xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision 839fbabb9dc32b63fc5e76404f1191d062b95386)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_ifpoll.h"
97 
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_poll.h>
121 #include <net/ifq_var.h>
122 #include <net/vlan/if_vlan_var.h>
123 #include <net/vlan/if_vlan_ether.h>
124 
125 #include <netinet/ip.h>
126 #include <netinet/tcp.h>
127 #include <netinet/udp.h>
128 
129 #include <bus/pci/pcivar.h>
130 #include <bus/pci/pcireg.h>
131 
132 #include <dev/netif/ig_hal/e1000_api.h>
133 #include <dev/netif/ig_hal/e1000_82571.h>
134 #include <dev/netif/em/if_em.h>
135 
136 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
137 #define EM_VER	" 7.2.4"
138 
139 #define _EM_DEVICE(id, ret)	\
140 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
141 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
142 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
143 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
144 
145 static const struct em_vendor_info em_vendor_info_array[] = {
146 	EM_DEVICE(82540EM),
147 	EM_DEVICE(82540EM_LOM),
148 	EM_DEVICE(82540EP),
149 	EM_DEVICE(82540EP_LOM),
150 	EM_DEVICE(82540EP_LP),
151 
152 	EM_DEVICE(82541EI),
153 	EM_DEVICE(82541ER),
154 	EM_DEVICE(82541ER_LOM),
155 	EM_DEVICE(82541EI_MOBILE),
156 	EM_DEVICE(82541GI),
157 	EM_DEVICE(82541GI_LF),
158 	EM_DEVICE(82541GI_MOBILE),
159 
160 	EM_DEVICE(82542),
161 
162 	EM_DEVICE(82543GC_FIBER),
163 	EM_DEVICE(82543GC_COPPER),
164 
165 	EM_DEVICE(82544EI_COPPER),
166 	EM_DEVICE(82544EI_FIBER),
167 	EM_DEVICE(82544GC_COPPER),
168 	EM_DEVICE(82544GC_LOM),
169 
170 	EM_DEVICE(82545EM_COPPER),
171 	EM_DEVICE(82545EM_FIBER),
172 	EM_DEVICE(82545GM_COPPER),
173 	EM_DEVICE(82545GM_FIBER),
174 	EM_DEVICE(82545GM_SERDES),
175 
176 	EM_DEVICE(82546EB_COPPER),
177 	EM_DEVICE(82546EB_FIBER),
178 	EM_DEVICE(82546EB_QUAD_COPPER),
179 	EM_DEVICE(82546GB_COPPER),
180 	EM_DEVICE(82546GB_FIBER),
181 	EM_DEVICE(82546GB_SERDES),
182 	EM_DEVICE(82546GB_PCIE),
183 	EM_DEVICE(82546GB_QUAD_COPPER),
184 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
185 
186 	EM_DEVICE(82547EI),
187 	EM_DEVICE(82547EI_MOBILE),
188 	EM_DEVICE(82547GI),
189 
190 	EM_EMX_DEVICE(82571EB_COPPER),
191 	EM_EMX_DEVICE(82571EB_FIBER),
192 	EM_EMX_DEVICE(82571EB_SERDES),
193 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
194 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
195 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
196 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
197 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
198 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
199 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
200 
201 	EM_EMX_DEVICE(82572EI_COPPER),
202 	EM_EMX_DEVICE(82572EI_FIBER),
203 	EM_EMX_DEVICE(82572EI_SERDES),
204 	EM_EMX_DEVICE(82572EI),
205 
206 	EM_EMX_DEVICE(82573E),
207 	EM_EMX_DEVICE(82573E_IAMT),
208 	EM_EMX_DEVICE(82573L),
209 
210 	EM_DEVICE(82583V),
211 
212 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
213 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
214 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
215 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
216 
217 	EM_DEVICE(ICH8_IGP_M_AMT),
218 	EM_DEVICE(ICH8_IGP_AMT),
219 	EM_DEVICE(ICH8_IGP_C),
220 	EM_DEVICE(ICH8_IFE),
221 	EM_DEVICE(ICH8_IFE_GT),
222 	EM_DEVICE(ICH8_IFE_G),
223 	EM_DEVICE(ICH8_IGP_M),
224 	EM_DEVICE(ICH8_82567V_3),
225 
226 	EM_DEVICE(ICH9_IGP_M_AMT),
227 	EM_DEVICE(ICH9_IGP_AMT),
228 	EM_DEVICE(ICH9_IGP_C),
229 	EM_DEVICE(ICH9_IGP_M),
230 	EM_DEVICE(ICH9_IGP_M_V),
231 	EM_DEVICE(ICH9_IFE),
232 	EM_DEVICE(ICH9_IFE_GT),
233 	EM_DEVICE(ICH9_IFE_G),
234 	EM_DEVICE(ICH9_BM),
235 
236 	EM_EMX_DEVICE(82574L),
237 	EM_EMX_DEVICE(82574LA),
238 
239 	EM_DEVICE(ICH10_R_BM_LM),
240 	EM_DEVICE(ICH10_R_BM_LF),
241 	EM_DEVICE(ICH10_R_BM_V),
242 	EM_DEVICE(ICH10_D_BM_LM),
243 	EM_DEVICE(ICH10_D_BM_LF),
244 	EM_DEVICE(ICH10_D_BM_V),
245 
246 	EM_DEVICE(PCH_M_HV_LM),
247 	EM_DEVICE(PCH_M_HV_LC),
248 	EM_DEVICE(PCH_D_HV_DM),
249 	EM_DEVICE(PCH_D_HV_DC),
250 
251 	EM_DEVICE(PCH2_LV_LM),
252 	EM_DEVICE(PCH2_LV_V),
253 
254 	/* required last entry */
255 	EM_DEVICE_NULL
256 };
257 
258 static int	em_probe(device_t);
259 static int	em_attach(device_t);
260 static int	em_detach(device_t);
261 static int	em_shutdown(device_t);
262 static int	em_suspend(device_t);
263 static int	em_resume(device_t);
264 
265 static void	em_init(void *);
266 static void	em_stop(struct adapter *);
267 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
268 static void	em_start(struct ifnet *);
269 #ifdef IFPOLL_ENABLE
270 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
271 static void	em_npoll_compat(struct ifnet *, void *, int);
272 #endif
273 static void	em_watchdog(struct ifnet *);
274 static void	em_media_status(struct ifnet *, struct ifmediareq *);
275 static int	em_media_change(struct ifnet *);
276 static void	em_timer(void *);
277 
278 static void	em_intr(void *);
279 static void	em_intr_mask(void *);
280 static void	em_intr_body(struct adapter *, boolean_t);
281 static void	em_rxeof(struct adapter *, int);
282 static void	em_txeof(struct adapter *);
283 static void	em_tx_collect(struct adapter *);
284 static void	em_tx_purge(struct adapter *);
285 static void	em_enable_intr(struct adapter *);
286 static void	em_disable_intr(struct adapter *);
287 
288 static int	em_dma_malloc(struct adapter *, bus_size_t,
289 		    struct em_dma_alloc *);
290 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
291 static void	em_init_tx_ring(struct adapter *);
292 static int	em_init_rx_ring(struct adapter *);
293 static int	em_create_tx_ring(struct adapter *);
294 static int	em_create_rx_ring(struct adapter *);
295 static void	em_destroy_tx_ring(struct adapter *, int);
296 static void	em_destroy_rx_ring(struct adapter *, int);
297 static int	em_newbuf(struct adapter *, int, int);
298 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
299 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
300 		    struct mbuf *);
301 static int	em_txcsum(struct adapter *, struct mbuf *,
302 		    uint32_t *, uint32_t *);
303 static int	em_tso_pullup(struct adapter *, struct mbuf **);
304 static int	em_tso_setup(struct adapter *, struct mbuf *,
305 		    uint32_t *, uint32_t *);
306 
307 static int	em_get_hw_info(struct adapter *);
308 static int 	em_is_valid_eaddr(const uint8_t *);
309 static int	em_alloc_pci_res(struct adapter *);
310 static void	em_free_pci_res(struct adapter *);
311 static int	em_reset(struct adapter *);
312 static void	em_setup_ifp(struct adapter *);
313 static void	em_init_tx_unit(struct adapter *);
314 static void	em_init_rx_unit(struct adapter *);
315 static void	em_update_stats(struct adapter *);
316 static void	em_set_promisc(struct adapter *);
317 static void	em_disable_promisc(struct adapter *);
318 static void	em_set_multi(struct adapter *);
319 static void	em_update_link_status(struct adapter *);
320 static void	em_smartspeed(struct adapter *);
321 static void	em_set_itr(struct adapter *, uint32_t);
322 static void	em_disable_aspm(struct adapter *);
323 
324 /* Hardware workarounds */
325 static int	em_82547_fifo_workaround(struct adapter *, int);
326 static void	em_82547_update_fifo_head(struct adapter *, int);
327 static int	em_82547_tx_fifo_reset(struct adapter *);
328 static void	em_82547_move_tail(void *);
329 static void	em_82547_move_tail_serialized(struct adapter *);
330 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
331 
332 static void	em_print_debug_info(struct adapter *);
333 static void	em_print_nvm_info(struct adapter *);
334 static void	em_print_hw_stats(struct adapter *);
335 
336 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
337 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
338 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
339 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
340 static void	em_add_sysctl(struct adapter *adapter);
341 
342 /* Management and WOL Support */
343 static void	em_get_mgmt(struct adapter *);
344 static void	em_rel_mgmt(struct adapter *);
345 static void	em_get_hw_control(struct adapter *);
346 static void	em_rel_hw_control(struct adapter *);
347 static void	em_enable_wol(device_t);
348 
349 static device_method_t em_methods[] = {
350 	/* Device interface */
351 	DEVMETHOD(device_probe,		em_probe),
352 	DEVMETHOD(device_attach,	em_attach),
353 	DEVMETHOD(device_detach,	em_detach),
354 	DEVMETHOD(device_shutdown,	em_shutdown),
355 	DEVMETHOD(device_suspend,	em_suspend),
356 	DEVMETHOD(device_resume,	em_resume),
357 	{ 0, 0 }
358 };
359 
360 static driver_t em_driver = {
361 	"em",
362 	em_methods,
363 	sizeof(struct adapter),
364 };
365 
366 static devclass_t em_devclass;
367 
368 DECLARE_DUMMY_MODULE(if_em);
369 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
370 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
371 
372 /*
373  * Tunables
374  */
375 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
376 static int	em_rxd = EM_DEFAULT_RXD;
377 static int	em_txd = EM_DEFAULT_TXD;
378 static int	em_smart_pwr_down = 0;
379 
380 /* Controls whether promiscuous also shows bad packets */
381 static int	em_debug_sbp = FALSE;
382 
383 static int	em_82573_workaround = 1;
384 static int	em_msi_enable = 1;
385 
386 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
387 TUNABLE_INT("hw.em.rxd", &em_rxd);
388 TUNABLE_INT("hw.em.txd", &em_txd);
389 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
390 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
391 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
392 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
393 
394 /* Global used in WOL setup with multiport cards */
395 static int	em_global_quad_port_a = 0;
396 
397 /* Set this to one to display debug statistics */
398 static int	em_display_debug_stats = 0;
399 
400 #if !defined(KTR_IF_EM)
401 #define KTR_IF_EM	KTR_ALL
402 #endif
403 KTR_INFO_MASTER(if_em);
404 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
405 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
406 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
407 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
408 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
409 #define logif(name)	KTR_LOG(if_em_ ## name)
410 
411 static int
412 em_probe(device_t dev)
413 {
414 	const struct em_vendor_info *ent;
415 	uint16_t vid, did;
416 
417 	vid = pci_get_vendor(dev);
418 	did = pci_get_device(dev);
419 
420 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
421 		if (vid == ent->vendor_id && did == ent->device_id) {
422 			device_set_desc(dev, ent->desc);
423 			device_set_async_attach(dev, TRUE);
424 			return (ent->ret);
425 		}
426 	}
427 	return (ENXIO);
428 }
429 
430 static int
431 em_attach(device_t dev)
432 {
433 	struct adapter *adapter = device_get_softc(dev);
434 	struct ifnet *ifp = &adapter->arpcom.ac_if;
435 	int tsize, rsize;
436 	int error = 0;
437 	uint16_t eeprom_data, device_id, apme_mask;
438 	driver_intr_t *intr_func;
439 
440 	adapter->dev = adapter->osdep.dev = dev;
441 
442 	callout_init_mp(&adapter->timer);
443 	callout_init_mp(&adapter->tx_fifo_timer);
444 
445 	/* Determine hardware and mac info */
446 	error = em_get_hw_info(adapter);
447 	if (error) {
448 		device_printf(dev, "Identify hardware failed\n");
449 		goto fail;
450 	}
451 
452 	/* Setup PCI resources */
453 	error = em_alloc_pci_res(adapter);
454 	if (error) {
455 		device_printf(dev, "Allocation of PCI resources failed\n");
456 		goto fail;
457 	}
458 
459 	/*
460 	 * For ICH8 and family we need to map the flash memory,
461 	 * and this must happen after the MAC is identified.
462 	 */
463 	if (adapter->hw.mac.type == e1000_ich8lan ||
464 	    adapter->hw.mac.type == e1000_ich9lan ||
465 	    adapter->hw.mac.type == e1000_ich10lan ||
466 	    adapter->hw.mac.type == e1000_pchlan ||
467 	    adapter->hw.mac.type == e1000_pch2lan) {
468 		adapter->flash_rid = EM_BAR_FLASH;
469 
470 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
471 					&adapter->flash_rid, RF_ACTIVE);
472 		if (adapter->flash == NULL) {
473 			device_printf(dev, "Mapping of Flash failed\n");
474 			error = ENXIO;
475 			goto fail;
476 		}
477 		adapter->osdep.flash_bus_space_tag =
478 		    rman_get_bustag(adapter->flash);
479 		adapter->osdep.flash_bus_space_handle =
480 		    rman_get_bushandle(adapter->flash);
481 
482 		/*
483 		 * This is used in the shared code
484 		 * XXX this goof is actually not used.
485 		 */
486 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
487 	}
488 
489 	switch (adapter->hw.mac.type) {
490 	case e1000_82571:
491 	case e1000_82572:
492 		/*
493 		 * Pullup extra 4bytes into the first data segment, see:
494 		 * 82571/82572 specification update errata #7
495 		 *
496 		 * NOTE:
497 		 * 4bytes instead of 2bytes, which are mentioned in the
498 		 * errata, are pulled; mainly to keep rest of the data
499 		 * properly aligned.
500 		 */
501 		adapter->flags |= EM_FLAG_TSO_PULLEX;
502 		/* FALL THROUGH */
503 
504 	case e1000_82573:
505 	case e1000_82574:
506 	case e1000_80003es2lan:
507 		adapter->flags |= EM_FLAG_TSO;
508 		break;
509 
510 	default:
511 		break;
512 	}
513 
514 	/* Do Shared Code initialization */
515 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
516 		device_printf(dev, "Setup of Shared code failed\n");
517 		error = ENXIO;
518 		goto fail;
519 	}
520 
521 	e1000_get_bus_info(&adapter->hw);
522 
523 	/*
524 	 * Validate number of transmit and receive descriptors.  It
525 	 * must not exceed hardware maximum, and must be multiple
526 	 * of E1000_DBA_ALIGN.
