xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision 9b42cabedff59ea3b351e8eccb2da9bab5cefe7e)
1 /*
2  *
3  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 2001-2006, Intel Corporation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  *  1. Redistributions of source code must retain the above copyright notice,
12  *     this list of conditions and the following disclaimer.
13  *
14  *  2. Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in the
16  *     documentation and/or other materials provided with the distribution.
17  *
18  *  3. Neither the name of the Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived from
20  *     this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
36  *
37  * This code is derived from software contributed to The DragonFly Project
38  * by Matthew Dillon <dillon@backplane.com>
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  * 3. Neither the name of The DragonFly Project nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific, prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
57  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
58  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
59  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
60  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
61  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
62  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.75 2008/06/24 13:32:27 sephe Exp $
68  * $FreeBSD$
69  */
70 /*
71  * SERIALIZATION API RULES:
72  *
73  * - If the driver uses the same serializer for the interrupt as for the
74  *   ifnet, most of the serialization will be done automatically for the
75  *   driver.
76  *
77  * - ifmedia entry points will be serialized by the ifmedia code using the
78  *   ifnet serializer.
79  *
80  * - if_* entry points except for if_input will be serialized by the IF
81  *   and protocol layers.
82  *
83  * - The device driver must be sure to serialize access from timeout code
84  *   installed by the device driver.
85  *
86  * - The device driver typically holds the serializer at the time it wishes
87  *   to call if_input.  If so, it should pass the serializer to if_input and
88  *   note that the serializer might be dropped temporarily by if_input
89  *   (e.g. in case it has to bridge the packet to another interface).
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 #include "opt_inet.h"
98 #include "opt_serializer.h"
99 #include "opt_ethernet.h"
100 
101 #include <sys/param.h>
102 #include <sys/bus.h>
103 #include <sys/endian.h>
104 #include <sys/interrupt.h>
105 #include <sys/kernel.h>
106 #include <sys/ktr.h>
107 #include <sys/malloc.h>
108 #include <sys/mbuf.h>
109 #include <sys/module.h>
110 #include <sys/rman.h>
111 #include <sys/serialize.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/sysctl.h>
115 
116 #include <net/bpf.h>
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/if_arp.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_types.h>
123 #include <net/ifq_var.h>
124 #include <net/vlan/if_vlan_var.h>
125 #include <net/vlan/if_vlan_ether.h>
126 
127 #ifdef INET
128 #include <netinet/in.h>
129 #include <netinet/in_systm.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip.h>
132 #include <netinet/tcp.h>
133 #include <netinet/udp.h>
134 #endif
135 
136 #include <dev/netif/em/if_em_hw.h>
137 #include <dev/netif/em/if_em.h>
138 
139 #define EM_X60_WORKAROUND
140 
141 /*********************************************************************
142  *  Set this to one to display debug statistics
143  *********************************************************************/
144 int	em_display_debug_stats = 0;
145 
146 /*********************************************************************
147  *  Driver version
148  *********************************************************************/
149 
150 char em_driver_version[] = "6.2.9";
151 
152 
153 /*********************************************************************
154  *  PCI Device ID Table
155  *
156  *  Used by probe to select devices to load on
157  *  Last field stores an index into em_strings
158  *  Last entry must be all 0s
159  *
160  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
161  *********************************************************************/
162 
163 static em_vendor_info_t em_vendor_info_array[] =
164 {
165 	/* Intel(R) PRO/1000 Network Connection */
166 	{ 0x8086, E1000_DEV_ID_82540EM,		PCI_ANY_ID, PCI_ANY_ID, 0},
167 	{ 0x8086, E1000_DEV_ID_82540EM_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
168 	{ 0x8086, E1000_DEV_ID_82540EP,		PCI_ANY_ID, PCI_ANY_ID, 0},
169 	{ 0x8086, E1000_DEV_ID_82540EP_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
170 	{ 0x8086, E1000_DEV_ID_82540EP_LP,	PCI_ANY_ID, PCI_ANY_ID, 0},
171 
172 	{ 0x8086, E1000_DEV_ID_82541EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
173 	{ 0x8086, E1000_DEV_ID_82541ER,		PCI_ANY_ID, PCI_ANY_ID, 0},
174 	{ 0x8086, E1000_DEV_ID_82541ER_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
175 	{ 0x8086, E1000_DEV_ID_82541EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
176 	{ 0x8086, E1000_DEV_ID_82541GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
177 	{ 0x8086, E1000_DEV_ID_82541GI_LF,	PCI_ANY_ID, PCI_ANY_ID, 0},
178 	{ 0x8086, E1000_DEV_ID_82541GI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
179 
180 	{ 0x8086, E1000_DEV_ID_82542,		PCI_ANY_ID, PCI_ANY_ID, 0},
181 
182 	{ 0x8086, E1000_DEV_ID_82543GC_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
183 	{ 0x8086, E1000_DEV_ID_82543GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
184 
185 	{ 0x8086, E1000_DEV_ID_82544EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
186 	{ 0x8086, E1000_DEV_ID_82544EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
187 	{ 0x8086, E1000_DEV_ID_82544GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
188 	{ 0x8086, E1000_DEV_ID_82544GC_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
189 
190 	{ 0x8086, E1000_DEV_ID_82545EM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
191 	{ 0x8086, E1000_DEV_ID_82545EM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
192 	{ 0x8086, E1000_DEV_ID_82545GM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
193 	{ 0x8086, E1000_DEV_ID_82545GM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
194 	{ 0x8086, E1000_DEV_ID_82545GM_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
195 
196 	{ 0x8086, E1000_DEV_ID_82546EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
197 	{ 0x8086, E1000_DEV_ID_82546EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
198 	{ 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
199 	{ 0x8086, E1000_DEV_ID_82546GB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
200 	{ 0x8086, E1000_DEV_ID_82546GB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
201 	{ 0x8086, E1000_DEV_ID_82546GB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
202 	{ 0x8086, E1000_DEV_ID_82546GB_PCIE,	PCI_ANY_ID, PCI_ANY_ID, 0},
203 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
204 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
205 						PCI_ANY_ID, PCI_ANY_ID, 0},
206 
207 	{ 0x8086, E1000_DEV_ID_82547EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
208 	{ 0x8086, E1000_DEV_ID_82547EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
209 	{ 0x8086, E1000_DEV_ID_82547GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
210 
211 	{ 0x8086, E1000_DEV_ID_82571EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
212 	{ 0x8086, E1000_DEV_ID_82571EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
213 	{ 0x8086, E1000_DEV_ID_82571EB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
214 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
215 						PCI_ANY_ID, PCI_ANY_ID, 0},
216 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE,
217 						PCI_ANY_ID, PCI_ANY_ID, 0},
218 
219 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
220 						PCI_ANY_ID, PCI_ANY_ID, 0},
221 	{ 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
222 						PCI_ANY_ID, PCI_ANY_ID, 0},
223 	{ 0x8086, E1000_DEV_ID_82572EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
224 	{ 0x8086, E1000_DEV_ID_82572EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
225 	{ 0x8086, E1000_DEV_ID_82572EI_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
226 	{ 0x8086, E1000_DEV_ID_82572EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
227 
228 	{ 0x8086, E1000_DEV_ID_82573E,		PCI_ANY_ID, PCI_ANY_ID, 0},
229 	{ 0x8086, E1000_DEV_ID_82573E_IAMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
230 	{ 0x8086, E1000_DEV_ID_82573L,		PCI_ANY_ID, PCI_ANY_ID, 0},
231 
232 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
233 						PCI_ANY_ID, PCI_ANY_ID, 0},
234 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
235 						PCI_ANY_ID, PCI_ANY_ID, 0},
236 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
237 						PCI_ANY_ID, PCI_ANY_ID, 0},
238 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
239 						PCI_ANY_ID, PCI_ANY_ID, 0},
240 
241 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
242 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
243 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
244 	{ 0x8086, E1000_DEV_ID_ICH8_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
245 	{ 0x8086, E1000_DEV_ID_ICH8_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
246 	{ 0x8086, E1000_DEV_ID_ICH8_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
247 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M,	PCI_ANY_ID, PCI_ANY_ID, 0},
248 
249 	{ 0x8086, E1000_DEV_ID_ICH9_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
250 	{ 0x8086, E1000_DEV_ID_ICH9_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
251 	{ 0x8086, E1000_DEV_ID_ICH9_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
252 	{ 0x8086, E1000_DEV_ID_ICH9_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
253 	{ 0x8086, E1000_DEV_ID_ICH9_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
254 
255 	{ 0x8086, E1000_DEV_ID_82575EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
256 	{ 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
257 						PCI_ANY_ID, PCI_ANY_ID, 0},
258 	{ 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
259 						PCI_ANY_ID, PCI_ANY_ID, 0},
260 	{ 0x8086, 0x101A, PCI_ANY_ID, PCI_ANY_ID, 0},
261 	{ 0x8086, 0x1014, PCI_ANY_ID, PCI_ANY_ID, 0},
262 	/* required last entry */
263 	{ 0, 0, 0, 0, 0}
264 };
265 
266 /*********************************************************************
267  *  Table of branding strings for all supported NICs.
268  *********************************************************************/
269 
270 static const char *em_strings[] = {
271 	"Intel(R) PRO/1000 Network Connection"
272 };
273 
274 /*********************************************************************
275  *  Function prototypes
276  *********************************************************************/
277 static int	em_probe(device_t);
278 static int	em_attach(device_t);
279 static int	em_detach(device_t);
280 static int	em_shutdown(device_t);
281 static void	em_intr(void *);
282 static int	em_suspend(device_t);
283 static int	em_resume(device_t);
284 static void	em_start(struct ifnet *);
285 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
286 static void	em_watchdog(struct ifnet *);
287 static void	em_init(void *);
288 static void	em_stop(void *);
289 static void	em_media_status(struct ifnet *, struct ifmediareq *);
290 static int	em_media_change(struct ifnet *);
291 static void	em_identify_hardware(struct adapter *);
292 static int	em_allocate_pci_resources(device_t);
293 static void	em_free_pci_resources(device_t);
294 static void	em_local_timer(void *);
295 static int	em_hardware_init(struct adapter *);
296 static void	em_setup_interface(device_t, struct adapter *);
297 static int	em_setup_transmit_structures(struct adapter *);
298 static void	em_initialize_transmit_unit(struct adapter *);
299 static int	em_setup_receive_structures(struct adapter *);
300 static void	em_initialize_receive_unit(struct adapter *);
301 static void	em_enable_intr(struct adapter *);
302 static void	em_disable_intr(struct adapter *);
303 static void	em_free_transmit_structures(struct adapter *);
304 static void	em_free_receive_structures(struct adapter *);
305 static void	em_update_stats_counters(struct adapter *);
306 static void	em_txeof(struct adapter *);
307 static int	em_allocate_receive_structures(struct adapter *);
308 static void	em_rxeof(struct adapter *, int);
309 static void	em_receive_checksum(struct adapter *, struct em_rx_desc *,
310 				    struct mbuf *);
311 static void	em_transmit_checksum_setup(struct adapter *, struct mbuf *,
312 					   uint32_t *, uint32_t *);
313 static void	em_set_promisc(struct adapter *);
314 static void	em_disable_promisc(struct adapter *);
315 static void	em_set_multi(struct adapter *);
316 static void	em_print_hw_stats(struct adapter *);
317 static void	em_update_link_status(struct adapter *);
318 static int	em_get_buf(int i, struct adapter *, struct mbuf *, int how);
319 static void	em_enable_vlans(struct adapter *);
320 static void	em_disable_vlans(struct adapter *);
321 static int	em_encap(struct adapter *, struct mbuf *);
322 static void	em_smartspeed(struct adapter *);
323 static int	em_82547_fifo_workaround(struct adapter *, int);
324 static void	em_82547_update_fifo_head(struct adapter *, int);
325 static int	em_82547_tx_fifo_reset(struct adapter *);
326 static void	em_82547_move_tail(void *);
327 static void	em_82547_move_tail_serialized(struct adapter *);
328 static int	em_dma_malloc(struct adapter *, bus_size_t,
329 			      struct em_dma_alloc *);
330 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
331 static void	em_print_debug_info(struct adapter *);
332 static int	em_is_valid_ether_addr(uint8_t *);
333 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
334 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
335 static uint32_t	em_fill_descriptors(bus_addr_t address, uint32_t length,
336 				   PDESC_ARRAY desc_array);
337 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
338 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
339 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
340 					const char *,
341 					struct em_int_delay_info *, int, int);
342 
343 /*********************************************************************
344  *  FreeBSD Device Interface Entry Points
345  *********************************************************************/
346 
347 static device_method_t em_methods[] = {
348 	/* Device interface */
349 	DEVMETHOD(device_probe, em_probe),
350 	DEVMETHOD(device_attach, em_attach),
351 	DEVMETHOD(device_detach, em_detach),
352 	DEVMETHOD(device_shutdown, em_shutdown),
353 	DEVMETHOD(device_suspend, em_suspend),
354 	DEVMETHOD(device_resume, em_resume),
355 	{0, 0}
356 };
357 
358 static driver_t em_driver = {
359 	"em", em_methods, sizeof(struct adapter),
360 };
361 
362 static devclass_t em_devclass;
363 
364 DECLARE_DUMMY_MODULE(if_em);
365 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
366 
367 /*********************************************************************
368  *  Tunable default values.
369  *********************************************************************/
370 
371 #define E1000_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
372 #define E1000_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
373 
374 static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
375 static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
376 static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
377 static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
378 static int em_int_throttle_ceil = 10000;
379 static int em_rxd = EM_DEFAULT_RXD;
380 static int em_txd = EM_DEFAULT_TXD;
381 static int em_smart_pwr_down = FALSE;
382 
383 TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
384 TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
385 TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
386 TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
387 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
388 TUNABLE_INT("hw.em.rxd", &em_rxd);
389 TUNABLE_INT("hw.em.txd", &em_txd);
390 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
391 
392 /*
393  * Kernel trace for characterization of operations
394  */
395 #if !defined(KTR_IF_EM)
396 #define KTR_IF_EM	KTR_ALL
397 #endif
398 KTR_INFO_MASTER(if_em);
399 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
400 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
401 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
402 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
403 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
404 #define logif(name)	KTR_LOG(if_em_ ## name)
405 
406 /*********************************************************************
407  *  Device identification routine
408  *
409  *  em_probe determines if the driver should be loaded on
410  *  adapter based on PCI vendor/device id of the adapter.
411  *
412  *  return 0 on success, positive on failure
413  *********************************************************************/
414 
415 static int
416 em_probe(device_t dev)
417 {
418 	em_vendor_info_t *ent;
419 
420 	uint16_t pci_vendor_id = 0;
421 	uint16_t pci_device_id = 0;
422 	uint16_t pci_subvendor_id = 0;
423 	uint16_t pci_subdevice_id = 0;
424 	char adapter_name[60];
425 
426 	INIT_DEBUGOUT("em_probe: begin");
427 
428 	pci_vendor_id = pci_get_vendor(dev);
429 	if (pci_vendor_id != EM_VENDOR_ID)
430 		return (ENXIO);
431 
432 	pci_device_id = pci_get_device(dev);
433 	pci_subvendor_id = pci_get_subvendor(dev);
434 	pci_subdevice_id = pci_get_subdevice(dev);
435 
436 	ent = em_vendor_info_array;
437 	while (ent->vendor_id != 0) {
438 		if ((pci_vendor_id == ent->vendor_id) &&
439 		    (pci_device_id == ent->device_id) &&
440 
441 		    ((pci_subvendor_id == ent->subvendor_id) ||
442 		     (ent->subvendor_id == PCI_ANY_ID)) &&
443 
444 		    ((pci_subdevice_id == ent->subdevice_id) ||
445 		     (ent->subdevice_id == PCI_ANY_ID))) {
446 			ksnprintf(adapter_name, sizeof(adapter_name),
447 				 "%s, Version - %s",  em_strings[ent->index],
448 				 em_driver_version);
449 			device_set_desc_copy(dev, adapter_name);
450 			device_set_async_attach(dev, TRUE);
451 			return (0);
452 		}
453 		ent++;
454 	}
455 
456 	return (ENXIO);
457 }
458 
459 /*********************************************************************
460  *  Device initialization routine
461  *
462  *  The attach entry point is called when the driver is being loaded.
