xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision 78195a764d5e70464a6d4f49bc08332a2a8bb4d0)
1 /*
2  *
3  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 2001-2005, Intel Corporation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  *  1. Redistributions of source code must retain the above copyright notice,
12  *     this list of conditions and the following disclaimer.
13  *
14  *  2. Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in the
16  *     documentation and/or other materials provided with the distribution.
17  *
18  *  3. Neither the name of the Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived from
20  *     this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
36  *
37  * This code is derived from software contributed to The DragonFly Project
38  * by Matthew Dillon <dillon@backplane.com>
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  * 3. Neither the name of The DragonFly Project nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific, prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
57  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
58  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
59  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
60  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
61  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
62  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.44 2005/11/28 17:13:42 dillon Exp $
68  * $FreeBSD$
69  */
70 /*
71  * SERIALIZATION API RULES:
72  *
73  * - If the driver uses the same serializer for the interrupt as for the
74  *   ifnet, most of the serialization will be done automatically for the
75  *   driver.
76  *
77  * - ifmedia entry points will be serialized by the ifmedia code using the
78  *   ifnet serializer.
79  *
80  * - if_* entry points except for if_input will be serialized by the IF
81  *   and protocol layers.
82  *
83  * - The device driver must be sure to serialize access from timeout code
84  *   installed by the device driver.
85  *
86  * - The device driver typically holds the serializer at the time it wishes
87  *   to call if_input.  If so, it should pass the serializer to if_input and
88  *   note that the serializer might be dropped temporarily by if_input
89  *   (e.g. in case it has to bridge the packet to another interface).
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 
98 #include <dev/netif/em/if_em.h>
99 #include <net/ifq_var.h>
100 
101 /*********************************************************************
102  *  Set this to one to display debug statistics
103  *********************************************************************/
104 int             em_display_debug_stats = 0;
105 
106 /*********************************************************************
107  *  Driver version
108  *********************************************************************/
109 
110 char em_driver_version[] = "3.2.15";
111 
112 
113 /*********************************************************************
114  *  PCI Device ID Table
115  *
116  *  Used by probe to select devices to load on
117  *  Last field stores an index into em_strings
118  *  Last entry must be all 0s
119  *
120  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
121  *********************************************************************/
122 
123 static em_vendor_info_t em_vendor_info_array[] =
124 {
125 	/* Intel(R) PRO/1000 Network Connection */
126 	{ 0x8086, E1000_DEV_ID_82540EM,		PCI_ANY_ID, PCI_ANY_ID, 0},
127 	{ 0x8086, E1000_DEV_ID_82540EM_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
128 	{ 0x8086, E1000_DEV_ID_82540EP,		PCI_ANY_ID, PCI_ANY_ID, 0},
129 	{ 0x8086, E1000_DEV_ID_82540EP_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
130 	{ 0x8086, E1000_DEV_ID_82540EP_LP,	PCI_ANY_ID, PCI_ANY_ID, 0},
131 
132 	{ 0x8086, E1000_DEV_ID_82541EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
133 	{ 0x8086, E1000_DEV_ID_82541ER,		PCI_ANY_ID, PCI_ANY_ID, 0},
134 	{ 0x8086, E1000_DEV_ID_82541EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
135 	{ 0x8086, E1000_DEV_ID_82541GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
136 	{ 0x8086, E1000_DEV_ID_82541GI_LF,	PCI_ANY_ID, PCI_ANY_ID, 0},
137 	{ 0x8086, E1000_DEV_ID_82541GI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
138 
139 	{ 0x8086, E1000_DEV_ID_82542,		PCI_ANY_ID, PCI_ANY_ID, 0},
140 
141 	{ 0x8086, E1000_DEV_ID_82543GC_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
142 	{ 0x8086, E1000_DEV_ID_82543GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
143 
144 	{ 0x8086, E1000_DEV_ID_82544EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
145 	{ 0x8086, E1000_DEV_ID_82544EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
146 	{ 0x8086, E1000_DEV_ID_82544GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
147 	{ 0x8086, E1000_DEV_ID_82544GC_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
148 
149 	{ 0x8086, E1000_DEV_ID_82545EM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
150 	{ 0x8086, E1000_DEV_ID_82545EM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
151 	{ 0x8086, E1000_DEV_ID_82545GM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
152 	{ 0x8086, E1000_DEV_ID_82545GM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
153 	{ 0x8086, E1000_DEV_ID_82545GM_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
154 
155 	{ 0x8086, E1000_DEV_ID_82546EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
156 	{ 0x8086, E1000_DEV_ID_82546EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
157 	{ 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
158 	{ 0x8086, E1000_DEV_ID_82546GB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
159 	{ 0x8086, E1000_DEV_ID_82546GB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
160 	{ 0x8086, E1000_DEV_ID_82546GB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
161 	{ 0x8086, E1000_DEV_ID_82546GB_PCIE,	PCI_ANY_ID, PCI_ANY_ID, 0},
162 #ifdef KINGSPORT_PROJECT
163 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
164 #endif	/* KINGSPORT_PROJECT */
165 
166 	{ 0x8086, E1000_DEV_ID_82547EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
167 	{ 0x8086, E1000_DEV_ID_82547GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
168 
169 	{ 0x8086, E1000_DEV_ID_82571EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
170 	{ 0x8086, E1000_DEV_ID_82571EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
171 	{ 0x8086, E1000_DEV_ID_82571EB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
172 
173 	{ 0x8086, E1000_DEV_ID_82572EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
174 	{ 0x8086, E1000_DEV_ID_82572EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
175 	{ 0x8086, E1000_DEV_ID_82572EI_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
176 
177 	{ 0x8086, E1000_DEV_ID_82573E,		PCI_ANY_ID, PCI_ANY_ID, 0},
178 	{ 0x8086, E1000_DEV_ID_82573E_IAMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
179 	{ 0x8086, E1000_DEV_ID_82573L,		PCI_ANY_ID, PCI_ANY_ID, 0},
180 
181 	{ 0x8086, 0x101A, PCI_ANY_ID, PCI_ANY_ID, 0},
182 	{ 0x8086, 0x1014, PCI_ANY_ID, PCI_ANY_ID, 0},
183 	/* required last entry */
184 	{ 0, 0, 0, 0, 0}
185 };
186 
187 /*********************************************************************
188  *  Table of branding strings for all supported NICs.
189  *********************************************************************/
190 
191 static const char *em_strings[] = {
192 	"Intel(R) PRO/1000 Network Connection"
193 };
194 
195 /*********************************************************************
196  *  Function prototypes
197  *********************************************************************/
198 static int	em_probe(device_t);
199 static int	em_attach(device_t);
200 static int	em_detach(device_t);
201 static int	em_shutdown(device_t);
202 static void	em_intr(void *);
203 static void	em_start(struct ifnet *);
204 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
205 static void	em_watchdog(struct ifnet *);
206 static void	em_init(void *);
207 static void	em_stop(void *);
208 static void	em_media_status(struct ifnet *, struct ifmediareq *);
209 static int	em_media_change(struct ifnet *);
210 static void	em_identify_hardware(struct adapter *);
211 static void	em_local_timer(void *);
212 static int	em_hardware_init(struct adapter *);
213 static void	em_setup_interface(device_t, struct adapter *);
214 static int	em_setup_transmit_structures(struct adapter *);
215 static void	em_initialize_transmit_unit(struct adapter *);
216 static int	em_setup_receive_structures(struct adapter *);
217 static void	em_initialize_receive_unit(struct adapter *);
218 static void	em_enable_intr(struct adapter *);
219 static void	em_disable_intr(struct adapter *);
220 static void	em_free_transmit_structures(struct adapter *);
221 static void	em_free_receive_structures(struct adapter *);
222 static void	em_update_stats_counters(struct adapter *);
223 static void	em_clean_transmit_interrupts(struct adapter *);
224 static int	em_allocate_receive_structures(struct adapter *);
225 static int	em_allocate_transmit_structures(struct adapter *);
226 static void	em_process_receive_interrupts(struct adapter *, int);
227 static void	em_receive_checksum(struct adapter *, struct em_rx_desc *,
228 				    struct mbuf *);
229 static void	em_transmit_checksum_setup(struct adapter *, struct mbuf *,
230 					   uint32_t *, uint32_t *);
231 static void	em_set_promisc(struct adapter *);
232 static void	em_disable_promisc(struct adapter *);
233 static void	em_set_multi(struct adapter *);
234 static void	em_print_hw_stats(struct adapter *);
235 static void	em_print_link_status(struct adapter *);
236 static int	em_get_buf(int i, struct adapter *, struct mbuf *, int how);
237 static void	em_enable_vlans(struct adapter *);
238 static int	em_encap(struct adapter *, struct mbuf *);
239 static void	em_smartspeed(struct adapter *);
240 static int	em_82547_fifo_workaround(struct adapter *, int);
241 static void	em_82547_update_fifo_head(struct adapter *, int);
242 static int	em_82547_tx_fifo_reset(struct adapter *);
243 static void	em_82547_move_tail(void *arg);
244 static void	em_82547_move_tail_serialized(void *arg);
245 static int	em_dma_malloc(struct adapter *, bus_size_t,
246 			      struct em_dma_alloc *, int);
247 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
248 static void	em_print_debug_info(struct adapter *);
249 static int	em_is_valid_ether_addr(uint8_t *);
250 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
251 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
252 static uint32_t	em_fill_descriptors(uint64_t address, uint32_t length,
253 				   PDESC_ARRAY desc_array);
254 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
255 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
256 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
257 					const char *,
258 					struct em_int_delay_info *, int, int);
259 
260 /*********************************************************************
261  *  FreeBSD Device Interface Entry Points
262  *********************************************************************/
263 
264 static device_method_t em_methods[] = {
265 	/* Device interface */
266 	DEVMETHOD(device_probe, em_probe),
267 	DEVMETHOD(device_attach, em_attach),
268 	DEVMETHOD(device_detach, em_detach),
269 	DEVMETHOD(device_shutdown, em_shutdown),
270 	{0, 0}
271 };
272 
273 static driver_t em_driver = {
274 	"em", em_methods, sizeof(struct adapter),
275 };
276 
277 static devclass_t em_devclass;
278 
279 DECLARE_DUMMY_MODULE(if_em);
280 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
281 
282 /*********************************************************************
283  *  Tunable default values.
284  *********************************************************************/
285 
286 #define E1000_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
287 #define E1000_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
288 
289 static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
290 static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
291 static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
292 static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
293 static int em_int_throttle_ceil = 10000;
294 
295 TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
296 TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
297 TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
298 TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
299 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
300 
301 /*********************************************************************
302  *  Device identification routine
303  *
304  *  em_probe determines if the driver should be loaded on
305  *  adapter based on PCI vendor/device id of the adapter.
306  *
307  *  return 0 on success, positive on failure
308  *********************************************************************/
309 
310 static int
311 em_probe(device_t dev)
312 {
313 	em_vendor_info_t *ent;
314 
315 	uint16_t pci_vendor_id = 0;
316 	uint16_t pci_device_id = 0;
317 	uint16_t pci_subvendor_id = 0;
318 	uint16_t pci_subdevice_id = 0;
319 	char adapter_name[60];
320 
321 	INIT_DEBUGOUT("em_probe: begin");
322 
323 	pci_vendor_id = pci_get_vendor(dev);
324 	if (pci_vendor_id != EM_VENDOR_ID)
325 		return(ENXIO);
326 
327 	pci_device_id = pci_get_device(dev);
328 	pci_subvendor_id = pci_get_subvendor(dev);
329 	pci_subdevice_id = pci_get_subdevice(dev);
330 
331 	ent = em_vendor_info_array;
332 	while (ent->vendor_id != 0) {
333 		if ((pci_vendor_id == ent->vendor_id) &&
334 		    (pci_device_id == ent->device_id) &&
335 
336 		    ((pci_subvendor_id == ent->subvendor_id) ||
337 		     (ent->subvendor_id == PCI_ANY_ID)) &&
338 
339 		    ((pci_subdevice_id == ent->subdevice_id) ||
340 		     (ent->subdevice_id == PCI_ANY_ID))) {
341 			snprintf(adapter_name, sizeof(adapter_name),
342 				 "%s, Version - %s",  em_strings[ent->index],
343 				 em_driver_version);
344 			device_set_desc_copy(dev, adapter_name);
345 			return(0);
346 		}
347 		ent++;
348 	}
349 
350 	return(ENXIO);
351 }
352 
353 /*********************************************************************
354  *  Device initialization routine
355  *
356  *  The attach entry point is called when the driver is being loaded.
357  *  This routine identifies the type of hardware, allocates all resources
358  *  and initializes the hardware.
