xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision aa2b9d0592ca18547c1a0158a8df009ad3074562)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/ifq_var.h>
121 #include <net/vlan/if_vlan_var.h>
122 #include <net/vlan/if_vlan_ether.h>
123 
124 #include <netinet/in_systm.h>
125 #include <netinet/in.h>
126 #include <netinet/ip.h>
127 #include <netinet/tcp.h>
128 #include <netinet/udp.h>
129 
130 #include <bus/pci/pcivar.h>
131 #include <bus/pci/pcireg.h>
132 
133 #include <dev/netif/ig_hal/e1000_api.h>
134 #include <dev/netif/ig_hal/e1000_82571.h>
135 #include <dev/netif/em/if_em.h>
136 
137 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
138 #define EM_VER	" 6.9.6"
139 
140 #define _EM_DEVICE(id, ret)	\
141 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
142 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
143 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
144 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
145 
146 static const struct em_vendor_info em_vendor_info_array[] = {
147 	EM_DEVICE(82540EM),
148 	EM_DEVICE(82540EM_LOM),
149 	EM_DEVICE(82540EP),
150 	EM_DEVICE(82540EP_LOM),
151 	EM_DEVICE(82540EP_LP),
152 
153 	EM_DEVICE(82541EI),
154 	EM_DEVICE(82541ER),
155 	EM_DEVICE(82541ER_LOM),
156 	EM_DEVICE(82541EI_MOBILE),
157 	EM_DEVICE(82541GI),
158 	EM_DEVICE(82541GI_LF),
159 	EM_DEVICE(82541GI_MOBILE),
160 
161 	EM_DEVICE(82542),
162 
163 	EM_DEVICE(82543GC_FIBER),
164 	EM_DEVICE(82543GC_COPPER),
165 
166 	EM_DEVICE(82544EI_COPPER),
167 	EM_DEVICE(82544EI_FIBER),
168 	EM_DEVICE(82544GC_COPPER),
169 	EM_DEVICE(82544GC_LOM),
170 
171 	EM_DEVICE(82545EM_COPPER),
172 	EM_DEVICE(82545EM_FIBER),
173 	EM_DEVICE(82545GM_COPPER),
174 	EM_DEVICE(82545GM_FIBER),
175 	EM_DEVICE(82545GM_SERDES),
176 
177 	EM_DEVICE(82546EB_COPPER),
178 	EM_DEVICE(82546EB_FIBER),
179 	EM_DEVICE(82546EB_QUAD_COPPER),
180 	EM_DEVICE(82546GB_COPPER),
181 	EM_DEVICE(82546GB_FIBER),
182 	EM_DEVICE(82546GB_SERDES),
183 	EM_DEVICE(82546GB_PCIE),
184 	EM_DEVICE(82546GB_QUAD_COPPER),
185 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
186 
187 	EM_DEVICE(82547EI),
188 	EM_DEVICE(82547EI_MOBILE),
189 	EM_DEVICE(82547GI),
190 
191 	EM_EMX_DEVICE(82571EB_COPPER),
192 	EM_EMX_DEVICE(82571EB_FIBER),
193 	EM_EMX_DEVICE(82571EB_SERDES),
194 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
195 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
196 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
197 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
198 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
199 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
200 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
201 
202 	EM_EMX_DEVICE(82572EI_COPPER),
203 	EM_EMX_DEVICE(82572EI_FIBER),
204 	EM_EMX_DEVICE(82572EI_SERDES),
205 	EM_EMX_DEVICE(82572EI),
206 
207 	EM_EMX_DEVICE(82573E),
208 	EM_EMX_DEVICE(82573E_IAMT),
209 	EM_EMX_DEVICE(82573L),
210 
211 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
212 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
213 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
214 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
215 
216 	EM_DEVICE(ICH8_IGP_M_AMT),
217 	EM_DEVICE(ICH8_IGP_AMT),
218 	EM_DEVICE(ICH8_IGP_C),
219 	EM_DEVICE(ICH8_IFE),
220 	EM_DEVICE(ICH8_IFE_GT),
221 	EM_DEVICE(ICH8_IFE_G),
222 	EM_DEVICE(ICH8_IGP_M),
223 
224 	EM_DEVICE(ICH9_IGP_M_AMT),
225 	EM_DEVICE(ICH9_IGP_AMT),
226 	EM_DEVICE(ICH9_IGP_C),
227 	EM_DEVICE(ICH9_IGP_M),
228 	EM_DEVICE(ICH9_IGP_M_V),
229 	EM_DEVICE(ICH9_IFE),
230 	EM_DEVICE(ICH9_IFE_GT),
231 	EM_DEVICE(ICH9_IFE_G),
232 	EM_DEVICE(ICH9_BM),
233 
234 	EM_EMX_DEVICE(82574L),
235 
236 	EM_DEVICE(ICH10_R_BM_LM),
237 	EM_DEVICE(ICH10_R_BM_LF),
238 	EM_DEVICE(ICH10_R_BM_V),
239 	EM_DEVICE(ICH10_D_BM_LM),
240 	EM_DEVICE(ICH10_D_BM_LF),
241 
242 	/* required last entry */
243 	EM_DEVICE_NULL
244 };
245 
246 static int	em_probe(device_t);
247 static int	em_attach(device_t);
248 static int	em_detach(device_t);
249 static int	em_shutdown(device_t);
250 static int	em_suspend(device_t);
251 static int	em_resume(device_t);
252 
253 static void	em_init(void *);
254 static void	em_stop(struct adapter *);
255 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
256 static void	em_start(struct ifnet *);
257 #ifdef DEVICE_POLLING
258 static void	em_poll(struct ifnet *, enum poll_cmd, int);
259 #endif
260 static void	em_watchdog(struct ifnet *);
261 static void	em_media_status(struct ifnet *, struct ifmediareq *);
262 static int	em_media_change(struct ifnet *);
263 static void	em_timer(void *);
264 
265 static void	em_intr(void *);
266 static void	em_rxeof(struct adapter *, int);
267 static void	em_txeof(struct adapter *);
268 static void	em_tx_collect(struct adapter *);
269 static void	em_tx_purge(struct adapter *);
270 static void	em_enable_intr(struct adapter *);
271 static void	em_disable_intr(struct adapter *);
272 
273 static int	em_dma_malloc(struct adapter *, bus_size_t,
274 		    struct em_dma_alloc *);
275 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
276 static void	em_init_tx_ring(struct adapter *);
277 static int	em_init_rx_ring(struct adapter *);
278 static int	em_create_tx_ring(struct adapter *);
279 static int	em_create_rx_ring(struct adapter *);
280 static void	em_destroy_tx_ring(struct adapter *, int);
281 static void	em_destroy_rx_ring(struct adapter *, int);
282 static int	em_newbuf(struct adapter *, int, int);
283 static int	em_encap(struct adapter *, struct mbuf **);
284 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
285 		    struct mbuf *);
286 static int	em_txcsum_pullup(struct adapter *, struct mbuf **);
287 static int	em_txcsum(struct adapter *, struct mbuf *,
288 		    uint32_t *, uint32_t *);
289 
290 static int	em_get_hw_info(struct adapter *);
291 static int 	em_is_valid_eaddr(const uint8_t *);
292 static int	em_alloc_pci_res(struct adapter *);
293 static void	em_free_pci_res(struct adapter *);
294 static int	em_hw_init(struct adapter *);
295 static void	em_setup_ifp(struct adapter *);
296 static void	em_init_tx_unit(struct adapter *);
297 static void	em_init_rx_unit(struct adapter *);
298 static void	em_update_stats(struct adapter *);
299 static void	em_set_promisc(struct adapter *);
300 static void	em_disable_promisc(struct adapter *);
301 static void	em_set_multi(struct adapter *);
302 static void	em_update_link_status(struct adapter *);
303 static void	em_smartspeed(struct adapter *);
304 
305 /* Hardware workarounds */
306 static int	em_82547_fifo_workaround(struct adapter *, int);
307 static void	em_82547_update_fifo_head(struct adapter *, int);
308 static int	em_82547_tx_fifo_reset(struct adapter *);
309 static void	em_82547_move_tail(void *);
310 static void	em_82547_move_tail_serialized(struct adapter *);
311 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
312 
313 static void	em_print_debug_info(struct adapter *);
314 static void	em_print_nvm_info(struct adapter *);
315 static void	em_print_hw_stats(struct adapter *);
316 
317 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
318 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
319 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
320 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
321 static void	em_add_sysctl(struct adapter *adapter);
322 
323 /* Management and WOL Support */
324 static void	em_get_mgmt(struct adapter *);
325 static void	em_rel_mgmt(struct adapter *);
326 static void	em_get_hw_control(struct adapter *);
327 static void	em_rel_hw_control(struct adapter *);
328 static void	em_enable_wol(device_t);
329 
330 static device_method_t em_methods[] = {
331 	/* Device interface */
332 	DEVMETHOD(device_probe,		em_probe),
333 	DEVMETHOD(device_attach,	em_attach),
334 	DEVMETHOD(device_detach,	em_detach),
335 	DEVMETHOD(device_shutdown,	em_shutdown),
336 	DEVMETHOD(device_suspend,	em_suspend),
337 	DEVMETHOD(device_resume,	em_resume),
338 	{ 0, 0 }
339 };
340 
341 static driver_t em_driver = {
342 	"em",
343 	em_methods,
344 	sizeof(struct adapter),
345 };
346 
347 static devclass_t em_devclass;
348 
349 DECLARE_DUMMY_MODULE(if_em);
350 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
351 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
352 
353 /*
354  * Tunables
355  */
356 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
357 static int	em_rxd = EM_DEFAULT_RXD;
358 static int	em_txd = EM_DEFAULT_TXD;
359 static int	em_smart_pwr_down = FALSE;
360 
361 /* Controls whether promiscuous also shows bad packets */
362 static int	em_debug_sbp = FALSE;
363 
364 static int	em_82573_workaround = TRUE;
365 
366 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
367 TUNABLE_INT("hw.em.rxd", &em_rxd);
368 TUNABLE_INT("hw.em.txd", &em_txd);
369 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
370 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
371 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
372 
373 /* Global used in WOL setup with multiport cards */
374 static int	em_global_quad_port_a = 0;
375 
376 /* Set this to one to display debug statistics */
377 static int	em_display_debug_stats = 0;
378 
379 #if !defined(KTR_IF_EM)
380 #define KTR_IF_EM	KTR_ALL
381 #endif
382 KTR_INFO_MASTER(if_em);
383 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
384 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
385 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
386 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
387 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
388 #define logif(name)	KTR_LOG(if_em_ ## name)
389 
390 static int
391 em_probe(device_t dev)
392 {
393 	const struct em_vendor_info *ent;
394 	uint16_t vid, did;
395 
396 	vid = pci_get_vendor(dev);
397 	did = pci_get_device(dev);
398 
399 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
400 		if (vid == ent->vendor_id && did == ent->device_id) {
401 			device_set_desc(dev, ent->desc);
402 			device_set_async_attach(dev, TRUE);
403 			return (ent->ret);
404 		}
405 	}
406 	return (ENXIO);
407 }
408 
409 static int
410 em_attach(device_t dev)
411 {
412 	struct adapter *adapter = device_get_softc(dev);
413 	struct ifnet *ifp = &adapter->arpcom.ac_if;
414 	int tsize, rsize;
415 	int error = 0;
416 	uint16_t eeprom_data, device_id;
417 
418 	adapter->dev = adapter->osdep.dev = dev;
419 
420 	callout_init(&adapter->timer);
421 	callout_init(&adapter->tx_fifo_timer);
422 
423 	/* Determine hardware and mac info */
424 	error = em_get_hw_info(adapter);
425 	if (error) {
426 		device_printf(dev, "Identify hardware failed\n");
427 		goto fail;
428 	}
429 
430 	/* Setup PCI resources */
431 	error = em_alloc_pci_res(adapter);
432 	if (error) {
433 		device_printf(dev, "Allocation of PCI resources failed\n");
434 		goto fail;
435 	}
436 
437 	/*
438 	 * For ICH8 and family we need to map the flash memory,
439 	 * and this must happen after the MAC is identified.
440 	 */
441 	if (adapter->hw.mac.type == e1000_ich8lan ||
442 	    adapter->hw.mac.type == e1000_ich10lan ||
443 	    adapter->hw.mac.type == e1000_ich9lan) {
444 		adapter->flash_rid = EM_BAR_FLASH;
445 
446 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
447 					&adapter->flash_rid, RF_ACTIVE);
448 		if (adapter->flash == NULL) {
449 			device_printf(dev, "Mapping of Flash failed\n");
450 			error = ENXIO;
451 			goto fail;
452 		}
453 		adapter->osdep.flash_bus_space_tag =
454 		    rman_get_bustag(adapter->flash);
455 		adapter->osdep.flash_bus_space_handle =
456 		    rman_get_bushandle(adapter->flash);
457 
458 		/*
459 		 * This is used in the shared code
460 		 * XXX this goof is actually not used.
461 		 */
462 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
463 	}
464 
465 	/* Do Shared Code initialization */
466 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
467 		device_printf(dev, "Setup of Shared code failed\n");
468 		error = ENXIO;
469 		goto fail;
470 	}
471 
472 	e1000_get_bus_info(&adapter->hw);
473 
474 	/*
475 	 * Validate number of transmit and receive descriptors.  It
476 	 * must not exceed hardware maximum, and must be multiple
477 	 * of E1000_DBA_ALIGN.
478 	 */
479 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
480 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
481 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
482 	    em_txd < EM_MIN_TXD) {
483 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
484 		    EM_DEFAULT_TXD, em_txd);
485 		adapter->num_tx_desc = EM_DEFAULT_TXD;
486 	} else {
487 		adapter->num_tx_desc = em_txd;
488 	}
489 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
490 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
491 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
492 	    em_rxd < EM_MIN_RXD) {
493 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
494 		    EM_DEFAULT_RXD, em_rxd);
495 		adapter->num_rx_desc = EM_DEFAULT_RXD;
496 	} else {
497 		adapter->num_rx_desc = em_rxd;
498 	}
499 
500 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
501 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
502 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
503 	adapter->rx_buffer_len = MCLBYTES;
504 
505 	/*
506 	 * Interrupt throttle rate
507 	 */
508 	if (em_int_throttle_ceil == 0) {
509 		adapter->int_throttle_ceil = 0;
510 	} else {
511 		int throttle = em_int_throttle_ceil;
512 
513 		if (throttle < 0)
514 			throttle = EM_DEFAULT_ITR;
515 
516 		/* Recalculate the tunable value to get the exact frequency. */
517 		throttle = 1000000000 / 256 / throttle;
518 
519 		/* Upper 16bits of ITR is reserved and should be zero */
520 		if (throttle & 0xffff0000)
521 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
522 
523 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
524 	}
525 
526 	e1000_init_script_state_82541(&adapter->hw, TRUE);
527 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
528 
529 	/* Copper options */
530 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
531 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
532 		adapter->hw.phy.disable_polarity_correction = FALSE;
533 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
534 	}
535 
536 	/* Set the frame limits assuming standard ethernet sized frames. */
537 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
538 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
539 
540 	/* This controls when hardware reports transmit completion status. */
541 	adapter->hw.mac.report_tx_early = 1;
542 
543 	/*
544 	 * Create top level busdma tag
545 	 */
546 	error = bus_dma_tag_create(NULL, 1, 0,
547 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
548 			NULL, NULL,
549 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
550 			0, &adapter->parent_dtag);
551 	if (error) {
552 		device_printf(dev, "could not create top level DMA tag\n");
553 		goto fail;
554 	}
555 
556 	/*
557 	 * Allocate Transmit Descriptor ring
558 	 */
559 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
560 			 EM_DBA_ALIGN);
561 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
562 	if (error) {
563 		device_printf(dev, "Unable to allocate tx_desc memory\n");
564 		goto fail;
565 	}
566 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
567 
568 	/*
569 	 * Allocate Receive Descriptor ring
570 	 */
571 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
572 			 EM_DBA_ALIGN);
573 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
574 	if (error) {
575 		device_printf(dev, "Unable to allocate rx_desc memory\n");
576 		goto fail;
577 	}
578 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
579 
580 	/* Make sure we have a good EEPROM before we read from it */
581 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
582 		/*
583 		 * Some PCI-E parts fail the first check due to
584 		 * the link being in sleep state, call it again,
585 		 * if it fails a second time its a real issue.