463  *  This routine identifies the type of hardware, allocates all resources
464  *  and initializes the hardware.
465  *
466  *  return 0 on success, positive on failure
467  *********************************************************************/
468 
469 static int
470 em_attach(device_t dev)
471 {
472 	struct adapter *adapter;
473 	struct ifnet *ifp;
474 	int tsize, rsize;
475 	int error = 0;
476 
477 	INIT_DEBUGOUT("em_attach: begin");
478 
479 	adapter = device_get_softc(dev);
480 	ifp = &adapter->interface_data.ac_if;
481 
482 	callout_init(&adapter->timer);
483 	callout_init(&adapter->tx_fifo_timer);
484 
485 	adapter->dev = dev;
486 	adapter->osdep.dev = dev;
487 
488 	/* SYSCTL stuff */
489 	sysctl_ctx_init(&adapter->sysctl_ctx);
490 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
491 					       SYSCTL_STATIC_CHILDREN(_hw),
492 					       OID_AUTO,
493 					       device_get_nameunit(dev),
494 					       CTLFLAG_RD,
495 					       0, "");
496 
497 	if (adapter->sysctl_tree == NULL) {
498 		device_printf(dev, "Unable to create sysctl tree\n");
499 		return EIO;
500 	}
501 
502 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
503 			SYSCTL_CHILDREN(adapter->sysctl_tree),
504 			OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW,
505 			(void *)adapter, 0,
506 			em_sysctl_debug_info, "I", "Debug Information");
507 
508 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
509 			SYSCTL_CHILDREN(adapter->sysctl_tree),
510 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW,
511 			(void *)adapter, 0,
512 			em_sysctl_stats, "I", "Statistics");
513 
514 	/* Determine hardware revision */
515 	em_identify_hardware(adapter);
516 
517 	/* Set up some sysctls for the tunable interrupt delays */
518 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
519 				"receive interrupt delay in usecs",
520 				&adapter->rx_int_delay,
521 				E1000_REG_OFFSET(&adapter->hw, RDTR),
522 				em_rx_int_delay_dflt);
523 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
524 				"transmit interrupt delay in usecs",
525 				&adapter->tx_int_delay,
526 				E1000_REG_OFFSET(&adapter->hw, TIDV),
527 				em_tx_int_delay_dflt);
528 	if (adapter->hw.mac_type >= em_82540) {
529 		em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
530 					"receive interrupt delay limit in usecs",
531 					&adapter->rx_abs_int_delay,
532 					E1000_REG_OFFSET(&adapter->hw, RADV),
533 					em_rx_abs_int_delay_dflt);
534 		em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
535 					"transmit interrupt delay limit in usecs",
536 					&adapter->tx_abs_int_delay,
537 					E1000_REG_OFFSET(&adapter->hw, TADV),
538 					em_tx_abs_int_delay_dflt);
539 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
540 			SYSCTL_CHILDREN(adapter->sysctl_tree),
541 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
542 			adapter, 0, em_sysctl_int_throttle, "I", NULL);
543 	}
544 
545 	/*
546 	 * Validate number of transmit and receive descriptors. It
547 	 * must not exceed hardware maximum, and must be multiple
548 	 * of EM_DBA_ALIGN.
549 	 */
550 	if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 ||
551 	    (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) ||
552 	    (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) ||
553 	    (em_txd < EM_MIN_TXD)) {
554 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
555 			      EM_DEFAULT_TXD, em_txd);
556 		adapter->num_tx_desc = EM_DEFAULT_TXD;
557 	} else {
558 		adapter->num_tx_desc = em_txd;
559 	}
560 
561 	if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 ||
562 	    (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) ||
563 	    (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) ||
564 	    (em_rxd < EM_MIN_RXD)) {
565 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
566 			      EM_DEFAULT_RXD, em_rxd);
567 		adapter->num_rx_desc = EM_DEFAULT_RXD;
568 	} else {
569 		adapter->num_rx_desc = em_rxd;
570 	}
571 
572 	SYSCTL_ADD_INT(&adapter->sysctl_ctx,
573 		       SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "rxd",
574 		       CTLFLAG_RD, &adapter->num_rx_desc, 0, NULL);
575 	SYSCTL_ADD_INT(&adapter->sysctl_ctx,
576 		       SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "txd",
577 		       CTLFLAG_RD, &adapter->num_tx_desc, 0, NULL);
578 
579 	adapter->hw.autoneg = DO_AUTO_NEG;
580 	adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
581 	adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
582 	adapter->hw.tbi_compatibility_en = TRUE;
583 	adapter->rx_buffer_len = EM_RXBUFFER_2048;
584 
585 	adapter->hw.phy_init_script = 1;
586 	adapter->hw.phy_reset_disable = FALSE;
587 
588 #ifndef EM_MASTER_SLAVE
589 	adapter->hw.master_slave = em_ms_hw_default;
590 #else
591 	adapter->hw.master_slave = EM_MASTER_SLAVE;
592 #endif
593 
594 	/*
595 	 * Set the max frame size assuming standard ethernet
596 	 * sized frames.
597 	 */
598 	adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
599 
600 	adapter->hw.min_frame_size =
601 	    MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
602 
603 	/*
604 	 * This controls when hardware reports transmit completion
605 	 * status.
606 	 */
607 	adapter->hw.report_tx_early = 1;
608 
609 	error = em_allocate_pci_resources(dev);
610 	if (error)
611 		goto fail;
612 
613 	/* Initialize eeprom parameters */
614 	em_init_eeprom_params(&adapter->hw);
615 
616 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc),
617 			 EM_DBA_ALIGN);
618 
619 	/* Allocate Transmit Descriptor ring */
620 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
621 	if (error) {
622 		device_printf(dev, "Unable to allocate TxDescriptor memory\n");
623 		goto fail;
624 	}
625 	adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr;
626 
627 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc),
628 			 EM_DBA_ALIGN);
629 
630 	/* Allocate Receive Descriptor ring */
631 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
632 	if (error) {
633 		device_printf(dev, "Unable to allocate rx_desc memory\n");
634 		goto fail;
635 	}
636 	adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr;
637 
638 	/* Initialize the hardware */
639 	if (em_hardware_init(adapter)) {
640 		device_printf(dev, "Unable to initialize the hardware\n");
641 		error = EIO;
642 		goto fail;
643 	}
644 
645 	/* Copy the permanent MAC address out of the EEPROM */
646 	if (em_read_mac_addr(&adapter->hw) < 0) {
647 		device_printf(dev,
648 			      "EEPROM read error while reading MAC address\n");
649 		error = EIO;
650 		goto fail;
651 	}
652 
653 	if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
654 		device_printf(dev, "Invalid MAC address\n");
655 		error = EIO;
656 		goto fail;
657 	}
658 
659 	/* Setup OS specific network interface */
660 	em_setup_interface(dev, adapter);
661 
662 	/* Initialize statistics */
663 	em_clear_hw_cntrs(&adapter->hw);
664 	em_update_stats_counters(adapter);
665 	adapter->hw.get_link_status = 1;
666 	em_update_link_status(adapter);
667 
668 	/* Indicate SOL/IDER usage */
669 	if (em_check_phy_reset_block(&adapter->hw)) {
670 		device_printf(dev, "PHY reset is blocked due to "
671 			      "SOL/IDER session.\n");
672 	}
673 
674 	/* Identify 82544 on PCIX */
675 	em_get_bus_info(&adapter->hw);
676 	if (adapter->hw.bus_type == em_bus_type_pcix &&
677 	    adapter->hw.mac_type == em_82544)
678 		adapter->pcix_82544 = TRUE;
679 	else
680 		adapter->pcix_82544 = FALSE;
681 
682 	error = bus_setup_intr(dev, adapter->res_interrupt, INTR_NETSAFE,
683 			   em_intr, adapter,
684 			   &adapter->int_handler_tag, ifp->if_serializer);
685 	if (error) {
686 		device_printf(dev, "Error registering interrupt handler!\n");
687 		ether_ifdetach(ifp);
688 		goto fail;
689 	}
690 
691 	ifp->if_cpuid = ithread_cpuid(rman_get_start(adapter->res_interrupt));
692 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
693 	INIT_DEBUGOUT("em_attach: end");
694 	return(0);
695 
696 fail:
697 	em_detach(dev);
698 	return(error);
699 }
700 
701 /*********************************************************************
702  *  Device removal routine
703  *
704  *  The detach entry point is called when the driver is being removed.
705  *  This routine stops the adapter and deallocates all the resources
706  *  that were allocated for driver operation.
707  *
708  *  return 0 on success, positive on failure
709  *********************************************************************/
710 
711 static int
712 em_detach(device_t dev)
713 {
714 	struct adapter *adapter = device_get_softc(dev);
715 
716 	INIT_DEBUGOUT("em_detach: begin");
717 
718 	if (device_is_attached(dev)) {
719 		struct ifnet *ifp = &adapter->interface_data.ac_if;
720 
721 		lwkt_serialize_enter(ifp->if_serializer);
722 		adapter->in_detach = 1;
723 		em_stop(adapter);
724 		em_phy_hw_reset(&adapter->hw);
725 		bus_teardown_intr(dev, adapter->res_interrupt,
726 				  adapter->int_handler_tag);
727 		lwkt_serialize_exit(ifp->if_serializer);
728 
729 		ether_ifdetach(ifp);
730 	}
731 	bus_generic_detach(dev);
732 
733 	em_free_pci_resources(dev);
734 
735 	/* Free Transmit Descriptor ring */
736 	if (adapter->tx_desc_base != NULL) {
737 		em_dma_free(adapter, &adapter->txdma);
738 		adapter->tx_desc_base = NULL;
739 	}
740 
741 	/* Free Receive Descriptor ring */
742 	if (adapter->rx_desc_base != NULL) {
743 		em_dma_free(adapter, &adapter->rxdma);
744 		adapter->rx_desc_base = NULL;
745 	}
746 
747 	/* Free sysctl tree */
748 	if (adapter->sysctl_tree != NULL) {
749 		adapter->sysctl_tree = NULL;
750 		sysctl_ctx_free(&adapter->sysctl_ctx);
751 	}
752 
753 	return (0);
754 }
755 
756 /*********************************************************************
757  *
758  *  Shutdown entry point
759  *
760  **********************************************************************/
761 
762 static int
763 em_shutdown(device_t dev)
764 {
765 	struct adapter *adapter = device_get_softc(dev);
766 	struct ifnet *ifp = &adapter->interface_data.ac_if;
767 
768 	lwkt_serialize_enter(ifp->if_serializer);
769 	em_stop(adapter);
770 	lwkt_serialize_exit(ifp->if_serializer);
771 
772 	return (0);
773 }
774 
775 /*
776  * Suspend/resume device methods.
777  */
778 static int
779 em_suspend(device_t dev)
780 {
781 	struct adapter *adapter = device_get_softc(dev);
782 	struct ifnet *ifp = &adapter->interface_data.ac_if;
783 
784 	lwkt_serialize_enter(ifp->if_serializer);
785 	em_stop(adapter);
786 	lwkt_serialize_exit(ifp->if_serializer);
787 	return (0);
788 }
789 
790 static int
791 em_resume(device_t dev)
792 {
793 	struct adapter *adapter = device_get_softc(dev);
794 	struct ifnet *ifp = &adapter->interface_data.ac_if;
795 
796 	lwkt_serialize_enter(ifp->if_serializer);
797 	ifp->if_flags &= ~IFF_RUNNING;
798 	em_init(adapter);
799 	if_devstart(ifp);
800 	lwkt_serialize_exit(ifp->if_serializer);
801 
802 	return bus_generic_resume(dev);
803 }
804 
805 /*********************************************************************
806  *  Transmit entry point
807  *
808  *  em_start is called by the stack to initiate a transmit.
809  *  The driver will remain in this routine as long as there are
810  *  packets to transmit and transmit resources are available.
811  *  In case resources are not available stack is notified and
812  *  the packet is requeued.
813  **********************************************************************/
814 
815 static void
816 em_start(struct ifnet *ifp)
817 {
818 	struct mbuf *m_head;
819 	struct adapter *adapter = ifp->if_softc;
820 
821 	ASSERT_SERIALIZED(ifp->if_serializer);
822 
823 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
824 		return;
825 	if (!adapter->link_active) {
826 		ifq_purge(&ifp->if_snd);
827 		return;
828 	}
829 	while (!ifq_is_empty(&ifp->if_snd)) {
830 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
831 		if (m_head == NULL)
832 			break;
833 
834 		logif(pkt_txqueue);
835 		if (em_encap(adapter, m_head)) {
836 			ifp->if_flags |= IFF_OACTIVE;
837 			ifq_prepend(&ifp->if_snd, m_head);
838 			break;
839 		}
840 
841 		/* Send a copy of the frame to the BPF listener */
842 		ETHER_BPF_MTAP(ifp, m_head);
843 
844 		/* Set timeout in case hardware has problems transmitting. */
845 		ifp->if_timer = EM_TX_TIMEOUT;
846 	}
847 }
848 
849 /*********************************************************************
850  *  Ioctl entry point
851  *
852  *  em_ioctl is called when the user wants to configure the
853  *  interface.
854  *
855  *  return 0 on success, positive on failure
856  **********************************************************************/
857 
858 static int
859 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
860 {
861 	int max_frame_size, mask, error = 0, reinit = 0;
862 	struct ifreq *ifr = (struct ifreq *) data;
863 	struct adapter *adapter = ifp->if_softc;
864 	uint16_t eeprom_data = 0;
865 
866 	ASSERT_SERIALIZED(ifp->if_serializer);
867 
868 	if (adapter->in_detach)
869 		return 0;
870 
871 	switch (command) {
872 	case SIOCSIFMTU:
873 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
874 		switch (adapter->hw.mac_type) {
875 		case em_82573:
876 			/*
877 			 * 82573 only supports jumbo frames
878 			 * if ASPM is disabled.