359  *
360  *  return 0 on success, positive on failure
361  *********************************************************************/
362 
363 static int
364 em_attach(device_t dev)
365 {
366 	struct adapter *adapter;
367 	int tsize, rsize;
368 	int i, val, rid;
369 	int error = 0;
370 
371 	INIT_DEBUGOUT("em_attach: begin");
372 
373 	adapter = device_get_softc(dev);
374 
375 	callout_init(&adapter->timer);
376 	callout_init(&adapter->tx_fifo_timer);
377 
378 	adapter->dev = dev;
379 	adapter->osdep.dev = dev;
380 
381 	/* SYSCTL stuff */
382 	sysctl_ctx_init(&adapter->sysctl_ctx);
383 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
384 					       SYSCTL_STATIC_CHILDREN(_hw),
385 					       OID_AUTO,
386 					       device_get_nameunit(dev),
387 					       CTLFLAG_RD,
388 					       0, "");
389 
390 	if (adapter->sysctl_tree == NULL) {
391 		error = EIO;
392 		goto fail;
393 	}
394 
395 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
396 			SYSCTL_CHILDREN(adapter->sysctl_tree),
397 			OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW,
398 			(void *)adapter, 0,
399 			em_sysctl_debug_info, "I", "Debug Information");
400 
401 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
402 			SYSCTL_CHILDREN(adapter->sysctl_tree),
403 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW,
404 			(void *)adapter, 0,
405 			em_sysctl_stats, "I", "Statistics");
406 
407 	/* Determine hardware revision */
408 	em_identify_hardware(adapter);
409 
410 	/* Set up some sysctls for the tunable interrupt delays */
411 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
412 				"receive interrupt delay in usecs",
413 				&adapter->rx_int_delay,
414 				E1000_REG_OFFSET(&adapter->hw, RDTR),
415 				em_rx_int_delay_dflt);
416         em_add_int_delay_sysctl(adapter, "tx_int_delay",
417 				"transmit interrupt delay in usecs",
418 				&adapter->tx_int_delay,
419 				E1000_REG_OFFSET(&adapter->hw, TIDV),
420 				em_tx_int_delay_dflt);
421 	if (adapter->hw.mac_type >= em_82540) {
422 		em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
423 					"receive interrupt delay limit in usecs",
424 					&adapter->rx_abs_int_delay,
425 					E1000_REG_OFFSET(&adapter->hw, RADV),
426 					em_rx_abs_int_delay_dflt);
427 		em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
428 					"transmit interrupt delay limit in usecs",
429 					&adapter->tx_abs_int_delay,
430 					E1000_REG_OFFSET(&adapter->hw, TADV),
431 					em_tx_abs_int_delay_dflt);
432 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
433 			SYSCTL_CHILDREN(adapter->sysctl_tree),
434 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
435 			adapter, 0, em_sysctl_int_throttle, "I", NULL);
436 	}
437 
438 	/* Parameters (to be read from user) */
439 	adapter->num_tx_desc = EM_MAX_TXD;
440 	adapter->num_rx_desc = EM_MAX_RXD;
441 	adapter->hw.autoneg = DO_AUTO_NEG;
442 	adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
443 	adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
444 	adapter->hw.tbi_compatibility_en = TRUE;
445 	adapter->rx_buffer_len = EM_RXBUFFER_2048;
446 
447 	adapter->hw.phy_init_script = 1;
448 	adapter->hw.phy_reset_disable = FALSE;
449 
450 #ifndef EM_MASTER_SLAVE
451 	adapter->hw.master_slave = em_ms_hw_default;
452 #else
453 	adapter->hw.master_slave = EM_MASTER_SLAVE;
454 #endif
455 
456 	/*
457 	 * Set the max frame size assuming standard ethernet
458 	 * sized frames
459 	 */
460 	adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
461 
462 	adapter->hw.min_frame_size =
463 	    MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
464 
465 	/*
466 	 * This controls when hardware reports transmit completion
467 	 * status.
468 	 */
469 	adapter->hw.report_tx_early = 1;
470 
471 	rid = EM_MMBA;
472 	adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
473 						     &rid, RF_ACTIVE);
474 	if (!(adapter->res_memory)) {
475 		device_printf(dev, "Unable to allocate bus resource: memory\n");
476 		error = ENXIO;
477 		goto fail;
478 	}
479 	adapter->osdep.mem_bus_space_tag =
480 	    rman_get_bustag(adapter->res_memory);
481 	adapter->osdep.mem_bus_space_handle =
482 	    rman_get_bushandle(adapter->res_memory);
483 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
484 
485 	if (adapter->hw.mac_type > em_82543) {
486 		/* Figure our where our IO BAR is ? */
487 		rid = EM_MMBA;
488 		for (i = 0; i < 5; i++) {
489 			val = pci_read_config(dev, rid, 4);
490 			if (val & 0x00000001) {
491 				adapter->io_rid = rid;
492 				break;
493 			}
494 			rid += 4;
495 		}
496 
497 		adapter->res_ioport = bus_alloc_resource_any(dev,
498 		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
499 		if (!(adapter->res_ioport)) {
500 			device_printf(dev, "Unable to allocate bus resource: ioport\n");
501 			error = ENXIO;
502 			goto fail;
503 		}
504 
505 		adapter->hw.reg_io_tag = rman_get_bustag(adapter->res_ioport);
506 		adapter->hw.reg_io_handle = rman_get_bushandle(adapter->res_ioport);
507 	}
508 
509 	rid = 0x0;
510 	adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ,
511 	    &rid, RF_SHAREABLE | RF_ACTIVE);
512 	if (!(adapter->res_interrupt)) {
513 		device_printf(dev, "Unable to allocate bus resource: interrupt\n");
514 		error = ENXIO;
515 		goto fail;
516 	}
517 
518 	adapter->hw.back = &adapter->osdep;
519 
520 	em_init_eeprom_params(&adapter->hw);
521 
522 	tsize = EM_ROUNDUP(adapter->num_tx_desc *
523 			   sizeof(struct em_tx_desc), 4096);
524 
525 	/* Allocate Transmit Descriptor ring */
526 	if (em_dma_malloc(adapter, tsize, &adapter->txdma, BUS_DMA_WAITOK)) {
527 		device_printf(dev, "Unable to allocate TxDescriptor memory\n");
528 		error = ENOMEM;
529 		goto fail;
530 	}
531 	adapter->tx_desc_base = (struct em_tx_desc *) adapter->txdma.dma_vaddr;
532 
533 	rsize = EM_ROUNDUP(adapter->num_rx_desc *
534 			   sizeof(struct em_rx_desc), 4096);
535 
536 	/* Allocate Receive Descriptor ring */
537 	if (em_dma_malloc(adapter, rsize, &adapter->rxdma, BUS_DMA_WAITOK)) {
538 		device_printf(dev, "Unable to allocate rx_desc memory\n");
539 		error = ENOMEM;
540 		goto fail;
541 	}
542 	adapter->rx_desc_base = (struct em_rx_desc *) adapter->rxdma.dma_vaddr;
543 
544 	/* Initialize the hardware */
545 	if (em_hardware_init(adapter)) {
546 		device_printf(dev, "Unable to initialize the hardware\n");
547 		error = EIO;
548 		goto fail;
549 	}
550 
551 	/* Copy the permanent MAC address out of the EEPROM */
552 	if (em_read_mac_addr(&adapter->hw) < 0) {
553 		device_printf(dev, "EEPROM read error while reading mac address\n");
554 		error = EIO;
555 		goto fail;
556 	}
557 
558 	if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
559 		device_printf(dev, "Invalid mac address\n");
560 		error = EIO;
561 		goto fail;
562 	}
563 
564 	/* Setup OS specific network interface */
565 	em_setup_interface(dev, adapter);
566 
567 	/* Initialize statistics */
568 	em_clear_hw_cntrs(&adapter->hw);
569 	em_update_stats_counters(adapter);
570 	adapter->hw.get_link_status = 1;
571 	em_check_for_link(&adapter->hw);
572 
573 	/* Print the link status */
574 	if (adapter->link_active == 1) {
575 		em_get_speed_and_duplex(&adapter->hw, &adapter->link_speed,
576 					&adapter->link_duplex);
577 		device_printf(dev, "Speed: %d Mbps, Duplex: %s\n",
578 		    adapter->link_speed,
579 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
580 	} else
581 		device_printf(dev, "Speed: N/A, Duplex:N/A\n");
582 
583 	/* Identify 82544 on PCIX */
584 	em_get_bus_info(&adapter->hw);
585 	if (adapter->hw.bus_type == em_bus_type_pcix &&
586 	    adapter->hw.mac_type == em_82544)
587 		adapter->pcix_82544 = TRUE;
588         else
589 		adapter->pcix_82544 = FALSE;
590 
591 	error = bus_setup_intr(dev, adapter->res_interrupt, INTR_NETSAFE,
592 			   (void (*)(void *)) em_intr, adapter,
593 			   &adapter->int_handler_tag,
594 			   adapter->interface_data.ac_if.if_serializer);
595 	if (error) {
596 		device_printf(dev, "Error registering interrupt handler!\n");
597 		ether_ifdetach(&adapter->interface_data.ac_if);
598 		goto fail;
599 	}
600 
601 	INIT_DEBUGOUT("em_attach: end");
602 	return(0);
603 
604 fail:
605 	em_detach(dev);
606 	return(error);
607 }
608 
609 /*********************************************************************
610  *  Device removal routine
611  *
612  *  The detach entry point is called when the driver is being removed.
613  *  This routine stops the adapter and deallocates all the resources
614  *  that were allocated for driver operation.
615  *
616  *  return 0 on success, positive on failure
617  *********************************************************************/
618 
619 static int
620 em_detach(device_t dev)
621 {
622 	struct adapter *adapter = device_get_softc(dev);
623 
624 	INIT_DEBUGOUT("em_detach: begin");
625 
626 	lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
627 	adapter->in_detach = 1;
628 
629 	if (device_is_attached(dev)) {
630 		em_stop(adapter);
631 		em_phy_hw_reset(&adapter->hw);
632 		ether_ifdetach(&adapter->interface_data.ac_if);
633 	}
634 	bus_generic_detach(dev);
635 
636 	if (adapter->int_handler_tag != NULL) {
637 		bus_teardown_intr(dev, adapter->res_interrupt,
638 				  adapter->int_handler_tag);
639 	}
640 	if (adapter->res_interrupt != NULL) {
641 		bus_release_resource(dev, SYS_RES_IRQ, 0,
642 				     adapter->res_interrupt);
643 	}
644 	if (adapter->res_memory != NULL) {
645 		bus_release_resource(dev, SYS_RES_MEMORY, EM_MMBA,
646 				     adapter->res_memory);
647 	}
648 
649 	if (adapter->res_ioport != NULL) {
650 		bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid,
651 				     adapter->res_ioport);
652 	}
653 
654 	/* Free Transmit Descriptor ring */
655 	if (adapter->tx_desc_base != NULL) {
656 		em_dma_free(adapter, &adapter->txdma);
657 		adapter->tx_desc_base = NULL;
658 	}
659 
660 	/* Free Receive Descriptor ring */
661 	if (adapter->rx_desc_base != NULL) {
662 		em_dma_free(adapter, &adapter->rxdma);
663 		adapter->rx_desc_base = NULL;
664 	}
665 
666 	adapter->sysctl_tree = NULL;
667 	sysctl_ctx_free(&adapter->sysctl_ctx);
668 
669 	lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
670 	return(0);
671 }
672 
673 /*********************************************************************
674  *
675  *  Shutdown entry point
676  *
677  **********************************************************************/
678 
679 static int
680 em_shutdown(device_t dev)
681 {
682 	struct adapter *adapter = device_get_softc(dev);
683 	em_stop(adapter);
684 	return(0);
685 }
686 
687 /*********************************************************************
688  *  Transmit entry point
689  *
690  *  em_start is called by the stack to initiate a transmit.
691  *  The driver will remain in this routine as long as there are
692  *  packets to transmit and transmit resources are available.
693  *  In case resources are not available stack is notified and
694  *  the packet is requeued.
695  **********************************************************************/
696 
697 static void
698 em_start(struct ifnet *ifp)
699 {
700 	struct mbuf *m_head;
701 	struct adapter *adapter = ifp->if_softc;
702 
703 	ASSERT_SERIALIZED(adapter->interface_data.ac_if.if_serializer);
704 
705 	if (!adapter->link_active)
706 		return;
707 	while (!ifq_is_empty(&ifp->if_snd)) {
708 		m_head = ifq_poll(&ifp->if_snd);
709 
710 		if (m_head == NULL)
711 			break;
712 
713 		if (em_encap(adapter, m_head)) {
714 			ifp->if_flags |= IFF_OACTIVE;
715 			break;
716 		}
717 		ifq_dequeue(&ifp->if_snd, m_head);
718 
719 		/* Send a copy of the frame to the BPF listener */
720 		BPF_MTAP(ifp, m_head);
721 
722 		/* Set timeout in case hardware has problems transmitting */
723 		ifp->if_timer = EM_TX_TIMEOUT;
724 	}
725 }
726 
727 /*********************************************************************
728  *  Ioctl entry point
729  *
730  *  em_ioctl is called when the user wants to configure the
731  *  interface.