527 	 */
528 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
529 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
530 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
531 	    em_txd < EM_MIN_TXD) {
532 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
533 		    EM_DEFAULT_TXD, em_txd);
534 		adapter->num_tx_desc = EM_DEFAULT_TXD;
535 	} else {
536 		adapter->num_tx_desc = em_txd;
537 	}
538 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
539 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
540 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
541 	    em_rxd < EM_MIN_RXD) {
542 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
543 		    EM_DEFAULT_RXD, em_rxd);
544 		adapter->num_rx_desc = EM_DEFAULT_RXD;
545 	} else {
546 		adapter->num_rx_desc = em_rxd;
547 	}
548 
549 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
550 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
551 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
552 	adapter->rx_buffer_len = MCLBYTES;
553 
554 	/*
555 	 * Interrupt throttle rate
556 	 */
557 	if (em_int_throttle_ceil == 0) {
558 		adapter->int_throttle_ceil = 0;
559 	} else {
560 		int throttle = em_int_throttle_ceil;
561 
562 		if (throttle < 0)
563 			throttle = EM_DEFAULT_ITR;
564 
565 		/* Recalculate the tunable value to get the exact frequency. */
566 		throttle = 1000000000 / 256 / throttle;
567 
568 		/* Upper 16bits of ITR is reserved and should be zero */
569 		if (throttle & 0xffff0000)
570 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
571 
572 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
573 	}
574 
575 	e1000_init_script_state_82541(&adapter->hw, TRUE);
576 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
577 
578 	/* Copper options */
579 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
580 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
581 		adapter->hw.phy.disable_polarity_correction = FALSE;
582 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
583 	}
584 
585 	/* Set the frame limits assuming standard ethernet sized frames. */
586 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
587 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
588 
589 	/* This controls when hardware reports transmit completion status. */
590 	adapter->hw.mac.report_tx_early = 1;
591 
592 	/*
593 	 * Create top level busdma tag
594 	 */
595 	error = bus_dma_tag_create(NULL, 1, 0,
596 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
597 			NULL, NULL,
598 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
599 			0, &adapter->parent_dtag);
600 	if (error) {
601 		device_printf(dev, "could not create top level DMA tag\n");
602 		goto fail;
603 	}
604 
605 	/*
606 	 * Allocate Transmit Descriptor ring
607 	 */
608 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
609 			 EM_DBA_ALIGN);
610 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
611 	if (error) {
612 		device_printf(dev, "Unable to allocate tx_desc memory\n");
613 		goto fail;
614 	}
615 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
616 
617 	/*
618 	 * Allocate Receive Descriptor ring
619 	 */
620 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
621 			 EM_DBA_ALIGN);
622 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
623 	if (error) {
624 		device_printf(dev, "Unable to allocate rx_desc memory\n");
625 		goto fail;
626 	}
627 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
628 
629 	/* Allocate multicast array memory. */
630 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
631 	    M_DEVBUF, M_WAITOK);
632 
633 	/* Indicate SOL/IDER usage */
634 	if (e1000_check_reset_block(&adapter->hw)) {
635 		device_printf(dev,
636 		    "PHY reset is blocked due to SOL/IDER session.\n");
637 	}
638 
639 	/*
640 	 * Start from a known state, this is important in reading the
641 	 * nvm and mac from that.
642 	 */
643 	e1000_reset_hw(&adapter->hw);
644 
645 	/* Make sure we have a good EEPROM before we read from it */
646 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
647 		/*
648 		 * Some PCI-E parts fail the first check due to
649 		 * the link being in sleep state, call it again,
650 		 * if it fails a second time its a real issue.
651 		 */
652 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
653 			device_printf(dev,
654 			    "The EEPROM Checksum Is Not Valid\n");
655 			error = EIO;
656 			goto fail;
657 		}
658 	}
659 
660 	/* Copy the permanent MAC address out of the EEPROM */
661 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
662 		device_printf(dev, "EEPROM read error while reading MAC"
663 		    " address\n");
664 		error = EIO;
665 		goto fail;
666 	}
667 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
668 		device_printf(dev, "Invalid MAC address\n");
669 		error = EIO;
670 		goto fail;
671 	}
672 
673 	/* Allocate transmit descriptors and buffers */
674 	error = em_create_tx_ring(adapter);
675 	if (error) {
676 		device_printf(dev, "Could not setup transmit structures\n");
677 		goto fail;
678 	}
679 
680 	/* Allocate receive descriptors and buffers */
681 	error = em_create_rx_ring(adapter);
682 	if (error) {
683 		device_printf(dev, "Could not setup receive structures\n");
684 		goto fail;
685 	}
686 
687 	/* Manually turn off all interrupts */
688 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
689 
690 	/* Determine if we have to control management hardware */
691 	if (e1000_enable_mng_pass_thru(&adapter->hw))
692 		adapter->flags |= EM_FLAG_HAS_MGMT;
693 
694 	/*
695 	 * Setup Wake-on-Lan
696 	 */
697 	apme_mask = EM_EEPROM_APME;
698 	eeprom_data = 0;
699 	switch (adapter->hw.mac.type) {
700 	case e1000_82542:
701 	case e1000_82543:
702 		break;
703 
704 	case e1000_82573:
705 	case e1000_82583:
706 		adapter->flags |= EM_FLAG_HAS_AMT;
707 		/* FALL THROUGH */
708 
709 	case e1000_82546:
710 	case e1000_82546_rev_3:
711 	case e1000_82571:
712 	case e1000_82572:
713 	case e1000_80003es2lan:
714 		if (adapter->hw.bus.func == 1) {
715 			e1000_read_nvm(&adapter->hw,
716 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
717 		} else {
718 			e1000_read_nvm(&adapter->hw,
719 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
720 		}
721 		break;
722 
723 	case e1000_ich8lan:
724 	case e1000_ich9lan:
725 	case e1000_ich10lan:
726 	case e1000_pchlan:
727 	case e1000_pch2lan:
728 		apme_mask = E1000_WUC_APME;
729 		adapter->flags |= EM_FLAG_HAS_AMT;
730 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
731 		break;
732 
733 	default:
734 		e1000_read_nvm(&adapter->hw,
735 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
736 		break;
737 	}
738 	if (eeprom_data & apme_mask)
739 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
740 
741 	/*
742          * We have the eeprom settings, now apply the special cases
743          * where the eeprom may be wrong or the board won't support
744          * wake on lan on a particular port
745 	 */
746 	device_id = pci_get_device(dev);
747         switch (device_id) {
748 	case E1000_DEV_ID_82546GB_PCIE:
749 		adapter->wol = 0;
750 		break;
751 
752 	case E1000_DEV_ID_82546EB_FIBER:
753 	case E1000_DEV_ID_82546GB_FIBER:
754 	case E1000_DEV_ID_82571EB_FIBER:
755 		/*
756 		 * Wake events only supported on port A for dual fiber
757 		 * regardless of eeprom setting
758 		 */
759 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
760 		    E1000_STATUS_FUNC_1)
761 			adapter->wol = 0;
762 		break;
763 
764 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
765 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
766 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
767 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
768                 /* if quad port adapter, disable WoL on all but port A */
769 		if (em_global_quad_port_a != 0)
770 			adapter->wol = 0;
771 		/* Reset for multiple quad port adapters */
772 		if (++em_global_quad_port_a == 4)
773 			em_global_quad_port_a = 0;
774                 break;
775 	}
776 
777 	/* XXX disable wol */
778 	adapter->wol = 0;
779 
780 	/* Setup OS specific network interface */
781 	em_setup_ifp(adapter);
782 
783 	/* Add sysctl tree, must after em_setup_ifp() */
784 	em_add_sysctl(adapter);
785 
786 #ifdef IFPOLL_ENABLE
787 	/* Polling setup */
788 	ifpoll_compat_setup(&adapter->npoll,
789 	    &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
790 	    ifp->if_serializer);
791 #endif
792 
793 	/* Reset the hardware */
794 	error = em_reset(adapter);
795 	if (error) {
796 		device_printf(dev, "Unable to reset the hardware\n");
797 		goto fail;
798 	}
799 
800 	/* Initialize statistics */
801 	em_update_stats(adapter);
802 
803 	adapter->hw.mac.get_link_status = 1;
804 	em_update_link_status(adapter);
805 
806 	/* Do we need workaround for 82544 PCI-X adapter? */
807 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
808 	    adapter->hw.mac.type == e1000_82544)
809 		adapter->pcix_82544 = TRUE;
810 	else
811 		adapter->pcix_82544 = FALSE;
812 
813 	if (adapter->pcix_82544) {
814 		/*
815 		 * 82544 on PCI-X may split one TX segment
816 		 * into two TX descs, so we double its number
817 		 * of spare TX desc here.
818 		 */
819 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
820 	} else {
821 		adapter->spare_tx_desc = EM_TX_SPARE;
822 	}
823 	if (adapter->flags & EM_FLAG_TSO)
824 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
825 	adapter->tx_wreg_nsegs = 8;
826 
827 	/*
828 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
829 	 * and tx_int_nsegs:
830 	 * (spare_tx_desc + EM_TX_RESERVED) <=
831 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
832 	 */
833 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
834 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
835 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
836 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
837 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
838 
839 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
840 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
841 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
842 
843 	/* Non-AMT based hardware can now take control from firmware */
844 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
845 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
846 		em_get_hw_control(adapter);
847 
848 	/*
849 	 * Missing Interrupt Following ICR read:
850 	 *
851 	 * 82571/82572 specification update errata #76
852 	 * 82573 specification update errata #31
853 	 * 82574 specification update errata #12
854 	 * 82583 specification update errata #4
855 	 */
856 	intr_func = em_intr;
857 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
858 	    (adapter->hw.mac.type == e1000_82571 ||
859 	     adapter->hw.mac.type == e1000_82572 ||
860 	     adapter->hw.mac.type == e1000_82573 ||
861 	     adapter->hw.mac.type == e1000_82574 ||
862 	     adapter->hw.mac.type == e1000_82583))
863 		intr_func = em_intr_mask;
864 
865 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
866 			       intr_func, adapter, &adapter->intr_tag,
867 			       ifp->if_serializer);
868 	if (error) {
869 		device_printf(dev, "Failed to register interrupt handler");
870 		ether_ifdetach(&adapter->arpcom.ac_if);
871 		goto fail;
872 	}
873 
874 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
875 	return (0);
876 fail:
877 	em_detach(dev);
878 	return (error);
879 }
880 
881 static int
882 em_detach(device_t dev)
883 {
884 	struct adapter *adapter = device_get_softc(dev);
885 
886 	if (device_is_attached(dev)) {
887 		struct ifnet *ifp = &adapter->arpcom.ac_if;
888 
889 		lwkt_serialize_enter(ifp->if_serializer);
890 
891 		em_stop(adapter);
892 
893 		e1000_phy_hw_reset(&adapter->hw);
894 
895 		em_rel_mgmt(adapter);
896 		em_rel_hw_control(adapter);
897 
898 		if (adapter->wol) {
899 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
900 					E1000_WUC_PME_EN);
901 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
902 			em_enable_wol(dev);
903 		}
904 
905 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
906 
907 		lwkt_serialize_exit(ifp->if_serializer);
908 
909 		ether_ifdetach(ifp);
910 	} else if (adapter->memory != NULL) {
911 		em_rel_hw_control(adapter);
912 	}
913 	bus_generic_detach(dev);
914 
915 	em_free_pci_res(adapter);
916 
917 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
918 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
919 
920 	/* Free Transmit Descriptor ring */
921 	if (adapter->tx_desc_base)
922 		em_dma_free(adapter, &adapter->txdma);
923 
924 	/* Free Receive Descriptor ring */
925 	if (adapter->rx_desc_base)
926 		em_dma_free(adapter, &adapter->rxdma);
927 
928 	/* Free top level busdma tag */
929 	if (adapter->parent_dtag != NULL)
930 		bus_dma_tag_destroy(adapter->parent_dtag);
931 
932 	/* Free sysctl tree */
933 	if (adapter->sysctl_tree != NULL)
934 		sysctl_ctx_free(&adapter->sysctl_ctx);
935 
936 	if (adapter->mta != NULL)
937 		kfree(adapter->mta, M_DEVBUF);
938 
939 	return (0);
940 }
941 
942 static int
943 em_shutdown(device_t dev)
944 {
945 	return em_suspend(dev);
946 }
947 
948 static int
949 em_suspend(device_t dev)
950 {
951 	struct adapter *adapter = device_get_softc(dev);
952 	struct ifnet *ifp = &adapter->arpcom.ac_if;
953 
954 	lwkt_serialize_enter(ifp->if_serializer);
955 
956 	em_stop(adapter);
957 
958 	em_rel_mgmt(adapter);
959 	em_rel_hw_control(adapter);
960 
961 	if (adapter->wol) {
962 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
963 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
964 		em_enable_wol(dev);
965 	}
966 
967 	lwkt_serialize_exit(ifp->if_serializer);
968 
969 	return bus_generic_suspend(dev);
970 }
971 
972 static int
973 em_resume(device_t dev)
974 {
975 	struct adapter *adapter = device_get_softc(dev);
976 	struct ifnet *ifp = &adapter->arpcom.ac_if;
977 
978 	lwkt_serialize_enter(ifp->if_serializer);
979 
980 	em_init(adapter);
981 	em_get_mgmt(adapter);
982 	if_devstart(ifp);
983 
984 	lwkt_serialize_exit(ifp->if_serializer);
985 
986 	return bus_generic_resume(dev);
987 }
988 
989 static void
990 em_start(struct ifnet *ifp)
991 {
992 	struct adapter *adapter = ifp->if_softc;
993 	struct mbuf *m_head;
994 	int idx = -1, nsegs = 0;
995 
996 	ASSERT_SERIALIZED(ifp->if_serializer);
997 
998 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
999 		return;
1000 
1001 	if (!adapter->link_active) {
1002 		ifq_purge(&ifp->if_snd);
1003 		return;
1004 	}
1005 
1006 	while (!ifq_is_empty(&ifp->if_snd)) {
1007 		/* Now do we at least have a minimal? */
1008 		if (EM_IS_OACTIVE(adapter)) {
1009 			em_tx_collect(adapter);
1010 			if (EM_IS_OACTIVE(adapter)) {
1011 				ifq_set_oactive(&ifp->if_snd);
1012 				adapter->no_tx_desc_avail1++;
1013 				break;
1014 			}
1015 		}
1016 
1017 		logif(pkt_txqueue);
1018 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1019 		if (m_head == NULL)
1020 			break;
1021 
1022 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1023 			ifp->if_oerrors++;
1024 			em_tx_collect(adapter);
1025 			continue;
1026 		}
1027 
1028 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1029 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1030 			nsegs = 0;
1031 			idx = -1;
1032 		}
1033 
1034 		/* Send a copy of the frame to the BPF listener */
1035 		ETHER_BPF_MTAP(ifp, m_head);
1036 
1037 		/* Set timeout in case hardware has problems transmitting. */
1038 		ifp->if_timer = EM_TX_TIMEOUT;
1039 	}
1040 	if (idx >= 0)
1041 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1042 }
1043 
1044 static int
1045 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1046 {
1047 	struct adapter *adapter = ifp->if_softc;
1048 	struct ifreq *ifr = (struct ifreq *)data;
1049 	uint16_t eeprom_data = 0;
1050 	int max_frame_size, mask, reinit;
1051 	int error = 0;
1052 
1053 	ASSERT_SERIALIZED(ifp->if_serializer);
1054 
1055 	switch (command) {
1056 	case SIOCSIFMTU:
1057 		switch (adapter->hw.mac.type) {
1058 		case e1000_82573:
1059 			/*
1060 			 * 82573 only supports jumbo frames
1061 			 * if ASPM is disabled.
