xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision 97861a1dd5f16de6476b3f69827af1bc95c3a3d1)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_ifpoll.h"
97 
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_poll.h>
121 #include <net/ifq_var.h>
122 #include <net/vlan/if_vlan_var.h>
123 #include <net/vlan/if_vlan_ether.h>
124 
125 #include <netinet/ip.h>
126 #include <netinet/tcp.h>
127 #include <netinet/udp.h>
128 
129 #include <bus/pci/pcivar.h>
130 #include <bus/pci/pcireg.h>
131 
132 #include <dev/netif/ig_hal/e1000_api.h>
133 #include <dev/netif/ig_hal/e1000_82571.h>
134 #include <dev/netif/em/if_em.h>
135 
136 #define DEBUG_HW 0
137 
138 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
139 #define EM_VER	" 7.3.4"
140 
141 #define _EM_DEVICE(id, ret)	\
142 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
143 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
144 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
145 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
146 
147 static const struct em_vendor_info em_vendor_info_array[] = {
148 	EM_DEVICE(82540EM),
149 	EM_DEVICE(82540EM_LOM),
150 	EM_DEVICE(82540EP),
151 	EM_DEVICE(82540EP_LOM),
152 	EM_DEVICE(82540EP_LP),
153 
154 	EM_DEVICE(82541EI),
155 	EM_DEVICE(82541ER),
156 	EM_DEVICE(82541ER_LOM),
157 	EM_DEVICE(82541EI_MOBILE),
158 	EM_DEVICE(82541GI),
159 	EM_DEVICE(82541GI_LF),
160 	EM_DEVICE(82541GI_MOBILE),
161 
162 	EM_DEVICE(82542),
163 
164 	EM_DEVICE(82543GC_FIBER),
165 	EM_DEVICE(82543GC_COPPER),
166 
167 	EM_DEVICE(82544EI_COPPER),
168 	EM_DEVICE(82544EI_FIBER),
169 	EM_DEVICE(82544GC_COPPER),
170 	EM_DEVICE(82544GC_LOM),
171 
172 	EM_DEVICE(82545EM_COPPER),
173 	EM_DEVICE(82545EM_FIBER),
174 	EM_DEVICE(82545GM_COPPER),
175 	EM_DEVICE(82545GM_FIBER),
176 	EM_DEVICE(82545GM_SERDES),
177 
178 	EM_DEVICE(82546EB_COPPER),
179 	EM_DEVICE(82546EB_FIBER),
180 	EM_DEVICE(82546EB_QUAD_COPPER),
181 	EM_DEVICE(82546GB_COPPER),
182 	EM_DEVICE(82546GB_FIBER),
183 	EM_DEVICE(82546GB_SERDES),
184 	EM_DEVICE(82546GB_PCIE),
185 	EM_DEVICE(82546GB_QUAD_COPPER),
186 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
187 
188 	EM_DEVICE(82547EI),
189 	EM_DEVICE(82547EI_MOBILE),
190 	EM_DEVICE(82547GI),
191 
192 	EM_EMX_DEVICE(82571EB_COPPER),
193 	EM_EMX_DEVICE(82571EB_FIBER),
194 	EM_EMX_DEVICE(82571EB_SERDES),
195 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
196 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
197 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
198 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
199 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
200 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
201 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
202 
203 	EM_EMX_DEVICE(82572EI_COPPER),
204 	EM_EMX_DEVICE(82572EI_FIBER),
205 	EM_EMX_DEVICE(82572EI_SERDES),
206 	EM_EMX_DEVICE(82572EI),
207 
208 	EM_EMX_DEVICE(82573E),
209 	EM_EMX_DEVICE(82573E_IAMT),
210 	EM_EMX_DEVICE(82573L),
211 
212 	EM_DEVICE(82583V),
213 
214 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
215 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
216 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
217 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
218 
219 	EM_DEVICE(ICH8_IGP_M_AMT),
220 	EM_DEVICE(ICH8_IGP_AMT),
221 	EM_DEVICE(ICH8_IGP_C),
222 	EM_DEVICE(ICH8_IFE),
223 	EM_DEVICE(ICH8_IFE_GT),
224 	EM_DEVICE(ICH8_IFE_G),
225 	EM_DEVICE(ICH8_IGP_M),
226 	EM_DEVICE(ICH8_82567V_3),
227 
228 	EM_DEVICE(ICH9_IGP_M_AMT),
229 	EM_DEVICE(ICH9_IGP_AMT),
230 	EM_DEVICE(ICH9_IGP_C),
231 	EM_DEVICE(ICH9_IGP_M),
232 	EM_DEVICE(ICH9_IGP_M_V),
233 	EM_DEVICE(ICH9_IFE),
234 	EM_DEVICE(ICH9_IFE_GT),
235 	EM_DEVICE(ICH9_IFE_G),
236 	EM_DEVICE(ICH9_BM),
237 
238 	EM_EMX_DEVICE(82574L),
239 	EM_EMX_DEVICE(82574LA),
240 
241 	EM_DEVICE(ICH10_R_BM_LM),
242 	EM_DEVICE(ICH10_R_BM_LF),
243 	EM_DEVICE(ICH10_R_BM_V),
244 	EM_DEVICE(ICH10_D_BM_LM),
245 	EM_DEVICE(ICH10_D_BM_LF),
246 	EM_DEVICE(ICH10_D_BM_V),
247 
248 	EM_DEVICE(PCH_M_HV_LM),
249 	EM_DEVICE(PCH_M_HV_LC),
250 	EM_DEVICE(PCH_D_HV_DM),
251 	EM_DEVICE(PCH_D_HV_DC),
252 
253 	EM_DEVICE(PCH2_LV_LM),
254 	EM_DEVICE(PCH2_LV_V),
255 
256 	/* required last entry */
257 	EM_DEVICE_NULL
258 };
259 
260 static int	em_probe(device_t);
261 static int	em_attach(device_t);
262 static int	em_detach(device_t);
263 static int	em_shutdown(device_t);
264 static int	em_suspend(device_t);
265 static int	em_resume(device_t);
266 
267 static void	em_init(void *);
268 static void	em_stop(struct adapter *);
269 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
270 static void	em_start(struct ifnet *, struct ifaltq_subque *);
271 #ifdef IFPOLL_ENABLE
272 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
273 static void	em_npoll_compat(struct ifnet *, void *, int);
274 #endif
275 static void	em_watchdog(struct ifnet *);
276 static void	em_media_status(struct ifnet *, struct ifmediareq *);
277 static int	em_media_change(struct ifnet *);
278 static void	em_timer(void *);
279 
280 static void	em_intr(void *);
281 static void	em_intr_mask(void *);
282 static void	em_intr_body(struct adapter *, boolean_t);
283 static void	em_rxeof(struct adapter *, int);
284 static void	em_txeof(struct adapter *);
285 static void	em_tx_collect(struct adapter *);
286 static void	em_tx_purge(struct adapter *);
287 static void	em_enable_intr(struct adapter *);
288 static void	em_disable_intr(struct adapter *);
289 
290 static int	em_dma_malloc(struct adapter *, bus_size_t,
291 		    struct em_dma_alloc *);
292 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
293 static void	em_init_tx_ring(struct adapter *);
294 static int	em_init_rx_ring(struct adapter *);
295 static int	em_create_tx_ring(struct adapter *);
296 static int	em_create_rx_ring(struct adapter *);
297 static void	em_destroy_tx_ring(struct adapter *, int);
298 static void	em_destroy_rx_ring(struct adapter *, int);
299 static int	em_newbuf(struct adapter *, int, int);
300 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
301 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
302 		    struct mbuf *);
303 static int	em_txcsum(struct adapter *, struct mbuf *,
304 		    uint32_t *, uint32_t *);
305 static int	em_tso_pullup(struct adapter *, struct mbuf **);
306 static int	em_tso_setup(struct adapter *, struct mbuf *,
307 		    uint32_t *, uint32_t *);
308 
309 static int	em_get_hw_info(struct adapter *);
310 static int 	em_is_valid_eaddr(const uint8_t *);
311 static int	em_alloc_pci_res(struct adapter *);
312 static void	em_free_pci_res(struct adapter *);
313 static int	em_reset(struct adapter *);
314 static void	em_setup_ifp(struct adapter *);
315 static void	em_init_tx_unit(struct adapter *);
316 static void	em_init_rx_unit(struct adapter *);
317 static void	em_update_stats(struct adapter *);
318 static void	em_set_promisc(struct adapter *);
319 static void	em_disable_promisc(struct adapter *);
320 static void	em_set_multi(struct adapter *);
321 static void	em_update_link_status(struct adapter *);
322 static void	em_smartspeed(struct adapter *);
323 static void	em_set_itr(struct adapter *, uint32_t);
324 static void	em_disable_aspm(struct adapter *);
325 
326 /* Hardware workarounds */
327 static int	em_82547_fifo_workaround(struct adapter *, int);
328 static void	em_82547_update_fifo_head(struct adapter *, int);
329 static int	em_82547_tx_fifo_reset(struct adapter *);
330 static void	em_82547_move_tail(void *);
331 static void	em_82547_move_tail_serialized(struct adapter *);
332 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
333 
334 static void	em_print_debug_info(struct adapter *);
335 static void	em_print_nvm_info(struct adapter *);
336 static void	em_print_hw_stats(struct adapter *);
337 
338 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
339 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
340 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
341 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
342 static void	em_add_sysctl(struct adapter *adapter);
343 
344 /* Management and WOL Support */
345 static void	em_get_mgmt(struct adapter *);
346 static void	em_rel_mgmt(struct adapter *);
347 static void	em_get_hw_control(struct adapter *);
348 static void	em_rel_hw_control(struct adapter *);
349 static void	em_enable_wol(device_t);
350 
351 static device_method_t em_methods[] = {
352 	/* Device interface */
353 	DEVMETHOD(device_probe,		em_probe),
354 	DEVMETHOD(device_attach,	em_attach),
355 	DEVMETHOD(device_detach,	em_detach),
356 	DEVMETHOD(device_shutdown,	em_shutdown),
357 	DEVMETHOD(device_suspend,	em_suspend),
358 	DEVMETHOD(device_resume,	em_resume),
359 	DEVMETHOD_END
360 };
361 
362 static driver_t em_driver = {
363 	"em",
364 	em_methods,
365 	sizeof(struct adapter),
366 };
367 
368 static devclass_t em_devclass;
369 
370 DECLARE_DUMMY_MODULE(if_em);
371 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
372 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
373 
374 /*
375  * Tunables
376  */
377 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
378 static int	em_rxd = EM_DEFAULT_RXD;
379 static int	em_txd = EM_DEFAULT_TXD;
380 static int	em_smart_pwr_down = 0;
381 
382 /* Controls whether promiscuous also shows bad packets */
383 static int	em_debug_sbp = FALSE;
384 
385 static int	em_82573_workaround = 1;
386 static int	em_msi_enable = 1;
387 
388 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
389 TUNABLE_INT("hw.em.rxd", &em_rxd);
390 TUNABLE_INT("hw.em.txd", &em_txd);
391 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
392 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
393 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
394 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
395 
396 /* Global used in WOL setup with multiport cards */
397 static int	em_global_quad_port_a = 0;
398 
399 /* Set this to one to display debug statistics */
400 static int	em_display_debug_stats = 0;
401 
402 #if !defined(KTR_IF_EM)
403 #define KTR_IF_EM	KTR_ALL
404 #endif
405 KTR_INFO_MASTER(if_em);
406 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
407 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
408 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
409 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
410 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
411 #define logif(name)	KTR_LOG(if_em_ ## name)
412 
413 static int
414 em_probe(device_t dev)
415 {
416 	const struct em_vendor_info *ent;
417 	uint16_t vid, did;
418 
419 	vid = pci_get_vendor(dev);
420 	did = pci_get_device(dev);
421 
422 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
423 		if (vid == ent->vendor_id && did == ent->device_id) {
424 			device_set_desc(dev, ent->desc);
425 			device_set_async_attach(dev, TRUE);
426 			return (ent->ret);
427 		}
428 	}
429 	return (ENXIO);
430 }
431 
432 static int
433 em_attach(device_t dev)
434 {
435 	struct adapter *adapter = device_get_softc(dev);
436 	struct ifnet *ifp = &adapter->arpcom.ac_if;
437 	int tsize, rsize;
438 	int error = 0;
439 	uint16_t eeprom_data, device_id, apme_mask;
440 	driver_intr_t *intr_func;
441 
442 	adapter->dev = adapter->osdep.dev = dev;
443 
444 	callout_init_mp(&adapter->timer);
445 	callout_init_mp(&adapter->tx_fifo_timer);
446 
447 	/* Determine hardware and mac info */
448 	error = em_get_hw_info(adapter);
449 	if (error) {
450 		device_printf(dev, "Identify hardware failed\n");
451 		goto fail;
452 	}
453 
454 	/* Setup PCI resources */
455 	error = em_alloc_pci_res(adapter);
456 	if (error) {
457 		device_printf(dev, "Allocation of PCI resources failed\n");
458 		goto fail;
459 	}
460 
461 	/*
462 	 * For ICH8 and family we need to map the flash memory,
463 	 * and this must happen after the MAC is identified.
464 	 */
465 	if (adapter->hw.mac.type == e1000_ich8lan ||
466 	    adapter->hw.mac.type == e1000_ich9lan ||
467 	    adapter->hw.mac.type == e1000_ich10lan ||
468 	    adapter->hw.mac.type == e1000_pchlan ||
469 	    adapter->hw.mac.type == e1000_pch2lan) {
470 		adapter->flash_rid = EM_BAR_FLASH;
471 
472 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
473 					&adapter->flash_rid, RF_ACTIVE);
474 		if (adapter->flash == NULL) {
475 			device_printf(dev, "Mapping of Flash failed\n");
476 			error = ENXIO;
477 			goto fail;
478 		}
479 		adapter->osdep.flash_bus_space_tag =
480 		    rman_get_bustag(adapter->flash);
481 		adapter->osdep.flash_bus_space_handle =
482 		    rman_get_bushandle(adapter->flash);
483 
484 		/*
485 		 * This is used in the shared code
486 		 * XXX this goof is actually not used.
487 		 */
488 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
489 	}
490 
491 	switch (adapter->hw.mac.type) {
492 	case e1000_82571:
493 	case e1000_82572:
494 		/*
495 		 * Pullup extra 4bytes into the first data segment, see:
496 		 * 82571/82572 specification update errata #7
497 		 *
498 		 * NOTE:
499 		 * 4bytes instead of 2bytes, which are mentioned in the
500 		 * errata, are pulled; mainly to keep rest of the data
501 		 * properly aligned.
502 		 */
503 		adapter->flags |= EM_FLAG_TSO_PULLEX;
504 		/* FALL THROUGH */
505 
506 	case e1000_82573:
507 	case e1000_82574:
508 	case e1000_80003es2lan:
509 		adapter->flags |= EM_FLAG_TSO;
510 		break;
511 
512 	default:
513 		break;
514 	}
515 
516 	/* Do Shared Code initialization */
517 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
518 		device_printf(dev, "Setup of Shared code failed\n");
519 		error = ENXIO;
520 		goto fail;
521 	}
522 
523 	e1000_get_bus_info(&adapter->hw);
524 
525 	/*
526 	 * Validate number of transmit and receive descriptors.  It
527 	 * must not exceed hardware maximum, and must be multiple
528 	 * of E1000_DBA_ALIGN.