586 		 */
587 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
588 			device_printf(dev,
589 			    "The EEPROM Checksum Is Not Valid\n");
590 			error = EIO;
591 			goto fail;
592 		}
593 	}
594 
595 	/* Initialize the hardware */
596 	error = em_hw_init(adapter);
597 	if (error) {
598 		device_printf(dev, "Unable to initialize the hardware\n");
599 		goto fail;
600 	}
601 
602 	/* Copy the permanent MAC address out of the EEPROM */
603 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
604 		device_printf(dev, "EEPROM read error while reading MAC"
605 		    " address\n");
606 		error = EIO;
607 		goto fail;
608 	}
609 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
610 		device_printf(dev, "Invalid MAC address\n");
611 		error = EIO;
612 		goto fail;
613 	}
614 
615 	/* Allocate transmit descriptors and buffers */
616 	error = em_create_tx_ring(adapter);
617 	if (error) {
618 		device_printf(dev, "Could not setup transmit structures\n");
619 		goto fail;
620 	}
621 
622 	/* Allocate receive descriptors and buffers */
623 	error = em_create_rx_ring(adapter);
624 	if (error) {
625 		device_printf(dev, "Could not setup receive structures\n");
626 		goto fail;
627 	}
628 
629 	/* Manually turn off all interrupts */
630 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
631 
632 	/* Setup OS specific network interface */
633 	em_setup_ifp(adapter);
634 
635 	/* Add sysctl tree, must after em_setup_ifp() */
636 	em_add_sysctl(adapter);
637 
638 	/* Initialize statistics */
639 	em_update_stats(adapter);
640 
641 	adapter->hw.mac.get_link_status = 1;
642 	em_update_link_status(adapter);
643 
644 	/* Indicate SOL/IDER usage */
645 	if (e1000_check_reset_block(&adapter->hw)) {
646 		device_printf(dev,
647 		    "PHY reset is blocked due to SOL/IDER session.\n");
648 	}
649 
650 	/* Determine if we have to control management hardware */
651 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
652 
653 	/*
654 	 * Setup Wake-on-Lan
655 	 */
656 	switch (adapter->hw.mac.type) {
657 	case e1000_82542:
658 	case e1000_82543:
659 		break;
660 
661 	case e1000_82546:
662 	case e1000_82546_rev_3:
663 	case e1000_82571:
664 	case e1000_80003es2lan:
665 		if (adapter->hw.bus.func == 1) {
666 			e1000_read_nvm(&adapter->hw,
667 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
668 		} else {
669 			e1000_read_nvm(&adapter->hw,
670 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
671 		}
672 		eeprom_data &= EM_EEPROM_APME;
673 		break;
674 
675 	default:
676 		/* APME bit in EEPROM is mapped to WUC.APME */
677 		eeprom_data =
678 		    E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME;
679 		break;
680 	}
681 	if (eeprom_data)
682 		adapter->wol = E1000_WUFC_MAG;
683 	/*
684          * We have the eeprom settings, now apply the special cases
685          * where the eeprom may be wrong or the board won't support
686          * wake on lan on a particular port
687 	 */
688 	device_id = pci_get_device(dev);
689         switch (device_id) {
690 	case E1000_DEV_ID_82546GB_PCIE:
691 		adapter->wol = 0;
692 		break;
693 
694 	case E1000_DEV_ID_82546EB_FIBER:
695 	case E1000_DEV_ID_82546GB_FIBER:
696 	case E1000_DEV_ID_82571EB_FIBER:
697 		/*
698 		 * Wake events only supported on port A for dual fiber
699 		 * regardless of eeprom setting
700 		 */
701 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
702 		    E1000_STATUS_FUNC_1)
703 			adapter->wol = 0;
704 		break;
705 
706 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
707 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
708 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
709 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
710                 /* if quad port adapter, disable WoL on all but port A */
711 		if (em_global_quad_port_a != 0)
712 			adapter->wol = 0;
713 		/* Reset for multiple quad port adapters */
714 		if (++em_global_quad_port_a == 4)
715 			em_global_quad_port_a = 0;
716                 break;
717 	}
718 
719 	/* XXX disable wol */
720 	adapter->wol = 0;
721 
722 	/* Do we need workaround for 82544 PCI-X adapter? */
723 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
724 	    adapter->hw.mac.type == e1000_82544)
725 		adapter->pcix_82544 = TRUE;
726 	else
727 		adapter->pcix_82544 = FALSE;
728 
729 	if (adapter->pcix_82544) {
730 		/*
731 		 * 82544 on PCI-X may split one TX segment
732 		 * into two TX descs, so we double its number
733 		 * of spare TX desc here.
734 		 */
735 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
736 	} else {
737 		adapter->spare_tx_desc = EM_TX_SPARE;
738 	}
739 
740 	/*
741 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
742 	 * and tx_int_nsegs:
743 	 * (spare_tx_desc + EM_TX_RESERVED) <=
744 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
745 	 */
746 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
747 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
748 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
749 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
750 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
751 
752 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
753 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
754 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
755 
756 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
757 			       em_intr, adapter, &adapter->intr_tag,
758 			       ifp->if_serializer);
759 	if (error) {
760 		device_printf(dev, "Failed to register interrupt handler");
761 		ether_ifdetach(&adapter->arpcom.ac_if);
762 		goto fail;
763 	}
764 
765 	ifp->if_cpuid = ithread_cpuid(rman_get_start(adapter->intr_res));
766 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
767 	return (0);
768 fail:
769 	em_detach(dev);
770 	return (error);
771 }
772 
773 static int
774 em_detach(device_t dev)
775 {
776 	struct adapter *adapter = device_get_softc(dev);
777 
778 	if (device_is_attached(dev)) {
779 		struct ifnet *ifp = &adapter->arpcom.ac_if;
780 
781 		lwkt_serialize_enter(ifp->if_serializer);
782 
783 		em_stop(adapter);
784 
785 		e1000_phy_hw_reset(&adapter->hw);
786 
787 		em_rel_mgmt(adapter);
788 
789 		if ((adapter->hw.mac.type == e1000_82573 ||
790 		     adapter->hw.mac.type == e1000_ich8lan ||
791 		     adapter->hw.mac.type == e1000_ich10lan ||
792 		     adapter->hw.mac.type == e1000_ich9lan) &&
793 		    e1000_check_mng_mode(&adapter->hw))
794 			em_rel_hw_control(adapter);
795 
796 		if (adapter->wol) {
797 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
798 					E1000_WUC_PME_EN);
799 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
800 			em_enable_wol(dev);
801 		}
802 
803 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
804 
805 		lwkt_serialize_exit(ifp->if_serializer);
806 
807 		ether_ifdetach(ifp);
808 	}
809 	bus_generic_detach(dev);
810 
811 	em_free_pci_res(adapter);
812 
813 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
814 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
815 
816 	/* Free Transmit Descriptor ring */
817 	if (adapter->tx_desc_base)
818 		em_dma_free(adapter, &adapter->txdma);
819 
820 	/* Free Receive Descriptor ring */
821 	if (adapter->rx_desc_base)
822 		em_dma_free(adapter, &adapter->rxdma);
823 
824 	/* Free top level busdma tag */
825 	if (adapter->parent_dtag != NULL)
826 		bus_dma_tag_destroy(adapter->parent_dtag);
827 
828 	/* Free sysctl tree */
829 	if (adapter->sysctl_tree != NULL)
830 		sysctl_ctx_free(&adapter->sysctl_ctx);
831 
832 	return (0);
833 }
834 
835 static int
836 em_shutdown(device_t dev)
837 {
838 	return em_suspend(dev);
839 }
840 
841 static int
842 em_suspend(device_t dev)
843 {
844 	struct adapter *adapter = device_get_softc(dev);
845 	struct ifnet *ifp = &adapter->arpcom.ac_if;
846 
847 	lwkt_serialize_enter(ifp->if_serializer);
848 
849 	em_stop(adapter);
850 
851 	em_rel_mgmt(adapter);
852 
853         if ((adapter->hw.mac.type == e1000_82573 ||
854              adapter->hw.mac.type == e1000_ich8lan ||
855              adapter->hw.mac.type == e1000_ich10lan ||
856              adapter->hw.mac.type == e1000_ich9lan) &&
857             e1000_check_mng_mode(&adapter->hw))
858                 em_rel_hw_control(adapter);
859 
860         if (adapter->wol) {
861 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
862 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
863 		em_enable_wol(dev);
864         }
865 
866 	lwkt_serialize_exit(ifp->if_serializer);
867 
868 	return bus_generic_suspend(dev);
869 }
870 
871 static int
872 em_resume(device_t dev)
873 {
874 	struct adapter *adapter = device_get_softc(dev);
875 	struct ifnet *ifp = &adapter->arpcom.ac_if;
876 
877 	lwkt_serialize_enter(ifp->if_serializer);
878 
879 	em_init(adapter);
880 	em_get_mgmt(adapter);
881 	if_devstart(ifp);
882 
883 	lwkt_serialize_exit(ifp->if_serializer);
884 
885 	return bus_generic_resume(dev);
886 }
887 
888 static void
889 em_start(struct ifnet *ifp)
890 {
891 	struct adapter *adapter = ifp->if_softc;
892 	struct mbuf *m_head;
893 
894 	ASSERT_SERIALIZED(ifp->if_serializer);
895 
896 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
897 		return;
898 
899 	if (!adapter->link_active) {
900 		ifq_purge(&ifp->if_snd);
901 		return;
902 	}
903 
904 	while (!ifq_is_empty(&ifp->if_snd)) {
905 		/* Now do we at least have a minimal? */
906 		if (EM_IS_OACTIVE(adapter)) {
907 			em_tx_collect(adapter);
908 			if (EM_IS_OACTIVE(adapter)) {
909 				ifp->if_flags |= IFF_OACTIVE;
910 				adapter->no_tx_desc_avail1++;
911 				break;
912 			}
913 		}
914 
915 		logif(pkt_txqueue);
916 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
917 		if (m_head == NULL)
918 			break;
919 
920 		if (em_encap(adapter, &m_head)) {
921 			ifp->if_oerrors++;
922 			em_tx_collect(adapter);
923 			continue;
924 		}
925 
926 		/* Send a copy of the frame to the BPF listener */
927 		ETHER_BPF_MTAP(ifp, m_head);
928 
929 		/* Set timeout in case hardware has problems transmitting. */
930 		ifp->if_timer = EM_TX_TIMEOUT;
931 	}
932 }
933 
934 static int
935 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
936 {
937 	struct adapter *adapter = ifp->if_softc;
938 	struct ifreq *ifr = (struct ifreq *)data;
939 	uint16_t eeprom_data = 0;
940 	int max_frame_size, mask, reinit;
941 	int error = 0;
942 
943 	ASSERT_SERIALIZED(ifp->if_serializer);
944 
945 	switch (command) {
946 	case SIOCSIFMTU:
947 		switch (adapter->hw.mac.type) {
948 		case e1000_82573:
949 			/*
950 			 * 82573 only supports jumbo frames
951 			 * if ASPM is disabled.
952 			 */
953 			e1000_read_nvm(&adapter->hw,
954 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
955 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
956 				max_frame_size = ETHER_MAX_LEN;
957 				break;
958 			}
959 			/* FALL THROUGH */
960 
961 		/* Limit Jumbo Frame size */
962 		case e1000_82571:
963 		case e1000_82572:
964 		case e1000_ich9lan:
965 		case e1000_ich10lan:
966 		case e1000_82574:
967 		case e1000_80003es2lan:
968 			max_frame_size = 9234;
969 			break;
970 
971 		/* Adapters that do not support jumbo frames */
972 		case e1000_82542:
973 		case e1000_ich8lan:
974 			max_frame_size = ETHER_MAX_LEN;
975 			break;
976 
977 		default:
978 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
979 			break;
980 		}
981 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
982 		    ETHER_CRC_LEN) {
983 			error = EINVAL;
984 			break;
985 		}
986 
987 		ifp->if_mtu = ifr->ifr_mtu;
988 		adapter->max_frame_size =
989 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
990 
991 		if (ifp->if_flags & IFF_RUNNING)
992 			em_init(adapter);
993 		break;
994 
995 	case SIOCSIFFLAGS:
996 		if (ifp->if_flags & IFF_UP) {
997 			if ((ifp->if_flags & IFF_RUNNING)) {
998 				if ((ifp->if_flags ^ adapter->if_flags) &
999 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1000 					em_disable_promisc(adapter);
1001 					em_set_promisc(adapter);
1002 				}
1003 			} else {
1004 				em_init(adapter);
1005 			}
1006 		} else if (ifp->if_flags & IFF_RUNNING) {
1007 			em_stop(adapter);
1008 		}
1009 		adapter->if_flags = ifp->if_flags;
1010 		break;
1011 
1012 	case SIOCADDMULTI:
1013 	case SIOCDELMULTI:
1014 		if (ifp->if_flags & IFF_RUNNING) {
1015 			em_disable_intr(adapter);
1016 			em_set_multi(adapter);
1017 			if (adapter->hw.mac.type == e1000_82542 &&
1018 			    adapter->hw.revision_id == E1000_REVISION_2)
1019 				em_init_rx_unit(adapter);
1020 #ifdef DEVICE_POLLING
1021 			if (!(ifp->if_flags & IFF_POLLING))
1022 #endif
1023 				em_enable_intr(adapter);
1024 		}
1025 		break;
1026 
1027 	case SIOCSIFMEDIA:
1028 		/* Check SOL/IDER usage */
1029 		if (e1000_check_reset_block(&adapter->hw)) {
1030 			device_printf(adapter->dev, "Media change is"
1031 			    " blocked due to SOL/IDER session.\n");
1032 			break;
1033 		}
1034 		/* FALL THROUGH */
1035 
1036 	case SIOCGIFMEDIA:
1037 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1038 		break;
1039 
1040 	case SIOCSIFCAP:
1041 		reinit = 0;
1042 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1043 		if (mask & IFCAP_HWCSUM) {
1044 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1045 			reinit = 1;
1046 		}
1047 		if (mask & IFCAP_VLAN_HWTAGGING) {
1048 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1049 			reinit = 1;
1050 		}
1051 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1052 			em_init(adapter);
1053 		break;
1054 
1055 	default:
1056 		error = ether_ioctl(ifp, command, data);
1057 		break;
1058 	}
1059 	return (error);
1060 }
1061 
1062 static void
1063 em_watchdog(struct ifnet *ifp)
1064 {
1065 	struct adapter *adapter = ifp->if_softc;
1066 
1067 	ASSERT_SERIALIZED(ifp->if_serializer);
1068 
1069 	/*
1070 	 * The timer is set to 5 every time start queues a packet.