879 			 */
880 			em_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3,
881 			    1, &eeprom_data);
882 			if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
883 				max_frame_size = ETHER_MAX_LEN;
884 				break;
885 			}
886 			/* Allow Jumbo frames */
887 			/* FALLTHROUGH */
888 		case em_82571:
889 		case em_82572:
890 		case em_ich9lan:
891 		case em_80003es2lan:	/* Limit Jumbo Frame size */
892 			max_frame_size = 9234;
893 			break;
894 		case em_ich8lan:
895 			/* ICH8 does not support jumbo frames */
896 			max_frame_size = ETHER_MAX_LEN;
897 			break;
898 		default:
899 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
900 			break;
901 		}
902 		if (ifr->ifr_mtu >
903 			max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
904 			error = EINVAL;
905 		} else {
906 			ifp->if_mtu = ifr->ifr_mtu;
907 			adapter->hw.max_frame_size =
908 			ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
909 			ifp->if_flags &= ~IFF_RUNNING;
910 			em_init(adapter);
911 		}
912 		break;
913 	case SIOCSIFFLAGS:
914 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS "
915 			       "(Set Interface Flags)");
916 		if (ifp->if_flags & IFF_UP) {
917 			if (!(ifp->if_flags & IFF_RUNNING)) {
918 				em_init(adapter);
919 			} else if ((ifp->if_flags ^ adapter->if_flags) &
920 				   IFF_PROMISC) {
921 				em_disable_promisc(adapter);
922 				em_set_promisc(adapter);
923 			}
924 		} else {
925 			if (ifp->if_flags & IFF_RUNNING)
926 				em_stop(adapter);
927 		}
928 		adapter->if_flags = ifp->if_flags;
929 		break;
930 	case SIOCADDMULTI:
931 	case SIOCDELMULTI:
932 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
933 		if (ifp->if_flags & IFF_RUNNING) {
934 			em_disable_intr(adapter);
935 			em_set_multi(adapter);
936 			if (adapter->hw.mac_type == em_82542_rev2_0)
937 				em_initialize_receive_unit(adapter);
938 #ifdef DEVICE_POLLING
939 			/* Do not enable interrupt if polling(4) is enabled */
940 			if ((ifp->if_flags & IFF_POLLING) == 0)
941 #endif
942 			em_enable_intr(adapter);
943 		}
944 		break;
945 	case SIOCSIFMEDIA:
946 		/* Check SOL/IDER usage */
947 		if (em_check_phy_reset_block(&adapter->hw)) {
948 			if_printf(ifp, "Media change is blocked due to "
949 				  "SOL/IDER session.\n");
950 			break;
951 		}
952 		/* FALLTHROUGH */
953 	case SIOCGIFMEDIA:
954 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA "
955 			       "(Get/Set Interface Media)");
956 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
957 		break;
958 	case SIOCSIFCAP:
959 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
960 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
961 		if (mask & IFCAP_HWCSUM) {
962 			ifp->if_capenable ^= IFCAP_HWCSUM;
963 			reinit = 1;
964 		}
965 		if (mask & IFCAP_VLAN_HWTAGGING) {
966 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
967 			reinit = 1;
968 		}
969 		if (reinit && (ifp->if_flags & IFF_RUNNING)) {
970 			ifp->if_flags &= ~IFF_RUNNING;
971 			em_init(adapter);
972 		}
973 		break;
974 	default:
975 		error = ether_ioctl(ifp, command, data);
976 		break;
977 	}
978 
979 	return (error);
980 }
981 
982 /*********************************************************************
983  *  Watchdog entry point
984  *
985  *  This routine is called whenever hardware quits transmitting.
986  *
987  **********************************************************************/
988 
989 static void
990 em_watchdog(struct ifnet *ifp)
991 {
992 	struct adapter *adapter = ifp->if_softc;
993 
994 	/*
995 	 * If we are in this routine because of pause frames, then
996 	 * don't reset the hardware.
997 	 */
998 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
999 		ifp->if_timer = EM_TX_TIMEOUT;
1000 		return;
1001 	}
1002 
1003 	if (em_check_for_link(&adapter->hw) == 0)
1004 		if_printf(ifp, "watchdog timeout -- resetting\n");
1005 
1006 	ifp->if_flags &= ~IFF_RUNNING;
1007 	em_init(adapter);
1008 
1009 	adapter->watchdog_timeouts++;
1010 }
1011 
1012 /*********************************************************************
1013  *  Init entry point
1014  *
1015  *  This routine is used in two ways. It is used by the stack as
1016  *  init entry point in network interface structure. It is also used
1017  *  by the driver as a hw/sw initialization routine to get to a
1018  *  consistent state.
1019  *
1020  *  return 0 on success, positive on failure
1021  **********************************************************************/
1022 
1023 static void
1024 em_init(void *arg)
1025 {
1026 	struct adapter *adapter = arg;
1027 	uint32_t pba;
1028 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1029 
1030 	ASSERT_SERIALIZED(ifp->if_serializer);
1031 
1032 	INIT_DEBUGOUT("em_init: begin");
1033 
1034 	if (ifp->if_flags & IFF_RUNNING)
1035 		return;
1036 
1037 	em_stop(adapter);
1038 
1039 	/*
1040 	 * Packet Buffer Allocation (PBA)
1041 	 * Writing PBA sets the receive portion of the buffer
1042 	 * the remainder is used for the transmit buffer.
1043 	 *
1044 	 * Devices before the 82547 had a Packet Buffer of 64K.
1045 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1046 	 * After the 82547 the buffer was reduced to 40K.
1047 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1048 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1049 	 */
1050 	switch (adapter->hw.mac_type) {
1051 	case em_82547:
1052 	case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1053 		if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1054 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1055 		else
1056 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1057 
1058 		adapter->tx_fifo_head = 0;
1059 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1060 		adapter->tx_fifo_size =
1061 			(E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1062 		break;
1063 	/* Total Packet Buffer on these is 48K */
1064 	case em_82571:
1065 	case em_82572:
1066 	case em_80003es2lan:
1067 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1068 		break;
1069 	case em_82573: /* 82573: Total Packet Buffer is 32K */
1070 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1071 		break;
1072 	case em_ich8lan:
1073 		pba = E1000_PBA_8K;
1074 		break;
1075 	case em_ich9lan:
1076 #define E1000_PBA_10K   0x000A
1077 		pba = E1000_PBA_10K;
1078 		break;
1079 	default:
1080 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1081 		if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1082 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1083 		else
1084 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1085 	}
1086 
1087 	INIT_DEBUGOUT1("em_init: pba=%dK",pba);
1088 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
1089 
1090 	/* Get the latest mac address, User can use a LAA */
1091 	bcopy(adapter->interface_data.ac_enaddr, adapter->hw.mac_addr,
1092 	      ETHER_ADDR_LEN);
1093 
1094 	/* Initialize the hardware */
1095 	if (em_hardware_init(adapter)) {
1096 		if_printf(ifp, "Unable to initialize the hardware\n");
1097 		return;
1098 	}
1099 	em_update_link_status(adapter);
1100 
1101 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1102 		em_enable_vlans(adapter);
1103 
1104 	/* Set hardware offload abilities */
1105 	if (adapter->hw.mac_type >= em_82543) {
1106 		if (ifp->if_capenable & IFCAP_TXCSUM)
1107 			ifp->if_hwassist = EM_CHECKSUM_FEATURES;
1108 		else
1109 			ifp->if_hwassist = 0;
1110 	}
1111 
1112 	/* Prepare transmit descriptors and buffers */
1113 	if (em_setup_transmit_structures(adapter)) {
1114 		if_printf(ifp, "Could not setup transmit structures\n");
1115 		em_stop(adapter);
1116 		return;
1117 	}
1118 	em_initialize_transmit_unit(adapter);
1119 
1120 	/* Setup Multicast table */
1121 	em_set_multi(adapter);
1122 
1123 	/* Prepare receive descriptors and buffers */
1124 	if (em_setup_receive_structures(adapter)) {
1125 		if_printf(ifp, "Could not setup receive structures\n");
1126 		em_stop(adapter);
1127 		return;
1128 	}
1129 	em_initialize_receive_unit(adapter);
1130 
1131 	/* Don't lose promiscuous settings */
1132 	em_set_promisc(adapter);
1133 
1134 	ifp->if_flags |= IFF_RUNNING;
1135 	ifp->if_flags &= ~IFF_OACTIVE;
1136 
1137 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1138 	em_clear_hw_cntrs(&adapter->hw);
1139 
1140 #ifdef DEVICE_POLLING
1141 	/* Do not enable interrupt if polling(4) is enabled */
1142 	if (ifp->if_flags & IFF_POLLING)
1143 		em_disable_intr(adapter);
1144 	else
1145 #endif
1146 	em_enable_intr(adapter);
1147 
1148 	/* Don't reset the phy next time init gets called */
1149 	adapter->hw.phy_reset_disable = TRUE;
1150 }
1151 
1152 #ifdef DEVICE_POLLING
1153 
1154 static void
1155 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1156 {
1157 	struct adapter *adapter = ifp->if_softc;
1158 	uint32_t reg_icr;
1159 
1160 	ASSERT_SERIALIZED(ifp->if_serializer);
1161 
1162 	switch(cmd) {
1163 	case POLL_REGISTER:
1164 		em_disable_intr(adapter);
1165 		break;
1166 	case POLL_DEREGISTER:
1167 		em_enable_intr(adapter);
1168 		break;
1169 	case POLL_AND_CHECK_STATUS:
1170 		reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1171 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1172 			callout_stop(&adapter->timer);
1173 			adapter->hw.get_link_status = 1;
1174 			em_check_for_link(&adapter->hw);
1175 			em_update_link_status(adapter);
1176 			callout_reset(&adapter->timer, hz, em_local_timer,
1177 				      adapter);
1178 		}
1179 		/* fall through */
1180 	case POLL_ONLY:
1181 		if (ifp->if_flags & IFF_RUNNING) {
1182 			em_rxeof(adapter, count);
1183 			em_txeof(adapter);
1184 
1185 			if (!ifq_is_empty(&ifp->if_snd))
1186 				if_devstart(ifp);
1187 		}
1188 		break;
1189 	}
1190 }
1191 
1192 #endif /* DEVICE_POLLING */
1193 
1194 /*********************************************************************
1195  *
1196  *  Interrupt Service routine
1197  *
1198  *********************************************************************/
1199 static void
1200 em_intr(void *arg)
1201 {
1202 	uint32_t reg_icr;
1203 	struct ifnet *ifp;
1204 	struct adapter *adapter = arg;
1205 
1206 	ifp = &adapter->interface_data.ac_if;
1207 
1208 	logif(intr_beg);
1209 	ASSERT_SERIALIZED(ifp->if_serializer);
1210 
1211 	reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1212 	if ((adapter->hw.mac_type >= em_82571 &&
1213 	     (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1214 	    reg_icr == 0) {
1215 		logif(intr_end);
1216 		return;
1217 	}
1218 
1219 	/*
1220 	 * XXX: some laptops trigger several spurious interrupts on em(4)
1221 	 * when in the resume cycle. The ICR register reports all-ones
1222 	 * value in this case. Processing such interrupts would lead to
1223 	 * a freeze. I don't know why.
1224 	 */
1225 	if (reg_icr == 0xffffffff) {
1226 		logif(intr_end);
1227 		return;
1228 	}
1229 
1230 	/*
1231 	 * note: do not attempt to improve efficiency by looping.  This
1232 	 * only results in unnecessary piecemeal collection of received
1233 	 * packets and unnecessary piecemeal cleanups of the transmit ring.
1234 	 */
1235 	if (ifp->if_flags & IFF_RUNNING) {
1236 		em_rxeof(adapter, -1);
1237 		em_txeof(adapter);
1238 	}
1239 
1240 	/* Link status change */
1241 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1242 		callout_stop(&adapter->timer);
1243 		adapter->hw.get_link_status = 1;
1244 		em_check_for_link(&adapter->hw);
1245 		em_update_link_status(adapter);
1246 		callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1247 	}
1248 
1249 	if (reg_icr & E1000_ICR_RXO)
1250 		adapter->rx_overruns++;
1251 
1252 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1253 		if_devstart(ifp);
1254 
1255 	logif(intr_end);
1256 }
1257 
1258 /*********************************************************************
1259  *
1260  *  Media Ioctl callback
1261  *
1262  *  This routine is called whenever the user queries the status of
1263  *  the interface using ifconfig.
1264  *
1265  **********************************************************************/
1266 static void
1267 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1268 {
1269 	struct adapter *adapter = ifp->if_softc;
1270 	u_char fiber_type = IFM_1000_SX;
1271 
1272 	INIT_DEBUGOUT("em_media_status: begin");
1273 
1274 	ASSERT_SERIALIZED(ifp->if_serializer);
1275 
1276 	em_check_for_link(&adapter->hw);
1277 	em_update_link_status(adapter);
1278 
1279 	ifmr->ifm_status = IFM_AVALID;
1280 	ifmr->ifm_active = IFM_ETHER;
1281 
1282 	if (!adapter->link_active)
1283 		return;
1284 
1285 	ifmr->ifm_status |= IFM_ACTIVE;
1286 
1287 	if (adapter->hw.media_type == em_media_type_fiber ||
1288 	    adapter->hw.media_type == em_media_type_internal_serdes) {
1289 		if (adapter->hw.mac_type == em_82545)
1290 			fiber_type = IFM_1000_LX;
1291 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1292 	} else {
1293 		switch (adapter->link_speed) {
1294 		case 10:
1295 			ifmr->ifm_active |= IFM_10_T;
1296 			break;
1297 		case 100:
1298 			ifmr->ifm_active |= IFM_100_TX;
1299 			break;
1300 		case 1000:
1301 			ifmr->ifm_active |= IFM_1000_T;
1302 			break;
1303 		}
1304 		if (adapter->link_duplex == FULL_DUPLEX)
1305 			ifmr->ifm_active |= IFM_FDX;
1306 		else
1307 			ifmr->ifm_active |= IFM_HDX;
1308 	}
1309 }
1310 
1311 /*********************************************************************
1312  *
1313  *  Media Ioctl callback
1314  *
1315  *  This routine is called when the user changes speed/duplex using
1316  *  media/mediopt option with ifconfig.
1317  *
1318  **********************************************************************/
1319 static int
1320 em_media_change(struct ifnet *ifp)
1321 {
1322 	struct adapter *adapter = ifp->if_softc;
1323 	struct ifmedia *ifm = &adapter->media;
1324 
1325 	INIT_DEBUGOUT("em_media_change: begin");
1326 
1327 	ASSERT_SERIALIZED(ifp->if_serializer);
1328 
1329 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1330 		return (EINVAL);
1331 
1332 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1333 	case IFM_AUTO:
1334 		adapter->hw.autoneg = DO_AUTO_NEG;
1335 		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1336 		break;
1337 	case IFM_1000_LX:
1338 	case IFM_1000_SX:
1339 	case IFM_1000_T:
1340 		adapter->hw.autoneg = DO_AUTO_NEG;
1341 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
1342 		break;
1343 	case IFM_100_TX:
1344 		adapter->hw.autoneg = FALSE;
1345 		adapter->hw.autoneg_advertised = 0;
1346 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1347 			adapter->hw.forced_speed_duplex = em_100_full;
1348 		else
1349 			adapter->hw.forced_speed_duplex = em_100_half;
1350 		break;
1351 	case IFM_10_T:
1352 		adapter->hw.autoneg = FALSE;
1353 		adapter->hw.autoneg_advertised = 0;
1354 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1355 			adapter->hw.forced_speed_duplex = em_10_full;
1356 		else
1357 			adapter->hw.forced_speed_duplex = em_10_half;
1358 		break;
1359 	default:
1360 		if_printf(ifp, "Unsupported media type\n");
1361 	}
1362 	/*
1363 	 * As the speed/duplex settings may have changed we need to
1364 	 * reset the PHY.
1365 	 */
1366 	adapter->hw.phy_reset_disable = FALSE;
1367 
1368 	ifp->if_flags &= ~IFF_RUNNING;
1369 	em_init(adapter);
1370 
1371 	return(0);
1372 }
1373 
1374 static void
1375 em_tx_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1376 	 int error)
1377 {
1378 	struct em_q *q = arg;
1379 
1380 	if (error)
1381 		return;
1382 	KASSERT(nsegs <= EM_MAX_SCATTER,
1383 		("Too many DMA segments returned when mapping tx packet"));
1384 	q->nsegs = nsegs;
1385 	bcopy(seg, q->segs, nsegs * sizeof(seg[0]));
1386 }
1387 
1388 /*********************************************************************
1389  *
1390  *  This routine maps the mbufs to tx descriptors.