529 	 */
530 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
531 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
532 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
533 	    em_txd < EM_MIN_TXD) {
534 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
535 		    EM_DEFAULT_TXD, em_txd);
536 		adapter->num_tx_desc = EM_DEFAULT_TXD;
537 	} else {
538 		adapter->num_tx_desc = em_txd;
539 	}
540 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
541 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
542 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
543 	    em_rxd < EM_MIN_RXD) {
544 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
545 		    EM_DEFAULT_RXD, em_rxd);
546 		adapter->num_rx_desc = EM_DEFAULT_RXD;
547 	} else {
548 		adapter->num_rx_desc = em_rxd;
549 	}
550 
551 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
552 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
553 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
554 	adapter->rx_buffer_len = MCLBYTES;
555 
556 	/*
557 	 * Interrupt throttle rate
558 	 */
559 	if (em_int_throttle_ceil == 0) {
560 		adapter->int_throttle_ceil = 0;
561 	} else {
562 		int throttle = em_int_throttle_ceil;
563 
564 		if (throttle < 0)
565 			throttle = EM_DEFAULT_ITR;
566 
567 		/* Recalculate the tunable value to get the exact frequency. */
568 		throttle = 1000000000 / 256 / throttle;
569 
570 		/* Upper 16bits of ITR is reserved and should be zero */
571 		if (throttle & 0xffff0000)
572 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
573 
574 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
575 	}
576 
577 	e1000_init_script_state_82541(&adapter->hw, TRUE);
578 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
579 
580 	/* Copper options */
581 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
582 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
583 		adapter->hw.phy.disable_polarity_correction = FALSE;
584 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
585 	}
586 
587 	/* Set the frame limits assuming standard ethernet sized frames. */
588 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
589 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
590 
591 	/* This controls when hardware reports transmit completion status. */
592 	adapter->hw.mac.report_tx_early = 1;
593 
594 	/*
595 	 * Create top level busdma tag
596 	 */
597 	error = bus_dma_tag_create(NULL, 1, 0,
598 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
599 			NULL, NULL,
600 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
601 			0, &adapter->parent_dtag);
602 	if (error) {
603 		device_printf(dev, "could not create top level DMA tag\n");
604 		goto fail;
605 	}
606 
607 	/*
608 	 * Allocate Transmit Descriptor ring
609 	 */
610 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
611 			 EM_DBA_ALIGN);
612 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
613 	if (error) {
614 		device_printf(dev, "Unable to allocate tx_desc memory\n");
615 		goto fail;
616 	}
617 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
618 
619 	/*
620 	 * Allocate Receive Descriptor ring
621 	 */
622 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
623 			 EM_DBA_ALIGN);
624 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
625 	if (error) {
626 		device_printf(dev, "Unable to allocate rx_desc memory\n");
627 		goto fail;
628 	}
629 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
630 
631 	/* Allocate multicast array memory. */
632 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
633 	    M_DEVBUF, M_WAITOK);
634 
635 	/* Indicate SOL/IDER usage */
636 	if (e1000_check_reset_block(&adapter->hw)) {
637 		device_printf(dev,
638 		    "PHY reset is blocked due to SOL/IDER session.\n");
639 	}
640 
641 	/*
642 	 * Start from a known state, this is important in reading the
643 	 * nvm and mac from that.
644 	 */
645 	e1000_reset_hw(&adapter->hw);
646 
647 	/* Make sure we have a good EEPROM before we read from it */
648 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
649 		/*
650 		 * Some PCI-E parts fail the first check due to
651 		 * the link being in sleep state, call it again,
652 		 * if it fails a second time its a real issue.
653 		 */
654 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
655 			device_printf(dev,
656 			    "The EEPROM Checksum Is Not Valid\n");
657 			error = EIO;
658 			goto fail;
659 		}
660 	}
661 
662 	/* Copy the permanent MAC address out of the EEPROM */
663 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
664 		device_printf(dev, "EEPROM read error while reading MAC"
665 		    " address\n");
666 		error = EIO;
667 		goto fail;
668 	}
669 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
670 		device_printf(dev, "Invalid MAC address\n");
671 		error = EIO;
672 		goto fail;
673 	}
674 
675 	/* Allocate transmit descriptors and buffers */
676 	error = em_create_tx_ring(adapter);
677 	if (error) {
678 		device_printf(dev, "Could not setup transmit structures\n");
679 		goto fail;
680 	}
681 
682 	/* Allocate receive descriptors and buffers */
683 	error = em_create_rx_ring(adapter);
684 	if (error) {
685 		device_printf(dev, "Could not setup receive structures\n");
686 		goto fail;
687 	}
688 
689 	/* Manually turn off all interrupts */
690 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
691 
692 	/* Determine if we have to control management hardware */
693 	if (e1000_enable_mng_pass_thru(&adapter->hw))
694 		adapter->flags |= EM_FLAG_HAS_MGMT;
695 
696 	/*
697 	 * Setup Wake-on-Lan
698 	 */
699 	apme_mask = EM_EEPROM_APME;
700 	eeprom_data = 0;
701 	switch (adapter->hw.mac.type) {
702 	case e1000_82542:
703 	case e1000_82543:
704 		break;
705 
706 	case e1000_82573:
707 	case e1000_82583:
708 		adapter->flags |= EM_FLAG_HAS_AMT;
709 		/* FALL THROUGH */
710 
711 	case e1000_82546:
712 	case e1000_82546_rev_3:
713 	case e1000_82571:
714 	case e1000_82572:
715 	case e1000_80003es2lan:
716 		if (adapter->hw.bus.func == 1) {
717 			e1000_read_nvm(&adapter->hw,
718 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
719 		} else {
720 			e1000_read_nvm(&adapter->hw,
721 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
722 		}
723 		break;
724 
725 	case e1000_ich8lan:
726 	case e1000_ich9lan:
727 	case e1000_ich10lan:
728 	case e1000_pchlan:
729 	case e1000_pch2lan:
730 		apme_mask = E1000_WUC_APME;
731 		adapter->flags |= EM_FLAG_HAS_AMT;
732 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
733 		break;
734 
735 	default:
736 		e1000_read_nvm(&adapter->hw,
737 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
738 		break;
739 	}
740 	if (eeprom_data & apme_mask)
741 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
742 
743 	/*
744          * We have the eeprom settings, now apply the special cases
745          * where the eeprom may be wrong or the board won't support
746          * wake on lan on a particular port
747 	 */
748 	device_id = pci_get_device(dev);
749         switch (device_id) {
750 	case E1000_DEV_ID_82546GB_PCIE:
751 		adapter->wol = 0;
752 		break;
753 
754 	case E1000_DEV_ID_82546EB_FIBER:
755 	case E1000_DEV_ID_82546GB_FIBER:
756 	case E1000_DEV_ID_82571EB_FIBER:
757 		/*
758 		 * Wake events only supported on port A for dual fiber
759 		 * regardless of eeprom setting
760 		 */
761 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
762 		    E1000_STATUS_FUNC_1)
763 			adapter->wol = 0;
764 		break;
765 
766 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
767 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
768 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
769 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
770                 /* if quad port adapter, disable WoL on all but port A */
771 		if (em_global_quad_port_a != 0)
772 			adapter->wol = 0;
773 		/* Reset for multiple quad port adapters */
774 		if (++em_global_quad_port_a == 4)
775 			em_global_quad_port_a = 0;
776                 break;
777 	}
778 
779 	/* XXX disable wol */
780 	adapter->wol = 0;
781 
782 	/* Setup OS specific network interface */
783 	em_setup_ifp(adapter);
784 
785 	/* Add sysctl tree, must after em_setup_ifp() */
786 	em_add_sysctl(adapter);
787 
788 #ifdef IFPOLL_ENABLE
789 	/* Polling setup */
790 	ifpoll_compat_setup(&adapter->npoll,
791 	    &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
792 	    ifp->if_serializer);
793 #endif
794 
795 	/* Reset the hardware */
796 	error = em_reset(adapter);
797 	if (error) {
798 		device_printf(dev, "Unable to reset the hardware\n");
799 		goto fail;
800 	}
801 
802 	/* Initialize statistics */
803 	em_update_stats(adapter);
804 
805 	adapter->hw.mac.get_link_status = 1;
806 	em_update_link_status(adapter);
807 
808 	/* Do we need workaround for 82544 PCI-X adapter? */
809 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
810 	    adapter->hw.mac.type == e1000_82544)
811 		adapter->pcix_82544 = TRUE;
812 	else
813 		adapter->pcix_82544 = FALSE;
814 
815 	if (adapter->pcix_82544) {
816 		/*
817 		 * 82544 on PCI-X may split one TX segment
818 		 * into two TX descs, so we double its number
819 		 * of spare TX desc here.
820 		 */
821 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
822 	} else {
823 		adapter->spare_tx_desc = EM_TX_SPARE;
824 	}
825 	if (adapter->flags & EM_FLAG_TSO)
826 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
827 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
828 
829 	/*
830 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
831 	 * and tx_int_nsegs:
832 	 * (spare_tx_desc + EM_TX_RESERVED) <=
833 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
834 	 */
835 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
836 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
837 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
838 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
839 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
840 
841 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
842 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
843 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
844 
845 	/* Non-AMT based hardware can now take control from firmware */
846 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
847 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
848 		em_get_hw_control(adapter);
849 
850 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
851 
852 	/*
853 	 * Missing Interrupt Following ICR read:
854 	 *
855 	 * 82571/82572 specification update errata #76
856 	 * 82573 specification update errata #31
857 	 * 82574 specification update errata #12
858 	 * 82583 specification update errata #4
859 	 */
860 	intr_func = em_intr;
861 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
862 	    (adapter->hw.mac.type == e1000_82571 ||
863 	     adapter->hw.mac.type == e1000_82572 ||
864 	     adapter->hw.mac.type == e1000_82573 ||
865 	     adapter->hw.mac.type == e1000_82574 ||
866 	     adapter->hw.mac.type == e1000_82583))
867 		intr_func = em_intr_mask;
868 
869 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
870 			       intr_func, adapter, &adapter->intr_tag,
871 			       ifp->if_serializer);
872 	if (error) {
873 		device_printf(dev, "Failed to register interrupt handler");
874 		ether_ifdetach(&adapter->arpcom.ac_if);
875 		goto fail;
876 	}
877 	return (0);
878 fail:
879 	em_detach(dev);
880 	return (error);
881 }
882 
883 static int
884 em_detach(device_t dev)
885 {
886 	struct adapter *adapter = device_get_softc(dev);
887 
888 	if (device_is_attached(dev)) {
889 		struct ifnet *ifp = &adapter->arpcom.ac_if;
890 
891 		lwkt_serialize_enter(ifp->if_serializer);
892 
893 		em_stop(adapter);
894 
895 		e1000_phy_hw_reset(&adapter->hw);
896 
897 		em_rel_mgmt(adapter);
898 		em_rel_hw_control(adapter);
899 
900 		if (adapter->wol) {
901 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
902 					E1000_WUC_PME_EN);
903 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
904 			em_enable_wol(dev);
905 		}
906 
907 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
908 
909 		lwkt_serialize_exit(ifp->if_serializer);
910 
911 		ether_ifdetach(ifp);
912 	} else if (adapter->memory != NULL) {
913 		em_rel_hw_control(adapter);
914 	}
915 	bus_generic_detach(dev);
916 
917 	em_free_pci_res(adapter);
918 
919 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
920 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
921 
922 	/* Free Transmit Descriptor ring */
923 	if (adapter->tx_desc_base)
924 		em_dma_free(adapter, &adapter->txdma);
925 
926 	/* Free Receive Descriptor ring */
927 	if (adapter->rx_desc_base)
928 		em_dma_free(adapter, &adapter->rxdma);
929 
930 	/* Free top level busdma tag */
931 	if (adapter->parent_dtag != NULL)
932 		bus_dma_tag_destroy(adapter->parent_dtag);
933 
934 	/* Free sysctl tree */
935 	if (adapter->sysctl_tree != NULL)
936 		sysctl_ctx_free(&adapter->sysctl_ctx);
937 
938 	if (adapter->mta != NULL)
939 		kfree(adapter->mta, M_DEVBUF);
940 
941 	return (0);
942 }
943 
944 static int
945 em_shutdown(device_t dev)
946 {
947 	return em_suspend(dev);
948 }
949 
950 static int
951 em_suspend(device_t dev)
952 {
953 	struct adapter *adapter = device_get_softc(dev);
954 	struct ifnet *ifp = &adapter->arpcom.ac_if;
955 
956 	lwkt_serialize_enter(ifp->if_serializer);
957 
958 	em_stop(adapter);
959 
960 	em_rel_mgmt(adapter);
961 	em_rel_hw_control(adapter);
962 
963 	if (adapter->wol) {
964 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
965 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
966 		em_enable_wol(dev);
967 	}
968 
969 	lwkt_serialize_exit(ifp->if_serializer);
970 
971 	return bus_generic_suspend(dev);
972 }
973 
974 static int
975 em_resume(device_t dev)
976 {
977 	struct adapter *adapter = device_get_softc(dev);
978 	struct ifnet *ifp = &adapter->arpcom.ac_if;
979 
980 	lwkt_serialize_enter(ifp->if_serializer);
981 
982 	if (adapter->hw.mac.type == e1000_pch2lan)
983 		e1000_resume_workarounds_pchlan(&adapter->hw);
984 
985 	em_init(adapter);
986 	em_get_mgmt(adapter);
987 	if_devstart(ifp);
988 
989 	lwkt_serialize_exit(ifp->if_serializer);
990 
991 	return bus_generic_resume(dev);
992 }
993 
994 static void
995 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
996 {
997 	struct adapter *adapter = ifp->if_softc;
998 	struct mbuf *m_head;
999 	int idx = -1, nsegs = 0;
1000 
1001 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1002 	ASSERT_SERIALIZED(ifp->if_serializer);
1003 
1004 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1005 		return;
1006 
1007 	if (!adapter->link_active) {
1008 		ifq_purge(&ifp->if_snd);
1009 		return;
1010 	}
1011 
1012 	while (!ifq_is_empty(&ifp->if_snd)) {
1013 		/* Now do we at least have a minimal? */
1014 		if (EM_IS_OACTIVE(adapter)) {
1015 			em_tx_collect(adapter);
1016 			if (EM_IS_OACTIVE(adapter)) {
1017 				ifq_set_oactive(&ifp->if_snd);
1018 				adapter->no_tx_desc_avail1++;
1019 				break;
1020 			}
1021 		}
1022 
1023 		logif(pkt_txqueue);
1024 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1025 		if (m_head == NULL)
1026 			break;
1027 
1028 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1029 			IFNET_STAT_INC(ifp, oerrors, 1);
1030 			em_tx_collect(adapter);
1031 			continue;
1032 		}
1033 
1034 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1035 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1036 			nsegs = 0;
1037 			idx = -1;
1038 		}
1039 
1040 		/* Send a copy of the frame to the BPF listener */
1041 		ETHER_BPF_MTAP(ifp, m_head);
1042 
1043 		/* Set timeout in case hardware has problems transmitting. */
1044 		ifp->if_timer = EM_TX_TIMEOUT;
1045 	}
1046 	if (idx >= 0)
1047 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1048 }
1049 
1050 static int
1051 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1052 {
1053 	struct adapter *adapter = ifp->if_softc;
1054 	struct ifreq *ifr = (struct ifreq *)data;
1055 	uint16_t eeprom_data = 0;
1056 	int max_frame_size, mask, reinit;
1057 	int error = 0;
1058 
1059 	ASSERT_SERIALIZED(ifp->if_serializer);
1060 
1061 	switch (command) {
1062 	case SIOCSIFMTU:
1063 		switch (adapter->hw.mac.type) {
1064 		case e1000_82573:
1065 			/*
1066 			 * 82573 only supports jumbo frames
1067 			 * if ASPM is disabled.
