segs, nsegs * sizeof(seg[0]));
1383 }
1384 
1385 /*********************************************************************
1386  *
1387  *  This routine maps the mbufs to tx descriptors.
1388  *
1389  *  return 0 on success, positive on failure
1390  **********************************************************************/
1391 static int
1392 em_encap(struct adapter *adapter, struct mbuf *m_head)
1393 {
1394 	uint32_t txd_upper = 0, txd_lower = 0, txd_used = 0, txd_saved = 0;
1395 	int i, j, error, last = 0;
1396 
1397 	struct ifvlan *ifv = NULL;
1398 	struct em_q q;
1399 	struct em_buffer *tx_buffer = NULL, *tx_buffer_first;
1400 	bus_dmamap_t map;
1401 	struct em_tx_desc *current_tx_desc = NULL;
1402 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1403 
1404 	/*
1405 	 * Force a cleanup if number of TX descriptors
1406 	 * available hits the threshold
1407 	 */
1408 	if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1409 		em_txeof(adapter);
1410 		if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1411 			adapter->no_tx_desc_avail1++;
1412 			return (ENOBUFS);
1413 		}
1414 	}
1415 
1416 	/*
1417 	 * Capture the first descriptor index, this descriptor will have
1418 	 * the index of the EOP which is the only one that now gets a
1419 	 * DONE bit writeback.
1420 	 */
1421 	tx_buffer_first = &adapter->tx_buffer_area[adapter->next_avail_tx_desc];
1422 
1423 	/*
1424 	 * Map the packet for DMA.
1425 	 */
1426 	map = tx_buffer_first->map;
1427 	error = bus_dmamap_load_mbuf(adapter->txtag, map, m_head, em_tx_cb,
1428 				     &q, BUS_DMA_NOWAIT);
1429 	if (error != 0) {
1430 		adapter->no_tx_dma_setup++;
1431 		return (error);
1432 	}
1433 	KASSERT(q.nsegs != 0, ("em_encap: empty packet"));
1434 
1435 	if (q.nsegs > (adapter->num_tx_desc_avail - 2)) {
1436 		adapter->no_tx_desc_avail2++;
1437 		error = ENOBUFS;
1438 		goto fail;
1439 	}
1440 
1441 	if (ifp->if_hwassist > 0) {
1442 		em_transmit_checksum_setup(adapter,  m_head,
1443 					   &txd_upper, &txd_lower);
1444 	}
1445 
1446 	/* Find out if we are in vlan mode */
1447 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1448 	    m_head->m_pkthdr.rcvif != NULL &&
1449 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1450 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1451 
1452 	i = adapter->next_avail_tx_desc;
1453 	if (adapter->pcix_82544)
1454 		txd_saved = i;
1455 
1456 	/* Set up our transmit descriptors */
1457 	for (j = 0; j < q.nsegs; j++) {
1458 		/* If adapter is 82544 and on PCIX bus */
1459 		if(adapter->pcix_82544) {
1460 			DESC_ARRAY desc_array;
1461 			uint32_t array_elements, counter;
1462 
1463 			/*
1464 			 * Check the Address and Length combination and
1465 			 * split the data accordingly
1466 			 */
1467 			array_elements = em_fill_descriptors(q.segs[j].ds_addr,
1468 						q.segs[j].ds_len, &desc_array);
1469 			for (counter = 0; counter < array_elements; counter++) {
1470 				if (txd_used == adapter->num_tx_desc_avail) {
1471 					adapter->next_avail_tx_desc = txd_saved;
1472 					adapter->no_tx_desc_avail2++;
1473 					error = ENOBUFS;
1474 					goto fail;
1475 				}
1476 				tx_buffer = &adapter->tx_buffer_area[i];
1477 				current_tx_desc = &adapter->tx_desc_base[i];
1478 				current_tx_desc->buffer_addr = htole64(
1479 					desc_array.descriptor[counter].address);
1480 				current_tx_desc->lower.data = htole32(
1481 					adapter->txd_cmd | txd_lower |
1482 					(uint16_t)desc_array.descriptor[counter].length);
1483 				current_tx_desc->upper.data = htole32(txd_upper);
1484 
1485 				last = i;
1486 				if (++i == adapter->num_tx_desc)
1487 					i = 0;
1488 
1489 				tx_buffer->m_head = NULL;
1490 				tx_buffer->next_eop = -1;
1491 				txd_used++;
1492 			}
1493 		} else {
1494 			tx_buffer = &adapter->tx_buffer_area[i];
1495 			current_tx_desc = &adapter->tx_desc_base[i];
1496 
1497 			current_tx_desc->buffer_addr = htole64(q.segs[j].ds_addr);
1498 			current_tx_desc->lower.data = htole32(
1499 				adapter->txd_cmd | txd_lower | q.segs[j].ds_len);
1500 			current_tx_desc->upper.data = htole32(txd_upper);
1501 
1502 			last = i;
1503 			if (++i == adapter->num_tx_desc)
1504 				i = 0;
1505 
1506 			tx_buffer->m_head = NULL;
1507 			tx_buffer->next_eop = -1;
1508 		}
1509 	}
1510 
1511 	adapter->next_avail_tx_desc = i;
1512 	if (adapter->pcix_82544)
1513 		adapter->num_tx_desc_avail -= txd_used;
1514 	else
1515 		adapter->num_tx_desc_avail -= q.nsegs;
1516 
1517 	if (ifv != NULL) {
1518 		/* Set the vlan id */
1519 		current_tx_desc->upper.fields.special = htole16(ifv->ifv_tag);
1520 
1521 		/* Tell hardware to add tag */
1522 		current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
1523 	}
1524 
1525 	tx_buffer->m_head = m_head;
1526 	tx_buffer_first->map = tx_buffer->map;
1527 	tx_buffer->map = map;
1528 	bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1529 
1530 	/*
1531 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1532 	 * and Report Status (RS)
1533 	 */
1534 	current_tx_desc->lower.data |=
1535 		htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
1536 
1537 	/*
1538 	 * Keep track in the first buffer which descriptor will be
1539 	 * written back.
1540 	 */
1541 	tx_buffer_first->next_eop = last;
1542 
1543 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
1544 			BUS_DMASYNC_PREWRITE);
1545 
1546 	/*
1547 	 * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
1548 	 * that this frame is available to transmit.
1549 	 */
1550 	if (adapter->hw.mac_type == em_82547 &&
1551 	    adapter->link_duplex == HALF_DUPLEX) {
1552 		em_82547_move_tail_serialized(adapter);
1553 	} else {
1554 		E1000_WRITE_REG(&adapter->hw, TDT, i);
1555 		if (adapter->hw.mac_type == em_82547) {
1556 			em_82547_update_fifo_head(adapter,
1557 						  m_head->m_pkthdr.len);
1558 		}
1559 	}
1560 
1561 	return (0);
1562 fail:
1563 	bus_dmamap_unload(adapter->txtag, map);
1564 	return error;
1565 }
1566 
1567 /*********************************************************************
1568  *
1569  * 82547 workaround to avoid controller hang in half-duplex environment.
1570  * The workaround is to avoid queuing a large packet that would span
1571  * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1572  * in this case. We do that only when FIFO is quiescent.
1573  *
1574  **********************************************************************/
1575 static void
1576 em_82547_move_tail(void *arg)
1577 {
1578 	struct adapter *adapter = arg;
1579 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1580 
1581 	lwkt_serialize_enter(ifp->if_serializer);
1582 	em_82547_move_tail_serialized(adapter);
1583 	lwkt_serialize_exit(ifp->if_serializer);
1584 }
1585 
1586 static void
1587 em_82547_move_tail_serialized(struct adapter *adapter)
1588 {
1589 	uint16_t hw_tdt;
1590 	uint16_t sw_tdt;
1591 	struct em_tx_desc *tx_desc;
1592 	uint16_t length = 0;
1593 	boolean_t eop = 0;
1594 
1595 	hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
1596 	sw_tdt = adapter->next_avail_tx_desc;
1597 
1598 	while (hw_tdt != sw_tdt) {
1599 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1600 		length += tx_desc->lower.flags.length;
1601 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1602 		if (++hw_tdt == adapter->num_tx_desc)
1603 			hw_tdt = 0;
1604 
1605 		if (eop) {
1606 			if (em_82547_fifo_workaround(adapter, length)) {
1607 				adapter->tx_fifo_wrk_cnt++;
1608 				callout_reset(&adapter->tx_fifo_timer, 1,
1609 					em_82547_move_tail, adapter);
1610 				break;
1611 			}
1612 			E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
1613 			em_82547_update_fifo_head(adapter, length);
1614 			length = 0;
1615 		}
1616 	}
1617 }
1618 
1619 static int
1620 em_82547_fifo_workaround(struct adapter *adapter, int len)
1621 {
1622 	int fifo_space, fifo_pkt_len;
1623 
1624 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1625 
1626 	if (adapter->link_duplex == HALF_DUPLEX) {
1627 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1628 
1629 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1630 			if (em_82547_tx_fifo_reset(adapter))
1631 				return (0);
1632 			else
1633 				return (1);
1634 		}
1635 	}
1636 
1637 	return (0);
1638 }
1639 
1640 static void
1641 em_82547_update_fifo_head(struct adapter *adapter, int len)
1642 {
1643 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1644 
1645 	/* tx_fifo_head is always 16 byte aligned */
1646 	adapter->tx_fifo_head += fifo_pkt_len;
1647 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1648 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1649 }
1650 
1651 static int
1652 em_82547_tx_fifo_reset(struct adapter *adapter)
1653 {
1654 	uint32_t tctl;
1655 
1656 	if (E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH) &&
1657 	    E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH) &&
1658 	    E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS) &&
1659 	    E1000_READ_REG(&adapter->hw, TDFPC) == 0) {
1660 		/* Disable TX unit */
1661 		tctl = E1000_READ_REG(&adapter->hw, TCTL);
1662 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
1663 
1664 		/* Reset FIFO pointers */
1665 		E1000_WRITE_REG(&adapter->hw, TDFT,  adapter->tx_head_addr);
1666 		E1000_WRITE_REG(&adapter->hw, TDFH,  adapter->tx_head_addr);
1667 		E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
1668 		E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
1669 
1670 		/* Re-enable TX unit */
1671 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1672 		E1000_WRITE_FLUSH(&adapter->hw);
1673 
1674 		adapter->tx_fifo_head = 0;
1675 		adapter->tx_fifo_reset_cnt++;
1676 
1677 		return (TRUE);
1678 	} else {
1679 		return (FALSE);
1680 	}
1681 }
1682 
1683 static void
1684 em_set_promisc(struct adapter *adapter)
1685 {
1686 	uint32_t reg_rctl;
1687 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1688 
1689 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1690 
1691 	adapter->em_insert_vlan_header = 0;
1692 	if (ifp->if_flags & IFF_PROMISC) {
1693 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1694 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1695 
1696 		/*
1697 		 * Disable VLAN stripping in promiscous mode.