732  *
733  *  return 0 on success, positive on failure
734  **********************************************************************/
735 
736 static int
737 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
738 {
739 	int max_frame_size, mask, error = 0;
740 	struct ifreq *ifr = (struct ifreq *) data;
741 	struct adapter *adapter = ifp->if_softc;
742 
743 	ASSERT_SERIALIZED(adapter->interface_data.ac_if.if_serializer);
744 
745 	if (adapter->in_detach)
746 		goto out;
747 
748 	switch (command) {
749 	case SIOCSIFADDR:
750 	case SIOCGIFADDR:
751 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFADDR (Get/Set Interface Addr)");
752 		ether_ioctl(ifp, command, data);
753 		break;
754 	case SIOCSIFMTU:
755 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
756 		switch (adapter->hw.mac_type) {
757 		case em_82571:
758 		case em_82572:
759 			max_frame_size = 10500;
760 			break;
761 		case em_82573:
762 			/* 82573 does not support jumbo frames */
763 			max_frame_size = ETHER_MAX_LEN;
764 			break;
765 		default:
766 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
767 			break;
768 		}
769 		if (ifr->ifr_mtu >
770 			max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
771 			error = EINVAL;
772 		} else {
773 			ifp->if_mtu = ifr->ifr_mtu;
774 			adapter->hw.max_frame_size =
775 			ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
776 			em_init(adapter);
777 		}
778 		break;
779 	case SIOCSIFFLAGS:
780 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS (Set Interface Flags)");
781 		if (ifp->if_flags & IFF_UP) {
782 			if (!(ifp->if_flags & IFF_RUNNING))
783 				em_init(adapter);
784 			em_disable_promisc(adapter);
785 			em_set_promisc(adapter);
786 		} else {
787 			if (ifp->if_flags & IFF_RUNNING)
788 				em_stop(adapter);
789 		}
790 		break;
791 	case SIOCADDMULTI:
792 	case SIOCDELMULTI:
793 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
794 		if (ifp->if_flags & IFF_RUNNING) {
795 			em_disable_intr(adapter);
796 			em_set_multi(adapter);
797 			if (adapter->hw.mac_type == em_82542_rev2_0)
798 				em_initialize_receive_unit(adapter);
799 			em_enable_intr(adapter);
800 		}
801 		break;
802 	case SIOCSIFMEDIA:
803 	case SIOCGIFMEDIA:
804 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA (Get/Set Interface Media)");
805 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
806 		break;
807 	case SIOCSIFCAP:
808 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
809 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
810 		if (mask & IFCAP_HWCSUM) {
811 			if (IFCAP_HWCSUM & ifp->if_capenable)
812 				ifp->if_capenable &= ~IFCAP_HWCSUM;
813 			else
814 				ifp->if_capenable |= IFCAP_HWCSUM;
815 			if (ifp->if_flags & IFF_RUNNING)
816 				em_init(adapter);
817 		}
818 		break;
819 	default:
820 		IOCTL_DEBUGOUT1("ioctl received: UNKNOWN (0x%x)", (int)command);
821 		error = EINVAL;
822 	}
823 
824 out:
825 	return(error);
826 }
827 
828 /*********************************************************************
829  *  Watchdog entry point
830  *
831  *  This routine is called whenever hardware quits transmitting.
832  *
833  **********************************************************************/
834 
835 static void
836 em_watchdog(struct ifnet *ifp)
837 {
838 	struct adapter * adapter;
839 	adapter = ifp->if_softc;
840 
841 	/* If we are in this routine because of pause frames, then
842 	 * don't reset the hardware.
843 	 */
844 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
845 		ifp->if_timer = EM_TX_TIMEOUT;
846 		return;
847 	}
848 
849 	if (em_check_for_link(&adapter->hw))
850 		if_printf(ifp, "watchdog timeout -- resetting\n");
851 
852 	ifp->if_flags &= ~IFF_RUNNING;
853 
854 	em_init(adapter);
855 
856 	ifp->if_oerrors++;
857 }
858 
859 /*********************************************************************
860  *  Init entry point
861  *
862  *  This routine is used in two ways. It is used by the stack as
863  *  init entry point in network interface structure. It is also used
864  *  by the driver as a hw/sw initialization routine to get to a
865  *  consistent state.
866  *
867  *  return 0 on success, positive on failure
868  **********************************************************************/
869 
870 static void
871 em_init(void *arg)
872 {
873 	struct adapter *adapter = arg;
874 	uint32_t pba;
875 	struct ifnet *ifp = &adapter->interface_data.ac_if;
876 
877 	INIT_DEBUGOUT("em_init: begin");
878 
879 	em_stop(adapter);
880 
881 	/*
882 	 * Packet Buffer Allocation (PBA)
883 	 * Writing PBA sets the receive portion of the buffer
884 	 * the remainder is used for the transmit buffer.
885 	 */
886 	switch (adapter->hw.mac_type) {
887 	case em_82547:
888 	case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
889 		if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
890 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
891 		else
892 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
893 
894 		adapter->tx_fifo_head = 0;
895 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
896 		adapter->tx_fifo_size =
897 			(E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
898 		break;
899 	case em_82571: /* 82571: Total Packet Buffer is 48K */
900 	case em_82572: /* 82572: Total Packet Buffer is 48K */
901 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
902 		break;
903 	case em_82573: /* 82573: Total Packet Buffer is 32K */
904 		/* Jumbo frames not supported */
905 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
906 		break;
907 	default:
908 		/* Devices before 82547 had a Packet Buffer of 64K.   */
909 		if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
910 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
911 		else
912 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
913 	}
914 
915 	INIT_DEBUGOUT1("em_init: pba=%dK",pba);
916 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
917 
918 	/* Get the latest mac address, User can use a LAA */
919 	bcopy(adapter->interface_data.ac_enaddr, adapter->hw.mac_addr,
920 	      ETHER_ADDR_LEN);
921 
922 	/* Initialize the hardware */
923 	if (em_hardware_init(adapter)) {
924 		if_printf(ifp, "Unable to initialize the hardware\n");
925 		return;
926 	}
927 
928 	em_enable_vlans(adapter);
929 
930 	/* Prepare transmit descriptors and buffers */
931 	if (em_setup_transmit_structures(adapter)) {
932 		if_printf(ifp, "Could not setup transmit structures\n");
933 		em_stop(adapter);
934 		return;
935 	}
936 	em_initialize_transmit_unit(adapter);
937 
938 	/* Setup Multicast table */
939 	em_set_multi(adapter);
940 
941 	/* Prepare receive descriptors and buffers */
942 	if (em_setup_receive_structures(adapter)) {
943 		if_printf(ifp, "Could not setup receive structures\n");
944 		em_stop(adapter);
945 		return;
946 	}
947 	em_initialize_receive_unit(adapter);
948 
949 	/* Don't loose promiscuous settings */
950 	em_set_promisc(adapter);
951 
952 	ifp->if_flags |= IFF_RUNNING;
953 	ifp->if_flags &= ~IFF_OACTIVE;
954 
955 	if (adapter->hw.mac_type >= em_82543) {
956 		if (ifp->if_capenable & IFCAP_TXCSUM)
957 			ifp->if_hwassist = EM_CHECKSUM_FEATURES;
958 		else
959 			ifp->if_hwassist = 0;
960 	}
961 
962 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
963 	em_clear_hw_cntrs(&adapter->hw);
964 	em_enable_intr(adapter);
965 
966 	/* Don't reset the phy next time init gets called */
967 	adapter->hw.phy_reset_disable = TRUE;
968 }
969 
970 #ifdef DEVICE_POLLING
971 
972 static void
973 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
974 {
975 	struct adapter *adapter = ifp->if_softc;
976 	uint32_t reg_icr;
977 
978 	ASSERT_SERIALIZED(ifp->if_serializer);
979 
980 	switch(cmd) {
981 	case POLL_REGISTER:
982 		em_disable_intr(adapter);
983 		break;
984 	case POLL_DEREGISTER:
985 		em_enable_intr(adapter);
986 		break;
987 	case POLL_AND_CHECK_STATUS:
988 		reg_icr = E1000_READ_REG(&adapter->hw, ICR);
989 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
990 			callout_stop(&adapter->timer);
991 			adapter->hw.get_link_status = 1;
992 			em_check_for_link(&adapter->hw);
993 			em_print_link_status(adapter);
994 			callout_reset(&adapter->timer, hz, em_local_timer,
995 				      adapter);
996 		}
997 		/* fall through */
998 	case POLL_ONLY:
999 		if (ifp->if_flags & IFF_RUNNING) {
1000 			em_process_receive_interrupts(adapter, count);
1001 			em_clean_transmit_interrupts(adapter);
1002 		}
1003 		if (ifp->if_flags & IFF_RUNNING) {
1004 			if (!ifq_is_empty(&ifp->if_snd))
1005 				em_start(ifp);
1006 		}
1007 		break;
1008 	}
1009 }
1010 
1011 #endif /* DEVICE_POLLING */
1012 
1013 /*********************************************************************
1014  *
1015  *  Interrupt Service routine
1016  *
1017  **********************************************************************/
1018 static void
1019 em_intr(void *arg)
1020 {
1021 	uint32_t reg_icr;
1022 	struct ifnet *ifp;
1023 	struct adapter *adapter = arg;
1024 
1025 	ifp = &adapter->interface_data.ac_if;
1026 
1027 	ASSERT_SERIALIZED(ifp->if_serializer);
1028 
1029 	reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1030 	if (!reg_icr)
1031 		return;
1032 
1033 	/* Link status change */
1034 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1035 		callout_stop(&adapter->timer);
1036 		adapter->hw.get_link_status = 1;
1037 		em_check_for_link(&adapter->hw);
1038 		em_print_link_status(adapter);
1039 		callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1040 	}
1041 
1042 	/*
1043 	 * note: do not attempt to improve efficiency by looping.  This
1044 	 * only results in unnecessary piecemeal collection of received
1045 	 * packets and unnecessary piecemeal cleanups of the transmit ring.
1046 	 */
1047 	if (ifp->if_flags & IFF_RUNNING) {
1048 		em_process_receive_interrupts(adapter, -1);
1049 		em_clean_transmit_interrupts(adapter);
1050 	}
1051 
1052 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1053 		em_start(ifp);
1054 }
1055 
1056 /*********************************************************************
1057  *
1058  *  Media Ioctl callback
1059  *
1060  *  This routine is called whenever the user queries the status of
1061  *  the interface using ifconfig.
1062  *
1063  **********************************************************************/
1064 static void
1065 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1066 {
1067 	struct adapter * adapter = ifp->if_softc;
1068 
1069 	INIT_DEBUGOUT("em_media_status: begin");
1070 
1071 	ASSERT_SERIALIZED(ifp->if_serializer);
1072 
1073 	em_check_for_link(&adapter->hw);
1074 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
1075 		if (adapter->link_active == 0) {
1076 			em_get_speed_and_duplex(&adapter->hw,
1077 						&adapter->link_speed,
1078 						&adapter->link_duplex);
1079 			adapter->link_active = 1;
1080 		}
1081 	} else {
1082 		if (adapter->link_active == 1) {
1083 			adapter->link_speed = 0;
1084 			adapter->link_duplex = 0;
1085 			adapter->link_active = 0;
1086 		}
1087 	}
1088 
1089 	ifmr->ifm_status = IFM_AVALID;
1090 	ifmr->ifm_active = IFM_ETHER;
1091 
1092 	if (!adapter->link_active)
1093 		return;
1094 
1095 	ifmr->ifm_status |= IFM_ACTIVE;
1096 
1097 	if (adapter->hw.media_type == em_media_type_fiber) {
1098 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1099 	} else {
1100 		switch (adapter->link_speed) {
1101 		case 10:
1102 			ifmr->ifm_active |= IFM_10_T;
1103 			break;
1104 		case 100:
1105 			ifmr->ifm_active |= IFM_100_TX;
1106 			break;
1107 		case 1000:
1108 			ifmr->ifm_active |= IFM_1000_T;
1109 			break;
1110 		}
1111 		if (adapter->link_duplex == FULL_DUPLEX)
1112 			ifmr->ifm_active |= IFM_FDX;
1113 		else
1114 			ifmr->ifm_active |= IFM_HDX;
1115 	}
1116 }
1117 
1118 /*********************************************************************
1119  *
1120  *  Media Ioctl callback
1121  *
1122  *  This routine is called when the user changes speed/duplex using
1123  *  media/mediopt option with ifconfig.
1124  *
1125  **********************************************************************/
1126 static int
1127 em_media_change(struct ifnet *ifp)
1128 {
1129 	struct adapter * adapter = ifp->if_softc;
1130 	struct ifmedia  *ifm = &adapter->media;
1131 
1132 	INIT_DEBUGOUT("em_media_change: begin");
1133 
1134 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1135 		return(EINVAL);
1136 
1137 	ASSERT_SERIALIZED(ifp->if_serializer);
1138 
1139 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1140 	case IFM_AUTO:
1141 		adapter->hw.autoneg = DO_AUTO_NEG;
1142 		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1143 		break;
1144 	case IFM_1000_SX:
1145 	case IFM_1000_T:
1146 		adapter->hw.autoneg = DO_AUTO_NEG;
1147 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
1148 		break;
1149 	case IFM_100_TX:
1150 		adapter->hw.autoneg = FALSE;
1151 		adapter->hw.autoneg_advertised = 0;
1152 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1153 			adapter->hw.forced_speed_duplex = em_100_full;
1154 		else
1155 			adapter->hw.forced_speed_duplex	= em_100_half;
1156 		break;
1157 	case IFM_10_T:
1158 		adapter->hw.autoneg = FALSE;
1159 		adapter->hw.autoneg_advertised = 0;
1160 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1161 			adapter->hw.forced_speed_duplex = em_10_full;
1162 		else
1163 			adapter->hw.forced_speed_duplex	= em_10_half;
1164 		break;
1165 	default:
1166 		if_printf(ifp, "Unsupported media type\n");
1167 	}
1168 	/*
1169 	 * As the speed/duplex settings may have changed we need to
1170 	 * reset the PHY.