1068 			 */
1069 			e1000_read_nvm(&adapter->hw,
1070 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1071 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1072 				max_frame_size = ETHER_MAX_LEN;
1073 				break;
1074 			}
1075 			/* FALL THROUGH */
1076 
1077 		/* Limit Jumbo Frame size */
1078 		case e1000_82571:
1079 		case e1000_82572:
1080 		case e1000_ich9lan:
1081 		case e1000_ich10lan:
1082 		case e1000_pch2lan:
1083 		case e1000_82574:
1084 		case e1000_82583:
1085 		case e1000_80003es2lan:
1086 			max_frame_size = 9234;
1087 			break;
1088 
1089 		case e1000_pchlan:
1090 			max_frame_size = 4096;
1091 			break;
1092 
1093 		/* Adapters that do not support jumbo frames */
1094 		case e1000_82542:
1095 		case e1000_ich8lan:
1096 			max_frame_size = ETHER_MAX_LEN;
1097 			break;
1098 
1099 		default:
1100 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1101 			break;
1102 		}
1103 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1104 		    ETHER_CRC_LEN) {
1105 			error = EINVAL;
1106 			break;
1107 		}
1108 
1109 		ifp->if_mtu = ifr->ifr_mtu;
1110 		adapter->max_frame_size =
1111 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1112 
1113 		if (ifp->if_flags & IFF_RUNNING)
1114 			em_init(adapter);
1115 		break;
1116 
1117 	case SIOCSIFFLAGS:
1118 		if (ifp->if_flags & IFF_UP) {
1119 			if ((ifp->if_flags & IFF_RUNNING)) {
1120 				if ((ifp->if_flags ^ adapter->if_flags) &
1121 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1122 					em_disable_promisc(adapter);
1123 					em_set_promisc(adapter);
1124 				}
1125 			} else {
1126 				em_init(adapter);
1127 			}
1128 		} else if (ifp->if_flags & IFF_RUNNING) {
1129 			em_stop(adapter);
1130 		}
1131 		adapter->if_flags = ifp->if_flags;
1132 		break;
1133 
1134 	case SIOCADDMULTI:
1135 	case SIOCDELMULTI:
1136 		if (ifp->if_flags & IFF_RUNNING) {
1137 			em_disable_intr(adapter);
1138 			em_set_multi(adapter);
1139 			if (adapter->hw.mac.type == e1000_82542 &&
1140 			    adapter->hw.revision_id == E1000_REVISION_2)
1141 				em_init_rx_unit(adapter);
1142 #ifdef IFPOLL_ENABLE
1143 			if (!(ifp->if_flags & IFF_NPOLLING))
1144 #endif
1145 				em_enable_intr(adapter);
1146 		}
1147 		break;
1148 
1149 	case SIOCSIFMEDIA:
1150 		/* Check SOL/IDER usage */
1151 		if (e1000_check_reset_block(&adapter->hw)) {
1152 			device_printf(adapter->dev, "Media change is"
1153 			    " blocked due to SOL/IDER session.\n");
1154 			break;
1155 		}
1156 		/* FALL THROUGH */
1157 
1158 	case SIOCGIFMEDIA:
1159 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1160 		break;
1161 
1162 	case SIOCSIFCAP:
1163 		reinit = 0;
1164 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1165 		if (mask & IFCAP_RXCSUM) {
1166 			ifp->if_capenable ^= IFCAP_RXCSUM;
1167 			reinit = 1;
1168 		}
1169 		if (mask & IFCAP_TXCSUM) {
1170 			ifp->if_capenable ^= IFCAP_TXCSUM;
1171 			if (ifp->if_capenable & IFCAP_TXCSUM)
1172 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1173 			else
1174 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1175 		}
1176 		if (mask & IFCAP_TSO) {
1177 			ifp->if_capenable ^= IFCAP_TSO;
1178 			if (ifp->if_capenable & IFCAP_TSO)
1179 				ifp->if_hwassist |= CSUM_TSO;
1180 			else
1181 				ifp->if_hwassist &= ~CSUM_TSO;
1182 		}
1183 		if (mask & IFCAP_VLAN_HWTAGGING) {
1184 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1185 			reinit = 1;
1186 		}
1187 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1188 			em_init(adapter);
1189 		break;
1190 
1191 	default:
1192 		error = ether_ioctl(ifp, command, data);
1193 		break;
1194 	}
1195 	return (error);
1196 }
1197 
1198 static void
1199 em_watchdog(struct ifnet *ifp)
1200 {
1201 	struct adapter *adapter = ifp->if_softc;
1202 
1203 	ASSERT_SERIALIZED(ifp->if_serializer);
1204 
1205 	/*
1206 	 * The timer is set to 5 every time start queues a packet.
1207 	 * Then txeof keeps resetting it as long as it cleans at
1208 	 * least one descriptor.
1209 	 * Finally, anytime all descriptors are clean the timer is
1210 	 * set to 0.
1211 	 */
1212 
1213 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1214 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1215 		/*
1216 		 * If we reach here, all TX jobs are completed and
1217 		 * the TX engine should have been idled for some time.
1218 		 * We don't need to call if_devstart() here.
1219 		 */
1220 		ifq_clr_oactive(&ifp->if_snd);
1221 		ifp->if_timer = 0;
1222 		return;
1223 	}
1224 
1225 	/*
1226 	 * If we are in this routine because of pause frames, then
1227 	 * don't reset the hardware.
1228 	 */
1229 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1230 	    E1000_STATUS_TXOFF) {
1231 		ifp->if_timer = EM_TX_TIMEOUT;
1232 		return;
1233 	}
1234 
1235 	if (e1000_check_for_link(&adapter->hw) == 0)
1236 		if_printf(ifp, "watchdog timeout -- resetting\n");
1237 
1238 	IFNET_STAT_INC(ifp, oerrors, 1);
1239 	adapter->watchdog_events++;
1240 
1241 	em_init(adapter);
1242 
1243 	if (!ifq_is_empty(&ifp->if_snd))
1244 		if_devstart(ifp);
1245 }
1246 
1247 static void
1248 em_init(void *xsc)
1249 {
1250 	struct adapter *adapter = xsc;
1251 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1252 	device_t dev = adapter->dev;
1253 
1254 	ASSERT_SERIALIZED(ifp->if_serializer);
1255 
1256 	em_stop(adapter);
1257 
1258 	/* Get the latest mac address, User can use a LAA */
1259         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1260 
1261 	/* Put the address into the Receive Address Array */
1262 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1263 
1264 	/*
1265 	 * With the 82571 adapter, RAR[0] may be overwritten
1266 	 * when the other port is reset, we make a duplicate
1267 	 * in RAR[14] for that eventuality, this assures
1268 	 * the interface continues to function.
1269 	 */
1270 	if (adapter->hw.mac.type == e1000_82571) {
1271 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1272 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1273 		    E1000_RAR_ENTRIES - 1);
1274 	}
1275 
1276 	/* Reset the hardware */
1277 	if (em_reset(adapter)) {
1278 		device_printf(dev, "Unable to reset the hardware\n");
1279 		/* XXX em_stop()? */
1280 		return;
1281 	}
1282 	em_update_link_status(adapter);
1283 
1284 	/* Setup VLAN support, basic and offload if available */
1285 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1286 
1287 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1288 		uint32_t ctrl;
1289 
1290 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1291 		ctrl |= E1000_CTRL_VME;
1292 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1293 	}
1294 
1295 	/* Configure for OS presence */
1296 	em_get_mgmt(adapter);
1297 
1298 	/* Prepare transmit descriptors and buffers */
1299 	em_init_tx_ring(adapter);
1300 	em_init_tx_unit(adapter);
1301 
1302 	/* Setup Multicast table */
1303 	em_set_multi(adapter);
1304 
1305 	/* Prepare receive descriptors and buffers */
1306 	if (em_init_rx_ring(adapter)) {
1307 		device_printf(dev, "Could not setup receive structures\n");
1308 		em_stop(adapter);
1309 		return;
1310 	}
1311 	em_init_rx_unit(adapter);
1312 
1313 	/* Don't lose promiscuous settings */
1314 	em_set_promisc(adapter);
1315 
1316 	ifp->if_flags |= IFF_RUNNING;
1317 	ifq_clr_oactive(&ifp->if_snd);
1318 
1319 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1320 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1321 
1322 	/* MSI/X configuration for 82574 */
1323 	if (adapter->hw.mac.type == e1000_82574) {
1324 		int tmp;
1325 
1326 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1327 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1328 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1329 		/*
1330 		 * XXX MSIX
1331 		 * Set the IVAR - interrupt vector routing.
1332 		 * Each nibble represents a vector, high bit
1333 		 * is enable, other 3 bits are the MSIX table
1334 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1335 		 * Link (other) to 2, hence the magic number.
1336 		 */
1337 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1338 	}
1339 
1340 #ifdef IFPOLL_ENABLE
1341 	/*
1342 	 * Only enable interrupts if we are not polling, make sure
1343 	 * they are off otherwise.
1344 	 */
1345 	if (ifp->if_flags & IFF_NPOLLING)
1346 		em_disable_intr(adapter);
1347 	else
1348 #endif /* IFPOLL_ENABLE */
1349 		em_enable_intr(adapter);
1350 
1351 	/* AMT based hardware can now take control from firmware */
1352 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1353 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1354 	    adapter->hw.mac.type >= e1000_82571)
1355 		em_get_hw_control(adapter);
1356 }
1357 
1358 #ifdef IFPOLL_ENABLE
1359 
1360 static void
1361 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1362 {
1363 	struct adapter *adapter = ifp->if_softc;
1364 
1365 	ASSERT_SERIALIZED(ifp->if_serializer);
1366 
1367 	if (adapter->npoll.ifpc_stcount-- == 0) {
1368 		uint32_t reg_icr;
1369 
1370 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1371 
1372 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1373 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1374 			callout_stop(&adapter->timer);
1375 			adapter->hw.mac.get_link_status = 1;
1376 			em_update_link_status(adapter);
1377 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1378 		}
1379 	}
1380 
1381 	em_rxeof(adapter, count);
1382 	em_txeof(adapter);
1383 
1384 	if (!ifq_is_empty(&ifp->if_snd))
1385 		if_devstart(ifp);
1386 }
1387 
1388 static void
1389 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1390 {
1391 	struct adapter *adapter = ifp->if_softc;
1392 
1393 	ASSERT_SERIALIZED(ifp->if_serializer);
1394 
1395 	if (info != NULL) {
1396 		int cpuid = adapter->npoll.ifpc_cpuid;
1397 
1398                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1399 		info->ifpi_rx[cpuid].arg = NULL;
1400 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1401 
1402 		if (ifp->if_flags & IFF_RUNNING)
1403 			em_disable_intr(adapter);
1404 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1405 	} else {
1406 		if (ifp->if_flags & IFF_RUNNING)
1407 			em_enable_intr(adapter);
1408 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1409 	}
1410 }
1411 
1412 #endif /* IFPOLL_ENABLE */
1413 
1414 static void
1415 em_intr(void *xsc)
1416 {
1417 	em_intr_body(xsc, TRUE);
1418 }
1419 
1420 static void
1421 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1422 {
1423 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1424 	uint32_t reg_icr;
1425 
1426 	logif(intr_beg);
1427 	ASSERT_SERIALIZED(ifp->if_serializer);
1428 
1429 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1430 
1431 	if (chk_asserted &&
1432 	    ((adapter->hw.mac.type >= e1000_82571 &&
1433 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1434 	     reg_icr == 0)) {
1435 		logif(intr_end);
1436 		return;
1437 	}
1438 
1439 	/*
1440 	 * XXX: some laptops trigger several spurious interrupts
1441 	 * on em(4) when in the resume cycle. The ICR register
1442 	 * reports all-ones value in this case. Processing such
1443 	 * interrupts would lead to a freeze. I don't know why.
1444 	 */
1445 	if (reg_icr == 0xffffffff) {
1446 		logif(intr_end);
1447 		return;
1448 	}
1449 
1450 	if (ifp->if_flags & IFF_RUNNING) {
1451 		if (reg_icr &
1452 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1453 			em_rxeof(adapter, -1);
1454 		if (reg_icr & E1000_ICR_TXDW) {
1455 			em_txeof(adapter);
1456 			if (!ifq_is_empty(&ifp->if_snd))
1457 				if_devstart(ifp);
1458 		}
1459 	}
1460 
1461 	/* Link status change */
1462 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1463 		callout_stop(&adapter->timer);
1464 		adapter->hw.mac.get_link_status = 1;
1465 		em_update_link_status(adapter);
1466 
1467 		/* Deal with TX cruft when link lost */
1468 		em_tx_purge(adapter);
1469 
1470 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1471 	}
1472 
1473 	if (reg_icr & E1000_ICR_RXO)
1474 		adapter->rx_overruns++;
1475 
1476 	logif(intr_end);
1477 }
1478 
1479 static void
1480 em_intr_mask(void *xsc)
1481 {
1482 	struct adapter *adapter = xsc;
1483 
1484 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1485 	/*
1486 	 * NOTE:
1487 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1488 	 * so don't check it.
1489 	 */
1490 	em_intr_body(adapter, FALSE);
1491 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1492 }
1493 
1494 static void
1495 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1496 {
1497 	struct adapter *adapter = ifp->if_softc;
1498 	u_char fiber_type = IFM_1000_SX;
1499 
1500 	ASSERT_SERIALIZED(ifp->if_serializer);
1501 
1502 	em_update_link_status(adapter);
1503 
1504 	ifmr->ifm_status = IFM_AVALID;
1505 	ifmr->ifm_active = IFM_ETHER;
1506 
1507 	if (!adapter->link_active)
1508 		return;
1509 
1510 	ifmr->ifm_status |= IFM_ACTIVE;
1511 
1512 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1513 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1514 		if (adapter->hw.mac.type == e1000_82545)
1515 			fiber_type = IFM_1000_LX;
1516 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1517 	} else {
1518 		switch (adapter->link_speed) {
1519 		case 10:
1520 			ifmr->ifm_active |= IFM_10_T;
1521 			break;
1522 		case 100:
1523 			ifmr->ifm_active |= IFM_100_TX;
1524 			break;
1525 
1526 		case 1000:
1527 			ifmr->ifm_active |= IFM_1000_T;
1528 			break;
1529 		}
1530 		if (adapter->link_duplex == FULL_DUPLEX)
1531 			ifmr->ifm_active |= IFM_FDX;
1532 		else
1533 			ifmr->ifm_active |= IFM_HDX;
1534 	}
1535 }
1536 
1537 static int
1538 em_media_change(struct ifnet *ifp)
1539 {
1540 	struct adapter *adapter = ifp->if_softc;
1541 	struct ifmedia *ifm = &adapter->media;
1542 
1543 	ASSERT_SERIALIZED(ifp->if_serializer);
1544 
1545 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1546 		return (EINVAL);
1547 
1548 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1549 	case IFM_AUTO:
1550 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1551 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1552 		break;
1553 
1554 	case IFM_1000_LX:
1555 	case IFM_1000_SX:
1556 	case IFM_1000_T:
1557 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1558 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1559 		break;
1560 
1561 	case IFM_100_TX:
1562 		adapter->hw.mac.autoneg = FALSE;
1563 		adapter->hw.phy.autoneg_advertised = 0;
1564 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1565 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1566 		else
1567 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1568 		break;
1569 
1570 	case IFM_10_T:
1571 		adapter->hw.mac.autoneg = FALSE;
1572 		adapter->hw.phy.autoneg_advertised = 0;
1573 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1574 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1575 		else
1576 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1577 		break;
1578 
1579 	default:
1580 		if_printf(ifp, "Unsupported media type\n");
1581 		break;
1582 	}
1583 
1584 	em_init(adapter);
1585 
1586 	return (0);
1587 }
1588 
1589 static int
1590 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1591     int *segs_used, int *idx)
1592 {
1593 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1594 	bus_dmamap_t map;
1595 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1596 	struct e1000_tx_desc *ctxd = NULL;
1597 	struct mbuf *m_head = *m_headp;
1598 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1599 	int maxsegs, nsegs, i, j, first, last = 0, error;
1600 
1601 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1602 		error = em_tso_pullup(adapter, m_headp);
1603 		if (error)
1604 			return error;
1605 		m_head = *m_headp;
1606 	}
1607 
1608 	txd_upper = txd_lower = 0;
1609 	txd_used = 0;
1610 
1611 	/*
1612 	 * Capture the first descriptor index, this descriptor
1613 	 * will have the index of the EOP which is the only one
1614 	 * that now gets a DONE bit writeback.
1615 	 */
1616 	first = adapter->next_avail_tx_desc;
1617 	tx_buffer = &adapter->tx_buffer_area[first];
1618 	tx_buffer_mapped = tx_buffer;
1619 	map = tx_buffer->map;
1620 
1621 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1622 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1623 		("not enough spare TX desc"));
1624 	if (adapter->pcix_82544) {
1625 		/* Half it; see the comment in em_attach() */
1626 		maxsegs >>= 1;
1627 	}
1628 	if (maxsegs > EM_MAX_SCATTER)
1629 		maxsegs = EM_MAX_SCATTER;
1630 
1631 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1632 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1633 	if (error) {
1634 		if (error == ENOBUFS)
1635 			adapter->mbuf_alloc_failed++;
1636 		else
1637 			adapter->no_tx_dma_setup++;
1638 
1639 		m_freem(*m_headp);
1640 		*m_headp = NULL;
1641 		return error;
1642 	}
1643         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1644 
1645 	m_head = *m_headp;
1646 	adapter->tx_nsegs += nsegs;
1647 	*segs_used += nsegs;
1648 
1649 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1650 		/* TSO will consume one TX desc */
1651 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1652 		adapter->tx_nsegs += i;
1653 		*segs_used += i;
1654 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1655 		/* TX csum offloading will consume one TX desc */
1656 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1657 		adapter->tx_nsegs += i;
1658 		*segs_used += i;
1659 	}
1660 	i = adapter->next_avail_tx_desc;
1661 
1662 	/* Set up our transmit descriptors */
1663 	for (j = 0; j < nsegs; j++) {
1664 		/* If adapter is 82544 and on PCIX bus */
1665 		if(adapter->pcix_82544) {
1666 			DESC_ARRAY desc_array;
1667 			uint32_t array_elements, counter;
1668 
1669 			/*
1670 			 * Check the Address and Length combination and
1671 			 * split the data accordingly
1672 			 */
1673 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1674 						segs[j].ds_len, &desc_array);
1675 			for (counter = 0; counter < array_elements; counter++) {
1676 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1677 
1678 				tx_buffer = &adapter->tx_buffer_area[i];
1679 				ctxd = &adapter->tx_desc_base[i];
1680 
1681 				ctxd->buffer_addr = htole64(
1682 				    desc_array.descriptor[counter].address);
1683 				ctxd->lower.data = htole32(
1684 				    E1000_TXD_CMD_IFCS | txd_lower |
1685 				    desc_array.descriptor[counter].length);
1686 				ctxd->upper.data = htole32(txd_upper);
1687 
1688 				last = i;
1689 				if (++i == adapter->num_tx_desc)
1690 					i = 0;
1691 
1692 				txd_used++;
1693                         }
1694 		} else {
1695 			tx_buffer = &adapter->tx_buffer_area[i];
1696 			ctxd = &adapter->tx_desc_base[i];
1697 
1698 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1699 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1700 						   txd_lower | segs[j].ds_len);
1701 			ctxd->upper.data = htole32(txd_upper);
1702 
1703 			last = i;
1704 			if (++i == adapter->num_tx_desc)
1705 				i = 0;
1706 		}
1707 	}
1708 
1709 	adapter->next_avail_tx_desc = i;
1710 	if (adapter->pcix_82544) {
1711 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1712 		adapter->num_tx_desc_avail -= txd_used;
1713 	} else {
1714 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1715 		adapter->num_tx_desc_avail -= nsegs;
1716 	}
1717 
1718         /* Handle VLAN tag */
1719 	if (m_head->m_flags & M_VLANTAG) {
1720 		/* Set the vlan id. */
1721 		ctxd->upper.fields.special =
1722 		    htole16(m_head->m_pkthdr.ether_vlantag);
1723 
1724 		/* Tell hardware to add tag */
1725 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1726 	}
1727 
1728 	tx_buffer->m_head = m_head;
1729 	tx_buffer_mapped->map = tx_buffer->map;
1730 	tx_buffer->map = map;
1731 
1732 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1733 		adapter->tx_nsegs = 0;
1734 
1735 		/*
1736 		 * Report Status (RS) is turned on
1737 		 * every tx_int_nsegs descriptors.