1698 		 * This enables bridging of vlan tagged frames to occur
1699 		 * and also allows vlan tags to be seen in tcpdump.
1700 		 */
1701 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1702 			em_disable_vlans(adapter);
1703 		adapter->em_insert_vlan_header = 1;
1704 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1705 		reg_rctl |= E1000_RCTL_MPE;
1706 		reg_rctl &= ~E1000_RCTL_UPE;
1707 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1708 	}
1709 }
1710 
1711 static void
1712 em_disable_promisc(struct adapter *adapter)
1713 {
1714 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1715 
1716 	uint32_t reg_rctl;
1717 
1718 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1719 
1720 	reg_rctl &= (~E1000_RCTL_UPE);
1721 	reg_rctl &= (~E1000_RCTL_MPE);
1722 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1723 
1724 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1725 		em_enable_vlans(adapter);
1726 	adapter->em_insert_vlan_header = 0;
1727 }
1728 
1729 /*********************************************************************
1730  *  Multicast Update
1731  *
1732  *  This routine is called whenever multicast address list is updated.
1733  *
1734  **********************************************************************/
1735 
1736 static void
1737 em_set_multi(struct adapter *adapter)
1738 {
1739 	uint32_t reg_rctl = 0;
1740 	uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
1741 	struct ifmultiaddr *ifma;
1742 	int mcnt = 0;
1743 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1744 
1745 	IOCTL_DEBUGOUT("em_set_multi: begin");
1746 
1747 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1748 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1749 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1750 			em_pci_clear_mwi(&adapter->hw);
1751 		reg_rctl |= E1000_RCTL_RST;
1752 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1753 		msec_delay(5);
1754 	}
1755 
1756 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1757 		if (ifma->ifma_addr->sa_family != AF_LINK)
1758 			continue;
1759 
1760 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1761 			break;
1762 
1763 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1764 		      &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
1765 		mcnt++;
1766 	}
1767 
1768 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1769 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1770 		reg_rctl |= E1000_RCTL_MPE;
1771 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1772 	} else {
1773 		em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
1774 	}
1775 
1776 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1777 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1778 		reg_rctl &= ~E1000_RCTL_RST;
1779 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1780 		msec_delay(5);
1781 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1782                         em_pci_set_mwi(&adapter->hw);
1783 	}
1784 }
1785 
1786 /*********************************************************************
1787  *  Timer routine
1788  *
1789  *  This routine checks for link status and updates statistics.
1790  *
1791  **********************************************************************/
1792 
1793 static void
1794 em_local_timer(void *arg)
1795 {
1796 	struct ifnet *ifp;
1797 	struct adapter *adapter = arg;
1798 	ifp = &adapter->interface_data.ac_if;
1799 
1800 	lwkt_serialize_enter(ifp->if_serializer);
1801 
1802 	em_check_for_link(&adapter->hw);
1803 	em_update_link_status(adapter);
1804 	em_update_stats_counters(adapter);
1805 	if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING)
1806 		em_print_hw_stats(adapter);
1807 	em_smartspeed(adapter);
1808 
1809 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1810 
1811 	lwkt_serialize_exit(ifp->if_serializer);
1812 }
1813 
1814 static void
1815 em_update_link_status(struct adapter *adapter)
1816 {
1817 	struct ifnet *ifp;
1818 	ifp = &adapter->interface_data.ac_if;
1819 
1820 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
1821 		if (adapter->link_active == 0) {
1822 			em_get_speed_and_duplex(&adapter->hw,
1823 						&adapter->link_speed,
1824 						&adapter->link_duplex);
1825 			/* Check if we may set SPEED_MODE bit on PCI-E */
1826 			if (adapter->link_speed == SPEED_1000 &&
1827 			    (adapter->hw.mac_type == em_82571 ||
1828 			     adapter->hw.mac_type == em_82572)) {
1829 				int tarc0;
1830 
1831 				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
1832 				tarc0 |= SPEED_MODE_BIT;
1833 				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
1834 			}
1835 			if (bootverbose) {
1836 				if_printf(&adapter->interface_data.ac_if,
1837 					  "Link is up %d Mbps %s\n",
1838 					  adapter->link_speed,
1839 					  adapter->link_duplex == FULL_DUPLEX ?
1840 						"Full Duplex" : "Half Duplex");
1841 			}
1842 			adapter->link_active = 1;
1843 			adapter->smartspeed = 0;
1844 			ifp->if_baudrate = adapter->link_speed * 1000000;
1845 			ifp->if_link_state = LINK_STATE_UP;
1846 			if_link_state_change(ifp);
1847 		}
1848 	} else {
1849 		if (adapter->link_active == 1) {
1850 			ifp->if_baudrate = 0;
1851 			adapter->link_speed = 0;
1852 			adapter->link_duplex = 0;
1853 			if (bootverbose) {
1854 				if_printf(&adapter->interface_data.ac_if,
1855 					  "Link is Down\n");
1856 			}
1857 			adapter->link_active = 0;
1858 			ifp->if_link_state = LINK_STATE_DOWN;
1859 			if_link_state_change(ifp);
1860 		}
1861 	}
1862 }
1863 
1864 /*********************************************************************
1865  *
1866  *  This routine disables all traffic on the adapter by issuing a
1867  *  global reset on the MAC and deallocates TX/RX buffers.
1868  *
1869  **********************************************************************/
1870 
1871 static void
1872 em_stop(void *arg)
1873 {
1874 	struct ifnet   *ifp;
1875 	struct adapter * adapter = arg;
1876 	ifp = &adapter->interface_data.ac_if;
1877 
1878 	ASSERT_SERIALIZED(ifp->if_serializer);
1879 
1880 	INIT_DEBUGOUT("em_stop: begin");
1881 	em_disable_intr(adapter);
1882 	em_reset_hw(&adapter->hw);
1883 	callout_stop(&adapter->timer);
1884 	callout_stop(&adapter->tx_fifo_timer);
1885 	em_free_transmit_structures(adapter);
1886 	em_free_receive_structures(adapter);
1887 
1888 	/* Tell the stack that the interface is no longer active */
1889 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1890 	ifp->if_timer = 0;
1891 }
1892 
1893 /*********************************************************************
1894  *
1895  *  Determine hardware revision.