1391  *
1392  *  return 0 on success, positive on failure
1393  **********************************************************************/
1394 static int
1395 em_encap(struct adapter *adapter, struct mbuf *m_head)
1396 {
1397 	uint32_t txd_upper = 0, txd_lower = 0, txd_used = 0, txd_saved = 0;
1398 	int i, j, error, last = 0;
1399 
1400 	struct em_q q;
1401 	struct em_buffer *tx_buffer = NULL, *tx_buffer_first;
1402 	bus_dmamap_t map;
1403 	struct em_tx_desc *current_tx_desc = NULL;
1404 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1405 
1406 	/*
1407 	 * Force a cleanup if number of TX descriptors
1408 	 * available hits the threshold
1409 	 */
1410 	if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1411 		em_txeof(adapter);
1412 		if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1413 			adapter->no_tx_desc_avail1++;
1414 			return (ENOBUFS);
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * Capture the first descriptor index, this descriptor will have
1420 	 * the index of the EOP which is the only one that now gets a
1421 	 * DONE bit writeback.
1422 	 */
1423 	tx_buffer_first = &adapter->tx_buffer_area[adapter->next_avail_tx_desc];
1424 
1425 	/*
1426 	 * Map the packet for DMA.
1427 	 */
1428 	map = tx_buffer_first->map;
1429 	error = bus_dmamap_load_mbuf(adapter->txtag, map, m_head, em_tx_cb,
1430 				     &q, BUS_DMA_NOWAIT);
1431 	if (error != 0) {
1432 		adapter->no_tx_dma_setup++;
1433 		return (error);
1434 	}
1435 	KASSERT(q.nsegs != 0, ("em_encap: empty packet"));
1436 
1437 	if (q.nsegs > (adapter->num_tx_desc_avail - 2)) {
1438 		adapter->no_tx_desc_avail2++;
1439 		error = ENOBUFS;
1440 		goto fail;
1441 	}
1442 
1443 	if (ifp->if_hwassist > 0) {
1444 		em_transmit_checksum_setup(adapter,  m_head,
1445 					   &txd_upper, &txd_lower);
1446 	}
1447 
1448 	i = adapter->next_avail_tx_desc;
1449 	if (adapter->pcix_82544)
1450 		txd_saved = i;
1451 
1452 	/* Set up our transmit descriptors */
1453 	for (j = 0; j < q.nsegs; j++) {
1454 		/* If adapter is 82544 and on PCIX bus */
1455 		if(adapter->pcix_82544) {
1456 			DESC_ARRAY desc_array;
1457 			uint32_t array_elements, counter;
1458 
1459 			/*
1460 			 * Check the Address and Length combination and
1461 			 * split the data accordingly
1462 			 */
1463 			array_elements = em_fill_descriptors(q.segs[j].ds_addr,
1464 						q.segs[j].ds_len, &desc_array);
1465 			for (counter = 0; counter < array_elements; counter++) {
1466 				if (txd_used == adapter->num_tx_desc_avail) {
1467 					adapter->next_avail_tx_desc = txd_saved;
1468 					adapter->no_tx_desc_avail2++;
1469 					error = ENOBUFS;
1470 					goto fail;
1471 				}
1472 				tx_buffer = &adapter->tx_buffer_area[i];
1473 				current_tx_desc = &adapter->tx_desc_base[i];
1474 				current_tx_desc->buffer_addr = htole64(
1475 					desc_array.descriptor[counter].address);
1476 				current_tx_desc->lower.data = htole32(
1477 					adapter->txd_cmd | txd_lower |
1478 					(uint16_t)desc_array.descriptor[counter].length);
1479 				current_tx_desc->upper.data = htole32(txd_upper);
1480 
1481 				last = i;
1482 				if (++i == adapter->num_tx_desc)
1483 					i = 0;
1484 
1485 				tx_buffer->m_head = NULL;
1486 				tx_buffer->next_eop = -1;
1487 				txd_used++;
1488 			}
1489 		} else {
1490 			tx_buffer = &adapter->tx_buffer_area[i];
1491 			current_tx_desc = &adapter->tx_desc_base[i];
1492 
1493 			current_tx_desc->buffer_addr = htole64(q.segs[j].ds_addr);
1494 			current_tx_desc->lower.data = htole32(
1495 				adapter->txd_cmd | txd_lower | q.segs[j].ds_len);
1496 			current_tx_desc->upper.data = htole32(txd_upper);
1497 
1498 			last = i;
1499 			if (++i == adapter->num_tx_desc)
1500 				i = 0;
1501 
1502 			tx_buffer->m_head = NULL;
1503 			tx_buffer->next_eop = -1;
1504 		}
1505 	}
1506 
1507 	adapter->next_avail_tx_desc = i;
1508 	if (adapter->pcix_82544)
1509 		adapter->num_tx_desc_avail -= txd_used;
1510 	else
1511 		adapter->num_tx_desc_avail -= q.nsegs;
1512 
1513 	/* Find out if we are in vlan mode */
1514 	if (m_head->m_flags & M_VLANTAG) {
1515 		/* Set the vlan id */
1516 		current_tx_desc->upper.fields.special =
1517 			htole16(m_head->m_pkthdr.ether_vlantag);
1518 
1519 		/* Tell hardware to add tag */
1520 		current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
1521 	}
1522 
1523 	tx_buffer->m_head = m_head;
1524 	tx_buffer_first->map = tx_buffer->map;
1525 	tx_buffer->map = map;
1526 	bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1527 
1528 	/*
1529 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1530 	 * and Report Status (RS)
1531 	 */
1532 	current_tx_desc->lower.data |=
1533 		htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
1534 
1535 	/*
1536 	 * Keep track in the first buffer which descriptor will be
1537 	 * written back.
1538 	 */
1539 	tx_buffer_first->next_eop = last;
1540 
1541 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
1542 			BUS_DMASYNC_PREWRITE);
1543 
1544 	/*
1545 	 * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
1546 	 * that this frame is available to transmit.
1547 	 */
1548 	if (adapter->hw.mac_type == em_82547 &&
1549 	    adapter->link_duplex == HALF_DUPLEX) {
1550 		em_82547_move_tail_serialized(adapter);
1551 	} else {
1552 		E1000_WRITE_REG(&adapter->hw, TDT, i);
1553 		if (adapter->hw.mac_type == em_82547) {
1554 			em_82547_update_fifo_head(adapter,
1555 						  m_head->m_pkthdr.len);
1556 		}
1557 	}
1558 
1559 	return (0);
1560 fail:
1561 	bus_dmamap_unload(adapter->txtag, map);
1562 	return error;
1563 }
1564 
1565 /*********************************************************************
1566  *
1567  * 82547 workaround to avoid controller hang in half-duplex environment.
1568  * The workaround is to avoid queuing a large packet that would span
1569  * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1570  * in this case. We do that only when FIFO is quiescent.
1571  *
1572  **********************************************************************/
1573 static void
1574 em_82547_move_tail(void *arg)
1575 {
1576 	struct adapter *adapter = arg;
1577 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1578 
1579 	lwkt_serialize_enter(ifp->if_serializer);
1580 	em_82547_move_tail_serialized(adapter);
1581 	lwkt_serialize_exit(ifp->if_serializer);
1582 }
1583 
1584 static void
1585 em_82547_move_tail_serialized(struct adapter *adapter)
1586 {
1587 	uint16_t hw_tdt;
1588 	uint16_t sw_tdt;
1589 	struct em_tx_desc *tx_desc;
1590 	uint16_t length = 0;
1591 	boolean_t eop = 0;
1592 
1593 	hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
1594 	sw_tdt = adapter->next_avail_tx_desc;
1595 
1596 	while (hw_tdt != sw_tdt) {
1597 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1598 		length += tx_desc->lower.flags.length;
1599 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1600 		if (++hw_tdt == adapter->num_tx_desc)
1601 			hw_tdt = 0;
1602 
1603 		if (eop) {
1604 			if (em_82547_fifo_workaround(adapter, length)) {
1605 				adapter->tx_fifo_wrk_cnt++;
1606 				callout_reset(&adapter->tx_fifo_timer, 1,
1607 					em_82547_move_tail, adapter);
1608 				break;
1609 			}
1610 			E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
1611 			em_82547_update_fifo_head(adapter, length);
1612 			length = 0;
1613 		}
1614 	}
1615 }
1616 
1617 static int
1618 em_82547_fifo_workaround(struct adapter *adapter, int len)
1619 {
1620 	int fifo_space, fifo_pkt_len;
1621 
1622 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1623 
1624 	if (adapter->link_duplex == HALF_DUPLEX) {
1625 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1626 
1627 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1628 			if (em_82547_tx_fifo_reset(adapter))
1629 				return (0);
1630 			else
1631 				return (1);
1632 		}
1633 	}
1634 
1635 	return (0);
1636 }
1637 
1638 static void
1639 em_82547_update_fifo_head(struct adapter *adapter, int len)
1640 {
1641 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1642 
1643 	/* tx_fifo_head is always 16 byte aligned */
1644 	adapter->tx_fifo_head += fifo_pkt_len;
1645 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1646 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1647 }
1648 
1649 static int
1650 em_82547_tx_fifo_reset(struct adapter *adapter)
1651 {
1652 	uint32_t tctl;
1653 
1654 	if (E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH) &&
1655 	    E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH) &&
1656 	    E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS) &&
1657 	    E1000_READ_REG(&adapter->hw, TDFPC) == 0) {
1658 		/* Disable TX unit */
1659 		tctl = E1000_READ_REG(&adapter->hw, TCTL);
1660 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
1661 
1662 		/* Reset FIFO pointers */
1663 		E1000_WRITE_REG(&adapter->hw, TDFT,  adapter->tx_head_addr);
1664 		E1000_WRITE_REG(&adapter->hw, TDFH,  adapter->tx_head_addr);
1665 		E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
1666 		E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
1667 
1668 		/* Re-enable TX unit */
1669 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1670 		E1000_WRITE_FLUSH(&adapter->hw);
1671 
1672 		adapter->tx_fifo_head = 0;
1673 		adapter->tx_fifo_reset_cnt++;
1674 
1675 		return (TRUE);
1676 	} else {
1677 		return (FALSE);
1678 	}
1679 }
1680 
1681 static void
1682 em_set_promisc(struct adapter *adapter)
1683 {
1684 	uint32_t reg_rctl;
1685 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1686 
1687 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1688 
1689 	adapter->em_insert_vlan_header = 0;
1690 	if (ifp->if_flags & IFF_PROMISC) {
1691 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1692 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1693 
1694 		/*
1695 		 * Disable VLAN stripping in promiscous mode.
1696 		 * This enables bridging of vlan tagged frames to occur
1697 		 * and also allows vlan tags to be seen in tcpdump.
1698 		 */
1699 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1700 			em_disable_vlans(adapter);
1701 		adapter->em_insert_vlan_header = 1;
1702 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1703 		reg_rctl |= E1000_RCTL_MPE;
1704 		reg_rctl &= ~E1000_RCTL_UPE;
1705 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1706 	}
1707 }
1708 
1709 static void
1710 em_disable_promisc(struct adapter *adapter)
1711 {
1712 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1713 
1714 	uint32_t reg_rctl;
1715 
1716 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1717 
1718 	reg_rctl &= (~E1000_RCTL_UPE);
1719 	reg_rctl &= (~E1000_RCTL_MPE);
1720 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1721 
1722 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1723 		em_enable_vlans(adapter);
1724 	adapter->em_insert_vlan_header = 0;
1725 }
1726 
1727 /*********************************************************************
1728  *  Multicast Update
1729  *
1730  *  This routine is called whenever multicast address list is updated.
1731  *
1732  **********************************************************************/
1733 
1734 static void
1735 em_set_multi(struct adapter *adapter)
1736 {
1737 	uint32_t reg_rctl = 0;
1738 	uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
1739 	struct ifmultiaddr *ifma;
1740 	int mcnt = 0;
1741 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1742 
1743 	IOCTL_DEBUGOUT("em_set_multi: begin");
1744 
1745 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1746 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1747 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1748 			em_pci_clear_mwi(&adapter->hw);
1749 		reg_rctl |= E1000_RCTL_RST;
1750 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1751 		msec_delay(5);
1752 	}
1753 
1754 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1755 		if (ifma->ifma_addr->sa_family != AF_LINK)
1756 			continue;
1757 
1758 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1759 			break;
1760 
1761 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1762 		      &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
1763 		mcnt++;
1764 	}
1765 
1766 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1767 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1768 		reg_rctl |= E1000_RCTL_MPE;
1769 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1770 	} else {
1771 		em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
1772 	}
1773 
1774 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1775 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1776 		reg_rctl &= ~E1000_RCTL_RST;
1777 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1778 		msec_delay(5);
1779 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1780                         em_pci_set_mwi(&adapter->hw);
1781 	}
1782 }
1783 
1784 /*********************************************************************
1785  *  Timer routine
1786  *
1787  *  This routine checks for link status and updates statistics.
1788  *
1789  **********************************************************************/
1790 
1791 static void
1792 em_local_timer(void *arg)
1793 {
1794 	struct ifnet *ifp;
1795 	struct adapter *adapter = arg;
1796 	ifp = &adapter->interface_data.ac_if;
1797 
1798 	lwkt_serialize_enter(ifp->if_serializer);
1799 
1800 	em_check_for_link(&adapter->hw);
1801 	em_update_link_status(adapter);
1802 	em_update_stats_counters(adapter);
1803 	if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING)
1804 		em_print_hw_stats(adapter);
1805 	em_smartspeed(adapter);
1806 
1807 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1808 
1809 	lwkt_serialize_exit(ifp->if_serializer);
1810 }
1811 
1812 static void
1813 em_update_link_status(struct adapter *adapter)
1814 {
1815 	struct ifnet *ifp;
1816 	ifp = &adapter->interface_data.ac_if;
1817 
1818 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
1819 		if (adapter->link_active == 0) {
1820 			em_get_speed_and_duplex(&adapter->hw,
1821 						&adapter->link_speed,
1822 						&adapter->link_duplex);
1823 			/* Check if we may set SPEED_MODE bit on PCI-E */
1824 			if (adapter->link_speed == SPEED_1000 &&
1825 			    (adapter->hw.mac_type == em_82571 ||
1826 			     adapter->hw.mac_type == em_82572)) {
1827 				int tarc0;
1828 
1829 				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
1830 				tarc0 |= SPEED_MODE_BIT;
1831 				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
1832 			}
1833 			if (bootverbose) {
1834 				if_printf(&adapter->interface_data.ac_if,
1835 					  "Link is up %d Mbps %s\n",
1836 					  adapter->link_speed,
1837 					  adapter->link_duplex == FULL_DUPLEX ?
1838 						"Full Duplex" : "Half Duplex");
1839 			}
1840 			adapter->link_active = 1;
1841 			adapter->smartspeed = 0;
1842 			ifp->if_baudrate = adapter->link_speed * 1000000;
1843 			ifp->if_link_state = LINK_STATE_UP;
1844 			if_link_state_change(ifp);
1845 		}
1846 	} else {
1847 		if (adapter->link_active == 1) {
1848 			ifp->if_baudrate = 0;
1849 			adapter->link_speed = 0;
1850 			adapter->link_duplex = 0;
1851 			if (bootverbose) {
1852 				if_printf(&adapter->interface_data.ac_if,
1853 					  "Link is Down\n");
1854 			}
1855 			adapter->link_active = 0;
1856 			ifp->if_link_state = LINK_STATE_DOWN;
1857 			if_link_state_change(ifp);
1858 		}
1859 	}
1860 }
1861 
1862 /*********************************************************************
1863  *
1864  *  This routine disables all traffic on the adapter by issuing a
1865  *  global reset on the MAC and deallocates TX/RX buffers.