1062 			 */
1063 			e1000_read_nvm(&adapter->hw,
1064 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1065 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1066 				max_frame_size = ETHER_MAX_LEN;
1067 				break;
1068 			}
1069 			/* FALL THROUGH */
1070 
1071 		/* Limit Jumbo Frame size */
1072 		case e1000_82571:
1073 		case e1000_82572:
1074 		case e1000_ich9lan:
1075 		case e1000_ich10lan:
1076 		case e1000_pch2lan:
1077 		case e1000_82574:
1078 		case e1000_82583:
1079 		case e1000_80003es2lan:
1080 			max_frame_size = 9234;
1081 			break;
1082 
1083 		case e1000_pchlan:
1084 			max_frame_size = 4096;
1085 			break;
1086 
1087 		/* Adapters that do not support jumbo frames */
1088 		case e1000_82542:
1089 		case e1000_ich8lan:
1090 			max_frame_size = ETHER_MAX_LEN;
1091 			break;
1092 
1093 		default:
1094 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1095 			break;
1096 		}
1097 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1098 		    ETHER_CRC_LEN) {
1099 			error = EINVAL;
1100 			break;
1101 		}
1102 
1103 		ifp->if_mtu = ifr->ifr_mtu;
1104 		adapter->max_frame_size =
1105 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1106 
1107 		if (ifp->if_flags & IFF_RUNNING)
1108 			em_init(adapter);
1109 		break;
1110 
1111 	case SIOCSIFFLAGS:
1112 		if (ifp->if_flags & IFF_UP) {
1113 			if ((ifp->if_flags & IFF_RUNNING)) {
1114 				if ((ifp->if_flags ^ adapter->if_flags) &
1115 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1116 					em_disable_promisc(adapter);
1117 					em_set_promisc(adapter);
1118 				}
1119 			} else {
1120 				em_init(adapter);
1121 			}
1122 		} else if (ifp->if_flags & IFF_RUNNING) {
1123 			em_stop(adapter);
1124 		}
1125 		adapter->if_flags = ifp->if_flags;
1126 		break;
1127 
1128 	case SIOCADDMULTI:
1129 	case SIOCDELMULTI:
1130 		if (ifp->if_flags & IFF_RUNNING) {
1131 			em_disable_intr(adapter);
1132 			em_set_multi(adapter);
1133 			if (adapter->hw.mac.type == e1000_82542 &&
1134 			    adapter->hw.revision_id == E1000_REVISION_2)
1135 				em_init_rx_unit(adapter);
1136 #ifdef IFPOLL_ENABLE
1137 			if (!(ifp->if_flags & IFF_NPOLLING))
1138 #endif
1139 				em_enable_intr(adapter);
1140 		}
1141 		break;
1142 
1143 	case SIOCSIFMEDIA:
1144 		/* Check SOL/IDER usage */
1145 		if (e1000_check_reset_block(&adapter->hw)) {
1146 			device_printf(adapter->dev, "Media change is"
1147 			    " blocked due to SOL/IDER session.\n");
1148 			break;
1149 		}
1150 		/* FALL THROUGH */
1151 
1152 	case SIOCGIFMEDIA:
1153 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1154 		break;
1155 
1156 	case SIOCSIFCAP:
1157 		reinit = 0;
1158 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1159 		if (mask & IFCAP_RXCSUM) {
1160 			ifp->if_capenable ^= IFCAP_RXCSUM;
1161 			reinit = 1;
1162 		}
1163 		if (mask & IFCAP_TXCSUM) {
1164 			ifp->if_capenable ^= IFCAP_TXCSUM;
1165 			if (ifp->if_capenable & IFCAP_TXCSUM)
1166 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1167 			else
1168 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1169 		}
1170 		if (mask & IFCAP_TSO) {
1171 			ifp->if_capenable ^= IFCAP_TSO;
1172 			if (ifp->if_capenable & IFCAP_TSO)
1173 				ifp->if_hwassist |= CSUM_TSO;
1174 			else
1175 				ifp->if_hwassist &= ~CSUM_TSO;
1176 		}
1177 		if (mask & IFCAP_VLAN_HWTAGGING) {
1178 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1179 			reinit = 1;
1180 		}
1181 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1182 			em_init(adapter);
1183 		break;
1184 
1185 	default:
1186 		error = ether_ioctl(ifp, command, data);
1187 		break;
1188 	}
1189 	return (error);
1190 }
1191 
1192 static void
1193 em_watchdog(struct ifnet *ifp)
1194 {
1195 	struct adapter *adapter = ifp->if_softc;
1196 
1197 	ASSERT_SERIALIZED(ifp->if_serializer);
1198 
1199 	/*
1200 	 * The timer is set to 5 every time start queues a packet.
1201 	 * Then txeof keeps resetting it as long as it cleans at
1202 	 * least one descriptor.
1203 	 * Finally, anytime all descriptors are clean the timer is
1204 	 * set to 0.
1205 	 */
1206 
1207 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1208 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1209 		/*
1210 		 * If we reach here, all TX jobs are completed and
1211 		 * the TX engine should have been idled for some time.
1212 		 * We don't need to call if_devstart() here.
1213 		 */
1214 		ifq_clr_oactive(&ifp->if_snd);
1215 		ifp->if_timer = 0;
1216 		return;
1217 	}
1218 
1219 	/*
1220 	 * If we are in this routine because of pause frames, then
1221 	 * don't reset the hardware.
1222 	 */
1223 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1224 	    E1000_STATUS_TXOFF) {
1225 		ifp->if_timer = EM_TX_TIMEOUT;
1226 		return;
1227 	}
1228 
1229 	if (e1000_check_for_link(&adapter->hw) == 0)
1230 		if_printf(ifp, "watchdog timeout -- resetting\n");
1231 
1232 	ifp->if_oerrors++;
1233 	adapter->watchdog_events++;
1234 
1235 	em_init(adapter);
1236 
1237 	if (!ifq_is_empty(&ifp->if_snd))
1238 		if_devstart(ifp);
1239 }
1240 
1241 static void
1242 em_init(void *xsc)
1243 {
1244 	struct adapter *adapter = xsc;
1245 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1246 	device_t dev = adapter->dev;
1247 	uint32_t pba;
1248 
1249 	ASSERT_SERIALIZED(ifp->if_serializer);
1250 
1251 	em_stop(adapter);
1252 
1253 	/*
1254 	 * Packet Buffer Allocation (PBA)
1255 	 * Writing PBA sets the receive portion of the buffer
1256 	 * the remainder is used for the transmit buffer.
1257 	 *
1258 	 * Devices before the 82547 had a Packet Buffer of 64K.
1259 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1260 	 * After the 82547 the buffer was reduced to 40K.
1261 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1262 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1263 	 */
1264 	switch (adapter->hw.mac.type) {
1265 	case e1000_82547:
1266 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1267 		if (adapter->max_frame_size > 8192)
1268 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1269 		else
1270 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1271 		adapter->tx_fifo_head = 0;
1272 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1273 		adapter->tx_fifo_size =
1274 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1275 		break;
1276 
1277 	/* Total Packet Buffer on these is 48K */
1278 	case e1000_82571:
1279 	case e1000_82572:
1280 	case e1000_80003es2lan:
1281 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1282 		break;
1283 
1284 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1285 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1286 		break;
1287 
1288 	case e1000_82574:
1289 	case e1000_82583:
1290 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1291 		break;
1292 
1293 	case e1000_ich8lan:
1294 		pba = E1000_PBA_8K;
1295 		break;
1296 
1297 	case e1000_ich9lan:
1298 	case e1000_ich10lan:
1299 #define E1000_PBA_10K	0x000A
1300 		pba = E1000_PBA_10K;
1301 		break;
1302 
1303 	case e1000_pchlan:
1304 	case e1000_pch2lan:
1305 		pba = E1000_PBA_26K;
1306 		break;
1307 
1308 	default:
1309 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1310 		if (adapter->max_frame_size > 8192)
1311 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1312 		else
1313 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1314 	}
1315 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1316 
1317 	/* Get the latest mac address, User can use a LAA */
1318         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1319 
1320 	/* Put the address into the Receive Address Array */
1321 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1322 
1323 	/*
1324 	 * With the 82571 adapter, RAR[0] may be overwritten
1325 	 * when the other port is reset, we make a duplicate
1326 	 * in RAR[14] for that eventuality, this assures
1327 	 * the interface continues to function.
1328 	 */
1329 	if (adapter->hw.mac.type == e1000_82571) {
1330 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1331 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1332 		    E1000_RAR_ENTRIES - 1);
1333 	}
1334 
1335 	/* Reset the hardware */
1336 	if (em_reset(adapter)) {
1337 		device_printf(dev, "Unable to reset the hardware\n");
1338 		/* XXX em_stop()? */
1339 		return;
1340 	}
1341 	em_update_link_status(adapter);
1342 
1343 	/* Setup VLAN support, basic and offload if available */
1344 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1345 
1346 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1347 		uint32_t ctrl;
1348 
1349 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1350 		ctrl |= E1000_CTRL_VME;
1351 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1352 	}
1353 
1354 	/* Configure for OS presence */
1355 	em_get_mgmt(adapter);
1356 
1357 	/* Prepare transmit descriptors and buffers */
1358 	em_init_tx_ring(adapter);
1359 	em_init_tx_unit(adapter);
1360 
1361 	/* Setup Multicast table */
1362 	em_set_multi(adapter);
1363 
1364 	/* Prepare receive descriptors and buffers */
1365 	if (em_init_rx_ring(adapter)) {
1366 		device_printf(dev, "Could not setup receive structures\n");
1367 		em_stop(adapter);
1368 		return;
1369 	}
1370 	em_init_rx_unit(adapter);
1371 
1372 	/* Don't lose promiscuous settings */
1373 	em_set_promisc(adapter);
1374 
1375 	ifp->if_flags |= IFF_RUNNING;
1376 	ifq_clr_oactive(&ifp->if_snd);
1377 
1378 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1379 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1380 
1381 	/* MSI/X configuration for 82574 */
1382 	if (adapter->hw.mac.type == e1000_82574) {
1383 		int tmp;
1384 
1385 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1386 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1387 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1388 		/*
1389 		 * XXX MSIX
1390 		 * Set the IVAR - interrupt vector routing.
1391 		 * Each nibble represents a vector, high bit
1392 		 * is enable, other 3 bits are the MSIX table
1393 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1394 		 * Link (other) to 2, hence the magic number.
1395 		 */
1396 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1397 	}
1398 
1399 #ifdef IFPOLL_ENABLE
1400 	/*
1401 	 * Only enable interrupts if we are not polling, make sure
1402 	 * they are off otherwise.
1403 	 */
1404 	if (ifp->if_flags & IFF_NPOLLING)
1405 		em_disable_intr(adapter);
1406 	else
1407 #endif /* IFPOLL_ENABLE */
1408 		em_enable_intr(adapter);
1409 
1410 	/* AMT based hardware can now take control from firmware */
1411 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1412 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1413 	    adapter->hw.mac.type >= e1000_82571)
1414 		em_get_hw_control(adapter);
1415 
1416 	/* Don't reset the phy next time init gets called */
1417 	adapter->hw.phy.reset_disable = TRUE;
1418 }
1419 
1420 #ifdef IFPOLL_ENABLE
1421 
1422 static void
1423 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1424 {
1425 	struct adapter *adapter = ifp->if_softc;
1426 
1427 	ASSERT_SERIALIZED(ifp->if_serializer);
1428 
1429 	if (adapter->npoll.ifpc_stcount-- == 0) {
1430 		uint32_t reg_icr;
1431 
1432 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1433 
1434 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1435 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1436 			callout_stop(&adapter->timer);
1437 			adapter->hw.mac.get_link_status = 1;
1438 			em_update_link_status(adapter);
1439 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1440 		}
1441 	}
1442 
1443 	em_rxeof(adapter, count);
1444 	em_txeof(adapter);
1445 
1446 	if (!ifq_is_empty(&ifp->if_snd))
1447 		if_devstart(ifp);
1448 }
1449 
1450 static void
1451 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1452 {
1453 	struct adapter *adapter = ifp->if_softc;
1454 
1455 	ASSERT_SERIALIZED(ifp->if_serializer);
1456 
1457 	if (info != NULL) {
1458 		int cpuid = adapter->npoll.ifpc_cpuid;
1459 
1460                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1461 		info->ifpi_rx[cpuid].arg = NULL;
1462 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1463 
1464 		if (ifp->if_flags & IFF_RUNNING)
1465 			em_disable_intr(adapter);
1466 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1467 	} else {
1468 		if (ifp->if_flags & IFF_RUNNING)
1469 			em_enable_intr(adapter);
1470 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1471 	}
1472 }
1473 
1474 #endif /* IFPOLL_ENABLE */
1475 
1476 static void
1477 em_intr(void *xsc)
1478 {
1479 	em_intr_body(xsc, TRUE);
1480 }
1481 
1482 static void
1483 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1484 {
1485 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1486 	uint32_t reg_icr;
1487 
1488 	logif(intr_beg);
1489 	ASSERT_SERIALIZED(ifp->if_serializer);
1490 
1491 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1492 
1493 	if (chk_asserted &&
1494 	    ((adapter->hw.mac.type >= e1000_82571 &&
1495 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1496 	     reg_icr == 0)) {
1497 		logif(intr_end);
1498 		return;
1499 	}
1500 
1501 	/*
1502 	 * XXX: some laptops trigger several spurious interrupts
1503 	 * on em(4) when in the resume cycle. The ICR register
1504 	 * reports all-ones value in this case. Processing such
1505 	 * interrupts would lead to a freeze. I don't know why.
1506 	 */
1507 	if (reg_icr == 0xffffffff) {
1508 		logif(intr_end);
1509 		return;
1510 	}
1511 
1512 	if (ifp->if_flags & IFF_RUNNING) {
1513 		if (reg_icr &
1514 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1515 			em_rxeof(adapter, -1);
1516 		if (reg_icr & E1000_ICR_TXDW) {
1517 			em_txeof(adapter);
1518 			if (!ifq_is_empty(&ifp->if_snd))
1519 				if_devstart(ifp);
1520 		}
1521 	}
1522 
1523 	/* Link status change */
1524 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1525 		callout_stop(&adapter->timer);
1526 		adapter->hw.mac.get_link_status = 1;
1527 		em_update_link_status(adapter);
1528 
1529 		/* Deal with TX cruft when link lost */
1530 		em_tx_purge(adapter);
1531 
1532 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1533 	}
1534 
1535 	if (reg_icr & E1000_ICR_RXO)
1536 		adapter->rx_overruns++;
1537 
1538 	logif(intr_end);
1539 }
1540 
1541 static void
1542 em_intr_mask(void *xsc)
1543 {
1544 	struct adapter *adapter = xsc;
1545 
1546 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1547 	/*
1548 	 * NOTE:
1549 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1550 	 * so don't check it.
1551 	 */
1552 	em_intr_body(adapter, FALSE);
1553 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1554 }
1555 
1556 static void
1557 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1558 {
1559 	struct adapter *adapter = ifp->if_softc;
1560 	u_char fiber_type = IFM_1000_SX;
1561 
1562 	ASSERT_SERIALIZED(ifp->if_serializer);
1563 
1564 	em_update_link_status(adapter);
1565 
1566 	ifmr->ifm_status = IFM_AVALID;
1567 	ifmr->ifm_active = IFM_ETHER;
1568 
1569 	if (!adapter->link_active)
1570 		return;
1571 
1572 	ifmr->ifm_status |= IFM_ACTIVE;
1573 
1574 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1575 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1576 		if (adapter->hw.mac.type == e1000_82545)
1577 			fiber_type = IFM_1000_LX;
1578 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1579 	} else {
1580 		switch (adapter->link_speed) {
1581 		case 10:
1582 			ifmr->ifm_active |= IFM_10_T;
1583 			break;
1584 		case 100:
1585 			ifmr->ifm_active |= IFM_100_TX;
1586 			break;
1587 
1588 		case 1000:
1589 			ifmr->ifm_active |= IFM_1000_T;
1590 			break;
1591 		}
1592 		if (adapter->link_duplex == FULL_DUPLEX)
1593 			ifmr->ifm_active |= IFM_FDX;
1594 		else
1595 			ifmr->ifm_active |= IFM_HDX;
1596 	}
1597 }
1598 
1599 static int
1600 em_media_change(struct ifnet *ifp)
1601 {
1602 	struct adapter *adapter = ifp->if_softc;
1603 	struct ifmedia *ifm = &adapter->media;
1604 
1605 	ASSERT_SERIALIZED(ifp->if_serializer);
1606 
1607 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1608 		return (EINVAL);
1609 
1610 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1611 	case IFM_AUTO:
1612 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1613 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1614 		break;
1615 
1616 	case IFM_1000_LX:
1617 	case IFM_1000_SX:
1618 	case IFM_1000_T:
1619 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1620 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1621 		break;
1622 
1623 	case IFM_100_TX:
1624 		adapter->hw.mac.autoneg = FALSE;
1625 		adapter->hw.phy.autoneg_advertised = 0;
1626 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1627 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1628 		else
1629 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1630 		break;
1631 
1632 	case IFM_10_T:
1633 		adapter->hw.mac.autoneg = FALSE;
1634 		adapter->hw.phy.autoneg_advertised = 0;
1635 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1636 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1637 		else
1638 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1639 		break;
1640 
1641 	default:
1642 		if_printf(ifp, "Unsupported media type\n");
1643 		break;
1644 	}
1645 
1646 	/*
1647 	 * As the speed/duplex settings my have changed we need to
1648 	 * reset the PHY.
1649 	 */
1650 	adapter->hw.phy.reset_disable = FALSE;
1651 
1652 	em_init(adapter);
1653 
1654 	return (0);
1655 }
1656 
1657 static int
1658 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1659     int *segs_used, int *idx)
1660 {
1661 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1662 	bus_dmamap_t map;
1663 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1664 	struct e1000_tx_desc *ctxd = NULL;
1665 	struct mbuf *m_head = *m_headp;
1666 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1667 	int maxsegs, nsegs, i, j, first, last = 0, error;
1668 
1669 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1670 		error = em_tso_pullup(adapter, m_headp);
1671 		if (error)
1672 			return error;
1673 		m_head = *m_headp;
1674 	}
1675 
1676 	txd_upper = txd_lower = 0;
1677 	txd_used = 0;
1678 
1679 	/*
1680 	 * Capture the first descriptor index, this descriptor
1681 	 * will have the index of the EOP which is the only one
1682 	 * that now gets a DONE bit writeback.