1896  *
1897  **********************************************************************/
1898 static void
1899 em_identify_hardware(struct adapter *adapter)
1900 {
1901 	device_t dev = adapter->dev;
1902 
1903 	/* Make sure our PCI config space has the necessary stuff set */
1904 	adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1905 	if (!((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
1906 	      (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN))) {
1907 		device_printf(dev, "Memory Access and/or Bus Master bits "
1908 			      "were not set!\n");
1909 		adapter->hw.pci_cmd_word |= PCIM_CMD_BUSMASTEREN |
1910 					    PCIM_CMD_MEMEN;
1911 		pci_write_config(dev, PCIR_COMMAND,
1912 				 adapter->hw.pci_cmd_word, 2);
1913 	}
1914 
1915 	/* Save off the information about this board */
1916 	adapter->hw.vendor_id = pci_get_vendor(dev);
1917 	adapter->hw.device_id = pci_get_device(dev);
1918 	adapter->hw.revision_id = pci_get_revid(dev);
1919 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
1920 	adapter->hw.subsystem_id = pci_get_subdevice(dev);
1921 
1922 	/* Identify the MAC */
1923 	if (em_set_mac_type(&adapter->hw))
1924 		device_printf(dev, "Unknown MAC Type\n");
1925 
1926 	if (adapter->hw.mac_type == em_82541 ||
1927 	    adapter->hw.mac_type == em_82541_rev_2 ||
1928 	    adapter->hw.mac_type == em_82547 ||
1929 	    adapter->hw.mac_type == em_82547_rev_2)
1930 		adapter->hw.phy_init_script = TRUE;
1931 }
1932 
1933 static int
1934 em_allocate_pci_resources(device_t dev)
1935 {
1936 	struct adapter *adapter = device_get_softc(dev);
1937 	int rid;
1938 
1939 	rid = PCIR_BAR(0);
1940 	adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1941 						     &rid, RF_ACTIVE);
1942 	if (adapter->res_memory == NULL) {
1943 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1944 		return ENXIO;
1945 	}
1946 	adapter->osdep.mem_bus_space_tag =
1947 		rman_get_bustag(adapter->res_memory);
1948 	adapter->osdep.mem_bus_space_handle =
1949 	    rman_get_bushandle(adapter->res_memory);
1950 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
1951 
1952 	if (adapter->hw.mac_type > em_82543) {
1953 		/* Figure our where our IO BAR is ? */
1954 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1955 			uint32_t val;
1956 
1957 			val = pci_read_config(dev, rid, 4);
1958 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1959 				adapter->io_rid = rid;
1960 				break;
1961 			}
1962 			rid += 4;
1963 			/* check for 64bit BAR */
1964 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1965 				rid += 4;
1966 		}
1967 		if (rid >= PCIR_CIS) {
1968 			device_printf(dev, "Unable to locate IO BAR\n");
1969 			return (ENXIO);
1970  		}
1971 
1972 		adapter->res_ioport = bus_alloc_resource_any(dev,
1973 		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1974 		if (!(adapter->res_ioport)) {
1975 			device_printf(dev, "Unable to allocate bus resource: "
1976 				      "ioport\n");
1977 			return ENXIO;
1978 		}
1979 		adapter->hw.io_base = 0;
1980 		adapter->osdep.io_bus_space_tag =
1981 			rman_get_bustag(adapter->res_ioport);
1982 		adapter->osdep.io_bus_space_handle =
1983 			rman_get_bushandle(adapter->res_ioport);
1984 	}
1985 
1986 	/* For ICH8 we need to find the flash memory. */
1987 	if ((adapter->hw.mac_type == em_ich8lan) ||
1988 	    (adapter->hw.mac_type == em_ich9lan)) {
1989 		rid = EM_FLASH;
1990 		adapter->flash_mem = bus_alloc_resource_any(dev,
1991 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
1992 		if (adapter->flash_mem == NULL) {
1993 			device_printf(dev, "Unable to allocate bus resource: "
1994 				      "flash memory\n");
1995 			return ENXIO;
1996 		}
1997 		adapter->osdep.flash_bus_space_tag =
1998 		    rman_get_bustag(adapter->flash_mem);
1999 		adapter->osdep.flash_bus_space_handle =
2000 		    rman_get_bushandle(adapter->flash_mem);
2001 	}
2002 
2003 	rid = 0x0;
2004 	adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2005 	    &rid, RF_SHAREABLE | RF_ACTIVE);
2006 	if (adapter->res_interrupt == NULL) {
2007 		device_printf(dev, "Unable to allocate bus resource: "
2008 			      "interrupt\n");
2009 		return ENXIO;
2010 	}
2011 
2012 	adapter->hw.back = &adapter->osdep;
2013 
2014 	return 0;
2015 }
2016 
2017 static void
2018 em_free_pci_resources(device_t dev)
2019 {
2020 	struct adapter *adapter = device_get_softc(dev);
2021 
2022 	if (adapter->res_interrupt != NULL) {
2023 		bus_release_resource(dev, SYS_RES_IRQ, 0,
2024 				     adapter->res_interrupt);
2025 	}
2026 	if (adapter->res_memory != NULL) {
2027 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2028 				     adapter->res_memory);
2029 	}
2030 
2031 	if (adapter->res_ioport != NULL) {
2032 		bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid,
2033 				     adapter->res_ioport);
2034 	}
2035 
2036 	if (adapter->flash_mem != NULL) {
2037 		bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH,
2038 				     adapter->flash_mem);
2039 	}
2040 }
2041 
2042 /*********************************************************************
2043  *
2044  *  Initialize the hardware to a configuration as specified by the
2045  *  adapter structure. The controller is reset, the EEPROM is
2046  *  verified, the MAC address is set, then the shared initialization
2047  *  routines are called.
2048  *
2049  **********************************************************************/
2050 static int
2051 em_hardware_init(struct adapter *adapter)
2052 {
2053 	uint16_t	rx_buffer_size;
2054 
2055 	INIT_DEBUGOUT("em_hardware_init: begin");
2056 	/* Issue a global reset */
2057 	em_reset_hw(&adapter->hw);
2058 
2059 	/* When hardware is reset, fifo_head is also reset */
2060 	adapter->tx_fifo_head = 0;
2061 
2062 	/* Make sure we have a good EEPROM before we read from it */
2063 	if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2064 		if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2065 			device_printf(adapter->dev,
2066 				      "The EEPROM Checksum Is Not Valid\n");
2067 			return (EIO);
2068 		}
2069 	}
2070 
2071 	if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
2072 		device_printf(adapter->dev,
2073 			      "EEPROM read error while reading part number\n");
2074 		return (EIO);
2075 	}
2076 
2077 	/* Set up smart power down as default off on newer adapters. */
2078 	if (!em_smart_pwr_down &&
2079 	    (adapter->hw.mac_type == em_82571 ||
2080 	     adapter->hw.mac_type == em_82572)) {
2081 		uint16_t phy_tmp = 0;
2082 
2083 		/* Speed up time to link by disabling smart power down. */
2084 		em_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2085 				&phy_tmp);
2086 		phy_tmp &= ~IGP02E1000_PM_SPD;
2087 		em_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2088 				 phy_tmp);
2089 	}
2090 
2091 	/*
2092 	 * These parameters control the automatic generation (Tx) and
2093 	 * response (Rx) to Ethernet PAUSE frames.
2094 	 * - High water mark should allow for at least two frames to be
2095 	 *   received after sending an XOFF.
2096 	 * - Low water mark works best when it is very near the high water mark.
2097 	 *   This allows the receiver to restart by sending XON when it has
2098 	 *   drained a bit.  Here we use an arbitary value of 1500 which will
2099 	 *   restart after one full frame is pulled from the buffer.  There
2100 	 *   could be several smaller frames in the buffer and if so they will
2101 	 *   not trigger the XON until their total number reduces the buffer
2102 	 *   by 1500.
2103 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2104 	 */
2105 	rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10);
2106 
2107 	adapter->hw.fc_high_water =
2108 	    rx_buffer_size - roundup2(adapter->hw.max_frame_size, 1024);
2109 	adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
2110 	if (adapter->hw.mac_type == em_80003es2lan)
2111 		adapter->hw.fc_pause_time = 0xFFFF;
2112 	else
2113 		adapter->hw.fc_pause_time = 0x1000;
2114 	adapter->hw.fc_send_xon = TRUE;
2115 	adapter->hw.fc = E1000_FC_FULL;
2116 
2117 	if (em_init_hw(&adapter->hw) < 0) {
2118 		device_printf(adapter->dev, "Hardware Initialization Failed");
2119 		return (EIO);
2120 	}
2121 
2122 	em_check_for_link(&adapter->hw);
2123 
2124 	return (0);
2125 }
2126 
2127 /*********************************************************************
2128  *
2129  *  Setup networking device structure and register an interface.
2130  *
2131  **********************************************************************/
2132 static void
2133 em_setup_interface(device_t dev, struct adapter *adapter)
2134 {
2135 	struct ifnet *ifp;
2136 	u_char fiber_type = IFM_1000_SX;	/* default type */
2137 	INIT_DEBUGOUT("em_setup_interface: begin");
2138 
2139 	ifp = &adapter->interface_data.ac_if;
2140 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2141 	ifp->if_mtu = ETHERMTU;
2142 	ifp->if_baudrate = 1000000000;
2143 	ifp->if_init =  em_init;
2144 	ifp->if_softc = adapter;
2145 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2146 	ifp->if_ioctl = em_ioctl;
2147 	ifp->if_start = em_start;
2148 #ifdef DEVICE_POLLING
2149 	ifp->if_poll = em_poll;
2150 #endif
2151 	ifp->if_watchdog = em_watchdog;
2152 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2153 	ifq_set_ready(&ifp->if_snd);
2154 
2155 	if (adapter->hw.mac_type >= em_82543)
2156 		ifp->if_capabilities |= IFCAP_HWCSUM;
2157 
2158 	ifp->if_capenable = ifp->if_capabilities;
2159 
2160 	ether_ifattach(ifp, adapter->hw.mac_addr, NULL);
2161 
2162 	/*
2163 	 * Tell the upper layer(s) we support long frames.
2164 	 */
2165 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2166 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2167 #if 0
2168 	ifp->if_capenable |= IFCAP_VLAN_MTU;
2169 #endif
2170 
2171 	/*
2172 	 * Specify the media types supported by this adapter and register
2173 	 * callbacks to update media and link information
2174 	 */
2175 	ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
2176 		     em_media_status);
2177 	if (adapter->hw.media_type == em_media_type_fiber ||
2178 	    adapter->hw.media_type == em_media_type_internal_serdes) {
2179 		if (adapter->hw.mac_type == em_82545)
2180 			fiber_type = IFM_1000_LX;
2181 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2182 			    0, NULL);
2183 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2184 	} else {
2185 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2186 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2187 			    0, NULL);
2188 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2189 			    0, NULL);
2190 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2191 			    0, NULL);
2192 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
2193 			    0, NULL);
2194 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2195 	}
2196 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2197 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2198 }
2199 
2200 /*********************************************************************
2201  *
2202  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2203  *
2204  **********************************************************************/
2205 static void
2206 em_smartspeed(struct adapter *adapter)
2207 {
2208 	uint16_t phy_tmp;
2209 
2210 	if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
2211 	    !adapter->hw.autoneg ||
2212 	    !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2213 		return;
2214 
2215 	if (adapter->smartspeed == 0) {
2216 		/*
2217 		 * If Master/Slave config fault is asserted twice,
2218 		 * we assume back-to-back.
2219 		 */
2220 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2221 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2222 			return;
2223 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2224 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2225 			em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2226 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2227 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2228 				em_write_phy_reg(&adapter->hw,
2229 						 PHY_1000T_CTRL, phy_tmp);
2230 				adapter->smartspeed++;
2231 				if (adapter->hw.autoneg &&
2232 				    !em_phy_setup_autoneg(&adapter->hw) &&
2233 				    !em_read_phy_reg(&adapter->hw, PHY_CTRL,
2234 						     &phy_tmp)) {
2235 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2236 						    MII_CR_RESTART_AUTO_NEG);
2237 					em_write_phy_reg(&adapter->hw,
2238 							 PHY_CTRL, phy_tmp);
2239 				}
2240 			}
2241 		}
2242 		return;
2243 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2244 		/* If still no link, perhaps using 2/3 pair cable */
2245 		em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2246 		phy_tmp |= CR_1000T_MS_ENABLE;
2247 		em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2248 		if (adapter->hw.autoneg &&
2249 		    !em_phy_setup_autoneg(&adapter->hw) &&
2250 		    !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
2251 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2252 				    MII_CR_RESTART_AUTO_NEG);
2253 			em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
2254 		}
2255 	}
2256 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2257 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2258 		adapter->smartspeed = 0;
2259 }
2260 
2261 /*
2262  * Manage DMA'able memory.