1866  *
1867  **********************************************************************/
1868 
1869 static void
1870 em_stop(void *arg)
1871 {
1872 	struct ifnet   *ifp;
1873 	struct adapter * adapter = arg;
1874 	ifp = &adapter->interface_data.ac_if;
1875 
1876 	ASSERT_SERIALIZED(ifp->if_serializer);
1877 
1878 	INIT_DEBUGOUT("em_stop: begin");
1879 	em_disable_intr(adapter);
1880 	em_reset_hw(&adapter->hw);
1881 	callout_stop(&adapter->timer);
1882 	callout_stop(&adapter->tx_fifo_timer);
1883 	em_free_transmit_structures(adapter);
1884 	em_free_receive_structures(adapter);
1885 
1886 	/* Tell the stack that the interface is no longer active */
1887 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1888 	ifp->if_timer = 0;
1889 }
1890 
1891 /*********************************************************************
1892  *
1893  *  Determine hardware revision.
1894  *
1895  **********************************************************************/
1896 static void
1897 em_identify_hardware(struct adapter *adapter)
1898 {
1899 	device_t dev = adapter->dev;
1900 
1901 	/* Make sure our PCI config space has the necessary stuff set */
1902 	adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1903 	if (!((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
1904 	      (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN))) {
1905 		device_printf(dev, "Memory Access and/or Bus Master bits "
1906 			      "were not set!\n");
1907 		adapter->hw.pci_cmd_word |= PCIM_CMD_BUSMASTEREN |
1908 					    PCIM_CMD_MEMEN;
1909 		pci_write_config(dev, PCIR_COMMAND,
1910 				 adapter->hw.pci_cmd_word, 2);
1911 	}
1912 
1913 	/* Save off the information about this board */
1914 	adapter->hw.vendor_id = pci_get_vendor(dev);
1915 	adapter->hw.device_id = pci_get_device(dev);
1916 	adapter->hw.revision_id = pci_get_revid(dev);
1917 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
1918 	adapter->hw.subsystem_id = pci_get_subdevice(dev);
1919 
1920 	/* Identify the MAC */
1921 	if (em_set_mac_type(&adapter->hw))
1922 		device_printf(dev, "Unknown MAC Type\n");
1923 
1924 	if (adapter->hw.mac_type == em_82541 ||
1925 	    adapter->hw.mac_type == em_82541_rev_2 ||
1926 	    adapter->hw.mac_type == em_82547 ||
1927 	    adapter->hw.mac_type == em_82547_rev_2)
1928 		adapter->hw.phy_init_script = TRUE;
1929 }
1930 
1931 static int
1932 em_allocate_pci_resources(device_t dev)
1933 {
1934 	struct adapter *adapter = device_get_softc(dev);
1935 	int rid;
1936 
1937 	rid = PCIR_BAR(0);
1938 	adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1939 						     &rid, RF_ACTIVE);
1940 	if (adapter->res_memory == NULL) {
1941 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1942 		return ENXIO;
1943 	}
1944 	adapter->osdep.mem_bus_space_tag =
1945 		rman_get_bustag(adapter->res_memory);
1946 	adapter->osdep.mem_bus_space_handle =
1947 	    rman_get_bushandle(adapter->res_memory);
1948 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
1949 
1950 	if (adapter->hw.mac_type > em_82543) {
1951 		/* Figure our where our IO BAR is ? */
1952 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1953 			uint32_t val;
1954 
1955 			val = pci_read_config(dev, rid, 4);
1956 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1957 				adapter->io_rid = rid;
1958 				break;
1959 			}
1960 			rid += 4;
1961 			/* check for 64bit BAR */
1962 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1963 				rid += 4;
1964 		}
1965 		if (rid >= PCIR_CIS) {
1966 			device_printf(dev, "Unable to locate IO BAR\n");
1967 			return (ENXIO);
1968  		}
1969 
1970 		adapter->res_ioport = bus_alloc_resource_any(dev,
1971 		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1972 		if (!(adapter->res_ioport)) {
1973 			device_printf(dev, "Unable to allocate bus resource: "
1974 				      "ioport\n");
1975 			return ENXIO;
1976 		}
1977 		adapter->hw.io_base = 0;
1978 		adapter->osdep.io_bus_space_tag =
1979 			rman_get_bustag(adapter->res_ioport);
1980 		adapter->osdep.io_bus_space_handle =
1981 			rman_get_bushandle(adapter->res_ioport);
1982 	}
1983 
1984 	/* For ICH8 we need to find the flash memory. */
1985 	if ((adapter->hw.mac_type == em_ich8lan) ||
1986 	    (adapter->hw.mac_type == em_ich9lan)) {
1987 		rid = EM_FLASH;
1988 		adapter->flash_mem = bus_alloc_resource_any(dev,
1989 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
1990 		if (adapter->flash_mem == NULL) {
1991 			device_printf(dev, "Unable to allocate bus resource: "
1992 				      "flash memory\n");
1993 			return ENXIO;
1994 		}
1995 		adapter->osdep.flash_bus_space_tag =
1996 		    rman_get_bustag(adapter->flash_mem);
1997 		adapter->osdep.flash_bus_space_handle =
1998 		    rman_get_bushandle(adapter->flash_mem);
1999 	}
2000 
2001 	rid = 0x0;
2002 	adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2003 	    &rid, RF_SHAREABLE | RF_ACTIVE);
2004 	if (adapter->res_interrupt == NULL) {
2005 		device_printf(dev, "Unable to allocate bus resource: "
2006 			      "interrupt\n");
2007 		return ENXIO;
2008 	}
2009 
2010 	adapter->hw.back = &adapter->osdep;
2011 
2012 	return 0;
2013 }
2014 
2015 static void
2016 em_free_pci_resources(device_t dev)
2017 {
2018 	struct adapter *adapter = device_get_softc(dev);
2019 
2020 	if (adapter->res_interrupt != NULL) {
2021 		bus_release_resource(dev, SYS_RES_IRQ, 0,
2022 				     adapter->res_interrupt);
2023 	}
2024 	if (adapter->res_memory != NULL) {
2025 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2026 				     adapter->res_memory);
2027 	}
2028 
2029 	if (adapter->res_ioport != NULL) {
2030 		bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid,
2031 				     adapter->res_ioport);
2032 	}
2033 
2034 	if (adapter->flash_mem != NULL) {
2035 		bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH,
2036 				     adapter->flash_mem);
2037 	}
2038 }
2039 
2040 /*********************************************************************
2041  *
2042  *  Initialize the hardware to a configuration as specified by the
2043  *  adapter structure. The controller is reset, the EEPROM is
2044  *  verified, the MAC address is set, then the shared initialization
2045  *  routines are called.
2046  *
2047  **********************************************************************/
2048 static int
2049 em_hardware_init(struct adapter *adapter)
2050 {
2051 	uint16_t	rx_buffer_size;
2052 
2053 	INIT_DEBUGOUT("em_hardware_init: begin");
2054 	/* Issue a global reset */
2055 	em_reset_hw(&adapter->hw);
2056 
2057 	/* When hardware is reset, fifo_head is also reset */
2058 	adapter->tx_fifo_head = 0;
2059 
2060 	/* Make sure we have a good EEPROM before we read from it */
2061 	if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2062 		if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2063 			device_printf(adapter->dev,
2064 				      "The EEPROM Checksum Is Not Valid\n");
2065 			return (EIO);
2066 		}
2067 	}
2068 
2069 	if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
2070 		device_printf(adapter->dev,
2071 			      "EEPROM read error while reading part number\n");
2072 		return (EIO);
2073 	}
2074 
2075 	/* Set up smart power down as default off on newer adapters. */
2076 	if (!em_smart_pwr_down &&
2077 	    (adapter->hw.mac_type == em_82571 ||
2078 	     adapter->hw.mac_type == em_82572)) {
2079 		uint16_t phy_tmp = 0;
2080 
2081 		/* Speed up time to link by disabling smart power down. */
2082 		em_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2083 				&phy_tmp);
2084 		phy_tmp &= ~IGP02E1000_PM_SPD;
2085 		em_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2086 				 phy_tmp);
2087 	}
2088 
2089 	/*
2090 	 * These parameters control the automatic generation (Tx) and
2091 	 * response (Rx) to Ethernet PAUSE frames.
2092 	 * - High water mark should allow for at least two frames to be
2093 	 *   received after sending an XOFF.
2094 	 * - Low water mark works best when it is very near the high water mark.
2095 	 *   This allows the receiver to restart by sending XON when it has
2096 	 *   drained a bit.  Here we use an arbitary value of 1500 which will
2097 	 *   restart after one full frame is pulled from the buffer.  There
2098 	 *   could be several smaller frames in the buffer and if so they will
2099 	 *   not trigger the XON until their total number reduces the buffer
2100 	 *   by 1500.
2101 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2102 	 */
2103 	rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10);
2104 
2105 	adapter->hw.fc_high_water =
2106 	    rx_buffer_size - roundup2(adapter->hw.max_frame_size, 1024);
2107 	adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
2108 	if (adapter->hw.mac_type == em_80003es2lan)
2109 		adapter->hw.fc_pause_time = 0xFFFF;
2110 	else
2111 		adapter->hw.fc_pause_time = 1000;
2112 	adapter->hw.fc_send_xon = TRUE;
2113 	adapter->hw.fc = E1000_FC_FULL;
2114 
2115 	if (em_init_hw(&adapter->hw) < 0) {
2116 		device_printf(adapter->dev, "Hardware Initialization Failed");
2117 		return (EIO);
2118 	}
2119 
2120 	em_check_for_link(&adapter->hw);
2121 
2122 	return (0);
2123 }
2124 
2125 /*********************************************************************
2126  *
2127  *  Setup networking device structure and register an interface.
2128  *
2129  **********************************************************************/
2130 static void
2131 em_setup_interface(device_t dev, struct adapter *adapter)
2132 {
2133 	struct ifnet *ifp;
2134 	u_char fiber_type = IFM_1000_SX;	/* default type */
2135 	INIT_DEBUGOUT("em_setup_interface: begin");
2136 
2137 	ifp = &adapter->interface_data.ac_if;
2138 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2139 	ifp->if_mtu = ETHERMTU;
2140 	ifp->if_baudrate = 1000000000;
2141 	ifp->if_init =  em_init;
2142 	ifp->if_softc = adapter;
2143 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2144 	ifp->if_ioctl = em_ioctl;
2145 	ifp->if_start = em_start;
2146 #ifdef DEVICE_POLLING
2147 	ifp->if_poll = em_poll;
2148 #endif
2149 	ifp->if_watchdog = em_watchdog;
2150 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2151 	ifq_set_ready(&ifp->if_snd);
2152 
2153 	if (adapter->hw.mac_type >= em_82543)
2154 		ifp->if_capabilities |= IFCAP_HWCSUM;
2155 
2156 	ifp->if_capenable = ifp->if_capabilities;
2157 
2158 	ether_ifattach(ifp, adapter->hw.mac_addr, NULL);
2159 
2160 #ifdef PROFILE_SERIALIZER
2161 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2162 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2163 			"serializer_sleep", CTLFLAG_RW,
2164 			&ifp->if_serializer->sleep_cnt, 0, NULL);
2165 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2166 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2167 			"serializer_tryfail", CTLFLAG_RW,
2168 			&ifp->if_serializer->tryfail_cnt, 0, NULL);
2169 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2170 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2171 			"serializer_enter", CTLFLAG_RW,
2172 			&ifp->if_serializer->enter_cnt, 0, NULL);
2173 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2174 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2175 			"serializer_try", CTLFLAG_RW,
2176 			&ifp->if_serializer->try_cnt, 0, NULL);
2177 #endif
2178 
2179 	/*
2180 	 * Tell the upper layer(s) we support long frames.
2181 	 */
2182 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2183 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2184 	ifp->if_capenable |= IFCAP_VLAN_MTU;
2185 
2186 	/*
2187 	 * Specify the media types supported by this adapter and register
2188 	 * callbacks to update media and link information
2189 	 */
2190 	ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
2191 		     em_media_status);
2192 	if (adapter->hw.media_type == em_media_type_fiber ||
2193 	    adapter->hw.media_type == em_media_type_internal_serdes) {
2194 		if (adapter->hw.mac_type == em_82545)
2195 			fiber_type = IFM_1000_LX;
2196 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2197 			    0, NULL);
2198 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2199 	} else {
2200 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2201 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2202 			    0, NULL);
2203 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2204 			    0, NULL);
2205 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2206 			    0, NULL);
2207 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
2208 			    0, NULL);
2209 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2210 	}
2211 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2212 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2213 }
2214 
2215 /*********************************************************************
2216  *
2217  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2218  *
2219  **********************************************************************/
2220 static void
2221 em_smartspeed(struct adapter *adapter)
2222 {
2223 	uint16_t phy_tmp;
2224 
2225 	if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
2226 	    !adapter->hw.autoneg ||
2227 	    !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2228 		return;
2229 
2230 	if (adapter->smartspeed == 0) {
2231 		/*
2232 		 * If Master/Slave config fault is asserted twice,
2233 		 * we assume back-to-back.
2234 		 */
2235 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2236 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2237 			return;
2238 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2239 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2240 			em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2241 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2242 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2243 				em_write_phy_reg(&adapter->hw,
2244 						 PHY_1000T_CTRL, phy_tmp);
2245 				adapter->smartspeed++;
2246 				if (adapter->hw.autoneg &&
2247 				    !em_phy_setup_autoneg(&adapter->hw) &&
2248 				    !em_read_phy_reg(&adapter->hw, PHY_CTRL,
2249 						     &phy_tmp)) {
2250 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2251 						    MII_CR_RESTART_AUTO_NEG);
2252 					em_write_phy_reg(&adapter->hw,
2253 							 PHY_CTRL, phy_tmp);
2254 				}
2255 			}
2256 		}
2257 		return;
2258 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2259 		/* If still no link, perhaps using 2/3 pair cable */
2260 		em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2261 		phy_tmp |= CR_1000T_MS_ENABLE;
2262 		em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2263 		if (adapter->hw.autoneg &&
2264 		    !em_phy_setup_autoneg(&adapter->hw) &&
2265 		    !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
2266 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2267 				    MII_CR_RESTART_AUTO_NEG);
2268 			em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
2269 		}
2270 	}
2271 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2272 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2273 		adapter->smartspeed = 0;
2274 }
2275 
2276 /*
2277  * Manage DMA'able memory.
2278  */
2279 static void
2280 em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2281 {
2282 	if (error)
2283 		return;
2284 	*(bus_addr_t *)arg = segs->ds_addr;
2285 }
2286 
2287 static int
2288 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2289 	      struct em_dma_alloc *dma)
2290 {
2291 	device_t dev = adapter->dev;
2292 	int error;
2293 
2294 	error = bus_dma_tag_create(NULL,		/* parent */
2295 				   EM_DBA_ALIGN, 0,	/* alignment, bounds */
2296 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2297 				   BUS_SPACE_MAXADDR,	/* highaddr */
2298 				   NULL, NULL,		/* filter, filterarg */
2299 				   size,		/* maxsize */
2300 				   1,			/* nsegments */
2301 				   size,		/* maxsegsize */
2302 				   0,			/* flags */
2303 				   &dma->dma_tag);
2304 	if (error) {
2305 		device_printf(dev, "%s: bus_dma_tag_create failed; error %d\n",
2306 			      __func__, error);
2307 		return error;
2308 	}
2309 
2310 	error = bus_dmamem_alloc(dma->dma_tag, (void**)&dma->dma_vaddr,
2311 				 BUS_DMA_WAITOK, &dma->dma_map);
2312 	if (error) {
2313 		device_printf(dev, "%s: bus_dmammem_alloc failed; "
2314 			      "size %llu, error %d\n",
2315 			      __func__, (uintmax_t)size, error);
2316 		goto fail;
2317 	}
2318 
2319 	error = bus_dmamap_load(dma->dma_tag, dma->dma_map,
2320 				dma->dma_vaddr, size,
2321 				em_dmamap_cb, &dma->dma_paddr,
2322 				BUS_DMA_WAITOK);
2323 	if (error) {
2324 		device_printf(dev, "%s: bus_dmamap_load failed; error %u\n",
2325 			      __func__, error);
2326 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2327 		goto fail;
2328 	}
2329 
2330 	return 0;
2331 fail:
2332 	bus_dma_tag_destroy(dma->dma_tag);
2333 	dma->dma_tag = NULL;
2334 	return error;
2335 }
2336 
2337 static void
2338 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2339 {
2340 	if (dma->dma_tag != NULL) {
2341 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2342 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2343 		bus_dma_tag_destroy(dma->dma_tag);
2344 		dma->dma_tag = NULL;
2345 	}
2346 }
2347 
2348 /*********************************************************************
2349  *
2350  *  Allocate and initialize transmit structures.