1683 	 */
1684 	first = adapter->next_avail_tx_desc;
1685 	tx_buffer = &adapter->tx_buffer_area[first];
1686 	tx_buffer_mapped = tx_buffer;
1687 	map = tx_buffer->map;
1688 
1689 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1690 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1691 		("not enough spare TX desc"));
1692 	if (adapter->pcix_82544) {
1693 		/* Half it; see the comment in em_attach() */
1694 		maxsegs >>= 1;
1695 	}
1696 	if (maxsegs > EM_MAX_SCATTER)
1697 		maxsegs = EM_MAX_SCATTER;
1698 
1699 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1700 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1701 	if (error) {
1702 		if (error == ENOBUFS)
1703 			adapter->mbuf_alloc_failed++;
1704 		else
1705 			adapter->no_tx_dma_setup++;
1706 
1707 		m_freem(*m_headp);
1708 		*m_headp = NULL;
1709 		return error;
1710 	}
1711         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1712 
1713 	m_head = *m_headp;
1714 	adapter->tx_nsegs += nsegs;
1715 	*segs_used += nsegs;
1716 
1717 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1718 		/* TSO will consume one TX desc */
1719 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1720 		adapter->tx_nsegs += i;
1721 		*segs_used += i;
1722 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1723 		/* TX csum offloading will consume one TX desc */
1724 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1725 		adapter->tx_nsegs += i;
1726 		*segs_used += i;
1727 	}
1728 	i = adapter->next_avail_tx_desc;
1729 
1730 	/* Set up our transmit descriptors */
1731 	for (j = 0; j < nsegs; j++) {
1732 		/* If adapter is 82544 and on PCIX bus */
1733 		if(adapter->pcix_82544) {
1734 			DESC_ARRAY desc_array;
1735 			uint32_t array_elements, counter;
1736 
1737 			/*
1738 			 * Check the Address and Length combination and
1739 			 * split the data accordingly
1740 			 */
1741 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1742 						segs[j].ds_len, &desc_array);
1743 			for (counter = 0; counter < array_elements; counter++) {
1744 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1745 
1746 				tx_buffer = &adapter->tx_buffer_area[i];
1747 				ctxd = &adapter->tx_desc_base[i];
1748 
1749 				ctxd->buffer_addr = htole64(
1750 				    desc_array.descriptor[counter].address);
1751 				ctxd->lower.data = htole32(
1752 				    E1000_TXD_CMD_IFCS | txd_lower |
1753 				    desc_array.descriptor[counter].length);
1754 				ctxd->upper.data = htole32(txd_upper);
1755 
1756 				last = i;
1757 				if (++i == adapter->num_tx_desc)
1758 					i = 0;
1759 
1760 				txd_used++;
1761                         }
1762 		} else {
1763 			tx_buffer = &adapter->tx_buffer_area[i];
1764 			ctxd = &adapter->tx_desc_base[i];
1765 
1766 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1767 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1768 						   txd_lower | segs[j].ds_len);
1769 			ctxd->upper.data = htole32(txd_upper);
1770 
1771 			last = i;
1772 			if (++i == adapter->num_tx_desc)
1773 				i = 0;
1774 		}
1775 	}
1776 
1777 	adapter->next_avail_tx_desc = i;
1778 	if (adapter->pcix_82544) {
1779 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1780 		adapter->num_tx_desc_avail -= txd_used;
1781 	} else {
1782 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1783 		adapter->num_tx_desc_avail -= nsegs;
1784 	}
1785 
1786         /* Handle VLAN tag */
1787 	if (m_head->m_flags & M_VLANTAG) {
1788 		/* Set the vlan id. */
1789 		ctxd->upper.fields.special =
1790 		    htole16(m_head->m_pkthdr.ether_vlantag);
1791 
1792 		/* Tell hardware to add tag */
1793 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1794 	}
1795 
1796 	tx_buffer->m_head = m_head;
1797 	tx_buffer_mapped->map = tx_buffer->map;
1798 	tx_buffer->map = map;
1799 
1800 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1801 		adapter->tx_nsegs = 0;
1802 
1803 		/*
1804 		 * Report Status (RS) is turned on
1805 		 * every tx_int_nsegs descriptors.
1806 		 */
1807 		cmd = E1000_TXD_CMD_RS;
1808 
1809 		/*
1810 		 * Keep track of the descriptor, which will
1811 		 * be written back by hardware.
1812 		 */
1813 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1814 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1815 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1816 	}
1817 
1818 	/*
1819 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1820 	 */
1821 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1822 
1823 	if (adapter->hw.mac.type == e1000_82547) {
1824 		/*
1825 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1826 		 * E1000 that this frame is available to transmit.
1827 		 */
1828 		if (adapter->link_duplex == HALF_DUPLEX) {
1829 			em_82547_move_tail_serialized(adapter);
1830 		} else {
1831 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1832 			em_82547_update_fifo_head(adapter,
1833 			    m_head->m_pkthdr.len);
1834 		}
1835 	} else {
1836 		/*
1837 		 * Defer TDT updating, until enough descriptors are setup
1838 		 */
1839 		*idx = i;
1840 	}
1841 	return (0);
1842 }
1843 
1844 /*
1845  * 82547 workaround to avoid controller hang in half-duplex environment.
1846  * The workaround is to avoid queuing a large packet that would span
1847  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1848  * in this case.  We do that only when FIFO is quiescent.
1849  */
1850 static void
1851 em_82547_move_tail_serialized(struct adapter *adapter)
1852 {
1853 	struct e1000_tx_desc *tx_desc;
1854 	uint16_t hw_tdt, sw_tdt, length = 0;
1855 	bool eop = 0;
1856 
1857 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1858 
1859 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1860 	sw_tdt = adapter->next_avail_tx_desc;
1861 
1862 	while (hw_tdt != sw_tdt) {
1863 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1864 		length += tx_desc->lower.flags.length;
1865 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1866 		if (++hw_tdt == adapter->num_tx_desc)
1867 			hw_tdt = 0;
1868 
1869 		if (eop) {
1870 			if (em_82547_fifo_workaround(adapter, length)) {
1871 				adapter->tx_fifo_wrk_cnt++;
1872 				callout_reset(&adapter->tx_fifo_timer, 1,
1873 					em_82547_move_tail, adapter);
1874 				break;
1875 			}
1876 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1877 			em_82547_update_fifo_head(adapter, length);
1878 			length = 0;
1879 		}
1880 	}
1881 }
1882 
1883 static void
1884 em_82547_move_tail(void *xsc)
1885 {
1886 	struct adapter *adapter = xsc;
1887 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1888 
1889 	lwkt_serialize_enter(ifp->if_serializer);
1890 	em_82547_move_tail_serialized(adapter);
1891 	lwkt_serialize_exit(ifp->if_serializer);
1892 }
1893 
1894 static int
1895 em_82547_fifo_workaround(struct adapter *adapter, int len)
1896 {
1897 	int fifo_space, fifo_pkt_len;
1898 
1899 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1900 
1901 	if (adapter->link_duplex == HALF_DUPLEX) {
1902 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1903 
1904 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1905 			if (em_82547_tx_fifo_reset(adapter))
1906 				return (0);
1907 			else
1908 				return (1);
1909 		}
1910 	}
1911 	return (0);
1912 }
1913 
1914 static void
1915 em_82547_update_fifo_head(struct adapter *adapter, int len)
1916 {
1917 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1918 
1919 	/* tx_fifo_head is always 16 byte aligned */
1920 	adapter->tx_fifo_head += fifo_pkt_len;
1921 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1922 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1923 }
1924 
1925 static int
1926 em_82547_tx_fifo_reset(struct adapter *adapter)
1927 {
1928 	uint32_t tctl;
1929 
1930 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1931 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1932 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1933 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1934 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1935 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1936 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1937 		/* Disable TX unit */
1938 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1939 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1940 		    tctl & ~E1000_TCTL_EN);
1941 
1942 		/* Reset FIFO pointers */
1943 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1944 		    adapter->tx_head_addr);
1945 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1946 		    adapter->tx_head_addr);
1947 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1948 		    adapter->tx_head_addr);
1949 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1950 		    adapter->tx_head_addr);
1951 
1952 		/* Re-enable TX unit */
1953 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1954 		E1000_WRITE_FLUSH(&adapter->hw);
1955 
1956 		adapter->tx_fifo_head = 0;
1957 		adapter->tx_fifo_reset_cnt++;
1958 
1959 		return (TRUE);
1960 	} else {
1961 		return (FALSE);
1962 	}
1963 }
1964 
1965 static void
1966 em_set_promisc(struct adapter *adapter)
1967 {
1968 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1969 	uint32_t reg_rctl;
1970 
1971 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1972 
1973 	if (ifp->if_flags & IFF_PROMISC) {
1974 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1975 		/* Turn this on if you want to see bad packets */
1976 		if (em_debug_sbp)
1977 			reg_rctl |= E1000_RCTL_SBP;
1978 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1979 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1980 		reg_rctl |= E1000_RCTL_MPE;
1981 		reg_rctl &= ~E1000_RCTL_UPE;
1982 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1983 	}
1984 }
1985 
1986 static void
1987 em_disable_promisc(struct adapter *adapter)
1988 {
1989 	uint32_t reg_rctl;
1990 
1991 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1992 
1993 	reg_rctl &= ~E1000_RCTL_UPE;
1994 	reg_rctl &= ~E1000_RCTL_MPE;
1995 	reg_rctl &= ~E1000_RCTL_SBP;
1996 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1997 }
1998 
1999 static void
2000 em_set_multi(struct adapter *adapter)
2001 {
2002 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2003 	struct ifmultiaddr *ifma;
2004 	uint32_t reg_rctl = 0;
2005 	uint8_t *mta;
2006 	int mcnt = 0;
2007 
2008 	mta = adapter->mta;
2009 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2010 
2011 	if (adapter->hw.mac.type == e1000_82542 &&
2012 	    adapter->hw.revision_id == E1000_REVISION_2) {
2013 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2014 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2015 			e1000_pci_clear_mwi(&adapter->hw);
2016 		reg_rctl |= E1000_RCTL_RST;
2017 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2018 		msec_delay(5);
2019 	}
2020 
2021 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2022 		if (ifma->ifma_addr->sa_family != AF_LINK)
2023 			continue;
2024 
2025 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2026 			break;
2027 
2028 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2029 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2030 		mcnt++;
2031 	}
2032 
2033 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2034 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2035 		reg_rctl |= E1000_RCTL_MPE;
2036 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2037 	} else {
2038 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2039 	}
2040 
2041 	if (adapter->hw.mac.type == e1000_82542 &&
2042 	    adapter->hw.revision_id == E1000_REVISION_2) {
2043 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2044 		reg_rctl &= ~E1000_RCTL_RST;
2045 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2046 		msec_delay(5);
2047 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2048 			e1000_pci_set_mwi(&adapter->hw);
2049 	}
2050 }
2051 
2052 /*
2053  * This routine checks for link status and updates statistics.
2054  */
2055 static void
2056 em_timer(void *xsc)
2057 {
2058 	struct adapter *adapter = xsc;
2059 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2060 
2061 	lwkt_serialize_enter(ifp->if_serializer);
2062 
2063 	em_update_link_status(adapter);
2064 	em_update_stats(adapter);
2065 
2066 	/* Reset LAA into RAR[0] on 82571 */
2067 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2068 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2069 
2070 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2071 		em_print_hw_stats(adapter);
2072 
2073 	em_smartspeed(adapter);
2074 
2075 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2076 
2077 	lwkt_serialize_exit(ifp->if_serializer);
2078 }
2079 
2080 static void
2081 em_update_link_status(struct adapter *adapter)
2082 {
2083 	struct e1000_hw *hw = &adapter->hw;
2084 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2085 	device_t dev = adapter->dev;
2086 	uint32_t link_check = 0;
2087 
2088 	/* Get the cached link value or read phy for real */
2089 	switch (hw->phy.media_type) {
2090 	case e1000_media_type_copper:
2091 		if (hw->mac.get_link_status) {
2092 			/* Do the work to read phy */
2093 			e1000_check_for_link(hw);
2094 			link_check = !hw->mac.get_link_status;
2095 			if (link_check) /* ESB2 fix */
2096 				e1000_cfg_on_link_up(hw);
2097 		} else {
2098 			link_check = TRUE;
2099 		}
2100 		break;
2101 
2102 	case e1000_media_type_fiber:
2103 		e1000_check_for_link(hw);
2104 		link_check =
2105 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2106 		break;
2107 
2108 	case e1000_media_type_internal_serdes:
2109 		e1000_check_for_link(hw);
2110 		link_check = adapter->hw.mac.serdes_has_link;
2111 		break;
2112 
2113 	case e1000_media_type_unknown:
2114 	default:
2115 		break;
2116 	}
2117 
2118 	/* Now check for a transition */
2119 	if (link_check && adapter->link_active == 0) {
2120 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2121 		    &adapter->link_duplex);
2122 
2123 		/*
2124 		 * Check if we should enable/disable SPEED_MODE bit on
2125 		 * 82571/82572
2126 		 */
2127 		if (adapter->link_speed != SPEED_1000 &&
2128 		    (hw->mac.type == e1000_82571 ||
2129 		     hw->mac.type == e1000_82572)) {
2130 			int tarc0;
2131 
2132 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2133 			tarc0 &= ~SPEED_MODE_BIT;
2134 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2135 		}
2136 		if (bootverbose) {
2137 			device_printf(dev, "Link is up %d Mbps %s\n",
2138 			    adapter->link_speed,
2139 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2140 			    "Full Duplex" : "Half Duplex"));
2141 		}
2142 		adapter->link_active = 1;
2143 		adapter->smartspeed = 0;
2144 		ifp->if_baudrate = adapter->link_speed * 1000000;
2145 		ifp->if_link_state = LINK_STATE_UP;
2146 		if_link_state_change(ifp);
2147 	} else if (!link_check && adapter->link_active == 1) {
2148 		ifp->if_baudrate = adapter->link_speed = 0;
2149 		adapter->link_duplex = 0;
2150 		if (bootverbose)
2151 			device_printf(dev, "Link is Down\n");
2152 		adapter->link_active = 0;
2153 #if 0
2154 		/* Link down, disable watchdog */
2155 		if->if_timer = 0;
2156 #endif
2157 		ifp->if_link_state = LINK_STATE_DOWN;
2158 		if_link_state_change(ifp);
2159 	}
2160 }
2161 
2162 static void
2163 em_stop(struct adapter *adapter)
2164 {
2165 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2166 	int i;
2167 
2168 	ASSERT_SERIALIZED(ifp->if_serializer);
2169 
2170 	em_disable_intr(adapter);
2171 
2172 	callout_stop(&adapter->timer);
2173 	callout_stop(&adapter->tx_fifo_timer);
2174 
2175 	ifp->if_flags &= ~IFF_RUNNING;
2176 	ifq_clr_oactive(&ifp->if_snd);
2177 	ifp->if_timer = 0;
2178 
2179 	e1000_reset_hw(&adapter->hw);
2180 	if (adapter->hw.mac.type >= e1000_82544)
2181 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2182 
2183 	for (i = 0; i < adapter->num_tx_desc; i++) {
2184 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2185 
2186 		if (tx_buffer->m_head != NULL) {
2187 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2188 			m_freem(tx_buffer->m_head);
2189 			tx_buffer->m_head = NULL;
2190 		}
2191 	}
2192 
2193 	for (i = 0; i < adapter->num_rx_desc; i++) {
2194 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2195 
2196 		if (rx_buffer->m_head != NULL) {
2197 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2198 			m_freem(rx_buffer->m_head);
2199 			rx_buffer->m_head = NULL;
2200 		}
2201 	}
2202 
2203 	if (adapter->fmp != NULL)
2204 		m_freem(adapter->fmp);
2205 	adapter->fmp = NULL;
2206 	adapter->lmp = NULL;
2207 
2208 	adapter->csum_flags = 0;
2209 	adapter->csum_lhlen = 0;
2210 	adapter->csum_iphlen = 0;
2211 	adapter->csum_thlen = 0;
2212 	adapter->csum_mss = 0;
2213 	adapter->csum_pktlen = 0;
2214 
2215 	adapter->tx_dd_head = 0;
2216 	adapter->tx_dd_tail = 0;
2217 	adapter->tx_nsegs = 0;
2218 }
2219 
2220 static int
2221 em_get_hw_info(struct adapter *adapter)
2222 {
2223 	device_t dev = adapter->dev;
2224 
2225 	/* Save off the information about this board */
2226 	adapter->hw.vendor_id = pci_get_vendor(dev);
2227 	adapter->hw.device_id = pci_get_device(dev);
2228 	adapter->hw.revision_id = pci_get_revid(dev);
2229 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2230 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2231 
2232 	/* Do Shared Code Init and Setup */
2233 	if (e1000_set_mac_type(&adapter->hw))
2234 		return ENXIO;
2235 	return 0;
2236 }
2237 
2238 static int
2239 em_alloc_pci_res(struct adapter *adapter)
2240 {
2241 	device_t dev = adapter->dev;
2242 	u_int intr_flags;
2243 	int val, rid, msi_enable;
2244 
2245 	/* Enable bus mastering */
2246 	pci_enable_busmaster(dev);
2247 
2248 	adapter->memory_rid = EM_BAR_MEM;
2249 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2250 				&adapter->memory_rid, RF_ACTIVE);
2251 	if (adapter->memory == NULL) {
2252 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2253 		return (ENXIO);
2254 	}
2255 	adapter->osdep.mem_bus_space_tag =
2256 	    rman_get_bustag(adapter->memory);
2257 	adapter->osdep.mem_bus_space_handle =
2258 	    rman_get_bushandle(adapter->memory);
2259 
2260 	/* XXX This is quite goofy, it is not actually used */