1071 	 * Then txeof keeps resetting it as long as it cleans at
1072 	 * least one descriptor.
1073 	 * Finally, anytime all descriptors are clean the timer is
1074 	 * set to 0.
1075 	 */
1076 
1077 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1078 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1079 		/*
1080 		 * If we reach here, all TX jobs are completed and
1081 		 * the TX engine should have been idled for some time.
1082 		 * We don't need to call if_devstart() here.
1083 		 */
1084 		ifp->if_flags &= ~IFF_OACTIVE;
1085 		ifp->if_timer = 0;
1086 		return;
1087 	}
1088 
1089 	/*
1090 	 * If we are in this routine because of pause frames, then
1091 	 * don't reset the hardware.
1092 	 */
1093 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1094 	    E1000_STATUS_TXOFF) {
1095 		ifp->if_timer = EM_TX_TIMEOUT;
1096 		return;
1097 	}
1098 
1099 	if (e1000_check_for_link(&adapter->hw) == 0)
1100 		if_printf(ifp, "watchdog timeout -- resetting\n");
1101 
1102 	ifp->if_oerrors++;
1103 	adapter->watchdog_events++;
1104 
1105 	em_init(adapter);
1106 
1107 	if (!ifq_is_empty(&ifp->if_snd))
1108 		if_devstart(ifp);
1109 }
1110 
1111 static void
1112 em_init(void *xsc)
1113 {
1114 	struct adapter *adapter = xsc;
1115 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1116 	device_t dev = adapter->dev;
1117 	uint32_t pba;
1118 
1119 	ASSERT_SERIALIZED(ifp->if_serializer);
1120 
1121 	em_stop(adapter);
1122 
1123 	/*
1124 	 * Packet Buffer Allocation (PBA)
1125 	 * Writing PBA sets the receive portion of the buffer
1126 	 * the remainder is used for the transmit buffer.
1127 	 *
1128 	 * Devices before the 82547 had a Packet Buffer of 64K.
1129 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1130 	 * After the 82547 the buffer was reduced to 40K.
1131 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1132 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1133 	 */
1134 	switch (adapter->hw.mac.type) {
1135 	case e1000_82547:
1136 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1137 		if (adapter->max_frame_size > 8192)
1138 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1139 		else
1140 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1141 		adapter->tx_fifo_head = 0;
1142 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1143 		adapter->tx_fifo_size =
1144 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1145 		break;
1146 
1147 	/* Total Packet Buffer on these is 48K */
1148 	case e1000_82571:
1149 	case e1000_82572:
1150 	case e1000_80003es2lan:
1151 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1152 		break;
1153 
1154 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1155 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1156 		break;
1157 
1158 	case e1000_82574:
1159 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1160 		break;
1161 
1162 	case e1000_ich9lan:
1163 	case e1000_ich10lan:
1164 #define E1000_PBA_10K	0x000A
1165 		pba = E1000_PBA_10K;
1166 		break;
1167 
1168 	case e1000_ich8lan:
1169 		pba = E1000_PBA_8K;
1170 		break;
1171 
1172 	default:
1173 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1174 		if (adapter->max_frame_size > 8192)
1175 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1176 		else
1177 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1178 	}
1179 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1180 
1181 	/* Get the latest mac address, User can use a LAA */
1182         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1183 
1184 	/* Put the address into the Receive Address Array */
1185 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1186 
1187 	/*
1188 	 * With the 82571 adapter, RAR[0] may be overwritten
1189 	 * when the other port is reset, we make a duplicate
1190 	 * in RAR[14] for that eventuality, this assures
1191 	 * the interface continues to function.
1192 	 */
1193 	if (adapter->hw.mac.type == e1000_82571) {
1194 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1195 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1196 		    E1000_RAR_ENTRIES - 1);
1197 	}
1198 
1199 	/* Initialize the hardware */
1200 	if (em_hw_init(adapter)) {
1201 		device_printf(dev, "Unable to initialize the hardware\n");
1202 		/* XXX em_stop()? */
1203 		return;
1204 	}
1205 	em_update_link_status(adapter);
1206 
1207 	/* Setup VLAN support, basic and offload if available */
1208 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1209 
1210 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1211 		uint32_t ctrl;
1212 
1213 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1214 		ctrl |= E1000_CTRL_VME;
1215 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1216 	}
1217 
1218 	/* Set hardware offload abilities */
1219 	if (ifp->if_capenable & IFCAP_TXCSUM)
1220 		ifp->if_hwassist = EM_CSUM_FEATURES;
1221 	else
1222 		ifp->if_hwassist = 0;
1223 
1224 	/* Configure for OS presence */
1225 	em_get_mgmt(adapter);
1226 
1227 	/* Prepare transmit descriptors and buffers */
1228 	em_init_tx_ring(adapter);
1229 	em_init_tx_unit(adapter);
1230 
1231 	/* Setup Multicast table */
1232 	em_set_multi(adapter);
1233 
1234 	/* Prepare receive descriptors and buffers */
1235 	if (em_init_rx_ring(adapter)) {
1236 		device_printf(dev, "Could not setup receive structures\n");
1237 		em_stop(adapter);
1238 		return;
1239 	}
1240 	em_init_rx_unit(adapter);
1241 
1242 	/* Don't lose promiscuous settings */
1243 	em_set_promisc(adapter);
1244 
1245 	ifp->if_flags |= IFF_RUNNING;
1246 	ifp->if_flags &= ~IFF_OACTIVE;
1247 
1248 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1249 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1250 
1251 	/* MSI/X configuration for 82574 */
1252 	if (adapter->hw.mac.type == e1000_82574) {
1253 		int tmp;
1254 
1255 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1256 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1257 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1258 		/*
1259 		 * Set the IVAR - interrupt vector routing.
1260 		 * Each nibble represents a vector, high bit
1261 		 * is enable, other 3 bits are the MSIX table
1262 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1263 		 * Link (other) to 2, hence the magic number.
1264 		 */
1265 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1266 	}
1267 
1268 #ifdef DEVICE_POLLING
1269 	/*
1270 	 * Only enable interrupts if we are not polling, make sure
1271 	 * they are off otherwise.
1272 	 */
1273 	if (ifp->if_flags & IFF_POLLING)
1274 		em_disable_intr(adapter);
1275 	else
1276 #endif /* DEVICE_POLLING */
1277 		em_enable_intr(adapter);
1278 
1279 	/* Don't reset the phy next time init gets called */
1280 	adapter->hw.phy.reset_disable = TRUE;
1281 }
1282 
1283 #ifdef DEVICE_POLLING
1284 
1285 static void
1286 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1287 {
1288 	struct adapter *adapter = ifp->if_softc;
1289 	uint32_t reg_icr;
1290 
1291 	ASSERT_SERIALIZED(ifp->if_serializer);
1292 
1293 	switch (cmd) {
1294 	case POLL_REGISTER:
1295 		em_disable_intr(adapter);
1296 		break;
1297 
1298 	case POLL_DEREGISTER:
1299 		em_enable_intr(adapter);
1300 		break;
1301 
1302 	case POLL_AND_CHECK_STATUS:
1303 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1304 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1305 			callout_stop(&adapter->timer);
1306 			adapter->hw.mac.get_link_status = 1;
1307 			em_update_link_status(adapter);
1308 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1309 		}
1310 		/* FALL THROUGH */
1311 	case POLL_ONLY:
1312 		if (ifp->if_flags & IFF_RUNNING) {
1313 			em_rxeof(adapter, count);
1314 			em_txeof(adapter);
1315 
1316 			if (!ifq_is_empty(&ifp->if_snd))
1317 				if_devstart(ifp);
1318 		}
1319 		break;
1320 	}
1321 }
1322 
1323 #endif /* DEVICE_POLLING */
1324 
1325 static void
1326 em_intr(void *xsc)
1327 {
1328 	struct adapter *adapter = xsc;
1329 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1330 	uint32_t reg_icr;
1331 
1332 	logif(intr_beg);
1333 	ASSERT_SERIALIZED(ifp->if_serializer);
1334 
1335 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1336 
1337 	if ((adapter->hw.mac.type >= e1000_82571 &&
1338 	     (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1339 	    reg_icr == 0) {
1340 		logif(intr_end);
1341 		return;
1342 	}
1343 
1344 	/*
1345 	 * XXX: some laptops trigger several spurious interrupts
1346 	 * on em(4) when in the resume cycle. The ICR register
1347 	 * reports all-ones value in this case. Processing such
1348 	 * interrupts would lead to a freeze. I don't know why.
1349 	 */
1350 	if (reg_icr == 0xffffffff) {
1351 		logif(intr_end);
1352 		return;
1353 	}
1354 
1355 	if (ifp->if_flags & IFF_RUNNING) {
1356 		if (reg_icr &
1357 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1358 			em_rxeof(adapter, -1);
1359 		if (reg_icr & E1000_ICR_TXDW) {
1360 			em_txeof(adapter);
1361 			if (!ifq_is_empty(&ifp->if_snd))
1362 				if_devstart(ifp);
1363 		}
1364 	}
1365 
1366 	/* Link status change */
1367 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1368 		callout_stop(&adapter->timer);
1369 		adapter->hw.mac.get_link_status = 1;
1370 		em_update_link_status(adapter);
1371 
1372 		/* Deal with TX cruft when link lost */
1373 		em_tx_purge(adapter);
1374 
1375 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1376 	}
1377 
1378 	if (reg_icr & E1000_ICR_RXO)
1379 		adapter->rx_overruns++;
1380 
1381 	logif(intr_end);
1382 }
1383 
1384 static void
1385 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1386 {
1387 	struct adapter *adapter = ifp->if_softc;
1388 	u_char fiber_type = IFM_1000_SX;
1389 
1390 	ASSERT_SERIALIZED(ifp->if_serializer);
1391 
1392 	em_update_link_status(adapter);
1393 
1394 	ifmr->ifm_status = IFM_AVALID;
1395 	ifmr->ifm_active = IFM_ETHER;
1396 
1397 	if (!adapter->link_active)
1398 		return;
1399 
1400 	ifmr->ifm_status |= IFM_ACTIVE;
1401 
1402 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1403 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1404 		if (adapter->hw.mac.type == e1000_82545)
1405 			fiber_type = IFM_1000_LX;
1406 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1407 	} else {
1408 		switch (adapter->link_speed) {
1409 		case 10:
1410 			ifmr->ifm_active |= IFM_10_T;
1411 			break;
1412 		case 100:
1413 			ifmr->ifm_active |= IFM_100_TX;
1414 			break;
1415 
1416 		case 1000:
1417 			ifmr->ifm_active |= IFM_1000_T;
1418 			break;
1419 		}
1420 		if (adapter->link_duplex == FULL_DUPLEX)
1421 			ifmr->ifm_active |= IFM_FDX;
1422 		else
1423 			ifmr->ifm_active |= IFM_HDX;
1424 	}
1425 }
1426 
1427 static int
1428 em_media_change(struct ifnet *ifp)
1429 {
1430 	struct adapter *adapter = ifp->if_softc;
1431 	struct ifmedia *ifm = &adapter->media;
1432 
1433 	ASSERT_SERIALIZED(ifp->if_serializer);
1434 
1435 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1436 		return (EINVAL);
1437 
1438 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1439 	case IFM_AUTO:
1440 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1441 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1442 		break;
1443 
1444 	case IFM_1000_LX:
1445 	case IFM_1000_SX:
1446 	case IFM_1000_T:
1447 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1448 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1449 		break;
1450 
1451 	case IFM_100_TX:
1452 		adapter->hw.mac.autoneg = FALSE;
1453 		adapter->hw.phy.autoneg_advertised = 0;
1454 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1455 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1456 		else
1457 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1458 		break;
1459 
1460 	case IFM_10_T:
1461 		adapter->hw.mac.autoneg = FALSE;
1462 		adapter->hw.phy.autoneg_advertised = 0;
1463 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1464 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1465 		else
1466 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1467 		break;
1468 
1469 	default:
1470 		if_printf(ifp, "Unsupported media type\n");
1471 		break;
1472 	}
1473 
1474 	/*
1475 	 * As the speed/duplex settings my have changed we need to
1476 	 * reset the PHY.
1477 	 */
1478 	adapter->hw.phy.reset_disable = FALSE;
1479 
1480 	em_init(adapter);
1481 
1482 	return (0);
1483 }
1484 
1485 static int
1486 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1487 {
1488 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1489 	bus_dmamap_t map;
1490 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1491 	struct e1000_tx_desc *ctxd = NULL;
1492 	struct mbuf *m_head = *m_headp;
1493 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1494 	int maxsegs, nsegs, i, j, first, last = 0, error;
1495 
1496 	if (m_head->m_len < EM_TXCSUM_MINHL &&
1497 	    (m_head->m_flags & EM_CSUM_FEATURES)) {
1498 		/*
1499 		 * Make sure that ethernet header and ip.ip_hl are in
1500 		 * contiguous memory, since if TXCSUM is enabled, later
1501 		 * TX context descriptor's setup need to access ip.ip_hl.
1502 		 */
1503 		error = em_txcsum_pullup(adapter, m_headp);
1504 		if (error) {
1505 			KKASSERT(*m_headp == NULL);
1506 			return error;
1507 		}
1508 		m_head = *m_headp;
1509 	}
1510 
1511 	txd_upper = txd_lower = 0;
1512 	txd_used = 0;
1513 
1514 	/*
1515 	 * Capture the first descriptor index, this descriptor
1516 	 * will have the index of the EOP which is the only one
1517 	 * that now gets a DONE bit writeback.