1738 		 */
1739 		cmd = E1000_TXD_CMD_RS;
1740 
1741 		/*
1742 		 * Keep track of the descriptor, which will
1743 		 * be written back by hardware.
1744 		 */
1745 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1746 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1747 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1748 	}
1749 
1750 	/*
1751 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1752 	 */
1753 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1754 
1755 	if (adapter->hw.mac.type == e1000_82547) {
1756 		/*
1757 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1758 		 * E1000 that this frame is available to transmit.
1759 		 */
1760 		if (adapter->link_duplex == HALF_DUPLEX) {
1761 			em_82547_move_tail_serialized(adapter);
1762 		} else {
1763 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1764 			em_82547_update_fifo_head(adapter,
1765 			    m_head->m_pkthdr.len);
1766 		}
1767 	} else {
1768 		/*
1769 		 * Defer TDT updating, until enough descriptors are setup
1770 		 */
1771 		*idx = i;
1772 	}
1773 	return (0);
1774 }
1775 
1776 /*
1777  * 82547 workaround to avoid controller hang in half-duplex environment.
1778  * The workaround is to avoid queuing a large packet that would span
1779  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1780  * in this case.  We do that only when FIFO is quiescent.
1781  */
1782 static void
1783 em_82547_move_tail_serialized(struct adapter *adapter)
1784 {
1785 	struct e1000_tx_desc *tx_desc;
1786 	uint16_t hw_tdt, sw_tdt, length = 0;
1787 	bool eop = 0;
1788 
1789 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1790 
1791 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1792 	sw_tdt = adapter->next_avail_tx_desc;
1793 
1794 	while (hw_tdt != sw_tdt) {
1795 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1796 		length += tx_desc->lower.flags.length;
1797 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1798 		if (++hw_tdt == adapter->num_tx_desc)
1799 			hw_tdt = 0;
1800 
1801 		if (eop) {
1802 			if (em_82547_fifo_workaround(adapter, length)) {
1803 				adapter->tx_fifo_wrk_cnt++;
1804 				callout_reset(&adapter->tx_fifo_timer, 1,
1805 					em_82547_move_tail, adapter);
1806 				break;
1807 			}
1808 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1809 			em_82547_update_fifo_head(adapter, length);
1810 			length = 0;
1811 		}
1812 	}
1813 }
1814 
1815 static void
1816 em_82547_move_tail(void *xsc)
1817 {
1818 	struct adapter *adapter = xsc;
1819 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1820 
1821 	lwkt_serialize_enter(ifp->if_serializer);
1822 	em_82547_move_tail_serialized(adapter);
1823 	lwkt_serialize_exit(ifp->if_serializer);
1824 }
1825 
1826 static int
1827 em_82547_fifo_workaround(struct adapter *adapter, int len)
1828 {
1829 	int fifo_space, fifo_pkt_len;
1830 
1831 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1832 
1833 	if (adapter->link_duplex == HALF_DUPLEX) {
1834 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1835 
1836 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1837 			if (em_82547_tx_fifo_reset(adapter))
1838 				return (0);
1839 			else
1840 				return (1);
1841 		}
1842 	}
1843 	return (0);
1844 }
1845 
1846 static void
1847 em_82547_update_fifo_head(struct adapter *adapter, int len)
1848 {
1849 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1850 
1851 	/* tx_fifo_head is always 16 byte aligned */
1852 	adapter->tx_fifo_head += fifo_pkt_len;
1853 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1854 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1855 }
1856 
1857 static int
1858 em_82547_tx_fifo_reset(struct adapter *adapter)
1859 {
1860 	uint32_t tctl;
1861 
1862 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1863 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1864 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1865 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1866 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1867 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1868 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1869 		/* Disable TX unit */
1870 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1871 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1872 		    tctl & ~E1000_TCTL_EN);
1873 
1874 		/* Reset FIFO pointers */
1875 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1876 		    adapter->tx_head_addr);
1877 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1878 		    adapter->tx_head_addr);
1879 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1880 		    adapter->tx_head_addr);
1881 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1882 		    adapter->tx_head_addr);
1883 
1884 		/* Re-enable TX unit */
1885 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1886 		E1000_WRITE_FLUSH(&adapter->hw);
1887 
1888 		adapter->tx_fifo_head = 0;
1889 		adapter->tx_fifo_reset_cnt++;
1890 
1891 		return (TRUE);
1892 	} else {
1893 		return (FALSE);
1894 	}
1895 }
1896 
1897 static void
1898 em_set_promisc(struct adapter *adapter)
1899 {
1900 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1901 	uint32_t reg_rctl;
1902 
1903 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1904 
1905 	if (ifp->if_flags & IFF_PROMISC) {
1906 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1907 		/* Turn this on if you want to see bad packets */
1908 		if (em_debug_sbp)
1909 			reg_rctl |= E1000_RCTL_SBP;
1910 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1911 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1912 		reg_rctl |= E1000_RCTL_MPE;
1913 		reg_rctl &= ~E1000_RCTL_UPE;
1914 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1915 	}
1916 }
1917 
1918 static void
1919 em_disable_promisc(struct adapter *adapter)
1920 {
1921 	uint32_t reg_rctl;
1922 
1923 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1924 
1925 	reg_rctl &= ~E1000_RCTL_UPE;
1926 	reg_rctl &= ~E1000_RCTL_MPE;
1927 	reg_rctl &= ~E1000_RCTL_SBP;
1928 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1929 }
1930 
1931 static void
1932 em_set_multi(struct adapter *adapter)
1933 {
1934 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1935 	struct ifmultiaddr *ifma;
1936 	uint32_t reg_rctl = 0;
1937 	uint8_t *mta;
1938 	int mcnt = 0;
1939 
1940 	mta = adapter->mta;
1941 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1942 
1943 	if (adapter->hw.mac.type == e1000_82542 &&
1944 	    adapter->hw.revision_id == E1000_REVISION_2) {
1945 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1946 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1947 			e1000_pci_clear_mwi(&adapter->hw);
1948 		reg_rctl |= E1000_RCTL_RST;
1949 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1950 		msec_delay(5);
1951 	}
1952 
1953 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1954 		if (ifma->ifma_addr->sa_family != AF_LINK)
1955 			continue;
1956 
1957 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1958 			break;
1959 
1960 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1961 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1962 		mcnt++;
1963 	}
1964 
1965 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1966 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1967 		reg_rctl |= E1000_RCTL_MPE;
1968 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1969 	} else {
1970 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1971 	}
1972 
1973 	if (adapter->hw.mac.type == e1000_82542 &&
1974 	    adapter->hw.revision_id == E1000_REVISION_2) {
1975 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1976 		reg_rctl &= ~E1000_RCTL_RST;
1977 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1978 		msec_delay(5);
1979 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1980 			e1000_pci_set_mwi(&adapter->hw);
1981 	}
1982 }
1983 
1984 /*
1985  * This routine checks for link status and updates statistics.
1986  */
1987 static void
1988 em_timer(void *xsc)
1989 {
1990 	struct adapter *adapter = xsc;
1991 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1992 
1993 	lwkt_serialize_enter(ifp->if_serializer);
1994 
1995 	em_update_link_status(adapter);
1996 	em_update_stats(adapter);
1997 
1998 	/* Reset LAA into RAR[0] on 82571 */
1999 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2000 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2001 
2002 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2003 		em_print_hw_stats(adapter);
2004 
2005 	em_smartspeed(adapter);
2006 
2007 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2008 
2009 	lwkt_serialize_exit(ifp->if_serializer);
2010 }
2011 
2012 static void
2013 em_update_link_status(struct adapter *adapter)
2014 {
2015 	struct e1000_hw *hw = &adapter->hw;
2016 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2017 	device_t dev = adapter->dev;
2018 	uint32_t link_check = 0;
2019 
2020 	/* Get the cached link value or read phy for real */
2021 	switch (hw->phy.media_type) {
2022 	case e1000_media_type_copper:
2023 		if (hw->mac.get_link_status) {
2024 			/* Do the work to read phy */
2025 			e1000_check_for_link(hw);
2026 			link_check = !hw->mac.get_link_status;
2027 			if (link_check) /* ESB2 fix */
2028 				e1000_cfg_on_link_up(hw);
2029 		} else {
2030 			link_check = TRUE;
2031 		}
2032 		break;
2033 
2034 	case e1000_media_type_fiber:
2035 		e1000_check_for_link(hw);
2036 		link_check =
2037 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2038 		break;
2039 
2040 	case e1000_media_type_internal_serdes:
2041 		e1000_check_for_link(hw);
2042 		link_check = adapter->hw.mac.serdes_has_link;
2043 		break;
2044 
2045 	case e1000_media_type_unknown:
2046 	default:
2047 		break;
2048 	}
2049 
2050 	/* Now check for a transition */
2051 	if (link_check && adapter->link_active == 0) {
2052 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2053 		    &adapter->link_duplex);
2054 
2055 		/*
2056 		 * Check if we should enable/disable SPEED_MODE bit on
2057 		 * 82571/82572
2058 		 */
2059 		if (adapter->link_speed != SPEED_1000 &&
2060 		    (hw->mac.type == e1000_82571 ||
2061 		     hw->mac.type == e1000_82572)) {
2062 			int tarc0;
2063 
2064 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2065 			tarc0 &= ~SPEED_MODE_BIT;
2066 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2067 		}
2068 		if (bootverbose) {
2069 			device_printf(dev, "Link is up %d Mbps %s\n",
2070 			    adapter->link_speed,
2071 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2072 			    "Full Duplex" : "Half Duplex"));
2073 		}
2074 		adapter->link_active = 1;
2075 		adapter->smartspeed = 0;
2076 		ifp->if_baudrate = adapter->link_speed * 1000000;
2077 		ifp->if_link_state = LINK_STATE_UP;
2078 		if_link_state_change(ifp);
2079 	} else if (!link_check && adapter->link_active == 1) {
2080 		ifp->if_baudrate = adapter->link_speed = 0;
2081 		adapter->link_duplex = 0;
2082 		if (bootverbose)
2083 			device_printf(dev, "Link is Down\n");
2084 		adapter->link_active = 0;
2085 #if 0
2086 		/* Link down, disable watchdog */
2087 		if->if_timer = 0;
2088 #endif
2089 		ifp->if_link_state = LINK_STATE_DOWN;
2090 		if_link_state_change(ifp);
2091 	}
2092 }
2093 
2094 static void
2095 em_stop(struct adapter *adapter)
2096 {
2097 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2098 	int i;
2099 
2100 	ASSERT_SERIALIZED(ifp->if_serializer);
2101 
2102 	em_disable_intr(adapter);
2103 
2104 	callout_stop(&adapter->timer);
2105 	callout_stop(&adapter->tx_fifo_timer);
2106 
2107 	ifp->if_flags &= ~IFF_RUNNING;
2108 	ifq_clr_oactive(&ifp->if_snd);
2109 	ifp->if_timer = 0;
2110 
2111 	e1000_reset_hw(&adapter->hw);
2112 	if (adapter->hw.mac.type >= e1000_82544)
2113 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2114 
2115 	for (i = 0; i < adapter->num_tx_desc; i++) {
2116 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2117 
2118 		if (tx_buffer->m_head != NULL) {
2119 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2120 			m_freem(tx_buffer->m_head);
2121 			tx_buffer->m_head = NULL;
2122 		}
2123 	}
2124 
2125 	for (i = 0; i < adapter->num_rx_desc; i++) {
2126 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2127 
2128 		if (rx_buffer->m_head != NULL) {
2129 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2130 			m_freem(rx_buffer->m_head);
2131 			rx_buffer->m_head = NULL;
2132 		}
2133 	}
2134 
2135 	if (adapter->fmp != NULL)
2136 		m_freem(adapter->fmp);
2137 	adapter->fmp = NULL;
2138 	adapter->lmp = NULL;
2139 
2140 	adapter->csum_flags = 0;
2141 	adapter->csum_lhlen = 0;
2142 	adapter->csum_iphlen = 0;
2143 	adapter->csum_thlen = 0;
2144 	adapter->csum_mss = 0;
2145 	adapter->csum_pktlen = 0;
2146 
2147 	adapter->tx_dd_head = 0;
2148 	adapter->tx_dd_tail = 0;
2149 	adapter->tx_nsegs = 0;
2150 }
2151 
2152 static int
2153 em_get_hw_info(struct adapter *adapter)
2154 {
2155 	device_t dev = adapter->dev;
2156 
2157 	/* Save off the information about this board */
2158 	adapter->hw.vendor_id = pci_get_vendor(dev);
2159 	adapter->hw.device_id = pci_get_device(dev);
2160 	adapter->hw.revision_id = pci_get_revid(dev);
2161 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2162 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2163 
2164 	/* Do Shared Code Init and Setup */
2165 	if (e1000_set_mac_type(&adapter->hw))
2166 		return ENXIO;
2167 	return 0;
2168 }
2169 
2170 static int
2171 em_alloc_pci_res(struct adapter *adapter)
2172 {
2173 	device_t dev = adapter->dev;
2174 	u_int intr_flags;
2175 	int val, rid, msi_enable;
2176 
2177 	/* Enable bus mastering */
2178 	pci_enable_busmaster(dev);
2179 
2180 	adapter->memory_rid = EM_BAR_MEM;
2181 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2182 				&adapter->memory_rid, RF_ACTIVE);
2183 	if (adapter->memory == NULL) {
2184 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2185 		return (ENXIO);
2186 	}
2187 	adapter->osdep.mem_bus_space_tag =
2188 	    rman_get_bustag(adapter->memory);
2189 	adapter->osdep.mem_bus_space_handle =
2190 	    rman_get_bushandle(adapter->memory);
2191 
2192 	/* XXX This is quite goofy, it is not actually used */
2193 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2194 
2195 	/* Only older adapters use IO mapping */
2196 	if (adapter->hw.mac.type > e1000_82543 &&
2197 	    adapter->hw.mac.type < e1000_82571) {
2198 		/* Figure our where our IO BAR is ? */
2199 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2200 			val = pci_read_config(dev, rid, 4);
2201 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2202 				adapter->io_rid = rid;
2203 				break;
2204 			}
2205 			rid += 4;
2206 			/* check for 64bit BAR */
2207 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2208 				rid += 4;
2209 		}
2210 		if (rid >= PCIR_CARDBUSCIS) {
2211 			device_printf(dev, "Unable to locate IO BAR\n");
2212 			return (ENXIO);
2213 		}
2214 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2215 					&adapter->io_rid, RF_ACTIVE);
2216 		if (adapter->ioport == NULL) {
2217 			device_printf(dev, "Unable to allocate bus resource: "
2218 			    "ioport\n");
2219 			return (ENXIO);
2220 		}
2221 		adapter->hw.io_base = 0;
2222 		adapter->osdep.io_bus_space_tag =
2223 		    rman_get_bustag(adapter->ioport);
2224 		adapter->osdep.io_bus_space_handle =
2225 		    rman_get_bushandle(adapter->ioport);
2226 	}
2227 
2228 	/*
2229 	 * Don't enable MSI-X on 82574, see:
2230 	 * 82574 specification update errata #15
2231 	 *
2232 	 * Don't enable MSI on PCI/PCI-X chips, see:
2233 	 * 82540 specification update errata #6
2234 	 * 82545 specification update errata #4
2235 	 *
2236 	 * Don't enable MSI on 82571/82572, see:
2237 	 * 82571/82572 specification update errata #63
2238 	 */
2239 	msi_enable = em_msi_enable;
2240 	if (msi_enable &&
2241 	    (!pci_is_pcie(dev) ||
2242 	     adapter->hw.mac.type == e1000_82571 ||
2243 	     adapter->hw.mac.type == e1000_82572))
2244 		msi_enable = 0;
2245 
2246 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2247 	    &adapter->intr_rid, &intr_flags);
2248 
2249 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2250 		int unshared;
2251 
2252 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2253 		if (!unshared) {
2254 			adapter->flags |= EM_FLAG_SHARED_INTR;
2255 			if (bootverbose)
2256 				device_printf(dev, "IRQ shared\n");
2257 		} else {
2258 			intr_flags &= ~RF_SHAREABLE;
2259 			if (bootverbose)
2260 				device_printf(dev, "IRQ unshared\n");
2261 		}
2262 	}
2263 
2264 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2265 	    &adapter->intr_rid, intr_flags);
2266 	if (adapter->intr_res == NULL) {
2267 		device_printf(dev, "Unable to allocate bus resource: "
2268 		    "interrupt\n");
2269 		return (ENXIO);
2270 	}
2271 
2272 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2273 	adapter->hw.back = &adapter->osdep;
2274 	return (0);
2275 }
2276 
2277 static void
2278 em_free_pci_res(struct adapter *adapter)
2279 {
2280 	device_t dev = adapter->dev;
2281 
2282 	if (adapter->intr_res != NULL) {
2283 		bus_release_resource(dev, SYS_RES_IRQ,
2284 		    adapter->intr_rid, adapter->intr_res);
2285 	}
2286 
2287 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2288 		pci_release_msi(dev);
2289 
2290 	if (adapter->memory != NULL) {
2291 		bus_release_resource(dev, SYS_RES_MEMORY,
2292 		    adapter->memory_rid, adapter->memory);
2293 	}
2294 
2295 	if (adapter->flash != NULL) {
2296 		bus_release_resource(dev, SYS_RES_MEMORY,
2297 		    adapter->flash_rid, adapter->flash);
2298 	}
2299 
2300 	if (adapter->ioport != NULL) {
2301 		bus_release_resource(dev, SYS_RES_IOPORT,
2302 		    adapter->io_rid, adapter->ioport);
2303 	}
2304 }
2305 
2306 static int
2307 em_reset(struct adapter *adapter)
2308 {
2309 	device_t dev = adapter->dev;
2310 	uint16_t rx_buffer_size;
2311 	uint32_t pba;
2312 
2313 	/* When hardware is reset, fifo_head is also reset */
2314 	adapter->tx_fifo_head = 0;
2315 
2316 	/* Set up smart power down as default off on newer adapters. */
2317 	if (!em_smart_pwr_down &&
2318 	    (adapter->hw.mac.type == e1000_82571 ||
2319 	     adapter->hw.mac.type == e1000_82572)) {
2320 		uint16_t phy_tmp = 0;
2321 
2322 		/* Speed up time to link by disabling smart power down. */
2323 		e1000_read_phy_reg(&adapter->hw,
2324 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2325 		phy_tmp &= ~IGP02E1000_PM_SPD;
2326 		e1000_write_phy_reg(&adapter->hw,
2327 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2328 	}
2329 
2330 	/*
2331 	 * Packet Buffer Allocation (PBA)
2332 	 * Writing PBA sets the receive portion of the buffer
2333 	 * the remainder is used for the transmit buffer.