2261 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2262 
2263 	/* Only older adapters use IO mapping */
2264 	if (adapter->hw.mac.type > e1000_82543 &&
2265 	    adapter->hw.mac.type < e1000_82571) {
2266 		/* Figure our where our IO BAR is ? */
2267 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2268 			val = pci_read_config(dev, rid, 4);
2269 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2270 				adapter->io_rid = rid;
2271 				break;
2272 			}
2273 			rid += 4;
2274 			/* check for 64bit BAR */
2275 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2276 				rid += 4;
2277 		}
2278 		if (rid >= PCIR_CARDBUSCIS) {
2279 			device_printf(dev, "Unable to locate IO BAR\n");
2280 			return (ENXIO);
2281 		}
2282 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2283 					&adapter->io_rid, RF_ACTIVE);
2284 		if (adapter->ioport == NULL) {
2285 			device_printf(dev, "Unable to allocate bus resource: "
2286 			    "ioport\n");
2287 			return (ENXIO);
2288 		}
2289 		adapter->hw.io_base = 0;
2290 		adapter->osdep.io_bus_space_tag =
2291 		    rman_get_bustag(adapter->ioport);
2292 		adapter->osdep.io_bus_space_handle =
2293 		    rman_get_bushandle(adapter->ioport);
2294 	}
2295 
2296 	/*
2297 	 * Don't enable MSI-X on 82574, see:
2298 	 * 82574 specification update errata #15
2299 	 *
2300 	 * Don't enable MSI on PCI/PCI-X chips, see:
2301 	 * 82540 specification update errata #6
2302 	 * 82545 specification update errata #4
2303 	 *
2304 	 * Don't enable MSI on 82571/82572, see:
2305 	 * 82571/82572 specification update errata #63
2306 	 */
2307 	msi_enable = em_msi_enable;
2308 	if (msi_enable &&
2309 	    (!pci_is_pcie(dev) ||
2310 	     adapter->hw.mac.type == e1000_82571 ||
2311 	     adapter->hw.mac.type == e1000_82572))
2312 		msi_enable = 0;
2313 
2314 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2315 	    &adapter->intr_rid, &intr_flags);
2316 
2317 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2318 		int unshared;
2319 
2320 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2321 		if (!unshared) {
2322 			adapter->flags |= EM_FLAG_SHARED_INTR;
2323 			if (bootverbose)
2324 				device_printf(dev, "IRQ shared\n");
2325 		} else {
2326 			intr_flags &= ~RF_SHAREABLE;
2327 			if (bootverbose)
2328 				device_printf(dev, "IRQ unshared\n");
2329 		}
2330 	}
2331 
2332 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2333 	    &adapter->intr_rid, intr_flags);
2334 	if (adapter->intr_res == NULL) {
2335 		device_printf(dev, "Unable to allocate bus resource: "
2336 		    "interrupt\n");
2337 		return (ENXIO);
2338 	}
2339 
2340 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2341 	adapter->hw.back = &adapter->osdep;
2342 	return (0);
2343 }
2344 
2345 static void
2346 em_free_pci_res(struct adapter *adapter)
2347 {
2348 	device_t dev = adapter->dev;
2349 
2350 	if (adapter->intr_res != NULL) {
2351 		bus_release_resource(dev, SYS_RES_IRQ,
2352 		    adapter->intr_rid, adapter->intr_res);
2353 	}
2354 
2355 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2356 		pci_release_msi(dev);
2357 
2358 	if (adapter->memory != NULL) {
2359 		bus_release_resource(dev, SYS_RES_MEMORY,
2360 		    adapter->memory_rid, adapter->memory);
2361 	}
2362 
2363 	if (adapter->flash != NULL) {
2364 		bus_release_resource(dev, SYS_RES_MEMORY,
2365 		    adapter->flash_rid, adapter->flash);
2366 	}
2367 
2368 	if (adapter->ioport != NULL) {
2369 		bus_release_resource(dev, SYS_RES_IOPORT,
2370 		    adapter->io_rid, adapter->ioport);
2371 	}
2372 }
2373 
2374 static int
2375 em_reset(struct adapter *adapter)
2376 {
2377 	device_t dev = adapter->dev;
2378 	uint16_t rx_buffer_size;
2379 
2380 	/* When hardware is reset, fifo_head is also reset */
2381 	adapter->tx_fifo_head = 0;
2382 
2383 	/* Set up smart power down as default off on newer adapters. */
2384 	if (!em_smart_pwr_down &&
2385 	    (adapter->hw.mac.type == e1000_82571 ||
2386 	     adapter->hw.mac.type == e1000_82572)) {
2387 		uint16_t phy_tmp = 0;
2388 
2389 		/* Speed up time to link by disabling smart power down. */
2390 		e1000_read_phy_reg(&adapter->hw,
2391 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2392 		phy_tmp &= ~IGP02E1000_PM_SPD;
2393 		e1000_write_phy_reg(&adapter->hw,
2394 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2395 	}
2396 
2397 	/*
2398 	 * These parameters control the automatic generation (Tx) and
2399 	 * response (Rx) to Ethernet PAUSE frames.
2400 	 * - High water mark should allow for at least two frames to be
2401 	 *   received after sending an XOFF.
2402 	 * - Low water mark works best when it is very near the high water mark.
2403 	 *   This allows the receiver to restart by sending XON when it has
2404 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2405 	 *   restart after one full frame is pulled from the buffer. There
2406 	 *   could be several smaller frames in the buffer and if so they will
2407 	 *   not trigger the XON until their total number reduces the buffer
2408 	 *   by 1500.
2409 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2410 	 */
2411 	rx_buffer_size =
2412 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2413 
2414 	adapter->hw.fc.high_water = rx_buffer_size -
2415 				    roundup2(adapter->max_frame_size, 1024);
2416 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2417 
2418 	if (adapter->hw.mac.type == e1000_80003es2lan)
2419 		adapter->hw.fc.pause_time = 0xFFFF;
2420 	else
2421 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2422 
2423 	adapter->hw.fc.send_xon = TRUE;
2424 
2425 	adapter->hw.fc.requested_mode = e1000_fc_full;
2426 
2427 	/* Workaround: no TX flow ctrl for PCH */
2428 	if (adapter->hw.mac.type == e1000_pchlan)
2429 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2430 
2431 	/* Override - settings for PCH2LAN, ya its magic :) */
2432 	if (adapter->hw.mac.type == e1000_pch2lan) {
2433 		adapter->hw.fc.high_water = 0x5C20;
2434 		adapter->hw.fc.low_water = 0x5048;
2435 		adapter->hw.fc.pause_time = 0x0650;
2436 		adapter->hw.fc.refresh_time = 0x0400;
2437 
2438 		/* Jumbos need adjusted PBA */
2439 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2440 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2441 		else
2442 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2443 	}
2444 
2445 	/* Issue a global reset */
2446 	e1000_reset_hw(&adapter->hw);
2447 	if (adapter->hw.mac.type >= e1000_82544)
2448 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2449 	em_disable_aspm(adapter);
2450 
2451 	if (e1000_init_hw(&adapter->hw) < 0) {
2452 		device_printf(dev, "Hardware Initialization Failed\n");
2453 		return (EIO);
2454 	}
2455 
2456 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2457 	e1000_get_phy_info(&adapter->hw);
2458 	e1000_check_for_link(&adapter->hw);
2459 
2460 	return (0);
2461 }
2462 
2463 static void
2464 em_setup_ifp(struct adapter *adapter)
2465 {
2466 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2467 
2468 	if_initname(ifp, device_get_name(adapter->dev),
2469 		    device_get_unit(adapter->dev));
2470 	ifp->if_softc = adapter;
2471 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2472 	ifp->if_init =  em_init;
2473 	ifp->if_ioctl = em_ioctl;
2474 	ifp->if_start = em_start;
2475 #ifdef IFPOLL_ENABLE
2476 	ifp->if_npoll = em_npoll;
2477 #endif
2478 	ifp->if_watchdog = em_watchdog;
2479 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2480 	ifq_set_ready(&ifp->if_snd);
2481 
2482 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2483 
2484 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2485 	if (adapter->hw.mac.type >= e1000_82543)
2486 		ifp->if_capabilities |= IFCAP_HWCSUM;
2487 	if (adapter->flags & EM_FLAG_TSO)
2488 		ifp->if_capabilities |= IFCAP_TSO;
2489 	ifp->if_capenable = ifp->if_capabilities;
2490 
2491 	if (ifp->if_capenable & IFCAP_TXCSUM)
2492 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2493 	if (ifp->if_capenable & IFCAP_TSO)
2494 		ifp->if_hwassist |= CSUM_TSO;
2495 
2496 	/*
2497 	 * Tell the upper layer(s) we support long frames.
2498 	 */
2499 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2500 
2501 	/*
2502 	 * Specify the media types supported by this adapter and register
2503 	 * callbacks to update media and link information
2504 	 */
2505 	ifmedia_init(&adapter->media, IFM_IMASK,
2506 		     em_media_change, em_media_status);
2507 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2508 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2509 		u_char fiber_type = IFM_1000_SX; /* default type */
2510 
2511 		if (adapter->hw.mac.type == e1000_82545)
2512 			fiber_type = IFM_1000_LX;
2513 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2514 			    0, NULL);
2515 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2516 	} else {
2517 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2518 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2519 			    0, NULL);
2520 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2521 			    0, NULL);
2522 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2523 			    0, NULL);
2524 		if (adapter->hw.phy.type != e1000_phy_ife) {
2525 			ifmedia_add(&adapter->media,
2526 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2527 			ifmedia_add(&adapter->media,
2528 				IFM_ETHER | IFM_1000_T, 0, NULL);
2529 		}
2530 	}
2531 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2532 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2533 }
2534 
2535 
2536 /*
2537  * Workaround for SmartSpeed on 82541 and 82547 controllers
2538  */
2539 static void
2540 em_smartspeed(struct adapter *adapter)
2541 {
2542 	uint16_t phy_tmp;
2543 
2544 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2545 	    adapter->hw.mac.autoneg == 0 ||
2546 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2547 		return;
2548 
2549 	if (adapter->smartspeed == 0) {
2550 		/*
2551 		 * If Master/Slave config fault is asserted twice,
2552 		 * we assume back-to-back
2553 		 */
2554 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2555 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2556 			return;
2557 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2558 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2559 			e1000_read_phy_reg(&adapter->hw,
2560 			    PHY_1000T_CTRL, &phy_tmp);
2561 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2562 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2563 				e1000_write_phy_reg(&adapter->hw,
2564 				    PHY_1000T_CTRL, phy_tmp);
2565 				adapter->smartspeed++;
2566 				if (adapter->hw.mac.autoneg &&
2567 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2568 				    !e1000_read_phy_reg(&adapter->hw,
2569 				     PHY_CONTROL, &phy_tmp)) {
2570 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2571 						   MII_CR_RESTART_AUTO_NEG;
2572 					e1000_write_phy_reg(&adapter->hw,
2573 					    PHY_CONTROL, phy_tmp);
2574 				}
2575 			}
2576 		}
2577 		return;
2578 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2579 		/* If still no link, perhaps using 2/3 pair cable */
2580 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2581 		phy_tmp |= CR_1000T_MS_ENABLE;
2582 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2583 		if (adapter->hw.mac.autoneg &&
2584 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2585 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2586 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2587 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2588 		}
2589 	}
2590 
2591 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2592 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2593 		adapter->smartspeed = 0;
2594 }
2595 
2596 static int
2597 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2598 	      struct em_dma_alloc *dma)
2599 {
2600 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2601 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2602 				&dma->dma_tag, &dma->dma_map,
2603 				&dma->dma_paddr);
2604 	if (dma->dma_vaddr == NULL)
2605 		return ENOMEM;
2606 	else
2607 		return 0;
2608 }
2609 
2610 static void
2611 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2612 {
2613 	if (dma->dma_tag == NULL)
2614 		return;
2615 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2616 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2617 	bus_dma_tag_destroy(dma->dma_tag);
2618 }
2619 
2620 static int
2621 em_create_tx_ring(struct adapter *adapter)
2622 {
2623 	device_t dev = adapter->dev;
2624 	struct em_buffer *tx_buffer;
2625 	int error, i;
2626 
2627 	adapter->tx_buffer_area =
2628 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2629 			M_DEVBUF, M_WAITOK | M_ZERO);
2630 
2631 	/*
2632 	 * Create DMA tags for tx buffers
2633 	 */
2634 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2635 			1, 0,			/* alignment, bounds */
2636 			BUS_SPACE_MAXADDR,	/* lowaddr */
2637 			BUS_SPACE_MAXADDR,	/* highaddr */
2638 			NULL, NULL,		/* filter, filterarg */
2639 			EM_TSO_SIZE,		/* maxsize */
2640 			EM_MAX_SCATTER,		/* nsegments */
2641 			PAGE_SIZE,		/* maxsegsize */
2642 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2643 			BUS_DMA_ONEBPAGE,	/* flags */
2644 			&adapter->txtag);
2645 	if (error) {
2646 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2647 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2648 		adapter->tx_buffer_area = NULL;
2649 		return error;
2650 	}
2651 
2652 	/*
2653 	 * Create DMA maps for tx buffers
2654 	 */
2655 	for (i = 0; i < adapter->num_tx_desc; i++) {
2656 		tx_buffer = &adapter->tx_buffer_area[i];
2657 
2658 		error = bus_dmamap_create(adapter->txtag,
2659 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2660 					  &tx_buffer->map);
2661 		if (error) {
2662 			device_printf(dev, "Unable to create TX DMA map\n");
2663 			em_destroy_tx_ring(adapter, i);
2664 			return error;
2665 		}
2666 	}
2667 	return (0);
2668 }
2669 
2670 static void
2671 em_init_tx_ring(struct adapter *adapter)
2672 {
2673 	/* Clear the old ring contents */
2674 	bzero(adapter->tx_desc_base,
2675 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2676 
2677 	/* Reset state */
2678 	adapter->next_avail_tx_desc = 0;
2679 	adapter->next_tx_to_clean = 0;
2680 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2681 }
2682 
2683 static void
2684 em_init_tx_unit(struct adapter *adapter)
2685 {
2686 	uint32_t tctl, tarc, tipg = 0;
2687 	uint64_t bus_addr;
2688 
2689 	/* Setup the Base and Length of the Tx Descriptor Ring */
2690 	bus_addr = adapter->txdma.dma_paddr;
2691 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2692 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2693 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2694 	    (uint32_t)(bus_addr >> 32));
2695 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2696 	    (uint32_t)bus_addr);
2697 	/* Setup the HW Tx Head and Tail descriptor pointers */
2698 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2699 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2700 
2701 	/* Set the default values for the Tx Inter Packet Gap timer */
2702 	switch (adapter->hw.mac.type) {
2703 	case e1000_82542:
2704 		tipg = DEFAULT_82542_TIPG_IPGT;
2705 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2706 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2707 		break;
2708 
2709 	case e1000_80003es2lan:
2710 		tipg = DEFAULT_82543_TIPG_IPGR1;
2711 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2712 		    E1000_TIPG_IPGR2_SHIFT;
2713 		break;
2714 
2715 	default:
2716 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2717 		    adapter->hw.phy.media_type ==
2718 		    e1000_media_type_internal_serdes)
2719 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2720 		else
2721 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2722 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2723 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2724 		break;
2725 	}
2726 
2727 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2728 
2729 	/* NOTE: 0 is not allowed for TIDV */
2730 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2731 	if(adapter->hw.mac.type >= e1000_82540)
2732 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2733 
2734 	if (adapter->hw.mac.type == e1000_82571 ||
2735 	    adapter->hw.mac.type == e1000_82572) {
2736 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2737 		tarc |= SPEED_MODE_BIT;
2738 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2739 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2740 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2741 		tarc |= 1;
2742 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2743 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2744 		tarc |= 1;
2745 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2746 	}
2747 
2748 	/* Program the Transmit Control Register */
2749 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2750 	tctl &= ~E1000_TCTL_CT;
2751 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2752 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2753 
2754 	if (adapter->hw.mac.type >= e1000_82571)
2755 		tctl |= E1000_TCTL_MULR;
2756 
2757 	/* This write will effectively turn on the transmit unit. */
2758 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2759 }
2760 
2761 static void
2762 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2763 {
2764 	struct em_buffer *tx_buffer;
2765 	int i;
2766 
2767 	if (adapter->tx_buffer_area == NULL)
2768 		return;
2769 
2770 	for (i = 0; i < ndesc; i++) {
2771 		tx_buffer = &adapter->tx_buffer_area[i];
2772 
2773 		KKASSERT(tx_buffer->m_head == NULL);
2774 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2775 	}
2776 	bus_dma_tag_destroy(adapter->txtag);
2777 
2778 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2779 	adapter->tx_buffer_area = NULL;
2780 }
2781 
2782 /*
2783  * The offload context needs to be set when we transfer the first
2784  * packet of a particular protocol (TCP/UDP).  This routine has been
2785  * enhanced to deal with inserted VLAN headers.