1518 	 */
1519 	first = adapter->next_avail_tx_desc;
1520 	tx_buffer = &adapter->tx_buffer_area[first];
1521 	tx_buffer_mapped = tx_buffer;
1522 	map = tx_buffer->map;
1523 
1524 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1525 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1526 		("not enough spare TX desc\n"));
1527 	if (adapter->pcix_82544) {
1528 		/* Half it; see the comment in em_attach() */
1529 		maxsegs >>= 1;
1530 	}
1531 	if (maxsegs > EM_MAX_SCATTER)
1532 		maxsegs = EM_MAX_SCATTER;
1533 
1534 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1535 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1536 	if (error) {
1537 		if (error == ENOBUFS)
1538 			adapter->mbuf_alloc_failed++;
1539 		else
1540 			adapter->no_tx_dma_setup++;
1541 
1542 		m_freem(*m_headp);
1543 		*m_headp = NULL;
1544 		return error;
1545 	}
1546         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1547 
1548 	m_head = *m_headp;
1549 	adapter->tx_nsegs += nsegs;
1550 
1551 	if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1552 		/* TX csum offloading will consume one TX desc */
1553 		adapter->tx_nsegs += em_txcsum(adapter, m_head,
1554 					       &txd_upper, &txd_lower);
1555 	}
1556 	i = adapter->next_avail_tx_desc;
1557 
1558 	/* Set up our transmit descriptors */
1559 	for (j = 0; j < nsegs; j++) {
1560 		/* If adapter is 82544 and on PCIX bus */
1561 		if(adapter->pcix_82544) {
1562 			DESC_ARRAY desc_array;
1563 			uint32_t array_elements, counter;
1564 
1565 			/*
1566 			 * Check the Address and Length combination and
1567 			 * split the data accordingly
1568 			 */
1569 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1570 						segs[j].ds_len, &desc_array);
1571 			for (counter = 0; counter < array_elements; counter++) {
1572 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1573 
1574 				tx_buffer = &adapter->tx_buffer_area[i];
1575 				ctxd = &adapter->tx_desc_base[i];
1576 
1577 				ctxd->buffer_addr = htole64(
1578 				    desc_array.descriptor[counter].address);
1579 				ctxd->lower.data = htole32(
1580 				    E1000_TXD_CMD_IFCS | txd_lower |
1581 				    desc_array.descriptor[counter].length);
1582 				ctxd->upper.data = htole32(txd_upper);
1583 
1584 				last = i;
1585 				if (++i == adapter->num_tx_desc)
1586 					i = 0;
1587 
1588 				txd_used++;
1589                         }
1590 		} else {
1591 			tx_buffer = &adapter->tx_buffer_area[i];
1592 			ctxd = &adapter->tx_desc_base[i];
1593 
1594 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1595 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1596 						   txd_lower | segs[j].ds_len);
1597 			ctxd->upper.data = htole32(txd_upper);
1598 
1599 			last = i;
1600 			if (++i == adapter->num_tx_desc)
1601 				i = 0;
1602 		}
1603 	}
1604 
1605 	adapter->next_avail_tx_desc = i;
1606 	if (adapter->pcix_82544) {
1607 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1608 		adapter->num_tx_desc_avail -= txd_used;
1609 	} else {
1610 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1611 		adapter->num_tx_desc_avail -= nsegs;
1612 	}
1613 
1614         /* Handle VLAN tag */
1615 	if (m_head->m_flags & M_VLANTAG) {
1616 		/* Set the vlan id. */
1617 		ctxd->upper.fields.special =
1618 		    htole16(m_head->m_pkthdr.ether_vlantag);
1619 
1620 		/* Tell hardware to add tag */
1621 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1622 	}
1623 
1624 	tx_buffer->m_head = m_head;
1625 	tx_buffer_mapped->map = tx_buffer->map;
1626 	tx_buffer->map = map;
1627 
1628 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1629 		adapter->tx_nsegs = 0;
1630 
1631 		/*
1632 		 * Report Status (RS) is turned on
1633 		 * every tx_int_nsegs descriptors.
1634 		 */
1635 		cmd = E1000_TXD_CMD_RS;
1636 
1637 		/*
1638 		 * Keep track of the descriptor, which will
1639 		 * be written back by hardware.
1640 		 */
1641 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1642 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1643 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1644 	}
1645 
1646 	/*
1647 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1648 	 */
1649 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1650 
1651 	/*
1652 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1653 	 * that this frame is available to transmit.
1654 	 */
1655 	if (adapter->hw.mac.type == e1000_82547 &&
1656 	    adapter->link_duplex == HALF_DUPLEX) {
1657 		em_82547_move_tail_serialized(adapter);
1658 	} else {
1659 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1660 		if (adapter->hw.mac.type == e1000_82547) {
1661 			em_82547_update_fifo_head(adapter,
1662 			    m_head->m_pkthdr.len);
1663 		}
1664 	}
1665 	return (0);
1666 }
1667 
1668 /*
1669  * 82547 workaround to avoid controller hang in half-duplex environment.
1670  * The workaround is to avoid queuing a large packet that would span
1671  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1672  * in this case.  We do that only when FIFO is quiescent.
1673  */
1674 static void
1675 em_82547_move_tail_serialized(struct adapter *adapter)
1676 {
1677 	struct e1000_tx_desc *tx_desc;
1678 	uint16_t hw_tdt, sw_tdt, length = 0;
1679 	bool eop = 0;
1680 
1681 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1682 
1683 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1684 	sw_tdt = adapter->next_avail_tx_desc;
1685 
1686 	while (hw_tdt != sw_tdt) {
1687 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1688 		length += tx_desc->lower.flags.length;
1689 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1690 		if (++hw_tdt == adapter->num_tx_desc)
1691 			hw_tdt = 0;
1692 
1693 		if (eop) {
1694 			if (em_82547_fifo_workaround(adapter, length)) {
1695 				adapter->tx_fifo_wrk_cnt++;
1696 				callout_reset(&adapter->tx_fifo_timer, 1,
1697 					em_82547_move_tail, adapter);
1698 				break;
1699 			}
1700 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1701 			em_82547_update_fifo_head(adapter, length);
1702 			length = 0;
1703 		}
1704 	}
1705 }
1706 
1707 static void
1708 em_82547_move_tail(void *xsc)
1709 {
1710 	struct adapter *adapter = xsc;
1711 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1712 
1713 	lwkt_serialize_enter(ifp->if_serializer);
1714 	em_82547_move_tail_serialized(adapter);
1715 	lwkt_serialize_exit(ifp->if_serializer);
1716 }
1717 
1718 static int
1719 em_82547_fifo_workaround(struct adapter *adapter, int len)
1720 {
1721 	int fifo_space, fifo_pkt_len;
1722 
1723 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1724 
1725 	if (adapter->link_duplex == HALF_DUPLEX) {
1726 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1727 
1728 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1729 			if (em_82547_tx_fifo_reset(adapter))
1730 				return (0);
1731 			else
1732 				return (1);
1733 		}
1734 	}
1735 	return (0);
1736 }
1737 
1738 static void
1739 em_82547_update_fifo_head(struct adapter *adapter, int len)
1740 {
1741 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1742 
1743 	/* tx_fifo_head is always 16 byte aligned */
1744 	adapter->tx_fifo_head += fifo_pkt_len;
1745 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1746 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1747 }
1748 
1749 static int
1750 em_82547_tx_fifo_reset(struct adapter *adapter)
1751 {
1752 	uint32_t tctl;
1753 
1754 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1755 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1756 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1757 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1758 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1759 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1760 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1761 		/* Disable TX unit */
1762 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1763 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1764 		    tctl & ~E1000_TCTL_EN);
1765 
1766 		/* Reset FIFO pointers */
1767 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1768 		    adapter->tx_head_addr);
1769 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1770 		    adapter->tx_head_addr);
1771 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1772 		    adapter->tx_head_addr);
1773 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1774 		    adapter->tx_head_addr);
1775 
1776 		/* Re-enable TX unit */
1777 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1778 		E1000_WRITE_FLUSH(&adapter->hw);
1779 
1780 		adapter->tx_fifo_head = 0;
1781 		adapter->tx_fifo_reset_cnt++;
1782 
1783 		return (TRUE);
1784 	} else {
1785 		return (FALSE);
1786 	}
1787 }
1788 
1789 static void
1790 em_set_promisc(struct adapter *adapter)
1791 {
1792 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1793 	uint32_t reg_rctl;
1794 
1795 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1796 
1797 	if (ifp->if_flags & IFF_PROMISC) {
1798 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1799 		/* Turn this on if you want to see bad packets */
1800 		if (em_debug_sbp)
1801 			reg_rctl |= E1000_RCTL_SBP;
1802 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1803 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1804 		reg_rctl |= E1000_RCTL_MPE;
1805 		reg_rctl &= ~E1000_RCTL_UPE;
1806 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1807 	}
1808 }
1809 
1810 static void
1811 em_disable_promisc(struct adapter *adapter)
1812 {
1813 	uint32_t reg_rctl;
1814 
1815 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1816 
1817 	reg_rctl &= ~E1000_RCTL_UPE;
1818 	reg_rctl &= ~E1000_RCTL_MPE;
1819 	reg_rctl &= ~E1000_RCTL_SBP;
1820 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1821 }
1822 
1823 static void
1824 em_set_multi(struct adapter *adapter)
1825 {
1826 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1827 	struct ifmultiaddr *ifma;
1828 	uint32_t reg_rctl = 0;
1829 	uint8_t  mta[512]; /* Largest MTS is 4096 bits */
1830 	int mcnt = 0;
1831 
1832 	if (adapter->hw.mac.type == e1000_82542 &&
1833 	    adapter->hw.revision_id == E1000_REVISION_2) {
1834 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1835 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1836 			e1000_pci_clear_mwi(&adapter->hw);
1837 		reg_rctl |= E1000_RCTL_RST;
1838 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1839 		msec_delay(5);
1840 	}
1841 
1842 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1843 		if (ifma->ifma_addr->sa_family != AF_LINK)
1844 			continue;
1845 
1846 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1847 			break;
1848 
1849 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1850 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1851 		mcnt++;
1852 	}
1853 
1854 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1855 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1856 		reg_rctl |= E1000_RCTL_MPE;
1857 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1858 	} else {
1859 		e1000_update_mc_addr_list(&adapter->hw, mta,
1860 		    mcnt, 1, adapter->hw.mac.rar_entry_count);
1861 	}
1862 
1863 	if (adapter->hw.mac.type == e1000_82542 &&
1864 	    adapter->hw.revision_id == E1000_REVISION_2) {
1865 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1866 		reg_rctl &= ~E1000_RCTL_RST;
1867 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1868 		msec_delay(5);
1869 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1870 			e1000_pci_set_mwi(&adapter->hw);
1871 	}
1872 }
1873 
1874 /*
1875  * This routine checks for link status and updates statistics.
1876  */
1877 static void
1878 em_timer(void *xsc)
1879 {
1880 	struct adapter *adapter = xsc;
1881 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1882 
1883 	lwkt_serialize_enter(ifp->if_serializer);
1884 
1885 	em_update_link_status(adapter);
1886 	em_update_stats(adapter);
1887 
1888 	/* Reset LAA into RAR[0] on 82571 */
1889 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1890 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1891 
1892 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1893 		em_print_hw_stats(adapter);
1894 
1895 	em_smartspeed(adapter);
1896 
1897 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1898 
1899 	lwkt_serialize_exit(ifp->if_serializer);
1900 }
1901 
1902 static void
1903 em_update_link_status(struct adapter *adapter)
1904 {
1905 	struct e1000_hw *hw = &adapter->hw;
1906 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1907 	device_t dev = adapter->dev;
1908 	uint32_t link_check = 0;
1909 
1910 	/* Get the cached link value or read phy for real */
1911 	switch (hw->phy.media_type) {
1912 	case e1000_media_type_copper:
1913 		if (hw->mac.get_link_status) {
1914 			/* Do the work to read phy */
1915 			e1000_check_for_link(hw);
1916 			link_check = !hw->mac.get_link_status;
1917 			if (link_check) /* ESB2 fix */
1918 				e1000_cfg_on_link_up(hw);
1919 		} else {
1920 			link_check = TRUE;
1921 		}
1922 		break;
1923 
1924 	case e1000_media_type_fiber:
1925 		e1000_check_for_link(hw);
1926 		link_check =
1927 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1928 		break;
1929 
1930 	case e1000_media_type_internal_serdes:
1931 		e1000_check_for_link(hw);
1932 		link_check = adapter->hw.mac.serdes_has_link;
1933 		break;
1934 
1935 	case e1000_media_type_unknown:
1936 	default:
1937 		break;
1938 	}
1939 
1940 	/* Now check for a transition */
1941 	if (link_check && adapter->link_active == 0) {
1942 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1943 		    &adapter->link_duplex);
1944 
1945 		/*
1946 		 * Check if we should enable/disable SPEED_MODE bit on
1947 		 * 82571/82572
1948 		 */
1949 		if (hw->mac.type == e1000_82571 ||
1950 		    hw->mac.type == e1000_82572) {
1951 			int tarc0;
1952 
1953 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1954 			if (adapter->link_speed != SPEED_1000)
1955 				tarc0 &= ~SPEED_MODE_BIT;
1956 			else
1957 				tarc0 |= SPEED_MODE_BIT;
1958 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1959 		}
1960 		if (bootverbose) {
1961 			device_printf(dev, "Link is up %d Mbps %s\n",
1962 			    adapter->link_speed,
1963 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1964 			    "Full Duplex" : "Half Duplex"));
1965 		}
1966 		adapter->link_active = 1;
1967 		adapter->smartspeed = 0;
1968 		ifp->if_baudrate = adapter->link_speed * 1000000;
1969 		ifp->if_link_state = LINK_STATE_UP;
1970 		if_link_state_change(ifp);
1971 	} else if (!link_check && adapter->link_active == 1) {
1972 		ifp->if_baudrate = adapter->link_speed = 0;
1973 		adapter->link_duplex = 0;
1974 		if (bootverbose)
1975 			device_printf(dev, "Link is Down\n");
1976 		adapter->link_active = 0;
1977 #if 0
1978 		/* Link down, disable watchdog */
1979 		if->if_timer = 0;
1980 #endif
1981 		ifp->if_link_state = LINK_STATE_DOWN;
1982 		if_link_state_change(ifp);
1983 	}
1984 }
1985 
1986 static void
1987 em_stop(struct adapter *adapter)
1988 {
1989 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1990 	int i;
1991 
1992 	ASSERT_SERIALIZED(ifp->if_serializer);
1993 
1994 	em_disable_intr(adapter);
1995 
1996 	callout_stop(&adapter->timer);
1997 	callout_stop(&adapter->tx_fifo_timer);
1998 
1999 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2000 	ifp->if_timer = 0;
2001 
2002 	e1000_reset_hw(&adapter->hw);
2003 	if (adapter->hw.mac.type >= e1000_82544)
2004 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2005 
2006 	for (i = 0; i < adapter->num_tx_desc; i++) {
2007 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2008 
2009 		if (tx_buffer->m_head != NULL) {
2010 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2011 			m_freem(tx_buffer->m_head);
2012 			tx_buffer->m_head = NULL;
2013 		}
2014 	}
2015 
2016 	for (i = 0; i < adapter->num_rx_desc; i++) {
2017 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2018 
2019 		if (rx_buffer->m_head != NULL) {
2020 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2021 			m_freem(rx_buffer->m_head);
2022 			rx_buffer->m_head = NULL;
2023 		}
2024 	}
2025 
2026 	if (adapter->fmp != NULL)
2027 		m_freem(adapter->fmp);
2028 	adapter->fmp = NULL;
2029 	adapter->lmp = NULL;
2030 
2031 	adapter->csum_flags = 0;
2032 	adapter->csum_ehlen = 0;
2033 	adapter->csum_iphlen = 0;
2034 
2035 	adapter->tx_dd_head = 0;
2036 	adapter->tx_dd_tail = 0;
2037 	adapter->tx_nsegs = 0;
2038 }
2039 
2040 static int
2041 em_get_hw_info(struct adapter *adapter)
2042 {
2043 	device_t dev = adapter->dev;
2044 
2045 	/* Save off the information about this board */
2046 	adapter->hw.vendor_id = pci_get_vendor(dev);
2047 	adapter->hw.device_id = pci_get_device(dev);
2048 	adapter->hw.revision_id = pci_get_revid(dev);
2049 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2050 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2051 
2052 	/* Do Shared Code Init and Setup */
2053 	if (e1000_set_mac_type(&adapter->hw))
2054 		return ENXIO;