1171 	 */
1172 	adapter->hw.phy_reset_disable = FALSE;
1173 
1174 	em_init(adapter);
1175 
1176 	return(0);
1177 }
1178 
1179 static void
1180 em_tx_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1181 	 int error)
1182 {
1183 	struct em_q *q = arg;
1184 
1185 	if (error)
1186 		return;
1187 	KASSERT(nsegs <= EM_MAX_SCATTER,
1188 		("Too many DMA segments returned when mapping tx packet"));
1189 	q->nsegs = nsegs;
1190 	bcopy(seg, q->segs, nsegs * sizeof(seg[0]));
1191 }
1192 
1193 /*********************************************************************
1194  *
1195  *  This routine maps the mbufs to tx descriptors.
1196  *
1197  *  return 0 on success, positive on failure
1198  **********************************************************************/
1199 static int
1200 em_encap(struct adapter *adapter, struct mbuf *m_head)
1201 {
1202 	uint32_t txd_upper;
1203 	uint32_t txd_lower, txd_used = 0, txd_saved = 0;
1204 	int i, j, error;
1205 	uint64_t address;
1206 
1207 	/* For 82544 Workaround */
1208 	DESC_ARRAY desc_array;
1209 	uint32_t array_elements;
1210 	uint32_t counter;
1211 
1212 	struct ifvlan *ifv = NULL;
1213 	struct em_q q;
1214         struct em_buffer *tx_buffer = NULL;
1215         struct em_tx_desc *current_tx_desc = NULL;
1216         struct ifnet *ifp = &adapter->interface_data.ac_if;
1217 
1218 	/*
1219 	 * Force a cleanup if number of TX descriptors
1220 	 * available hits the threshold
1221 	 */
1222 	if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1223 		em_clean_transmit_interrupts(adapter);
1224 		if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1225 			adapter->no_tx_desc_avail1++;
1226 			return(ENOBUFS);
1227 		}
1228 	}
1229 	/*
1230 	 * Map the packet for DMA.
1231 	 */
1232 	if (bus_dmamap_create(adapter->txtag, BUS_DMA_NOWAIT, &q.map)) {
1233 		adapter->no_tx_map_avail++;
1234 		return(ENOMEM);
1235 	}
1236 	error = bus_dmamap_load_mbuf(adapter->txtag, q.map, m_head, em_tx_cb,
1237 				     &q, BUS_DMA_NOWAIT);
1238 	if (error != 0) {
1239 		adapter->no_tx_dma_setup++;
1240 		bus_dmamap_destroy(adapter->txtag, q.map);
1241 		return(error);
1242 	}
1243 	KASSERT(q.nsegs != 0, ("em_encap: empty packet"));
1244 
1245 	if (q.nsegs > adapter->num_tx_desc_avail) {
1246 		adapter->no_tx_desc_avail2++;
1247 		bus_dmamap_unload(adapter->txtag, q.map);
1248 		bus_dmamap_destroy(adapter->txtag, q.map);
1249 		return(ENOBUFS);
1250 	}
1251 
1252 	if (ifp->if_hwassist > 0) {
1253 		em_transmit_checksum_setup(adapter,  m_head,
1254 					   &txd_upper, &txd_lower);
1255 	} else {
1256 		txd_upper = txd_lower = 0;
1257 	}
1258 
1259 	/* Find out if we are in vlan mode */
1260 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1261 	    m_head->m_pkthdr.rcvif != NULL &&
1262 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1263 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1264 
1265 	i = adapter->next_avail_tx_desc;
1266 	if (adapter->pcix_82544) {
1267 		txd_saved = i;
1268 		txd_used = 0;
1269 	}
1270 	for (j = 0; j < q.nsegs; j++) {
1271 		/* If adapter is 82544 and on PCIX bus */
1272 		if(adapter->pcix_82544) {
1273 			array_elements = 0;
1274 			address = htole64(q.segs[j].ds_addr);
1275 			/*
1276 			 * Check the Address and Length combination and
1277 			 * split the data accordingly
1278 			 */
1279 			array_elements = em_fill_descriptors(address,
1280 							     htole32(q.segs[j].ds_len),
1281 							     &desc_array);
1282 			for (counter = 0; counter < array_elements; counter++) {
1283 				if (txd_used == adapter->num_tx_desc_avail) {
1284 					adapter->next_avail_tx_desc = txd_saved;
1285 					adapter->no_tx_desc_avail2++;
1286 					bus_dmamap_unload(adapter->txtag, q.map);
1287 					bus_dmamap_destroy(adapter->txtag, q.map);
1288 					return(ENOBUFS);
1289 				}
1290 				tx_buffer = &adapter->tx_buffer_area[i];
1291 				current_tx_desc = &adapter->tx_desc_base[i];
1292 				current_tx_desc->buffer_addr = htole64(
1293 				desc_array.descriptor[counter].address);
1294 				current_tx_desc->lower.data = htole32(
1295 				(adapter->txd_cmd | txd_lower |
1296 				(uint16_t)desc_array.descriptor[counter].length));
1297 				current_tx_desc->upper.data = htole32((txd_upper));
1298 				if (++i == adapter->num_tx_desc)
1299 					i = 0;
1300 
1301 				tx_buffer->m_head = NULL;
1302 				txd_used++;
1303 			}
1304 		} else {
1305 			tx_buffer = &adapter->tx_buffer_area[i];
1306 			current_tx_desc = &adapter->tx_desc_base[i];
1307 
1308 			current_tx_desc->buffer_addr = htole64(q.segs[j].ds_addr);
1309 			current_tx_desc->lower.data = htole32(
1310 				adapter->txd_cmd | txd_lower | q.segs[j].ds_len);
1311 			current_tx_desc->upper.data = htole32(txd_upper);
1312 
1313 			if (++i == adapter->num_tx_desc)
1314 				i = 0;
1315 
1316 			tx_buffer->m_head = NULL;
1317 		}
1318 	}
1319 
1320 	adapter->next_avail_tx_desc = i;
1321 	if (adapter->pcix_82544)
1322 		adapter->num_tx_desc_avail -= txd_used;
1323 	else
1324 		adapter->num_tx_desc_avail -= q.nsegs;
1325 
1326 	if (ifv != NULL) {
1327 		/* Set the vlan id */
1328 		current_tx_desc->upper.fields.special = htole16(ifv->ifv_tag);
1329 
1330 		/* Tell hardware to add tag */
1331 		current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
1332 	}
1333 
1334 	tx_buffer->m_head = m_head;
1335 	tx_buffer->map = q.map;
1336 	bus_dmamap_sync(adapter->txtag, q.map, BUS_DMASYNC_PREWRITE);
1337 
1338 	/*
1339 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1340 	 */
1341 	current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_EOP);
1342 
1343 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
1344 			BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1345 
1346 	/*
1347 	 * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
1348 	 * that this frame is available to transmit.
1349 	 */
1350 	if (adapter->hw.mac_type == em_82547 &&
1351 	    adapter->link_duplex == HALF_DUPLEX) {
1352 		em_82547_move_tail_serialized(adapter);
1353 	} else {
1354 		E1000_WRITE_REG(&adapter->hw, TDT, i);
1355 		if (adapter->hw.mac_type == em_82547) {
1356 			em_82547_update_fifo_head(adapter,
1357 						  m_head->m_pkthdr.len);
1358 		}
1359 	}
1360 
1361 	return(0);
1362 }
1363 
1364 /*********************************************************************
1365  *
1366  * 82547 workaround to avoid controller hang in half-duplex environment.
1367  * The workaround is to avoid queuing a large packet that would span
1368  * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1369  * in this case. We do that only when FIFO is queiced.
1370  *
1371  **********************************************************************/
1372 static void
1373 em_82547_move_tail(void *arg)
1374 {
1375 	struct adapter *adapter = arg;
1376 
1377 	lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
1378 	em_82547_move_tail_serialized(arg);
1379 	lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
1380 }
1381 
1382 static void
1383 em_82547_move_tail_serialized(void *arg)
1384 {
1385 	struct adapter *adapter = arg;
1386 	uint16_t hw_tdt;
1387 	uint16_t sw_tdt;
1388 	struct em_tx_desc *tx_desc;
1389 	uint16_t length = 0;
1390 	boolean_t eop = 0;
1391 
1392 	hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
1393 	sw_tdt = adapter->next_avail_tx_desc;
1394 
1395 	while (hw_tdt != sw_tdt) {
1396 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1397 		length += tx_desc->lower.flags.length;
1398 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1399 		if(++hw_tdt == adapter->num_tx_desc)
1400 			hw_tdt = 0;
1401 
1402 		if(eop) {
1403 			if (em_82547_fifo_workaround(adapter, length)) {
1404 				adapter->tx_fifo_wrk_cnt++;
1405 				callout_reset(&adapter->tx_fifo_timer, 1,
1406 					em_82547_move_tail, adapter);
1407 				break;
1408 			}
1409 			E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
1410 			em_82547_update_fifo_head(adapter, length);
1411 			length = 0;
1412 		}
1413 	}
1414 }
1415 
1416 static int
1417 em_82547_fifo_workaround(struct adapter *adapter, int len)
1418 {
1419 	int fifo_space, fifo_pkt_len;
1420 
1421 	fifo_pkt_len = EM_ROUNDUP(len + EM_FIFO_HDR, EM_FIFO_HDR);
1422 
1423 	if (adapter->link_duplex == HALF_DUPLEX) {
1424 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1425 
1426 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1427 			if (em_82547_tx_fifo_reset(adapter))
1428 				return(0);
1429 			else
1430 				return(1);
1431 		}
1432 	}
1433 
1434 	return(0);
1435 }
1436 
1437 static void
1438 em_82547_update_fifo_head(struct adapter *adapter, int len)
1439 {
1440 	int fifo_pkt_len = EM_ROUNDUP(len + EM_FIFO_HDR, EM_FIFO_HDR);
1441 
1442 	/* tx_fifo_head is always 16 byte aligned */
1443 	adapter->tx_fifo_head += fifo_pkt_len;
1444 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1445 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1446 }
1447 
1448 static int
1449 em_82547_tx_fifo_reset(struct adapter *adapter)
1450 {
1451 	uint32_t tctl;
1452 
1453 	if ( (E1000_READ_REG(&adapter->hw, TDT) ==
1454 	      E1000_READ_REG(&adapter->hw, TDH)) &&
1455 	     (E1000_READ_REG(&adapter->hw, TDFT) ==
1456 	      E1000_READ_REG(&adapter->hw, TDFH)) &&
1457 	     (E1000_READ_REG(&adapter->hw, TDFTS) ==
1458 	      E1000_READ_REG(&adapter->hw, TDFHS)) &&
1459 	     (E1000_READ_REG(&adapter->hw, TDFPC) == 0)) {
1460 
1461 		/* Disable TX unit */
1462 		tctl = E1000_READ_REG(&adapter->hw, TCTL);
1463 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
1464 
1465 		/* Reset FIFO pointers */
1466 		E1000_WRITE_REG(&adapter->hw, TDFT,  adapter->tx_head_addr);
1467 		E1000_WRITE_REG(&adapter->hw, TDFH,  adapter->tx_head_addr);
1468 		E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
1469 		E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
1470 
1471 		/* Re-enable TX unit */
1472 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1473 		E1000_WRITE_FLUSH(&adapter->hw);
1474 
1475 		adapter->tx_fifo_head = 0;
1476 		adapter->tx_fifo_reset_cnt++;
1477 
1478 		return(TRUE);
1479 	} else {
1480 		return(FALSE);
1481 	}
1482 }
1483 
1484 static void
1485 em_set_promisc(struct adapter *adapter)
1486 {
1487 	uint32_t reg_rctl, ctrl;
1488 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1489 
1490 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1491 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
1492 
1493 	if (ifp->if_flags & IFF_PROMISC) {
1494 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1495 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1496 
1497 		/*
1498 		 * Disable VLAN stripping in promiscous mode.
1499 		 * This enables bridging of vlan tagged frames to occur
1500 		 * and also allows vlan tags to be seen in tcpdump.
1501 		 */
1502 		ctrl &= ~E1000_CTRL_VME;
1503 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
1504 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1505 		reg_rctl |= E1000_RCTL_MPE;
1506 		reg_rctl &= ~E1000_RCTL_UPE;
1507 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1508 	}
1509 }
1510 
1511 static void
1512 em_disable_promisc(struct adapter *adapter)
1513 {
1514 	uint32_t reg_rctl;
1515 
1516 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1517 
1518 	reg_rctl &= (~E1000_RCTL_UPE);
1519 	reg_rctl &= (~E1000_RCTL_MPE);
1520 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1521 
1522 	em_enable_vlans(adapter);
1523 }
1524 
1525 /*********************************************************************
1526  *  Multicast Update
1527  *
1528  *  This routine is called whenever multicast address list is updated.
1529  *
1530  **********************************************************************/
1531 
1532 static void
1533 em_set_multi(struct adapter *adapter)
1534 {
1535 	uint32_t reg_rctl = 0;
1536 	uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
1537 	struct ifmultiaddr *ifma;
1538 	int mcnt = 0;
1539 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1540 
1541 	IOCTL_DEBUGOUT("em_set_multi: begin");
1542 
1543 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1544 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1545 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1546 			em_pci_clear_mwi(&adapter->hw);
1547 		reg_rctl |= E1000_RCTL_RST;
1548 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1549 		msec_delay(5);
1550 	}
1551 
1552 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1553 		if (ifma->ifma_addr->sa_family != AF_LINK)
1554 			continue;
1555 
1556 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1557 			break;
1558 
1559 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1560 		      &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
1561 		mcnt++;
1562 	}
1563 
1564 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1565 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1566 		reg_rctl |= E1000_RCTL_MPE;
1567 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1568 	} else {
1569 		em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
1570 	}
1571 
1572 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1573 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1574 		reg_rctl &= ~E1000_RCTL_RST;
1575 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1576 		msec_delay(5);
1577 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1578                         em_pci_set_mwi(&adapter->hw);
1579 	}
1580 }
1581 
1582 /*********************************************************************
1583  *  Timer routine
1584  *
1585  *  This routine checks for link status and updates statistics.