2786  *
2787  * If the new packet's ether header length, ip header length and
2788  * csum offloading type are same as the previous packet, we should
2789  * avoid allocating a new csum context descriptor; mainly to take
2790  * advantage of the pipeline effect of the TX data read request.
2791  *
2792  * This function returns number of TX descrptors allocated for
2793  * csum context.
2794  */
2795 static int
2796 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2797 	  uint32_t *txd_upper, uint32_t *txd_lower)
2798 {
2799 	struct e1000_context_desc *TXD;
2800 	int curr_txd, ehdrlen, csum_flags;
2801 	uint32_t cmd, hdr_len, ip_hlen;
2802 
2803 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2804 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2805 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2806 
2807 	if (adapter->csum_lhlen == ehdrlen &&
2808 	    adapter->csum_iphlen == ip_hlen &&
2809 	    adapter->csum_flags == csum_flags) {
2810 		/*
2811 		 * Same csum offload context as the previous packets;
2812 		 * just return.
2813 		 */
2814 		*txd_upper = adapter->csum_txd_upper;
2815 		*txd_lower = adapter->csum_txd_lower;
2816 		return 0;
2817 	}
2818 
2819 	/*
2820 	 * Setup a new csum offload context.
2821 	 */
2822 
2823 	curr_txd = adapter->next_avail_tx_desc;
2824 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2825 
2826 	cmd = 0;
2827 
2828 	/* Setup of IP header checksum. */
2829 	if (csum_flags & CSUM_IP) {
2830 		/*
2831 		 * Start offset for header checksum calculation.
2832 		 * End offset for header checksum calculation.
2833 		 * Offset of place to put the checksum.
2834 		 */
2835 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2836 		TXD->lower_setup.ip_fields.ipcse =
2837 		    htole16(ehdrlen + ip_hlen - 1);
2838 		TXD->lower_setup.ip_fields.ipcso =
2839 		    ehdrlen + offsetof(struct ip, ip_sum);
2840 		cmd |= E1000_TXD_CMD_IP;
2841 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2842 	}
2843 	hdr_len = ehdrlen + ip_hlen;
2844 
2845 	if (csum_flags & CSUM_TCP) {
2846 		/*
2847 		 * Start offset for payload checksum calculation.
2848 		 * End offset for payload checksum calculation.
2849 		 * Offset of place to put the checksum.
2850 		 */
2851 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2852 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2853 		TXD->upper_setup.tcp_fields.tucso =
2854 		    hdr_len + offsetof(struct tcphdr, th_sum);
2855 		cmd |= E1000_TXD_CMD_TCP;
2856 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2857 	} else if (csum_flags & CSUM_UDP) {
2858 		/*
2859 		 * Start offset for header checksum calculation.
2860 		 * End offset for header checksum calculation.
2861 		 * Offset of place to put the checksum.
2862 		 */
2863 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2864 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2865 		TXD->upper_setup.tcp_fields.tucso =
2866 		    hdr_len + offsetof(struct udphdr, uh_sum);
2867 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2868 	}
2869 
2870 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2871 		     E1000_TXD_DTYP_D;		/* Data descr */
2872 
2873 	/* Save the information for this csum offloading context */
2874 	adapter->csum_lhlen = ehdrlen;
2875 	adapter->csum_iphlen = ip_hlen;
2876 	adapter->csum_flags = csum_flags;
2877 	adapter->csum_txd_upper = *txd_upper;
2878 	adapter->csum_txd_lower = *txd_lower;
2879 
2880 	TXD->tcp_seg_setup.data = htole32(0);
2881 	TXD->cmd_and_length =
2882 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2883 
2884 	if (++curr_txd == adapter->num_tx_desc)
2885 		curr_txd = 0;
2886 
2887 	KKASSERT(adapter->num_tx_desc_avail > 0);
2888 	adapter->num_tx_desc_avail--;
2889 
2890 	adapter->next_avail_tx_desc = curr_txd;
2891 	return 1;
2892 }
2893 
2894 static void
2895 em_txeof(struct adapter *adapter)
2896 {
2897 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2898 	struct em_buffer *tx_buffer;
2899 	int first, num_avail;
2900 
2901 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2902 		return;
2903 
2904 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2905 		return;
2906 
2907 	num_avail = adapter->num_tx_desc_avail;
2908 	first = adapter->next_tx_to_clean;
2909 
2910 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2911 		struct e1000_tx_desc *tx_desc;
2912 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2913 
2914 		tx_desc = &adapter->tx_desc_base[dd_idx];
2915 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2916 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2917 
2918 			if (++dd_idx == adapter->num_tx_desc)
2919 				dd_idx = 0;
2920 
2921 			while (first != dd_idx) {
2922 				logif(pkt_txclean);
2923 
2924 				num_avail++;
2925 
2926 				tx_buffer = &adapter->tx_buffer_area[first];
2927 				if (tx_buffer->m_head) {
2928 					ifp->if_opackets++;
2929 					bus_dmamap_unload(adapter->txtag,
2930 							  tx_buffer->map);
2931 					m_freem(tx_buffer->m_head);
2932 					tx_buffer->m_head = NULL;
2933 				}
2934 
2935 				if (++first == adapter->num_tx_desc)
2936 					first = 0;
2937 			}
2938 		} else {
2939 			break;
2940 		}
2941 	}
2942 	adapter->next_tx_to_clean = first;
2943 	adapter->num_tx_desc_avail = num_avail;
2944 
2945 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2946 		adapter->tx_dd_head = 0;
2947 		adapter->tx_dd_tail = 0;
2948 	}
2949 
2950 	if (!EM_IS_OACTIVE(adapter)) {
2951 		ifq_clr_oactive(&ifp->if_snd);
2952 
2953 		/* All clean, turn off the timer */
2954 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2955 			ifp->if_timer = 0;
2956 	}
2957 }
2958 
2959 static void
2960 em_tx_collect(struct adapter *adapter)
2961 {
2962 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2963 	struct em_buffer *tx_buffer;
2964 	int tdh, first, num_avail, dd_idx = -1;
2965 
2966 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2967 		return;
2968 
2969 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2970 	if (tdh == adapter->next_tx_to_clean)
2971 		return;
2972 
2973 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2974 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2975 
2976 	num_avail = adapter->num_tx_desc_avail;
2977 	first = adapter->next_tx_to_clean;
2978 
2979 	while (first != tdh) {
2980 		logif(pkt_txclean);
2981 
2982 		num_avail++;
2983 
2984 		tx_buffer = &adapter->tx_buffer_area[first];
2985 		if (tx_buffer->m_head) {
2986 			ifp->if_opackets++;
2987 			bus_dmamap_unload(adapter->txtag,
2988 					  tx_buffer->map);
2989 			m_freem(tx_buffer->m_head);
2990 			tx_buffer->m_head = NULL;
2991 		}
2992 
2993 		if (first == dd_idx) {
2994 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2995 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2996 				adapter->tx_dd_head = 0;
2997 				adapter->tx_dd_tail = 0;
2998 				dd_idx = -1;
2999 			} else {
3000 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3001 			}
3002 		}
3003 
3004 		if (++first == adapter->num_tx_desc)
3005 			first = 0;
3006 	}
3007 	adapter->next_tx_to_clean = first;
3008 	adapter->num_tx_desc_avail = num_avail;
3009 
3010 	if (!EM_IS_OACTIVE(adapter)) {
3011 		ifq_clr_oactive(&ifp->if_snd);
3012 
3013 		/* All clean, turn off the timer */
3014 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3015 			ifp->if_timer = 0;
3016 	}
3017 }
3018 
3019 /*
3020  * When Link is lost sometimes there is work still in the TX ring
3021  * which will result in a watchdog, rather than allow that do an
3022  * attempted cleanup and then reinit here.  Note that this has been
3023  * seens mostly with fiber adapters.
3024  */
3025 static void
3026 em_tx_purge(struct adapter *adapter)
3027 {
3028 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3029 
3030 	if (!adapter->link_active && ifp->if_timer) {
3031 		em_tx_collect(adapter);
3032 		if (ifp->if_timer) {
3033 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3034 			ifp->if_timer = 0;
3035 			em_init(adapter);
3036 		}
3037 	}
3038 }
3039 
3040 static int
3041 em_newbuf(struct adapter *adapter, int i, int init)
3042 {
3043 	struct mbuf *m;
3044 	bus_dma_segment_t seg;
3045 	bus_dmamap_t map;
3046 	struct em_buffer *rx_buffer;
3047 	int error, nseg;
3048 
3049 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3050 	if (m == NULL) {
3051 		adapter->mbuf_cluster_failed++;
3052 		if (init) {
3053 			if_printf(&adapter->arpcom.ac_if,
3054 				  "Unable to allocate RX mbuf\n");
3055 		}
3056 		return (ENOBUFS);
3057 	}
3058 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3059 
3060 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3061 		m_adj(m, ETHER_ALIGN);
3062 
3063 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3064 			adapter->rx_sparemap, m,
3065 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3066 	if (error) {
3067 		m_freem(m);
3068 		if (init) {
3069 			if_printf(&adapter->arpcom.ac_if,
3070 				  "Unable to load RX mbuf\n");
3071 		}
3072 		return (error);
3073 	}
3074 
3075 	rx_buffer = &adapter->rx_buffer_area[i];
3076 	if (rx_buffer->m_head != NULL)
3077 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3078 
3079 	map = rx_buffer->map;
3080 	rx_buffer->map = adapter->rx_sparemap;
3081 	adapter->rx_sparemap = map;
3082 
3083 	rx_buffer->m_head = m;
3084 
3085 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3086 	return (0);
3087 }
3088 
3089 static int
3090 em_create_rx_ring(struct adapter *adapter)
3091 {
3092 	device_t dev = adapter->dev;
3093 	struct em_buffer *rx_buffer;
3094 	int i, error;
3095 
3096 	adapter->rx_buffer_area =
3097 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3098 			M_DEVBUF, M_WAITOK | M_ZERO);
3099 
3100 	/*
3101 	 * Create DMA tag for rx buffers
3102 	 */
3103 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3104 			1, 0,			/* alignment, bounds */
3105 			BUS_SPACE_MAXADDR,	/* lowaddr */
3106 			BUS_SPACE_MAXADDR,	/* highaddr */
3107 			NULL, NULL,		/* filter, filterarg */
3108 			MCLBYTES,		/* maxsize */
3109 			1,			/* nsegments */
3110 			MCLBYTES,		/* maxsegsize */
3111 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3112 			&adapter->rxtag);
3113 	if (error) {
3114 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3115 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3116 		adapter->rx_buffer_area = NULL;
3117 		return error;
3118 	}
3119 
3120 	/*
3121 	 * Create spare DMA map for rx buffers
3122 	 */
3123 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3124 				  &adapter->rx_sparemap);
3125 	if (error) {
3126 		device_printf(dev, "Unable to create spare RX DMA map\n");
3127 		bus_dma_tag_destroy(adapter->rxtag);
3128 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3129 		adapter->rx_buffer_area = NULL;
3130 		return error;
3131 	}
3132 
3133 	/*
3134 	 * Create DMA maps for rx buffers
3135 	 */
3136 	for (i = 0; i < adapter->num_rx_desc; i++) {
3137 		rx_buffer = &adapter->rx_buffer_area[i];
3138 
3139 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3140 					  &rx_buffer->map);
3141 		if (error) {
3142 			device_printf(dev, "Unable to create RX DMA map\n");
3143 			em_destroy_rx_ring(adapter, i);
3144 			return error;
3145 		}
3146 	}
3147 	return (0);
3148 }
3149 
3150 static int
3151 em_init_rx_ring(struct adapter *adapter)
3152 {
3153 	int i, error;
3154 
3155 	/* Reset descriptor ring */
3156 	bzero(adapter->rx_desc_base,
3157 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3158 
3159 	/* Allocate new ones. */
3160 	for (i = 0; i < adapter->num_rx_desc; i++) {
3161 		error = em_newbuf(adapter, i, 1);
3162 		if (error)
3163 			return (error);
3164 	}
3165 
3166 	/* Setup our descriptor pointers */
3167 	adapter->next_rx_desc_to_check = 0;
3168 
3169 	return (0);
3170 }
3171 
3172 static void
3173 em_init_rx_unit(struct adapter *adapter)
3174 {
3175 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3176 	uint64_t bus_addr;
3177 	uint32_t rctl;
3178 
3179 	/*
3180 	 * Make sure receives are disabled while setting
3181 	 * up the descriptor ring
3182 	 */
3183 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3184 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3185 
3186 	if (adapter->hw.mac.type >= e1000_82540) {
3187 		uint32_t itr;
3188 
3189 		/*
3190 		 * Set the interrupt throttling rate. Value is calculated
3191 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3192 		 */
3193 		if (adapter->int_throttle_ceil)
3194 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3195 		else
3196 			itr = 0;
3197 		em_set_itr(adapter, itr);
3198 	}
3199 
3200 	/* Disable accelerated ackknowledge */
3201 	if (adapter->hw.mac.type == e1000_82574) {
3202 		E1000_WRITE_REG(&adapter->hw,
3203 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3204 	}
3205 
3206 	/* Receive Checksum Offload for TCP and UDP */
3207 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3208 		uint32_t rxcsum;
3209 
3210 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3211 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3212 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3213 	}
3214 
3215 	/*
3216 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3217 	 * long latencies are observed, like Lenovo X60. This
3218 	 * change eliminates the problem, but since having positive
3219 	 * values in RDTR is a known source of problems on other
3220 	 * platforms another solution is being sought.