2263  */
2264 static void
2265 em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2266 {
2267 	if (error)
2268 		return;
2269 	*(bus_addr_t *)arg = segs->ds_addr;
2270 }
2271 
2272 static int
2273 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2274 	      struct em_dma_alloc *dma)
2275 {
2276 	device_t dev = adapter->dev;
2277 	int error;
2278 
2279 	error = bus_dma_tag_create(NULL,		/* parent */
2280 				   EM_DBA_ALIGN, 0,	/* alignment, bounds */
2281 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2282 				   BUS_SPACE_MAXADDR,	/* highaddr */
2283 				   NULL, NULL,		/* filter, filterarg */
2284 				   size,		/* maxsize */
2285 				   1,			/* nsegments */
2286 				   size,		/* maxsegsize */
2287 				   0,			/* flags */
2288 				   &dma->dma_tag);
2289 	if (error) {
2290 		device_printf(dev, "%s: bus_dma_tag_create failed; error %d\n",
2291 			      __func__, error);
2292 		return error;
2293 	}
2294 
2295 	error = bus_dmamem_alloc(dma->dma_tag, (void**)&dma->dma_vaddr,
2296 				 BUS_DMA_WAITOK, &dma->dma_map);
2297 	if (error) {
2298 		device_printf(dev, "%s: bus_dmammem_alloc failed; "
2299 			      "size %llu, error %d\n",
2300 			      __func__, (uintmax_t)size, error);
2301 		goto fail;
2302 	}
2303 
2304 	error = bus_dmamap_load(dma->dma_tag, dma->dma_map,
2305 				dma->dma_vaddr, size,
2306 				em_dmamap_cb, &dma->dma_paddr,
2307 				BUS_DMA_WAITOK);
2308 	if (error) {
2309 		device_printf(dev, "%s: bus_dmamap_load failed; error %u\n",
2310 			      __func__, error);
2311 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2312 		goto fail;
2313 	}
2314 
2315 	return 0;
2316 fail:
2317 	bus_dma_tag_destroy(dma->dma_tag);
2318 	dma->dma_tag = NULL;
2319 	return error;
2320 }
2321 
2322 static void
2323 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2324 {
2325 	if (dma->dma_tag != NULL) {
2326 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2327 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2328 		bus_dma_tag_destroy(dma->dma_tag);
2329 		dma->dma_tag = NULL;
2330 	}
2331 }
2332 
2333 /*********************************************************************
2334  *
2335  *  Allocate and initialize transmit structures.
2336  *
2337  **********************************************************************/
2338 static int
2339 em_setup_transmit_structures(struct adapter *adapter)
2340 {
2341 	struct em_buffer *tx_buffer;
2342 	bus_size_t size;
2343 	int error, i;
2344 
2345 	/*
2346 	 * Setup DMA descriptor areas.
2347 	 */
2348 	size = roundup2(adapter->hw.max_frame_size, MCLBYTES);
2349 	if (bus_dma_tag_create(NULL,			/* parent */
2350 			       1, 0,			/* alignment, bounds */
2351 			       BUS_SPACE_MAXADDR,	/* lowaddr */
2352 			       BUS_SPACE_MAXADDR,	/* highaddr */
2353 			       NULL, NULL,		/* filter, filterarg */
2354 			       size,			/* maxsize */
2355 			       EM_MAX_SCATTER,		/* nsegments */
2356 			       size,			/* maxsegsize */
2357 			       0,			/* flags */
2358 			       &adapter->txtag)) {
2359 		device_printf(adapter->dev, "Unable to allocate TX DMA tag\n");
2360 		return(ENOMEM);
2361 	}
2362 
2363 	adapter->tx_buffer_area =
2364 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2365 			M_DEVBUF, M_WAITOK | M_ZERO);
2366 
2367 	bzero(adapter->tx_desc_base,
2368 	      sizeof(struct em_tx_desc) * adapter->num_tx_desc);
2369 	tx_buffer = adapter->tx_buffer_area;
2370 	for (i = 0; i < adapter->num_tx_desc; i++) {
2371 		error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
2372 		if (error) {
2373 			device_printf(adapter->dev,
2374 				      "Unable to create TX DMA map\n");
2375 			goto fail;
2376 		}
2377 		tx_buffer++;
2378 	}
2379 
2380 	adapter->next_avail_tx_desc = 0;
2381 	adapter->next_tx_to_clean = 0;
2382 
2383 	/* Set number of descriptors available */
2384 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2385 
2386 	/* Set checksum context */
2387 	adapter->active_checksum_context = OFFLOAD_NONE;
2388 
2389 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2390 			BUS_DMASYNC_PREWRITE);
2391 
2392 	return (0);
2393 fail:
2394 	em_free_transmit_structures(adapter);
2395 	return (error);
2396 }
2397 
2398 /*********************************************************************
2399  *
2400  *  Enable transmit unit.
2401  *
2402  **********************************************************************/
2403 static void
2404 em_initialize_transmit_unit(struct adapter *adapter)
2405 {
2406 	uint32_t reg_tctl;
2407 	uint32_t reg_tipg = 0;
2408 	uint64_t bus_addr;
2409 
2410 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2411 
2412 	/* Setup the Base and Length of the Tx Descriptor Ring */
2413 	bus_addr = adapter->txdma.dma_paddr;
2414 	E1000_WRITE_REG(&adapter->hw, TDLEN,
2415 			adapter->num_tx_desc * sizeof(struct em_tx_desc));
2416 	E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
2417 	E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
2418 
2419 	/* Setup the HW Tx Head and Tail descriptor pointers */
2420 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
2421 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
2422 
2423 	HW_DEBUGOUT2("Base = %x, Length = %x\n",
2424 		     E1000_READ_REG(&adapter->hw, TDBAL),
2425 		     E1000_READ_REG(&adapter->hw, TDLEN));
2426 
2427 	/* Set the default values for the Tx Inter Packet Gap timer */
2428 	switch (adapter->hw.mac_type) {
2429 	case em_82542_rev2_0:
2430 	case em_82542_rev2_1:
2431 		reg_tipg = DEFAULT_82542_TIPG_IPGT;
2432 		reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2433 		reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2434 		break;
2435 	case em_80003es2lan:
2436 		reg_tipg = DEFAULT_82543_TIPG_IPGR1;
2437 		reg_tipg |=
2438 		    DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2439 		break;
2440 	default:
2441 		if (adapter->hw.media_type == em_media_type_fiber ||
2442 		    adapter->hw.media_type == em_media_type_internal_serdes)
2443 			reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2444 		else
2445 			reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2446 		reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2447 		reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2448 	}
2449 
2450 	E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
2451 	E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
2452 	if (adapter->hw.mac_type >= em_82540) {
2453 		E1000_WRITE_REG(&adapter->hw, TADV,
2454 				adapter->tx_abs_int_delay.value);
2455 	}
2456 
2457 	/* Program the Transmit Control Register */
2458 	reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
2459 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2460 	if (adapter->hw.mac_type >= em_82571)
2461 		reg_tctl |= E1000_TCTL_MULR;
2462 	if (adapter->link_duplex == 1)
2463 		reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2464 	else
2465 		reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2466 
2467 	/* This write will effectively turn on the transmit unit. */
2468 	E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
2469 
2470 	/* Setup Transmit Descriptor Base Settings */
2471 	adapter->txd_cmd = E1000_TXD_CMD_IFCS;
2472 
2473 	if (adapter->tx_int_delay.value > 0)
2474 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2475 }
2476 
2477 /*********************************************************************
2478  *
2479  *  Free all transmit related data structures.
2480  *
2481  **********************************************************************/
2482 static void
2483 em_free_transmit_structures(struct adapter *adapter)
2484 {
2485 	struct em_buffer *tx_buffer;
2486 	int i;
2487 
2488 	INIT_DEBUGOUT("free_transmit_structures: begin");
2489 
2490 	if (adapter->tx_buffer_area != NULL) {
2491 		tx_buffer = adapter->tx_buffer_area;
2492 		for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
2493 			if (tx_buffer->m_head != NULL) {
2494 				bus_dmamap_unload(adapter->txtag,
2495 						  tx_buffer->map);
2496 				m_freem(tx_buffer->m_head);
2497 			}
2498 
2499 			if (tx_buffer->map != NULL) {
2500 				bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2501 				tx_buffer->map = NULL;
2502  			}
2503 			tx_buffer->m_head = NULL;
2504 		}
2505 	}
2506 	if (adapter->tx_buffer_area != NULL) {
2507 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2508 		adapter->tx_buffer_area = NULL;
2509 	}
2510 	if (adapter->txtag != NULL) {
2511 		bus_dma_tag_destroy(adapter->txtag);
2512 		adapter->txtag = NULL;
2513 	}
2514 }
2515 
2516 /*********************************************************************
2517  *
2518  *  The offload context needs to be set when we transfer the first
2519  *  packet of a particular protocol (TCP/UDP). We change the
2520  *  context only if the protocol type changes.