1586  *
1587  **********************************************************************/
1588 
1589 static void
1590 em_local_timer(void *arg)
1591 {
1592 	struct ifnet *ifp;
1593 	struct adapter *adapter = arg;
1594 	ifp = &adapter->interface_data.ac_if;
1595 
1596 	lwkt_serialize_enter(ifp->if_serializer);
1597 
1598 	em_check_for_link(&adapter->hw);
1599 	em_print_link_status(adapter);
1600 	em_update_stats_counters(adapter);
1601 	if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING)
1602 		em_print_hw_stats(adapter);
1603 	em_smartspeed(adapter);
1604 
1605 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1606 
1607 	lwkt_serialize_exit(ifp->if_serializer);
1608 }
1609 
1610 static void
1611 em_print_link_status(struct adapter *adapter)
1612 {
1613 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
1614 		if (adapter->link_active == 0) {
1615 			em_get_speed_and_duplex(&adapter->hw,
1616 						&adapter->link_speed,
1617 						&adapter->link_duplex);
1618 			device_printf(adapter->dev, "Link is up %d Mbps %s\n",
1619 			       adapter->link_speed,
1620 			       ((adapter->link_duplex == FULL_DUPLEX) ?
1621 				"Full Duplex" : "Half Duplex"));
1622 			adapter->link_active = 1;
1623 			adapter->smartspeed = 0;
1624 		}
1625 	} else {
1626 		if (adapter->link_active == 1) {
1627 			adapter->link_speed = 0;
1628 			adapter->link_duplex = 0;
1629 			device_printf(adapter->dev, "Link is Down\n");
1630 			adapter->link_active = 0;
1631 		}
1632 	}
1633 }
1634 
1635 /*********************************************************************
1636  *
1637  *  This routine disables all traffic on the adapter by issuing a
1638  *  global reset on the MAC and deallocates TX/RX buffers.
1639  *
1640  **********************************************************************/
1641 
1642 static void
1643 em_stop(void *arg)
1644 {
1645 	struct ifnet   *ifp;
1646 	struct adapter * adapter = arg;
1647 	ifp = &adapter->interface_data.ac_if;
1648 
1649 	INIT_DEBUGOUT("em_stop: begin");
1650 	em_disable_intr(adapter);
1651 	em_reset_hw(&adapter->hw);
1652 	callout_stop(&adapter->timer);
1653 	callout_stop(&adapter->tx_fifo_timer);
1654 	em_free_transmit_structures(adapter);
1655 	em_free_receive_structures(adapter);
1656 
1657 	/* Tell the stack that the interface is no longer active */
1658 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1659 	ifp->if_timer = 0;
1660 }
1661 
1662 /*********************************************************************
1663  *
1664  *  Determine hardware revision.
1665  *
1666  **********************************************************************/
1667 static void
1668 em_identify_hardware(struct adapter * adapter)
1669 {
1670 	device_t dev = adapter->dev;
1671 
1672 	/* Make sure our PCI config space has the necessary stuff set */
1673 	adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1674 	if (!((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
1675 	      (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN))) {
1676 		device_printf(dev, "Memory Access and/or Bus Master bits were not set!\n");
1677 		adapter->hw.pci_cmd_word |=
1678 		(PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
1679 		pci_write_config(dev, PCIR_COMMAND, adapter->hw.pci_cmd_word, 2);
1680 	}
1681 
1682 	/* Save off the information about this board */
1683 	adapter->hw.vendor_id = pci_get_vendor(dev);
1684 	adapter->hw.device_id = pci_get_device(dev);
1685 	adapter->hw.revision_id = pci_get_revid(dev);
1686 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
1687 	adapter->hw.subsystem_id = pci_get_subdevice(dev);
1688 
1689 	/* Identify the MAC */
1690 	if (em_set_mac_type(&adapter->hw))
1691 		device_printf(dev, "Unknown MAC Type\n");
1692 
1693 	if (adapter->hw.mac_type == em_82541 ||
1694 	    adapter->hw.mac_type == em_82541_rev_2 ||
1695 	    adapter->hw.mac_type == em_82547 ||
1696 	    adapter->hw.mac_type == em_82547_rev_2)
1697 		adapter->hw.phy_init_script = TRUE;
1698 }
1699 
1700 /*********************************************************************
1701  *
1702  *  Initialize the hardware to a configuration as specified by the
1703  *  adapter structure. The controller is reset, the EEPROM is
1704  *  verified, the MAC address is set, then the shared initialization
1705  *  routines are called.
1706  *
1707  **********************************************************************/
1708 static int
1709 em_hardware_init(struct adapter *adapter)
1710 {
1711 	uint16_t	rx_buffer_size;
1712 
1713 	INIT_DEBUGOUT("em_hardware_init: begin");
1714 	/* Issue a global reset */
1715 	em_reset_hw(&adapter->hw);
1716 
1717 	/* When hardware is reset, fifo_head is also reset */
1718 	adapter->tx_fifo_head = 0;
1719 
1720 	/* Make sure we have a good EEPROM before we read from it */
1721 	if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
1722 		device_printf(adapter->dev,
1723 			      "The EEPROM Checksum Is Not Valid\n");
1724 		return(EIO);
1725 	}
1726 
1727 	if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
1728 		device_printf(adapter->dev,
1729 			      "EEPROM read error while reading part number\n");
1730 		return(EIO);
1731 	}
1732 
1733 	/*
1734 	 * These parameters control the automatic generation (Tx) and
1735 	 * response(Rx) to Ethernet PAUSE frames.
1736 	 * - High water mark should allow for at least two frames to be
1737 	 *   received after sending an XOFF.
1738 	 * - Low water mark works best when it is very near the high water mark.
1739 	 *   This allows the receiver to restart by sending XON when it has
1740 	 *   drained a bit.  Here we use an arbitary value of 1500 which will
1741 	 *   restart after one full frame is pulled from the buffer.  There
1742 	 *   could be several smaller frames in the buffer and if so they will
1743 	 *   not trigger the XON until their total number reduces the buffer
1744 	 *   by 1500.
1745 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1746 	 */
1747 	rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10);
1748 
1749 	adapter->hw.fc_high_water =
1750 	    rx_buffer_size - EM_ROUNDUP(1 * adapter->hw.max_frame_size, 1024);
1751 	adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
1752 	adapter->hw.fc_pause_time = 1000;
1753 	adapter->hw.fc_send_xon = TRUE;
1754 	adapter->hw.fc = em_fc_full;
1755 
1756 	if (em_init_hw(&adapter->hw) < 0) {
1757 		device_printf(adapter->dev, "Hardware Initialization Failed");
1758 		return(EIO);
1759 	}
1760 
1761 	em_check_for_link(&adapter->hw);
1762 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)
1763 		adapter->link_active = 1;
1764 	else
1765 		adapter->link_active = 0;
1766 
1767 	if (adapter->link_active) {
1768 		em_get_speed_and_duplex(&adapter->hw,
1769 					&adapter->link_speed,
1770 					&adapter->link_duplex);
1771 	} else {
1772 		adapter->link_speed = 0;
1773 		adapter->link_duplex = 0;
1774 	}
1775 
1776 	return(0);
1777 }
1778 
1779 /*********************************************************************
1780  *
1781  *  Setup networking device structure and register an interface.
1782  *
1783  **********************************************************************/
1784 static void
1785 em_setup_interface(device_t dev, struct adapter *adapter)
1786 {
1787 	struct ifnet   *ifp;
1788 	INIT_DEBUGOUT("em_setup_interface: begin");
1789 
1790 	ifp = &adapter->interface_data.ac_if;
1791 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1792 	ifp->if_mtu = ETHERMTU;
1793 	ifp->if_baudrate = 1000000000;
1794 	ifp->if_init =  em_init;
1795 	ifp->if_softc = adapter;
1796 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1797 	ifp->if_ioctl = em_ioctl;
1798 	ifp->if_start = em_start;
1799 #ifdef DEVICE_POLLING
1800 	ifp->if_poll = em_poll;
1801 #endif
1802 	ifp->if_watchdog = em_watchdog;
1803 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
1804 	ifq_set_ready(&ifp->if_snd);
1805 
1806 	if (adapter->hw.mac_type >= em_82543)
1807 		ifp->if_capabilities |= IFCAP_HWCSUM;
1808 
1809 	ifp->if_capenable = ifp->if_capabilities;
1810 
1811 	ether_ifattach(ifp, adapter->hw.mac_addr, NULL);
1812 
1813 	/*
1814 	 * Tell the upper layer(s) we support long frames.
1815 	 */
1816 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1817         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1818 
1819 	/*
1820 	 * Specify the media types supported by this adapter and register
1821 	 * callbacks to update media and link information
1822 	 */
1823 	ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
1824 		     em_media_status);
1825 	if (adapter->hw.media_type == em_media_type_fiber) {
1826 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1827 			    0, NULL);
1828 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX,
1829 			    0, NULL);
1830 	} else {
1831 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
1832 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1833 			    0, NULL);
1834 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
1835 			    0, NULL);
1836 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1837 			    0, NULL);
1838 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
1839 			    0, NULL);
1840 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
1841 	}
1842 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1843 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
1844 }
1845 
1846 /*********************************************************************
1847  *
1848  *  Workaround for SmartSpeed on 82541 and 82547 controllers
1849  *
1850  **********************************************************************/
1851 static void
1852 em_smartspeed(struct adapter *adapter)
1853 {
1854 	uint16_t phy_tmp;
1855 
1856 	if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
1857 	    !adapter->hw.autoneg ||
1858 	    !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
1859 		return;
1860 
1861 	if (adapter->smartspeed == 0) {
1862 		/*
1863 		 * If Master/Slave config fault is asserted twice,
1864 		 * we assume back-to-back.
1865 		 */
1866 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
1867 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1868 			return;
1869 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
1870 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1871 			em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL,
1872 					&phy_tmp);
1873 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1874 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1875 				em_write_phy_reg(&adapter->hw,
1876 						 PHY_1000T_CTRL, phy_tmp);
1877 				adapter->smartspeed++;
1878 				if (adapter->hw.autoneg &&
1879 				    !em_phy_setup_autoneg(&adapter->hw) &&
1880 				    !em_read_phy_reg(&adapter->hw, PHY_CTRL,
1881 						     &phy_tmp)) {
1882 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
1883 						    MII_CR_RESTART_AUTO_NEG);
1884 					em_write_phy_reg(&adapter->hw,
1885 							 PHY_CTRL, phy_tmp);
1886 				}
1887 			}
1888 		}
1889                 return;
1890 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
1891 		/* If still no link, perhaps using 2/3 pair cable */
1892 		em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
1893 		phy_tmp |= CR_1000T_MS_ENABLE;
1894 		em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
1895 		if (adapter->hw.autoneg &&
1896 		    !em_phy_setup_autoneg(&adapter->hw) &&
1897 		    !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
1898 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
1899 				    MII_CR_RESTART_AUTO_NEG);
1900 			em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
1901 		}
1902 	}
1903 	/* Restart process after EM_SMARTSPEED_MAX iterations */
1904 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
1905 		adapter->smartspeed = 0;
1906 }
1907 
1908 /*
1909  * Manage DMA'able memory.
1910  */
1911 static void
1912 em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1913 {
1914 	if (error)
1915 		return;
1916 	*(bus_addr_t*) arg = segs->ds_addr;
1917 }
1918 
1919 static int
1920 em_dma_malloc(struct adapter *adapter, bus_size_t size,
1921 	      struct em_dma_alloc *dma, int mapflags)
1922 {
1923 	int r;
1924 	device_t dev = adapter->dev;
1925 
1926 	r = bus_dma_tag_create(NULL,                    /* parent */
1927 			       PAGE_SIZE, 0,            /* alignment, bounds */
1928 			       BUS_SPACE_MAXADDR,       /* lowaddr */
1929 			       BUS_SPACE_MAXADDR,       /* highaddr */
1930 			       NULL, NULL,              /* filter, filterarg */
1931 			       size,                    /* maxsize */
1932 			       1,                       /* nsegments */
1933 			       size,                    /* maxsegsize */
1934 			       BUS_DMA_ALLOCNOW,        /* flags */
1935 			       &dma->dma_tag);
1936 	if (r != 0) {
1937 		device_printf(dev, "em_dma_malloc: bus_dma_tag_create failed; "
1938 			      "error %u\n", r);
1939 		goto fail_0;
1940 	}
1941 
1942 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1943 			     BUS_DMA_NOWAIT, &dma->dma_map);
1944 	if (r != 0) {
1945 		device_printf(dev, "em_dma_malloc: bus_dmammem_alloc failed; "
1946 			      "size %llu, error %d\n", (uintmax_t)size, r);
1947 		goto fail_2;
1948 	}
1949 
1950 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1951 			    size,
1952 			    em_dmamap_cb,
1953 			    &dma->dma_paddr,
1954 			    mapflags | BUS_DMA_NOWAIT);
1955 	if (r != 0) {
1956 		device_printf(dev, "em_dma_malloc: bus_dmamap_load failed; "
1957 			      "error %u\n", r);
1958 		goto fail_3;
1959 	}
1960 
1961 	dma->dma_size = size;
1962 	return(0);
1963 
1964 fail_3:
1965 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1966 fail_2:
1967 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1968 	bus_dma_tag_destroy(dma->dma_tag);
1969 fail_0:
1970 	dma->dma_map = NULL;
1971 	dma->dma_tag = NULL;
1972 	return(r);
1973 }
1974 
1975 static void
1976 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
1977 {
1978 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1979 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1980 	bus_dma_tag_destroy(dma->dma_tag);
1981 }
1982 
1983 /*********************************************************************
1984  *
1985  *  Allocate memory for tx_buffer structures. The tx_buffer stores all
1986  *  the information needed to transmit a packet on the wire.