2055 	return 0;
2056 }
2057 
2058 static int
2059 em_alloc_pci_res(struct adapter *adapter)
2060 {
2061 	device_t dev = adapter->dev;
2062 	int val, rid;
2063 
2064 	/* Enable bus mastering */
2065 	pci_enable_busmaster(dev);
2066 
2067 	adapter->memory_rid = EM_BAR_MEM;
2068 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2069 				&adapter->memory_rid, RF_ACTIVE);
2070 	if (adapter->memory == NULL) {
2071 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2072 		return (ENXIO);
2073 	}
2074 	adapter->osdep.mem_bus_space_tag =
2075 	    rman_get_bustag(adapter->memory);
2076 	adapter->osdep.mem_bus_space_handle =
2077 	    rman_get_bushandle(adapter->memory);
2078 
2079 	/* XXX This is quite goofy, it is not actually used */
2080 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2081 
2082 	/* Only older adapters use IO mapping */
2083 	if (adapter->hw.mac.type > e1000_82543 &&
2084 	    adapter->hw.mac.type < e1000_82571) {
2085 		/* Figure our where our IO BAR is ? */
2086 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2087 			val = pci_read_config(dev, rid, 4);
2088 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2089 				adapter->io_rid = rid;
2090 				break;
2091 			}
2092 			rid += 4;
2093 			/* check for 64bit BAR */
2094 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2095 				rid += 4;
2096 		}
2097 		if (rid >= PCIR_CARDBUSCIS) {
2098 			device_printf(dev, "Unable to locate IO BAR\n");
2099 			return (ENXIO);
2100 		}
2101 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2102 					&adapter->io_rid, RF_ACTIVE);
2103 		if (adapter->ioport == NULL) {
2104 			device_printf(dev, "Unable to allocate bus resource: "
2105 			    "ioport\n");
2106 			return (ENXIO);
2107 		}
2108 		adapter->hw.io_base = 0;
2109 		adapter->osdep.io_bus_space_tag =
2110 		    rman_get_bustag(adapter->ioport);
2111 		adapter->osdep.io_bus_space_handle =
2112 		    rman_get_bushandle(adapter->ioport);
2113 	}
2114 
2115 	adapter->intr_rid = 0;
2116 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2117 				&adapter->intr_rid,
2118 				RF_SHAREABLE | RF_ACTIVE);
2119 	if (adapter->intr_res == NULL) {
2120 		device_printf(dev, "Unable to allocate bus resource: "
2121 		    "interrupt\n");
2122 		return (ENXIO);
2123 	}
2124 
2125 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2126 	adapter->hw.back = &adapter->osdep;
2127 	return (0);
2128 }
2129 
2130 static void
2131 em_free_pci_res(struct adapter *adapter)
2132 {
2133 	device_t dev = adapter->dev;
2134 
2135 	if (adapter->intr_res != NULL) {
2136 		bus_release_resource(dev, SYS_RES_IRQ,
2137 		    adapter->intr_rid, adapter->intr_res);
2138 	}
2139 
2140 	if (adapter->memory != NULL) {
2141 		bus_release_resource(dev, SYS_RES_MEMORY,
2142 		    adapter->memory_rid, adapter->memory);
2143 	}
2144 
2145 	if (adapter->flash != NULL) {
2146 		bus_release_resource(dev, SYS_RES_MEMORY,
2147 		    adapter->flash_rid, adapter->flash);
2148 	}
2149 
2150 	if (adapter->ioport != NULL) {
2151 		bus_release_resource(dev, SYS_RES_IOPORT,
2152 		    adapter->io_rid, adapter->ioport);
2153 	}
2154 }
2155 
2156 static int
2157 em_hw_init(struct adapter *adapter)
2158 {
2159 	device_t dev = adapter->dev;
2160 	uint16_t rx_buffer_size;
2161 
2162 	/* Issue a global reset */
2163 	e1000_reset_hw(&adapter->hw);
2164 
2165 	/* Get control from any management/hw control */
2166 	if ((adapter->hw.mac.type == e1000_82573 ||
2167 	     adapter->hw.mac.type == e1000_ich8lan ||
2168 	     adapter->hw.mac.type == e1000_ich10lan ||
2169 	     adapter->hw.mac.type == e1000_ich9lan) &&
2170 	    e1000_check_mng_mode(&adapter->hw))
2171 		em_get_hw_control(adapter);
2172 
2173 	/* When hardware is reset, fifo_head is also reset */
2174 	adapter->tx_fifo_head = 0;
2175 
2176 	/* Set up smart power down as default off on newer adapters. */
2177 	if (!em_smart_pwr_down &&
2178 	    (adapter->hw.mac.type == e1000_82571 ||
2179 	     adapter->hw.mac.type == e1000_82572)) {
2180 		uint16_t phy_tmp = 0;
2181 
2182 		/* Speed up time to link by disabling smart power down. */
2183 		e1000_read_phy_reg(&adapter->hw,
2184 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2185 		phy_tmp &= ~IGP02E1000_PM_SPD;
2186 		e1000_write_phy_reg(&adapter->hw,
2187 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2188 	}
2189 
2190 	/*
2191 	 * These parameters control the automatic generation (Tx) and
2192 	 * response (Rx) to Ethernet PAUSE frames.
2193 	 * - High water mark should allow for at least two frames to be
2194 	 *   received after sending an XOFF.
2195 	 * - Low water mark works best when it is very near the high water mark.
2196 	 *   This allows the receiver to restart by sending XON when it has
2197 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2198 	 *   restart after one full frame is pulled from the buffer. There
2199 	 *   could be several smaller frames in the buffer and if so they will
2200 	 *   not trigger the XON until their total number reduces the buffer
2201 	 *   by 1500.
2202 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2203 	 */
2204 	rx_buffer_size =
2205 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2206 
2207 	adapter->hw.fc.high_water = rx_buffer_size -
2208 				    roundup2(adapter->max_frame_size, 1024);
2209 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2210 
2211 	if (adapter->hw.mac.type == e1000_80003es2lan)
2212 		adapter->hw.fc.pause_time = 0xFFFF;
2213 	else
2214 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2215 	adapter->hw.fc.send_xon = TRUE;
2216 	adapter->hw.fc.requested_mode = e1000_fc_full;
2217 
2218 	if (e1000_init_hw(&adapter->hw) < 0) {
2219 		device_printf(dev, "Hardware Initialization Failed\n");
2220 		return (EIO);
2221 	}
2222 
2223 	e1000_check_for_link(&adapter->hw);
2224 
2225 	return (0);
2226 }
2227 
2228 static void
2229 em_setup_ifp(struct adapter *adapter)
2230 {
2231 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2232 
2233 	if_initname(ifp, device_get_name(adapter->dev),
2234 		    device_get_unit(adapter->dev));
2235 	ifp->if_softc = adapter;
2236 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2237 	ifp->if_init =  em_init;
2238 	ifp->if_ioctl = em_ioctl;
2239 	ifp->if_start = em_start;
2240 #ifdef DEVICE_POLLING
2241 	ifp->if_poll = em_poll;
2242 #endif
2243 	ifp->if_watchdog = em_watchdog;
2244 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2245 	ifq_set_ready(&ifp->if_snd);
2246 
2247 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2248 
2249 	if (adapter->hw.mac.type >= e1000_82543)
2250 		ifp->if_capabilities = IFCAP_HWCSUM;
2251 
2252 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2253 	ifp->if_capenable = ifp->if_capabilities;
2254 
2255 	if (ifp->if_capenable & IFCAP_TXCSUM)
2256 		ifp->if_hwassist = EM_CSUM_FEATURES;
2257 
2258 	/*
2259 	 * Tell the upper layer(s) we support long frames.
2260 	 */
2261 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2262 
2263 	/*
2264 	 * Specify the media types supported by this adapter and register
2265 	 * callbacks to update media and link information
2266 	 */
2267 	ifmedia_init(&adapter->media, IFM_IMASK,
2268 		     em_media_change, em_media_status);
2269 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2270 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2271 		u_char fiber_type = IFM_1000_SX; /* default type */
2272 
2273 		if (adapter->hw.mac.type == e1000_82545)
2274 			fiber_type = IFM_1000_LX;
2275 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2276 			    0, NULL);
2277 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2278 	} else {
2279 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2280 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2281 			    0, NULL);
2282 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2283 			    0, NULL);
2284 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2285 			    0, NULL);
2286 		if (adapter->hw.phy.type != e1000_phy_ife) {
2287 			ifmedia_add(&adapter->media,
2288 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2289 			ifmedia_add(&adapter->media,
2290 				IFM_ETHER | IFM_1000_T, 0, NULL);
2291 		}
2292 	}
2293 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2294 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2295 }
2296 
2297 
2298 /*
2299  * Workaround for SmartSpeed on 82541 and 82547 controllers
2300  */
2301 static void
2302 em_smartspeed(struct adapter *adapter)
2303 {
2304 	uint16_t phy_tmp;
2305 
2306 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2307 	    adapter->hw.mac.autoneg == 0 ||
2308 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2309 		return;
2310 
2311 	if (adapter->smartspeed == 0) {
2312 		/*
2313 		 * If Master/Slave config fault is asserted twice,
2314 		 * we assume back-to-back
2315 		 */
2316 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2317 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2318 			return;
2319 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2320 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2321 			e1000_read_phy_reg(&adapter->hw,
2322 			    PHY_1000T_CTRL, &phy_tmp);
2323 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2324 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2325 				e1000_write_phy_reg(&adapter->hw,
2326 				    PHY_1000T_CTRL, phy_tmp);
2327 				adapter->smartspeed++;
2328 				if (adapter->hw.mac.autoneg &&
2329 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2330 				    !e1000_read_phy_reg(&adapter->hw,
2331 				     PHY_CONTROL, &phy_tmp)) {
2332 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2333 						   MII_CR_RESTART_AUTO_NEG;
2334 					e1000_write_phy_reg(&adapter->hw,
2335 					    PHY_CONTROL, phy_tmp);
2336 				}
2337 			}
2338 		}
2339 		return;
2340 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2341 		/* If still no link, perhaps using 2/3 pair cable */
2342 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2343 		phy_tmp |= CR_1000T_MS_ENABLE;
2344 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2345 		if (adapter->hw.mac.autoneg &&
2346 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2347 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2348 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2349 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2350 		}
2351 	}
2352 
2353 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2354 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2355 		adapter->smartspeed = 0;
2356 }
2357 
2358 static int
2359 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2360 	      struct em_dma_alloc *dma)
2361 {
2362 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2363 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2364 				&dma->dma_tag, &dma->dma_map,
2365 				&dma->dma_paddr);
2366 	if (dma->dma_vaddr == NULL)
2367 		return ENOMEM;
2368 	else
2369 		return 0;
2370 }
2371 
2372 static void
2373 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2374 {
2375 	if (dma->dma_tag == NULL)
2376 		return;
2377 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2378 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2379 	bus_dma_tag_destroy(dma->dma_tag);
2380 }
2381 
2382 static int
2383 em_create_tx_ring(struct adapter *adapter)
2384 {
2385 	device_t dev = adapter->dev;
2386 	struct em_buffer *tx_buffer;
2387 	int error, i;
2388 
2389 	adapter->tx_buffer_area =
2390 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2391 			M_DEVBUF, M_WAITOK | M_ZERO);
2392 
2393 	/*
2394 	 * Create DMA tags for tx buffers
2395 	 */
2396 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2397 			1, 0,			/* alignment, bounds */
2398 			BUS_SPACE_MAXADDR,	/* lowaddr */
2399 			BUS_SPACE_MAXADDR,	/* highaddr */
2400 			NULL, NULL,		/* filter, filterarg */
2401 			EM_TSO_SIZE,		/* maxsize */
2402 			EM_MAX_SCATTER,		/* nsegments */
2403 			EM_MAX_SEGSIZE,		/* maxsegsize */
2404 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2405 			BUS_DMA_ONEBPAGE,	/* flags */
2406 			&adapter->txtag);
2407 	if (error) {
2408 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2409 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2410 		adapter->tx_buffer_area = NULL;
2411 		return error;
2412 	}
2413 
2414 	/*
2415 	 * Create DMA maps for tx buffers
2416 	 */
2417 	for (i = 0; i < adapter->num_tx_desc; i++) {
2418 		tx_buffer = &adapter->tx_buffer_area[i];
2419 
2420 		error = bus_dmamap_create(adapter->txtag,
2421 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2422 					  &tx_buffer->map);
2423 		if (error) {
2424 			device_printf(dev, "Unable to create TX DMA map\n");
2425 			em_destroy_tx_ring(adapter, i);
2426 			return error;
2427 		}
2428 	}
2429 	return (0);
2430 }
2431 
2432 static void
2433 em_init_tx_ring(struct adapter *adapter)
2434 {
2435 	/* Clear the old ring contents */
2436 	bzero(adapter->tx_desc_base,
2437 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2438 
2439 	/* Reset state */
2440 	adapter->next_avail_tx_desc = 0;
2441 	adapter->next_tx_to_clean = 0;
2442 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2443 }
2444 
2445 static void
2446 em_init_tx_unit(struct adapter *adapter)
2447 {
2448 	uint32_t tctl, tarc, tipg = 0;
2449 	uint64_t bus_addr;
2450 
2451 	/* Setup the Base and Length of the Tx Descriptor Ring */
2452 	bus_addr = adapter->txdma.dma_paddr;
2453 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2454 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2455 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2456 	    (uint32_t)(bus_addr >> 32));
2457 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2458 	    (uint32_t)bus_addr);
2459 	/* Setup the HW Tx Head and Tail descriptor pointers */
2460 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2461 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2462 
2463 	/* Set the default values for the Tx Inter Packet Gap timer */
2464 	switch (adapter->hw.mac.type) {
2465 	case e1000_82542:
2466 		tipg = DEFAULT_82542_TIPG_IPGT;
2467 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2468 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2469 		break;
2470 
2471 	case e1000_80003es2lan:
2472 		tipg = DEFAULT_82543_TIPG_IPGR1;
2473 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2474 		    E1000_TIPG_IPGR2_SHIFT;
2475 		break;
2476 
2477 	default:
2478 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2479 		    adapter->hw.phy.media_type ==
2480 		    e1000_media_type_internal_serdes)
2481 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2482 		else
2483 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2484 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2485 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2486 		break;
2487 	}
2488 
2489 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2490 
2491 	/* NOTE: 0 is not allowed for TIDV */
2492 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2493 	if(adapter->hw.mac.type >= e1000_82540)
2494 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2495 
2496 	if (adapter->hw.mac.type == e1000_82571 ||
2497 	    adapter->hw.mac.type == e1000_82572) {
2498 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2499 		tarc |= SPEED_MODE_BIT;
2500 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2501 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2502 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2503 		tarc |= 1;
2504 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2505 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2506 		tarc |= 1;
2507 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2508 	}
2509 
2510 	/* Program the Transmit Control Register */
2511 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2512 	tctl &= ~E1000_TCTL_CT;
2513 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2514 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2515 
2516 	if (adapter->hw.mac.type >= e1000_82571)
2517 		tctl |= E1000_TCTL_MULR;
2518 
2519 	/* This write will effectively turn on the transmit unit. */
2520 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2521 }
2522 
2523 static void
2524 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2525 {
2526 	struct em_buffer *tx_buffer;
2527 	int i;
2528 
2529 	if (adapter->tx_buffer_area == NULL)
2530 		return;
2531 
2532 	for (i = 0; i < ndesc; i++) {
2533 		tx_buffer = &adapter->tx_buffer_area[i];
2534 
2535 		KKASSERT(tx_buffer->m_head == NULL);
2536 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2537 	}
2538 	bus_dma_tag_destroy(adapter->txtag);
2539 
2540 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2541 	adapter->tx_buffer_area = NULL;
2542 }
2543 
2544 /*
2545  * The offload context needs to be set when we transfer the first
2546  * packet of a particular protocol (TCP/UDP).  This routine has been
2547  * enhanced to deal with inserted VLAN headers.
