xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision 8bb2400d5e4f21e6ed6fe870515c2d9a1cdfb5c7)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/ifq_var.h>
121 #include <net/vlan/if_vlan_var.h>
122 #include <net/vlan/if_vlan_ether.h>
123 
124 #include <netinet/in_systm.h>
125 #include <netinet/in.h>
126 #include <netinet/ip.h>
127 #include <netinet/tcp.h>
128 #include <netinet/udp.h>
129 
130 #include <bus/pci/pcivar.h>
131 #include <bus/pci/pcireg.h>
132 
133 #include <dev/netif/ig_hal/e1000_api.h>
134 #include <dev/netif/ig_hal/e1000_82571.h>
135 #include <dev/netif/em/if_em.h>
136 
137 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
138 #define EM_VER	" 7.2.4"
139 
140 #define _EM_DEVICE(id, ret)	\
141 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
142 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
143 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
144 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
145 
146 static const struct em_vendor_info em_vendor_info_array[] = {
147 	EM_DEVICE(82540EM),
148 	EM_DEVICE(82540EM_LOM),
149 	EM_DEVICE(82540EP),
150 	EM_DEVICE(82540EP_LOM),
151 	EM_DEVICE(82540EP_LP),
152 
153 	EM_DEVICE(82541EI),
154 	EM_DEVICE(82541ER),
155 	EM_DEVICE(82541ER_LOM),
156 	EM_DEVICE(82541EI_MOBILE),
157 	EM_DEVICE(82541GI),
158 	EM_DEVICE(82541GI_LF),
159 	EM_DEVICE(82541GI_MOBILE),
160 
161 	EM_DEVICE(82542),
162 
163 	EM_DEVICE(82543GC_FIBER),
164 	EM_DEVICE(82543GC_COPPER),
165 
166 	EM_DEVICE(82544EI_COPPER),
167 	EM_DEVICE(82544EI_FIBER),
168 	EM_DEVICE(82544GC_COPPER),
169 	EM_DEVICE(82544GC_LOM),
170 
171 	EM_DEVICE(82545EM_COPPER),
172 	EM_DEVICE(82545EM_FIBER),
173 	EM_DEVICE(82545GM_COPPER),
174 	EM_DEVICE(82545GM_FIBER),
175 	EM_DEVICE(82545GM_SERDES),
176 
177 	EM_DEVICE(82546EB_COPPER),
178 	EM_DEVICE(82546EB_FIBER),
179 	EM_DEVICE(82546EB_QUAD_COPPER),
180 	EM_DEVICE(82546GB_COPPER),
181 	EM_DEVICE(82546GB_FIBER),
182 	EM_DEVICE(82546GB_SERDES),
183 	EM_DEVICE(82546GB_PCIE),
184 	EM_DEVICE(82546GB_QUAD_COPPER),
185 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
186 
187 	EM_DEVICE(82547EI),
188 	EM_DEVICE(82547EI_MOBILE),
189 	EM_DEVICE(82547GI),
190 
191 	EM_EMX_DEVICE(82571EB_COPPER),
192 	EM_EMX_DEVICE(82571EB_FIBER),
193 	EM_EMX_DEVICE(82571EB_SERDES),
194 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
195 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
196 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
197 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
198 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
199 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
200 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
201 
202 	EM_EMX_DEVICE(82572EI_COPPER),
203 	EM_EMX_DEVICE(82572EI_FIBER),
204 	EM_EMX_DEVICE(82572EI_SERDES),
205 	EM_EMX_DEVICE(82572EI),
206 
207 	EM_EMX_DEVICE(82573E),
208 	EM_EMX_DEVICE(82573E_IAMT),
209 	EM_EMX_DEVICE(82573L),
210 
211 	EM_DEVICE(82583V),
212 
213 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
214 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
215 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
216 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
217 
218 	EM_DEVICE(ICH8_IGP_M_AMT),
219 	EM_DEVICE(ICH8_IGP_AMT),
220 	EM_DEVICE(ICH8_IGP_C),
221 	EM_DEVICE(ICH8_IFE),
222 	EM_DEVICE(ICH8_IFE_GT),
223 	EM_DEVICE(ICH8_IFE_G),
224 	EM_DEVICE(ICH8_IGP_M),
225 	EM_DEVICE(ICH8_82567V_3),
226 
227 	EM_DEVICE(ICH9_IGP_M_AMT),
228 	EM_DEVICE(ICH9_IGP_AMT),
229 	EM_DEVICE(ICH9_IGP_C),
230 	EM_DEVICE(ICH9_IGP_M),
231 	EM_DEVICE(ICH9_IGP_M_V),
232 	EM_DEVICE(ICH9_IFE),
233 	EM_DEVICE(ICH9_IFE_GT),
234 	EM_DEVICE(ICH9_IFE_G),
235 	EM_DEVICE(ICH9_BM),
236 
237 	EM_EMX_DEVICE(82574L),
238 	EM_EMX_DEVICE(82574LA),
239 
240 	EM_DEVICE(ICH10_R_BM_LM),
241 	EM_DEVICE(ICH10_R_BM_LF),
242 	EM_DEVICE(ICH10_R_BM_V),
243 	EM_DEVICE(ICH10_D_BM_LM),
244 	EM_DEVICE(ICH10_D_BM_LF),
245 	EM_DEVICE(ICH10_D_BM_V),
246 
247 	EM_DEVICE(PCH_M_HV_LM),
248 	EM_DEVICE(PCH_M_HV_LC),
249 	EM_DEVICE(PCH_D_HV_DM),
250 	EM_DEVICE(PCH_D_HV_DC),
251 
252 	EM_DEVICE(PCH2_LV_LM),
253 	EM_DEVICE(PCH2_LV_V),
254 
255 	/* required last entry */
256 	EM_DEVICE_NULL
257 };
258 
259 static int	em_probe(device_t);
260 static int	em_attach(device_t);
261 static int	em_detach(device_t);
262 static int	em_shutdown(device_t);
263 static int	em_suspend(device_t);
264 static int	em_resume(device_t);
265 
266 static void	em_init(void *);
267 static void	em_stop(struct adapter *);
268 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
269 static void	em_start(struct ifnet *);
270 #ifdef DEVICE_POLLING
271 static void	em_poll(struct ifnet *, enum poll_cmd, int);
272 #endif
273 static void	em_watchdog(struct ifnet *);
274 static void	em_media_status(struct ifnet *, struct ifmediareq *);
275 static int	em_media_change(struct ifnet *);
276 static void	em_timer(void *);
277 
278 static void	em_intr(void *);
279 static void	em_intr_mask(void *);
280 static void	em_intr_body(struct adapter *, boolean_t);
281 static void	em_rxeof(struct adapter *, int);
282 static void	em_txeof(struct adapter *);
283 static void	em_tx_collect(struct adapter *);
284 static void	em_tx_purge(struct adapter *);
285 static void	em_enable_intr(struct adapter *);
286 static void	em_disable_intr(struct adapter *);
287 
288 static int	em_dma_malloc(struct adapter *, bus_size_t,
289 		    struct em_dma_alloc *);
290 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
291 static void	em_init_tx_ring(struct adapter *);
292 static int	em_init_rx_ring(struct adapter *);
293 static int	em_create_tx_ring(struct adapter *);
294 static int	em_create_rx_ring(struct adapter *);
295 static void	em_destroy_tx_ring(struct adapter *, int);
296 static void	em_destroy_rx_ring(struct adapter *, int);
297 static int	em_newbuf(struct adapter *, int, int);
298 static int	em_encap(struct adapter *, struct mbuf **);
299 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
300 		    struct mbuf *);
301 static int	em_txcsum_pullup(struct adapter *, struct mbuf **);
302 static int	em_txcsum(struct adapter *, struct mbuf *,
303 		    uint32_t *, uint32_t *);
304 
305 static int	em_get_hw_info(struct adapter *);
306 static int 	em_is_valid_eaddr(const uint8_t *);
307 static int	em_alloc_pci_res(struct adapter *);
308 static void	em_free_pci_res(struct adapter *);
309 static int	em_reset(struct adapter *);
310 static void	em_setup_ifp(struct adapter *);
311 static void	em_init_tx_unit(struct adapter *);
312 static void	em_init_rx_unit(struct adapter *);
313 static void	em_update_stats(struct adapter *);
314 static void	em_set_promisc(struct adapter *);
315 static void	em_disable_promisc(struct adapter *);
316 static void	em_set_multi(struct adapter *);
317 static void	em_update_link_status(struct adapter *);
318 static void	em_smartspeed(struct adapter *);
319 static void	em_set_itr(struct adapter *, uint32_t);
320 static void	em_disable_aspm(struct adapter *);
321 
322 /* Hardware workarounds */
323 static int	em_82547_fifo_workaround(struct adapter *, int);
324 static void	em_82547_update_fifo_head(struct adapter *, int);
325 static int	em_82547_tx_fifo_reset(struct adapter *);
326 static void	em_82547_move_tail(void *);
327 static void	em_82547_move_tail_serialized(struct adapter *);
328 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
329 
330 static void	em_print_debug_info(struct adapter *);
331 static void	em_print_nvm_info(struct adapter *);
332 static void	em_print_hw_stats(struct adapter *);
333 
334 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
335 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
336 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
337 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
338 static void	em_add_sysctl(struct adapter *adapter);
339 
340 /* Management and WOL Support */
341 static void	em_get_mgmt(struct adapter *);
342 static void	em_rel_mgmt(struct adapter *);
343 static void	em_get_hw_control(struct adapter *);
344 static void	em_rel_hw_control(struct adapter *);
345 static void	em_enable_wol(device_t);
346 
347 static device_method_t em_methods[] = {
348 	/* Device interface */
349 	DEVMETHOD(device_probe,		em_probe),
350 	DEVMETHOD(device_attach,	em_attach),
351 	DEVMETHOD(device_detach,	em_detach),
352 	DEVMETHOD(device_shutdown,	em_shutdown),
353 	DEVMETHOD(device_suspend,	em_suspend),
354 	DEVMETHOD(device_resume,	em_resume),
355 	{ 0, 0 }
356 };
357 
358 static driver_t em_driver = {
359 	"em",
360 	em_methods,
361 	sizeof(struct adapter),
362 };
363 
364 static devclass_t em_devclass;
365 
366 DECLARE_DUMMY_MODULE(if_em);
367 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
368 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
369 
370 /*
371  * Tunables
372  */
373 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
374 static int	em_rxd = EM_DEFAULT_RXD;
375 static int	em_txd = EM_DEFAULT_TXD;
376 static int	em_smart_pwr_down = 0;
377 
378 /* Controls whether promiscuous also shows bad packets */
379 static int	em_debug_sbp = FALSE;
380 
381 static int	em_82573_workaround = 1;
382 static int	em_msi_enable = 1;
383 
384 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
385 TUNABLE_INT("hw.em.rxd", &em_rxd);
386 TUNABLE_INT("hw.em.txd", &em_txd);
387 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
388 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
389 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
390 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
391 
392 /* Global used in WOL setup with multiport cards */
393 static int	em_global_quad_port_a = 0;
394 
395 /* Set this to one to display debug statistics */
396 static int	em_display_debug_stats = 0;
397 
398 #if !defined(KTR_IF_EM)
399 #define KTR_IF_EM	KTR_ALL
400 #endif
401 KTR_INFO_MASTER(if_em);
402 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
403 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
404 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
405 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
406 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
407 #define logif(name)	KTR_LOG(if_em_ ## name)
408 
409 static int
410 em_probe(device_t dev)
411 {
412 	const struct em_vendor_info *ent;
413 	uint16_t vid, did;
414 
415 	vid = pci_get_vendor(dev);
416 	did = pci_get_device(dev);
417 
418 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
419 		if (vid == ent->vendor_id && did == ent->device_id) {
420 			device_set_desc(dev, ent->desc);
421 			device_set_async_attach(dev, TRUE);
422 			return (ent->ret);
423 		}
424 	}
425 	return (ENXIO);
426 }
427 
428 static int
429 em_attach(device_t dev)
430 {
431 	struct adapter *adapter = device_get_softc(dev);
432 	struct ifnet *ifp = &adapter->arpcom.ac_if;
433 	int tsize, rsize;
434 	int error = 0;
435 	uint16_t eeprom_data, device_id, apme_mask;
436 	driver_intr_t *intr_func;
437 
438 	adapter->dev = adapter->osdep.dev = dev;
439 
440 	callout_init_mp(&adapter->timer);
441 	callout_init_mp(&adapter->tx_fifo_timer);
442 
443 	/* Determine hardware and mac info */
444 	error = em_get_hw_info(adapter);
445 	if (error) {
446 		device_printf(dev, "Identify hardware failed\n");
447 		goto fail;
448 	}
449 
450 	/* Setup PCI resources */
451 	error = em_alloc_pci_res(adapter);
452 	if (error) {
453 		device_printf(dev, "Allocation of PCI resources failed\n");
454 		goto fail;
455 	}
456 
457 	/*
458 	 * For ICH8 and family we need to map the flash memory,
459 	 * and this must happen after the MAC is identified.
460 	 */
461 	if (adapter->hw.mac.type == e1000_ich8lan ||
462 	    adapter->hw.mac.type == e1000_ich9lan ||
463 	    adapter->hw.mac.type == e1000_ich10lan ||
464 	    adapter->hw.mac.type == e1000_pchlan ||
465 	    adapter->hw.mac.type == e1000_pch2lan) {
466 		adapter->flash_rid = EM_BAR_FLASH;
467 
468 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
469 					&adapter->flash_rid, RF_ACTIVE);
470 		if (adapter->flash == NULL) {
471 			device_printf(dev, "Mapping of Flash failed\n");
472 			error = ENXIO;
473 			goto fail;
474 		}
475 		adapter->osdep.flash_bus_space_tag =
476 		    rman_get_bustag(adapter->flash);
477 		adapter->osdep.flash_bus_space_handle =
478 		    rman_get_bushandle(adapter->flash);
479 
480 		/*
481 		 * This is used in the shared code
482 		 * XXX this goof is actually not used.
483 		 */
484 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
485 	}
486 
487 	/* Do Shared Code initialization */
488 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
489 		device_printf(dev, "Setup of Shared code failed\n");
490 		error = ENXIO;
491 		goto fail;
492 	}
493 
494 	e1000_get_bus_info(&adapter->hw);
495 
496 	/*
497 	 * Validate number of transmit and receive descriptors.  It
498 	 * must not exceed hardware maximum, and must be multiple
499 	 * of E1000_DBA_ALIGN.