3221 	 */
3222 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3223 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3224 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3225 	}
3226 
3227 	/*
3228 	 * Setup the Base and Length of the Rx Descriptor Ring
3229 	 */
3230 	bus_addr = adapter->rxdma.dma_paddr;
3231 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3232 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3233 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3234 	    (uint32_t)(bus_addr >> 32));
3235 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3236 	    (uint32_t)bus_addr);
3237 
3238 	/*
3239 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3240 	 */
3241 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3242 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3243 
3244 	/* Set early receive threshold on appropriate hw */
3245 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3246 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3247 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3248 	    (ifp->if_mtu > ETHERMTU)) {
3249 		uint32_t rxdctl;
3250 
3251 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3252 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3253 		E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3254 	}
3255 
3256 	if (adapter->hw.mac.type == e1000_pch2lan) {
3257 		if (ifp->if_mtu > ETHERMTU)
3258 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3259 		else
3260 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3261 	}
3262 
3263 	/* Setup the Receive Control Register */
3264 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3265 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3266 		E1000_RCTL_RDMTS_HALF |
3267 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3268 
3269 	/* Make sure VLAN Filters are off */
3270 	rctl &= ~E1000_RCTL_VFE;
3271 
3272 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3273 		rctl |= E1000_RCTL_SBP;
3274 	else
3275 		rctl &= ~E1000_RCTL_SBP;
3276 
3277 	switch (adapter->rx_buffer_len) {
3278 	default:
3279 	case 2048:
3280 		rctl |= E1000_RCTL_SZ_2048;
3281 		break;
3282 
3283 	case 4096:
3284 		rctl |= E1000_RCTL_SZ_4096 |
3285 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3286 		break;
3287 
3288 	case 8192:
3289 		rctl |= E1000_RCTL_SZ_8192 |
3290 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3291 		break;
3292 
3293 	case 16384:
3294 		rctl |= E1000_RCTL_SZ_16384 |
3295 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3296 		break;
3297 	}
3298 
3299 	if (ifp->if_mtu > ETHERMTU)
3300 		rctl |= E1000_RCTL_LPE;
3301 	else
3302 		rctl &= ~E1000_RCTL_LPE;
3303 
3304 	/* Enable Receives */
3305 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3306 }
3307 
3308 static void
3309 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3310 {
3311 	struct em_buffer *rx_buffer;
3312 	int i;
3313 
3314 	if (adapter->rx_buffer_area == NULL)
3315 		return;
3316 
3317 	for (i = 0; i < ndesc; i++) {
3318 		rx_buffer = &adapter->rx_buffer_area[i];
3319 
3320 		KKASSERT(rx_buffer->m_head == NULL);
3321 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3322 	}
3323 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3324 	bus_dma_tag_destroy(adapter->rxtag);
3325 
3326 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3327 	adapter->rx_buffer_area = NULL;
3328 }
3329 
3330 static void
3331 em_rxeof(struct adapter *adapter, int count)
3332 {
3333 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3334 	uint8_t status, accept_frame = 0, eop = 0;
3335 	uint16_t len, desc_len, prev_len_adj;
3336 	struct e1000_rx_desc *current_desc;
3337 	struct mbuf *mp;
3338 	int i;
3339 
3340 	i = adapter->next_rx_desc_to_check;
3341 	current_desc = &adapter->rx_desc_base[i];
3342 
3343 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3344 		return;
3345 
3346 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3347 		struct mbuf *m = NULL;
3348 
3349 		logif(pkt_receive);
3350 
3351 		mp = adapter->rx_buffer_area[i].m_head;
3352 
3353 		/*
3354 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3355 		 * needs to access the last received byte in the mbuf.
3356 		 */
3357 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3358 				BUS_DMASYNC_POSTREAD);
3359 
3360 		accept_frame = 1;
3361 		prev_len_adj = 0;
3362 		desc_len = le16toh(current_desc->length);
3363 		status = current_desc->status;
3364 		if (status & E1000_RXD_STAT_EOP) {
3365 			count--;
3366 			eop = 1;
3367 			if (desc_len < ETHER_CRC_LEN) {
3368 				len = 0;
3369 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3370 			} else {
3371 				len = desc_len - ETHER_CRC_LEN;
3372 			}
3373 		} else {
3374 			eop = 0;
3375 			len = desc_len;
3376 		}
3377 
3378 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3379 			uint8_t	last_byte;
3380 			uint32_t pkt_len = desc_len;
3381 
3382 			if (adapter->fmp != NULL)
3383 				pkt_len += adapter->fmp->m_pkthdr.len;
3384 
3385 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3386 			if (TBI_ACCEPT(&adapter->hw, status,
3387 			    current_desc->errors, pkt_len, last_byte,
3388 			    adapter->min_frame_size, adapter->max_frame_size)) {
3389 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3390 				    &adapter->stats, pkt_len,
3391 				    adapter->hw.mac.addr,
3392 				    adapter->max_frame_size);
3393 				if (len > 0)
3394 					len--;
3395 			} else {
3396 				accept_frame = 0;
3397 			}
3398 		}
3399 
3400 		if (accept_frame) {
3401 			if (em_newbuf(adapter, i, 0) != 0) {
3402 				ifp->if_iqdrops++;
3403 				goto discard;
3404 			}
3405 
3406 			/* Assign correct length to the current fragment */
3407 			mp->m_len = len;
3408 
3409 			if (adapter->fmp == NULL) {
3410 				mp->m_pkthdr.len = len;
3411 				adapter->fmp = mp; /* Store the first mbuf */
3412 				adapter->lmp = mp;
3413 			} else {
3414 				/*
3415 				 * Chain mbuf's together
3416 				 */
3417 
3418 				/*
3419 				 * Adjust length of previous mbuf in chain if
3420 				 * we received less than 4 bytes in the last
3421 				 * descriptor.
3422 				 */
3423 				if (prev_len_adj > 0) {
3424 					adapter->lmp->m_len -= prev_len_adj;
3425 					adapter->fmp->m_pkthdr.len -=
3426 					    prev_len_adj;
3427 				}
3428 				adapter->lmp->m_next = mp;
3429 				adapter->lmp = adapter->lmp->m_next;
3430 				adapter->fmp->m_pkthdr.len += len;
3431 			}
3432 
3433 			if (eop) {
3434 				adapter->fmp->m_pkthdr.rcvif = ifp;
3435 				ifp->if_ipackets++;
3436 
3437 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3438 					em_rxcsum(adapter, current_desc,
3439 						  adapter->fmp);
3440 				}
3441 
3442 				if (status & E1000_RXD_STAT_VP) {
3443 					adapter->fmp->m_pkthdr.ether_vlantag =
3444 					    (le16toh(current_desc->special) &
3445 					    E1000_RXD_SPC_VLAN_MASK);
3446 					adapter->fmp->m_flags |= M_VLANTAG;
3447 				}
3448 				m = adapter->fmp;
3449 				adapter->fmp = NULL;
3450 				adapter->lmp = NULL;
3451 			}
3452 		} else {
3453 			ifp->if_ierrors++;
3454 discard:
3455 #ifdef foo
3456 			/* Reuse loaded DMA map and just update mbuf chain */
3457 			mp = adapter->rx_buffer_area[i].m_head;
3458 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3459 			mp->m_data = mp->m_ext.ext_buf;
3460 			mp->m_next = NULL;
3461 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3462 				m_adj(mp, ETHER_ALIGN);
3463 #endif
3464 			if (adapter->fmp != NULL) {
3465 				m_freem(adapter->fmp);
3466 				adapter->fmp = NULL;
3467 				adapter->lmp = NULL;
3468 			}
3469 			m = NULL;
3470 		}
3471 
3472 		/* Zero out the receive descriptors status. */
3473 		current_desc->status = 0;
3474 
3475 		if (m != NULL)
3476 			ifp->if_input(ifp, m);
3477 
3478 		/* Advance our pointers to the next descriptor. */
3479 		if (++i == adapter->num_rx_desc)
3480 			i = 0;
3481 		current_desc = &adapter->rx_desc_base[i];
3482 	}
3483 	adapter->next_rx_desc_to_check = i;
3484 
3485 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3486 	if (--i < 0)
3487 		i = adapter->num_rx_desc - 1;
3488 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3489 }
3490 
3491 static void
3492 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3493 	  struct mbuf *mp)
3494 {
3495 	/* 82543 or newer only */
3496 	if (adapter->hw.mac.type < e1000_82543 ||
3497 	    /* Ignore Checksum bit is set */
3498 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3499 		return;
3500 
3501 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3502 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3503 		/* IP Checksum Good */
3504 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3505 	}
3506 
3507 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3508 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3509 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3510 					   CSUM_PSEUDO_HDR |
3511 					   CSUM_FRAG_NOT_CHECKED;
3512 		mp->m_pkthdr.csum_data = htons(0xffff);
3513 	}
3514 }
3515 
3516 static void
3517 em_enable_intr(struct adapter *adapter)
3518 {
3519 	uint32_t ims_mask = IMS_ENABLE_MASK;
3520 
3521 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3522 
3523 #if 0
3524 	/* XXX MSIX */
3525 	if (adapter->hw.mac.type == e1000_82574) {
3526 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3527 		ims_mask |= EM_MSIX_MASK;
3528         }
3529 #endif
3530 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3531 }
3532 
3533 static void
3534 em_disable_intr(struct adapter *adapter)
3535 {
3536 	uint32_t clear = 0xffffffff;
3537 
3538 	/*
3539 	 * The first version of 82542 had an errata where when link was forced
3540 	 * it would stay up even up even if the cable was disconnected.
3541 	 * Sequence errors were used to detect the disconnect and then the
3542 	 * driver would unforce the link.  This code in the in the ISR.  For
3543 	 * this to work correctly the Sequence error interrupt had to be
3544 	 * enabled all the time.
3545 	 */
3546 	if (adapter->hw.mac.type == e1000_82542 &&
3547 	    adapter->hw.revision_id == E1000_REVISION_2)
3548 		clear &= ~E1000_ICR_RXSEQ;
3549 	else if (adapter->hw.mac.type == e1000_82574)
3550 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3551 
3552 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3553 
3554 	adapter->npoll.ifpc_stcount = 0;
3555 
3556 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3557 }
3558 
3559 /*
3560  * Bit of a misnomer, what this really means is
3561  * to enable OS management of the system... aka
3562  * to disable special hardware management features
3563  */
3564 static void
3565 em_get_mgmt(struct adapter *adapter)
3566 {
3567 	/* A shared code workaround */
3568 #define E1000_82542_MANC2H E1000_MANC2H
3569 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3570 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3571 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3572 
3573 		/* disable hardware interception of ARP */
3574 		manc &= ~(E1000_MANC_ARP_EN);
3575 
3576                 /* enable receiving management packets to the host */
3577                 if (adapter->hw.mac.type >= e1000_82571) {
3578 			manc |= E1000_MANC_EN_MNG2HOST;
3579 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3580 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3581 			manc2h |= E1000_MNG2HOST_PORT_623;
3582 			manc2h |= E1000_MNG2HOST_PORT_664;
3583 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3584 		}
3585 
3586 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3587 	}
3588 }
3589 
3590 /*
3591  * Give control back to hardware management
3592  * controller if there is one.
3593  */
3594 static void
3595 em_rel_mgmt(struct adapter *adapter)
3596 {
3597 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3598 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3599 
3600 		/* re-enable hardware interception of ARP */
3601 		manc |= E1000_MANC_ARP_EN;
3602 
3603 		if (adapter->hw.mac.type >= e1000_82571)
3604 			manc &= ~E1000_MANC_EN_MNG2HOST;
3605 
3606 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3607 	}
3608 }
3609 
3610 /*
3611  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3612  * For ASF and Pass Through versions of f/w this means that
3613  * the driver is loaded.  For AMT version (only with 82573)
3614  * of the f/w this means that the network i/f is open.
3615  */
3616 static void
3617 em_get_hw_control(struct adapter *adapter)
3618 {
3619 	/* Let firmware know the driver has taken over */
3620 	if (adapter->hw.mac.type == e1000_82573) {
3621 		uint32_t swsm;
3622 
3623 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3624 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3625 		    swsm | E1000_SWSM_DRV_LOAD);
3626 	} else {
3627 		uint32_t ctrl_ext;
3628 
3629 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3630 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3631 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3632 	}
3633 	adapter->flags |= EM_FLAG_HW_CTRL;
3634 }
3635 
3636 /*
3637  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3638  * For ASF and Pass Through versions of f/w this means that the
3639  * driver is no longer loaded.  For AMT version (only with 82573)
3640  * of the f/w this means that the network i/f is closed.
3641  */
3642 static void
3643 em_rel_hw_control(struct adapter *adapter)
3644 {
3645 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3646 		return;
3647 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3648 
3649 	/* Let firmware taken over control of h/w */
3650 	if (adapter->hw.mac.type == e1000_82573) {
3651 		uint32_t swsm;
3652 
3653 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3654 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3655 		    swsm & ~E1000_SWSM_DRV_LOAD);
3656 	} else {
3657 		uint32_t ctrl_ext;
3658 
3659 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3660 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3661 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3662 	}
3663 }
3664 
3665 static int
3666 em_is_valid_eaddr(const uint8_t *addr)
3667 {
3668 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3669 
3670 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3671 		return (FALSE);
3672 
3673 	return (TRUE);
3674 }
3675 
3676 /*
3677  * Enable PCI Wake On Lan capability
3678  */
3679 void
3680 em_enable_wol(device_t dev)
3681 {
3682 	uint16_t cap, status;
3683 	uint8_t id;
3684 
3685 	/* First find the capabilities pointer*/
3686 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3687 
3688 	/* Read the PM Capabilities */
3689 	id = pci_read_config(dev, cap, 1);
3690 	if (id != PCIY_PMG)     /* Something wrong */
3691 		return;
3692 
3693 	/*
3694 	 * OK, we have the power capabilities,
3695 	 * so now get the status register
3696 	 */
3697 	cap += PCIR_POWER_STATUS;
3698 	status = pci_read_config(dev, cap, 2);
3699 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3700 	pci_write_config(dev, cap, status, 2);
3701 }
3702 
3703 
3704 /*
3705  * 82544 Coexistence issue workaround.
3706  *    There are 2 issues.
3707  *       1. Transmit Hang issue.
3708  *    To detect this issue, following equation can be used...
3709  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3710  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3711  *
3712  *       2. DAC issue.
3713  *    To detect this issue, following equation can be used...
3714  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3715  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3716  *
3717  *    WORKAROUND:
3718  *	  Make sure we do not have ending address
3719  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3720  */
3721 static uint32_t
3722 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3723 {
3724 	uint32_t safe_terminator;
3725 
3726 	/*
3727 	 * Since issue is sensitive to length and address.
3728 	 * Let us first check the address...