1987  *
1988  **********************************************************************/
1989 static int
1990 em_allocate_transmit_structures(struct adapter * adapter)
1991 {
1992 	adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) *
1993 	    adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
1994 	if (adapter->tx_buffer_area == NULL) {
1995 		device_printf(adapter->dev, "Unable to allocate tx_buffer memory\n");
1996 		return(ENOMEM);
1997 	}
1998 
1999 	return(0);
2000 }
2001 
2002 /*********************************************************************
2003  *
2004  *  Allocate and initialize transmit structures.
2005  *
2006  **********************************************************************/
2007 static int
2008 em_setup_transmit_structures(struct adapter * adapter)
2009 {
2010 	/*
2011 	 * Setup DMA descriptor areas.
2012 	 */
2013 	if (bus_dma_tag_create(NULL,                    /* parent */
2014 			       1, 0,			/* alignment, bounds */
2015 			       BUS_SPACE_MAXADDR,       /* lowaddr */
2016 			       BUS_SPACE_MAXADDR,       /* highaddr */
2017 			       NULL, NULL,              /* filter, filterarg */
2018 			       MCLBYTES * 8,            /* maxsize */
2019 			       EM_MAX_SCATTER,          /* nsegments */
2020 			       MCLBYTES * 8,            /* maxsegsize */
2021 			       BUS_DMA_ALLOCNOW,        /* flags */
2022 			       &adapter->txtag)) {
2023 		device_printf(adapter->dev, "Unable to allocate TX DMA tag\n");
2024 		return(ENOMEM);
2025 	}
2026 
2027 	if (em_allocate_transmit_structures(adapter))
2028 		return(ENOMEM);
2029 
2030         bzero((void *) adapter->tx_desc_base,
2031               (sizeof(struct em_tx_desc)) * adapter->num_tx_desc);
2032 
2033         adapter->next_avail_tx_desc = 0;
2034 	adapter->oldest_used_tx_desc = 0;
2035 
2036 	/* Set number of descriptors available */
2037 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2038 
2039 	/* Set checksum context */
2040 	adapter->active_checksum_context = OFFLOAD_NONE;
2041 
2042 	return(0);
2043 }
2044 
2045 /*********************************************************************
2046  *
2047  *  Enable transmit unit.
2048  *
2049  **********************************************************************/
2050 static void
2051 em_initialize_transmit_unit(struct adapter * adapter)
2052 {
2053 	uint32_t reg_tctl;
2054 	uint32_t reg_tipg = 0;
2055 	uint64_t bus_addr;
2056 
2057 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2058 
2059 	/* Setup the Base and Length of the Tx Descriptor Ring */
2060 	bus_addr = adapter->txdma.dma_paddr;
2061 	E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
2062 	E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
2063 	E1000_WRITE_REG(&adapter->hw, TDLEN,
2064 			adapter->num_tx_desc * sizeof(struct em_tx_desc));
2065 
2066 	/* Setup the HW Tx Head and Tail descriptor pointers */
2067 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
2068 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
2069 
2070 	HW_DEBUGOUT2("Base = %x, Length = %x\n",
2071 		     E1000_READ_REG(&adapter->hw, TDBAL),
2072 		     E1000_READ_REG(&adapter->hw, TDLEN));
2073 
2074 	/* Set the default values for the Tx Inter Packet Gap timer */
2075 	switch (adapter->hw.mac_type) {
2076 	case em_82542_rev2_0:
2077 	case em_82542_rev2_1:
2078 		reg_tipg = DEFAULT_82542_TIPG_IPGT;
2079 		reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2080 		reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2081 		break;
2082 	default:
2083 		if (adapter->hw.media_type == em_media_type_fiber)
2084 			reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2085 		else
2086 			reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2087 		reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2088 		reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2089 	}
2090 
2091 	E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
2092 	E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
2093 	if (adapter->hw.mac_type >= em_82540)
2094 		E1000_WRITE_REG(&adapter->hw, TADV,
2095 				adapter->tx_abs_int_delay.value);
2096 
2097 	/* Program the Transmit Control Register */
2098 	reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
2099 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2100 	if (adapter->hw.mac_type >= em_82571)
2101 		reg_tctl |= E1000_TCTL_MULR;
2102 	if (adapter->link_duplex == 1)
2103 		reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2104 	else
2105 		reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2106 	E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
2107 
2108 	/* Setup Transmit Descriptor Settings for this adapter */
2109 	adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_RS;
2110 
2111 	if (adapter->tx_int_delay.value > 0)
2112 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2113 }
2114 
2115 /*********************************************************************
2116  *
2117  *  Free all transmit related data structures.
2118  *
2119  **********************************************************************/
2120 static void
2121 em_free_transmit_structures(struct adapter * adapter)
2122 {
2123 	struct em_buffer *tx_buffer;
2124 	int i;
2125 
2126 	INIT_DEBUGOUT("free_transmit_structures: begin");
2127 
2128 	if (adapter->tx_buffer_area != NULL) {
2129 		tx_buffer = adapter->tx_buffer_area;
2130 		for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
2131 			if (tx_buffer->m_head != NULL) {
2132 				bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2133 				bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2134 				m_freem(tx_buffer->m_head);
2135 			}
2136 			tx_buffer->m_head = NULL;
2137 		}
2138 	}
2139 	if (adapter->tx_buffer_area != NULL) {
2140 		free(adapter->tx_buffer_area, M_DEVBUF);
2141 		adapter->tx_buffer_area = NULL;
2142 	}
2143 	if (adapter->txtag != NULL) {
2144 		bus_dma_tag_destroy(adapter->txtag);
2145 		adapter->txtag = NULL;
2146 	}
2147 }
2148 
2149 /*********************************************************************
2150  *
2151  *  The offload context needs to be set when we transfer the first
2152  *  packet of a particular protocol (TCP/UDP). We change the
2153  *  context only if the protocol type changes.
2154  *
2155  **********************************************************************/
2156 static void
2157 em_transmit_checksum_setup(struct adapter * adapter,
2158 			   struct mbuf *mp,
2159 			   uint32_t *txd_upper,
2160 			   uint32_t *txd_lower)
2161 {
2162 	struct em_context_desc *TXD;
2163 	struct em_buffer *tx_buffer;
2164 	int curr_txd;
2165 
2166 	if (mp->m_pkthdr.csum_flags) {
2167 		if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
2168 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2169 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2170 			if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
2171 				return;
2172 			else
2173 				adapter->active_checksum_context = OFFLOAD_TCP_IP;
2174 		} else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
2175 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2176 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2177 			if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
2178 				return;
2179 			else
2180 				adapter->active_checksum_context = OFFLOAD_UDP_IP;
2181 		} else {
2182 			*txd_upper = 0;
2183 			*txd_lower = 0;
2184 			return;
2185 		}
2186 	} else {
2187 		*txd_upper = 0;
2188 		*txd_lower = 0;
2189 		return;
2190 	}
2191 
2192 	/* If we reach this point, the checksum offload context
2193 	 * needs to be reset.
2194 	 */
2195 	curr_txd = adapter->next_avail_tx_desc;
2196 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2197 	TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
2198 
2199 	TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
2200 	TXD->lower_setup.ip_fields.ipcso =
2201 	    ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
2202 	TXD->lower_setup.ip_fields.ipcse =
2203 	    htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
2204 
2205 	TXD->upper_setup.tcp_fields.tucss =
2206 	    ETHER_HDR_LEN + sizeof(struct ip);
2207 	TXD->upper_setup.tcp_fields.tucse = htole16(0);
2208 
2209 	if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
2210 		TXD->upper_setup.tcp_fields.tucso =
2211 		    ETHER_HDR_LEN + sizeof(struct ip) +
2212 		    offsetof(struct tcphdr, th_sum);
2213 	} else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
2214 		TXD->upper_setup.tcp_fields.tucso =
2215 			ETHER_HDR_LEN + sizeof(struct ip) +
2216 			offsetof(struct udphdr, uh_sum);
2217 	}
2218 
2219 	TXD->tcp_seg_setup.data = htole32(0);
2220 	TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
2221 
2222 	tx_buffer->m_head = NULL;
2223 
2224 	if (++curr_txd == adapter->num_tx_desc)
2225 		curr_txd = 0;
2226 
2227 	adapter->num_tx_desc_avail--;
2228 	adapter->next_avail_tx_desc = curr_txd;
2229 }
2230 
2231 /**********************************************************************
2232  *
2233  *  Examine each tx_buffer in the used queue. If the hardware is done
2234  *  processing the packet then free associated resources. The
2235  *  tx_buffer is put back on the free queue.
2236  *
2237  **********************************************************************/
2238 
2239 static void
2240 em_clean_transmit_interrupts(struct adapter *adapter)
2241 {
2242 	int i, num_avail;
2243 	struct em_buffer *tx_buffer;
2244 	struct em_tx_desc *tx_desc;
2245 	struct ifnet *ifp = &adapter->interface_data.ac_if;
2246 
2247 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2248 		return;
2249 
2250 	num_avail = adapter->num_tx_desc_avail;
2251 	i = adapter->oldest_used_tx_desc;
2252 
2253 	tx_buffer = &adapter->tx_buffer_area[i];
2254 	tx_desc = &adapter->tx_desc_base[i];
2255 
2256 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2257 			BUS_DMASYNC_POSTREAD);
2258 
2259 	while(tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2260 		tx_desc->upper.data = 0;
2261 		num_avail++;
2262 
2263 		if (tx_buffer->m_head) {
2264 			ifp->if_opackets++;
2265 			bus_dmamap_sync(adapter->txtag, tx_buffer->map,
2266 					BUS_DMASYNC_POSTWRITE);
2267 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2268 			bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2269 
2270 			m_freem(tx_buffer->m_head);
2271 			tx_buffer->m_head = NULL;
2272 		}
2273 
2274 		if (++i == adapter->num_tx_desc)
2275 			i = 0;
2276 
2277 		tx_buffer = &adapter->tx_buffer_area[i];
2278 		tx_desc = &adapter->tx_desc_base[i];
2279 	}
2280 
2281 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2282 			BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2283 
2284 	adapter->oldest_used_tx_desc = i;
2285 
2286 	/*
2287 	 * If we have enough room, clear IFF_OACTIVE to tell the stack
2288 	 * that it is OK to send packets.
2289 	 * If there are no pending descriptors, clear the timeout. Otherwise,
2290 	 * if some descriptors have been freed, restart the timeout.
2291 	 */
2292 	if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
2293 		ifp->if_flags &= ~IFF_OACTIVE;
2294 		if (num_avail == adapter->num_tx_desc)
2295 			ifp->if_timer = 0;
2296 		else if (num_avail == adapter->num_tx_desc_avail)
2297 			ifp->if_timer = EM_TX_TIMEOUT;
2298 	}
2299 	adapter->num_tx_desc_avail = num_avail;
2300 }
2301 
2302 /*********************************************************************
2303  *
2304  *  Get a buffer from system mbuf buffer pool.
2305  *
2306  **********************************************************************/
2307 static int
2308 em_get_buf(int i, struct adapter *adapter, struct mbuf *nmp, int how)
2309 {
2310 	struct mbuf *mp = nmp;
2311 	struct em_buffer *rx_buffer;
2312 	struct ifnet *ifp;
2313 	bus_addr_t paddr;
2314 	int error;
2315 
2316 	ifp = &adapter->interface_data.ac_if;
2317 
2318 	if (mp == NULL) {
2319 		mp = m_getcl(how, MT_DATA, M_PKTHDR);
2320 		if (mp == NULL) {
2321 			adapter->mbuf_cluster_failed++;
2322 			return(ENOBUFS);
2323 		}
2324 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2325 	} else {
2326 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2327 		mp->m_data = mp->m_ext.ext_buf;
2328 		mp->m_next = NULL;
2329 	}
2330 	if (ifp->if_mtu <= ETHERMTU)
2331 		m_adj(mp, ETHER_ALIGN);
2332 
2333 	rx_buffer = &adapter->rx_buffer_area[i];
2334 
2335 	/*
2336 	 * Using memory from the mbuf cluster pool, invoke the
2337 	 * bus_dma machinery to arrange the memory mapping.
2338 	 */
2339 	error = bus_dmamap_load(adapter->rxtag, rx_buffer->map,
2340 				mtod(mp, void *), mp->m_len,
2341 				em_dmamap_cb, &paddr, 0);
2342 	if (error) {
2343 		m_free(mp);
2344 		return(error);
2345 	}
2346 	rx_buffer->m_head = mp;
2347 	adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
2348 	bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
2349 
2350 	return(0);
2351 }
2352 
2353 /*********************************************************************
2354  *
2355  *  Allocate memory for rx_buffer structures. Since we use one
2356  *  rx_buffer per received packet, the maximum number of rx_buffer's
2357  *  that we'll need is equal to the number of receive descriptors
2358  *  that we've allocated.