500 	 */
501 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
502 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
503 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
504 	    em_txd < EM_MIN_TXD) {
505 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
506 		    EM_DEFAULT_TXD, em_txd);
507 		adapter->num_tx_desc = EM_DEFAULT_TXD;
508 	} else {
509 		adapter->num_tx_desc = em_txd;
510 	}
511 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
512 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
513 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
514 	    em_rxd < EM_MIN_RXD) {
515 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
516 		    EM_DEFAULT_RXD, em_rxd);
517 		adapter->num_rx_desc = EM_DEFAULT_RXD;
518 	} else {
519 		adapter->num_rx_desc = em_rxd;
520 	}
521 
522 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
523 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
524 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
525 	adapter->rx_buffer_len = MCLBYTES;
526 
527 	/*
528 	 * Interrupt throttle rate
529 	 */
530 	if (em_int_throttle_ceil == 0) {
531 		adapter->int_throttle_ceil = 0;
532 	} else {
533 		int throttle = em_int_throttle_ceil;
534 
535 		if (throttle < 0)
536 			throttle = EM_DEFAULT_ITR;
537 
538 		/* Recalculate the tunable value to get the exact frequency. */
539 		throttle = 1000000000 / 256 / throttle;
540 
541 		/* Upper 16bits of ITR is reserved and should be zero */
542 		if (throttle & 0xffff0000)
543 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
544 
545 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
546 	}
547 
548 	e1000_init_script_state_82541(&adapter->hw, TRUE);
549 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
550 
551 	/* Copper options */
552 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
553 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
554 		adapter->hw.phy.disable_polarity_correction = FALSE;
555 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
556 	}
557 
558 	/* Set the frame limits assuming standard ethernet sized frames. */
559 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
560 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
561 
562 	/* This controls when hardware reports transmit completion status. */
563 	adapter->hw.mac.report_tx_early = 1;
564 
565 	/*
566 	 * Create top level busdma tag
567 	 */
568 	error = bus_dma_tag_create(NULL, 1, 0,
569 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
570 			NULL, NULL,
571 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
572 			0, &adapter->parent_dtag);
573 	if (error) {
574 		device_printf(dev, "could not create top level DMA tag\n");
575 		goto fail;
576 	}
577 
578 	/*
579 	 * Allocate Transmit Descriptor ring
580 	 */
581 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
582 			 EM_DBA_ALIGN);
583 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
584 	if (error) {
585 		device_printf(dev, "Unable to allocate tx_desc memory\n");
586 		goto fail;
587 	}
588 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
589 
590 	/*
591 	 * Allocate Receive Descriptor ring
592 	 */
593 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
594 			 EM_DBA_ALIGN);
595 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
596 	if (error) {
597 		device_printf(dev, "Unable to allocate rx_desc memory\n");
598 		goto fail;
599 	}
600 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
601 
602 	/* Allocate multicast array memory. */
603 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
604 	    M_DEVBUF, M_WAITOK);
605 
606 	/* Indicate SOL/IDER usage */
607 	if (e1000_check_reset_block(&adapter->hw)) {
608 		device_printf(dev,
609 		    "PHY reset is blocked due to SOL/IDER session.\n");
610 	}
611 
612 	/*
613 	 * Start from a known state, this is important in reading the
614 	 * nvm and mac from that.
615 	 */
616 	e1000_reset_hw(&adapter->hw);
617 
618 	/* Make sure we have a good EEPROM before we read from it */
619 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
620 		/*
621 		 * Some PCI-E parts fail the first check due to
622 		 * the link being in sleep state, call it again,
623 		 * if it fails a second time its a real issue.
624 		 */
625 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
626 			device_printf(dev,
627 			    "The EEPROM Checksum Is Not Valid\n");
628 			error = EIO;
629 			goto fail;
630 		}
631 	}
632 
633 	/* Copy the permanent MAC address out of the EEPROM */
634 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
635 		device_printf(dev, "EEPROM read error while reading MAC"
636 		    " address\n");
637 		error = EIO;
638 		goto fail;
639 	}
640 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
641 		device_printf(dev, "Invalid MAC address\n");
642 		error = EIO;
643 		goto fail;
644 	}
645 
646 	/* Allocate transmit descriptors and buffers */
647 	error = em_create_tx_ring(adapter);
648 	if (error) {
649 		device_printf(dev, "Could not setup transmit structures\n");
650 		goto fail;
651 	}
652 
653 	/* Allocate receive descriptors and buffers */
654 	error = em_create_rx_ring(adapter);
655 	if (error) {
656 		device_printf(dev, "Could not setup receive structures\n");
657 		goto fail;
658 	}
659 
660 	/* Manually turn off all interrupts */
661 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
662 
663 	/* Determine if we have to control management hardware */
664 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
665 
666 	/*
667 	 * Setup Wake-on-Lan
668 	 */
669 	apme_mask = EM_EEPROM_APME;
670 	eeprom_data = 0;
671 	switch (adapter->hw.mac.type) {
672 	case e1000_82542:
673 	case e1000_82543:
674 		break;
675 
676 	case e1000_82573:
677 	case e1000_82583:
678 		adapter->has_amt = 1;
679 		/* FALL THROUGH */
680 
681 	case e1000_82546:
682 	case e1000_82546_rev_3:
683 	case e1000_82571:
684 	case e1000_82572:
685 	case e1000_80003es2lan:
686 		if (adapter->hw.bus.func == 1) {
687 			e1000_read_nvm(&adapter->hw,
688 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
689 		} else {
690 			e1000_read_nvm(&adapter->hw,
691 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
692 		}
693 		break;
694 
695 	case e1000_ich8lan:
696 	case e1000_ich9lan:
697 	case e1000_ich10lan:
698 	case e1000_pchlan:
699 	case e1000_pch2lan:
700 		apme_mask = E1000_WUC_APME;
701 		adapter->has_amt = TRUE;
702 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
703 		break;
704 
705 	default:
706 		e1000_read_nvm(&adapter->hw,
707 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
708 		break;
709 	}
710 	if (eeprom_data & apme_mask)
711 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
712 
713 	/*
714          * We have the eeprom settings, now apply the special cases
715          * where the eeprom may be wrong or the board won't support
716          * wake on lan on a particular port
717 	 */
718 	device_id = pci_get_device(dev);
719         switch (device_id) {
720 	case E1000_DEV_ID_82546GB_PCIE:
721 		adapter->wol = 0;
722 		break;
723 
724 	case E1000_DEV_ID_82546EB_FIBER:
725 	case E1000_DEV_ID_82546GB_FIBER:
726 	case E1000_DEV_ID_82571EB_FIBER:
727 		/*
728 		 * Wake events only supported on port A for dual fiber
729 		 * regardless of eeprom setting
730 		 */
731 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
732 		    E1000_STATUS_FUNC_1)
733 			adapter->wol = 0;
734 		break;
735 
736 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
737 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
738 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
739 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
740                 /* if quad port adapter, disable WoL on all but port A */
741 		if (em_global_quad_port_a != 0)
742 			adapter->wol = 0;
743 		/* Reset for multiple quad port adapters */
744 		if (++em_global_quad_port_a == 4)
745 			em_global_quad_port_a = 0;
746                 break;
747 	}
748 
749 	/* XXX disable wol */
750 	adapter->wol = 0;
751 
752 	/* Setup OS specific network interface */
753 	em_setup_ifp(adapter);
754 
755 	/* Add sysctl tree, must after em_setup_ifp() */
756 	em_add_sysctl(adapter);
757 
758 	/* Reset the hardware */
759 	error = em_reset(adapter);
760 	if (error) {
761 		device_printf(dev, "Unable to reset the hardware\n");
762 		goto fail;
763 	}
764 
765 	/* Initialize statistics */
766 	em_update_stats(adapter);
767 
768 	adapter->hw.mac.get_link_status = 1;
769 	em_update_link_status(adapter);
770 
771 	/* Do we need workaround for 82544 PCI-X adapter? */
772 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
773 	    adapter->hw.mac.type == e1000_82544)
774 		adapter->pcix_82544 = TRUE;
775 	else
776 		adapter->pcix_82544 = FALSE;
777 
778 	if (adapter->pcix_82544) {
779 		/*
780 		 * 82544 on PCI-X may split one TX segment
781 		 * into two TX descs, so we double its number
782 		 * of spare TX desc here.
783 		 */
784 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
785 	} else {
786 		adapter->spare_tx_desc = EM_TX_SPARE;
787 	}
788 
789 	/*
790 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
791 	 * and tx_int_nsegs:
792 	 * (spare_tx_desc + EM_TX_RESERVED) <=
793 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
794 	 */
795 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
796 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
797 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
798 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
799 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
800 
801 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
802 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
803 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
804 
805 	/* Non-AMT based hardware can now take control from firmware */
806 	if (adapter->has_manage && !adapter->has_amt &&
807 	    adapter->hw.mac.type >= e1000_82571)
808 		em_get_hw_control(adapter);
809 
810 	/*
811 	 * Missing Interrupt Following ICR read:
812 	 *
813 	 * 82571/82572 specification update errata #76
814 	 * 82573 specification update errata #31
815 	 * 82574 specification update errata #12
816 	 * 82583 specification update errata #4
817 	 */
818 	intr_func = em_intr;
819 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
820 	    (adapter->hw.mac.type == e1000_82571 ||
821 	     adapter->hw.mac.type == e1000_82572 ||
822 	     adapter->hw.mac.type == e1000_82573 ||
823 	     adapter->hw.mac.type == e1000_82574 ||
824 	     adapter->hw.mac.type == e1000_82583))
825 		intr_func = em_intr_mask;
826 
827 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
828 			       intr_func, adapter, &adapter->intr_tag,
829 			       ifp->if_serializer);
830 	if (error) {
831 		device_printf(dev, "Failed to register interrupt handler");
832 		ether_ifdetach(&adapter->arpcom.ac_if);
833 		goto fail;
834 	}
835 
836 	ifp->if_cpuid = rman_get_cpuid(adapter->intr_res);
837 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
838 	return (0);
839 fail:
840 	em_detach(dev);
841 	return (error);
842 }
843 
844 static int
845 em_detach(device_t dev)
846 {
847 	struct adapter *adapter = device_get_softc(dev);
848 
849 	if (device_is_attached(dev)) {
850 		struct ifnet *ifp = &adapter->arpcom.ac_if;
851 
852 		lwkt_serialize_enter(ifp->if_serializer);
853 
854 		em_stop(adapter);
855 
856 		e1000_phy_hw_reset(&adapter->hw);
857 
858 		em_rel_mgmt(adapter);
859 		em_rel_hw_control(adapter);
860 
861 		if (adapter->wol) {
862 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
863 					E1000_WUC_PME_EN);
864 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
865 			em_enable_wol(dev);
866 		}
867 
868 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
869 
870 		lwkt_serialize_exit(ifp->if_serializer);
871 
872 		ether_ifdetach(ifp);
873 	} else {
874 		em_rel_hw_control(adapter);
875 	}
876 	bus_generic_detach(dev);
877 
878 	em_free_pci_res(adapter);
879 
880 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
881 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
882 
883 	/* Free Transmit Descriptor ring */
884 	if (adapter->tx_desc_base)
885 		em_dma_free(adapter, &adapter->txdma);
886 
887 	/* Free Receive Descriptor ring */
888 	if (adapter->rx_desc_base)
889 		em_dma_free(adapter, &adapter->rxdma);
890 
891 	/* Free top level busdma tag */
892 	if (adapter->parent_dtag != NULL)
893 		bus_dma_tag_destroy(adapter->parent_dtag);
894 
895 	/* Free sysctl tree */
896 	if (adapter->sysctl_tree != NULL)
897 		sysctl_ctx_free(&adapter->sysctl_ctx);
898 
899 	return (0);
900 }
901 
902 static int
903 em_shutdown(device_t dev)
904 {
905 	return em_suspend(dev);
906 }
907 
908 static int
909 em_suspend(device_t dev)
910 {
911 	struct adapter *adapter = device_get_softc(dev);
912 	struct ifnet *ifp = &adapter->arpcom.ac_if;
913 
914 	lwkt_serialize_enter(ifp->if_serializer);
915 
916 	em_stop(adapter);
917 
918 	em_rel_mgmt(adapter);
919 	em_rel_hw_control(adapter);
920 
921 	if (adapter->wol) {
922 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
923 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
924 		em_enable_wol(dev);
925 	}
926 
927 	lwkt_serialize_exit(ifp->if_serializer);
928 
929 	return bus_generic_suspend(dev);
930 }
931 
932 static int
933 em_resume(device_t dev)
934 {
935 	struct adapter *adapter = device_get_softc(dev);
936 	struct ifnet *ifp = &adapter->arpcom.ac_if;
937 
938 	lwkt_serialize_enter(ifp->if_serializer);
939 
940 	em_init(adapter);
941 	em_get_mgmt(adapter);
942 	if_devstart(ifp);
943 
944 	lwkt_serialize_exit(ifp->if_serializer);
945 
946 	return bus_generic_resume(dev);
947 }
948 
949 static void
950 em_start(struct ifnet *ifp)
951 {
952 	struct adapter *adapter = ifp->if_softc;
953 	struct mbuf *m_head;
954 
955 	ASSERT_SERIALIZED(ifp->if_serializer);
956 
957 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
958 		return;
959 
960 	if (!adapter->link_active) {
961 		ifq_purge(&ifp->if_snd);
962 		return;
963 	}
964 
965 	while (!ifq_is_empty(&ifp->if_snd)) {
966 		/* Now do we at least have a minimal? */
967 		if (EM_IS_OACTIVE(adapter)) {
968 			em_tx_collect(adapter);
969 			if (EM_IS_OACTIVE(adapter)) {
970 				ifp->if_flags |= IFF_OACTIVE;
971 				adapter->no_tx_desc_avail1++;
972 				break;
973 			}
974 		}
975 
976 		logif(pkt_txqueue);
977 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
978 		if (m_head == NULL)
979 			break;
980 
981 		if (em_encap(adapter, &m_head)) {
982 			ifp->if_oerrors++;
983 			em_tx_collect(adapter);
984 			continue;
985 		}
986 
987 		/* Send a copy of the frame to the BPF listener */
988 		ETHER_BPF_MTAP(ifp, m_head);
989 
990 		/* Set timeout in case hardware has problems transmitting. */
991 		ifp->if_timer = EM_TX_TIMEOUT;
992 	}
993 }
994 
995 static int
996 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
997 {
998 	struct adapter *adapter = ifp->if_softc;
999 	struct ifreq *ifr = (struct ifreq *)data;
1000 	uint16_t eeprom_data = 0;
1001 	int max_frame_size, mask, reinit;
1002 	int error = 0;
1003 
1004 	ASSERT_SERIALIZED(ifp->if_serializer);
1005 
1006 	switch (command) {
1007 	case SIOCSIFMTU:
1008 		switch (adapter->hw.mac.type) {
1009 		case e1000_82573:
1010 			/*
1011 			 * 82573 only supports jumbo frames
1012 			 * if ASPM is disabled.
1013 			 */
1014 			e1000_read_nvm(&adapter->hw,
1015 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1016 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1017 				max_frame_size = ETHER_MAX_LEN;
1018 				break;
1019 			}
1020 			/* FALL THROUGH */
1021 
1022 		/* Limit Jumbo Frame size */
1023 		case e1000_82571:
1024 		case e1000_82572:
1025 		case e1000_ich9lan:
1026 		case e1000_ich10lan:
1027 		case e1000_pch2lan:
1028 		case e1000_82574:
1029 		case e1000_82583:
1030 		case e1000_80003es2lan:
1031 			max_frame_size = 9234;
1032 			break;
1033 
1034 		case e1000_pchlan:
1035 			max_frame_size = 4096;
1036 			break;
1037 
1038 		/* Adapters that do not support jumbo frames */
1039 		case e1000_82542:
1040 		case e1000_ich8lan:
1041 			max_frame_size = ETHER_MAX_LEN;
1042 			break;
1043 
1044 		default:
1045 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1046 			break;
1047 		}
1048 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1049 		    ETHER_CRC_LEN) {
1050 			error = EINVAL;
1051 			break;
1052 		}
1053 
1054 		ifp->if_mtu = ifr->ifr_mtu;
1055 		adapter->max_frame_size =
1056 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1057 
1058 		if (ifp->if_flags & IFF_RUNNING)
1059 			em_init(adapter);
1060 		break;
1061 
1062 	case SIOCSIFFLAGS:
1063 		if (ifp->if_flags & IFF_UP) {
1064 			if ((ifp->if_flags & IFF_RUNNING)) {
1065 				if ((ifp->if_flags ^ adapter->if_flags) &
1066 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1067 					em_disable_promisc(adapter);
1068 					em_set_promisc(adapter);
1069 				}
1070 			} else {
1071 				em_init(adapter);
1072 			}
1073 		} else if (ifp->if_flags & IFF_RUNNING) {
1074 			em_stop(adapter);
1075 		}
1076 		adapter->if_flags = ifp->if_flags;
1077 		break;
1078 
1079 	case SIOCADDMULTI:
1080 	case SIOCDELMULTI:
1081 		if (ifp->if_flags & IFF_RUNNING) {
1082 			em_disable_intr(adapter);
1083 			em_set_multi(adapter);
1084 			if (adapter->hw.mac.type == e1000_82542 &&
1085 			    adapter->hw.revision_id == E1000_REVISION_2)
1086 				em_init_rx_unit(adapter);
1087 #ifdef DEVICE_POLLING
1088 			if (!(ifp->if_flags & IFF_POLLING))
1089 #endif
1090 				em_enable_intr(adapter);
1091 		}
1092 		break;
1093 
1094 	case SIOCSIFMEDIA:
1095 		/* Check SOL/IDER usage */
1096 		if (e1000_check_reset_block(&adapter->hw)) {
1097 			device_printf(adapter->dev, "Media change is"
1098 			    " blocked due to SOL/IDER session.\n");
1099 			break;
1100 		}
1101 		/* FALL THROUGH */
1102 
1103 	case SIOCGIFMEDIA:
1104 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1105 		break;
1106 
1107 	case SIOCSIFCAP:
1108 		reinit = 0;
1109 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1110 		if (mask & IFCAP_HWCSUM) {
1111 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1112 			reinit = 1;
1113 		}
1114 		if (mask & IFCAP_VLAN_HWTAGGING) {
1115 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1116 			reinit = 1;
1117 		}
1118 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1119 			em_init(adapter);
1120 		break;
1121 
1122 	default:
1123 		error = ether_ioctl(ifp, command, data);
1124 		break;
1125 	}
1126 	return (error);
1127 }
1128 
1129 static void
1130 em_watchdog(struct ifnet *ifp)
1131 {
1132 	struct adapter *adapter = ifp->if_softc;
1133 
1134 	ASSERT_SERIALIZED(ifp->if_serializer);
1135 
1136 	/*
1137 	 * The timer is set to 5 every time start queues a packet.