2521  *
2522  **********************************************************************/
2523 static void
2524 em_transmit_checksum_setup(struct adapter *adapter,
2525 			   struct mbuf *mp,
2526 			   uint32_t *txd_upper,
2527 			   uint32_t *txd_lower)
2528 {
2529 	struct em_context_desc *TXD;
2530 	struct em_buffer *tx_buffer;
2531 	int curr_txd;
2532 
2533 	if (mp->m_pkthdr.csum_flags) {
2534 		if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
2535 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2536 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2537 			if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
2538 				return;
2539 			else
2540 				adapter->active_checksum_context = OFFLOAD_TCP_IP;
2541 		} else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
2542 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2543 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2544 			if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
2545 				return;
2546 			else
2547 				adapter->active_checksum_context = OFFLOAD_UDP_IP;
2548 		} else {
2549 			*txd_upper = 0;
2550 			*txd_lower = 0;
2551 			return;
2552 		}
2553 	} else {
2554 		*txd_upper = 0;
2555 		*txd_lower = 0;
2556 		return;
2557 	}
2558 
2559 	/*
2560 	 * If we reach this point, the checksum offload context
2561 	 * needs to be reset.
2562 	 */
2563 	curr_txd = adapter->next_avail_tx_desc;
2564 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2565 	TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
2566 
2567 	TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
2568 	TXD->lower_setup.ip_fields.ipcso =
2569 	    ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
2570 	TXD->lower_setup.ip_fields.ipcse =
2571 	    htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
2572 
2573 	TXD->upper_setup.tcp_fields.tucss =
2574 	    ETHER_HDR_LEN + sizeof(struct ip);
2575 	TXD->upper_setup.tcp_fields.tucse = htole16(0);
2576 
2577 	if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
2578 		TXD->upper_setup.tcp_fields.tucso =
2579 			ETHER_HDR_LEN + sizeof(struct ip) +
2580 			offsetof(struct tcphdr, th_sum);
2581 	} else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
2582 		TXD->upper_setup.tcp_fields.tucso =
2583 			ETHER_HDR_LEN + sizeof(struct ip) +
2584 			offsetof(struct udphdr, uh_sum);
2585 	}
2586 
2587 	TXD->tcp_seg_setup.data = htole32(0);
2588 	TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
2589 
2590 	tx_buffer->m_head = NULL;
2591 	tx_buffer->next_eop = -1;
2592 
2593 	if (++curr_txd == adapter->num_tx_desc)
2594 		curr_txd = 0;
2595 
2596 	adapter->num_tx_desc_avail--;
2597 	adapter->next_avail_tx_desc = curr_txd;
2598 }
2599 
2600 /**********************************************************************
2601  *
2602  *  Examine each tx_buffer in the used queue. If the hardware is done
2603  *  processing the packet then free associated resources. The
2604  *  tx_buffer is put back on the free queue.
2605  *
2606  **********************************************************************/
2607 
2608 static void
2609 em_txeof(struct adapter *adapter)
2610 {
2611 	int first, last, done, num_avail;
2612 	struct em_buffer *tx_buffer;
2613 	struct em_tx_desc *tx_desc, *eop_desc;
2614 	struct ifnet *ifp = &adapter->interface_data.ac_if;
2615 
2616 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2617 		return;
2618 
2619 	num_avail = adapter->num_tx_desc_avail;
2620 	first = adapter->next_tx_to_clean;
2621 	tx_desc = &adapter->tx_desc_base[first];
2622 	tx_buffer = &adapter->tx_buffer_area[first];
2623 	last = tx_buffer->next_eop;
2624 	KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2625 	eop_desc = &adapter->tx_desc_base[last];
2626 
2627 	/*
2628 	 * Now caculate the terminating index for the cleanup loop below
2629 	 */
2630 	if (++last == adapter->num_tx_desc)
2631 		last = 0;
2632 	done = last;
2633 
2634 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2635 			BUS_DMASYNC_POSTREAD);
2636 
2637 	while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2638 		while (first != done) {
2639 			tx_desc->upper.data = 0;
2640 			tx_desc->lower.data = 0;
2641 			num_avail++;
2642 
2643 			logif(pkt_txclean);
2644 
2645 			if (tx_buffer->m_head) {
2646 				ifp->if_opackets++;
2647 				bus_dmamap_sync(adapter->txtag, tx_buffer->map,
2648 						BUS_DMASYNC_POSTWRITE);
2649 				bus_dmamap_unload(adapter->txtag,
2650 						  tx_buffer->map);
2651 
2652 				m_freem(tx_buffer->m_head);
2653 				tx_buffer->m_head = NULL;
2654 			}
2655 			tx_buffer->next_eop = -1;
2656 
2657 			if (++first == adapter->num_tx_desc)
2658 				first = 0;
2659 
2660 			tx_buffer = &adapter->tx_buffer_area[first];
2661 			tx_desc = &adapter->tx_desc_base[first];
2662 		}
2663 		/* See if we can continue to the next packet */
2664 		last = tx_buffer->next_eop;
2665 		if (last != -1) {
2666 			KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2667 			eop_desc = &adapter->tx_desc_base[last];
2668 			if (++last == adapter->num_tx_desc)
2669 				last = 0;
2670 			done = last;
2671 		} else {
2672 			break;
2673 		}
2674 	}
2675 
2676 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2677 			BUS_DMASYNC_PREWRITE);
2678 
2679 	adapter->next_tx_to_clean = first;
2680 
2681 	/*
2682 	 * If we have enough room, clear IFF_OACTIVE to tell the stack
2683 	 * that it is OK to send packets.
2684 	 * If there are no pending descriptors, clear the timeout. Otherwise,
2685 	 * if some descriptors have been freed, restart the timeout.
2686 	 */
2687 	if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
2688 		ifp->if_flags &= ~IFF_OACTIVE;
2689 		if (num_avail == adapter->num_tx_desc)
2690 			ifp->if_timer = 0;
2691 		else if (num_avail == adapter->num_tx_desc_avail)
2692 			ifp->if_timer = EM_TX_TIMEOUT;
2693 	}
2694 	adapter->num_tx_desc_avail = num_avail;
2695 }
2696 
2697 /*********************************************************************
2698  *
2699  *  Get a buffer from system mbuf buffer pool.
2700  *
2701  **********************************************************************/
2702 static int
2703 em_get_buf(int i, struct adapter *adapter, struct mbuf *nmp, int how)
2704 {
2705 	struct mbuf *mp = nmp;
2706 	struct em_buffer *rx_buffer;
2707 	struct ifnet *ifp;
2708 	bus_addr_t paddr;
2709 	int error;
2710 
2711 	ifp = &adapter->interface_data.ac_if;
2712 
2713 	if (mp == NULL) {
2714 		mp = m_getcl(how, MT_DATA, M_PKTHDR);
2715 		if (mp == NULL) {
2716 			adapter->mbuf_cluster_failed++;
2717 			return (ENOBUFS);
2718 		}
2719 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2720 	} else {
2721 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2722 		mp->m_data = mp->m_ext.ext_buf;
2723 		mp->m_next = NULL;
2724 	}
2725 
2726 	if (ifp->if_mtu <= ETHERMTU)
2727 		m_adj(mp, ETHER_ALIGN);
2728 
2729 	rx_buffer = &adapter->rx_buffer_area[i];
2730 
2731 	/*
2732 	 * Using memory from the mbuf cluster pool, invoke the
2733 	 * bus_dma machinery to arrange the memory mapping.
2734 	 */
2735 	error = bus_dmamap_load(adapter->rxtag, rx_buffer->map,
2736 				mtod(mp, void *), mp->m_len,
2737 				em_dmamap_cb, &paddr, 0);
2738 	if (error) {
2739 		m_freem(mp);
2740 		return (error);
2741 	}
2742 	rx_buffer->m_head = mp;
2743 	adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
2744 	bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
2745 
2746 	return (0);
2747 }
2748 
2749 /*********************************************************************
2750  *
2751  *  Allocate memory for rx_buffer structures. Since we use one
2752  *  rx_buffer per received packet, the maximum number of rx_buffer's
2753  *  that we'll need is equal to the number of receive descriptors
2754  *  that we've allocated.
2755  *
2756  **********************************************************************/
2757 static int
2758 em_allocate_receive_structures(struct adapter *adapter)
2759 {
2760 	int i, error, size;
2761 	struct em_buffer *rx_buffer;
2762 
2763 	size = adapter->num_rx_desc * sizeof(struct em_buffer);
2764 	adapter->rx_buffer_area = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
2765 
2766 	error = bus_dma_tag_create(NULL,		/* parent */
2767 				   1, 0,		/* alignment, bounds */
2768 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2769 				   BUS_SPACE_MAXADDR,	/* highaddr */
2770 				   NULL, NULL,		/* filter, filterarg */
2771 				   MCLBYTES,		/* maxsize */
2772 				   1,			/* nsegments */
2773 				   MCLBYTES,		/* maxsegsize */
2774 				   0,			/* flags */
2775 				   &adapter->rxtag);
2776 	if (error) {
2777 		device_printf(adapter->dev, "%s: bus_dma_tag_create failed; "
2778 			      "error %u\n", __func__, error);
2779 		goto fail;
2780 	}
2781 
2782 	rx_buffer = adapter->rx_buffer_area;
2783 	for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2784 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
2785 					  &rx_buffer->map);
2786 		if (error) {
2787 			device_printf(adapter->dev,
2788 				      "%s: bus_dmamap_create failed; "
2789 				      "error %u\n", __func__, error);
2790 			goto fail;
2791 		}
2792 	}
2793 
2794 	for (i = 0; i < adapter->num_rx_desc; i++) {
2795 		error = em_get_buf(i, adapter, NULL, MB_DONTWAIT);
2796 		if (error)
2797 			goto fail;
2798 	}
2799 
2800 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2801 			BUS_DMASYNC_PREWRITE);
2802 
2803 	return (0);
2804 fail:
2805 	em_free_receive_structures(adapter);
2806 	return (error);
2807 }
2808 
2809 /*********************************************************************
2810  *
2811  *  Allocate and initialize receive structures.