3729 	 */
3730 	if (length <= 4) {
3731 		desc_array->descriptor[0].address = address;
3732 		desc_array->descriptor[0].length = length;
3733 		desc_array->elements = 1;
3734 		return (desc_array->elements);
3735 	}
3736 
3737 	safe_terminator =
3738 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3739 
3740 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3741 	if (safe_terminator == 0 ||
3742 	    (safe_terminator > 4 && safe_terminator < 9) ||
3743 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3744 		desc_array->descriptor[0].address = address;
3745 		desc_array->descriptor[0].length = length;
3746 		desc_array->elements = 1;
3747 		return (desc_array->elements);
3748 	}
3749 
3750 	desc_array->descriptor[0].address = address;
3751 	desc_array->descriptor[0].length = length - 4;
3752 	desc_array->descriptor[1].address = address + (length - 4);
3753 	desc_array->descriptor[1].length = 4;
3754 	desc_array->elements = 2;
3755 	return (desc_array->elements);
3756 }
3757 
3758 static void
3759 em_update_stats(struct adapter *adapter)
3760 {
3761 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3762 
3763 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3764 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3765 		adapter->stats.symerrs +=
3766 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3767 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3768 	}
3769 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3770 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3771 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3772 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3773 
3774 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3775 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3776 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3777 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3778 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3779 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3780 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3781 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3782 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3783 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3784 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3785 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3786 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3787 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3788 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3789 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3790 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3791 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3792 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3793 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3794 
3795 	/* For the 64-bit byte counters the low dword must be read first. */
3796 	/* Both registers clear on the read of the high dword */
3797 
3798 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3799 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3800 
3801 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3802 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3803 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3804 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3805 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3806 
3807 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3808 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3809 
3810 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3811 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3812 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3813 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3814 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3815 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3816 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3817 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3818 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3819 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3820 
3821 	if (adapter->hw.mac.type >= e1000_82543) {
3822 		adapter->stats.algnerrc +=
3823 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3824 		adapter->stats.rxerrc +=
3825 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3826 		adapter->stats.tncrs +=
3827 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3828 		adapter->stats.cexterr +=
3829 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3830 		adapter->stats.tsctc +=
3831 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3832 		adapter->stats.tsctfc +=
3833 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3834 	}
3835 
3836 	ifp->if_collisions = adapter->stats.colc;
3837 
3838 	/* Rx Errors */
3839 	ifp->if_ierrors =
3840 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3841 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3842 	    adapter->stats.ruc + adapter->stats.roc +
3843 	    adapter->stats.mpc + adapter->stats.cexterr;
3844 
3845 	/* Tx Errors */
3846 	ifp->if_oerrors =
3847 	    adapter->stats.ecol + adapter->stats.latecol +
3848 	    adapter->watchdog_events;
3849 }
3850 
3851 static void
3852 em_print_debug_info(struct adapter *adapter)
3853 {
3854 	device_t dev = adapter->dev;
3855 	uint8_t *hw_addr = adapter->hw.hw_addr;
3856 
3857 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3858 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3859 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3860 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3861 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3862 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3863 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3864 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3865 	    adapter->hw.fc.high_water,
3866 	    adapter->hw.fc.low_water);
3867 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3868 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3869 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3870 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3871 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3872 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3873 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3874 	    (long long)adapter->tx_fifo_wrk_cnt,
3875 	    (long long)adapter->tx_fifo_reset_cnt);
3876 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3877 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3878 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3879 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3880 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3881 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3882 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3883 	    adapter->num_tx_desc_avail);
3884 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3885 	    adapter->no_tx_desc_avail1);
3886 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3887 	    adapter->no_tx_desc_avail2);
3888 	device_printf(dev, "Std mbuf failed = %ld\n",
3889 	    adapter->mbuf_alloc_failed);
3890 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3891 	    adapter->mbuf_cluster_failed);
3892 	device_printf(dev, "Driver dropped packets = %ld\n",
3893 	    adapter->dropped_pkts);
3894 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3895 	    adapter->no_tx_dma_setup);
3896 }
3897 
3898 static void
3899 em_print_hw_stats(struct adapter *adapter)
3900 {
3901 	device_t dev = adapter->dev;
3902 
3903 	device_printf(dev, "Excessive collisions = %lld\n",
3904 	    (long long)adapter->stats.ecol);
3905 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3906 	device_printf(dev, "Symbol errors = %lld\n",
3907 	    (long long)adapter->stats.symerrs);
3908 #endif
3909 	device_printf(dev, "Sequence errors = %lld\n",
3910 	    (long long)adapter->stats.sec);
3911 	device_printf(dev, "Defer count = %lld\n",
3912 	    (long long)adapter->stats.dc);
3913 	device_printf(dev, "Missed Packets = %lld\n",
3914 	    (long long)adapter->stats.mpc);
3915 	device_printf(dev, "Receive No Buffers = %lld\n",
3916 	    (long long)adapter->stats.rnbc);
3917 	/* RLEC is inaccurate on some hardware, calculate our own. */
3918 	device_printf(dev, "Receive Length Errors = %lld\n",
3919 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3920 	device_printf(dev, "Receive errors = %lld\n",
3921 	    (long long)adapter->stats.rxerrc);
3922 	device_printf(dev, "Crc errors = %lld\n",
3923 	    (long long)adapter->stats.crcerrs);
3924 	device_printf(dev, "Alignment errors = %lld\n",
3925 	    (long long)adapter->stats.algnerrc);
3926 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3927 	    (long long)adapter->stats.cexterr);
3928 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3929 	device_printf(dev, "watchdog timeouts = %ld\n",
3930 	    adapter->watchdog_events);
3931 	device_printf(dev, "XON Rcvd = %lld\n",
3932 	    (long long)adapter->stats.xonrxc);
3933 	device_printf(dev, "XON Xmtd = %lld\n",
3934 	    (long long)adapter->stats.xontxc);
3935 	device_printf(dev, "XOFF Rcvd = %lld\n",
3936 	    (long long)adapter->stats.xoffrxc);
3937 	device_printf(dev, "XOFF Xmtd = %lld\n",
3938 	    (long long)adapter->stats.xofftxc);
3939 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3940 	    (long long)adapter->stats.gprc);
3941 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3942 	    (long long)adapter->stats.gptc);
3943 }
3944 
3945 static void
3946 em_print_nvm_info(struct adapter *adapter)
3947 {
3948 	uint16_t eeprom_data;
3949 	int i, j, row = 0;
3950 
3951 	/* Its a bit crude, but it gets the job done */
3952 	kprintf("\nInterface EEPROM Dump:\n");
3953 	kprintf("Offset\n0x0000  ");
3954 	for (i = 0, j = 0; i < 32; i++, j++) {
3955 		if (j == 8) { /* Make the offset block */
3956 			j = 0; ++row;
3957 			kprintf("\n0x00%x0  ",row);
3958 		}
3959 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3960 		kprintf("%04x ", eeprom_data);
3961 	}
3962 	kprintf("\n");
3963 }
3964 
3965 static int
3966 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3967 {
3968 	struct adapter *adapter;
3969 	struct ifnet *ifp;
3970 	int error, result;
3971 
3972 	result = -1;
3973 	error = sysctl_handle_int(oidp, &result, 0, req);
3974 	if (error || !req->newptr)
3975 		return (error);
3976 
3977 	adapter = (struct adapter *)arg1;
3978 	ifp = &adapter->arpcom.ac_if;
3979 
3980 	lwkt_serialize_enter(ifp->if_serializer);
3981 
3982 	if (result == 1)
3983 		em_print_debug_info(adapter);
3984 
3985 	/*
3986 	 * This value will cause a hex dump of the
3987 	 * first 32 16-bit words of the EEPROM to
3988 	 * the screen.
3989 	 */
3990 	if (result == 2)
3991 		em_print_nvm_info(adapter);
3992 
3993 	lwkt_serialize_exit(ifp->if_serializer);
3994 
3995 	return (error);
3996 }
3997 
3998 static int
3999 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4000 {
4001 	int error, result;
4002 
4003 	result = -1;
4004 	error = sysctl_handle_int(oidp, &result, 0, req);
4005 	if (error || !req->newptr)
4006 		return (error);
4007 
4008 	if (result == 1) {
4009 		struct adapter *adapter = (struct adapter *)arg1;
4010 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4011 
4012 		lwkt_serialize_enter(ifp->if_serializer);
4013 		em_print_hw_stats(adapter);
4014 		lwkt_serialize_exit(ifp->if_serializer);
4015 	}
4016 	return (error);
4017 }
4018 
4019 static void
4020 em_add_sysctl(struct adapter *adapter)
4021 {
4022 	sysctl_ctx_init(&adapter->sysctl_ctx);
4023 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4024 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4025 					device_get_nameunit(adapter->dev),
4026 					CTLFLAG_RD, 0, "");
4027 	if (adapter->sysctl_tree == NULL) {
4028 		device_printf(adapter->dev, "can't add sysctl node\n");
4029 	} else {
4030 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4031 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4032 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4033 		    em_sysctl_debug_info, "I", "Debug Information");
4034 
4035 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4036 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4037 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4038 		    em_sysctl_stats, "I", "Statistics");
4039 
4040 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4041 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4042 		    OID_AUTO, "rxd", CTLFLAG_RD,
4043 		    &adapter->num_rx_desc, 0, NULL);
4044 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4045 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4046 		    OID_AUTO, "txd", CTLFLAG_RD,
4047 		    &adapter->num_tx_desc, 0, NULL);
4048 
4049 		if (adapter->hw.mac.type >= e1000_82540) {
4050 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4051 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4052 			    OID_AUTO, "int_throttle_ceil",
4053 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4054 			    em_sysctl_int_throttle, "I",
4055 			    "interrupt throttling rate");
4056 		}
4057 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4058 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4059 		    OID_AUTO, "int_tx_nsegs",
4060 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4061 		    em_sysctl_int_tx_nsegs, "I",
4062 		    "# segments per TX interrupt");
4063 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4064 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4065 	            OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4066 		    &adapter->tx_wreg_nsegs, 0,
4067 		    "# segments before write to hardware register");
4068 	}
4069 }
4070 
4071 static int
4072 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4073 {
4074 	struct adapter *adapter = (void *)arg1;
4075 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4076 	int error, throttle;
4077 
4078 	throttle = adapter->int_throttle_ceil;
4079 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4080 	if (error || req->newptr == NULL)
4081 		return error;
4082 	if (throttle < 0 || throttle > 1000000000 / 256)
4083 		return EINVAL;
4084 
4085 	if (throttle) {
4086 		/*
4087 		 * Set the interrupt throttling rate in 256ns increments,
4088 		 * recalculate sysctl value assignment to get exact frequency.
4089 		 */
4090 		throttle = 1000000000 / 256 / throttle;
4091 
4092 		/* Upper 16bits of ITR is reserved and should be zero */
4093 		if (throttle & 0xffff0000)
4094 			return EINVAL;
4095 	}
4096 
4097 	lwkt_serialize_enter(ifp->if_serializer);
4098 
4099 	if (throttle)
4100 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4101 	else
4102 		adapter->int_throttle_ceil = 0;
4103 
4104 	if (ifp->if_flags & IFF_RUNNING)
4105 		em_set_itr(adapter, throttle);
4106 
4107 	lwkt_serialize_exit(ifp->if_serializer);
4108 
4109 	if (bootverbose) {
4110 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4111 			  adapter->int_throttle_ceil);
4112 	}
4113 	return 0;
4114 }
4115 
4116 static int
4117 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4118 {
4119 	struct adapter *adapter = (void *)arg1;
4120 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4121 	int error, segs;
4122 
4123 	segs = adapter->tx_int_nsegs;
4124 	error = sysctl_handle_int(oidp, &segs, 0, req);
4125 	if (error || req->newptr == NULL)
4126 		return error;
4127 	if (segs <= 0)
4128 		return EINVAL;
4129 
4130 	lwkt_serialize_enter(ifp->if_serializer);
4131 
4132 	/*
4133 	 * Don't allow int_tx_nsegs to become:
4134 	 * o  Less the oact_tx_desc
4135 	 * o  Too large that no TX desc will cause TX interrupt to
4136 	 *    be generated (OACTIVE will never recover)
4137 	 * o  Too small that will cause tx_dd[] overflow
4138 	 */
4139 	if (segs < adapter->oact_tx_desc ||
4140 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4141 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4142 		error = EINVAL;
4143 	} else {
4144 		error = 0;
4145 		adapter->tx_int_nsegs = segs;
4146 	}
4147 
4148 	lwkt_serialize_exit(ifp->if_serializer);
4149 
4150 	return error;
4151 }
4152 
4153 static void
4154 em_set_itr(struct adapter *adapter, uint32_t itr)
4155 {
4156 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4157 	if (adapter->hw.mac.type == e1000_82574) {
4158 		int i;
4159 
4160 		/*
4161 		 * When using MSIX interrupts we need to
4162 		 * throttle using the EITR register
4163 		 */
4164 		for (i = 0; i < 4; ++i) {
4165 			E1000_WRITE_REG(&adapter->hw,
4166 			    E1000_EITR_82574(i), itr);
4167 		}
4168 	}
4169 }
4170 
4171 static void
4172 em_disable_aspm(struct adapter *adapter)
4173 {
4174 	uint16_t link_cap, link_ctrl, disable;
4175 	uint8_t pcie_ptr, reg;
4176 	device_t dev = adapter->dev;
4177 
4178 	switch (adapter->hw.mac.type) {
4179 	case e1000_82571:
4180 	case e1000_82572:
4181 	case e1000_82573:
4182 		/*
4183 		 * 82573 specification update
4184 		 * errata #8 disable L0s
4185 		 * errata #41 disable L1
4186 		 *
4187 		 * 82571/82572 specification update
4188 		 # errata #13 disable L1
4189 		 * errata #68 disable L0s
4190 		 */
4191 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4192 		break;
4193 
4194 	case e1000_82574:
4195 	case e1000_82583:
4196 		/*
4197 		 * 82574 specification update errata #20
4198 		 * 82583 specification update errata #9
4199 		 *
4200 		 * There is no need to disable L1
4201 		 */
4202 		disable = PCIEM_LNKCTL_ASPM_L0S;
4203 		break;
4204 
4205 	default:
4206 		return;
4207 	}
4208 
4209 	pcie_ptr = pci_get_pciecap_ptr(dev);
4210 	if (pcie_ptr == 0)
4211 		return;
4212 
4213 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4214 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4215 		return;
4216 
4217 	if (bootverbose) {
4218 		if_printf(&adapter->arpcom.ac_if,
4219 		    "disable ASPM %#02x\n", disable);
4220 	}
4221 
4222 	reg = pcie_ptr + PCIER_LINKCTRL;
4223 	link_ctrl = pci_read_config(dev, reg, 2);
4224 	link_ctrl &= ~disable;
4225 	pci_write_config(dev, reg, link_ctrl, 2);
4226 }
4227 
4228 static int
4229 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4230 {
4231 	int iphlen, hoff, thoff, ex = 0;
4232 	struct mbuf *m;
4233 	struct ip *ip;
4234 
4235 	m = *mp;
4236 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4237 
4238 	iphlen = m->m_pkthdr.csum_iphlen;
4239 	thoff = m->m_pkthdr.csum_thlen;
4240 	hoff = m->m_pkthdr.csum_lhlen;
4241 
4242 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4243 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4244 	KASSERT(hoff > 0, ("invalid ether hlen"));
4245 
4246 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4247 		ex = 4;
4248 
4249 	if (m->m_len < hoff + iphlen + thoff + ex) {
4250 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4251 		if (m == NULL) {
4252 			*mp = NULL;
4253 			return ENOBUFS;
4254 		}
4255 		*mp = m;
4256 	}
4257 	ip = mtodoff(m, struct ip *, hoff);
4258 	ip->ip_len = 0;
4259 
4260 	return 0;
4261 }
4262 
4263 static int
4264 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4265     uint32_t *txd_upper, uint32_t *txd_lower)
4266 {
4267 	struct e1000_context_desc *TXD;
4268 	int hoff, iphlen, thoff, hlen;
4269 	int mss, pktlen, curr_txd;
4270 
4271 	iphlen = mp->m_pkthdr.csum_iphlen;
4272 	thoff = mp->m_pkthdr.csum_thlen;
4273 	hoff = mp->m_pkthdr.csum_lhlen;
4274 	mss = mp->m_pkthdr.tso_segsz;
4275 	pktlen = mp->m_pkthdr.len;
4276 
4277 	if (adapter->csum_flags == CSUM_TSO &&
4278 	    adapter->csum_iphlen == iphlen &&
4279 	    adapter->csum_lhlen == hoff &&
4280 	    adapter->csum_thlen == thoff &&
4281 	    adapter->csum_mss == mss &&
4282 	    adapter->csum_pktlen == pktlen) {
4283 		*txd_upper = adapter->csum_txd_upper;
4284 		*txd_lower = adapter->csum_txd_lower;
4285 		return 0;
4286 	}
4287 	hlen = hoff + iphlen + thoff;
4288 
4289 	/*
4290 	 * Setup a new TSO context.
4291 	 */
4292 
4293 	curr_txd = adapter->next_avail_tx_desc;
4294 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4295 
4296 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4297 		     E1000_TXD_DTYP_D |		/* Data descr type */
4298 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4299 
4300 	/* IP and/or TCP header checksum calculation and insertion. */
4301 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4302 
4303 	/*
4304 	 * Start offset for header checksum calculation.
4305 	 * End offset for header checksum calculation.
4306 	 * Offset of place put the checksum.
4307 	 */
4308 	TXD->lower_setup.ip_fields.ipcss = hoff;
4309 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4310 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4311 
4312 	/*
4313 	 * Start offset for payload checksum calculation.
4314 	 * End offset for payload checksum calculation.
4315 	 * Offset of place to put the checksum.
4316 	 */
4317 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4318 	TXD->upper_setup.tcp_fields.tucse = 0;
4319 	TXD->upper_setup.tcp_fields.tucso =
4320 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4321 
4322 	/*
4323 	 * Payload size per packet w/o any headers.
4324 	 * Length of all headers up to payload.
4325 	 */
4326 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4327 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4328 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4329 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4330 				E1000_TXD_CMD_TSE |	/* TSE context */
4331 				E1000_TXD_CMD_IP |	/* Do IP csum */
4332 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4333 				(pktlen - hlen));	/* Total len */
4334 
4335 	/* Save the information for this TSO context */
4336 	adapter->csum_flags = CSUM_TSO;
4337 	adapter->csum_lhlen = hoff;
4338 	adapter->csum_iphlen = iphlen;
4339 	adapter->csum_thlen = thoff;
4340 	adapter->csum_mss = mss;
4341 	adapter->csum_pktlen = pktlen;
4342 	adapter->csum_txd_upper = *txd_upper;
4343 	adapter->csum_txd_lower = *txd_lower;
4344 
4345 	if (++curr_txd == adapter->num_tx_desc)
4346 		curr_txd = 0;
4347 
4348 	KKASSERT(adapter->num_tx_desc_avail > 0);
4349 	adapter->num_tx_desc_avail--;
4350 
4351 	adapter->next_avail_tx_desc = curr_txd;
4352 	return 1;
4353 }
4354