1138 	 * Then txeof keeps resetting it as long as it cleans at
1139 	 * least one descriptor.
1140 	 * Finally, anytime all descriptors are clean the timer is
1141 	 * set to 0.
1142 	 */
1143 
1144 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1145 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1146 		/*
1147 		 * If we reach here, all TX jobs are completed and
1148 		 * the TX engine should have been idled for some time.
1149 		 * We don't need to call if_devstart() here.
1150 		 */
1151 		ifp->if_flags &= ~IFF_OACTIVE;
1152 		ifp->if_timer = 0;
1153 		return;
1154 	}
1155 
1156 	/*
1157 	 * If we are in this routine because of pause frames, then
1158 	 * don't reset the hardware.
1159 	 */
1160 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1161 	    E1000_STATUS_TXOFF) {
1162 		ifp->if_timer = EM_TX_TIMEOUT;
1163 		return;
1164 	}
1165 
1166 	if (e1000_check_for_link(&adapter->hw) == 0)
1167 		if_printf(ifp, "watchdog timeout -- resetting\n");
1168 
1169 	ifp->if_oerrors++;
1170 	adapter->watchdog_events++;
1171 
1172 	em_init(adapter);
1173 
1174 	if (!ifq_is_empty(&ifp->if_snd))
1175 		if_devstart(ifp);
1176 }
1177 
1178 static void
1179 em_init(void *xsc)
1180 {
1181 	struct adapter *adapter = xsc;
1182 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1183 	device_t dev = adapter->dev;
1184 	uint32_t pba;
1185 
1186 	ASSERT_SERIALIZED(ifp->if_serializer);
1187 
1188 	em_stop(adapter);
1189 
1190 	/*
1191 	 * Packet Buffer Allocation (PBA)
1192 	 * Writing PBA sets the receive portion of the buffer
1193 	 * the remainder is used for the transmit buffer.
1194 	 *
1195 	 * Devices before the 82547 had a Packet Buffer of 64K.
1196 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1197 	 * After the 82547 the buffer was reduced to 40K.
1198 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1199 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1200 	 */
1201 	switch (adapter->hw.mac.type) {
1202 	case e1000_82547:
1203 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1204 		if (adapter->max_frame_size > 8192)
1205 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1206 		else
1207 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1208 		adapter->tx_fifo_head = 0;
1209 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1210 		adapter->tx_fifo_size =
1211 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1212 		break;
1213 
1214 	/* Total Packet Buffer on these is 48K */
1215 	case e1000_82571:
1216 	case e1000_82572:
1217 	case e1000_80003es2lan:
1218 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1219 		break;
1220 
1221 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1222 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1223 		break;
1224 
1225 	case e1000_82574:
1226 	case e1000_82583:
1227 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1228 		break;
1229 
1230 	case e1000_ich8lan:
1231 		pba = E1000_PBA_8K;
1232 		break;
1233 
1234 	case e1000_ich9lan:
1235 	case e1000_ich10lan:
1236 #define E1000_PBA_10K	0x000A
1237 		pba = E1000_PBA_10K;
1238 		break;
1239 
1240 	case e1000_pchlan:
1241 	case e1000_pch2lan:
1242 		pba = E1000_PBA_26K;
1243 		break;
1244 
1245 	default:
1246 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1247 		if (adapter->max_frame_size > 8192)
1248 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1249 		else
1250 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1251 	}
1252 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1253 
1254 	/* Get the latest mac address, User can use a LAA */
1255         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1256 
1257 	/* Put the address into the Receive Address Array */
1258 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1259 
1260 	/*
1261 	 * With the 82571 adapter, RAR[0] may be overwritten
1262 	 * when the other port is reset, we make a duplicate
1263 	 * in RAR[14] for that eventuality, this assures
1264 	 * the interface continues to function.
1265 	 */
1266 	if (adapter->hw.mac.type == e1000_82571) {
1267 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1268 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1269 		    E1000_RAR_ENTRIES - 1);
1270 	}
1271 
1272 	/* Reset the hardware */
1273 	if (em_reset(adapter)) {
1274 		device_printf(dev, "Unable to reset the hardware\n");
1275 		/* XXX em_stop()? */
1276 		return;
1277 	}
1278 	em_update_link_status(adapter);
1279 
1280 	/* Setup VLAN support, basic and offload if available */
1281 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1282 
1283 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1284 		uint32_t ctrl;
1285 
1286 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1287 		ctrl |= E1000_CTRL_VME;
1288 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1289 	}
1290 
1291 	/* Set hardware offload abilities */
1292 	if (ifp->if_capenable & IFCAP_TXCSUM)
1293 		ifp->if_hwassist = EM_CSUM_FEATURES;
1294 	else
1295 		ifp->if_hwassist = 0;
1296 
1297 	/* Configure for OS presence */
1298 	em_get_mgmt(adapter);
1299 
1300 	/* Prepare transmit descriptors and buffers */
1301 	em_init_tx_ring(adapter);
1302 	em_init_tx_unit(adapter);
1303 
1304 	/* Setup Multicast table */
1305 	em_set_multi(adapter);
1306 
1307 	/* Prepare receive descriptors and buffers */
1308 	if (em_init_rx_ring(adapter)) {
1309 		device_printf(dev, "Could not setup receive structures\n");
1310 		em_stop(adapter);
1311 		return;
1312 	}
1313 	em_init_rx_unit(adapter);
1314 
1315 	/* Don't lose promiscuous settings */
1316 	em_set_promisc(adapter);
1317 
1318 	ifp->if_flags |= IFF_RUNNING;
1319 	ifp->if_flags &= ~IFF_OACTIVE;
1320 
1321 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1322 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1323 
1324 	/* MSI/X configuration for 82574 */
1325 	if (adapter->hw.mac.type == e1000_82574) {
1326 		int tmp;
1327 
1328 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1329 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1330 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1331 		/*
1332 		 * XXX MSIX
1333 		 * Set the IVAR - interrupt vector routing.
1334 		 * Each nibble represents a vector, high bit
1335 		 * is enable, other 3 bits are the MSIX table
1336 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1337 		 * Link (other) to 2, hence the magic number.
1338 		 */
1339 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1340 	}
1341 
1342 #ifdef DEVICE_POLLING
1343 	/*
1344 	 * Only enable interrupts if we are not polling, make sure
1345 	 * they are off otherwise.
1346 	 */
1347 	if (ifp->if_flags & IFF_POLLING)
1348 		em_disable_intr(adapter);
1349 	else
1350 #endif /* DEVICE_POLLING */
1351 		em_enable_intr(adapter);
1352 
1353 	/* AMT based hardware can now take control from firmware */
1354 	if (adapter->has_manage && adapter->has_amt &&
1355 	    adapter->hw.mac.type >= e1000_82571)
1356 		em_get_hw_control(adapter);
1357 
1358 	/* Don't reset the phy next time init gets called */
1359 	adapter->hw.phy.reset_disable = TRUE;
1360 }
1361 
1362 #ifdef DEVICE_POLLING
1363 
1364 static void
1365 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1366 {
1367 	struct adapter *adapter = ifp->if_softc;
1368 	uint32_t reg_icr;
1369 
1370 	ASSERT_SERIALIZED(ifp->if_serializer);
1371 
1372 	switch (cmd) {
1373 	case POLL_REGISTER:
1374 		em_disable_intr(adapter);
1375 		break;
1376 
1377 	case POLL_DEREGISTER:
1378 		em_enable_intr(adapter);
1379 		break;
1380 
1381 	case POLL_AND_CHECK_STATUS:
1382 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1383 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1384 			callout_stop(&adapter->timer);
1385 			adapter->hw.mac.get_link_status = 1;
1386 			em_update_link_status(adapter);
1387 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1388 		}
1389 		/* FALL THROUGH */
1390 	case POLL_ONLY:
1391 		if (ifp->if_flags & IFF_RUNNING) {
1392 			em_rxeof(adapter, count);
1393 			em_txeof(adapter);
1394 
1395 			if (!ifq_is_empty(&ifp->if_snd))
1396 				if_devstart(ifp);
1397 		}
1398 		break;
1399 	}
1400 }
1401 
1402 #endif /* DEVICE_POLLING */
1403 
1404 static void
1405 em_intr(void *xsc)
1406 {
1407 	em_intr_body(xsc, TRUE);
1408 }
1409 
1410 static void
1411 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1412 {
1413 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1414 	uint32_t reg_icr;
1415 
1416 	logif(intr_beg);
1417 	ASSERT_SERIALIZED(ifp->if_serializer);
1418 
1419 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1420 
1421 	if (chk_asserted &&
1422 	    ((adapter->hw.mac.type >= e1000_82571 &&
1423 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1424 	     reg_icr == 0)) {
1425 		logif(intr_end);
1426 		return;
1427 	}
1428 
1429 	/*
1430 	 * XXX: some laptops trigger several spurious interrupts
1431 	 * on em(4) when in the resume cycle. The ICR register
1432 	 * reports all-ones value in this case. Processing such
1433 	 * interrupts would lead to a freeze. I don't know why.
1434 	 */
1435 	if (reg_icr == 0xffffffff) {
1436 		logif(intr_end);
1437 		return;
1438 	}
1439 
1440 	if (ifp->if_flags & IFF_RUNNING) {
1441 		if (reg_icr &
1442 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1443 			em_rxeof(adapter, -1);
1444 		if (reg_icr & E1000_ICR_TXDW) {
1445 			em_txeof(adapter);
1446 			if (!ifq_is_empty(&ifp->if_snd))
1447 				if_devstart(ifp);
1448 		}
1449 	}
1450 
1451 	/* Link status change */
1452 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1453 		callout_stop(&adapter->timer);
1454 		adapter->hw.mac.get_link_status = 1;
1455 		em_update_link_status(adapter);
1456 
1457 		/* Deal with TX cruft when link lost */
1458 		em_tx_purge(adapter);
1459 
1460 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1461 	}
1462 
1463 	if (reg_icr & E1000_ICR_RXO)
1464 		adapter->rx_overruns++;
1465 
1466 	logif(intr_end);
1467 }
1468 
1469 static void
1470 em_intr_mask(void *xsc)
1471 {
1472 	struct adapter *adapter = xsc;
1473 
1474 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1475 	/*
1476 	 * NOTE:
1477 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1478 	 * so don't check it.
1479 	 */
1480 	em_intr_body(adapter, FALSE);
1481 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1482 }
1483 
1484 static void
1485 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1486 {
1487 	struct adapter *adapter = ifp->if_softc;
1488 	u_char fiber_type = IFM_1000_SX;
1489 
1490 	ASSERT_SERIALIZED(ifp->if_serializer);
1491 
1492 	em_update_link_status(adapter);
1493 
1494 	ifmr->ifm_status = IFM_AVALID;
1495 	ifmr->ifm_active = IFM_ETHER;
1496 
1497 	if (!adapter->link_active)
1498 		return;
1499 
1500 	ifmr->ifm_status |= IFM_ACTIVE;
1501 
1502 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1503 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1504 		if (adapter->hw.mac.type == e1000_82545)
1505 			fiber_type = IFM_1000_LX;
1506 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1507 	} else {
1508 		switch (adapter->link_speed) {
1509 		case 10:
1510 			ifmr->ifm_active |= IFM_10_T;
1511 			break;
1512 		case 100:
1513 			ifmr->ifm_active |= IFM_100_TX;
1514 			break;
1515 
1516 		case 1000:
1517 			ifmr->ifm_active |= IFM_1000_T;
1518 			break;
1519 		}
1520 		if (adapter->link_duplex == FULL_DUPLEX)
1521 			ifmr->ifm_active |= IFM_FDX;
1522 		else
1523 			ifmr->ifm_active |= IFM_HDX;
1524 	}
1525 }
1526 
1527 static int
1528 em_media_change(struct ifnet *ifp)
1529 {
1530 	struct adapter *adapter = ifp->if_softc;
1531 	struct ifmedia *ifm = &adapter->media;
1532 
1533 	ASSERT_SERIALIZED(ifp->if_serializer);
1534 
1535 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1536 		return (EINVAL);
1537 
1538 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1539 	case IFM_AUTO:
1540 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1541 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1542 		break;
1543 
1544 	case IFM_1000_LX:
1545 	case IFM_1000_SX:
1546 	case IFM_1000_T:
1547 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1548 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1549 		break;
1550 
1551 	case IFM_100_TX:
1552 		adapter->hw.mac.autoneg = FALSE;
1553 		adapter->hw.phy.autoneg_advertised = 0;
1554 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1555 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1556 		else
1557 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1558 		break;
1559 
1560 	case IFM_10_T:
1561 		adapter->hw.mac.autoneg = FALSE;
1562 		adapter->hw.phy.autoneg_advertised = 0;
1563 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1564 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1565 		else
1566 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1567 		break;
1568 
1569 	default:
1570 		if_printf(ifp, "Unsupported media type\n");
1571 		break;
1572 	}
1573 
1574 	/*
1575 	 * As the speed/duplex settings my have changed we need to
1576 	 * reset the PHY.
1577 	 */
1578 	adapter->hw.phy.reset_disable = FALSE;
1579 
1580 	em_init(adapter);
1581 
1582 	return (0);
1583 }
1584 
1585 static int
1586 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1587 {
1588 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1589 	bus_dmamap_t map;
1590 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1591 	struct e1000_tx_desc *ctxd = NULL;
1592 	struct mbuf *m_head = *m_headp;
1593 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1594 	int maxsegs, nsegs, i, j, first, last = 0, error;
1595 
1596 	if (m_head->m_len < EM_TXCSUM_MINHL &&
1597 	    (m_head->m_flags & EM_CSUM_FEATURES)) {
1598 		/*
1599 		 * Make sure that ethernet header and ip.ip_hl are in
1600 		 * contiguous memory, since if TXCSUM is enabled, later
1601 		 * TX context descriptor's setup need to access ip.ip_hl.
1602 		 */
1603 		error = em_txcsum_pullup(adapter, m_headp);
1604 		if (error) {
1605 			KKASSERT(*m_headp == NULL);
1606 			return error;
1607 		}
1608 		m_head = *m_headp;
1609 	}
1610 
1611 	txd_upper = txd_lower = 0;
1612 	txd_used = 0;
1613 
1614 	/*
1615 	 * Capture the first descriptor index, this descriptor
1616 	 * will have the index of the EOP which is the only one
1617 	 * that now gets a DONE bit writeback.