2548  *
2549  * If the new packet's ether header length, ip header length and
2550  * csum offloading type are same as the previous packet, we should
2551  * avoid allocating a new csum context descriptor; mainly to take
2552  * advantage of the pipeline effect of the TX data read request.
2553  *
2554  * This function returns number of TX descrptors allocated for
2555  * csum context.
2556  */
2557 static int
2558 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2559 	  uint32_t *txd_upper, uint32_t *txd_lower)
2560 {
2561 	struct e1000_context_desc *TXD;
2562 	struct em_buffer *tx_buffer;
2563 	struct ether_vlan_header *eh;
2564 	struct ip *ip;
2565 	int curr_txd, ehdrlen, csum_flags;
2566 	uint32_t cmd, hdr_len, ip_hlen;
2567 	uint16_t etype;
2568 
2569 	/*
2570 	 * Determine where frame payload starts.
2571 	 * Jump over vlan headers if already present,
2572 	 * helpful for QinQ too.
2573 	 */
2574 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2575 		("em_txcsum_pullup is not called (eh)?\n"));
2576 	eh = mtod(mp, struct ether_vlan_header *);
2577 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2578 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2579 			("em_txcsum_pullup is not called (evh)?\n"));
2580 		etype = ntohs(eh->evl_proto);
2581 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2582 	} else {
2583 		etype = ntohs(eh->evl_encap_proto);
2584 		ehdrlen = ETHER_HDR_LEN;
2585 	}
2586 
2587 	/*
2588 	 * We only support TCP/UDP for IPv4 for the moment.
2589 	 * TODO: Support SCTP too when it hits the tree.
2590 	 */
2591 	if (etype != ETHERTYPE_IP)
2592 		return 0;
2593 
2594 	KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2595 		("em_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2596 
2597 	/* NOTE: We could only safely access ip.ip_vhl part */
2598 	ip = (struct ip *)(mp->m_data + ehdrlen);
2599 	ip_hlen = ip->ip_hl << 2;
2600 
2601 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2602 
2603 	if (adapter->csum_ehlen == ehdrlen &&
2604 	    adapter->csum_iphlen == ip_hlen &&
2605 	    adapter->csum_flags == csum_flags) {
2606 		/*
2607 		 * Same csum offload context as the previous packets;
2608 		 * just return.
2609 		 */
2610 		*txd_upper = adapter->csum_txd_upper;
2611 		*txd_lower = adapter->csum_txd_lower;
2612 		return 0;
2613 	}
2614 
2615 	/*
2616 	 * Setup a new csum offload context.
2617 	 */
2618 
2619 	curr_txd = adapter->next_avail_tx_desc;
2620 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2621 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2622 
2623 	cmd = 0;
2624 
2625 	/* Setup of IP header checksum. */
2626 	if (csum_flags & CSUM_IP) {
2627 		/*
2628 		 * Start offset for header checksum calculation.
2629 		 * End offset for header checksum calculation.
2630 		 * Offset of place to put the checksum.
2631 		 */
2632 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2633 		TXD->lower_setup.ip_fields.ipcse =
2634 		    htole16(ehdrlen + ip_hlen - 1);
2635 		TXD->lower_setup.ip_fields.ipcso =
2636 		    ehdrlen + offsetof(struct ip, ip_sum);
2637 		cmd |= E1000_TXD_CMD_IP;
2638 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2639 	}
2640 	hdr_len = ehdrlen + ip_hlen;
2641 
2642 	if (csum_flags & CSUM_TCP) {
2643 		/*
2644 		 * Start offset for payload checksum calculation.
2645 		 * End offset for payload checksum calculation.
2646 		 * Offset of place to put the checksum.
2647 		 */
2648 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2649 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2650 		TXD->upper_setup.tcp_fields.tucso =
2651 		    hdr_len + offsetof(struct tcphdr, th_sum);
2652 		cmd |= E1000_TXD_CMD_TCP;
2653 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2654 	} else if (csum_flags & CSUM_UDP) {
2655 		/*
2656 		 * Start offset for header checksum calculation.
2657 		 * End offset for header checksum calculation.
2658 		 * Offset of place to put the checksum.
2659 		 */
2660 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2661 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2662 		TXD->upper_setup.tcp_fields.tucso =
2663 		    hdr_len + offsetof(struct udphdr, uh_sum);
2664 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2665 	}
2666 
2667 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2668 		     E1000_TXD_DTYP_D;		/* Data descr */
2669 
2670 	/* Save the information for this csum offloading context */
2671 	adapter->csum_ehlen = ehdrlen;
2672 	adapter->csum_iphlen = ip_hlen;
2673 	adapter->csum_flags = csum_flags;
2674 	adapter->csum_txd_upper = *txd_upper;
2675 	adapter->csum_txd_lower = *txd_lower;
2676 
2677 	TXD->tcp_seg_setup.data = htole32(0);
2678 	TXD->cmd_and_length =
2679 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2680 
2681 	if (++curr_txd == adapter->num_tx_desc)
2682 		curr_txd = 0;
2683 
2684 	KKASSERT(adapter->num_tx_desc_avail > 0);
2685 	adapter->num_tx_desc_avail--;
2686 
2687 	adapter->next_avail_tx_desc = curr_txd;
2688 	return 1;
2689 }
2690 
2691 static int
2692 em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2693 {
2694 	struct mbuf *m = *m0;
2695 	struct ether_header *eh;
2696 	int len;
2697 
2698 	adapter->tx_csum_try_pullup++;
2699 
2700 	len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2701 
2702 	if (__predict_false(!M_WRITABLE(m))) {
2703 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2704 			adapter->tx_csum_drop1++;
2705 			m_freem(m);
2706 			*m0 = NULL;
2707 			return ENOBUFS;
2708 		}
2709 		eh = mtod(m, struct ether_header *);
2710 
2711 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2712 			len += EVL_ENCAPLEN;
2713 
2714 		if (m->m_len < len) {
2715 			adapter->tx_csum_drop2++;
2716 			m_freem(m);
2717 			*m0 = NULL;
2718 			return ENOBUFS;
2719 		}
2720 		return 0;
2721 	}
2722 
2723 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2724 		adapter->tx_csum_pullup1++;
2725 		m = m_pullup(m, ETHER_HDR_LEN);
2726 		if (m == NULL) {
2727 			adapter->tx_csum_pullup1_failed++;
2728 			*m0 = NULL;
2729 			return ENOBUFS;
2730 		}
2731 		*m0 = m;
2732 	}
2733 	eh = mtod(m, struct ether_header *);
2734 
2735 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2736 		len += EVL_ENCAPLEN;
2737 
2738 	if (m->m_len < len) {
2739 		adapter->tx_csum_pullup2++;
2740 		m = m_pullup(m, len);
2741 		if (m == NULL) {
2742 			adapter->tx_csum_pullup2_failed++;
2743 			*m0 = NULL;
2744 			return ENOBUFS;
2745 		}
2746 		*m0 = m;
2747 	}
2748 	return 0;
2749 }
2750 
2751 static void
2752 em_txeof(struct adapter *adapter)
2753 {
2754 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2755 	struct em_buffer *tx_buffer;
2756 	int first, num_avail;
2757 
2758 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2759 		return;
2760 
2761 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2762 		return;
2763 
2764 	num_avail = adapter->num_tx_desc_avail;
2765 	first = adapter->next_tx_to_clean;
2766 
2767 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2768 		struct e1000_tx_desc *tx_desc;
2769 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2770 
2771 		tx_desc = &adapter->tx_desc_base[dd_idx];
2772 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2773 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2774 
2775 			if (++dd_idx == adapter->num_tx_desc)
2776 				dd_idx = 0;
2777 
2778 			while (first != dd_idx) {
2779 				logif(pkt_txclean);
2780 
2781 				num_avail++;
2782 
2783 				tx_buffer = &adapter->tx_buffer_area[first];
2784 				if (tx_buffer->m_head) {
2785 					ifp->if_opackets++;
2786 					bus_dmamap_unload(adapter->txtag,
2787 							  tx_buffer->map);
2788 					m_freem(tx_buffer->m_head);
2789 					tx_buffer->m_head = NULL;
2790 				}
2791 
2792 				if (++first == adapter->num_tx_desc)
2793 					first = 0;
2794 			}
2795 		} else {
2796 			break;
2797 		}
2798 	}
2799 	adapter->next_tx_to_clean = first;
2800 	adapter->num_tx_desc_avail = num_avail;
2801 
2802 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2803 		adapter->tx_dd_head = 0;
2804 		adapter->tx_dd_tail = 0;
2805 	}
2806 
2807 	if (!EM_IS_OACTIVE(adapter)) {
2808 		ifp->if_flags &= ~IFF_OACTIVE;
2809 
2810 		/* All clean, turn off the timer */
2811 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2812 			ifp->if_timer = 0;
2813 	}
2814 }
2815 
2816 static void
2817 em_tx_collect(struct adapter *adapter)
2818 {
2819 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2820 	struct em_buffer *tx_buffer;
2821 	int tdh, first, num_avail, dd_idx = -1;
2822 
2823 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2824 		return;
2825 
2826 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2827 	if (tdh == adapter->next_tx_to_clean)
2828 		return;
2829 
2830 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2831 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2832 
2833 	num_avail = adapter->num_tx_desc_avail;
2834 	first = adapter->next_tx_to_clean;
2835 
2836 	while (first != tdh) {
2837 		logif(pkt_txclean);
2838 
2839 		num_avail++;
2840 
2841 		tx_buffer = &adapter->tx_buffer_area[first];
2842 		if (tx_buffer->m_head) {
2843 			ifp->if_opackets++;
2844 			bus_dmamap_unload(adapter->txtag,
2845 					  tx_buffer->map);
2846 			m_freem(tx_buffer->m_head);
2847 			tx_buffer->m_head = NULL;
2848 		}
2849 
2850 		if (first == dd_idx) {
2851 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2852 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2853 				adapter->tx_dd_head = 0;
2854 				adapter->tx_dd_tail = 0;
2855 				dd_idx = -1;
2856 			} else {
2857 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2858 			}
2859 		}
2860 
2861 		if (++first == adapter->num_tx_desc)
2862 			first = 0;
2863 	}
2864 	adapter->next_tx_to_clean = first;
2865 	adapter->num_tx_desc_avail = num_avail;
2866 
2867 	if (!EM_IS_OACTIVE(adapter)) {
2868 		ifp->if_flags &= ~IFF_OACTIVE;
2869 
2870 		/* All clean, turn off the timer */
2871 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2872 			ifp->if_timer = 0;
2873 	}
2874 }
2875 
2876 /*
2877  * When Link is lost sometimes there is work still in the TX ring
2878  * which will result in a watchdog, rather than allow that do an
2879  * attempted cleanup and then reinit here.  Note that this has been
2880  * seens mostly with fiber adapters.