2812  *
2813  **********************************************************************/
2814 static int
2815 em_setup_receive_structures(struct adapter *adapter)
2816 {
2817 	int error;
2818 
2819 	bzero(adapter->rx_desc_base,
2820 	      sizeof(struct em_rx_desc) * adapter->num_rx_desc);
2821 
2822 	error = em_allocate_receive_structures(adapter);
2823 	if (error)
2824 		return (error);
2825 
2826 	/* Setup our descriptor pointers */
2827 	adapter->next_rx_desc_to_check = 0;
2828 
2829 	return (0);
2830 }
2831 
2832 /*********************************************************************
2833  *
2834  *  Enable receive unit.
2835  *
2836  **********************************************************************/
2837 static void
2838 em_initialize_receive_unit(struct adapter *adapter)
2839 {
2840 	uint32_t reg_rctl;
2841 	uint32_t reg_rxcsum;
2842 	struct ifnet *ifp;
2843 	uint64_t bus_addr;
2844 
2845 	INIT_DEBUGOUT("em_initialize_receive_unit: begin");
2846 
2847 	ifp = &adapter->interface_data.ac_if;
2848 
2849 	/*
2850 	 * Make sure receives are disabled while setting
2851 	 * up the descriptor ring
2852 	 */
2853 	E1000_WRITE_REG(&adapter->hw, RCTL, 0);
2854 
2855 	/* Set the Receive Delay Timer Register */
2856 	E1000_WRITE_REG(&adapter->hw, RDTR,
2857 			adapter->rx_int_delay.value | E1000_RDT_FPDB);
2858 
2859 	if(adapter->hw.mac_type >= em_82540) {
2860 		E1000_WRITE_REG(&adapter->hw, RADV,
2861 				adapter->rx_abs_int_delay.value);
2862 
2863 		/* Set the interrupt throttling rate in 256ns increments */
2864 		if (em_int_throttle_ceil) {
2865 			E1000_WRITE_REG(&adapter->hw, ITR,
2866 				1000000000 / 256 / em_int_throttle_ceil);
2867 		} else {
2868 			E1000_WRITE_REG(&adapter->hw, ITR, 0);
2869 		}
2870 	}
2871 
2872 	/* Setup the Base and Length of the Rx Descriptor Ring */
2873 	bus_addr = adapter->rxdma.dma_paddr;
2874 	E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
2875 			sizeof(struct em_rx_desc));
2876 	E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
2877 	E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
2878 
2879 	/* Setup the Receive Control Register */
2880 	reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2881 		   E1000_RCTL_RDMTS_HALF |
2882 		   (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
2883 
2884 	if (adapter->hw.tbi_compatibility_on == TRUE)
2885 		reg_rctl |= E1000_RCTL_SBP;
2886 
2887 	switch (adapter->rx_buffer_len) {
2888 	default:
2889 	case EM_RXBUFFER_2048:
2890 		reg_rctl |= E1000_RCTL_SZ_2048;
2891 		break;
2892 	case EM_RXBUFFER_4096:
2893 		reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX |
2894 			    E1000_RCTL_LPE;
2895 		break;
2896 	case EM_RXBUFFER_8192:
2897 		reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX |
2898 			    E1000_RCTL_LPE;
2899 		break;
2900 	case EM_RXBUFFER_16384:
2901 		reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX |
2902 			    E1000_RCTL_LPE;
2903 		break;
2904 	}
2905 
2906 	if (ifp->if_mtu > ETHERMTU)
2907 		reg_rctl |= E1000_RCTL_LPE;
2908 
2909 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
2910 	if ((adapter->hw.mac_type >= em_82543) &&
2911 	    (ifp->if_capenable & IFCAP_RXCSUM)) {
2912 		reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
2913 		reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2914 		E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
2915 	}
2916 
2917 #ifdef EM_X60_WORKAROUND
2918 	if (adapter->hw.mac_type == em_82573)
2919 		E1000_WRITE_REG(&adapter->hw, RDTR, 32);
2920 #endif
2921 
2922 	/* Enable Receives */
2923 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
2924 
2925 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
2926 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
2927 	E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
2928 }
2929 
2930 /*********************************************************************
2931  *
2932  *  Free receive related data structures.
2933  *
2934  **********************************************************************/
2935 static void
2936 em_free_receive_structures(struct adapter *adapter)
2937 {
2938 	struct em_buffer *rx_buffer;
2939 	int i;
2940 
2941 	INIT_DEBUGOUT("free_receive_structures: begin");
2942 
2943 	if (adapter->rx_buffer_area != NULL) {
2944 		rx_buffer = adapter->rx_buffer_area;
2945 		for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2946 			if (rx_buffer->m_head != NULL) {
2947 				bus_dmamap_unload(adapter->rxtag,
2948 						  rx_buffer->map);
2949 				m_freem(rx_buffer->m_head);
2950 				rx_buffer->m_head = NULL;
2951 			}
2952 			if (rx_buffer->map != NULL) {
2953 				bus_dmamap_destroy(adapter->rxtag,
2954 						   rx_buffer->map);
2955 				rx_buffer->map = NULL;
2956 			}
2957 		}
2958 	}
2959 	if (adapter->rx_buffer_area != NULL) {
2960 		kfree(adapter->rx_buffer_area, M_DEVBUF);
2961 		adapter->rx_buffer_area = NULL;
2962 	}
2963 	if (adapter->rxtag != NULL) {
2964 		bus_dma_tag_destroy(adapter->rxtag);
2965 		adapter->rxtag = NULL;
2966 	}
2967 }
2968 
2969 /*********************************************************************
2970  *
2971  *  This routine executes in interrupt context. It replenishes
2972  *  the mbufs in the descriptor and sends data which has been
2973  *  dma'ed into host memory to upper layer.
2974  *
2975  *  We loop at most count times if count is > 0, or until done if
2976  *  count < 0.
2977  *
2978  *********************************************************************/
2979 static void
2980 em_rxeof(struct adapter *adapter, int count)
2981 {
2982 	struct ifnet *ifp;
2983 	struct mbuf *mp;
2984 	uint8_t accept_frame = 0;
2985 	uint8_t eop = 0;
2986 	uint16_t len, desc_len, prev_len_adj;
2987 	int i;
2988 
2989 	/* Pointer to the receive descriptor being examined. */
2990 	struct em_rx_desc *current_desc;
2991 
2992 	ifp = &adapter->interface_data.ac_if;
2993 	i = adapter->next_rx_desc_to_check;
2994 	current_desc = &adapter->rx_desc_base[i];
2995 
2996 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2997 			BUS_DMASYNC_POSTREAD);
2998 
2999 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3000 		return;
3001 
3002 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3003 		logif(pkt_receive);
3004 		mp = adapter->rx_buffer_area[i].m_head;
3005 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3006 				BUS_DMASYNC_POSTREAD);
3007 		bus_dmamap_unload(adapter->rxtag,
3008 				  adapter->rx_buffer_area[i].map);
3009 
3010 		accept_frame = 1;
3011 		prev_len_adj = 0;
3012 		desc_len = le16toh(current_desc->length);
3013 		if (current_desc->status & E1000_RXD_STAT_EOP) {
3014 			count--;
3015 			eop = 1;
3016 			if (desc_len < ETHER_CRC_LEN) {
3017 				len = 0;
3018 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3019 			} else {
3020 				len = desc_len - ETHER_CRC_LEN;
3021 			}
3022 		} else {
3023 			eop = 0;
3024 			len = desc_len;
3025 		}
3026 
3027 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3028 			uint8_t last_byte;
3029 			uint32_t pkt_len = desc_len;
3030 
3031 			if (adapter->fmp != NULL)
3032 				pkt_len += adapter->fmp->m_pkthdr.len;
3033 
3034 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3035 
3036 			if (TBI_ACCEPT(&adapter->hw, current_desc->status,
3037 				       current_desc->errors,
3038 				       pkt_len, last_byte)) {
3039 				em_tbi_adjust_stats(&adapter->hw,
3040 						    &adapter->stats,
3041 						    pkt_len,
3042 						    adapter->hw.mac_addr);
3043 				if (len > 0)
3044 					len--;
3045 			} else {
3046 				accept_frame = 0;
3047 			}
3048 		}
3049 
3050 		if (accept_frame) {
3051 			if (em_get_buf(i, adapter, NULL, MB_DONTWAIT) == ENOBUFS) {
3052 				adapter->dropped_pkts++;
3053 				em_get_buf(i, adapter, mp, MB_DONTWAIT);
3054 				if (adapter->fmp != NULL)
3055 					m_freem(adapter->fmp);
3056 				adapter->fmp = NULL;
3057 				adapter->lmp = NULL;
3058 				goto skip;
3059 			}
3060 
3061 			/* Assign correct length to the current fragment */
3062 			mp->m_len = len;
3063 
3064 			if (adapter->fmp == NULL) {
3065 				mp->m_pkthdr.len = len;
3066 				adapter->fmp = mp;	 /* Store the first mbuf */
3067 				adapter->lmp = mp;
3068 			} else {
3069 				/* Chain mbuf's together */
3070 				/*
3071 				 * Adjust length of previous mbuf in chain if
3072 				 * we received less than 4 bytes in the last
3073 				 * descriptor.