1618 	 */
1619 	first = adapter->next_avail_tx_desc;
1620 	tx_buffer = &adapter->tx_buffer_area[first];
1621 	tx_buffer_mapped = tx_buffer;
1622 	map = tx_buffer->map;
1623 
1624 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1625 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1626 		("not enough spare TX desc"));
1627 	if (adapter->pcix_82544) {
1628 		/* Half it; see the comment in em_attach() */
1629 		maxsegs >>= 1;
1630 	}
1631 	if (maxsegs > EM_MAX_SCATTER)
1632 		maxsegs = EM_MAX_SCATTER;
1633 
1634 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1635 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1636 	if (error) {
1637 		if (error == ENOBUFS)
1638 			adapter->mbuf_alloc_failed++;
1639 		else
1640 			adapter->no_tx_dma_setup++;
1641 
1642 		m_freem(*m_headp);
1643 		*m_headp = NULL;
1644 		return error;
1645 	}
1646         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1647 
1648 	m_head = *m_headp;
1649 	adapter->tx_nsegs += nsegs;
1650 
1651 	if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1652 		/* TX csum offloading will consume one TX desc */
1653 		adapter->tx_nsegs += em_txcsum(adapter, m_head,
1654 					       &txd_upper, &txd_lower);
1655 	}
1656 	i = adapter->next_avail_tx_desc;
1657 
1658 	/* Set up our transmit descriptors */
1659 	for (j = 0; j < nsegs; j++) {
1660 		/* If adapter is 82544 and on PCIX bus */
1661 		if(adapter->pcix_82544) {
1662 			DESC_ARRAY desc_array;
1663 			uint32_t array_elements, counter;
1664 
1665 			/*
1666 			 * Check the Address and Length combination and
1667 			 * split the data accordingly
1668 			 */
1669 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1670 						segs[j].ds_len, &desc_array);
1671 			for (counter = 0; counter < array_elements; counter++) {
1672 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1673 
1674 				tx_buffer = &adapter->tx_buffer_area[i];
1675 				ctxd = &adapter->tx_desc_base[i];
1676 
1677 				ctxd->buffer_addr = htole64(
1678 				    desc_array.descriptor[counter].address);
1679 				ctxd->lower.data = htole32(
1680 				    E1000_TXD_CMD_IFCS | txd_lower |
1681 				    desc_array.descriptor[counter].length);
1682 				ctxd->upper.data = htole32(txd_upper);
1683 
1684 				last = i;
1685 				if (++i == adapter->num_tx_desc)
1686 					i = 0;
1687 
1688 				txd_used++;
1689                         }
1690 		} else {
1691 			tx_buffer = &adapter->tx_buffer_area[i];
1692 			ctxd = &adapter->tx_desc_base[i];
1693 
1694 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1695 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1696 						   txd_lower | segs[j].ds_len);
1697 			ctxd->upper.data = htole32(txd_upper);
1698 
1699 			last = i;
1700 			if (++i == adapter->num_tx_desc)
1701 				i = 0;
1702 		}
1703 	}
1704 
1705 	adapter->next_avail_tx_desc = i;
1706 	if (adapter->pcix_82544) {
1707 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1708 		adapter->num_tx_desc_avail -= txd_used;
1709 	} else {
1710 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1711 		adapter->num_tx_desc_avail -= nsegs;
1712 	}
1713 
1714         /* Handle VLAN tag */
1715 	if (m_head->m_flags & M_VLANTAG) {
1716 		/* Set the vlan id. */
1717 		ctxd->upper.fields.special =
1718 		    htole16(m_head->m_pkthdr.ether_vlantag);
1719 
1720 		/* Tell hardware to add tag */
1721 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1722 	}
1723 
1724 	tx_buffer->m_head = m_head;
1725 	tx_buffer_mapped->map = tx_buffer->map;
1726 	tx_buffer->map = map;
1727 
1728 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1729 		adapter->tx_nsegs = 0;
1730 
1731 		/*
1732 		 * Report Status (RS) is turned on
1733 		 * every tx_int_nsegs descriptors.
1734 		 */
1735 		cmd = E1000_TXD_CMD_RS;
1736 
1737 		/*
1738 		 * Keep track of the descriptor, which will
1739 		 * be written back by hardware.
1740 		 */
1741 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1742 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1743 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1744 	}
1745 
1746 	/*
1747 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1748 	 */
1749 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1750 
1751 	/*
1752 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1753 	 * that this frame is available to transmit.
1754 	 */
1755 	if (adapter->hw.mac.type == e1000_82547 &&
1756 	    adapter->link_duplex == HALF_DUPLEX) {
1757 		em_82547_move_tail_serialized(adapter);
1758 	} else {
1759 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1760 		if (adapter->hw.mac.type == e1000_82547) {
1761 			em_82547_update_fifo_head(adapter,
1762 			    m_head->m_pkthdr.len);
1763 		}
1764 	}
1765 	return (0);
1766 }
1767 
1768 /*
1769  * 82547 workaround to avoid controller hang in half-duplex environment.
1770  * The workaround is to avoid queuing a large packet that would span
1771  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1772  * in this case.  We do that only when FIFO is quiescent.
1773  */
1774 static void
1775 em_82547_move_tail_serialized(struct adapter *adapter)
1776 {
1777 	struct e1000_tx_desc *tx_desc;
1778 	uint16_t hw_tdt, sw_tdt, length = 0;
1779 	bool eop = 0;
1780 
1781 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1782 
1783 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1784 	sw_tdt = adapter->next_avail_tx_desc;
1785 
1786 	while (hw_tdt != sw_tdt) {
1787 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1788 		length += tx_desc->lower.flags.length;
1789 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1790 		if (++hw_tdt == adapter->num_tx_desc)
1791 			hw_tdt = 0;
1792 
1793 		if (eop) {
1794 			if (em_82547_fifo_workaround(adapter, length)) {
1795 				adapter->tx_fifo_wrk_cnt++;
1796 				callout_reset(&adapter->tx_fifo_timer, 1,
1797 					em_82547_move_tail, adapter);
1798 				break;
1799 			}
1800 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1801 			em_82547_update_fifo_head(adapter, length);
1802 			length = 0;
1803 		}
1804 	}
1805 }
1806 
1807 static void
1808 em_82547_move_tail(void *xsc)
1809 {
1810 	struct adapter *adapter = xsc;
1811 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1812 
1813 	lwkt_serialize_enter(ifp->if_serializer);
1814 	em_82547_move_tail_serialized(adapter);
1815 	lwkt_serialize_exit(ifp->if_serializer);
1816 }
1817 
1818 static int
1819 em_82547_fifo_workaround(struct adapter *adapter, int len)
1820 {
1821 	int fifo_space, fifo_pkt_len;
1822 
1823 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1824 
1825 	if (adapter->link_duplex == HALF_DUPLEX) {
1826 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1827 
1828 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1829 			if (em_82547_tx_fifo_reset(adapter))
1830 				return (0);
1831 			else
1832 				return (1);
1833 		}
1834 	}
1835 	return (0);
1836 }
1837 
1838 static void
1839 em_82547_update_fifo_head(struct adapter *adapter, int len)
1840 {
1841 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1842 
1843 	/* tx_fifo_head is always 16 byte aligned */
1844 	adapter->tx_fifo_head += fifo_pkt_len;
1845 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1846 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1847 }
1848 
1849 static int
1850 em_82547_tx_fifo_reset(struct adapter *adapter)
1851 {
1852 	uint32_t tctl;
1853 
1854 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1855 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1856 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1857 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1858 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1859 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1860 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1861 		/* Disable TX unit */
1862 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1863 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1864 		    tctl & ~E1000_TCTL_EN);
1865 
1866 		/* Reset FIFO pointers */
1867 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1868 		    adapter->tx_head_addr);
1869 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1870 		    adapter->tx_head_addr);
1871 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1872 		    adapter->tx_head_addr);
1873 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1874 		    adapter->tx_head_addr);
1875 
1876 		/* Re-enable TX unit */
1877 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1878 		E1000_WRITE_FLUSH(&adapter->hw);
1879 
1880 		adapter->tx_fifo_head = 0;
1881 		adapter->tx_fifo_reset_cnt++;
1882 
1883 		return (TRUE);
1884 	} else {
1885 		return (FALSE);
1886 	}
1887 }
1888 
1889 static void
1890 em_set_promisc(struct adapter *adapter)
1891 {
1892 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1893 	uint32_t reg_rctl;
1894 
1895 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1896 
1897 	if (ifp->if_flags & IFF_PROMISC) {
1898 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1899 		/* Turn this on if you want to see bad packets */
1900 		if (em_debug_sbp)
1901 			reg_rctl |= E1000_RCTL_SBP;
1902 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1903 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1904 		reg_rctl |= E1000_RCTL_MPE;
1905 		reg_rctl &= ~E1000_RCTL_UPE;
1906 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1907 	}
1908 }
1909 
1910 static void
1911 em_disable_promisc(struct adapter *adapter)
1912 {
1913 	uint32_t reg_rctl;
1914 
1915 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1916 
1917 	reg_rctl &= ~E1000_RCTL_UPE;
1918 	reg_rctl &= ~E1000_RCTL_MPE;
1919 	reg_rctl &= ~E1000_RCTL_SBP;
1920 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1921 }
1922 
1923 static void
1924 em_set_multi(struct adapter *adapter)
1925 {
1926 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1927 	struct ifmultiaddr *ifma;
1928 	uint32_t reg_rctl = 0;
1929 	uint8_t *mta;
1930 	int mcnt = 0;
1931 
1932 	mta = adapter->mta;
1933 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1934 
1935 	if (adapter->hw.mac.type == e1000_82542 &&
1936 	    adapter->hw.revision_id == E1000_REVISION_2) {
1937 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1938 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1939 			e1000_pci_clear_mwi(&adapter->hw);
1940 		reg_rctl |= E1000_RCTL_RST;
1941 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1942 		msec_delay(5);
1943 	}
1944 
1945 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1946 		if (ifma->ifma_addr->sa_family != AF_LINK)
1947 			continue;
1948 
1949 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1950 			break;
1951 
1952 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1953 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1954 		mcnt++;
1955 	}
1956 
1957 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1958 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1959 		reg_rctl |= E1000_RCTL_MPE;
1960 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1961 	} else {
1962 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1963 	}
1964 
1965 	if (adapter->hw.mac.type == e1000_82542 &&
1966 	    adapter->hw.revision_id == E1000_REVISION_2) {
1967 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1968 		reg_rctl &= ~E1000_RCTL_RST;
1969 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1970 		msec_delay(5);
1971 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1972 			e1000_pci_set_mwi(&adapter->hw);
1973 	}
1974 }
1975 
1976 /*
1977  * This routine checks for link status and updates statistics.
1978  */
1979 static void
1980 em_timer(void *xsc)
1981 {
1982 	struct adapter *adapter = xsc;
1983 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1984 
1985 	lwkt_serialize_enter(ifp->if_serializer);
1986 
1987 	em_update_link_status(adapter);
1988 	em_update_stats(adapter);
1989 
1990 	/* Reset LAA into RAR[0] on 82571 */
1991 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1992 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1993 
1994 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1995 		em_print_hw_stats(adapter);
1996 
1997 	em_smartspeed(adapter);
1998 
1999 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2000 
2001 	lwkt_serialize_exit(ifp->if_serializer);
2002 }
2003 
2004 static void
2005 em_update_link_status(struct adapter *adapter)
2006 {
2007 	struct e1000_hw *hw = &adapter->hw;
2008 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2009 	device_t dev = adapter->dev;
2010 	uint32_t link_check = 0;
2011 
2012 	/* Get the cached link value or read phy for real */
2013 	switch (hw->phy.media_type) {
2014 	case e1000_media_type_copper:
2015 		if (hw->mac.get_link_status) {
2016 			/* Do the work to read phy */
2017 			e1000_check_for_link(hw);
2018 			link_check = !hw->mac.get_link_status;
2019 			if (link_check) /* ESB2 fix */
2020 				e1000_cfg_on_link_up(hw);
2021 		} else {
2022 			link_check = TRUE;
2023 		}
2024 		break;
2025 
2026 	case e1000_media_type_fiber:
2027 		e1000_check_for_link(hw);
2028 		link_check =
2029 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2030 		break;
2031 
2032 	case e1000_media_type_internal_serdes:
2033 		e1000_check_for_link(hw);
2034 		link_check = adapter->hw.mac.serdes_has_link;
2035 		break;
2036 
2037 	case e1000_media_type_unknown:
2038 	default:
2039 		break;
2040 	}
2041 
2042 	/* Now check for a transition */
2043 	if (link_check && adapter->link_active == 0) {
2044 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2045 		    &adapter->link_duplex);
2046 
2047 		/*
2048 		 * Check if we should enable/disable SPEED_MODE bit on
2049 		 * 82571/82572
2050 		 */
2051 		if (adapter->link_speed != SPEED_1000 &&
2052 		    (hw->mac.type == e1000_82571 ||
2053 		     hw->mac.type == e1000_82572)) {
2054 			int tarc0;
2055 
2056 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2057 			tarc0 &= ~SPEED_MODE_BIT;
2058 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2059 		}
2060 		if (bootverbose) {
2061 			device_printf(dev, "Link is up %d Mbps %s\n",
2062 			    adapter->link_speed,
2063 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2064 			    "Full Duplex" : "Half Duplex"));
2065 		}
2066 		adapter->link_active = 1;
2067 		adapter->smartspeed = 0;
2068 		ifp->if_baudrate = adapter->link_speed * 1000000;
2069 		ifp->if_link_state = LINK_STATE_UP;
2070 		if_link_state_change(ifp);
2071 	} else if (!link_check && adapter->link_active == 1) {
2072 		ifp->if_baudrate = adapter->link_speed = 0;
2073 		adapter->link_duplex = 0;
2074 		if (bootverbose)
2075 			device_printf(dev, "Link is Down\n");
2076 		adapter->link_active = 0;
2077 #if 0
2078 		/* Link down, disable watchdog */
2079 		if->if_timer = 0;
2080 #endif
2081 		ifp->if_link_state = LINK_STATE_DOWN;
2082 		if_link_state_change(ifp);
2083 	}
2084 }
2085 
2086 static void
2087 em_stop(struct adapter *adapter)
2088 {
2089 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2090 	int i;
2091 
2092 	ASSERT_SERIALIZED(ifp->if_serializer);
2093 
2094 	em_disable_intr(adapter);
2095 
2096 	callout_stop(&adapter->timer);
2097 	callout_stop(&adapter->tx_fifo_timer);
2098 
2099 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2100 	ifp->if_timer = 0;
2101 
2102 	e1000_reset_hw(&adapter->hw);
2103 	if (adapter->hw.mac.type >= e1000_82544)
2104 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2105 
2106 	for (i = 0; i < adapter->num_tx_desc; i++) {
2107 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2108 
2109 		if (tx_buffer->m_head != NULL) {
2110 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2111 			m_freem(tx_buffer->m_head);
2112 			tx_buffer->m_head = NULL;
2113 		}
2114 	}
2115 
2116 	for (i = 0; i < adapter->num_rx_desc; i++) {
2117 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2118 
2119 		if (rx_buffer->m_head != NULL) {
2120 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2121 			m_freem(rx_buffer->m_head);
2122 			rx_buffer->m_head = NULL;
2123 		}
2124 	}
2125 
2126 	if (adapter->fmp != NULL)
2127 		m_freem(adapter->fmp);
2128 	adapter->fmp = NULL;
2129 	adapter->lmp = NULL;
2130 
2131 	adapter->csum_flags = 0;
2132 	adapter->csum_ehlen = 0;
2133 	adapter->csum_iphlen = 0;
2134 
2135 	adapter->tx_dd_head = 0;
2136 	adapter->tx_dd_tail = 0;
2137 	adapter->tx_nsegs = 0;
2138 }
2139 
2140 static int
2141 em_get_hw_info(struct adapter *adapter)
2142 {
2143 	device_t dev = adapter->dev;
2144 
2145 	/* Save off the information about this board */
2146 	adapter->hw.vendor_id = pci_get_vendor(dev);
2147 	adapter->hw.device_id = pci_get_device(dev);
2148 	adapter->hw.revision_id = pci_get_revid(dev);
2149 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2150 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2151 
2152 	/* Do Shared Code Init and Setup */
2153 	if (e1000_set_mac_type(&adapter->hw))
2154 		return ENXIO;
2155 	return 0;
2156 }
2157 
2158 static int
2159 em_alloc_pci_res(struct adapter *adapter)
2160 {
2161 	device_t dev = adapter->dev;
2162 	u_int intr_flags;
2163 	int val, rid, msi_enable;
2164 
2165 	/* Enable bus mastering */
2166 	pci_enable_busmaster(dev);
2167 
2168 	adapter->memory_rid = EM_BAR_MEM;
2169 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2170 				&adapter->memory_rid, RF_ACTIVE);
2171 	if (adapter->memory == NULL) {
2172 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2173 		return (ENXIO);
2174 	}
2175 	adapter->osdep.mem_bus_space_tag =
2176 	    rman_get_bustag(adapter->memory);
2177 	adapter->osdep.mem_bus_space_handle =
2178 	    rman_get_bushandle(adapter->memory);
2179 
2180 	/* XXX This is quite goofy, it is not actually used */
2181 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2182 
2183 	/* Only older adapters use IO mapping */