2351  *
2352  **********************************************************************/
2353 static int
2354 em_setup_transmit_structures(struct adapter *adapter)
2355 {
2356 	struct em_buffer *tx_buffer;
2357 	bus_size_t size;
2358 	int error, i;
2359 
2360 	/*
2361 	 * Setup DMA descriptor areas.
2362 	 */
2363 	size = roundup2(adapter->hw.max_frame_size, MCLBYTES);
2364 	if (bus_dma_tag_create(NULL,			/* parent */
2365 			       1, 0,			/* alignment, bounds */
2366 			       BUS_SPACE_MAXADDR,	/* lowaddr */
2367 			       BUS_SPACE_MAXADDR,	/* highaddr */
2368 			       NULL, NULL,		/* filter, filterarg */
2369 			       size,			/* maxsize */
2370 			       EM_MAX_SCATTER,		/* nsegments */
2371 			       size,			/* maxsegsize */
2372 			       0,			/* flags */
2373 			       &adapter->txtag)) {
2374 		device_printf(adapter->dev, "Unable to allocate TX DMA tag\n");
2375 		return(ENOMEM);
2376 	}
2377 
2378 	adapter->tx_buffer_area =
2379 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2380 			M_DEVBUF, M_WAITOK | M_ZERO);
2381 
2382 	bzero(adapter->tx_desc_base,
2383 	      sizeof(struct em_tx_desc) * adapter->num_tx_desc);
2384 	tx_buffer = adapter->tx_buffer_area;
2385 	for (i = 0; i < adapter->num_tx_desc; i++) {
2386 		error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
2387 		if (error) {
2388 			device_printf(adapter->dev,
2389 				      "Unable to create TX DMA map\n");
2390 			goto fail;
2391 		}
2392 		tx_buffer++;
2393 	}
2394 
2395 	adapter->next_avail_tx_desc = 0;
2396 	adapter->next_tx_to_clean = 0;
2397 
2398 	/* Set number of descriptors available */
2399 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2400 
2401 	/* Set checksum context */
2402 	adapter->active_checksum_context = OFFLOAD_NONE;
2403 
2404 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2405 			BUS_DMASYNC_PREWRITE);
2406 
2407 	return (0);
2408 fail:
2409 	em_free_transmit_structures(adapter);
2410 	return (error);
2411 }
2412 
2413 /*********************************************************************
2414  *
2415  *  Enable transmit unit.
2416  *
2417  **********************************************************************/
2418 static void
2419 em_initialize_transmit_unit(struct adapter *adapter)
2420 {
2421 	uint32_t reg_tctl;
2422 	uint32_t reg_tipg = 0;
2423 	uint64_t bus_addr;
2424 
2425 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2426 
2427 	/* Setup the Base and Length of the Tx Descriptor Ring */
2428 	bus_addr = adapter->txdma.dma_paddr;
2429 	E1000_WRITE_REG(&adapter->hw, TDLEN,
2430 			adapter->num_tx_desc * sizeof(struct em_tx_desc));
2431 	E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
2432 	E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
2433 
2434 	/* Setup the HW Tx Head and Tail descriptor pointers */
2435 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
2436 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
2437 
2438 	HW_DEBUGOUT2("Base = %x, Length = %x\n",
2439 		     E1000_READ_REG(&adapter->hw, TDBAL),
2440 		     E1000_READ_REG(&adapter->hw, TDLEN));
2441 
2442 	/* Set the default values for the Tx Inter Packet Gap timer */
2443 	switch (adapter->hw.mac_type) {
2444 	case em_82542_rev2_0:
2445 	case em_82542_rev2_1:
2446 		reg_tipg = DEFAULT_82542_TIPG_IPGT;
2447 		reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2448 		reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2449 		break;
2450 	case em_80003es2lan:
2451 		reg_tipg = DEFAULT_82543_TIPG_IPGR1;
2452 		reg_tipg |=
2453 		    DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2454 		break;
2455 	default:
2456 		if (adapter->hw.media_type == em_media_type_fiber ||
2457 		    adapter->hw.media_type == em_media_type_internal_serdes)
2458 			reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2459 		else
2460 			reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2461 		reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2462 		reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2463 	}
2464 
2465 	E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
2466 	E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
2467 	if (adapter->hw.mac_type >= em_82540) {
2468 		E1000_WRITE_REG(&adapter->hw, TADV,
2469 				adapter->tx_abs_int_delay.value);
2470 	}
2471 
2472 	/* Program the Transmit Control Register */
2473 	reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
2474 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2475 	if (adapter->hw.mac_type >= em_82571)
2476 		reg_tctl |= E1000_TCTL_MULR;
2477 	if (adapter->link_duplex == 1)
2478 		reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2479 	else
2480 		reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2481 
2482 	/* This write will effectively turn on the transmit unit. */
2483 	E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
2484 
2485 	/* Setup Transmit Descriptor Base Settings */
2486 	adapter->txd_cmd = E1000_TXD_CMD_IFCS;
2487 
2488 	if (adapter->tx_int_delay.value > 0)
2489 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2490 }
2491 
2492 /*********************************************************************
2493  *
2494  *  Free all transmit related data structures.
2495  *
2496  **********************************************************************/
2497 static void
2498 em_free_transmit_structures(struct adapter *adapter)
2499 {
2500 	struct em_buffer *tx_buffer;
2501 	int i;
2502 
2503 	INIT_DEBUGOUT("free_transmit_structures: begin");
2504 
2505 	if (adapter->tx_buffer_area != NULL) {
2506 		tx_buffer = adapter->tx_buffer_area;
2507 		for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
2508 			if (tx_buffer->m_head != NULL) {
2509 				bus_dmamap_unload(adapter->txtag,
2510 						  tx_buffer->map);
2511 				m_freem(tx_buffer->m_head);
2512 			}
2513 
2514 			if (tx_buffer->map != NULL) {
2515 				bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2516 				tx_buffer->map = NULL;
2517  			}
2518 			tx_buffer->m_head = NULL;
2519 		}
2520 	}
2521 	if (adapter->tx_buffer_area != NULL) {
2522 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2523 		adapter->tx_buffer_area = NULL;
2524 	}
2525 	if (adapter->txtag != NULL) {
2526 		bus_dma_tag_destroy(adapter->txtag);
2527 		adapter->txtag = NULL;
2528 	}
2529 }
2530 
2531 /*********************************************************************
2532  *
2533  *  The offload context needs to be set when we transfer the first
2534  *  packet of a particular protocol (TCP/UDP). We change the
2535  *  context only if the protocol type changes.
2536  *
2537  **********************************************************************/
2538 static void
2539 em_transmit_checksum_setup(struct adapter *adapter,
2540 			   struct mbuf *mp,
2541 			   uint32_t *txd_upper,
2542 			   uint32_t *txd_lower)
2543 {
2544 	struct em_context_desc *TXD;
2545 	struct em_buffer *tx_buffer;
2546 	int curr_txd;
2547 
2548 	if (mp->m_pkthdr.csum_flags) {
2549 		if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
2550 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2551 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2552 			if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
2553 				return;
2554 			else
2555 				adapter->active_checksum_context = OFFLOAD_TCP_IP;
2556 		} else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
2557 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2558 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2559 			if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
2560 				return;
2561 			else
2562 				adapter->active_checksum_context = OFFLOAD_UDP_IP;
2563 		} else {
2564 			*txd_upper = 0;
2565 			*txd_lower = 0;
2566 			return;
2567 		}
2568 	} else {
2569 		*txd_upper = 0;
2570 		*txd_lower = 0;
2571 		return;
2572 	}
2573 
2574 	/*
2575 	 * If we reach this point, the checksum offload context
2576 	 * needs to be reset.
2577 	 */
2578 	curr_txd = adapter->next_avail_tx_desc;
2579 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2580 	TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
2581 
2582 	TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
2583 	TXD->lower_setup.ip_fields.ipcso =
2584 	    ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
2585 	TXD->lower_setup.ip_fields.ipcse =
2586 	    htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
2587 
2588 	TXD->upper_setup.tcp_fields.tucss =
2589 	    ETHER_HDR_LEN + sizeof(struct ip);
2590 	TXD->upper_setup.tcp_fields.tucse = htole16(0);
2591 
2592 	if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
2593 		TXD->upper_setup.tcp_fields.tucso =
2594 			ETHER_HDR_LEN + sizeof(struct ip) +
2595 			offsetof(struct tcphdr, th_sum);
2596 	} else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
2597 		TXD->upper_setup.tcp_fields.tucso =
2598 			ETHER_HDR_LEN + sizeof(struct ip) +
2599 			offsetof(struct udphdr, uh_sum);
2600 	}
2601 
2602 	TXD->tcp_seg_setup.data = htole32(0);
2603 	TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
2604 
2605 	tx_buffer->m_head = NULL;
2606 	tx_buffer->next_eop = -1;
2607 
2608 	if (++curr_txd == adapter->num_tx_desc)
2609 		curr_txd = 0;
2610 
2611 	adapter->num_tx_desc_avail--;
2612 	adapter->next_avail_tx_desc = curr_txd;
2613 }
2614 
2615 /**********************************************************************
2616  *
2617  *  Examine each tx_buffer in the used queue. If the hardware is done
2618  *  processing the packet then free associated resources. The
2619  *  tx_buffer is put back on the free queue.
2620  *
2621  **********************************************************************/
2622 
2623 static void
2624 em_txeof(struct adapter *adapter)
2625 {
2626 	int first, last, done, num_avail;
2627 	struct em_buffer *tx_buffer;
2628 	struct em_tx_desc *tx_desc, *eop_desc;
2629 	struct ifnet *ifp = &adapter->interface_data.ac_if;
2630 
2631 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2632 		return;
2633 
2634 	num_avail = adapter->num_tx_desc_avail;
2635 	first = adapter->next_tx_to_clean;
2636 	tx_desc = &adapter->tx_desc_base[first];
2637 	tx_buffer = &adapter->tx_buffer_area[first];
2638 	last = tx_buffer->next_eop;
2639 	KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2640 	eop_desc = &adapter->tx_desc_base[last];
2641 
2642 	/*
2643 	 * Now caculate the terminating index for the cleanup loop below
2644 	 */
2645 	if (++last == adapter->num_tx_desc)
2646 		last = 0;
2647 	done = last;
2648 
2649 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2650 			BUS_DMASYNC_POSTREAD);
2651 
2652 	while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2653 		while (first != done) {
2654 			tx_desc->upper.data = 0;
2655 			tx_desc->lower.data = 0;
2656 			num_avail++;
2657 
2658 			logif(pkt_txclean);
2659 
2660 			if (tx_buffer->m_head) {
2661 				ifp->if_opackets++;
2662 				bus_dmamap_sync(adapter->txtag, tx_buffer->map,
2663 						BUS_DMASYNC_POSTWRITE);
2664 				bus_dmamap_unload(adapter->txtag,
2665 						  tx_buffer->map);
2666 
2667 				m_freem(tx_buffer->m_head);
2668 				tx_buffer->m_head = NULL;
2669 			}
2670 			tx_buffer->next_eop = -1;
2671 
2672 			if (++first == adapter->num_tx_desc)
2673 				first = 0;
2674 
2675 			tx_buffer = &adapter->tx_buffer_area[first];
2676 			tx_desc = &adapter->tx_desc_base[first];
2677 		}
2678 		/* See if we can continue to the next packet */
2679 		last = tx_buffer->next_eop;
2680 		if (last != -1) {
2681 			KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2682 			eop_desc = &adapter->tx_desc_base[last];
2683 			if (++last == adapter->num_tx_desc)
2684 				last = 0;
2685 			done = last;
2686 		} else {
2687 			break;
2688 		}
2689 	}
2690 
2691 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2692 			BUS_DMASYNC_PREWRITE);
2693 
2694 	adapter->next_tx_to_clean = first;
2695 
2696 	/*
2697 	 * If we have enough room, clear IFF_OACTIVE to tell the stack
2698 	 * that it is OK to send packets.
2699 	 * If there are no pending descriptors, clear the timeout. Otherwise,
2700 	 * if some descriptors have been freed, restart the timeout.
2701 	 */
2702 	if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
2703 		ifp->if_flags &= ~IFF_OACTIVE;
2704 		if (num_avail == adapter->num_tx_desc)
2705 			ifp->if_timer = 0;
2706 		else if (num_avail == adapter->num_tx_desc_avail)
2707 			ifp->if_timer = EM_TX_TIMEOUT;
2708 	}
2709 	adapter->num_tx_desc_avail = num_avail;
2710 }
2711 
2712 /*********************************************************************
2713  *
2714  *  Get a buffer from system mbuf buffer pool.
2715  *
2716  **********************************************************************/
2717 static int
2718 em_get_buf(int i, struct adapter *adapter, struct mbuf *nmp, int how)
2719 {
2720 	struct mbuf *mp = nmp;
2721 	struct em_buffer *rx_buffer;
2722 	struct ifnet *ifp;
2723 	bus_addr_t paddr;
2724 	int error;
2725 
2726 	ifp = &adapter->interface_data.ac_if;
2727 
2728 	if (mp == NULL) {
2729 		mp = m_getcl(how, MT_DATA, M_PKTHDR);
2730 		if (mp == NULL) {
2731 			adapter->mbuf_cluster_failed++;
2732 			return (ENOBUFS);
2733 		}
2734 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2735 	} else {
2736 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2737 		mp->m_data = mp->m_ext.ext_buf;
2738 		mp->m_next = NULL;
2739 	}
2740 
2741 	if (ifp->if_mtu <= ETHERMTU)
2742 		m_adj(mp, ETHER_ALIGN);
2743 
2744 	rx_buffer = &adapter->rx_buffer_area[i];
2745 
2746 	/*
2747 	 * Using memory from the mbuf cluster pool, invoke the
2748 	 * bus_dma machinery to arrange the memory mapping.
2749 	 */
2750 	error = bus_dmamap_load(adapter->rxtag, rx_buffer->map,
2751 				mtod(mp, void *), mp->m_len,
2752 				em_dmamap_cb, &paddr, 0);
2753 	if (error) {
2754 		m_freem(mp);
2755 		return (error);
2756 	}
2757 	rx_buffer->m_head = mp;
2758 	adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
2759 	bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
2760 
2761 	return (0);
2762 }
2763 
2764 /*********************************************************************
2765  *
2766  *  Allocate memory for rx_buffer structures. Since we use one
2767  *  rx_buffer per received packet, the maximum number of rx_buffer's
2768  *  that we'll need is equal to the number of receive descriptors
2769  *  that we've allocated.