2881  */
2882 static void
2883 em_tx_purge(struct adapter *adapter)
2884 {
2885 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2886 
2887 	if (!adapter->link_active && ifp->if_timer) {
2888 		em_tx_collect(adapter);
2889 		if (ifp->if_timer) {
2890 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2891 			ifp->if_timer = 0;
2892 			em_init(adapter);
2893 		}
2894 	}
2895 }
2896 
2897 static int
2898 em_newbuf(struct adapter *adapter, int i, int init)
2899 {
2900 	struct mbuf *m;
2901 	bus_dma_segment_t seg;
2902 	bus_dmamap_t map;
2903 	struct em_buffer *rx_buffer;
2904 	int error, nseg;
2905 
2906 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2907 	if (m == NULL) {
2908 		adapter->mbuf_cluster_failed++;
2909 		if (init) {
2910 			if_printf(&adapter->arpcom.ac_if,
2911 				  "Unable to allocate RX mbuf\n");
2912 		}
2913 		return (ENOBUFS);
2914 	}
2915 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2916 
2917 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2918 		m_adj(m, ETHER_ALIGN);
2919 
2920 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
2921 			adapter->rx_sparemap, m,
2922 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2923 	if (error) {
2924 		m_freem(m);
2925 		if (init) {
2926 			if_printf(&adapter->arpcom.ac_if,
2927 				  "Unable to load RX mbuf\n");
2928 		}
2929 		return (error);
2930 	}
2931 
2932 	rx_buffer = &adapter->rx_buffer_area[i];
2933 	if (rx_buffer->m_head != NULL)
2934 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2935 
2936 	map = rx_buffer->map;
2937 	rx_buffer->map = adapter->rx_sparemap;
2938 	adapter->rx_sparemap = map;
2939 
2940 	rx_buffer->m_head = m;
2941 
2942 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
2943 	return (0);
2944 }
2945 
2946 static int
2947 em_create_rx_ring(struct adapter *adapter)
2948 {
2949 	device_t dev = adapter->dev;
2950 	struct em_buffer *rx_buffer;
2951 	int i, error;
2952 
2953 	adapter->rx_buffer_area =
2954 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
2955 			M_DEVBUF, M_WAITOK | M_ZERO);
2956 
2957 	/*
2958 	 * Create DMA tag for rx buffers
2959 	 */
2960 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2961 			1, 0,			/* alignment, bounds */
2962 			BUS_SPACE_MAXADDR,	/* lowaddr */
2963 			BUS_SPACE_MAXADDR,	/* highaddr */
2964 			NULL, NULL,		/* filter, filterarg */
2965 			MCLBYTES,		/* maxsize */
2966 			1,			/* nsegments */
2967 			MCLBYTES,		/* maxsegsize */
2968 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2969 			&adapter->rxtag);
2970 	if (error) {
2971 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2972 		kfree(adapter->rx_buffer_area, M_DEVBUF);
2973 		adapter->rx_buffer_area = NULL;
2974 		return error;
2975 	}
2976 
2977 	/*
2978 	 * Create spare DMA map for rx buffers
2979 	 */
2980 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
2981 				  &adapter->rx_sparemap);
2982 	if (error) {
2983 		device_printf(dev, "Unable to create spare RX DMA map\n");
2984 		bus_dma_tag_destroy(adapter->rxtag);
2985 		kfree(adapter->rx_buffer_area, M_DEVBUF);
2986 		adapter->rx_buffer_area = NULL;
2987 		return error;
2988 	}
2989 
2990 	/*
2991 	 * Create DMA maps for rx buffers
2992 	 */
2993 	for (i = 0; i < adapter->num_rx_desc; i++) {
2994 		rx_buffer = &adapter->rx_buffer_area[i];
2995 
2996 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
2997 					  &rx_buffer->map);
2998 		if (error) {
2999 			device_printf(dev, "Unable to create RX DMA map\n");
3000 			em_destroy_rx_ring(adapter, i);
3001 			return error;
3002 		}
3003 	}
3004 	return (0);
3005 }
3006 
3007 static int
3008 em_init_rx_ring(struct adapter *adapter)
3009 {
3010 	int i, error;
3011 
3012 	/* Reset descriptor ring */
3013 	bzero(adapter->rx_desc_base,
3014 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3015 
3016 	/* Allocate new ones. */
3017 	for (i = 0; i < adapter->num_rx_desc; i++) {
3018 		error = em_newbuf(adapter, i, 1);
3019 		if (error)
3020 			return (error);
3021 	}
3022 
3023 	/* Setup our descriptor pointers */
3024 	adapter->next_rx_desc_to_check = 0;
3025 
3026 	return (0);
3027 }
3028 
3029 static void
3030 em_init_rx_unit(struct adapter *adapter)
3031 {
3032 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3033 	uint64_t bus_addr;
3034 	uint32_t rctl, rxcsum;
3035 
3036 	/*
3037 	 * Make sure receives are disabled while setting
3038 	 * up the descriptor ring
3039 	 */
3040 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3041 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3042 
3043 	if (adapter->hw.mac.type >= e1000_82540) {
3044 		/*
3045 		 * Set the interrupt throttling rate. Value is calculated
3046 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3047 		 */
3048 		if (adapter->int_throttle_ceil) {
3049 			E1000_WRITE_REG(&adapter->hw, E1000_ITR,
3050 				1000000000 / 256 / adapter->int_throttle_ceil);
3051 		} else {
3052 			E1000_WRITE_REG(&adapter->hw, E1000_ITR, 0);
3053 		}
3054 	}
3055 
3056 	/* Disable accelerated ackknowledge */
3057 	if (adapter->hw.mac.type == e1000_82574) {
3058 		E1000_WRITE_REG(&adapter->hw,
3059 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3060 	}
3061 
3062 	/* Setup the Base and Length of the Rx Descriptor Ring */
3063 	bus_addr = adapter->rxdma.dma_paddr;
3064 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3065 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3066 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3067 	    (uint32_t)(bus_addr >> 32));
3068 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3069 	    (uint32_t)bus_addr);
3070 
3071 	/* Setup the Receive Control Register */
3072 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3073 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3074 		E1000_RCTL_RDMTS_HALF |
3075 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3076 
3077 	/* Make sure VLAN Filters are off */
3078 	rctl &= ~E1000_RCTL_VFE;
3079 
3080 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3081 		rctl |= E1000_RCTL_SBP;
3082 	else
3083 		rctl &= ~E1000_RCTL_SBP;
3084 
3085 	switch (adapter->rx_buffer_len) {
3086 	default:
3087 	case 2048:
3088 		rctl |= E1000_RCTL_SZ_2048;
3089 		break;
3090 
3091 	case 4096:
3092 		rctl |= E1000_RCTL_SZ_4096 |
3093 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3094 		break;
3095 
3096 	case 8192:
3097 		rctl |= E1000_RCTL_SZ_8192 |
3098 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3099 		break;
3100 
3101 	case 16384:
3102 		rctl |= E1000_RCTL_SZ_16384 |
3103 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3104 		break;
3105 	}
3106 
3107 	if (ifp->if_mtu > ETHERMTU)
3108 		rctl |= E1000_RCTL_LPE;
3109 	else
3110 		rctl &= ~E1000_RCTL_LPE;
3111 
3112 	/* Receive Checksum Offload for TCP and UDP */
3113 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3114 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3115 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3116 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3117 	}
3118 
3119 	/*
3120 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3121 	 * long latencies are observed, like Lenovo X60. This
3122 	 * change eliminates the problem, but since having positive
3123 	 * values in RDTR is a known source of problems on other
3124 	 * platforms another solution is being sought.
3125 	 */
3126 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3127 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3128 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3129 	}
3130 
3131 	/*
3132 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3133 	 */
3134 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3135 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3136 
3137 	/* Enable Receives */
3138 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3139 }
3140 
3141 static void
3142 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3143 {
3144 	struct em_buffer *rx_buffer;
3145 	int i;
3146 
3147 	if (adapter->rx_buffer_area == NULL)
3148 		return;
3149 
3150 	for (i = 0; i < ndesc; i++) {
3151 		rx_buffer = &adapter->rx_buffer_area[i];
3152 
3153 		KKASSERT(rx_buffer->m_head == NULL);
3154 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3155 	}
3156 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3157 	bus_dma_tag_destroy(adapter->rxtag);
3158 
3159 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3160 	adapter->rx_buffer_area = NULL;
3161 }
3162 
3163 static void
3164 em_rxeof(struct adapter *adapter, int count)
3165 {
3166 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3167 	uint8_t status, accept_frame = 0, eop = 0;
3168 	uint16_t len, desc_len, prev_len_adj;
3169 	struct e1000_rx_desc *current_desc;
3170 	struct mbuf *mp;
3171 	int i;
3172 	struct mbuf_chain chain[MAXCPU];
3173 
3174 	i = adapter->next_rx_desc_to_check;
3175 	current_desc = &adapter->rx_desc_base[i];
3176 
3177 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3178 		return;
3179 
3180 	ether_input_chain_init(chain);
3181 
3182 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3183 		struct mbuf *m = NULL;
3184 
3185 		logif(pkt_receive);
3186 
3187 		mp = adapter->rx_buffer_area[i].m_head;
3188 
3189 		/*
3190 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3191 		 * needs to access the last received byte in the mbuf.
3192 		 */
3193 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3194 				BUS_DMASYNC_POSTREAD);
3195 
3196 		accept_frame = 1;
3197 		prev_len_adj = 0;
3198 		desc_len = le16toh(current_desc->length);
3199 		status = current_desc->status;
3200 		if (status & E1000_RXD_STAT_EOP) {
3201 			count--;
3202 			eop = 1;
3203 			if (desc_len < ETHER_CRC_LEN) {
3204 				len = 0;
3205 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3206 			} else {
3207 				len = desc_len - ETHER_CRC_LEN;
3208 			}
3209 		} else {
3210 			eop = 0;
3211 			len = desc_len;
3212 		}
3213 
3214 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3215 			uint8_t	last_byte;
3216 			uint32_t pkt_len = desc_len;
3217 
3218 			if (adapter->fmp != NULL)
3219 				pkt_len += adapter->fmp->m_pkthdr.len;
3220 
3221 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3222 			if (TBI_ACCEPT(&adapter->hw, status,
3223 			    current_desc->errors, pkt_len, last_byte,
3224 			    adapter->min_frame_size, adapter->max_frame_size)) {
3225 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3226 				    &adapter->stats, pkt_len,
3227 				    adapter->hw.mac.addr,
3228 				    adapter->max_frame_size);
3229 				if (len > 0)
3230 					len--;
3231 			} else {
3232 				accept_frame = 0;
3233 			}
3234 		}
3235 
3236 		if (accept_frame) {
3237 			if (em_newbuf(adapter, i, 0) != 0) {
3238 				ifp->if_iqdrops++;
3239 				goto discard;
3240 			}
3241 
3242 			/* Assign correct length to the current fragment */
3243 			mp->m_len = len;
3244 
3245 			if (adapter->fmp == NULL) {
3246 				mp->m_pkthdr.len = len;
3247 				adapter->fmp = mp; /* Store the first mbuf */
3248 				adapter->lmp = mp;
3249 			} else {
3250 				/*
3251 				 * Chain mbuf's together
3252 				 */
3253 
3254 				/*
3255 				 * Adjust length of previous mbuf in chain if
3256 				 * we received less than 4 bytes in the last
3257 				 * descriptor.
3258 				 */
3259 				if (prev_len_adj > 0) {
3260 					adapter->lmp->m_len -= prev_len_adj;
3261 					adapter->fmp->m_pkthdr.len -=
3262 					    prev_len_adj;
3263 				}
3264 				adapter->lmp->m_next = mp;
3265 				adapter->lmp = adapter->lmp->m_next;
3266 				adapter->fmp->m_pkthdr.len += len;
3267 			}
3268 
3269 			if (eop) {
3270 				adapter->fmp->m_pkthdr.rcvif = ifp;
3271 				ifp->if_ipackets++;
3272 
3273 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3274 					em_rxcsum(adapter, current_desc,
3275 						  adapter->fmp);
3276 				}
3277 
3278 				if (status & E1000_RXD_STAT_VP) {
3279 					adapter->fmp->m_pkthdr.ether_vlantag =
3280 					    (le16toh(current_desc->special) &
3281 					    E1000_RXD_SPC_VLAN_MASK);
3282 					adapter->fmp->m_flags |= M_VLANTAG;
3283 				}
3284 				m = adapter->fmp;
3285 				adapter->fmp = NULL;
3286 				adapter->lmp = NULL;
3287 			}
3288 		} else {
3289 			ifp->if_ierrors++;
3290 discard:
3291 #ifdef foo
3292 			/* Reuse loaded DMA map and just update mbuf chain */
3293 			mp = adapter->rx_buffer_area[i].m_head;
3294 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3295 			mp->m_data = mp->m_ext.ext_buf;
3296 			mp->m_next = NULL;
3297 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3298 				m_adj(mp, ETHER_ALIGN);
3299 #endif
3300 			if (adapter->fmp != NULL) {
3301 				m_freem(adapter->fmp);
3302 				adapter->fmp = NULL;
3303 				adapter->lmp = NULL;
3304 			}
3305 			m = NULL;
3306 		}
3307 
3308 		/* Zero out the receive descriptors status. */
3309 		current_desc->status = 0;
3310 
3311 		if (m != NULL)
3312 			ether_input_chain(ifp, m, NULL, chain);
3313 
3314 		/* Advance our pointers to the next descriptor. */
3315 		if (++i == adapter->num_rx_desc)
3316 			i = 0;
3317 		current_desc = &adapter->rx_desc_base[i];
3318 	}
3319 	adapter->next_rx_desc_to_check = i;
3320 
3321 	ether_input_dispatch(chain);
3322 
3323 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3324 	if (--i < 0)
3325 		i = adapter->num_rx_desc - 1;
3326 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3327 }
3328 
3329 static void
3330 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3331 	  struct mbuf *mp)
3332 {
3333 	/* 82543 or newer only */
3334 	if (adapter->hw.mac.type < e1000_82543 ||
3335 	    /* Ignore Checksum bit is set */
3336 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3337 		return;
3338 
3339 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3340 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3341 		/* IP Checksum Good */
3342 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3343 	}
3344 
3345 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3346 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3347 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3348 					   CSUM_PSEUDO_HDR |
3349 					   CSUM_FRAG_NOT_CHECKED;
3350 		mp->m_pkthdr.csum_data = htons(0xffff);
3351 	}
3352 }
3353 
3354 static void
3355 em_enable_intr(struct adapter *adapter)
3356 {
3357 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3358 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
3359 }
3360 
3361 static void
3362 em_disable_intr(struct adapter *adapter)
3363 {
3364 	uint32_t clear = 0xffffffff;
3365 
3366 	/*
3367 	 * The first version of 82542 had an errata where when link was forced
3368 	 * it would stay up even up even if the cable was disconnected.
3369 	 * Sequence errors were used to detect the disconnect and then the
3370 	 * driver would unforce the link.  This code in the in the ISR.  For
3371 	 * this to work correctly the Sequence error interrupt had to be
3372 	 * enabled all the time.
3373 	 */
3374 	if (adapter->hw.mac.type == e1000_82542 &&
3375 	    adapter->hw.revision_id == E1000_REVISION_2)
3376 		clear &= ~E1000_IMC_RXSEQ;
3377 
3378 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3379 
3380 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3381 }
3382 
3383 /*
3384  * Bit of a misnomer, what this really means is
3385  * to enable OS management of the system... aka
3386  * to disable special hardware management features
3387  */
3388 static void
3389 em_get_mgmt(struct adapter *adapter)
3390 {
3391 	/* A shared code workaround */
3392 #define E1000_82542_MANC2H E1000_MANC2H
3393 	if (adapter->has_manage) {
3394 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3395 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3396 
3397 		/* disable hardware interception of ARP */
3398 		manc &= ~(E1000_MANC_ARP_EN);
3399 
3400                 /* enable receiving management packets to the host */
3401                 if (adapter->hw.mac.type >= e1000_82571) {
3402 			manc |= E1000_MANC_EN_MNG2HOST;
3403 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3404 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3405 			manc2h |= E1000_MNG2HOST_PORT_623;
3406 			manc2h |= E1000_MNG2HOST_PORT_664;
3407 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3408 		}
3409 
3410 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3411 	}
3412 }
3413 
3414 /*
3415  * Give control back to hardware management
3416  * controller if there is one.
3417  */
3418 static void
3419 em_rel_mgmt(struct adapter *adapter)
3420 {
3421 	if (adapter->has_manage) {
3422 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3423 
3424 		/* re-enable hardware interception of ARP */
3425 		manc |= E1000_MANC_ARP_EN;
3426 
3427 		if (adapter->hw.mac.type >= e1000_82571)
3428 			manc &= ~E1000_MANC_EN_MNG2HOST;
3429 
3430 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3431 	}
3432 }
3433 
3434 /*
3435  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3436  * For ASF and Pass Through versions of f/w this means that
3437  * the driver is loaded.  For AMT version (only with 82573)
3438  * of the f/w this means that the network i/f is open.
3439  */
3440 static void
3441 em_get_hw_control(struct adapter *adapter)
3442 {
3443 	uint32_t ctrl_ext, swsm;
3444 
3445 	/* Let firmware know the driver has taken over */
3446 	switch (adapter->hw.mac.type) {
3447 	case e1000_82573:
3448 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3449 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3450 		    swsm | E1000_SWSM_DRV_LOAD);
3451 		break;
3452 	case e1000_82571:
3453 	case e1000_82572:
3454 	case e1000_80003es2lan:
3455 	case e1000_ich8lan:
3456 	case e1000_ich9lan:
3457 	case e1000_ich10lan:
3458 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3459 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3460 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3461 		break;
3462 	default:
3463 		break;
3464 	}
3465 }
3466 
3467 /*
3468  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3469  * For ASF and Pass Through versions of f/w this means that the
3470  * driver is no longer loaded.  For AMT version (only with 82573)
3471  * of the f/w this means that the network i/f is closed.