2184 	if (adapter->hw.mac.type > e1000_82543 &&
2185 	    adapter->hw.mac.type < e1000_82571) {
2186 		/* Figure our where our IO BAR is ? */
2187 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2188 			val = pci_read_config(dev, rid, 4);
2189 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2190 				adapter->io_rid = rid;
2191 				break;
2192 			}
2193 			rid += 4;
2194 			/* check for 64bit BAR */
2195 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2196 				rid += 4;
2197 		}
2198 		if (rid >= PCIR_CARDBUSCIS) {
2199 			device_printf(dev, "Unable to locate IO BAR\n");
2200 			return (ENXIO);
2201 		}
2202 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2203 					&adapter->io_rid, RF_ACTIVE);
2204 		if (adapter->ioport == NULL) {
2205 			device_printf(dev, "Unable to allocate bus resource: "
2206 			    "ioport\n");
2207 			return (ENXIO);
2208 		}
2209 		adapter->hw.io_base = 0;
2210 		adapter->osdep.io_bus_space_tag =
2211 		    rman_get_bustag(adapter->ioport);
2212 		adapter->osdep.io_bus_space_handle =
2213 		    rman_get_bushandle(adapter->ioport);
2214 	}
2215 
2216 	/*
2217 	 * Don't enable MSI-X on 82574, see:
2218 	 * 82574 specification update errata #15
2219 	 *
2220 	 * Don't enable MSI on PCI/PCI-X chips, see:
2221 	 * 82540 specification update errata #6
2222 	 * 82545 specification update errata #4
2223 	 *
2224 	 * Don't enable MSI on 82571/82572, see:
2225 	 * 82571/82572 specification update errata #63
2226 	 */
2227 	msi_enable = em_msi_enable;
2228 	if (msi_enable &&
2229 	    (!pci_is_pcie(dev) ||
2230 	     adapter->hw.mac.type == e1000_82571 ||
2231 	     adapter->hw.mac.type == e1000_82572))
2232 		msi_enable = 0;
2233 
2234 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2235 	    &adapter->intr_rid, &intr_flags);
2236 
2237 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2238 		int unshared;
2239 
2240 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2241 		if (!unshared) {
2242 			adapter->flags |= EM_FLAG_SHARED_INTR;
2243 			if (bootverbose)
2244 				device_printf(dev, "IRQ shared\n");
2245 		} else {
2246 			intr_flags &= ~RF_SHAREABLE;
2247 			if (bootverbose)
2248 				device_printf(dev, "IRQ unshared\n");
2249 		}
2250 	}
2251 
2252 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2253 	    &adapter->intr_rid, intr_flags);
2254 	if (adapter->intr_res == NULL) {
2255 		device_printf(dev, "Unable to allocate bus resource: "
2256 		    "interrupt\n");
2257 		return (ENXIO);
2258 	}
2259 
2260 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2261 	adapter->hw.back = &adapter->osdep;
2262 	return (0);
2263 }
2264 
2265 static void
2266 em_free_pci_res(struct adapter *adapter)
2267 {
2268 	device_t dev = adapter->dev;
2269 
2270 	if (adapter->intr_res != NULL) {
2271 		bus_release_resource(dev, SYS_RES_IRQ,
2272 		    adapter->intr_rid, adapter->intr_res);
2273 	}
2274 
2275 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2276 		pci_release_msi(dev);
2277 
2278 	if (adapter->memory != NULL) {
2279 		bus_release_resource(dev, SYS_RES_MEMORY,
2280 		    adapter->memory_rid, adapter->memory);
2281 	}
2282 
2283 	if (adapter->flash != NULL) {
2284 		bus_release_resource(dev, SYS_RES_MEMORY,
2285 		    adapter->flash_rid, adapter->flash);
2286 	}
2287 
2288 	if (adapter->ioport != NULL) {
2289 		bus_release_resource(dev, SYS_RES_IOPORT,
2290 		    adapter->io_rid, adapter->ioport);
2291 	}
2292 }
2293 
2294 static int
2295 em_reset(struct adapter *adapter)
2296 {
2297 	device_t dev = adapter->dev;
2298 	uint16_t rx_buffer_size;
2299 
2300 	/* When hardware is reset, fifo_head is also reset */
2301 	adapter->tx_fifo_head = 0;
2302 
2303 	/* Set up smart power down as default off on newer adapters. */
2304 	if (!em_smart_pwr_down &&
2305 	    (adapter->hw.mac.type == e1000_82571 ||
2306 	     adapter->hw.mac.type == e1000_82572)) {
2307 		uint16_t phy_tmp = 0;
2308 
2309 		/* Speed up time to link by disabling smart power down. */
2310 		e1000_read_phy_reg(&adapter->hw,
2311 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2312 		phy_tmp &= ~IGP02E1000_PM_SPD;
2313 		e1000_write_phy_reg(&adapter->hw,
2314 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2315 	}
2316 
2317 	/*
2318 	 * These parameters control the automatic generation (Tx) and
2319 	 * response (Rx) to Ethernet PAUSE frames.
2320 	 * - High water mark should allow for at least two frames to be
2321 	 *   received after sending an XOFF.
2322 	 * - Low water mark works best when it is very near the high water mark.
2323 	 *   This allows the receiver to restart by sending XON when it has
2324 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2325 	 *   restart after one full frame is pulled from the buffer. There
2326 	 *   could be several smaller frames in the buffer and if so they will
2327 	 *   not trigger the XON until their total number reduces the buffer
2328 	 *   by 1500.
2329 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2330 	 */
2331 	rx_buffer_size =
2332 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2333 
2334 	adapter->hw.fc.high_water = rx_buffer_size -
2335 				    roundup2(adapter->max_frame_size, 1024);
2336 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2337 
2338 	if (adapter->hw.mac.type == e1000_80003es2lan)
2339 		adapter->hw.fc.pause_time = 0xFFFF;
2340 	else
2341 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2342 
2343 	adapter->hw.fc.send_xon = TRUE;
2344 
2345 	adapter->hw.fc.requested_mode = e1000_fc_full;
2346 
2347 	/* Workaround: no TX flow ctrl for PCH */
2348 	if (adapter->hw.mac.type == e1000_pchlan)
2349 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2350 
2351 	/* Override - settings for PCH2LAN, ya its magic :) */
2352 	if (adapter->hw.mac.type == e1000_pch2lan) {
2353 		adapter->hw.fc.high_water = 0x5C20;
2354 		adapter->hw.fc.low_water = 0x5048;
2355 		adapter->hw.fc.pause_time = 0x0650;
2356 		adapter->hw.fc.refresh_time = 0x0400;
2357 
2358 		/* Jumbos need adjusted PBA */
2359 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2360 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2361 		else
2362 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2363 	}
2364 
2365 	/* Issue a global reset */
2366 	e1000_reset_hw(&adapter->hw);
2367 	if (adapter->hw.mac.type >= e1000_82544)
2368 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2369 	em_disable_aspm(adapter);
2370 
2371 	if (e1000_init_hw(&adapter->hw) < 0) {
2372 		device_printf(dev, "Hardware Initialization Failed\n");
2373 		return (EIO);
2374 	}
2375 
2376 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2377 	e1000_get_phy_info(&adapter->hw);
2378 	e1000_check_for_link(&adapter->hw);
2379 
2380 	return (0);
2381 }
2382 
2383 static void
2384 em_setup_ifp(struct adapter *adapter)
2385 {
2386 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2387 
2388 	if_initname(ifp, device_get_name(adapter->dev),
2389 		    device_get_unit(adapter->dev));
2390 	ifp->if_softc = adapter;
2391 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2392 	ifp->if_init =  em_init;
2393 	ifp->if_ioctl = em_ioctl;
2394 	ifp->if_start = em_start;
2395 #ifdef DEVICE_POLLING
2396 	ifp->if_poll = em_poll;
2397 #endif
2398 	ifp->if_watchdog = em_watchdog;
2399 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2400 	ifq_set_ready(&ifp->if_snd);
2401 
2402 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2403 
2404 	if (adapter->hw.mac.type >= e1000_82543)
2405 		ifp->if_capabilities = IFCAP_HWCSUM;
2406 
2407 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2408 	ifp->if_capenable = ifp->if_capabilities;
2409 
2410 	if (ifp->if_capenable & IFCAP_TXCSUM)
2411 		ifp->if_hwassist = EM_CSUM_FEATURES;
2412 
2413 	/*
2414 	 * Tell the upper layer(s) we support long frames.
2415 	 */
2416 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2417 
2418 	/*
2419 	 * Specify the media types supported by this adapter and register
2420 	 * callbacks to update media and link information
2421 	 */
2422 	ifmedia_init(&adapter->media, IFM_IMASK,
2423 		     em_media_change, em_media_status);
2424 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2425 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2426 		u_char fiber_type = IFM_1000_SX; /* default type */
2427 
2428 		if (adapter->hw.mac.type == e1000_82545)
2429 			fiber_type = IFM_1000_LX;
2430 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2431 			    0, NULL);
2432 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2433 	} else {
2434 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2435 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2436 			    0, NULL);
2437 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2438 			    0, NULL);
2439 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2440 			    0, NULL);
2441 		if (adapter->hw.phy.type != e1000_phy_ife) {
2442 			ifmedia_add(&adapter->media,
2443 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2444 			ifmedia_add(&adapter->media,
2445 				IFM_ETHER | IFM_1000_T, 0, NULL);
2446 		}
2447 	}
2448 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2449 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2450 }
2451 
2452 
2453 /*
2454  * Workaround for SmartSpeed on 82541 and 82547 controllers
2455  */
2456 static void
2457 em_smartspeed(struct adapter *adapter)
2458 {
2459 	uint16_t phy_tmp;
2460 
2461 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2462 	    adapter->hw.mac.autoneg == 0 ||
2463 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2464 		return;
2465 
2466 	if (adapter->smartspeed == 0) {
2467 		/*
2468 		 * If Master/Slave config fault is asserted twice,
2469 		 * we assume back-to-back
2470 		 */
2471 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2472 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2473 			return;
2474 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2475 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2476 			e1000_read_phy_reg(&adapter->hw,
2477 			    PHY_1000T_CTRL, &phy_tmp);
2478 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2479 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2480 				e1000_write_phy_reg(&adapter->hw,
2481 				    PHY_1000T_CTRL, phy_tmp);
2482 				adapter->smartspeed++;
2483 				if (adapter->hw.mac.autoneg &&
2484 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2485 				    !e1000_read_phy_reg(&adapter->hw,
2486 				     PHY_CONTROL, &phy_tmp)) {
2487 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2488 						   MII_CR_RESTART_AUTO_NEG;
2489 					e1000_write_phy_reg(&adapter->hw,
2490 					    PHY_CONTROL, phy_tmp);
2491 				}
2492 			}
2493 		}
2494 		return;
2495 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2496 		/* If still no link, perhaps using 2/3 pair cable */
2497 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2498 		phy_tmp |= CR_1000T_MS_ENABLE;
2499 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2500 		if (adapter->hw.mac.autoneg &&
2501 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2502 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2503 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2504 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2505 		}
2506 	}
2507 
2508 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2509 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2510 		adapter->smartspeed = 0;
2511 }
2512 
2513 static int
2514 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2515 	      struct em_dma_alloc *dma)
2516 {
2517 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2518 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2519 				&dma->dma_tag, &dma->dma_map,
2520 				&dma->dma_paddr);
2521 	if (dma->dma_vaddr == NULL)
2522 		return ENOMEM;
2523 	else
2524 		return 0;
2525 }
2526 
2527 static void
2528 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2529 {
2530 	if (dma->dma_tag == NULL)
2531 		return;
2532 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2533 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2534 	bus_dma_tag_destroy(dma->dma_tag);
2535 }
2536 
2537 static int
2538 em_create_tx_ring(struct adapter *adapter)
2539 {
2540 	device_t dev = adapter->dev;
2541 	struct em_buffer *tx_buffer;
2542 	int error, i;
2543 
2544 	adapter->tx_buffer_area =
2545 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2546 			M_DEVBUF, M_WAITOK | M_ZERO);
2547 
2548 	/*
2549 	 * Create DMA tags for tx buffers
2550 	 */
2551 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2552 			1, 0,			/* alignment, bounds */
2553 			BUS_SPACE_MAXADDR,	/* lowaddr */
2554 			BUS_SPACE_MAXADDR,	/* highaddr */
2555 			NULL, NULL,		/* filter, filterarg */
2556 			EM_TSO_SIZE,		/* maxsize */
2557 			EM_MAX_SCATTER,		/* nsegments */
2558 			EM_MAX_SEGSIZE,		/* maxsegsize */
2559 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2560 			BUS_DMA_ONEBPAGE,	/* flags */
2561 			&adapter->txtag);
2562 	if (error) {
2563 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2564 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2565 		adapter->tx_buffer_area = NULL;
2566 		return error;
2567 	}
2568 
2569 	/*
2570 	 * Create DMA maps for tx buffers
2571 	 */
2572 	for (i = 0; i < adapter->num_tx_desc; i++) {
2573 		tx_buffer = &adapter->tx_buffer_area[i];
2574 
2575 		error = bus_dmamap_create(adapter->txtag,
2576 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2577 					  &tx_buffer->map);
2578 		if (error) {
2579 			device_printf(dev, "Unable to create TX DMA map\n");
2580 			em_destroy_tx_ring(adapter, i);
2581 			return error;
2582 		}
2583 	}
2584 	return (0);
2585 }
2586 
2587 static void
2588 em_init_tx_ring(struct adapter *adapter)
2589 {
2590 	/* Clear the old ring contents */
2591 	bzero(adapter->tx_desc_base,
2592 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2593 
2594 	/* Reset state */
2595 	adapter->next_avail_tx_desc = 0;
2596 	adapter->next_tx_to_clean = 0;
2597 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2598 }
2599 
2600 static void
2601 em_init_tx_unit(struct adapter *adapter)
2602 {
2603 	uint32_t tctl, tarc, tipg = 0;
2604 	uint64_t bus_addr;
2605 
2606 	/* Setup the Base and Length of the Tx Descriptor Ring */
2607 	bus_addr = adapter->txdma.dma_paddr;
2608 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2609 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2610 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2611 	    (uint32_t)(bus_addr >> 32));
2612 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2613 	    (uint32_t)bus_addr);
2614 	/* Setup the HW Tx Head and Tail descriptor pointers */
2615 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2616 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2617 
2618 	/* Set the default values for the Tx Inter Packet Gap timer */
2619 	switch (adapter->hw.mac.type) {
2620 	case e1000_82542:
2621 		tipg = DEFAULT_82542_TIPG_IPGT;
2622 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2623 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2624 		break;
2625 
2626 	case e1000_80003es2lan:
2627 		tipg = DEFAULT_82543_TIPG_IPGR1;
2628 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2629 		    E1000_TIPG_IPGR2_SHIFT;
2630 		break;
2631 
2632 	default:
2633 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2634 		    adapter->hw.phy.media_type ==
2635 		    e1000_media_type_internal_serdes)
2636 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2637 		else
2638 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2639 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2640 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2641 		break;
2642 	}
2643 
2644 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2645 
2646 	/* NOTE: 0 is not allowed for TIDV */
2647 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2648 	if(adapter->hw.mac.type >= e1000_82540)
2649 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2650 
2651 	if (adapter->hw.mac.type == e1000_82571 ||
2652 	    adapter->hw.mac.type == e1000_82572) {
2653 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2654 		tarc |= SPEED_MODE_BIT;
2655 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2656 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2657 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2658 		tarc |= 1;
2659 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2660 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2661 		tarc |= 1;
2662 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2663 	}
2664 
2665 	/* Program the Transmit Control Register */
2666 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2667 	tctl &= ~E1000_TCTL_CT;
2668 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2669 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2670 
2671 	if (adapter->hw.mac.type >= e1000_82571)
2672 		tctl |= E1000_TCTL_MULR;
2673 
2674 	/* This write will effectively turn on the transmit unit. */
2675 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2676 }
2677 
2678 static void
2679 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2680 {
2681 	struct em_buffer *tx_buffer;
2682 	int i;
2683 
2684 	if (adapter->tx_buffer_area == NULL)
2685 		return;
2686 
2687 	for (i = 0; i < ndesc; i++) {
2688 		tx_buffer = &adapter->tx_buffer_area[i];
2689 
2690 		KKASSERT(tx_buffer->m_head == NULL);
2691 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2692 	}
2693 	bus_dma_tag_destroy(adapter->txtag);
2694 
2695 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2696 	adapter->tx_buffer_area = NULL;
2697 }
2698 
2699 /*
2700  * The offload context needs to be set when we transfer the first
2701  * packet of a particular protocol (TCP/UDP).  This routine has been
2702  * enhanced to deal with inserted VLAN headers.