2334 	 *
2335 	 * Devices before the 82547 had a Packet Buffer of 64K.
2336 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2337 	 * After the 82547 the buffer was reduced to 40K.
2338 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2339 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2340 	 */
2341 	switch (adapter->hw.mac.type) {
2342 	case e1000_82547:
2343 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2344 		if (adapter->max_frame_size > 8192)
2345 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2346 		else
2347 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2348 		adapter->tx_fifo_head = 0;
2349 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2350 		adapter->tx_fifo_size =
2351 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2352 		break;
2353 
2354 	/* Total Packet Buffer on these is 48K */
2355 	case e1000_82571:
2356 	case e1000_82572:
2357 	case e1000_80003es2lan:
2358 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2359 		break;
2360 
2361 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2362 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2363 		break;
2364 
2365 	case e1000_82574:
2366 	case e1000_82583:
2367 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2368 		break;
2369 
2370 	case e1000_ich8lan:
2371 		pba = E1000_PBA_8K;
2372 		break;
2373 
2374 	case e1000_ich9lan:
2375 	case e1000_ich10lan:
2376 #define E1000_PBA_10K	0x000A
2377 		pba = E1000_PBA_10K;
2378 		break;
2379 
2380 	case e1000_pchlan:
2381 	case e1000_pch2lan:
2382 		pba = E1000_PBA_26K;
2383 		break;
2384 
2385 	default:
2386 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2387 		if (adapter->max_frame_size > 8192)
2388 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2389 		else
2390 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2391 	}
2392 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2393 
2394 	/*
2395 	 * These parameters control the automatic generation (Tx) and
2396 	 * response (Rx) to Ethernet PAUSE frames.
2397 	 * - High water mark should allow for at least two frames to be
2398 	 *   received after sending an XOFF.
2399 	 * - Low water mark works best when it is very near the high water mark.
2400 	 *   This allows the receiver to restart by sending XON when it has
2401 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2402 	 *   restart after one full frame is pulled from the buffer. There
2403 	 *   could be several smaller frames in the buffer and if so they will
2404 	 *   not trigger the XON until their total number reduces the buffer
2405 	 *   by 1500.
2406 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2407 	 */
2408 	rx_buffer_size =
2409 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2410 
2411 	adapter->hw.fc.high_water = rx_buffer_size -
2412 				    roundup2(adapter->max_frame_size, 1024);
2413 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2414 
2415 	if (adapter->hw.mac.type == e1000_80003es2lan)
2416 		adapter->hw.fc.pause_time = 0xFFFF;
2417 	else
2418 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2419 
2420 	adapter->hw.fc.send_xon = TRUE;
2421 
2422 	adapter->hw.fc.requested_mode = e1000_fc_full;
2423 
2424 	/*
2425 	 * Device specific overrides/settings
2426 	 */
2427 	switch (adapter->hw.mac.type) {
2428 	case e1000_pchlan:
2429 		/* Workaround: no TX flow ctrl for PCH */
2430 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2431 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2432 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2433 			adapter->hw.fc.high_water = 0x3500;
2434 			adapter->hw.fc.low_water = 0x1500;
2435 		} else {
2436 			adapter->hw.fc.high_water = 0x5000;
2437 			adapter->hw.fc.low_water = 0x3000;
2438 		}
2439 		adapter->hw.fc.refresh_time = 0x1000;
2440 		break;
2441 
2442 	case e1000_pch2lan:
2443 		adapter->hw.fc.high_water = 0x5C20;
2444 		adapter->hw.fc.low_water = 0x5048;
2445 		adapter->hw.fc.pause_time = 0x0650;
2446 		adapter->hw.fc.refresh_time = 0x0400;
2447 		/* Jumbos need adjusted PBA */
2448 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2449 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2450 		else
2451 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2452 		break;
2453 
2454 	case e1000_ich9lan:
2455 	case e1000_ich10lan:
2456 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2457 			adapter->hw.fc.high_water = 0x2800;
2458 			adapter->hw.fc.low_water =
2459 			    adapter->hw.fc.high_water - 8;
2460 			break;
2461 		}
2462 		/* FALL THROUGH */
2463 	default:
2464 		if (adapter->hw.mac.type == e1000_80003es2lan)
2465 			adapter->hw.fc.pause_time = 0xFFFF;
2466 		break;
2467 	}
2468 
2469 	/* Issue a global reset */
2470 	e1000_reset_hw(&adapter->hw);
2471 	if (adapter->hw.mac.type >= e1000_82544)
2472 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2473 	em_disable_aspm(adapter);
2474 
2475 	if (e1000_init_hw(&adapter->hw) < 0) {
2476 		device_printf(dev, "Hardware Initialization Failed\n");
2477 		return (EIO);
2478 	}
2479 
2480 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2481 	e1000_get_phy_info(&adapter->hw);
2482 	e1000_check_for_link(&adapter->hw);
2483 
2484 	return (0);
2485 }
2486 
2487 static void
2488 em_setup_ifp(struct adapter *adapter)
2489 {
2490 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2491 
2492 	if_initname(ifp, device_get_name(adapter->dev),
2493 		    device_get_unit(adapter->dev));
2494 	ifp->if_softc = adapter;
2495 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2496 	ifp->if_init =  em_init;
2497 	ifp->if_ioctl = em_ioctl;
2498 	ifp->if_start = em_start;
2499 #ifdef IFPOLL_ENABLE
2500 	ifp->if_npoll = em_npoll;
2501 #endif
2502 	ifp->if_watchdog = em_watchdog;
2503 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2504 	ifq_set_ready(&ifp->if_snd);
2505 
2506 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2507 
2508 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2509 	if (adapter->hw.mac.type >= e1000_82543)
2510 		ifp->if_capabilities |= IFCAP_HWCSUM;
2511 	if (adapter->flags & EM_FLAG_TSO)
2512 		ifp->if_capabilities |= IFCAP_TSO;
2513 	ifp->if_capenable = ifp->if_capabilities;
2514 
2515 	if (ifp->if_capenable & IFCAP_TXCSUM)
2516 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2517 	if (ifp->if_capenable & IFCAP_TSO)
2518 		ifp->if_hwassist |= CSUM_TSO;
2519 
2520 	/*
2521 	 * Tell the upper layer(s) we support long frames.
2522 	 */
2523 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2524 
2525 	/*
2526 	 * Specify the media types supported by this adapter and register
2527 	 * callbacks to update media and link information
2528 	 */
2529 	ifmedia_init(&adapter->media, IFM_IMASK,
2530 		     em_media_change, em_media_status);
2531 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2532 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2533 		u_char fiber_type = IFM_1000_SX; /* default type */
2534 
2535 		if (adapter->hw.mac.type == e1000_82545)
2536 			fiber_type = IFM_1000_LX;
2537 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2538 			    0, NULL);
2539 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2540 	} else {
2541 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2542 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2543 			    0, NULL);
2544 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2545 			    0, NULL);
2546 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2547 			    0, NULL);
2548 		if (adapter->hw.phy.type != e1000_phy_ife) {
2549 			ifmedia_add(&adapter->media,
2550 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2551 			ifmedia_add(&adapter->media,
2552 				IFM_ETHER | IFM_1000_T, 0, NULL);
2553 		}
2554 	}
2555 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2556 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2557 }
2558 
2559 
2560 /*
2561  * Workaround for SmartSpeed on 82541 and 82547 controllers
2562  */
2563 static void
2564 em_smartspeed(struct adapter *adapter)
2565 {
2566 	uint16_t phy_tmp;
2567 
2568 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2569 	    adapter->hw.mac.autoneg == 0 ||
2570 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2571 		return;
2572 
2573 	if (adapter->smartspeed == 0) {
2574 		/*
2575 		 * If Master/Slave config fault is asserted twice,
2576 		 * we assume back-to-back
2577 		 */
2578 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2579 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2580 			return;
2581 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2582 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2583 			e1000_read_phy_reg(&adapter->hw,
2584 			    PHY_1000T_CTRL, &phy_tmp);
2585 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2586 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2587 				e1000_write_phy_reg(&adapter->hw,
2588 				    PHY_1000T_CTRL, phy_tmp);
2589 				adapter->smartspeed++;
2590 				if (adapter->hw.mac.autoneg &&
2591 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2592 				    !e1000_read_phy_reg(&adapter->hw,
2593 				     PHY_CONTROL, &phy_tmp)) {
2594 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2595 						   MII_CR_RESTART_AUTO_NEG;
2596 					e1000_write_phy_reg(&adapter->hw,
2597 					    PHY_CONTROL, phy_tmp);
2598 				}
2599 			}
2600 		}
2601 		return;
2602 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2603 		/* If still no link, perhaps using 2/3 pair cable */
2604 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2605 		phy_tmp |= CR_1000T_MS_ENABLE;
2606 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2607 		if (adapter->hw.mac.autoneg &&
2608 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2609 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2610 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2611 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2612 		}
2613 	}
2614 
2615 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2616 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2617 		adapter->smartspeed = 0;
2618 }
2619 
2620 static int
2621 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2622 	      struct em_dma_alloc *dma)
2623 {
2624 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2625 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2626 				&dma->dma_tag, &dma->dma_map,
2627 				&dma->dma_paddr);
2628 	if (dma->dma_vaddr == NULL)
2629 		return ENOMEM;
2630 	else
2631 		return 0;
2632 }
2633 
2634 static void
2635 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2636 {
2637 	if (dma->dma_tag == NULL)
2638 		return;
2639 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2640 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2641 	bus_dma_tag_destroy(dma->dma_tag);
2642 }
2643 
2644 static int
2645 em_create_tx_ring(struct adapter *adapter)
2646 {
2647 	device_t dev = adapter->dev;
2648 	struct em_buffer *tx_buffer;
2649 	int error, i;
2650 
2651 	adapter->tx_buffer_area =
2652 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2653 			M_DEVBUF, M_WAITOK | M_ZERO);
2654 
2655 	/*
2656 	 * Create DMA tags for tx buffers
2657 	 */
2658 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2659 			1, 0,			/* alignment, bounds */
2660 			BUS_SPACE_MAXADDR,	/* lowaddr */
2661 			BUS_SPACE_MAXADDR,	/* highaddr */
2662 			NULL, NULL,		/* filter, filterarg */
2663 			EM_TSO_SIZE,		/* maxsize */
2664 			EM_MAX_SCATTER,		/* nsegments */
2665 			PAGE_SIZE,		/* maxsegsize */
2666 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2667 			BUS_DMA_ONEBPAGE,	/* flags */
2668 			&adapter->txtag);
2669 	if (error) {
2670 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2671 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2672 		adapter->tx_buffer_area = NULL;
2673 		return error;
2674 	}
2675 
2676 	/*
2677 	 * Create DMA maps for tx buffers
2678 	 */
2679 	for (i = 0; i < adapter->num_tx_desc; i++) {
2680 		tx_buffer = &adapter->tx_buffer_area[i];
2681 
2682 		error = bus_dmamap_create(adapter->txtag,
2683 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2684 					  &tx_buffer->map);
2685 		if (error) {
2686 			device_printf(dev, "Unable to create TX DMA map\n");
2687 			em_destroy_tx_ring(adapter, i);
2688 			return error;
2689 		}
2690 	}
2691 	return (0);
2692 }
2693 
2694 static void
2695 em_init_tx_ring(struct adapter *adapter)
2696 {
2697 	/* Clear the old ring contents */
2698 	bzero(adapter->tx_desc_base,
2699 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2700 
2701 	/* Reset state */
2702 	adapter->next_avail_tx_desc = 0;
2703 	adapter->next_tx_to_clean = 0;
2704 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2705 }
2706 
2707 static void
2708 em_init_tx_unit(struct adapter *adapter)
2709 {
2710 	uint32_t tctl, tarc, tipg = 0;
2711 	uint64_t bus_addr;
2712 
2713 	/* Setup the Base and Length of the Tx Descriptor Ring */
2714 	bus_addr = adapter->txdma.dma_paddr;
2715 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2716 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2717 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2718 	    (uint32_t)(bus_addr >> 32));
2719 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2720 	    (uint32_t)bus_addr);
2721 	/* Setup the HW Tx Head and Tail descriptor pointers */
2722 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2723 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2724 
2725 	/* Set the default values for the Tx Inter Packet Gap timer */
2726 	switch (adapter->hw.mac.type) {
2727 	case e1000_82542:
2728 		tipg = DEFAULT_82542_TIPG_IPGT;
2729 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2730 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2731 		break;
2732 
2733 	case e1000_80003es2lan:
2734 		tipg = DEFAULT_82543_TIPG_IPGR1;
2735 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2736 		    E1000_TIPG_IPGR2_SHIFT;
2737 		break;
2738 
2739 	default:
2740 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2741 		    adapter->hw.phy.media_type ==
2742 		    e1000_media_type_internal_serdes)
2743 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2744 		else
2745 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2746 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2747 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2748 		break;
2749 	}
2750 
2751 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2752 
2753 	/* NOTE: 0 is not allowed for TIDV */
2754 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2755 	if(adapter->hw.mac.type >= e1000_82540)
2756 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2757 
2758 	if (adapter->hw.mac.type == e1000_82571 ||
2759 	    adapter->hw.mac.type == e1000_82572) {
2760 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2761 		tarc |= SPEED_MODE_BIT;
2762 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2763 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2764 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2765 		tarc |= 1;
2766 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2767 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2768 		tarc |= 1;
2769 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2770 	}
2771 
2772 	/* Program the Transmit Control Register */
2773 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2774 	tctl &= ~E1000_TCTL_CT;
2775 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2776 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2777 
2778 	if (adapter->hw.mac.type >= e1000_82571)
2779 		tctl |= E1000_TCTL_MULR;
2780 
2781 	/* This write will effectively turn on the transmit unit. */
2782 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2783 
2784 	if (adapter->hw.mac.type == e1000_82571 ||
2785 	    adapter->hw.mac.type == e1000_82572 ||
2786 	    adapter->hw.mac.type == e1000_80003es2lan) {
2787 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2788 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2789 		tarc &= ~(1 << 28);
2790 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2791 	}
2792 }
2793 
2794 static void
2795 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2796 {
2797 	struct em_buffer *tx_buffer;
2798 	int i;
2799 
2800 	if (adapter->tx_buffer_area == NULL)
2801 		return;
2802 
2803 	for (i = 0; i < ndesc; i++) {
2804 		tx_buffer = &adapter->tx_buffer_area[i];
2805 
2806 		KKASSERT(tx_buffer->m_head == NULL);
2807 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2808 	}
2809 	bus_dma_tag_destroy(adapter->txtag);
2810 
2811 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2812 	adapter->tx_buffer_area = NULL;
2813 }
2814 
2815 /*
2816  * The offload context needs to be set when we transfer the first
2817  * packet of a particular protocol (TCP/UDP).  This routine has been
2818  * enhanced to deal with inserted VLAN headers.