3472  */
3473 static void
3474 em_rel_hw_control(struct adapter *adapter)
3475 {
3476 	uint32_t ctrl_ext, swsm;
3477 
3478 	/* Let firmware taken over control of h/w */
3479 	switch (adapter->hw.mac.type) {
3480 	case e1000_82573:
3481 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3482 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3483 		    swsm & ~E1000_SWSM_DRV_LOAD);
3484 		break;
3485 
3486 	case e1000_82571:
3487 	case e1000_82572:
3488 	case e1000_80003es2lan:
3489 	case e1000_ich8lan:
3490 	case e1000_ich9lan:
3491 	case e1000_ich10lan:
3492 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3493 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3494 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3495 		break;
3496 
3497 	default:
3498 		break;
3499 	}
3500 }
3501 
3502 static int
3503 em_is_valid_eaddr(const uint8_t *addr)
3504 {
3505 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3506 
3507 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3508 		return (FALSE);
3509 
3510 	return (TRUE);
3511 }
3512 
3513 /*
3514  * Enable PCI Wake On Lan capability
3515  */
3516 void
3517 em_enable_wol(device_t dev)
3518 {
3519 	uint16_t cap, status;
3520 	uint8_t id;
3521 
3522 	/* First find the capabilities pointer*/
3523 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3524 
3525 	/* Read the PM Capabilities */
3526 	id = pci_read_config(dev, cap, 1);
3527 	if (id != PCIY_PMG)     /* Something wrong */
3528 		return;
3529 
3530 	/*
3531 	 * OK, we have the power capabilities,
3532 	 * so now get the status register
3533 	 */
3534 	cap += PCIR_POWER_STATUS;
3535 	status = pci_read_config(dev, cap, 2);
3536 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3537 	pci_write_config(dev, cap, status, 2);
3538 }
3539 
3540 
3541 /*
3542  * 82544 Coexistence issue workaround.
3543  *    There are 2 issues.
3544  *       1. Transmit Hang issue.
3545  *    To detect this issue, following equation can be used...
3546  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3547  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3548  *
3549  *       2. DAC issue.
3550  *    To detect this issue, following equation can be used...
3551  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3552  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3553  *
3554  *    WORKAROUND:
3555  *	  Make sure we do not have ending address
3556  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3557  */
3558 static uint32_t
3559 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3560 {
3561 	uint32_t safe_terminator;
3562 
3563 	/*
3564 	 * Since issue is sensitive to length and address.
3565 	 * Let us first check the address...
3566 	 */
3567 	if (length <= 4) {
3568 		desc_array->descriptor[0].address = address;
3569 		desc_array->descriptor[0].length = length;
3570 		desc_array->elements = 1;
3571 		return (desc_array->elements);
3572 	}
3573 
3574 	safe_terminator =
3575 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3576 
3577 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3578 	if (safe_terminator == 0 ||
3579 	    (safe_terminator > 4 && safe_terminator < 9) ||
3580 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3581 		desc_array->descriptor[0].address = address;
3582 		desc_array->descriptor[0].length = length;
3583 		desc_array->elements = 1;
3584 		return (desc_array->elements);
3585 	}
3586 
3587 	desc_array->descriptor[0].address = address;
3588 	desc_array->descriptor[0].length = length - 4;
3589 	desc_array->descriptor[1].address = address + (length - 4);
3590 	desc_array->descriptor[1].length = 4;
3591 	desc_array->elements = 2;
3592 	return (desc_array->elements);
3593 }
3594 
3595 static void
3596 em_update_stats(struct adapter *adapter)
3597 {
3598 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3599 
3600 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3601 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3602 		adapter->stats.symerrs +=
3603 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3604 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3605 	}
3606 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3607 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3608 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3609 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3610 
3611 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3612 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3613 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3614 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3615 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3616 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3617 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3618 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3619 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3620 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3621 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3622 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3623 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3624 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3625 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3626 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3627 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3628 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3629 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3630 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3631 
3632 	/* For the 64-bit byte counters the low dword must be read first. */
3633 	/* Both registers clear on the read of the high dword */
3634 
3635 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3636 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3637 
3638 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3639 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3640 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3641 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3642 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3643 
3644 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3645 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3646 
3647 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3648 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3649 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3650 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3651 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3652 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3653 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3654 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3655 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3656 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3657 
3658 	if (adapter->hw.mac.type >= e1000_82543) {
3659 		adapter->stats.algnerrc +=
3660 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3661 		adapter->stats.rxerrc +=
3662 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3663 		adapter->stats.tncrs +=
3664 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3665 		adapter->stats.cexterr +=
3666 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3667 		adapter->stats.tsctc +=
3668 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3669 		adapter->stats.tsctfc +=
3670 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3671 	}
3672 
3673 	ifp->if_collisions = adapter->stats.colc;
3674 
3675 	/* Rx Errors */
3676 	ifp->if_ierrors =
3677 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3678 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3679 	    adapter->stats.ruc + adapter->stats.roc +
3680 	    adapter->stats.mpc + adapter->stats.cexterr;
3681 
3682 	/* Tx Errors */
3683 	ifp->if_oerrors =
3684 	    adapter->stats.ecol + adapter->stats.latecol +
3685 	    adapter->watchdog_events;
3686 }
3687 
3688 static void
3689 em_print_debug_info(struct adapter *adapter)
3690 {
3691 	device_t dev = adapter->dev;
3692 	uint8_t *hw_addr = adapter->hw.hw_addr;
3693 
3694 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3695 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3696 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3697 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3698 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3699 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3700 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3701 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3702 	    adapter->hw.fc.high_water,
3703 	    adapter->hw.fc.low_water);
3704 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3705 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3706 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3707 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3708 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3709 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3710 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3711 	    (long long)adapter->tx_fifo_wrk_cnt,
3712 	    (long long)adapter->tx_fifo_reset_cnt);
3713 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3714 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3715 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3716 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3717 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3718 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3719 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3720 	    adapter->num_tx_desc_avail);
3721 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3722 	    adapter->no_tx_desc_avail1);
3723 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3724 	    adapter->no_tx_desc_avail2);
3725 	device_printf(dev, "Std mbuf failed = %ld\n",
3726 	    adapter->mbuf_alloc_failed);
3727 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3728 	    adapter->mbuf_cluster_failed);
3729 	device_printf(dev, "Driver dropped packets = %ld\n",
3730 	    adapter->dropped_pkts);
3731 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3732 	    adapter->no_tx_dma_setup);
3733 
3734 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3735 	    adapter->tx_csum_try_pullup);
3736 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3737 	    adapter->tx_csum_pullup1);
3738 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3739 	    adapter->tx_csum_pullup1_failed);
3740 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3741 	    adapter->tx_csum_pullup2);
3742 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3743 	    adapter->tx_csum_pullup2_failed);
3744 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3745 	    adapter->tx_csum_drop1);
3746 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3747 	    adapter->tx_csum_drop2);
3748 }
3749 
3750 static void
3751 em_print_hw_stats(struct adapter *adapter)
3752 {
3753 	device_t dev = adapter->dev;
3754 
3755 	device_printf(dev, "Excessive collisions = %lld\n",
3756 	    (long long)adapter->stats.ecol);
3757 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3758 	device_printf(dev, "Symbol errors = %lld\n",
3759 	    (long long)adapter->stats.symerrs);
3760 #endif
3761 	device_printf(dev, "Sequence errors = %lld\n",
3762 	    (long long)adapter->stats.sec);
3763 	device_printf(dev, "Defer count = %lld\n",
3764 	    (long long)adapter->stats.dc);
3765 	device_printf(dev, "Missed Packets = %lld\n",
3766 	    (long long)adapter->stats.mpc);
3767 	device_printf(dev, "Receive No Buffers = %lld\n",
3768 	    (long long)adapter->stats.rnbc);
3769 	/* RLEC is inaccurate on some hardware, calculate our own. */
3770 	device_printf(dev, "Receive Length Errors = %lld\n",
3771 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3772 	device_printf(dev, "Receive errors = %lld\n",
3773 	    (long long)adapter->stats.rxerrc);
3774 	device_printf(dev, "Crc errors = %lld\n",
3775 	    (long long)adapter->stats.crcerrs);
3776 	device_printf(dev, "Alignment errors = %lld\n",
3777 	    (long long)adapter->stats.algnerrc);
3778 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3779 	    (long long)adapter->stats.cexterr);
3780 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3781 	device_printf(dev, "watchdog timeouts = %ld\n",
3782 	    adapter->watchdog_events);
3783 	device_printf(dev, "XON Rcvd = %lld\n",
3784 	    (long long)adapter->stats.xonrxc);
3785 	device_printf(dev, "XON Xmtd = %lld\n",
3786 	    (long long)adapter->stats.xontxc);
3787 	device_printf(dev, "XOFF Rcvd = %lld\n",
3788 	    (long long)adapter->stats.xoffrxc);
3789 	device_printf(dev, "XOFF Xmtd = %lld\n",
3790 	    (long long)adapter->stats.xofftxc);
3791 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3792 	    (long long)adapter->stats.gprc);
3793 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3794 	    (long long)adapter->stats.gptc);
3795 }
3796 
3797 static void
3798 em_print_nvm_info(struct adapter *adapter)
3799 {
3800 	uint16_t eeprom_data;
3801 	int i, j, row = 0;
3802 
3803 	/* Its a bit crude, but it gets the job done */
3804 	kprintf("\nInterface EEPROM Dump:\n");
3805 	kprintf("Offset\n0x0000  ");
3806 	for (i = 0, j = 0; i < 32; i++, j++) {
3807 		if (j == 8) { /* Make the offset block */
3808 			j = 0; ++row;
3809 			kprintf("\n0x00%x0  ",row);
3810 		}
3811 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3812 		kprintf("%04x ", eeprom_data);
3813 	}
3814 	kprintf("\n");
3815 }
3816 
3817 static int
3818 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3819 {
3820 	struct adapter *adapter;
3821 	struct ifnet *ifp;
3822 	int error, result;
3823 
3824 	result = -1;
3825 	error = sysctl_handle_int(oidp, &result, 0, req);
3826 	if (error || !req->newptr)
3827 		return (error);
3828 
3829 	adapter = (struct adapter *)arg1;
3830 	ifp = &adapter->arpcom.ac_if;
3831 
3832 	lwkt_serialize_enter(ifp->if_serializer);
3833 
3834 	if (result == 1)
3835 		em_print_debug_info(adapter);
3836 
3837 	/*
3838 	 * This value will cause a hex dump of the
3839 	 * first 32 16-bit words of the EEPROM to
3840 	 * the screen.
3841 	 */
3842 	if (result == 2)
3843 		em_print_nvm_info(adapter);
3844 
3845 	lwkt_serialize_exit(ifp->if_serializer);
3846 
3847 	return (error);
3848 }
3849 
3850 static int
3851 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3852 {
3853 	int error, result;
3854 
3855 	result = -1;
3856 	error = sysctl_handle_int(oidp, &result, 0, req);
3857 	if (error || !req->newptr)
3858 		return (error);
3859 
3860 	if (result == 1) {
3861 		struct adapter *adapter = (struct adapter *)arg1;
3862 		struct ifnet *ifp = &adapter->arpcom.ac_if;
3863 
3864 		lwkt_serialize_enter(ifp->if_serializer);
3865 		em_print_hw_stats(adapter);
3866 		lwkt_serialize_exit(ifp->if_serializer);
3867 	}
3868 	return (error);
3869 }
3870 
3871 static void
3872 em_add_sysctl(struct adapter *adapter)
3873 {
3874 	sysctl_ctx_init(&adapter->sysctl_ctx);
3875 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
3876 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3877 					device_get_nameunit(adapter->dev),
3878 					CTLFLAG_RD, 0, "");
3879 	if (adapter->sysctl_tree == NULL) {
3880 		device_printf(adapter->dev, "can't add sysctl node\n");
3881 	} else {
3882 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3883 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3884 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3885 		    em_sysctl_debug_info, "I", "Debug Information");
3886 
3887 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3888 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3889 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3890 		    em_sysctl_stats, "I", "Statistics");
3891 
3892 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3893 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3894 		    OID_AUTO, "rxd", CTLFLAG_RD,
3895 		    &adapter->num_rx_desc, 0, NULL);
3896 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3897 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3898 		    OID_AUTO, "txd", CTLFLAG_RD,
3899 		    &adapter->num_tx_desc, 0, NULL);
3900 
3901 		if (adapter->hw.mac.type >= e1000_82540) {
3902 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3903 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
3904 			    OID_AUTO, "int_throttle_ceil",
3905 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3906 			    em_sysctl_int_throttle, "I",
3907 			    "interrupt throttling rate");
3908 		}
3909 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3910 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3911 		    OID_AUTO, "int_tx_nsegs",
3912 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3913 		    em_sysctl_int_tx_nsegs, "I",
3914 		    "# segments per TX interrupt");
3915 	}
3916 }
3917 
3918 static int
3919 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3920 {
3921 	struct adapter *adapter = (void *)arg1;
3922 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3923 	int error, throttle;
3924 
3925 	throttle = adapter->int_throttle_ceil;
3926 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3927 	if (error || req->newptr == NULL)
3928 		return error;
3929 	if (throttle < 0 || throttle > 1000000000 / 256)
3930 		return EINVAL;
3931 
3932 	if (throttle) {
3933 		/*
3934 		 * Set the interrupt throttling rate in 256ns increments,
3935 		 * recalculate sysctl value assignment to get exact frequency.
3936 		 */
3937 		throttle = 1000000000 / 256 / throttle;
3938 
3939 		/* Upper 16bits of ITR is reserved and should be zero */
3940 		if (throttle & 0xffff0000)
3941 			return EINVAL;
3942 	}
3943 
3944 	lwkt_serialize_enter(ifp->if_serializer);
3945 
3946 	if (throttle)
3947 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
3948 	else
3949 		adapter->int_throttle_ceil = 0;
3950 
3951 	if (ifp->if_flags & IFF_RUNNING)
3952 		E1000_WRITE_REG(&adapter->hw, E1000_ITR, throttle);
3953 
3954 	lwkt_serialize_exit(ifp->if_serializer);
3955 
3956 	if (bootverbose) {
3957 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3958 			  adapter->int_throttle_ceil);
3959 	}
3960 	return 0;
3961 }
3962 
3963 static int
3964 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3965 {
3966 	struct adapter *adapter = (void *)arg1;
3967 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3968 	int error, segs;
3969 
3970 	segs = adapter->tx_int_nsegs;
3971 	error = sysctl_handle_int(oidp, &segs, 0, req);
3972 	if (error || req->newptr == NULL)
3973 		return error;
3974 	if (segs <= 0)
3975 		return EINVAL;
3976 
3977 	lwkt_serialize_enter(ifp->if_serializer);
3978 
3979 	/*
3980 	 * Don't allow int_tx_nsegs to become:
3981 	 * o  Less the oact_tx_desc
3982 	 * o  Too large that no TX desc will cause TX interrupt to
3983 	 *    be generated (OACTIVE will never recover)
3984 	 * o  Too small that will cause tx_dd[] overflow
3985 	 */
3986 	if (segs < adapter->oact_tx_desc ||
3987 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
3988 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
3989 		error = EINVAL;
3990 	} else {
3991 		error = 0;
3992 		adapter->tx_int_nsegs = segs;
3993 	}
3994 
3995 	lwkt_serialize_exit(ifp->if_serializer);
3996 
3997 	return error;
3998 }
3999