2703  *
2704  * If the new packet's ether header length, ip header length and
2705  * csum offloading type are same as the previous packet, we should
2706  * avoid allocating a new csum context descriptor; mainly to take
2707  * advantage of the pipeline effect of the TX data read request.
2708  *
2709  * This function returns number of TX descrptors allocated for
2710  * csum context.
2711  */
2712 static int
2713 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2714 	  uint32_t *txd_upper, uint32_t *txd_lower)
2715 {
2716 	struct e1000_context_desc *TXD;
2717 	struct em_buffer *tx_buffer;
2718 	struct ether_vlan_header *eh;
2719 	struct ip *ip;
2720 	int curr_txd, ehdrlen, csum_flags;
2721 	uint32_t cmd, hdr_len, ip_hlen;
2722 	uint16_t etype;
2723 
2724 	/*
2725 	 * Determine where frame payload starts.
2726 	 * Jump over vlan headers if already present,
2727 	 * helpful for QinQ too.
2728 	 */
2729 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2730 		("em_txcsum_pullup is not called (eh)?"));
2731 	eh = mtod(mp, struct ether_vlan_header *);
2732 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2733 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2734 			("em_txcsum_pullup is not called (evh)?"));
2735 		etype = ntohs(eh->evl_proto);
2736 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2737 	} else {
2738 		etype = ntohs(eh->evl_encap_proto);
2739 		ehdrlen = ETHER_HDR_LEN;
2740 	}
2741 
2742 	/*
2743 	 * We only support TCP/UDP for IPv4 for the moment.
2744 	 * TODO: Support SCTP too when it hits the tree.
2745 	 */
2746 	if (etype != ETHERTYPE_IP)
2747 		return 0;
2748 
2749 	KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2750 		("em_txcsum_pullup is not called (eh+ip_vhl)?"));
2751 
2752 	/* NOTE: We could only safely access ip.ip_vhl part */
2753 	ip = (struct ip *)(mp->m_data + ehdrlen);
2754 	ip_hlen = ip->ip_hl << 2;
2755 
2756 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2757 
2758 	if (adapter->csum_ehlen == ehdrlen &&
2759 	    adapter->csum_iphlen == ip_hlen &&
2760 	    adapter->csum_flags == csum_flags) {
2761 		/*
2762 		 * Same csum offload context as the previous packets;
2763 		 * just return.
2764 		 */
2765 		*txd_upper = adapter->csum_txd_upper;
2766 		*txd_lower = adapter->csum_txd_lower;
2767 		return 0;
2768 	}
2769 
2770 	/*
2771 	 * Setup a new csum offload context.
2772 	 */
2773 
2774 	curr_txd = adapter->next_avail_tx_desc;
2775 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2776 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2777 
2778 	cmd = 0;
2779 
2780 	/* Setup of IP header checksum. */
2781 	if (csum_flags & CSUM_IP) {
2782 		/*
2783 		 * Start offset for header checksum calculation.
2784 		 * End offset for header checksum calculation.
2785 		 * Offset of place to put the checksum.
2786 		 */
2787 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2788 		TXD->lower_setup.ip_fields.ipcse =
2789 		    htole16(ehdrlen + ip_hlen - 1);
2790 		TXD->lower_setup.ip_fields.ipcso =
2791 		    ehdrlen + offsetof(struct ip, ip_sum);
2792 		cmd |= E1000_TXD_CMD_IP;
2793 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2794 	}
2795 	hdr_len = ehdrlen + ip_hlen;
2796 
2797 	if (csum_flags & CSUM_TCP) {
2798 		/*
2799 		 * Start offset for payload checksum calculation.
2800 		 * End offset for payload checksum calculation.
2801 		 * Offset of place to put the checksum.
2802 		 */
2803 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2804 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2805 		TXD->upper_setup.tcp_fields.tucso =
2806 		    hdr_len + offsetof(struct tcphdr, th_sum);
2807 		cmd |= E1000_TXD_CMD_TCP;
2808 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2809 	} else if (csum_flags & CSUM_UDP) {
2810 		/*
2811 		 * Start offset for header checksum calculation.
2812 		 * End offset for header checksum calculation.
2813 		 * Offset of place to put the checksum.
2814 		 */
2815 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2816 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2817 		TXD->upper_setup.tcp_fields.tucso =
2818 		    hdr_len + offsetof(struct udphdr, uh_sum);
2819 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2820 	}
2821 
2822 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2823 		     E1000_TXD_DTYP_D;		/* Data descr */
2824 
2825 	/* Save the information for this csum offloading context */
2826 	adapter->csum_ehlen = ehdrlen;
2827 	adapter->csum_iphlen = ip_hlen;
2828 	adapter->csum_flags = csum_flags;
2829 	adapter->csum_txd_upper = *txd_upper;
2830 	adapter->csum_txd_lower = *txd_lower;
2831 
2832 	TXD->tcp_seg_setup.data = htole32(0);
2833 	TXD->cmd_and_length =
2834 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2835 
2836 	if (++curr_txd == adapter->num_tx_desc)
2837 		curr_txd = 0;
2838 
2839 	KKASSERT(adapter->num_tx_desc_avail > 0);
2840 	adapter->num_tx_desc_avail--;
2841 
2842 	adapter->next_avail_tx_desc = curr_txd;
2843 	return 1;
2844 }
2845 
2846 static int
2847 em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2848 {
2849 	struct mbuf *m = *m0;
2850 	struct ether_header *eh;
2851 	int len;
2852 
2853 	adapter->tx_csum_try_pullup++;
2854 
2855 	len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2856 
2857 	if (__predict_false(!M_WRITABLE(m))) {
2858 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2859 			adapter->tx_csum_drop1++;
2860 			m_freem(m);
2861 			*m0 = NULL;
2862 			return ENOBUFS;
2863 		}
2864 		eh = mtod(m, struct ether_header *);
2865 
2866 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2867 			len += EVL_ENCAPLEN;
2868 
2869 		if (m->m_len < len) {
2870 			adapter->tx_csum_drop2++;
2871 			m_freem(m);
2872 			*m0 = NULL;
2873 			return ENOBUFS;
2874 		}
2875 		return 0;
2876 	}
2877 
2878 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2879 		adapter->tx_csum_pullup1++;
2880 		m = m_pullup(m, ETHER_HDR_LEN);
2881 		if (m == NULL) {
2882 			adapter->tx_csum_pullup1_failed++;
2883 			*m0 = NULL;
2884 			return ENOBUFS;
2885 		}
2886 		*m0 = m;
2887 	}
2888 	eh = mtod(m, struct ether_header *);
2889 
2890 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2891 		len += EVL_ENCAPLEN;
2892 
2893 	if (m->m_len < len) {
2894 		adapter->tx_csum_pullup2++;
2895 		m = m_pullup(m, len);
2896 		if (m == NULL) {
2897 			adapter->tx_csum_pullup2_failed++;
2898 			*m0 = NULL;
2899 			return ENOBUFS;
2900 		}
2901 		*m0 = m;
2902 	}
2903 	return 0;
2904 }
2905 
2906 static void
2907 em_txeof(struct adapter *adapter)
2908 {
2909 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2910 	struct em_buffer *tx_buffer;
2911 	int first, num_avail;
2912 
2913 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2914 		return;
2915 
2916 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2917 		return;
2918 
2919 	num_avail = adapter->num_tx_desc_avail;
2920 	first = adapter->next_tx_to_clean;
2921 
2922 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2923 		struct e1000_tx_desc *tx_desc;
2924 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2925 
2926 		tx_desc = &adapter->tx_desc_base[dd_idx];
2927 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2928 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2929 
2930 			if (++dd_idx == adapter->num_tx_desc)
2931 				dd_idx = 0;
2932 
2933 			while (first != dd_idx) {
2934 				logif(pkt_txclean);
2935 
2936 				num_avail++;
2937 
2938 				tx_buffer = &adapter->tx_buffer_area[first];
2939 				if (tx_buffer->m_head) {
2940 					ifp->if_opackets++;
2941 					bus_dmamap_unload(adapter->txtag,
2942 							  tx_buffer->map);
2943 					m_freem(tx_buffer->m_head);
2944 					tx_buffer->m_head = NULL;
2945 				}
2946 
2947 				if (++first == adapter->num_tx_desc)
2948 					first = 0;
2949 			}
2950 		} else {
2951 			break;
2952 		}
2953 	}
2954 	adapter->next_tx_to_clean = first;
2955 	adapter->num_tx_desc_avail = num_avail;
2956 
2957 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2958 		adapter->tx_dd_head = 0;
2959 		adapter->tx_dd_tail = 0;
2960 	}
2961 
2962 	if (!EM_IS_OACTIVE(adapter)) {
2963 		ifp->if_flags &= ~IFF_OACTIVE;
2964 
2965 		/* All clean, turn off the timer */
2966 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2967 			ifp->if_timer = 0;
2968 	}
2969 }
2970 
2971 static void
2972 em_tx_collect(struct adapter *adapter)
2973 {
2974 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2975 	struct em_buffer *tx_buffer;
2976 	int tdh, first, num_avail, dd_idx = -1;
2977 
2978 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2979 		return;
2980 
2981 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2982 	if (tdh == adapter->next_tx_to_clean)
2983 		return;
2984 
2985 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2986 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2987 
2988 	num_avail = adapter->num_tx_desc_avail;
2989 	first = adapter->next_tx_to_clean;
2990 
2991 	while (first != tdh) {
2992 		logif(pkt_txclean);
2993 
2994 		num_avail++;
2995 
2996 		tx_buffer = &adapter->tx_buffer_area[first];
2997 		if (tx_buffer->m_head) {
2998 			ifp->if_opackets++;
2999 			bus_dmamap_unload(adapter->txtag,
3000 					  tx_buffer->map);
3001 			m_freem(tx_buffer->m_head);
3002 			tx_buffer->m_head = NULL;
3003 		}
3004 
3005 		if (first == dd_idx) {
3006 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3007 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3008 				adapter->tx_dd_head = 0;
3009 				adapter->tx_dd_tail = 0;
3010 				dd_idx = -1;
3011 			} else {
3012 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3013 			}
3014 		}
3015 
3016 		if (++first == adapter->num_tx_desc)
3017 			first = 0;
3018 	}
3019 	adapter->next_tx_to_clean = first;
3020 	adapter->num_tx_desc_avail = num_avail;
3021 
3022 	if (!EM_IS_OACTIVE(adapter)) {
3023 		ifp->if_flags &= ~IFF_OACTIVE;
3024 
3025 		/* All clean, turn off the timer */
3026 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3027 			ifp->if_timer = 0;
3028 	}
3029 }
3030 
3031 /*
3032  * When Link is lost sometimes there is work still in the TX ring
3033  * which will result in a watchdog, rather than allow that do an
3034  * attempted cleanup and then reinit here.  Note that this has been
3035  * seens mostly with fiber adapters.
3036  */
3037 static void
3038 em_tx_purge(struct adapter *adapter)
3039 {
3040 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3041 
3042 	if (!adapter->link_active && ifp->if_timer) {
3043 		em_tx_collect(adapter);
3044 		if (ifp->if_timer) {
3045 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3046 			ifp->if_timer = 0;
3047 			em_init(adapter);
3048 		}
3049 	}
3050 }
3051 
3052 static int
3053 em_newbuf(struct adapter *adapter, int i, int init)
3054 {
3055 	struct mbuf *m;
3056 	bus_dma_segment_t seg;
3057 	bus_dmamap_t map;
3058 	struct em_buffer *rx_buffer;
3059 	int error, nseg;
3060 
3061 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3062 	if (m == NULL) {
3063 		adapter->mbuf_cluster_failed++;
3064 		if (init) {
3065 			if_printf(&adapter->arpcom.ac_if,
3066 				  "Unable to allocate RX mbuf\n");
3067 		}
3068 		return (ENOBUFS);
3069 	}
3070 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3071 
3072 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3073 		m_adj(m, ETHER_ALIGN);
3074 
3075 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3076 			adapter->rx_sparemap, m,
3077 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3078 	if (error) {
3079 		m_freem(m);
3080 		if (init) {
3081 			if_printf(&adapter->arpcom.ac_if,
3082 				  "Unable to load RX mbuf\n");
3083 		}
3084 		return (error);
3085 	}
3086 
3087 	rx_buffer = &adapter->rx_buffer_area[i];
3088 	if (rx_buffer->m_head != NULL)
3089 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3090 
3091 	map = rx_buffer->map;
3092 	rx_buffer->map = adapter->rx_sparemap;
3093 	adapter->rx_sparemap = map;
3094 
3095 	rx_buffer->m_head = m;
3096 
3097 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3098 	return (0);
3099 }
3100 
3101 static int
3102 em_create_rx_ring(struct adapter *adapter)
3103 {
3104 	device_t dev = adapter->dev;
3105 	struct em_buffer *rx_buffer;
3106 	int i, error;
3107 
3108 	adapter->rx_buffer_area =
3109 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3110 			M_DEVBUF, M_WAITOK | M_ZERO);
3111 
3112 	/*
3113 	 * Create DMA tag for rx buffers
3114 	 */
3115 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3116 			1, 0,			/* alignment, bounds */
3117 			BUS_SPACE_MAXADDR,	/* lowaddr */
3118 			BUS_SPACE_MAXADDR,	/* highaddr */
3119 			NULL, NULL,		/* filter, filterarg */
3120 			MCLBYTES,		/* maxsize */
3121 			1,			/* nsegments */
3122 			MCLBYTES,		/* maxsegsize */
3123 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3124 			&adapter->rxtag);
3125 	if (error) {
3126 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3127 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3128 		adapter->rx_buffer_area = NULL;
3129 		return error;
3130 	}
3131 
3132 	/*
3133 	 * Create spare DMA map for rx buffers
3134 	 */
3135 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3136 				  &adapter->rx_sparemap);
3137 	if (error) {
3138 		device_printf(dev, "Unable to create spare RX DMA map\n");
3139 		bus_dma_tag_destroy(adapter->rxtag);
3140 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3141 		adapter->rx_buffer_area = NULL;
3142 		return error;
3143 	}
3144 
3145 	/*
3146 	 * Create DMA maps for rx buffers
3147 	 */
3148 	for (i = 0; i < adapter->num_rx_desc; i++) {
3149 		rx_buffer = &adapter->rx_buffer_area[i];
3150 
3151 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3152 					  &rx_buffer->map);
3153 		if (error) {
3154 			device_printf(dev, "Unable to create RX DMA map\n");
3155 			em_destroy_rx_ring(adapter, i);
3156 			return error;
3157 		}
3158 	}
3159 	return (0);
3160 }
3161 
3162 static int
3163 em_init_rx_ring(struct adapter *adapter)
3164 {
3165 	int i, error;
3166 
3167 	/* Reset descriptor ring */
3168 	bzero(adapter->rx_desc_base,
3169 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3170 
3171 	/* Allocate new ones. */
3172 	for (i = 0; i < adapter->num_rx_desc; i++) {
3173 		error = em_newbuf(adapter, i, 1);
3174 		if (error)
3175 			return (error);
3176 	}
3177 
3178 	/* Setup our descriptor pointers */
3179 	adapter->next_rx_desc_to_check = 0;
3180 
3181 	return (0);
3182 }
3183 
3184 static void
3185 em_init_rx_unit(struct adapter *adapter)
3186 {
3187 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3188 	uint64_t bus_addr;
3189 	uint32_t rctl;
3190 
3191 	/*
3192 	 * Make sure receives are disabled while setting
3193 	 * up the descriptor ring
3194 	 */
3195 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3196 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3197 
3198 	if (adapter->hw.mac.type >= e1000_82540) {
3199 		uint32_t itr;
3200 
3201 		/*
3202 		 * Set the interrupt throttling rate. Value is calculated
3203 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3204 		 */
3205 		if (adapter->int_throttle_ceil)
3206 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3207 		else
3208 			itr = 0;
3209 		em_set_itr(adapter, itr);
3210 	}
3211 
3212 	/* Disable accelerated ackknowledge */
3213 	if (adapter->hw.mac.type == e1000_82574) {
3214 		E1000_WRITE_REG(&adapter->hw,
3215 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3216 	}
3217 
3218 	/* Receive Checksum Offload for TCP and UDP */
3219 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3220 		uint32_t rxcsum;
3221 
3222 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3223 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3224 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3225 	}
3226 
3227 	/*
3228 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3229 	 * long latencies are observed, like Lenovo X60. This
3230 	 * change eliminates the problem, but since having positive
3231 	 * values in RDTR is a known source of problems on other
3232 	 * platforms another solution is being sought.