2819  *
2820  * If the new packet's ether header length, ip header length and
2821  * csum offloading type are same as the previous packet, we should
2822  * avoid allocating a new csum context descriptor; mainly to take
2823  * advantage of the pipeline effect of the TX data read request.
2824  *
2825  * This function returns number of TX descrptors allocated for
2826  * csum context.
2827  */
2828 static int
2829 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2830 	  uint32_t *txd_upper, uint32_t *txd_lower)
2831 {
2832 	struct e1000_context_desc *TXD;
2833 	int curr_txd, ehdrlen, csum_flags;
2834 	uint32_t cmd, hdr_len, ip_hlen;
2835 
2836 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2837 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2838 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2839 
2840 	if (adapter->csum_lhlen == ehdrlen &&
2841 	    adapter->csum_iphlen == ip_hlen &&
2842 	    adapter->csum_flags == csum_flags) {
2843 		/*
2844 		 * Same csum offload context as the previous packets;
2845 		 * just return.
2846 		 */
2847 		*txd_upper = adapter->csum_txd_upper;
2848 		*txd_lower = adapter->csum_txd_lower;
2849 		return 0;
2850 	}
2851 
2852 	/*
2853 	 * Setup a new csum offload context.
2854 	 */
2855 
2856 	curr_txd = adapter->next_avail_tx_desc;
2857 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2858 
2859 	cmd = 0;
2860 
2861 	/* Setup of IP header checksum. */
2862 	if (csum_flags & CSUM_IP) {
2863 		/*
2864 		 * Start offset for header checksum calculation.
2865 		 * End offset for header checksum calculation.
2866 		 * Offset of place to put the checksum.
2867 		 */
2868 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2869 		TXD->lower_setup.ip_fields.ipcse =
2870 		    htole16(ehdrlen + ip_hlen - 1);
2871 		TXD->lower_setup.ip_fields.ipcso =
2872 		    ehdrlen + offsetof(struct ip, ip_sum);
2873 		cmd |= E1000_TXD_CMD_IP;
2874 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2875 	}
2876 	hdr_len = ehdrlen + ip_hlen;
2877 
2878 	if (csum_flags & CSUM_TCP) {
2879 		/*
2880 		 * Start offset for payload checksum calculation.
2881 		 * End offset for payload checksum calculation.
2882 		 * Offset of place to put the checksum.
2883 		 */
2884 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2885 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2886 		TXD->upper_setup.tcp_fields.tucso =
2887 		    hdr_len + offsetof(struct tcphdr, th_sum);
2888 		cmd |= E1000_TXD_CMD_TCP;
2889 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2890 	} else if (csum_flags & CSUM_UDP) {
2891 		/*
2892 		 * Start offset for header checksum calculation.
2893 		 * End offset for header checksum calculation.
2894 		 * Offset of place to put the checksum.
2895 		 */
2896 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2897 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2898 		TXD->upper_setup.tcp_fields.tucso =
2899 		    hdr_len + offsetof(struct udphdr, uh_sum);
2900 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2901 	}
2902 
2903 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2904 		     E1000_TXD_DTYP_D;		/* Data descr */
2905 
2906 	/* Save the information for this csum offloading context */
2907 	adapter->csum_lhlen = ehdrlen;
2908 	adapter->csum_iphlen = ip_hlen;
2909 	adapter->csum_flags = csum_flags;
2910 	adapter->csum_txd_upper = *txd_upper;
2911 	adapter->csum_txd_lower = *txd_lower;
2912 
2913 	TXD->tcp_seg_setup.data = htole32(0);
2914 	TXD->cmd_and_length =
2915 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2916 
2917 	if (++curr_txd == adapter->num_tx_desc)
2918 		curr_txd = 0;
2919 
2920 	KKASSERT(adapter->num_tx_desc_avail > 0);
2921 	adapter->num_tx_desc_avail--;
2922 
2923 	adapter->next_avail_tx_desc = curr_txd;
2924 	return 1;
2925 }
2926 
2927 static void
2928 em_txeof(struct adapter *adapter)
2929 {
2930 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2931 	struct em_buffer *tx_buffer;
2932 	int first, num_avail;
2933 
2934 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2935 		return;
2936 
2937 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2938 		return;
2939 
2940 	num_avail = adapter->num_tx_desc_avail;
2941 	first = adapter->next_tx_to_clean;
2942 
2943 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2944 		struct e1000_tx_desc *tx_desc;
2945 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2946 
2947 		tx_desc = &adapter->tx_desc_base[dd_idx];
2948 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2949 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2950 
2951 			if (++dd_idx == adapter->num_tx_desc)
2952 				dd_idx = 0;
2953 
2954 			while (first != dd_idx) {
2955 				logif(pkt_txclean);
2956 
2957 				num_avail++;
2958 
2959 				tx_buffer = &adapter->tx_buffer_area[first];
2960 				if (tx_buffer->m_head) {
2961 					IFNET_STAT_INC(ifp, opackets, 1);
2962 					bus_dmamap_unload(adapter->txtag,
2963 							  tx_buffer->map);
2964 					m_freem(tx_buffer->m_head);
2965 					tx_buffer->m_head = NULL;
2966 				}
2967 
2968 				if (++first == adapter->num_tx_desc)
2969 					first = 0;
2970 			}
2971 		} else {
2972 			break;
2973 		}
2974 	}
2975 	adapter->next_tx_to_clean = first;
2976 	adapter->num_tx_desc_avail = num_avail;
2977 
2978 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2979 		adapter->tx_dd_head = 0;
2980 		adapter->tx_dd_tail = 0;
2981 	}
2982 
2983 	if (!EM_IS_OACTIVE(adapter)) {
2984 		ifq_clr_oactive(&ifp->if_snd);
2985 
2986 		/* All clean, turn off the timer */
2987 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2988 			ifp->if_timer = 0;
2989 	}
2990 }
2991 
2992 static void
2993 em_tx_collect(struct adapter *adapter)
2994 {
2995 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2996 	struct em_buffer *tx_buffer;
2997 	int tdh, first, num_avail, dd_idx = -1;
2998 
2999 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3000 		return;
3001 
3002 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3003 	if (tdh == adapter->next_tx_to_clean)
3004 		return;
3005 
3006 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3007 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3008 
3009 	num_avail = adapter->num_tx_desc_avail;
3010 	first = adapter->next_tx_to_clean;
3011 
3012 	while (first != tdh) {
3013 		logif(pkt_txclean);
3014 
3015 		num_avail++;
3016 
3017 		tx_buffer = &adapter->tx_buffer_area[first];
3018 		if (tx_buffer->m_head) {
3019 			IFNET_STAT_INC(ifp, opackets, 1);
3020 			bus_dmamap_unload(adapter->txtag,
3021 					  tx_buffer->map);
3022 			m_freem(tx_buffer->m_head);
3023 			tx_buffer->m_head = NULL;
3024 		}
3025 
3026 		if (first == dd_idx) {
3027 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3028 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3029 				adapter->tx_dd_head = 0;
3030 				adapter->tx_dd_tail = 0;
3031 				dd_idx = -1;
3032 			} else {
3033 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3034 			}
3035 		}
3036 
3037 		if (++first == adapter->num_tx_desc)
3038 			first = 0;
3039 	}
3040 	adapter->next_tx_to_clean = first;
3041 	adapter->num_tx_desc_avail = num_avail;
3042 
3043 	if (!EM_IS_OACTIVE(adapter)) {
3044 		ifq_clr_oactive(&ifp->if_snd);
3045 
3046 		/* All clean, turn off the timer */
3047 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3048 			ifp->if_timer = 0;
3049 	}
3050 }
3051 
3052 /*
3053  * When Link is lost sometimes there is work still in the TX ring
3054  * which will result in a watchdog, rather than allow that do an
3055  * attempted cleanup and then reinit here.  Note that this has been
3056  * seens mostly with fiber adapters.
3057  */
3058 static void
3059 em_tx_purge(struct adapter *adapter)
3060 {
3061 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3062 
3063 	if (!adapter->link_active && ifp->if_timer) {
3064 		em_tx_collect(adapter);
3065 		if (ifp->if_timer) {
3066 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3067 			ifp->if_timer = 0;
3068 			em_init(adapter);
3069 		}
3070 	}
3071 }
3072 
3073 static int
3074 em_newbuf(struct adapter *adapter, int i, int init)
3075 {
3076 	struct mbuf *m;
3077 	bus_dma_segment_t seg;
3078 	bus_dmamap_t map;
3079 	struct em_buffer *rx_buffer;
3080 	int error, nseg;
3081 
3082 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3083 	if (m == NULL) {
3084 		adapter->mbuf_cluster_failed++;
3085 		if (init) {
3086 			if_printf(&adapter->arpcom.ac_if,
3087 				  "Unable to allocate RX mbuf\n");
3088 		}
3089 		return (ENOBUFS);
3090 	}
3091 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3092 
3093 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3094 		m_adj(m, ETHER_ALIGN);
3095 
3096 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3097 			adapter->rx_sparemap, m,
3098 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3099 	if (error) {
3100 		m_freem(m);
3101 		if (init) {
3102 			if_printf(&adapter->arpcom.ac_if,
3103 				  "Unable to load RX mbuf\n");
3104 		}
3105 		return (error);
3106 	}
3107 
3108 	rx_buffer = &adapter->rx_buffer_area[i];
3109 	if (rx_buffer->m_head != NULL)
3110 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3111 
3112 	map = rx_buffer->map;
3113 	rx_buffer->map = adapter->rx_sparemap;
3114 	adapter->rx_sparemap = map;
3115 
3116 	rx_buffer->m_head = m;
3117 
3118 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3119 	return (0);
3120 }
3121 
3122 static int
3123 em_create_rx_ring(struct adapter *adapter)
3124 {
3125 	device_t dev = adapter->dev;
3126 	struct em_buffer *rx_buffer;
3127 	int i, error;
3128 
3129 	adapter->rx_buffer_area =
3130 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3131 			M_DEVBUF, M_WAITOK | M_ZERO);
3132 
3133 	/*
3134 	 * Create DMA tag for rx buffers
3135 	 */
3136 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3137 			1, 0,			/* alignment, bounds */
3138 			BUS_SPACE_MAXADDR,	/* lowaddr */
3139 			BUS_SPACE_MAXADDR,	/* highaddr */
3140 			NULL, NULL,		/* filter, filterarg */
3141 			MCLBYTES,		/* maxsize */
3142 			1,			/* nsegments */
3143 			MCLBYTES,		/* maxsegsize */
3144 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3145 			&adapter->rxtag);
3146 	if (error) {
3147 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3148 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3149 		adapter->rx_buffer_area = NULL;
3150 		return error;
3151 	}
3152 
3153 	/*
3154 	 * Create spare DMA map for rx buffers
3155 	 */
3156 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3157 				  &adapter->rx_sparemap);
3158 	if (error) {
3159 		device_printf(dev, "Unable to create spare RX DMA map\n");
3160 		bus_dma_tag_destroy(adapter->rxtag);
3161 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3162 		adapter->rx_buffer_area = NULL;
3163 		return error;
3164 	}
3165 
3166 	/*
3167 	 * Create DMA maps for rx buffers
3168 	 */
3169 	for (i = 0; i < adapter->num_rx_desc; i++) {
3170 		rx_buffer = &adapter->rx_buffer_area[i];
3171 
3172 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3173 					  &rx_buffer->map);
3174 		if (error) {
3175 			device_printf(dev, "Unable to create RX DMA map\n");
3176 			em_destroy_rx_ring(adapter, i);
3177 			return error;
3178 		}
3179 	}
3180 	return (0);
3181 }
3182 
3183 static int
3184 em_init_rx_ring(struct adapter *adapter)
3185 {
3186 	int i, error;
3187 
3188 	/* Reset descriptor ring */
3189 	bzero(adapter->rx_desc_base,
3190 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3191 
3192 	/* Allocate new ones. */
3193 	for (i = 0; i < adapter->num_rx_desc; i++) {
3194 		error = em_newbuf(adapter, i, 1);
3195 		if (error)
3196 			return (error);
3197 	}
3198 
3199 	/* Setup our descriptor pointers */
3200 	adapter->next_rx_desc_to_check = 0;
3201 
3202 	return (0);
3203 }
3204 
3205 static void
3206 em_init_rx_unit(struct adapter *adapter)
3207 {
3208 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3209 	uint64_t bus_addr;
3210 	uint32_t rctl;
3211 
3212 	/*
3213 	 * Make sure receives are disabled while setting
3214 	 * up the descriptor ring
3215 	 */
3216 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3217 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3218 
3219 	if (adapter->hw.mac.type >= e1000_82540) {
3220 		uint32_t itr;
3221 
3222 		/*
3223 		 * Set the interrupt throttling rate. Value is calculated
3224 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3225 		 */
3226 		if (adapter->int_throttle_ceil)
3227 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3228 		else
3229 			itr = 0;
3230 		em_set_itr(adapter, itr);
3231 	}
3232 
3233 	/* Disable accelerated ackknowledge */
3234 	if (adapter->hw.mac.type == e1000_82574) {
3235 		E1000_WRITE_REG(&adapter->hw,
3236 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3237 	}
3238 
3239 	/* Receive Checksum Offload for TCP and UDP */
3240 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3241 		uint32_t rxcsum;
3242 
3243 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3244 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3245 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3246 	}
3247 
3248 	/*
3249 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3250 	 * long latencies are observed, like Lenovo X60. This
3251 	 * change eliminates the problem, but since having positive
3252 	 * values in RDTR is a known source of problems on other
3253 	 * platforms another solution is being sought.