2359  *
2360  **********************************************************************/
2361 static int
2362 em_allocate_receive_structures(struct adapter *adapter)
2363 {
2364 	int i, error, size;
2365 	struct em_buffer *rx_buffer;
2366 
2367 	size = adapter->num_rx_desc * sizeof(struct em_buffer);
2368 	adapter->rx_buffer_area = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
2369 
2370 	error = bus_dma_tag_create(NULL,		/* parent */
2371 				   1, 0,		/* alignment, bounds */
2372 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2373 				   BUS_SPACE_MAXADDR,	/* highaddr */
2374 				   NULL, NULL,		/* filter, filterarg */
2375 				   MCLBYTES,		/* maxsize */
2376 				   1,			/* nsegments */
2377 				   MCLBYTES,		/* maxsegsize */
2378 				   BUS_DMA_ALLOCNOW,	/* flags */
2379 				   &adapter->rxtag);
2380 	if (error != 0) {
2381 		device_printf(adapter->dev, "em_allocate_receive_structures: "
2382 			      "bus_dma_tag_create failed; error %u\n", error);
2383 		goto fail_0;
2384 	}
2385 
2386 	rx_buffer = adapter->rx_buffer_area;
2387 	for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2388 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
2389 					  &rx_buffer->map);
2390 		if (error != 0) {
2391 			device_printf(adapter->dev,
2392 				      "em_allocate_receive_structures: "
2393 				      "bus_dmamap_create failed; error %u\n",
2394 				      error);
2395 			goto fail_1;
2396 		}
2397 	}
2398 
2399 	for (i = 0; i < adapter->num_rx_desc; i++) {
2400 		error = em_get_buf(i, adapter, NULL, MB_WAIT);
2401 		if (error != 0) {
2402 			adapter->rx_buffer_area[i].m_head = NULL;
2403 			adapter->rx_desc_base[i].buffer_addr = 0;
2404 			return(error);
2405 		}
2406 	}
2407 
2408 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2409 			BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2410 
2411 	return(0);
2412 
2413 fail_1:
2414 	bus_dma_tag_destroy(adapter->rxtag);
2415 fail_0:
2416 	adapter->rxtag = NULL;
2417 	free(adapter->rx_buffer_area, M_DEVBUF);
2418 	adapter->rx_buffer_area = NULL;
2419 	return(error);
2420 }
2421 
2422 /*********************************************************************
2423  *
2424  *  Allocate and initialize receive structures.
2425  *
2426  **********************************************************************/
2427 static int
2428 em_setup_receive_structures(struct adapter *adapter)
2429 {
2430 	bzero((void *) adapter->rx_desc_base,
2431 	      (sizeof(struct em_rx_desc)) * adapter->num_rx_desc);
2432 
2433 	if (em_allocate_receive_structures(adapter))
2434 		return(ENOMEM);
2435 
2436 	/* Setup our descriptor pointers */
2437 	adapter->next_rx_desc_to_check = 0;
2438 	return(0);
2439 }
2440 
2441 /*********************************************************************
2442  *
2443  *  Enable receive unit.
2444  *
2445  **********************************************************************/
2446 static void
2447 em_initialize_receive_unit(struct adapter *adapter)
2448 {
2449 	uint32_t reg_rctl;
2450 	uint32_t reg_rxcsum;
2451 	struct ifnet *ifp;
2452 	uint64_t bus_addr;
2453 
2454 	INIT_DEBUGOUT("em_initialize_receive_unit: begin");
2455 
2456 	ifp = &adapter->interface_data.ac_if;
2457 
2458 	/* Make sure receives are disabled while setting up the descriptor ring */
2459 	E1000_WRITE_REG(&adapter->hw, RCTL, 0);
2460 
2461 	/* Set the Receive Delay Timer Register */
2462 	E1000_WRITE_REG(&adapter->hw, RDTR,
2463 			adapter->rx_int_delay.value | E1000_RDT_FPDB);
2464 
2465 	if(adapter->hw.mac_type >= em_82540) {
2466 		E1000_WRITE_REG(&adapter->hw, RADV,
2467 				adapter->rx_abs_int_delay.value);
2468 
2469 		/* Set the interrupt throttling rate in 256ns increments */
2470 		if (em_int_throttle_ceil) {
2471 			E1000_WRITE_REG(&adapter->hw, ITR,
2472 				1000000000 / 256 / em_int_throttle_ceil);
2473 		} else {
2474 			E1000_WRITE_REG(&adapter->hw, ITR, 0);
2475 		}
2476 	}
2477 
2478 	/* Setup the Base and Length of the Rx Descriptor Ring */
2479 	bus_addr = adapter->rxdma.dma_paddr;
2480 	E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
2481 	E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
2482 	E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
2483 			sizeof(struct em_rx_desc));
2484 
2485 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
2486 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
2487 	E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
2488 
2489 	/* Setup the Receive Control Register */
2490 	reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2491 		   E1000_RCTL_RDMTS_HALF |
2492 		   (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
2493 
2494 	if (adapter->hw.tbi_compatibility_on == TRUE)
2495 		reg_rctl |= E1000_RCTL_SBP;
2496 
2497 	switch (adapter->rx_buffer_len) {
2498 	default:
2499 	case EM_RXBUFFER_2048:
2500 		reg_rctl |= E1000_RCTL_SZ_2048;
2501 		break;
2502 	case EM_RXBUFFER_4096:
2503 		reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2504 		break;
2505 	case EM_RXBUFFER_8192:
2506 		reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2507 		break;
2508 	case EM_RXBUFFER_16384:
2509 		reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2510 		break;
2511 	}
2512 
2513 	if (ifp->if_mtu > ETHERMTU)
2514 		reg_rctl |= E1000_RCTL_LPE;
2515 
2516 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
2517 	if ((adapter->hw.mac_type >= em_82543) &&
2518 	    (ifp->if_capenable & IFCAP_RXCSUM)) {
2519 		reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
2520 		reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2521 		E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
2522 	}
2523 
2524 	/* Enable Receives */
2525 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
2526 }
2527 
2528 /*********************************************************************
2529  *
2530  *  Free receive related data structures.
2531  *
2532  **********************************************************************/
2533 static void
2534 em_free_receive_structures(struct adapter *adapter)
2535 {
2536 	struct em_buffer *rx_buffer;
2537 	int i;
2538 
2539 	INIT_DEBUGOUT("free_receive_structures: begin");
2540 
2541 	if (adapter->rx_buffer_area != NULL) {
2542 		rx_buffer = adapter->rx_buffer_area;
2543 		for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2544 			if (rx_buffer->map != NULL) {
2545 				bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2546 				bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
2547 			}
2548 			if (rx_buffer->m_head != NULL)
2549 				m_freem(rx_buffer->m_head);
2550 			rx_buffer->m_head = NULL;
2551 		}
2552 	}
2553 	if (adapter->rx_buffer_area != NULL) {
2554 		free(adapter->rx_buffer_area, M_DEVBUF);
2555 		adapter->rx_buffer_area = NULL;
2556 	}
2557 	if (adapter->rxtag != NULL) {
2558 		bus_dma_tag_destroy(adapter->rxtag);
2559 		adapter->rxtag = NULL;
2560 	}
2561 }
2562 
2563 /*********************************************************************
2564  *
2565  *  This routine executes in interrupt context. It replenishes
2566  *  the mbufs in the descriptor and sends data which has been
2567  *  dma'ed into host memory to upper layer.
2568  *
2569  *  We loop at most count times if count is > 0, or until done if
2570  *  count < 0.
2571  *
2572  *********************************************************************/
2573 static void
2574 em_process_receive_interrupts(struct adapter *adapter, int count)
2575 {
2576 	struct ifnet *ifp;
2577 	struct mbuf *mp;
2578 	uint8_t accept_frame = 0;
2579 	uint8_t eop = 0;
2580 	uint16_t len, desc_len, prev_len_adj;
2581 	int i;
2582 
2583 	/* Pointer to the receive descriptor being examined. */
2584 	struct em_rx_desc *current_desc;
2585 
2586 	ifp = &adapter->interface_data.ac_if;
2587 	i = adapter->next_rx_desc_to_check;
2588 	current_desc = &adapter->rx_desc_base[i];
2589 
2590 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2591 			BUS_DMASYNC_POSTREAD);
2592 
2593 	if (!((current_desc->status) & E1000_RXD_STAT_DD))
2594 		return;
2595 
2596 	while ((current_desc->status & E1000_RXD_STAT_DD) && (count != 0)) {
2597 		mp = adapter->rx_buffer_area[i].m_head;
2598 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
2599 				BUS_DMASYNC_POSTREAD);
2600 
2601 		accept_frame = 1;
2602 		prev_len_adj = 0;
2603 		desc_len = le16toh(current_desc->length);
2604 		if (current_desc->status & E1000_RXD_STAT_EOP) {
2605 			count--;
2606 			eop = 1;
2607 			if (desc_len < ETHER_CRC_LEN) {
2608 				len = 0;
2609 				prev_len_adj = ETHER_CRC_LEN - desc_len;
2610 			} else {
2611 				len = desc_len - ETHER_CRC_LEN;
2612 			}
2613 		} else {
2614 			eop = 0;
2615 			len = desc_len;
2616 		}
2617 
2618 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
2619 			uint8_t last_byte;
2620 			uint32_t pkt_len = desc_len;
2621 
2622 			if (adapter->fmp != NULL)
2623 				pkt_len += adapter->fmp->m_pkthdr.len;
2624 
2625 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
2626 
2627 			if (TBI_ACCEPT(&adapter->hw, current_desc->status,
2628 				       current_desc->errors,
2629 				       pkt_len, last_byte)) {
2630 				em_tbi_adjust_stats(&adapter->hw,
2631 						    &adapter->stats,
2632 						    pkt_len,
2633 						    adapter->hw.mac_addr);
2634 				if (len > 0)
2635 					len--;
2636 			} else {
2637 				accept_frame = 0;
2638 			}
2639 		}
2640 
2641 		if (accept_frame) {
2642 			if (em_get_buf(i, adapter, NULL, MB_DONTWAIT) == ENOBUFS) {
2643 				adapter->dropped_pkts++;
2644 				em_get_buf(i, adapter, mp, MB_DONTWAIT);
2645 				if (adapter->fmp != NULL)
2646 					m_freem(adapter->fmp);
2647 				adapter->fmp = NULL;
2648 				adapter->lmp = NULL;
2649 				break;
2650 			}
2651 
2652 			/* Assign correct length to the current fragment */
2653 			mp->m_len = len;
2654 
2655 			if (adapter->fmp == NULL) {
2656 				mp->m_pkthdr.len = len;
2657 				adapter->fmp = mp;	 /* Store the first mbuf */
2658 				adapter->lmp = mp;
2659 			} else {
2660 				/* Chain mbuf's together */
2661 				/*
2662 				 * Adjust length of previous mbuf in chain if we
2663 				 * received less than 4 bytes in the last descriptor.
2664 				 */
2665 				if (prev_len_adj > 0) {
2666 					adapter->lmp->m_len -= prev_len_adj;
2667 					adapter->fmp->m_pkthdr.len -= prev_len_adj;
2668 				}
2669 				adapter->lmp->m_next = mp;
2670 				adapter->lmp = adapter->lmp->m_next;
2671 				adapter->fmp->m_pkthdr.len += len;
2672 			}
2673 
2674 			if (eop) {
2675 				adapter->fmp->m_pkthdr.rcvif = ifp;
2676 				ifp->if_ipackets++;
2677 
2678 				em_receive_checksum(adapter, current_desc,
2679 						    adapter->fmp);
2680 				if (current_desc->status & E1000_RXD_STAT_VP) {
2681 					VLAN_INPUT_TAG(adapter->fmp,
2682 						       (current_desc->special &
2683 							E1000_RXD_SPC_VLAN_MASK));
2684 				} else {
2685 					ifp->if_input(ifp, adapter->fmp);
2686 				}
2687 				adapter->fmp = NULL;
2688 				adapter->lmp = NULL;
2689 			}
2690 		} else {
2691 			adapter->dropped_pkts++;
2692 			em_get_buf(i, adapter, mp, MB_DONTWAIT);
2693 			if (adapter->fmp != NULL)
2694 				m_freem(adapter->fmp);
2695 			adapter->fmp = NULL;
2696 			adapter->lmp = NULL;
2697 		}
2698 
2699 		/* Zero out the receive descriptors status  */
2700 		current_desc->status = 0;
2701 
2702 		/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
2703 		E1000_WRITE_REG(&adapter->hw, RDT, i);
2704 
2705 		/* Advance our pointers to the next descriptor */
2706 		if (++i == adapter->num_rx_desc) {
2707 			i = 0;
2708 			current_desc = adapter->rx_desc_base;
2709 		} else {
2710 			current_desc++;
2711 		}
2712 	}
2713 
2714 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2715 			BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2716 
2717 	adapter->next_rx_desc_to_check = i;
2718 }
2719 
2720 /*********************************************************************
2721  *
2722  *  Verify that the hardware indicated that the checksum is valid.
2723  *  Inform the stack about the status of checksum so that stack
2724  *  doesn't spend time verifying the checksum.