3233 	 */
3234 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3235 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3236 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3237 	}
3238 
3239 	/*
3240 	 * Setup the Base and Length of the Rx Descriptor Ring
3241 	 */
3242 	bus_addr = adapter->rxdma.dma_paddr;
3243 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3244 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3245 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3246 	    (uint32_t)(bus_addr >> 32));
3247 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3248 	    (uint32_t)bus_addr);
3249 
3250 	/*
3251 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3252 	 */
3253 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3254 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3255 
3256 	/* Set early receive threshold on appropriate hw */
3257 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3258 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3259 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3260 	    (ifp->if_mtu > ETHERMTU)) {
3261 		uint32_t rxdctl;
3262 
3263 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3264 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3265 		E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3266 	}
3267 
3268 	if (adapter->hw.mac.type == e1000_pch2lan) {
3269 		if (ifp->if_mtu > ETHERMTU)
3270 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3271 		else
3272 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3273 	}
3274 
3275 	/* Setup the Receive Control Register */
3276 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3277 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3278 		E1000_RCTL_RDMTS_HALF |
3279 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3280 
3281 	/* Make sure VLAN Filters are off */
3282 	rctl &= ~E1000_RCTL_VFE;
3283 
3284 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3285 		rctl |= E1000_RCTL_SBP;
3286 	else
3287 		rctl &= ~E1000_RCTL_SBP;
3288 
3289 	switch (adapter->rx_buffer_len) {
3290 	default:
3291 	case 2048:
3292 		rctl |= E1000_RCTL_SZ_2048;
3293 		break;
3294 
3295 	case 4096:
3296 		rctl |= E1000_RCTL_SZ_4096 |
3297 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3298 		break;
3299 
3300 	case 8192:
3301 		rctl |= E1000_RCTL_SZ_8192 |
3302 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3303 		break;
3304 
3305 	case 16384:
3306 		rctl |= E1000_RCTL_SZ_16384 |
3307 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3308 		break;
3309 	}
3310 
3311 	if (ifp->if_mtu > ETHERMTU)
3312 		rctl |= E1000_RCTL_LPE;
3313 	else
3314 		rctl &= ~E1000_RCTL_LPE;
3315 
3316 	/* Enable Receives */
3317 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3318 }
3319 
3320 static void
3321 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3322 {
3323 	struct em_buffer *rx_buffer;
3324 	int i;
3325 
3326 	if (adapter->rx_buffer_area == NULL)
3327 		return;
3328 
3329 	for (i = 0; i < ndesc; i++) {
3330 		rx_buffer = &adapter->rx_buffer_area[i];
3331 
3332 		KKASSERT(rx_buffer->m_head == NULL);
3333 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3334 	}
3335 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3336 	bus_dma_tag_destroy(adapter->rxtag);
3337 
3338 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3339 	adapter->rx_buffer_area = NULL;
3340 }
3341 
3342 static void
3343 em_rxeof(struct adapter *adapter, int count)
3344 {
3345 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3346 	uint8_t status, accept_frame = 0, eop = 0;
3347 	uint16_t len, desc_len, prev_len_adj;
3348 	struct e1000_rx_desc *current_desc;
3349 	struct mbuf *mp;
3350 	int i;
3351 
3352 	i = adapter->next_rx_desc_to_check;
3353 	current_desc = &adapter->rx_desc_base[i];
3354 
3355 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3356 		return;
3357 
3358 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3359 		struct mbuf *m = NULL;
3360 
3361 		logif(pkt_receive);
3362 
3363 		mp = adapter->rx_buffer_area[i].m_head;
3364 
3365 		/*
3366 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3367 		 * needs to access the last received byte in the mbuf.
3368 		 */
3369 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3370 				BUS_DMASYNC_POSTREAD);
3371 
3372 		accept_frame = 1;
3373 		prev_len_adj = 0;
3374 		desc_len = le16toh(current_desc->length);
3375 		status = current_desc->status;
3376 		if (status & E1000_RXD_STAT_EOP) {
3377 			count--;
3378 			eop = 1;
3379 			if (desc_len < ETHER_CRC_LEN) {
3380 				len = 0;
3381 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3382 			} else {
3383 				len = desc_len - ETHER_CRC_LEN;
3384 			}
3385 		} else {
3386 			eop = 0;
3387 			len = desc_len;
3388 		}
3389 
3390 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3391 			uint8_t	last_byte;
3392 			uint32_t pkt_len = desc_len;
3393 
3394 			if (adapter->fmp != NULL)
3395 				pkt_len += adapter->fmp->m_pkthdr.len;
3396 
3397 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3398 			if (TBI_ACCEPT(&adapter->hw, status,
3399 			    current_desc->errors, pkt_len, last_byte,
3400 			    adapter->min_frame_size, adapter->max_frame_size)) {
3401 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3402 				    &adapter->stats, pkt_len,
3403 				    adapter->hw.mac.addr,
3404 				    adapter->max_frame_size);
3405 				if (len > 0)
3406 					len--;
3407 			} else {
3408 				accept_frame = 0;
3409 			}
3410 		}
3411 
3412 		if (accept_frame) {
3413 			if (em_newbuf(adapter, i, 0) != 0) {
3414 				ifp->if_iqdrops++;
3415 				goto discard;
3416 			}
3417 
3418 			/* Assign correct length to the current fragment */
3419 			mp->m_len = len;
3420 
3421 			if (adapter->fmp == NULL) {
3422 				mp->m_pkthdr.len = len;
3423 				adapter->fmp = mp; /* Store the first mbuf */
3424 				adapter->lmp = mp;
3425 			} else {
3426 				/*
3427 				 * Chain mbuf's together
3428 				 */
3429 
3430 				/*
3431 				 * Adjust length of previous mbuf in chain if
3432 				 * we received less than 4 bytes in the last
3433 				 * descriptor.
3434 				 */
3435 				if (prev_len_adj > 0) {
3436 					adapter->lmp->m_len -= prev_len_adj;
3437 					adapter->fmp->m_pkthdr.len -=
3438 					    prev_len_adj;
3439 				}
3440 				adapter->lmp->m_next = mp;
3441 				adapter->lmp = adapter->lmp->m_next;
3442 				adapter->fmp->m_pkthdr.len += len;
3443 			}
3444 
3445 			if (eop) {
3446 				adapter->fmp->m_pkthdr.rcvif = ifp;
3447 				ifp->if_ipackets++;
3448 
3449 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3450 					em_rxcsum(adapter, current_desc,
3451 						  adapter->fmp);
3452 				}
3453 
3454 				if (status & E1000_RXD_STAT_VP) {
3455 					adapter->fmp->m_pkthdr.ether_vlantag =
3456 					    (le16toh(current_desc->special) &
3457 					    E1000_RXD_SPC_VLAN_MASK);
3458 					adapter->fmp->m_flags |= M_VLANTAG;
3459 				}
3460 				m = adapter->fmp;
3461 				adapter->fmp = NULL;
3462 				adapter->lmp = NULL;
3463 			}
3464 		} else {
3465 			ifp->if_ierrors++;
3466 discard:
3467 #ifdef foo
3468 			/* Reuse loaded DMA map and just update mbuf chain */
3469 			mp = adapter->rx_buffer_area[i].m_head;
3470 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3471 			mp->m_data = mp->m_ext.ext_buf;
3472 			mp->m_next = NULL;
3473 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3474 				m_adj(mp, ETHER_ALIGN);
3475 #endif
3476 			if (adapter->fmp != NULL) {
3477 				m_freem(adapter->fmp);
3478 				adapter->fmp = NULL;
3479 				adapter->lmp = NULL;
3480 			}
3481 			m = NULL;
3482 		}
3483 
3484 		/* Zero out the receive descriptors status. */
3485 		current_desc->status = 0;
3486 
3487 		if (m != NULL)
3488 			ifp->if_input(ifp, m);
3489 
3490 		/* Advance our pointers to the next descriptor. */
3491 		if (++i == adapter->num_rx_desc)
3492 			i = 0;
3493 		current_desc = &adapter->rx_desc_base[i];
3494 	}
3495 	adapter->next_rx_desc_to_check = i;
3496 
3497 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3498 	if (--i < 0)
3499 		i = adapter->num_rx_desc - 1;
3500 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3501 }
3502 
3503 static void
3504 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3505 	  struct mbuf *mp)
3506 {
3507 	/* 82543 or newer only */
3508 	if (adapter->hw.mac.type < e1000_82543 ||
3509 	    /* Ignore Checksum bit is set */
3510 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3511 		return;
3512 
3513 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3514 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3515 		/* IP Checksum Good */
3516 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3517 	}
3518 
3519 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3520 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3521 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3522 					   CSUM_PSEUDO_HDR |
3523 					   CSUM_FRAG_NOT_CHECKED;
3524 		mp->m_pkthdr.csum_data = htons(0xffff);
3525 	}
3526 }
3527 
3528 static void
3529 em_enable_intr(struct adapter *adapter)
3530 {
3531 	uint32_t ims_mask = IMS_ENABLE_MASK;
3532 
3533 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3534 
3535 #if 0
3536 	/* XXX MSIX */
3537 	if (adapter->hw.mac.type == e1000_82574) {
3538 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3539 		ims_mask |= EM_MSIX_MASK;
3540         }
3541 #endif
3542 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3543 }
3544 
3545 static void
3546 em_disable_intr(struct adapter *adapter)
3547 {
3548 	uint32_t clear = 0xffffffff;
3549 
3550 	/*
3551 	 * The first version of 82542 had an errata where when link was forced
3552 	 * it would stay up even up even if the cable was disconnected.
3553 	 * Sequence errors were used to detect the disconnect and then the
3554 	 * driver would unforce the link.  This code in the in the ISR.  For
3555 	 * this to work correctly the Sequence error interrupt had to be
3556 	 * enabled all the time.
3557 	 */
3558 	if (adapter->hw.mac.type == e1000_82542 &&
3559 	    adapter->hw.revision_id == E1000_REVISION_2)
3560 		clear &= ~E1000_ICR_RXSEQ;
3561 	else if (adapter->hw.mac.type == e1000_82574)
3562 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3563 
3564 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3565 
3566 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3567 }
3568 
3569 /*
3570  * Bit of a misnomer, what this really means is
3571  * to enable OS management of the system... aka
3572  * to disable special hardware management features
3573  */
3574 static void
3575 em_get_mgmt(struct adapter *adapter)
3576 {
3577 	/* A shared code workaround */
3578 #define E1000_82542_MANC2H E1000_MANC2H
3579 	if (adapter->has_manage) {
3580 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3581 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3582 
3583 		/* disable hardware interception of ARP */
3584 		manc &= ~(E1000_MANC_ARP_EN);
3585 
3586                 /* enable receiving management packets to the host */
3587                 if (adapter->hw.mac.type >= e1000_82571) {
3588 			manc |= E1000_MANC_EN_MNG2HOST;
3589 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3590 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3591 			manc2h |= E1000_MNG2HOST_PORT_623;
3592 			manc2h |= E1000_MNG2HOST_PORT_664;
3593 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3594 		}
3595 
3596 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3597 	}
3598 }
3599 
3600 /*
3601  * Give control back to hardware management
3602  * controller if there is one.
3603  */
3604 static void
3605 em_rel_mgmt(struct adapter *adapter)
3606 {
3607 	if (adapter->has_manage) {
3608 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3609 
3610 		/* re-enable hardware interception of ARP */
3611 		manc |= E1000_MANC_ARP_EN;
3612 
3613 		if (adapter->hw.mac.type >= e1000_82571)
3614 			manc &= ~E1000_MANC_EN_MNG2HOST;
3615 
3616 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3617 	}
3618 }
3619 
3620 /*
3621  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3622  * For ASF and Pass Through versions of f/w this means that
3623  * the driver is loaded.  For AMT version (only with 82573)
3624  * of the f/w this means that the network i/f is open.
3625  */
3626 static void
3627 em_get_hw_control(struct adapter *adapter)
3628 {
3629 	/* Let firmware know the driver has taken over */
3630 	if (adapter->hw.mac.type == e1000_82573) {
3631 		uint32_t swsm;
3632 
3633 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3634 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3635 		    swsm | E1000_SWSM_DRV_LOAD);
3636 	} else {
3637 		uint32_t ctrl_ext;
3638 
3639 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3640 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3641 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3642 	}
3643 	adapter->control_hw = 1;
3644 }
3645 
3646 /*
3647  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3648  * For ASF and Pass Through versions of f/w this means that the
3649  * driver is no longer loaded.  For AMT version (only with 82573)
3650  * of the f/w this means that the network i/f is closed.
3651  */
3652 static void
3653 em_rel_hw_control(struct adapter *adapter)
3654 {
3655 	if (!adapter->control_hw)
3656 		return;
3657 	adapter->control_hw = 0;
3658 
3659 	/* Let firmware taken over control of h/w */
3660 	if (adapter->hw.mac.type == e1000_82573) {
3661 		uint32_t swsm;
3662 
3663 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3664 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3665 		    swsm & ~E1000_SWSM_DRV_LOAD);
3666 	} else {
3667 		uint32_t ctrl_ext;
3668 
3669 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3670 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3671 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3672 	}
3673 }
3674 
3675 static int
3676 em_is_valid_eaddr(const uint8_t *addr)
3677 {
3678 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3679 
3680 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3681 		return (FALSE);
3682 
3683 	return (TRUE);
3684 }
3685 
3686 /*
3687  * Enable PCI Wake On Lan capability
3688  */
3689 void
3690 em_enable_wol(device_t dev)
3691 {
3692 	uint16_t cap, status;
3693 	uint8_t id;
3694 
3695 	/* First find the capabilities pointer*/
3696 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3697 
3698 	/* Read the PM Capabilities */
3699 	id = pci_read_config(dev, cap, 1);
3700 	if (id != PCIY_PMG)     /* Something wrong */
3701 		return;
3702 
3703 	/*
3704 	 * OK, we have the power capabilities,
3705 	 * so now get the status register
3706 	 */
3707 	cap += PCIR_POWER_STATUS;
3708 	status = pci_read_config(dev, cap, 2);
3709 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3710 	pci_write_config(dev, cap, status, 2);
3711 }
3712 
3713 
3714 /*
3715  * 82544 Coexistence issue workaround.