2770  *
2771  **********************************************************************/
2772 static int
2773 em_allocate_receive_structures(struct adapter *adapter)
2774 {
2775 	int i, error, size;
2776 	struct em_buffer *rx_buffer;
2777 
2778 	size = adapter->num_rx_desc * sizeof(struct em_buffer);
2779 	adapter->rx_buffer_area = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
2780 
2781 	error = bus_dma_tag_create(NULL,		/* parent */
2782 				   1, 0,		/* alignment, bounds */
2783 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2784 				   BUS_SPACE_MAXADDR,	/* highaddr */
2785 				   NULL, NULL,		/* filter, filterarg */
2786 				   MCLBYTES,		/* maxsize */
2787 				   1,			/* nsegments */
2788 				   MCLBYTES,		/* maxsegsize */
2789 				   0,			/* flags */
2790 				   &adapter->rxtag);
2791 	if (error) {
2792 		device_printf(adapter->dev, "%s: bus_dma_tag_create failed; "
2793 			      "error %u\n", __func__, error);
2794 		goto fail;
2795 	}
2796 
2797 	rx_buffer = adapter->rx_buffer_area;
2798 	for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2799 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
2800 					  &rx_buffer->map);
2801 		if (error) {
2802 			device_printf(adapter->dev,
2803 				      "%s: bus_dmamap_create failed; "
2804 				      "error %u\n", __func__, error);
2805 			goto fail;
2806 		}
2807 	}
2808 
2809 	for (i = 0; i < adapter->num_rx_desc; i++) {
2810 		error = em_get_buf(i, adapter, NULL, MB_DONTWAIT);
2811 		if (error)
2812 			goto fail;
2813 	}
2814 
2815 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2816 			BUS_DMASYNC_PREWRITE);
2817 
2818 	return (0);
2819 fail:
2820 	em_free_receive_structures(adapter);
2821 	return (error);
2822 }
2823 
2824 /*********************************************************************
2825  *
2826  *  Allocate and initialize receive structures.
2827  *
2828  **********************************************************************/
2829 static int
2830 em_setup_receive_structures(struct adapter *adapter)
2831 {
2832 	int error;
2833 
2834 	bzero(adapter->rx_desc_base,
2835 	      sizeof(struct em_rx_desc) * adapter->num_rx_desc);
2836 
2837 	error = em_allocate_receive_structures(adapter);
2838 	if (error)
2839 		return (error);
2840 
2841 	/* Setup our descriptor pointers */
2842 	adapter->next_rx_desc_to_check = 0;
2843 
2844 	return (0);
2845 }
2846 
2847 /*********************************************************************
2848  *
2849  *  Enable receive unit.
2850  *
2851  **********************************************************************/
2852 static void
2853 em_initialize_receive_unit(struct adapter *adapter)
2854 {
2855 	uint32_t reg_rctl;
2856 	uint32_t reg_rxcsum;
2857 	struct ifnet *ifp;
2858 	uint64_t bus_addr;
2859 
2860 	INIT_DEBUGOUT("em_initialize_receive_unit: begin");
2861 
2862 	ifp = &adapter->interface_data.ac_if;
2863 
2864 	/*
2865 	 * Make sure receives are disabled while setting
2866 	 * up the descriptor ring
2867 	 */
2868 	E1000_WRITE_REG(&adapter->hw, RCTL, 0);
2869 
2870 	/* Set the Receive Delay Timer Register */
2871 	E1000_WRITE_REG(&adapter->hw, RDTR,
2872 			adapter->rx_int_delay.value | E1000_RDT_FPDB);
2873 
2874 	if(adapter->hw.mac_type >= em_82540) {
2875 		E1000_WRITE_REG(&adapter->hw, RADV,
2876 				adapter->rx_abs_int_delay.value);
2877 
2878 		/* Set the interrupt throttling rate in 256ns increments */
2879 		if (em_int_throttle_ceil) {
2880 			E1000_WRITE_REG(&adapter->hw, ITR,
2881 				1000000000 / 256 / em_int_throttle_ceil);
2882 		} else {
2883 			E1000_WRITE_REG(&adapter->hw, ITR, 0);
2884 		}
2885 	}
2886 
2887 	/* Setup the Base and Length of the Rx Descriptor Ring */
2888 	bus_addr = adapter->rxdma.dma_paddr;
2889 	E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
2890 			sizeof(struct em_rx_desc));
2891 	E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
2892 	E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
2893 
2894 	/* Setup the Receive Control Register */
2895 	reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2896 		   E1000_RCTL_RDMTS_HALF |
2897 		   (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
2898 
2899 	if (adapter->hw.tbi_compatibility_on == TRUE)
2900 		reg_rctl |= E1000_RCTL_SBP;
2901 
2902 	switch (adapter->rx_buffer_len) {
2903 	default:
2904 	case EM_RXBUFFER_2048:
2905 		reg_rctl |= E1000_RCTL_SZ_2048;
2906 		break;
2907 	case EM_RXBUFFER_4096:
2908 		reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX |
2909 			    E1000_RCTL_LPE;
2910 		break;
2911 	case EM_RXBUFFER_8192:
2912 		reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX |
2913 			    E1000_RCTL_LPE;
2914 		break;
2915 	case EM_RXBUFFER_16384:
2916 		reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX |
2917 			    E1000_RCTL_LPE;
2918 		break;
2919 	}
2920 
2921 	if (ifp->if_mtu > ETHERMTU)
2922 		reg_rctl |= E1000_RCTL_LPE;
2923 
2924 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
2925 	if ((adapter->hw.mac_type >= em_82543) &&
2926 	    (ifp->if_capenable & IFCAP_RXCSUM)) {
2927 		reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
2928 		reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2929 		E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
2930 	}
2931 
2932 #ifdef EM_X60_WORKAROUND
2933 	if (adapter->hw.mac_type == em_82573)
2934 		E1000_WRITE_REG(&adapter->hw, RDTR, 32);
2935 #endif
2936 
2937 	/* Enable Receives */
2938 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
2939 
2940 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
2941 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
2942 	E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
2943 }
2944 
2945 /*********************************************************************
2946  *
2947  *  Free receive related data structures.
2948  *
2949  **********************************************************************/
2950 static void
2951 em_free_receive_structures(struct adapter *adapter)
2952 {
2953 	struct em_buffer *rx_buffer;
2954 	int i;
2955 
2956 	INIT_DEBUGOUT("free_receive_structures: begin");
2957 
2958 	if (adapter->rx_buffer_area != NULL) {
2959 		rx_buffer = adapter->rx_buffer_area;
2960 		for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2961 			if (rx_buffer->m_head != NULL) {
2962 				bus_dmamap_unload(adapter->rxtag,
2963 						  rx_buffer->map);
2964 				m_freem(rx_buffer->m_head);
2965 				rx_buffer->m_head = NULL;
2966 			}
2967 			if (rx_buffer->map != NULL) {
2968 				bus_dmamap_destroy(adapter->rxtag,
2969 						   rx_buffer->map);
2970 				rx_buffer->map = NULL;
2971 			}
2972 		}
2973 	}
2974 	if (adapter->rx_buffer_area != NULL) {
2975 		kfree(adapter->rx_buffer_area, M_DEVBUF);
2976 		adapter->rx_buffer_area = NULL;
2977 	}
2978 	if (adapter->rxtag != NULL) {
2979 		bus_dma_tag_destroy(adapter->rxtag);
2980 		adapter->rxtag = NULL;
2981 	}
2982 }
2983 
2984 /*********************************************************************
2985  *
2986  *  This routine executes in interrupt context. It replenishes
2987  *  the mbufs in the descriptor and sends data which has been
2988  *  dma'ed into host memory to upper layer.
2989  *
2990  *  We loop at most count times if count is > 0, or until done if
2991  *  count < 0.
2992  *
2993  *********************************************************************/
2994 static void
2995 em_rxeof(struct adapter *adapter, int count)
2996 {
2997 	struct ifnet *ifp;
2998 	struct mbuf *mp;
2999 	uint8_t accept_frame = 0;
3000 	uint8_t eop = 0;
3001 	uint16_t len, desc_len, prev_len_adj;
3002 	int i;
3003 #ifdef ETHER_INPUT_CHAIN
3004 	struct mbuf_chain chain[MAXCPU];
3005 #endif
3006 
3007 	/* Pointer to the receive descriptor being examined. */
3008 	struct em_rx_desc *current_desc;
3009 
3010 	ifp = &adapter->interface_data.ac_if;
3011 	i = adapter->next_rx_desc_to_check;
3012 	current_desc = &adapter->rx_desc_base[i];
3013 
3014 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3015 			BUS_DMASYNC_POSTREAD);
3016 
3017 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3018 		return;
3019 
3020 #ifdef ETHER_INPUT_CHAIN
3021 	ether_input_chain_init(chain);
3022 #endif
3023 
3024 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3025 		logif(pkt_receive);
3026 		mp = adapter->rx_buffer_area[i].m_head;
3027 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3028 				BUS_DMASYNC_POSTREAD);
3029 		bus_dmamap_unload(adapter->rxtag,
3030 				  adapter->rx_buffer_area[i].map);
3031 
3032 		accept_frame = 1;
3033 		prev_len_adj = 0;
3034 		desc_len = le16toh(current_desc->length);
3035 		if (current_desc->status & E1000_RXD_STAT_EOP) {
3036 			count--;
3037 			eop = 1;
3038 			if (desc_len < ETHER_CRC_LEN) {
3039 				len = 0;
3040 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3041 			} else {
3042 				len = desc_len - ETHER_CRC_LEN;
3043 			}
3044 		} else {
3045 			eop = 0;
3046 			len = desc_len;
3047 		}
3048 
3049 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3050 			uint8_t last_byte;
3051 			uint32_t pkt_len = desc_len;
3052 
3053 			if (adapter->fmp != NULL)
3054 				pkt_len += adapter->fmp->m_pkthdr.len;
3055 
3056 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3057 
3058 			if (TBI_ACCEPT(&adapter->hw, current_desc->status,
3059 				       current_desc->errors,
3060 				       pkt_len, last_byte)) {
3061 				em_tbi_adjust_stats(&adapter->hw,
3062 						    &adapter->stats,
3063 						    pkt_len,
3064 						    adapter->hw.mac_addr);
3065 				if (len > 0)
3066 					len--;
3067 			} else {
3068 				accept_frame = 0;
3069 			}
3070 		}
3071 
3072 		if (accept_frame) {
3073 			if (em_get_buf(i, adapter, NULL, MB_DONTWAIT) == ENOBUFS) {
3074 				adapter->dropped_pkts++;
3075 				em_get_buf(i, adapter, mp, MB_DONTWAIT);
3076 				if (adapter->fmp != NULL)
3077 					m_freem(adapter->fmp);
3078 				adapter->fmp = NULL;
3079 				adapter->lmp = NULL;
3080 				goto skip;
3081 			}
3082 
3083 			/* Assign correct length to the current fragment */
3084 			mp->m_len = len;
3085 
3086 			if (adapter->fmp == NULL) {
3087 				mp->m_pkthdr.len = len;
3088 				adapter->fmp = mp;	 /* Store the first mbuf */
3089 				adapter->lmp = mp;
3090 			} else {
3091 				/* Chain mbuf's together */
3092 				/*
3093 				 * Adjust length of previous mbuf in chain if
3094 				 * we received less than 4 bytes in the last
3095 				 * descriptor.
3096 				 */
3097 				if (prev_len_adj > 0) {
3098 					adapter->lmp->m_len -= prev_len_adj;
3099 					adapter->fmp->m_pkthdr.len -= prev_len_adj;
3100 				}
3101 				adapter->lmp->m_next = mp;
3102 				adapter->lmp = adapter->lmp->m_next;
3103 				adapter->fmp->m_pkthdr.len += len;
3104 			}
3105 
3106 			if (eop) {
3107 				adapter->fmp->m_pkthdr.rcvif = ifp;
3108 				ifp->if_ipackets++;
3109 
3110 				em_receive_checksum(adapter, current_desc,
3111 						    adapter->fmp);
3112 				if (current_desc->status & E1000_RXD_STAT_VP) {
3113 					adapter->fmp->m_flags |= M_VLANTAG;
3114 					adapter->fmp->m_pkthdr.ether_vlantag =
3115 						(current_desc->special &
3116 						 E1000_RXD_SPC_VLAN_MASK);
3117 				}
3118 #ifdef ETHER_INPUT_CHAIN
3119 #ifdef ETHER_INPUT2
3120 				ether_input_chain2(ifp, adapter->fmp, chain);
3121 #else
3122 				ether_input_chain(ifp, adapter->fmp, chain);
3123 #endif
3124 #else
3125 				ifp->if_input(ifp, adapter->fmp);
3126 #endif
3127 				adapter->fmp = NULL;
3128 				adapter->lmp = NULL;
3129 			}
3130 		} else {
3131 			adapter->dropped_pkts++;
3132 			em_get_buf(i, adapter, mp, MB_DONTWAIT);
3133 			if (adapter->fmp != NULL)
3134 				m_freem(adapter->fmp);
3135 			adapter->fmp = NULL;
3136 			adapter->lmp = NULL;
3137 		}
3138 
3139 skip:
3140 		/* Zero out the receive descriptors status. */
3141 		current_desc->status = 0;
3142 
3143 		/* Advance our pointers to the next descriptor. */
3144 		if (++i == adapter->num_rx_desc) {
3145 			i = 0;
3146 			current_desc = adapter->rx_desc_base;
3147 		} else {
3148 			current_desc++;
3149 		}
3150 	}
3151 
3152 #ifdef ETHER_INPUT_CHAIN
3153 	ether_input_dispatch(chain);
3154 #endif
3155 
3156 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3157 			BUS_DMASYNC_PREWRITE);
3158 
3159 	adapter->next_rx_desc_to_check = i;
3160 
3161 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3162 	if (--i < 0)
3163 		i = adapter->num_rx_desc - 1;
3164 
3165 	E1000_WRITE_REG(&adapter->hw, RDT, i);
3166 }
3167 
3168 /*********************************************************************
3169  *
3170  *  Verify that the hardware indicated that the checksum is valid.
3171  *  Inform the stack about the status of checksum so that stack
3172  *  doesn't spend time verifying the checksum.
3173  *
3174  *********************************************************************/
3175 static void
3176 em_receive_checksum(struct adapter *adapter,
3177 		    struct em_rx_desc *rx_desc,
3178 		    struct mbuf *mp)
3179 {
3180 	/* 82543 or newer only */
3181 	if ((adapter->hw.mac_type < em_82543) ||
3182 	    /* Ignore Checksum bit is set */
3183 	    (rx_desc->status & E1000_RXD_STAT_IXSM)) {
3184 		mp->m_pkthdr.csum_flags = 0;
3185 		return;
3186 	}
3187 
3188 	if (rx_desc->status & E1000_RXD_STAT_IPCS) {
3189 		/* Did it pass? */
3190 		if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3191 			/* IP Checksum Good */
3192 			mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
3193 			mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3194 		} else {
3195 			mp->m_pkthdr.csum_flags = 0;
3196 		}
3197 	}
3198 
3199 	if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
3200 		/* Did it pass? */
3201 		if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3202 			mp->m_pkthdr.csum_flags |=
3203 			(CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
3204 			 CSUM_FRAG_NOT_CHECKED);
3205 			mp->m_pkthdr.csum_data = htons(0xffff);
3206 		}
3207 	}
3208 }
3209 
3210 
3211 static void
3212 em_enable_vlans(struct adapter *adapter)
3213 {
3214 	uint32_t ctrl;
3215 
3216 	E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
3217 
3218 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3219 	ctrl |= E1000_CTRL_VME;
3220 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3221 }
3222 
3223 static void
3224 em_disable_vlans(struct adapter *adapter)
3225 {
3226 	uint32_t ctrl;
3227 
3228 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3229 	ctrl &= ~E1000_CTRL_VME;
3230 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3231 }
3232 
3233 /*
3234  * note: we must call bus_enable_intr() prior to enabling the hardware
3235  * interrupt and bus_disable_intr() after disabling the hardware interrupt
3236  * in order to avoid handler execution races from scheduled interrupt
3237  * threads.