3074 				 */
3075 				if (prev_len_adj > 0) {
3076 					adapter->lmp->m_len -= prev_len_adj;
3077 					adapter->fmp->m_pkthdr.len -= prev_len_adj;
3078 				}
3079 				adapter->lmp->m_next = mp;
3080 				adapter->lmp = adapter->lmp->m_next;
3081 				adapter->fmp->m_pkthdr.len += len;
3082 			}
3083 
3084 			if (eop) {
3085 				adapter->fmp->m_pkthdr.rcvif = ifp;
3086 				ifp->if_ipackets++;
3087 
3088 				em_receive_checksum(adapter, current_desc,
3089 						    adapter->fmp);
3090 				if (current_desc->status & E1000_RXD_STAT_VP) {
3091 					VLAN_INPUT_TAG(adapter->fmp,
3092 						       (current_desc->special &
3093 							E1000_RXD_SPC_VLAN_MASK));
3094 				} else {
3095 					ifp->if_input(ifp, adapter->fmp);
3096 				}
3097 				adapter->fmp = NULL;
3098 				adapter->lmp = NULL;
3099 			}
3100 		} else {
3101 			adapter->dropped_pkts++;
3102 			em_get_buf(i, adapter, mp, MB_DONTWAIT);
3103 			if (adapter->fmp != NULL)
3104 				m_freem(adapter->fmp);
3105 			adapter->fmp = NULL;
3106 			adapter->lmp = NULL;
3107 		}
3108 
3109 skip:
3110 		/* Zero out the receive descriptors status. */
3111 		current_desc->status = 0;
3112 
3113 		/* Advance our pointers to the next descriptor. */
3114 		if (++i == adapter->num_rx_desc) {
3115 			i = 0;
3116 			current_desc = adapter->rx_desc_base;
3117 		} else {
3118 			current_desc++;
3119 		}
3120 	}
3121 
3122 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3123 			BUS_DMASYNC_PREWRITE);
3124 
3125 	adapter->next_rx_desc_to_check = i;
3126 
3127 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3128 	if (--i < 0)
3129 		i = adapter->num_rx_desc - 1;
3130 
3131 	E1000_WRITE_REG(&adapter->hw, RDT, i);
3132 }
3133 
3134 /*********************************************************************
3135  *
3136  *  Verify that the hardware indicated that the checksum is valid.
3137  *  Inform the stack about the status of checksum so that stack
3138  *  doesn't spend time verifying the checksum.
3139  *
3140  *********************************************************************/
3141 static void
3142 em_receive_checksum(struct adapter *adapter,
3143 		    struct em_rx_desc *rx_desc,
3144 		    struct mbuf *mp)
3145 {
3146 	/* 82543 or newer only */
3147 	if ((adapter->hw.mac_type < em_82543) ||
3148 	    /* Ignore Checksum bit is set */
3149 	    (rx_desc->status & E1000_RXD_STAT_IXSM)) {
3150 		mp->m_pkthdr.csum_flags = 0;
3151 		return;
3152 	}
3153 
3154 	if (rx_desc->status & E1000_RXD_STAT_IPCS) {
3155 		/* Did it pass? */
3156 		if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3157 			/* IP Checksum Good */
3158 			mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
3159 			mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3160 		} else {
3161 			mp->m_pkthdr.csum_flags = 0;
3162 		}
3163 	}
3164 
3165 	if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
3166 		/* Did it pass? */
3167 		if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3168 			mp->m_pkthdr.csum_flags |=
3169 			(CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
3170 			 CSUM_FRAG_NOT_CHECKED);
3171 			mp->m_pkthdr.csum_data = htons(0xffff);
3172 		}
3173 	}
3174 }
3175 
3176 
3177 static void
3178 em_enable_vlans(struct adapter *adapter)
3179 {
3180 	uint32_t ctrl;
3181 
3182 	E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
3183 
3184 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3185 	ctrl |= E1000_CTRL_VME;
3186 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3187 }
3188 
3189 static void
3190 em_disable_vlans(struct adapter *adapter)
3191 {
3192 	uint32_t ctrl;
3193 
3194 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3195 	ctrl &= ~E1000_CTRL_VME;
3196 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3197 }
3198 
3199 /*
3200  * note: we must call bus_enable_intr() prior to enabling the hardware
3201  * interrupt and bus_disable_intr() after disabling the hardware interrupt
3202  * in order to avoid handler execution races from scheduled interrupt
3203  * threads.
3204  */
3205 static void
3206 em_enable_intr(struct adapter *adapter)
3207 {
3208 	struct ifnet *ifp = &adapter->interface_data.ac_if;
3209 
3210 	if ((ifp->if_flags & IFF_POLLING) == 0) {
3211 		lwkt_serialize_handler_enable(ifp->if_serializer);
3212 		E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
3213 	}
3214 }
3215 
3216 static void
3217 em_disable_intr(struct adapter *adapter)
3218 {
3219 	/*
3220 	 * The first version of 82542 had an errata where when link was forced
3221 	 * it would stay up even up even if the cable was disconnected.
3222 	 * Sequence errors were used to detect the disconnect and then the
3223 	 * driver would unforce the link.  This code in the in the ISR.  For
3224 	 * this to work correctly the Sequence error interrupt had to be
3225 	 * enabled all the time.
3226 	 */
3227 	if (adapter->hw.mac_type == em_82542_rev2_0) {
3228 		E1000_WRITE_REG(&adapter->hw, IMC,
3229 				(0xffffffff & ~E1000_IMC_RXSEQ));
3230 	} else {
3231 		E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
3232 	}
3233 
3234 	lwkt_serialize_handler_disable(adapter->interface_data.ac_if.if_serializer);
3235 }
3236 
3237 static int
3238 em_is_valid_ether_addr(uint8_t *addr)
3239 {
3240 	static const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3241 
3242 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3243 		return (FALSE);
3244 	else
3245 		return (TRUE);
3246 }
3247 
3248 void
3249 em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3250 {
3251 	pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
3252 }
3253 
3254 void
3255 em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3256 {
3257 	*value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
3258 }
3259 
3260 void
3261 em_pci_set_mwi(struct em_hw *hw)
3262 {
3263 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3264 			 (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
3265 }
3266 
3267 void
3268 em_pci_clear_mwi(struct em_hw *hw)
3269 {
3270 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3271 			 (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
3272 }
3273 
3274 uint32_t
3275 em_io_read(struct em_hw *hw, unsigned long port)
3276 {
3277 	struct em_osdep *io = hw->back;
3278 
3279 	return bus_space_read_4(io->io_bus_space_tag,
3280 				io->io_bus_space_handle, port);
3281 }
3282 
3283 void
3284 em_io_write(struct em_hw *hw, unsigned long port, uint32_t value)
3285 {
3286 	struct em_osdep *io = hw->back;
3287 
3288 	bus_space_write_4(io->io_bus_space_tag,
3289 			  io->io_bus_space_handle, port, value);
3290 }
3291 
3292 /*
3293  * We may eventually really do this, but its unnecessary
3294  * for now so we just return unsupported.
3295  */
3296 int32_t
3297 em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3298 {
3299 	return (0);
3300 }
3301 
3302 
3303 /*********************************************************************
3304  * 82544 Coexistence issue workaround.
3305  *    There are 2 issues.
3306  *	1. Transmit Hang issue.
3307  *    To detect this issue, following equation can be used...
3308  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3309  *          If SUM[3:0] is in between 1 to 4, we will have this issue.
3310  *
3311  *	2. DAC issue.
3312  *    To detect this issue, following equation can be used...
3313  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3314  *          If SUM[3:0] is in between 9 to c, we will have this issue.
3315  *
3316  *
3317  *    WORKAROUND:
3318  *          Make sure we do not have ending address as 1,2,3,4(Hang) or
3319  *          9,a,b,c (DAC)
3320  *
3321 *************************************************************************/
3322 static uint32_t
3323 em_fill_descriptors(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3324 {
3325 	/* Since issue is sensitive to length and address.*/
3326 	/* Let us first check the address...*/
3327 	uint32_t safe_terminator;
3328 	if (length <= 4) {
3329 		desc_array->descriptor[0].address = address;
3330 		desc_array->descriptor[0].length = length;
3331 		desc_array->elements = 1;
3332 		return (desc_array->elements);
3333 	}
3334 	safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3335 	/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3336 	if (safe_terminator == 0 ||
3337 	    (safe_terminator > 4 && safe_terminator < 9) ||
3338 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3339 		desc_array->descriptor[0].address = address;
3340 		desc_array->descriptor[0].length = length;
3341 		desc_array->elements = 1;
3342 		return (desc_array->elements);
3343 	}
3344 
3345 	desc_array->descriptor[0].address = address;
3346 	desc_array->descriptor[0].length = length - 4;
3347 	desc_array->descriptor[1].address = address + (length - 4);
3348 	desc_array->descriptor[1].length = 4;
3349 	desc_array->elements = 2;
3350 	return (desc_array->elements);
3351 }
3352 
3353 /**********************************************************************
3354  *
3355  *  Update the board statistics counters.