3254 	 */
3255 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3256 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3257 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3258 	}
3259 
3260 	/*
3261 	 * Setup the Base and Length of the Rx Descriptor Ring
3262 	 */
3263 	bus_addr = adapter->rxdma.dma_paddr;
3264 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3265 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3266 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3267 	    (uint32_t)(bus_addr >> 32));
3268 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3269 	    (uint32_t)bus_addr);
3270 
3271 	/*
3272 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3273 	 */
3274 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3275 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3276 
3277 	/* Set PTHRESH for improved jumbo performance */
3278 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3279 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3280 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3281 	    (ifp->if_mtu > ETHERMTU)) {
3282 		uint32_t rxdctl;
3283 
3284 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3285 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3286 	}
3287 
3288 	if (adapter->hw.mac.type == e1000_pch2lan) {
3289 		if (ifp->if_mtu > ETHERMTU)
3290 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3291 		else
3292 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3293 	}
3294 
3295 	/* Setup the Receive Control Register */
3296 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3297 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3298 		E1000_RCTL_RDMTS_HALF |
3299 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3300 
3301 	/* Make sure VLAN Filters are off */
3302 	rctl &= ~E1000_RCTL_VFE;
3303 
3304 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3305 		rctl |= E1000_RCTL_SBP;
3306 	else
3307 		rctl &= ~E1000_RCTL_SBP;
3308 
3309 	switch (adapter->rx_buffer_len) {
3310 	default:
3311 	case 2048:
3312 		rctl |= E1000_RCTL_SZ_2048;
3313 		break;
3314 
3315 	case 4096:
3316 		rctl |= E1000_RCTL_SZ_4096 |
3317 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3318 		break;
3319 
3320 	case 8192:
3321 		rctl |= E1000_RCTL_SZ_8192 |
3322 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3323 		break;
3324 
3325 	case 16384:
3326 		rctl |= E1000_RCTL_SZ_16384 |
3327 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3328 		break;
3329 	}
3330 
3331 	if (ifp->if_mtu > ETHERMTU)
3332 		rctl |= E1000_RCTL_LPE;
3333 	else
3334 		rctl &= ~E1000_RCTL_LPE;
3335 
3336 	/* Enable Receives */
3337 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3338 }
3339 
3340 static void
3341 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3342 {
3343 	struct em_buffer *rx_buffer;
3344 	int i;
3345 
3346 	if (adapter->rx_buffer_area == NULL)
3347 		return;
3348 
3349 	for (i = 0; i < ndesc; i++) {
3350 		rx_buffer = &adapter->rx_buffer_area[i];
3351 
3352 		KKASSERT(rx_buffer->m_head == NULL);
3353 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3354 	}
3355 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3356 	bus_dma_tag_destroy(adapter->rxtag);
3357 
3358 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3359 	adapter->rx_buffer_area = NULL;
3360 }
3361 
3362 static void
3363 em_rxeof(struct adapter *adapter, int count)
3364 {
3365 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3366 	uint8_t status, accept_frame = 0, eop = 0;
3367 	uint16_t len, desc_len, prev_len_adj;
3368 	struct e1000_rx_desc *current_desc;
3369 	struct mbuf *mp;
3370 	int i;
3371 
3372 	i = adapter->next_rx_desc_to_check;
3373 	current_desc = &adapter->rx_desc_base[i];
3374 
3375 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3376 		return;
3377 
3378 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3379 		struct mbuf *m = NULL;
3380 
3381 		logif(pkt_receive);
3382 
3383 		mp = adapter->rx_buffer_area[i].m_head;
3384 
3385 		/*
3386 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3387 		 * needs to access the last received byte in the mbuf.
3388 		 */
3389 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3390 				BUS_DMASYNC_POSTREAD);
3391 
3392 		accept_frame = 1;
3393 		prev_len_adj = 0;
3394 		desc_len = le16toh(current_desc->length);
3395 		status = current_desc->status;
3396 		if (status & E1000_RXD_STAT_EOP) {
3397 			count--;
3398 			eop = 1;
3399 			if (desc_len < ETHER_CRC_LEN) {
3400 				len = 0;
3401 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3402 			} else {
3403 				len = desc_len - ETHER_CRC_LEN;
3404 			}
3405 		} else {
3406 			eop = 0;
3407 			len = desc_len;
3408 		}
3409 
3410 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3411 			uint8_t	last_byte;
3412 			uint32_t pkt_len = desc_len;
3413 
3414 			if (adapter->fmp != NULL)
3415 				pkt_len += adapter->fmp->m_pkthdr.len;
3416 
3417 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3418 			if (TBI_ACCEPT(&adapter->hw, status,
3419 			    current_desc->errors, pkt_len, last_byte,
3420 			    adapter->min_frame_size, adapter->max_frame_size)) {
3421 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3422 				    &adapter->stats, pkt_len,
3423 				    adapter->hw.mac.addr,
3424 				    adapter->max_frame_size);
3425 				if (len > 0)
3426 					len--;
3427 			} else {
3428 				accept_frame = 0;
3429 			}
3430 		}
3431 
3432 		if (accept_frame) {
3433 			if (em_newbuf(adapter, i, 0) != 0) {
3434 				IFNET_STAT_INC(ifp, iqdrops, 1);
3435 				goto discard;
3436 			}
3437 
3438 			/* Assign correct length to the current fragment */
3439 			mp->m_len = len;
3440 
3441 			if (adapter->fmp == NULL) {
3442 				mp->m_pkthdr.len = len;
3443 				adapter->fmp = mp; /* Store the first mbuf */
3444 				adapter->lmp = mp;
3445 			} else {
3446 				/*
3447 				 * Chain mbuf's together
3448 				 */
3449 
3450 				/*
3451 				 * Adjust length of previous mbuf in chain if
3452 				 * we received less than 4 bytes in the last
3453 				 * descriptor.
3454 				 */
3455 				if (prev_len_adj > 0) {
3456 					adapter->lmp->m_len -= prev_len_adj;
3457 					adapter->fmp->m_pkthdr.len -=
3458 					    prev_len_adj;
3459 				}
3460 				adapter->lmp->m_next = mp;
3461 				adapter->lmp = adapter->lmp->m_next;
3462 				adapter->fmp->m_pkthdr.len += len;
3463 			}
3464 
3465 			if (eop) {
3466 				adapter->fmp->m_pkthdr.rcvif = ifp;
3467 				IFNET_STAT_INC(ifp, ipackets, 1);
3468 
3469 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3470 					em_rxcsum(adapter, current_desc,
3471 						  adapter->fmp);
3472 				}
3473 
3474 				if (status & E1000_RXD_STAT_VP) {
3475 					adapter->fmp->m_pkthdr.ether_vlantag =
3476 					    (le16toh(current_desc->special) &
3477 					    E1000_RXD_SPC_VLAN_MASK);
3478 					adapter->fmp->m_flags |= M_VLANTAG;
3479 				}
3480 				m = adapter->fmp;
3481 				adapter->fmp = NULL;
3482 				adapter->lmp = NULL;
3483 			}
3484 		} else {
3485 			IFNET_STAT_INC(ifp, ierrors, 1);
3486 discard:
3487 #ifdef foo
3488 			/* Reuse loaded DMA map and just update mbuf chain */
3489 			mp = adapter->rx_buffer_area[i].m_head;
3490 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3491 			mp->m_data = mp->m_ext.ext_buf;
3492 			mp->m_next = NULL;
3493 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3494 				m_adj(mp, ETHER_ALIGN);
3495 #endif
3496 			if (adapter->fmp != NULL) {
3497 				m_freem(adapter->fmp);
3498 				adapter->fmp = NULL;
3499 				adapter->lmp = NULL;
3500 			}
3501 			m = NULL;
3502 		}
3503 
3504 		/* Zero out the receive descriptors status. */
3505 		current_desc->status = 0;
3506 
3507 		if (m != NULL)
3508 			ifp->if_input(ifp, m);
3509 
3510 		/* Advance our pointers to the next descriptor. */
3511 		if (++i == adapter->num_rx_desc)
3512 			i = 0;
3513 		current_desc = &adapter->rx_desc_base[i];
3514 	}
3515 	adapter->next_rx_desc_to_check = i;
3516 
3517 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3518 	if (--i < 0)
3519 		i = adapter->num_rx_desc - 1;
3520 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3521 }
3522 
3523 static void
3524 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3525 	  struct mbuf *mp)
3526 {
3527 	/* 82543 or newer only */
3528 	if (adapter->hw.mac.type < e1000_82543 ||
3529 	    /* Ignore Checksum bit is set */
3530 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3531 		return;
3532 
3533 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3534 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3535 		/* IP Checksum Good */
3536 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3537 	}
3538 
3539 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3540 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3541 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3542 					   CSUM_PSEUDO_HDR |
3543 					   CSUM_FRAG_NOT_CHECKED;
3544 		mp->m_pkthdr.csum_data = htons(0xffff);
3545 	}
3546 }
3547 
3548 static void
3549 em_enable_intr(struct adapter *adapter)
3550 {
3551 	uint32_t ims_mask = IMS_ENABLE_MASK;
3552 
3553 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3554 
3555 #if 0
3556 	/* XXX MSIX */
3557 	if (adapter->hw.mac.type == e1000_82574) {
3558 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3559 		ims_mask |= EM_MSIX_MASK;
3560         }
3561 #endif
3562 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3563 }
3564 
3565 static void
3566 em_disable_intr(struct adapter *adapter)
3567 {
3568 	uint32_t clear = 0xffffffff;
3569 
3570 	/*
3571 	 * The first version of 82542 had an errata where when link was forced
3572 	 * it would stay up even up even if the cable was disconnected.
3573 	 * Sequence errors were used to detect the disconnect and then the
3574 	 * driver would unforce the link.  This code in the in the ISR.  For
3575 	 * this to work correctly the Sequence error interrupt had to be
3576 	 * enabled all the time.
3577 	 */
3578 	if (adapter->hw.mac.type == e1000_82542 &&
3579 	    adapter->hw.revision_id == E1000_REVISION_2)
3580 		clear &= ~E1000_ICR_RXSEQ;
3581 	else if (adapter->hw.mac.type == e1000_82574)
3582 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3583 
3584 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3585 
3586 	adapter->npoll.ifpc_stcount = 0;
3587 
3588 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3589 }
3590 
3591 /*
3592  * Bit of a misnomer, what this really means is
3593  * to enable OS management of the system... aka
3594  * to disable special hardware management features
3595  */
3596 static void
3597 em_get_mgmt(struct adapter *adapter)
3598 {
3599 	/* A shared code workaround */
3600 #define E1000_82542_MANC2H E1000_MANC2H
3601 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3602 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3603 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3604 
3605 		/* disable hardware interception of ARP */
3606 		manc &= ~(E1000_MANC_ARP_EN);
3607 
3608                 /* enable receiving management packets to the host */
3609                 if (adapter->hw.mac.type >= e1000_82571) {
3610 			manc |= E1000_MANC_EN_MNG2HOST;
3611 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3612 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3613 			manc2h |= E1000_MNG2HOST_PORT_623;
3614 			manc2h |= E1000_MNG2HOST_PORT_664;
3615 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3616 		}
3617 
3618 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3619 	}
3620 }
3621 
3622 /*
3623  * Give control back to hardware management
3624  * controller if there is one.
3625  */
3626 static void
3627 em_rel_mgmt(struct adapter *adapter)
3628 {
3629 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3630 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3631 
3632 		/* re-enable hardware interception of ARP */
3633 		manc |= E1000_MANC_ARP_EN;
3634 
3635 		if (adapter->hw.mac.type >= e1000_82571)
3636 			manc &= ~E1000_MANC_EN_MNG2HOST;
3637 
3638 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3639 	}
3640 }
3641 
3642 /*
3643  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3644  * For ASF and Pass Through versions of f/w this means that
3645  * the driver is loaded.  For AMT version (only with 82573)
3646  * of the f/w this means that the network i/f is open.
3647  */
3648 static void
3649 em_get_hw_control(struct adapter *adapter)
3650 {
3651 	/* Let firmware know the driver has taken over */
3652 	if (adapter->hw.mac.type == e1000_82573) {
3653 		uint32_t swsm;
3654 
3655 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3656 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3657 		    swsm | E1000_SWSM_DRV_LOAD);
3658 	} else {
3659 		uint32_t ctrl_ext;
3660 
3661 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3662 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3663 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3664 	}
3665 	adapter->flags |= EM_FLAG_HW_CTRL;
3666 }
3667 
3668 /*
3669  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3670  * For ASF and Pass Through versions of f/w this means that the
3671  * driver is no longer loaded.  For AMT version (only with 82573)
3672  * of the f/w this means that the network i/f is closed.
3673  */
3674 static void
3675 em_rel_hw_control(struct adapter *adapter)
3676 {
3677 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3678 		return;
3679 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3680 
3681 	/* Let firmware taken over control of h/w */
3682 	if (adapter->hw.mac.type == e1000_82573) {
3683 		uint32_t swsm;
3684 
3685 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3686 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3687 		    swsm & ~E1000_SWSM_DRV_LOAD);
3688 	} else {
3689 		uint32_t ctrl_ext;
3690 
3691 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3692 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3693 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3694 	}
3695 }
3696 
3697 static int
3698 em_is_valid_eaddr(const uint8_t *addr)
3699 {
3700 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3701 
3702 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3703 		return (FALSE);
3704 
3705 	return (TRUE);
3706 }
3707 
3708 /*
3709  * Enable PCI Wake On Lan capability
3710  */
3711 void
3712 em_enable_wol(device_t dev)
3713 {
3714 	uint16_t cap, status;
3715 	uint8_t id;
3716 
3717 	/* First find the capabilities pointer*/
3718 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3719 
3720 	/* Read the PM Capabilities */
3721 	id = pci_read_config(dev, cap, 1);
3722 	if (id != PCIY_PMG)     /* Something wrong */
3723 		return;
3724 
3725 	/*
3726 	 * OK, we have the power capabilities,
3727 	 * so now get the status register
3728 	 */
3729 	cap += PCIR_POWER_STATUS;
3730 	status = pci_read_config(dev, cap, 2);
3731 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3732 	pci_write_config(dev, cap, status, 2);
3733 }
3734 
3735 
3736 /*
3737  * 82544 Coexistence issue workaround.
3738  *    There are 2 issues.
3739  *       1. Transmit Hang issue.
3740  *    To detect this issue, following equation can be used...
3741  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3742  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3743  *
3744  *       2. DAC issue.
3745  *    To detect this issue, following equation can be used...
3746  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3747  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3748  *
3749  *    WORKAROUND:
3750  *	  Make sure we do not have ending address
3751  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3752  */
3753 static uint32_t
3754 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3755 {
3756 	uint32_t safe_terminator;
3757 
3758 	/*
3759 	 * Since issue is sensitive to length and address.
3760 	 * Let us first check the address...