3238  */
3239 static void
3240 em_enable_intr(struct adapter *adapter)
3241 {
3242 	struct ifnet *ifp = &adapter->interface_data.ac_if;
3243 
3244 	if ((ifp->if_flags & IFF_POLLING) == 0) {
3245 		lwkt_serialize_handler_enable(ifp->if_serializer);
3246 		E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
3247 	}
3248 }
3249 
3250 static void
3251 em_disable_intr(struct adapter *adapter)
3252 {
3253 	/*
3254 	 * The first version of 82542 had an errata where when link was forced
3255 	 * it would stay up even up even if the cable was disconnected.
3256 	 * Sequence errors were used to detect the disconnect and then the
3257 	 * driver would unforce the link.  This code in the in the ISR.  For
3258 	 * this to work correctly the Sequence error interrupt had to be
3259 	 * enabled all the time.
3260 	 */
3261 	if (adapter->hw.mac_type == em_82542_rev2_0) {
3262 		E1000_WRITE_REG(&adapter->hw, IMC,
3263 				(0xffffffff & ~E1000_IMC_RXSEQ));
3264 	} else {
3265 		E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
3266 	}
3267 
3268 	lwkt_serialize_handler_disable(adapter->interface_data.ac_if.if_serializer);
3269 }
3270 
3271 static int
3272 em_is_valid_ether_addr(uint8_t *addr)
3273 {
3274 	static const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3275 
3276 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3277 		return (FALSE);
3278 	else
3279 		return (TRUE);
3280 }
3281 
3282 void
3283 em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3284 {
3285 	pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
3286 }
3287 
3288 void
3289 em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3290 {
3291 	*value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
3292 }
3293 
3294 void
3295 em_pci_set_mwi(struct em_hw *hw)
3296 {
3297 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3298 			 (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
3299 }
3300 
3301 void
3302 em_pci_clear_mwi(struct em_hw *hw)
3303 {
3304 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3305 			 (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
3306 }
3307 
3308 uint32_t
3309 em_io_read(struct em_hw *hw, unsigned long port)
3310 {
3311 	struct em_osdep *io = hw->back;
3312 
3313 	return bus_space_read_4(io->io_bus_space_tag,
3314 				io->io_bus_space_handle, port);
3315 }
3316 
3317 void
3318 em_io_write(struct em_hw *hw, unsigned long port, uint32_t value)
3319 {
3320 	struct em_osdep *io = hw->back;
3321 
3322 	bus_space_write_4(io->io_bus_space_tag,
3323 			  io->io_bus_space_handle, port, value);
3324 }
3325 
3326 /*
3327  * We may eventually really do this, but its unnecessary
3328  * for now so we just return unsupported.
3329  */
3330 int32_t
3331 em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3332 {
3333 	return (0);
3334 }
3335 
3336 
3337 /*********************************************************************
3338  * 82544 Coexistence issue workaround.
3339  *    There are 2 issues.
3340  *	1. Transmit Hang issue.
3341  *    To detect this issue, following equation can be used...
3342  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3343  *          If SUM[3:0] is in between 1 to 4, we will have this issue.
3344  *
3345  *	2. DAC issue.
3346  *    To detect this issue, following equation can be used...
3347  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3348  *          If SUM[3:0] is in between 9 to c, we will have this issue.
3349  *
3350  *
3351  *    WORKAROUND:
3352  *          Make sure we do not have ending address as 1,2,3,4(Hang) or
3353  *          9,a,b,c (DAC)
3354  *
3355 *************************************************************************/
3356 static uint32_t
3357 em_fill_descriptors(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3358 {
3359 	/* Since issue is sensitive to length and address.*/
3360 	/* Let us first check the address...*/
3361 	uint32_t safe_terminator;
3362 	if (length <= 4) {
3363 		desc_array->descriptor[0].address = address;
3364 		desc_array->descriptor[0].length = length;
3365 		desc_array->elements = 1;
3366 		return (desc_array->elements);
3367 	}
3368 	safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3369 	/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3370 	if (safe_terminator == 0 ||
3371 	    (safe_terminator > 4 && safe_terminator < 9) ||
3372 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3373 		desc_array->descriptor[0].address = address;
3374 		desc_array->descriptor[0].length = length;
3375 		desc_array->elements = 1;
3376 		return (desc_array->elements);
3377 	}
3378 
3379 	desc_array->descriptor[0].address = address;
3380 	desc_array->descriptor[0].length = length - 4;
3381 	desc_array->descriptor[1].address = address + (length - 4);
3382 	desc_array->descriptor[1].length = 4;
3383 	desc_array->elements = 2;
3384 	return (desc_array->elements);
3385 }
3386 
3387 /**********************************************************************
3388  *
3389  *  Update the board statistics counters.
3390  *
3391  **********************************************************************/
3392 static void
3393 em_update_stats_counters(struct adapter *adapter)
3394 {
3395 	struct ifnet   *ifp;
3396 
3397 	if (adapter->hw.media_type == em_media_type_copper ||
3398 	    (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
3399 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
3400 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
3401 	}
3402 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
3403 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
3404 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
3405 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
3406 
3407 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
3408 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
3409 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
3410 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
3411 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
3412 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
3413 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
3414 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
3415 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
3416 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
3417 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
3418 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
3419 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
3420 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
3421 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
3422 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
3423 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
3424 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
3425 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
3426 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
3427 
3428 	/* For the 64-bit byte counters the low dword must be read first. */
3429 	/* Both registers clear on the read of the high dword */
3430 
3431 	adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
3432 	adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
3433 	adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
3434 	adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
3435 
3436 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
3437 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
3438 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
3439 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
3440 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
3441 
3442 	adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
3443 	adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
3444 	adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
3445 	adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
3446 
3447 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
3448 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
3449 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
3450 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
3451 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
3452 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
3453 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
3454 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
3455 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
3456 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
3457 
3458 	if (adapter->hw.mac_type >= em_82543) {
3459 		adapter->stats.algnerrc +=
3460 		    E1000_READ_REG(&adapter->hw, ALGNERRC);
3461 		adapter->stats.rxerrc +=
3462 		    E1000_READ_REG(&adapter->hw, RXERRC);
3463 		adapter->stats.tncrs +=
3464 		    E1000_READ_REG(&adapter->hw, TNCRS);
3465 		adapter->stats.cexterr +=
3466 		    E1000_READ_REG(&adapter->hw, CEXTERR);
3467 		adapter->stats.tsctc +=
3468 		    E1000_READ_REG(&adapter->hw, TSCTC);
3469 		adapter->stats.tsctfc +=
3470 		    E1000_READ_REG(&adapter->hw, TSCTFC);
3471 	}
3472 	ifp = &adapter->interface_data.ac_if;
3473 
3474 	/* Fill out the OS statistics structure */
3475 	ifp->if_collisions = adapter->stats.colc;
3476 
3477 	/* Rx Errors */
3478 	ifp->if_ierrors =
3479 		adapter->dropped_pkts +
3480 		adapter->stats.rxerrc +
3481 		adapter->stats.crcerrs +
3482 		adapter->stats.algnerrc +
3483 		adapter->stats.ruc + adapter->stats.roc +
3484 		adapter->stats.mpc + adapter->stats.cexterr +
3485 		adapter->rx_overruns;
3486 
3487 	/* Tx Errors */
3488 	ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol +
3489 			  adapter->watchdog_timeouts;
3490 }
3491 
3492 
3493 /**********************************************************************
3494  *
3495  *  This routine is called only when em_display_debug_stats is enabled.
3496  *  This routine provides a way to take a look at important statistics
3497  *  maintained by the driver and hardware.
3498  *
3499  **********************************************************************/
3500 static void
3501 em_print_debug_info(struct adapter *adapter)
3502 {
3503 	device_t dev= adapter->dev;
3504 	uint8_t *hw_addr = adapter->hw.hw_addr;
3505 
3506 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3507 	device_printf(dev, "CTRL  = 0x%x RCTL = 0x%x\n",
3508 		      E1000_READ_REG(&adapter->hw, CTRL),
3509 		      E1000_READ_REG(&adapter->hw, RCTL));
3510 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk\n",
3511 		      ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),
3512 		      (E1000_READ_REG(&adapter->hw, PBA) & 0xffff));
3513 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3514 		      adapter->hw.fc_high_water, adapter->hw.fc_low_water);
3515 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3516 		      E1000_READ_REG(&adapter->hw, TIDV),
3517 		      E1000_READ_REG(&adapter->hw, TADV));
3518 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3519 		      E1000_READ_REG(&adapter->hw, RDTR),
3520 		      E1000_READ_REG(&adapter->hw, RADV));
3521 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3522 		      (long long)adapter->tx_fifo_wrk_cnt,
3523 		      (long long)adapter->tx_fifo_reset_cnt);
3524 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3525 		      E1000_READ_REG(&adapter->hw, TDH),
3526 		      E1000_READ_REG(&adapter->hw, TDT));
3527 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3528 		      adapter->num_tx_desc_avail);
3529 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3530 		      adapter->no_tx_desc_avail1);
3531 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3532 		      adapter->no_tx_desc_avail2);
3533 	device_printf(dev, "Std mbuf failed = %ld\n",
3534 		      adapter->mbuf_alloc_failed);
3535 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3536 		      adapter->mbuf_cluster_failed);
3537 	device_printf(dev, "Driver dropped packets = %ld\n",
3538 		      adapter->dropped_pkts);
3539 }
3540 
3541 static void
3542 em_print_hw_stats(struct adapter *adapter)
3543 {
3544 	device_t dev= adapter->dev;
3545 
3546 	device_printf(dev, "Excessive collisions = %lld\n",
3547 		      (long long)adapter->stats.ecol);
3548 	device_printf(dev, "Symbol errors = %lld\n",
3549 		      (long long)adapter->stats.symerrs);
3550 	device_printf(dev, "Sequence errors = %lld\n",
3551 		      (long long)adapter->stats.sec);
3552 	device_printf(dev, "Defer count = %lld\n",
3553 		      (long long)adapter->stats.dc);
3554 
3555 	device_printf(dev, "Missed Packets = %lld\n",
3556 		      (long long)adapter->stats.mpc);
3557 	device_printf(dev, "Receive No Buffers = %lld\n",
3558 		      (long long)adapter->stats.rnbc);
3559 	/* RLEC is inaccurate on some hardware, calculate our own. */
3560 	device_printf(dev, "Receive Length errors = %lld\n",
3561 		      (long long)adapter->stats.roc +
3562 		      (long long)adapter->stats.ruc);
3563 	device_printf(dev, "Receive errors = %lld\n",
3564 		      (long long)adapter->stats.rxerrc);
3565 	device_printf(dev, "Crc errors = %lld\n",
3566 		      (long long)adapter->stats.crcerrs);
3567 	device_printf(dev, "Alignment errors = %lld\n",
3568 		      (long long)adapter->stats.algnerrc);
3569 	device_printf(dev, "Carrier extension errors = %lld\n",
3570 		      (long long)adapter->stats.cexterr);
3571 	device_printf(dev, "RX overruns = %lu\n", adapter->rx_overruns);
3572 	device_printf(dev, "Watchdog timeouts = %lu\n",
3573 		      adapter->watchdog_timeouts);
3574 
3575 	device_printf(dev, "XON Rcvd = %lld\n",
3576 		      (long long)adapter->stats.xonrxc);
3577 	device_printf(dev, "XON Xmtd = %lld\n",
3578 		      (long long)adapter->stats.xontxc);
3579 	device_printf(dev, "XOFF Rcvd = %lld\n",
3580 		      (long long)adapter->stats.xoffrxc);
3581 	device_printf(dev, "XOFF Xmtd = %lld\n",
3582 		      (long long)adapter->stats.xofftxc);
3583 
3584 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3585 		      (long long)adapter->stats.gprc);
3586 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3587 		      (long long)adapter->stats.gptc);
3588 }
3589 
3590 static int
3591 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3592 {
3593 	int error;
3594 	int result;
3595 	struct adapter *adapter;
3596 
3597 	result = -1;
3598 	error = sysctl_handle_int(oidp, &result, 0, req);
3599 
3600 	if (error || !req->newptr)
3601 		return (error);
3602 
3603 	if (result == 1) {
3604 		adapter = (struct adapter *)arg1;
3605 		em_print_debug_info(adapter);
3606 	}
3607 
3608 	return (error);
3609 }
3610 
3611 static int
3612 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3613 {
3614 	int error;
3615 	int result;
3616 	struct adapter *adapter;
3617 
3618 	result = -1;
3619 	error = sysctl_handle_int(oidp, &result, 0, req);
3620 
3621 	if (error || !req->newptr)
3622 		return (error);
3623 
3624 	if (result == 1) {
3625 		adapter = (struct adapter *)arg1;
3626 		em_print_hw_stats(adapter);
3627 	}
3628 
3629 	return (error);
3630 }
3631 
3632 static int
3633 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
3634 {
3635 	struct em_int_delay_info *info;
3636 	struct adapter *adapter;
3637 	uint32_t regval;
3638 	int error;
3639 	int usecs;
3640 	int ticks;
3641 
3642 	info = (struct em_int_delay_info *)arg1;
3643 	adapter = info->adapter;
3644 	usecs = info->value;
3645 	error = sysctl_handle_int(oidp, &usecs, 0, req);
3646 	if (error != 0 || req->newptr == NULL)
3647 		return (error);
3648 	if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
3649 		return (EINVAL);
3650 	info->value = usecs;
3651 	ticks = E1000_USECS_TO_TICKS(usecs);
3652 
3653 	lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3654 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
3655 	regval = (regval & ~0xffff) | (ticks & 0xffff);
3656 	/* Handle a few special cases. */
3657 	switch (info->offset) {
3658 	case E1000_RDTR:
3659 	case E1000_82542_RDTR:
3660 		regval |= E1000_RDT_FPDB;
3661 		break;
3662 	case E1000_TIDV:
3663 	case E1000_82542_TIDV:
3664 		if (ticks == 0) {
3665 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
3666 			/* Don't write 0 into the TIDV register. */
3667 			regval++;
3668 		} else
3669 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3670 		break;
3671 	}
3672 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
3673 	lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3674 	return (0);
3675 }
3676 
3677 static void
3678 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
3679 			const char *description, struct em_int_delay_info *info,
3680 			int offset, int value)
3681 {
3682 	info->adapter = adapter;
3683 	info->offset = offset;
3684 	info->value = value;
3685 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3686 			SYSCTL_CHILDREN(adapter->sysctl_tree),
3687 			OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
3688 			info, 0, em_sysctl_int_delay, "I", description);
3689 }
3690 
3691 static int
3692 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3693 {
3694 	struct adapter *adapter = (void *)arg1;
3695 	int error;
3696 	int throttle;
3697 
3698 	throttle = em_int_throttle_ceil;
3699 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3700 	if (error || req->newptr == NULL)
3701 		return error;
3702 	if (throttle < 0 || throttle > 1000000000 / 256)
3703 		return EINVAL;
3704 	if (throttle) {
3705 		/*
3706 		 * Set the interrupt throttling rate in 256ns increments,
3707 		 * recalculate sysctl value assignment to get exact frequency.
3708 		 */
3709 		throttle = 1000000000 / 256 / throttle;
3710 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3711 		em_int_throttle_ceil = 1000000000 / 256 / throttle;
3712 		E1000_WRITE_REG(&adapter->hw, ITR, throttle);
3713 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3714 	} else {
3715 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3716 		em_int_throttle_ceil = 0;
3717 		E1000_WRITE_REG(&adapter->hw, ITR, 0);
3718 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3719 	}
3720 	device_printf(adapter->dev, "Interrupt moderation set to %d/sec\n",
3721 			em_int_throttle_ceil);
3722 	return 0;
3723 }
3724