3716  *    There are 2 issues.
3717  *       1. Transmit Hang issue.
3718  *    To detect this issue, following equation can be used...
3719  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3720  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3721  *
3722  *       2. DAC issue.
3723  *    To detect this issue, following equation can be used...
3724  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3725  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3726  *
3727  *    WORKAROUND:
3728  *	  Make sure we do not have ending address
3729  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3730  */
3731 static uint32_t
3732 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3733 {
3734 	uint32_t safe_terminator;
3735 
3736 	/*
3737 	 * Since issue is sensitive to length and address.
3738 	 * Let us first check the address...
3739 	 */
3740 	if (length <= 4) {
3741 		desc_array->descriptor[0].address = address;
3742 		desc_array->descriptor[0].length = length;
3743 		desc_array->elements = 1;
3744 		return (desc_array->elements);
3745 	}
3746 
3747 	safe_terminator =
3748 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3749 
3750 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3751 	if (safe_terminator == 0 ||
3752 	    (safe_terminator > 4 && safe_terminator < 9) ||
3753 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3754 		desc_array->descriptor[0].address = address;
3755 		desc_array->descriptor[0].length = length;
3756 		desc_array->elements = 1;
3757 		return (desc_array->elements);
3758 	}
3759 
3760 	desc_array->descriptor[0].address = address;
3761 	desc_array->descriptor[0].length = length - 4;
3762 	desc_array->descriptor[1].address = address + (length - 4);
3763 	desc_array->descriptor[1].length = 4;
3764 	desc_array->elements = 2;
3765 	return (desc_array->elements);
3766 }
3767 
3768 static void
3769 em_update_stats(struct adapter *adapter)
3770 {
3771 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3772 
3773 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3774 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3775 		adapter->stats.symerrs +=
3776 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3777 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3778 	}
3779 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3780 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3781 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3782 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3783 
3784 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3785 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3786 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3787 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3788 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3789 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3790 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3791 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3792 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3793 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3794 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3795 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3796 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3797 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3798 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3799 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3800 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3801 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3802 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3803 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3804 
3805 	/* For the 64-bit byte counters the low dword must be read first. */
3806 	/* Both registers clear on the read of the high dword */
3807 
3808 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3809 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3810 
3811 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3812 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3813 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3814 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3815 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3816 
3817 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3818 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3819 
3820 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3821 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3822 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3823 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3824 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3825 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3826 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3827 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3828 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3829 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3830 
3831 	if (adapter->hw.mac.type >= e1000_82543) {
3832 		adapter->stats.algnerrc +=
3833 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3834 		adapter->stats.rxerrc +=
3835 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3836 		adapter->stats.tncrs +=
3837 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3838 		adapter->stats.cexterr +=
3839 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3840 		adapter->stats.tsctc +=
3841 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3842 		adapter->stats.tsctfc +=
3843 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3844 	}
3845 
3846 	ifp->if_collisions = adapter->stats.colc;
3847 
3848 	/* Rx Errors */
3849 	ifp->if_ierrors =
3850 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3851 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3852 	    adapter->stats.ruc + adapter->stats.roc +
3853 	    adapter->stats.mpc + adapter->stats.cexterr;
3854 
3855 	/* Tx Errors */
3856 	ifp->if_oerrors =
3857 	    adapter->stats.ecol + adapter->stats.latecol +
3858 	    adapter->watchdog_events;
3859 }
3860 
3861 static void
3862 em_print_debug_info(struct adapter *adapter)
3863 {
3864 	device_t dev = adapter->dev;
3865 	uint8_t *hw_addr = adapter->hw.hw_addr;
3866 
3867 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3868 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3869 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3870 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3871 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3872 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3873 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3874 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3875 	    adapter->hw.fc.high_water,
3876 	    adapter->hw.fc.low_water);
3877 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3878 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3879 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3880 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3881 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3882 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3883 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3884 	    (long long)adapter->tx_fifo_wrk_cnt,
3885 	    (long long)adapter->tx_fifo_reset_cnt);
3886 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3887 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3888 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3889 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3890 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3891 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3892 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3893 	    adapter->num_tx_desc_avail);
3894 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3895 	    adapter->no_tx_desc_avail1);
3896 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3897 	    adapter->no_tx_desc_avail2);
3898 	device_printf(dev, "Std mbuf failed = %ld\n",
3899 	    adapter->mbuf_alloc_failed);
3900 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3901 	    adapter->mbuf_cluster_failed);
3902 	device_printf(dev, "Driver dropped packets = %ld\n",
3903 	    adapter->dropped_pkts);
3904 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3905 	    adapter->no_tx_dma_setup);
3906 
3907 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3908 	    adapter->tx_csum_try_pullup);
3909 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3910 	    adapter->tx_csum_pullup1);
3911 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3912 	    adapter->tx_csum_pullup1_failed);
3913 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3914 	    adapter->tx_csum_pullup2);
3915 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3916 	    adapter->tx_csum_pullup2_failed);
3917 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3918 	    adapter->tx_csum_drop1);
3919 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3920 	    adapter->tx_csum_drop2);
3921 }
3922 
3923 static void
3924 em_print_hw_stats(struct adapter *adapter)
3925 {
3926 	device_t dev = adapter->dev;
3927 
3928 	device_printf(dev, "Excessive collisions = %lld\n",
3929 	    (long long)adapter->stats.ecol);
3930 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3931 	device_printf(dev, "Symbol errors = %lld\n",
3932 	    (long long)adapter->stats.symerrs);
3933 #endif
3934 	device_printf(dev, "Sequence errors = %lld\n",
3935 	    (long long)adapter->stats.sec);
3936 	device_printf(dev, "Defer count = %lld\n",
3937 	    (long long)adapter->stats.dc);
3938 	device_printf(dev, "Missed Packets = %lld\n",
3939 	    (long long)adapter->stats.mpc);
3940 	device_printf(dev, "Receive No Buffers = %lld\n",
3941 	    (long long)adapter->stats.rnbc);
3942 	/* RLEC is inaccurate on some hardware, calculate our own. */
3943 	device_printf(dev, "Receive Length Errors = %lld\n",
3944 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3945 	device_printf(dev, "Receive errors = %lld\n",
3946 	    (long long)adapter->stats.rxerrc);
3947 	device_printf(dev, "Crc errors = %lld\n",
3948 	    (long long)adapter->stats.crcerrs);
3949 	device_printf(dev, "Alignment errors = %lld\n",
3950 	    (long long)adapter->stats.algnerrc);
3951 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3952 	    (long long)adapter->stats.cexterr);
3953 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3954 	device_printf(dev, "watchdog timeouts = %ld\n",
3955 	    adapter->watchdog_events);
3956 	device_printf(dev, "XON Rcvd = %lld\n",
3957 	    (long long)adapter->stats.xonrxc);
3958 	device_printf(dev, "XON Xmtd = %lld\n",
3959 	    (long long)adapter->stats.xontxc);
3960 	device_printf(dev, "XOFF Rcvd = %lld\n",
3961 	    (long long)adapter->stats.xoffrxc);
3962 	device_printf(dev, "XOFF Xmtd = %lld\n",
3963 	    (long long)adapter->stats.xofftxc);
3964 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3965 	    (long long)adapter->stats.gprc);
3966 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3967 	    (long long)adapter->stats.gptc);
3968 }
3969 
3970 static void
3971 em_print_nvm_info(struct adapter *adapter)
3972 {
3973 	uint16_t eeprom_data;
3974 	int i, j, row = 0;
3975 
3976 	/* Its a bit crude, but it gets the job done */
3977 	kprintf("\nInterface EEPROM Dump:\n");
3978 	kprintf("Offset\n0x0000  ");
3979 	for (i = 0, j = 0; i < 32; i++, j++) {
3980 		if (j == 8) { /* Make the offset block */
3981 			j = 0; ++row;
3982 			kprintf("\n0x00%x0  ",row);
3983 		}
3984 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3985 		kprintf("%04x ", eeprom_data);
3986 	}
3987 	kprintf("\n");
3988 }
3989 
3990 static int
3991 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3992 {
3993 	struct adapter *adapter;
3994 	struct ifnet *ifp;
3995 	int error, result;
3996 
3997 	result = -1;
3998 	error = sysctl_handle_int(oidp, &result, 0, req);
3999 	if (error || !req->newptr)
4000 		return (error);
4001 
4002 	adapter = (struct adapter *)arg1;
4003 	ifp = &adapter->arpcom.ac_if;
4004 
4005 	lwkt_serialize_enter(ifp->if_serializer);
4006 
4007 	if (result == 1)
4008 		em_print_debug_info(adapter);
4009 
4010 	/*
4011 	 * This value will cause a hex dump of the
4012 	 * first 32 16-bit words of the EEPROM to
4013 	 * the screen.
4014 	 */
4015 	if (result == 2)
4016 		em_print_nvm_info(adapter);
4017 
4018 	lwkt_serialize_exit(ifp->if_serializer);
4019 
4020 	return (error);
4021 }
4022 
4023 static int
4024 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4025 {
4026 	int error, result;
4027 
4028 	result = -1;
4029 	error = sysctl_handle_int(oidp, &result, 0, req);
4030 	if (error || !req->newptr)
4031 		return (error);
4032 
4033 	if (result == 1) {
4034 		struct adapter *adapter = (struct adapter *)arg1;
4035 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4036 
4037 		lwkt_serialize_enter(ifp->if_serializer);
4038 		em_print_hw_stats(adapter);
4039 		lwkt_serialize_exit(ifp->if_serializer);
4040 	}
4041 	return (error);
4042 }
4043 
4044 static void
4045 em_add_sysctl(struct adapter *adapter)
4046 {
4047 	sysctl_ctx_init(&adapter->sysctl_ctx);
4048 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4049 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4050 					device_get_nameunit(adapter->dev),
4051 					CTLFLAG_RD, 0, "");
4052 	if (adapter->sysctl_tree == NULL) {
4053 		device_printf(adapter->dev, "can't add sysctl node\n");
4054 	} else {
4055 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4056 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4057 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4058 		    em_sysctl_debug_info, "I", "Debug Information");
4059 
4060 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4061 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4062 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4063 		    em_sysctl_stats, "I", "Statistics");
4064 
4065 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4066 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4067 		    OID_AUTO, "rxd", CTLFLAG_RD,
4068 		    &adapter->num_rx_desc, 0, NULL);
4069 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4070 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4071 		    OID_AUTO, "txd", CTLFLAG_RD,
4072 		    &adapter->num_tx_desc, 0, NULL);
4073 
4074 		if (adapter->hw.mac.type >= e1000_82540) {
4075 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4076 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4077 			    OID_AUTO, "int_throttle_ceil",
4078 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4079 			    em_sysctl_int_throttle, "I",
4080 			    "interrupt throttling rate");
4081 		}
4082 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4083 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4084 		    OID_AUTO, "int_tx_nsegs",
4085 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4086 		    em_sysctl_int_tx_nsegs, "I",
4087 		    "# segments per TX interrupt");
4088 	}
4089 }
4090 
4091 static int
4092 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4093 {
4094 	struct adapter *adapter = (void *)arg1;
4095 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4096 	int error, throttle;
4097 
4098 	throttle = adapter->int_throttle_ceil;
4099 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4100 	if (error || req->newptr == NULL)
4101 		return error;
4102 	if (throttle < 0 || throttle > 1000000000 / 256)
4103 		return EINVAL;
4104 
4105 	if (throttle) {
4106 		/*
4107 		 * Set the interrupt throttling rate in 256ns increments,
4108 		 * recalculate sysctl value assignment to get exact frequency.
4109 		 */
4110 		throttle = 1000000000 / 256 / throttle;
4111 
4112 		/* Upper 16bits of ITR is reserved and should be zero */
4113 		if (throttle & 0xffff0000)
4114 			return EINVAL;
4115 	}
4116 
4117 	lwkt_serialize_enter(ifp->if_serializer);
4118 
4119 	if (throttle)
4120 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4121 	else
4122 		adapter->int_throttle_ceil = 0;
4123 
4124 	if (ifp->if_flags & IFF_RUNNING)
4125 		em_set_itr(adapter, throttle);
4126 
4127 	lwkt_serialize_exit(ifp->if_serializer);
4128 
4129 	if (bootverbose) {
4130 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4131 			  adapter->int_throttle_ceil);
4132 	}
4133 	return 0;
4134 }
4135 
4136 static int
4137 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4138 {
4139 	struct adapter *adapter = (void *)arg1;
4140 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4141 	int error, segs;
4142 
4143 	segs = adapter->tx_int_nsegs;
4144 	error = sysctl_handle_int(oidp, &segs, 0, req);
4145 	if (error || req->newptr == NULL)
4146 		return error;
4147 	if (segs <= 0)
4148 		return EINVAL;
4149 
4150 	lwkt_serialize_enter(ifp->if_serializer);
4151 
4152 	/*
4153 	 * Don't allow int_tx_nsegs to become:
4154 	 * o  Less the oact_tx_desc
4155 	 * o  Too large that no TX desc will cause TX interrupt to
4156 	 *    be generated (OACTIVE will never recover)
4157 	 * o  Too small that will cause tx_dd[] overflow
4158 	 */
4159 	if (segs < adapter->oact_tx_desc ||
4160 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4161 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4162 		error = EINVAL;
4163 	} else {
4164 		error = 0;
4165 		adapter->tx_int_nsegs = segs;
4166 	}
4167 
4168 	lwkt_serialize_exit(ifp->if_serializer);
4169 
4170 	return error;
4171 }
4172 
4173 static void
4174 em_set_itr(struct adapter *adapter, uint32_t itr)
4175 {
4176 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4177 	if (adapter->hw.mac.type == e1000_82574) {
4178 		int i;
4179 
4180 		/*
4181 		 * When using MSIX interrupts we need to
4182 		 * throttle using the EITR register
4183 		 */
4184 		for (i = 0; i < 4; ++i) {
4185 			E1000_WRITE_REG(&adapter->hw,
4186 			    E1000_EITR_82574(i), itr);
4187 		}
4188 	}
4189 }
4190 
4191 static void
4192 em_disable_aspm(struct adapter *adapter)
4193 {
4194 	uint16_t link_cap, link_ctrl, disable;
4195 	uint8_t pcie_ptr, reg;
4196 	device_t dev = adapter->dev;
4197 
4198 	switch (adapter->hw.mac.type) {
4199 	case e1000_82571:
4200 	case e1000_82572:
4201 	case e1000_82573:
4202 		/*
4203 		 * 82573 specification update
4204 		 * errata #8 disable L0s
4205 		 * errata #41 disable L1
4206 		 *
4207 		 * 82571/82572 specification update
4208 		 # errata #13 disable L1
4209 		 * errata #68 disable L0s
4210 		 */
4211 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4212 		break;
4213 
4214 	case e1000_82574:
4215 	case e1000_82583:
4216 		/*
4217 		 * 82574 specification update errata #20
4218 		 * 82583 specification update errata #9
4219 		 *
4220 		 * There is no need to disable L1
4221 		 */
4222 		disable = PCIEM_LNKCTL_ASPM_L0S;
4223 		break;
4224 
4225 	default:
4226 		return;
4227 	}
4228 
4229 	pcie_ptr = pci_get_pciecap_ptr(dev);
4230 	if (pcie_ptr == 0)
4231 		return;
4232 
4233 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4234 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4235 		return;
4236 
4237 	if (bootverbose) {
4238 		if_printf(&adapter->arpcom.ac_if,
4239 		    "disable ASPM %#02x\n", disable);
4240 	}
4241 
4242 	reg = pcie_ptr + PCIER_LINKCTRL;
4243 	link_ctrl = pci_read_config(dev, reg, 2);
4244 	link_ctrl &= ~disable;
4245 	pci_write_config(dev, reg, link_ctrl, 2);
4246 }
4247