3761 	 */
3762 	if (length <= 4) {
3763 		desc_array->descriptor[0].address = address;
3764 		desc_array->descriptor[0].length = length;
3765 		desc_array->elements = 1;
3766 		return (desc_array->elements);
3767 	}
3768 
3769 	safe_terminator =
3770 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3771 
3772 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3773 	if (safe_terminator == 0 ||
3774 	    (safe_terminator > 4 && safe_terminator < 9) ||
3775 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3776 		desc_array->descriptor[0].address = address;
3777 		desc_array->descriptor[0].length = length;
3778 		desc_array->elements = 1;
3779 		return (desc_array->elements);
3780 	}
3781 
3782 	desc_array->descriptor[0].address = address;
3783 	desc_array->descriptor[0].length = length - 4;
3784 	desc_array->descriptor[1].address = address + (length - 4);
3785 	desc_array->descriptor[1].length = 4;
3786 	desc_array->elements = 2;
3787 	return (desc_array->elements);
3788 }
3789 
3790 static void
3791 em_update_stats(struct adapter *adapter)
3792 {
3793 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3794 
3795 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3796 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3797 		adapter->stats.symerrs +=
3798 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3799 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3800 	}
3801 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3802 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3803 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3804 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3805 
3806 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3807 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3808 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3809 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3810 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3811 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3812 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3813 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3814 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3815 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3816 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3817 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3818 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3819 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3820 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3821 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3822 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3823 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3824 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3825 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3826 
3827 	/* For the 64-bit byte counters the low dword must be read first. */
3828 	/* Both registers clear on the read of the high dword */
3829 
3830 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3831 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3832 
3833 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3834 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3835 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3836 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3837 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3838 
3839 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3840 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3841 
3842 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3843 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3844 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3845 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3846 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3847 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3848 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3849 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3850 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3851 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3852 
3853 	if (adapter->hw.mac.type >= e1000_82543) {
3854 		adapter->stats.algnerrc +=
3855 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3856 		adapter->stats.rxerrc +=
3857 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3858 		adapter->stats.tncrs +=
3859 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3860 		adapter->stats.cexterr +=
3861 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3862 		adapter->stats.tsctc +=
3863 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3864 		adapter->stats.tsctfc +=
3865 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3866 	}
3867 
3868 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3869 
3870 	/* Rx Errors */
3871 	IFNET_STAT_SET(ifp, ierrors,
3872 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3873 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3874 	    adapter->stats.ruc + adapter->stats.roc +
3875 	    adapter->stats.mpc + adapter->stats.cexterr);
3876 
3877 	/* Tx Errors */
3878 	IFNET_STAT_SET(ifp, oerrors,
3879 	    adapter->stats.ecol + adapter->stats.latecol +
3880 	    adapter->watchdog_events);
3881 }
3882 
3883 static void
3884 em_print_debug_info(struct adapter *adapter)
3885 {
3886 	device_t dev = adapter->dev;
3887 	uint8_t *hw_addr = adapter->hw.hw_addr;
3888 
3889 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3890 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3891 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3892 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3893 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3894 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3895 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3896 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3897 	    adapter->hw.fc.high_water,
3898 	    adapter->hw.fc.low_water);
3899 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3900 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3901 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3902 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3903 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3904 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3905 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3906 	    (long long)adapter->tx_fifo_wrk_cnt,
3907 	    (long long)adapter->tx_fifo_reset_cnt);
3908 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3909 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3910 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3911 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3912 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3913 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3914 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3915 	    adapter->num_tx_desc_avail);
3916 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3917 	    adapter->no_tx_desc_avail1);
3918 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3919 	    adapter->no_tx_desc_avail2);
3920 	device_printf(dev, "Std mbuf failed = %ld\n",
3921 	    adapter->mbuf_alloc_failed);
3922 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3923 	    adapter->mbuf_cluster_failed);
3924 	device_printf(dev, "Driver dropped packets = %ld\n",
3925 	    adapter->dropped_pkts);
3926 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3927 	    adapter->no_tx_dma_setup);
3928 }
3929 
3930 static void
3931 em_print_hw_stats(struct adapter *adapter)
3932 {
3933 	device_t dev = adapter->dev;
3934 
3935 	device_printf(dev, "Excessive collisions = %lld\n",
3936 	    (long long)adapter->stats.ecol);
3937 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3938 	device_printf(dev, "Symbol errors = %lld\n",
3939 	    (long long)adapter->stats.symerrs);
3940 #endif
3941 	device_printf(dev, "Sequence errors = %lld\n",
3942 	    (long long)adapter->stats.sec);
3943 	device_printf(dev, "Defer count = %lld\n",
3944 	    (long long)adapter->stats.dc);
3945 	device_printf(dev, "Missed Packets = %lld\n",
3946 	    (long long)adapter->stats.mpc);
3947 	device_printf(dev, "Receive No Buffers = %lld\n",
3948 	    (long long)adapter->stats.rnbc);
3949 	/* RLEC is inaccurate on some hardware, calculate our own. */
3950 	device_printf(dev, "Receive Length Errors = %lld\n",
3951 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3952 	device_printf(dev, "Receive errors = %lld\n",
3953 	    (long long)adapter->stats.rxerrc);
3954 	device_printf(dev, "Crc errors = %lld\n",
3955 	    (long long)adapter->stats.crcerrs);
3956 	device_printf(dev, "Alignment errors = %lld\n",
3957 	    (long long)adapter->stats.algnerrc);
3958 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3959 	    (long long)adapter->stats.cexterr);
3960 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3961 	device_printf(dev, "watchdog timeouts = %ld\n",
3962 	    adapter->watchdog_events);
3963 	device_printf(dev, "XON Rcvd = %lld\n",
3964 	    (long long)adapter->stats.xonrxc);
3965 	device_printf(dev, "XON Xmtd = %lld\n",
3966 	    (long long)adapter->stats.xontxc);
3967 	device_printf(dev, "XOFF Rcvd = %lld\n",
3968 	    (long long)adapter->stats.xoffrxc);
3969 	device_printf(dev, "XOFF Xmtd = %lld\n",
3970 	    (long long)adapter->stats.xofftxc);
3971 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3972 	    (long long)adapter->stats.gprc);
3973 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3974 	    (long long)adapter->stats.gptc);
3975 }
3976 
3977 static void
3978 em_print_nvm_info(struct adapter *adapter)
3979 {
3980 	uint16_t eeprom_data;
3981 	int i, j, row = 0;
3982 
3983 	/* Its a bit crude, but it gets the job done */
3984 	kprintf("\nInterface EEPROM Dump:\n");
3985 	kprintf("Offset\n0x0000  ");
3986 	for (i = 0, j = 0; i < 32; i++, j++) {
3987 		if (j == 8) { /* Make the offset block */
3988 			j = 0; ++row;
3989 			kprintf("\n0x00%x0  ",row);
3990 		}
3991 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3992 		kprintf("%04x ", eeprom_data);
3993 	}
3994 	kprintf("\n");
3995 }
3996 
3997 static int
3998 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3999 {
4000 	struct adapter *adapter;
4001 	struct ifnet *ifp;
4002 	int error, result;
4003 
4004 	result = -1;
4005 	error = sysctl_handle_int(oidp, &result, 0, req);
4006 	if (error || !req->newptr)
4007 		return (error);
4008 
4009 	adapter = (struct adapter *)arg1;
4010 	ifp = &adapter->arpcom.ac_if;
4011 
4012 	lwkt_serialize_enter(ifp->if_serializer);
4013 
4014 	if (result == 1)
4015 		em_print_debug_info(adapter);
4016 
4017 	/*
4018 	 * This value will cause a hex dump of the
4019 	 * first 32 16-bit words of the EEPROM to
4020 	 * the screen.
4021 	 */
4022 	if (result == 2)
4023 		em_print_nvm_info(adapter);
4024 
4025 	lwkt_serialize_exit(ifp->if_serializer);
4026 
4027 	return (error);
4028 }
4029 
4030 static int
4031 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4032 {
4033 	int error, result;
4034 
4035 	result = -1;
4036 	error = sysctl_handle_int(oidp, &result, 0, req);
4037 	if (error || !req->newptr)
4038 		return (error);
4039 
4040 	if (result == 1) {
4041 		struct adapter *adapter = (struct adapter *)arg1;
4042 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4043 
4044 		lwkt_serialize_enter(ifp->if_serializer);
4045 		em_print_hw_stats(adapter);
4046 		lwkt_serialize_exit(ifp->if_serializer);
4047 	}
4048 	return (error);
4049 }
4050 
4051 static void
4052 em_add_sysctl(struct adapter *adapter)
4053 {
4054 	sysctl_ctx_init(&adapter->sysctl_ctx);
4055 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4056 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4057 					device_get_nameunit(adapter->dev),
4058 					CTLFLAG_RD, 0, "");
4059 	if (adapter->sysctl_tree == NULL) {
4060 		device_printf(adapter->dev, "can't add sysctl node\n");
4061 	} else {
4062 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4063 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4064 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4065 		    em_sysctl_debug_info, "I", "Debug Information");
4066 
4067 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4068 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4069 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4070 		    em_sysctl_stats, "I", "Statistics");
4071 
4072 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4073 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4074 		    OID_AUTO, "rxd", CTLFLAG_RD,
4075 		    &adapter->num_rx_desc, 0, NULL);
4076 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4077 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4078 		    OID_AUTO, "txd", CTLFLAG_RD,
4079 		    &adapter->num_tx_desc, 0, NULL);
4080 
4081 		if (adapter->hw.mac.type >= e1000_82540) {
4082 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4083 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4084 			    OID_AUTO, "int_throttle_ceil",
4085 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4086 			    em_sysctl_int_throttle, "I",
4087 			    "interrupt throttling rate");
4088 		}
4089 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4090 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4091 		    OID_AUTO, "int_tx_nsegs",
4092 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4093 		    em_sysctl_int_tx_nsegs, "I",
4094 		    "# segments per TX interrupt");
4095 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4096 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4097 	            OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4098 		    &adapter->tx_wreg_nsegs, 0,
4099 		    "# segments before write to hardware register");
4100 	}
4101 }
4102 
4103 static int
4104 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4105 {
4106 	struct adapter *adapter = (void *)arg1;
4107 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4108 	int error, throttle;
4109 
4110 	throttle = adapter->int_throttle_ceil;
4111 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4112 	if (error || req->newptr == NULL)
4113 		return error;
4114 	if (throttle < 0 || throttle > 1000000000 / 256)
4115 		return EINVAL;
4116 
4117 	if (throttle) {
4118 		/*
4119 		 * Set the interrupt throttling rate in 256ns increments,
4120 		 * recalculate sysctl value assignment to get exact frequency.
4121 		 */
4122 		throttle = 1000000000 / 256 / throttle;
4123 
4124 		/* Upper 16bits of ITR is reserved and should be zero */
4125 		if (throttle & 0xffff0000)
4126 			return EINVAL;
4127 	}
4128 
4129 	lwkt_serialize_enter(ifp->if_serializer);
4130 
4131 	if (throttle)
4132 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4133 	else
4134 		adapter->int_throttle_ceil = 0;
4135 
4136 	if (ifp->if_flags & IFF_RUNNING)
4137 		em_set_itr(adapter, throttle);
4138 
4139 	lwkt_serialize_exit(ifp->if_serializer);
4140 
4141 	if (bootverbose) {
4142 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4143 			  adapter->int_throttle_ceil);
4144 	}
4145 	return 0;
4146 }
4147 
4148 static int
4149 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4150 {
4151 	struct adapter *adapter = (void *)arg1;
4152 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4153 	int error, segs;
4154 
4155 	segs = adapter->tx_int_nsegs;
4156 	error = sysctl_handle_int(oidp, &segs, 0, req);
4157 	if (error || req->newptr == NULL)
4158 		return error;
4159 	if (segs <= 0)
4160 		return EINVAL;
4161 
4162 	lwkt_serialize_enter(ifp->if_serializer);
4163 
4164 	/*
4165 	 * Don't allow int_tx_nsegs to become:
4166 	 * o  Less the oact_tx_desc
4167 	 * o  Too large that no TX desc will cause TX interrupt to
4168 	 *    be generated (OACTIVE will never recover)
4169 	 * o  Too small that will cause tx_dd[] overflow
4170 	 */
4171 	if (segs < adapter->oact_tx_desc ||
4172 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4173 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4174 		error = EINVAL;
4175 	} else {
4176 		error = 0;
4177 		adapter->tx_int_nsegs = segs;
4178 	}
4179 
4180 	lwkt_serialize_exit(ifp->if_serializer);
4181 
4182 	return error;
4183 }
4184 
4185 static void
4186 em_set_itr(struct adapter *adapter, uint32_t itr)
4187 {
4188 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4189 	if (adapter->hw.mac.type == e1000_82574) {
4190 		int i;
4191 
4192 		/*
4193 		 * When using MSIX interrupts we need to
4194 		 * throttle using the EITR register
4195 		 */
4196 		for (i = 0; i < 4; ++i) {
4197 			E1000_WRITE_REG(&adapter->hw,
4198 			    E1000_EITR_82574(i), itr);
4199 		}
4200 	}
4201 }
4202 
4203 static void
4204 em_disable_aspm(struct adapter *adapter)
4205 {
4206 	uint16_t link_cap, link_ctrl, disable;
4207 	uint8_t pcie_ptr, reg;
4208 	device_t dev = adapter->dev;
4209 
4210 	switch (adapter->hw.mac.type) {
4211 	case e1000_82571:
4212 	case e1000_82572:
4213 	case e1000_82573:
4214 		/*
4215 		 * 82573 specification update
4216 		 * errata #8 disable L0s
4217 		 * errata #41 disable L1
4218 		 *
4219 		 * 82571/82572 specification update
4220 		 # errata #13 disable L1
4221 		 * errata #68 disable L0s
4222 		 */
4223 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4224 		break;
4225 
4226 	case e1000_82574:
4227 	case e1000_82583:
4228 		/*
4229 		 * 82574 specification update errata #20
4230 		 * 82583 specification update errata #9
4231 		 *
4232 		 * There is no need to disable L1
4233 		 */
4234 		disable = PCIEM_LNKCTL_ASPM_L0S;
4235 		break;
4236 
4237 	default:
4238 		return;
4239 	}
4240 
4241 	pcie_ptr = pci_get_pciecap_ptr(dev);
4242 	if (pcie_ptr == 0)
4243 		return;
4244 
4245 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4246 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4247 		return;
4248 
4249 	if (bootverbose) {
4250 		if_printf(&adapter->arpcom.ac_if,
4251 		    "disable ASPM %#02x\n", disable);
4252 	}
4253 
4254 	reg = pcie_ptr + PCIER_LINKCTRL;
4255 	link_ctrl = pci_read_config(dev, reg, 2);
4256 	link_ctrl &= ~disable;
4257 	pci_write_config(dev, reg, link_ctrl, 2);
4258 }
4259 
4260 static int
4261 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4262 {
4263 	int iphlen, hoff, thoff, ex = 0;
4264 	struct mbuf *m;
4265 	struct ip *ip;
4266 
4267 	m = *mp;
4268 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4269 
4270 	iphlen = m->m_pkthdr.csum_iphlen;
4271 	thoff = m->m_pkthdr.csum_thlen;
4272 	hoff = m->m_pkthdr.csum_lhlen;
4273 
4274 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4275 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4276 	KASSERT(hoff > 0, ("invalid ether hlen"));
4277 
4278 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4279 		ex = 4;
4280 
4281 	if (m->m_len < hoff + iphlen + thoff + ex) {
4282 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4283 		if (m == NULL) {
4284 			*mp = NULL;
4285 			return ENOBUFS;
4286 		}
4287 		*mp = m;
4288 	}
4289 	ip = mtodoff(m, struct ip *, hoff);
4290 	ip->ip_len = 0;
4291 
4292 	return 0;
4293 }
4294 
4295 static int
4296 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4297     uint32_t *txd_upper, uint32_t *txd_lower)
4298 {
4299 	struct e1000_context_desc *TXD;
4300 	int hoff, iphlen, thoff, hlen;
4301 	int mss, pktlen, curr_txd;
4302 
4303 	iphlen = mp->m_pkthdr.csum_iphlen;
4304 	thoff = mp->m_pkthdr.csum_thlen;
4305 	hoff = mp->m_pkthdr.csum_lhlen;
4306 	mss = mp->m_pkthdr.tso_segsz;
4307 	pktlen = mp->m_pkthdr.len;
4308 
4309 	if (adapter->csum_flags == CSUM_TSO &&
4310 	    adapter->csum_iphlen == iphlen &&
4311 	    adapter->csum_lhlen == hoff &&
4312 	    adapter->csum_thlen == thoff &&
4313 	    adapter->csum_mss == mss &&
4314 	    adapter->csum_pktlen == pktlen) {
4315 		*txd_upper = adapter->csum_txd_upper;
4316 		*txd_lower = adapter->csum_txd_lower;
4317 		return 0;
4318 	}
4319 	hlen = hoff + iphlen + thoff;
4320 
4321 	/*
4322 	 * Setup a new TSO context.
4323 	 */
4324 
4325 	curr_txd = adapter->next_avail_tx_desc;
4326 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4327 
4328 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4329 		     E1000_TXD_DTYP_D |		/* Data descr type */
4330 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4331 
4332 	/* IP and/or TCP header checksum calculation and insertion. */
4333 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4334 
4335 	/*
4336 	 * Start offset for header checksum calculation.
4337 	 * End offset for header checksum calculation.
4338 	 * Offset of place put the checksum.
4339 	 */
4340 	TXD->lower_setup.ip_fields.ipcss = hoff;
4341 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4342 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4343 
4344 	/*
4345 	 * Start offset for payload checksum calculation.
4346 	 * End offset for payload checksum calculation.
4347 	 * Offset of place to put the checksum.
4348 	 */
4349 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4350 	TXD->upper_setup.tcp_fields.tucse = 0;
4351 	TXD->upper_setup.tcp_fields.tucso =
4352 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4353 
4354 	/*
4355 	 * Payload size per packet w/o any headers.
4356 	 * Length of all headers up to payload.
4357 	 */
4358 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4359 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4360 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4361 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4362 				E1000_TXD_CMD_TSE |	/* TSE context */
4363 				E1000_TXD_CMD_IP |	/* Do IP csum */
4364 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4365 				(pktlen - hlen));	/* Total len */
4366 
4367 	/* Save the information for this TSO context */
4368 	adapter->csum_flags = CSUM_TSO;
4369 	adapter->csum_lhlen = hoff;
4370 	adapter->csum_iphlen = iphlen;
4371 	adapter->csum_thlen = thoff;
4372 	adapter->csum_mss = mss;
4373 	adapter->csum_pktlen = pktlen;
4374 	adapter->csum_txd_upper = *txd_upper;
4375 	adapter->csum_txd_lower = *txd_lower;
4376 
4377 	if (++curr_txd == adapter->num_tx_desc)
4378 		curr_txd = 0;
4379 
4380 	KKASSERT(adapter->num_tx_desc_avail > 0);
4381 	adapter->num_tx_desc_avail--;
4382 
4383 	adapter->next_avail_tx_desc = curr_txd;
4384 	return 1;
4385 }
4386