3356  *
3357  **********************************************************************/
3358 static void
3359 em_update_stats_counters(struct adapter *adapter)
3360 {
3361 	struct ifnet   *ifp;
3362 
3363 	if (adapter->hw.media_type == em_media_type_copper ||
3364 	    (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
3365 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
3366 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
3367 	}
3368 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
3369 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
3370 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
3371 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
3372 
3373 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
3374 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
3375 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
3376 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
3377 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
3378 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
3379 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
3380 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
3381 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
3382 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
3383 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
3384 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
3385 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
3386 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
3387 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
3388 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
3389 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
3390 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
3391 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
3392 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
3393 
3394 	/* For the 64-bit byte counters the low dword must be read first. */
3395 	/* Both registers clear on the read of the high dword */
3396 
3397 	adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
3398 	adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
3399 	adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
3400 	adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
3401 
3402 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
3403 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
3404 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
3405 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
3406 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
3407 
3408 	adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
3409 	adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
3410 	adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
3411 	adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
3412 
3413 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
3414 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
3415 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
3416 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
3417 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
3418 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
3419 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
3420 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
3421 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
3422 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
3423 
3424 	if (adapter->hw.mac_type >= em_82543) {
3425 		adapter->stats.algnerrc +=
3426 		    E1000_READ_REG(&adapter->hw, ALGNERRC);
3427 		adapter->stats.rxerrc +=
3428 		    E1000_READ_REG(&adapter->hw, RXERRC);
3429 		adapter->stats.tncrs +=
3430 		    E1000_READ_REG(&adapter->hw, TNCRS);
3431 		adapter->stats.cexterr +=
3432 		    E1000_READ_REG(&adapter->hw, CEXTERR);
3433 		adapter->stats.tsctc +=
3434 		    E1000_READ_REG(&adapter->hw, TSCTC);
3435 		adapter->stats.tsctfc +=
3436 		    E1000_READ_REG(&adapter->hw, TSCTFC);
3437 	}
3438 	ifp = &adapter->interface_data.ac_if;
3439 
3440 	/* Fill out the OS statistics structure */
3441 	ifp->if_collisions = adapter->stats.colc;
3442 
3443 	/* Rx Errors */
3444 	ifp->if_ierrors =
3445 		adapter->dropped_pkts +
3446 		adapter->stats.rxerrc +
3447 		adapter->stats.crcerrs +
3448 		adapter->stats.algnerrc +
3449 		adapter->stats.ruc + adapter->stats.roc +
3450 		adapter->stats.mpc + adapter->stats.cexterr +
3451 		adapter->rx_overruns;
3452 
3453 	/* Tx Errors */
3454 	ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol +
3455 			  adapter->watchdog_timeouts;
3456 }
3457 
3458 
3459 /**********************************************************************
3460  *
3461  *  This routine is called only when em_display_debug_stats is enabled.
3462  *  This routine provides a way to take a look at important statistics
3463  *  maintained by the driver and hardware.
3464  *
3465  **********************************************************************/
3466 static void
3467 em_print_debug_info(struct adapter *adapter)
3468 {
3469 	device_t dev= adapter->dev;
3470 	uint8_t *hw_addr = adapter->hw.hw_addr;
3471 
3472 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3473 	device_printf(dev, "CTRL  = 0x%x RCTL = 0x%x\n",
3474 		      E1000_READ_REG(&adapter->hw, CTRL),
3475 		      E1000_READ_REG(&adapter->hw, RCTL));
3476 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk\n",
3477 		      ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),
3478 		      (E1000_READ_REG(&adapter->hw, PBA) & 0xffff));
3479 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3480 		      adapter->hw.fc_high_water, adapter->hw.fc_low_water);
3481 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3482 		      E1000_READ_REG(&adapter->hw, TIDV),
3483 		      E1000_READ_REG(&adapter->hw, TADV));
3484 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3485 		      E1000_READ_REG(&adapter->hw, RDTR),
3486 		      E1000_READ_REG(&adapter->hw, RADV));
3487 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3488 		      (long long)adapter->tx_fifo_wrk_cnt,
3489 		      (long long)adapter->tx_fifo_reset_cnt);
3490 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3491 		      E1000_READ_REG(&adapter->hw, TDH),
3492 		      E1000_READ_REG(&adapter->hw, TDT));
3493 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3494 		      adapter->num_tx_desc_avail);
3495 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3496 		      adapter->no_tx_desc_avail1);
3497 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3498 		      adapter->no_tx_desc_avail2);
3499 	device_printf(dev, "Std mbuf failed = %ld\n",
3500 		      adapter->mbuf_alloc_failed);
3501 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3502 		      adapter->mbuf_cluster_failed);
3503 	device_printf(dev, "Driver dropped packets = %ld\n",
3504 		      adapter->dropped_pkts);
3505 }
3506 
3507 static void
3508 em_print_hw_stats(struct adapter *adapter)
3509 {
3510 	device_t dev= adapter->dev;
3511 
3512 	device_printf(dev, "Excessive collisions = %lld\n",
3513 		      (long long)adapter->stats.ecol);
3514 	device_printf(dev, "Symbol errors = %lld\n",
3515 		      (long long)adapter->stats.symerrs);
3516 	device_printf(dev, "Sequence errors = %lld\n",
3517 		      (long long)adapter->stats.sec);
3518 	device_printf(dev, "Defer count = %lld\n",
3519 		      (long long)adapter->stats.dc);
3520 
3521 	device_printf(dev, "Missed Packets = %lld\n",
3522 		      (long long)adapter->stats.mpc);
3523 	device_printf(dev, "Receive No Buffers = %lld\n",
3524 		      (long long)adapter->stats.rnbc);
3525 	/* RLEC is inaccurate on some hardware, calculate our own. */
3526 	device_printf(dev, "Receive Length errors = %lld\n",
3527 		      (long long)adapter->stats.roc +
3528 		      (long long)adapter->stats.ruc);
3529 	device_printf(dev, "Receive errors = %lld\n",
3530 		      (long long)adapter->stats.rxerrc);
3531 	device_printf(dev, "Crc errors = %lld\n",
3532 		      (long long)adapter->stats.crcerrs);
3533 	device_printf(dev, "Alignment errors = %lld\n",
3534 		      (long long)adapter->stats.algnerrc);
3535 	device_printf(dev, "Carrier extension errors = %lld\n",
3536 		      (long long)adapter->stats.cexterr);
3537 	device_printf(dev, "RX overruns = %lu\n", adapter->rx_overruns);
3538 	device_printf(dev, "Watchdog timeouts = %lu\n",
3539 		      adapter->watchdog_timeouts);
3540 
3541 	device_printf(dev, "XON Rcvd = %lld\n",
3542 		      (long long)adapter->stats.xonrxc);
3543 	device_printf(dev, "XON Xmtd = %lld\n",
3544 		      (long long)adapter->stats.xontxc);
3545 	device_printf(dev, "XOFF Rcvd = %lld\n",
3546 		      (long long)adapter->stats.xoffrxc);
3547 	device_printf(dev, "XOFF Xmtd = %lld\n",
3548 		      (long long)adapter->stats.xofftxc);
3549 
3550 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3551 		      (long long)adapter->stats.gprc);
3552 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3553 		      (long long)adapter->stats.gptc);
3554 }
3555 
3556 static int
3557 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3558 {
3559 	int error;
3560 	int result;
3561 	struct adapter *adapter;
3562 
3563 	result = -1;
3564 	error = sysctl_handle_int(oidp, &result, 0, req);
3565 
3566 	if (error || !req->newptr)
3567 		return (error);
3568 
3569 	if (result == 1) {
3570 		adapter = (struct adapter *)arg1;
3571 		em_print_debug_info(adapter);
3572 	}
3573 
3574 	return (error);
3575 }
3576 
3577 static int
3578 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3579 {
3580 	int error;
3581 	int result;
3582 	struct adapter *adapter;
3583 
3584 	result = -1;
3585 	error = sysctl_handle_int(oidp, &result, 0, req);
3586 
3587 	if (error || !req->newptr)
3588 		return (error);
3589 
3590 	if (result == 1) {
3591 		adapter = (struct adapter *)arg1;
3592 		em_print_hw_stats(adapter);
3593 	}
3594 
3595 	return (error);
3596 }
3597 
3598 static int
3599 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
3600 {
3601 	struct em_int_delay_info *info;
3602 	struct adapter *adapter;
3603 	uint32_t regval;
3604 	int error;
3605 	int usecs;
3606 	int ticks;
3607 
3608 	info = (struct em_int_delay_info *)arg1;
3609 	adapter = info->adapter;
3610 	usecs = info->value;
3611 	error = sysctl_handle_int(oidp, &usecs, 0, req);
3612 	if (error != 0 || req->newptr == NULL)
3613 		return (error);
3614 	if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
3615 		return (EINVAL);
3616 	info->value = usecs;
3617 	ticks = E1000_USECS_TO_TICKS(usecs);
3618 
3619 	lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3620 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
3621 	regval = (regval & ~0xffff) | (ticks & 0xffff);
3622 	/* Handle a few special cases. */
3623 	switch (info->offset) {
3624 	case E1000_RDTR:
3625 	case E1000_82542_RDTR:
3626 		regval |= E1000_RDT_FPDB;
3627 		break;
3628 	case E1000_TIDV:
3629 	case E1000_82542_TIDV:
3630 		if (ticks == 0) {
3631 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
3632 			/* Don't write 0 into the TIDV register. */
3633 			regval++;
3634 		} else
3635 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3636 		break;
3637 	}
3638 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
3639 	lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3640 	return (0);
3641 }
3642 
3643 static void
3644 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
3645 			const char *description, struct em_int_delay_info *info,
3646 			int offset, int value)
3647 {
3648 	info->adapter = adapter;
3649 	info->offset = offset;
3650 	info->value = value;
3651 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3652 			SYSCTL_CHILDREN(adapter->sysctl_tree),
3653 			OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
3654 			info, 0, em_sysctl_int_delay, "I", description);
3655 }
3656 
3657 static int
3658 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3659 {
3660 	struct adapter *adapter = (void *)arg1;
3661 	int error;
3662 	int throttle;
3663 
3664 	throttle = em_int_throttle_ceil;
3665 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3666 	if (error || req->newptr == NULL)
3667 		return error;
3668 	if (throttle < 0 || throttle > 1000000000 / 256)
3669 		return EINVAL;
3670 	if (throttle) {
3671 		/*
3672 		 * Set the interrupt throttling rate in 256ns increments,
3673 		 * recalculate sysctl value assignment to get exact frequency.
3674 		 */
3675 		throttle = 1000000000 / 256 / throttle;
3676 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3677 		em_int_throttle_ceil = 1000000000 / 256 / throttle;
3678 		E1000_WRITE_REG(&adapter->hw, ITR, throttle);
3679 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3680 	} else {
3681 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3682 		em_int_throttle_ceil = 0;
3683 		E1000_WRITE_REG(&adapter->hw, ITR, 0);
3684 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3685 	}
3686 	device_printf(adapter->dev, "Interrupt moderation set to %d/sec\n",
3687 			em_int_throttle_ceil);
3688 	return 0;
3689 }
3690