2725  *
2726  *********************************************************************/
2727 static void
2728 em_receive_checksum(struct adapter *adapter,
2729 		    struct em_rx_desc *rx_desc,
2730 		    struct mbuf *mp)
2731 {
2732 	/* 82543 or newer only */
2733 	if ((adapter->hw.mac_type < em_82543) ||
2734 	    /* Ignore Checksum bit is set */
2735 	    (rx_desc->status & E1000_RXD_STAT_IXSM)) {
2736 		mp->m_pkthdr.csum_flags = 0;
2737 		return;
2738 	}
2739 
2740 	if (rx_desc->status & E1000_RXD_STAT_IPCS) {
2741 		/* Did it pass? */
2742 		if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
2743 			/* IP Checksum Good */
2744 			mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2745 			mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2746 		} else {
2747 			mp->m_pkthdr.csum_flags = 0;
2748 		}
2749 	}
2750 
2751 	if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
2752 		/* Did it pass? */
2753 		if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
2754 			mp->m_pkthdr.csum_flags |=
2755 			(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2756 			mp->m_pkthdr.csum_data = htons(0xffff);
2757 		}
2758 	}
2759 }
2760 
2761 
2762 static void
2763 em_enable_vlans(struct adapter *adapter)
2764 {
2765 	uint32_t ctrl;
2766 
2767 	E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
2768 
2769 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2770 	ctrl |= E1000_CTRL_VME;
2771 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2772 }
2773 
2774 /*
2775  * note: we must call bus_enable_intr() prior to enabling the hardware
2776  * interrupt and bus_disable_intr() after disabling the hardware interrupt
2777  * in order to avoid handler execution races from scheduled interrupt
2778  * threads.
2779  */
2780 static void
2781 em_enable_intr(struct adapter *adapter)
2782 {
2783 	struct ifnet *ifp = &adapter->interface_data.ac_if;
2784 
2785 	if ((ifp->if_flags & IFF_POLLING) == 0) {
2786 		lwkt_serialize_handler_enable(ifp->if_serializer);
2787 		E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
2788 	}
2789 }
2790 
2791 static void
2792 em_disable_intr(struct adapter *adapter)
2793 {
2794 	/*
2795 	 * The first version of 82542 had an errata where when link was
2796 	 * forced it would stay up even up even if the cable was disconnected.
2797 	 * Sequence errors were used to detect the disconnect and then the
2798 	 * driver would unforce the link.  This code in the in the ISR.  For
2799 	 * this to work correctly the Sequence error interrupt had to be
2800 	 * enabled all the time.
2801 	 */
2802 	if (adapter->hw.mac_type == em_82542_rev2_0) {
2803 		E1000_WRITE_REG(&adapter->hw, IMC,
2804 				(0xffffffff & ~E1000_IMC_RXSEQ));
2805 	} else {
2806 		E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
2807 	}
2808 
2809 	lwkt_serialize_handler_disable(adapter->interface_data.ac_if.if_serializer);
2810 }
2811 
2812 static int
2813 em_is_valid_ether_addr(uint8_t *addr)
2814 {
2815 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
2816 
2817 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN)))
2818 		return(FALSE);
2819 	else
2820 		return(TRUE);
2821 }
2822 
2823 void
2824 em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
2825 {
2826 	pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
2827 }
2828 
2829 void
2830 em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
2831 {
2832 	*value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
2833 }
2834 
2835 void
2836 em_pci_set_mwi(struct em_hw *hw)
2837 {
2838 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
2839 			 (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
2840 }
2841 
2842 void
2843 em_pci_clear_mwi(struct em_hw *hw)
2844 {
2845 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
2846 			 (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
2847 }
2848 
2849 uint32_t
2850 em_read_reg_io(struct em_hw *hw, uint32_t offset)
2851 {
2852 	bus_space_write_4(hw->reg_io_tag, hw->reg_io_handle, 0, offset);
2853 	return(bus_space_read_4(hw->reg_io_tag, hw->reg_io_handle, 4));
2854 }
2855 
2856 void
2857 em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value)
2858 {
2859 	bus_space_write_4(hw->reg_io_tag, hw->reg_io_handle, 0, offset);
2860 	bus_space_write_4(hw->reg_io_tag, hw->reg_io_handle, 4, value);
2861 }
2862 
2863 /*********************************************************************
2864  * 82544 Coexistence issue workaround.
2865  *    There are 2 issues.
2866  *	1. Transmit Hang issue.
2867  *    To detect this issue, following equation can be used...
2868  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
2869  *          If SUM[3:0] is in between 1 to 4, we will have this issue.
2870  *
2871  *	2. DAC issue.
2872  *    To detect this issue, following equation can be used...
2873  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
2874  *          If SUM[3:0] is in between 9 to c, we will have this issue.
2875  *
2876  *
2877  *    WORKAROUND:
2878  *          Make sure we do not have ending address as 1,2,3,4(Hang) or
2879  *          9,a,b,c (DAC)
2880  *
2881 *************************************************************************/
2882 static uint32_t
2883 em_fill_descriptors(uint64_t address, uint32_t length, PDESC_ARRAY desc_array)
2884 {
2885 	/* Since issue is sensitive to length and address.*/
2886 	/* Let us first check the address...*/
2887 	uint32_t safe_terminator;
2888 	if (length <= 4) {
2889 		desc_array->descriptor[0].address = address;
2890 		desc_array->descriptor[0].length = length;
2891 		desc_array->elements = 1;
2892 		return(desc_array->elements);
2893 	}
2894 	safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
2895 	/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
2896 	if (safe_terminator == 0 ||
2897 	    (safe_terminator > 4 && safe_terminator < 9) ||
2898 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
2899 		desc_array->descriptor[0].address = address;
2900 		desc_array->descriptor[0].length = length;
2901 		desc_array->elements = 1;
2902 		return(desc_array->elements);
2903 	}
2904 
2905 	desc_array->descriptor[0].address = address;
2906 	desc_array->descriptor[0].length = length - 4;
2907 	desc_array->descriptor[1].address = address + (length - 4);
2908 	desc_array->descriptor[1].length = 4;
2909 	desc_array->elements = 2;
2910 	return(desc_array->elements);
2911 }
2912 
2913 /**********************************************************************
2914  *
2915  *  Update the board statistics counters.
2916  *
2917  **********************************************************************/
2918 static void
2919 em_update_stats_counters(struct adapter *adapter)
2920 {
2921 	struct ifnet   *ifp;
2922 
2923 	if (adapter->hw.media_type == em_media_type_copper ||
2924 	    (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
2925 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
2926 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
2927 	}
2928 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
2929 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
2930 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
2931 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
2932 
2933 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
2934 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
2935 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
2936 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
2937 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
2938 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
2939 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
2940 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
2941 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
2942 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
2943 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
2944 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
2945 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
2946 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
2947 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
2948 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
2949 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
2950 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
2951 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
2952 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
2953 
2954 	/* For the 64-bit byte counters the low dword must be read first. */
2955 	/* Both registers clear on the read of the high dword */
2956 
2957 	adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
2958 	adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
2959 	adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
2960 	adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
2961 
2962 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
2963 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
2964 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
2965 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
2966 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
2967 
2968 	adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
2969 	adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
2970 	adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
2971 	adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
2972 
2973 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
2974 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
2975 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
2976 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
2977 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
2978 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
2979 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
2980 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
2981 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
2982 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
2983 
2984 	if (adapter->hw.mac_type >= em_82543) {
2985 		adapter->stats.algnerrc +=
2986 		    E1000_READ_REG(&adapter->hw, ALGNERRC);
2987 		adapter->stats.rxerrc +=
2988 		    E1000_READ_REG(&adapter->hw, RXERRC);
2989 		adapter->stats.tncrs +=
2990 		    E1000_READ_REG(&adapter->hw, TNCRS);
2991 		adapter->stats.cexterr +=
2992 		    E1000_READ_REG(&adapter->hw, CEXTERR);
2993 		adapter->stats.tsctc +=
2994 		    E1000_READ_REG(&adapter->hw, TSCTC);
2995 		adapter->stats.tsctfc +=
2996 		    E1000_READ_REG(&adapter->hw, TSCTFC);
2997 	}
2998 	ifp = &adapter->interface_data.ac_if;
2999 
3000 	/* Fill out the OS statistics structure */
3001 	ifp->if_ibytes = adapter->stats.gorcl;
3002 	ifp->if_obytes = adapter->stats.gotcl;
3003 	ifp->if_imcasts = adapter->stats.mprc;
3004 	ifp->if_collisions = adapter->stats.colc;
3005 
3006 	/* Rx Errors */
3007 	ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc +
3008 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3009 	    adapter->stats.rlec + adapter->stats.mpc + adapter->stats.cexterr;
3010 
3011 	/* Tx Errors */
3012 	ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol;
3013 }
3014 
3015 
3016 /**********************************************************************
3017  *
3018  *  This routine is called only when em_display_debug_stats is enabled.
3019  *  This routine provides a way to take a look at important statistics
3020  *  maintained by the driver and hardware.
3021  *
3022  **********************************************************************/
3023 static void
3024 em_print_debug_info(struct adapter *adapter)
3025 {
3026 	device_t dev= adapter->dev;
3027 	uint8_t *hw_addr = adapter->hw.hw_addr;
3028 
3029 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3030 	device_printf(dev, "CTRL  = 0x%x\n",
3031 		      E1000_READ_REG(&adapter->hw, CTRL));
3032 	device_printf(dev, "RCTL  = 0x%x PS=(0x8402)\n",
3033 		      E1000_READ_REG(&adapter->hw, RCTL));
3034 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk\n",
3035 		      ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),
3036 		      (E1000_READ_REG(&adapter->hw, PBA) & 0xffff));
3037 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3038 		      adapter->hw.fc_high_water, adapter->hw.fc_low_water);
3039 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3040 		      E1000_READ_REG(&adapter->hw, TIDV),
3041 		      E1000_READ_REG(&adapter->hw, TADV));
3042 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3043 		      E1000_READ_REG(&adapter->hw, RDTR),
3044 		      E1000_READ_REG(&adapter->hw, RADV));
3045 	device_printf(dev, "fifo workaround = %lld, fifo_reset = %lld\n",
3046 		      (long long)adapter->tx_fifo_wrk_cnt,
3047 		      (long long)adapter->tx_fifo_reset_cnt);
3048 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3049 		      E1000_READ_REG(&adapter->hw, TDH),
3050 		      E1000_READ_REG(&adapter->hw, TDT));
3051 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3052 		      adapter->num_tx_desc_avail);
3053 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3054 		      adapter->no_tx_desc_avail1);
3055 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3056 		      adapter->no_tx_desc_avail2);
3057 	device_printf(dev, "Std mbuf failed = %ld\n",
3058 		      adapter->mbuf_alloc_failed);
3059 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3060 		      adapter->mbuf_cluster_failed);
3061 	device_printf(dev, "Driver dropped packets = %ld\n",
3062 		      adapter->dropped_pkts);
3063 }
3064 
3065 static void
3066 em_print_hw_stats(struct adapter *adapter)
3067 {
3068 	device_t dev= adapter->dev;
3069 
3070 	device_printf(dev, "Adapter: %p\n", adapter);
3071 
3072 	device_printf(dev, "Excessive collisions = %lld\n",
3073 		      (long long)adapter->stats.ecol);
3074 	device_printf(dev, "Symbol errors = %lld\n",
3075 		      (long long)adapter->stats.symerrs);
3076 	device_printf(dev, "Sequence errors = %lld\n",
3077 		      (long long)adapter->stats.sec);
3078 	device_printf(dev, "Defer count = %lld\n",
3079 		      (long long)adapter->stats.dc);
3080 
3081 	device_printf(dev, "Missed Packets = %lld\n",
3082 		      (long long)adapter->stats.mpc);
3083 	device_printf(dev, "Receive No Buffers = %lld\n",
3084 		      (long long)adapter->stats.rnbc);
3085 	device_printf(dev, "Receive length errors = %lld\n",
3086 		      (long long)adapter->stats.rlec);
3087 	device_printf(dev, "Receive errors = %lld\n",
3088 		      (long long)adapter->stats.rxerrc);
3089 	device_printf(dev, "Crc errors = %lld\n",
3090 		      (long long)adapter->stats.crcerrs);
3091 	device_printf(dev, "Alignment errors = %lld\n",
3092 		      (long long)adapter->stats.algnerrc);
3093 	device_printf(dev, "Carrier extension errors = %lld\n",
3094 		      (long long)adapter->stats.cexterr);
3095 
3096 	device_printf(dev, "XON Rcvd = %lld\n",
3097 		      (long long)adapter->stats.xonrxc);
3098 	device_printf(dev, "XON Xmtd = %lld\n",
3099 		      (long long)adapter->stats.xontxc);
3100 	device_printf(dev, "XOFF Rcvd = %lld\n",
3101 		      (long long)adapter->stats.xoffrxc);
3102 	device_printf(dev, "XOFF Xmtd = %lld\n",
3103 		      (long long)adapter->stats.xofftxc);
3104 
3105 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3106 		      (long long)adapter->stats.gprc);
3107 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3108 		      (long long)adapter->stats.gptc);
3109 }
3110 
3111 static int
3112 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3113 {
3114 	int error;
3115 	int result;
3116 	struct adapter *adapter;
3117 
3118 	result = -1;
3119 	error = sysctl_handle_int(oidp, &result, 0, req);
3120 
3121 	if (error || !req->newptr)
3122 		return(error);
3123 
3124 	if (result == 1) {
3125 		adapter = (struct adapter *)arg1;
3126 		em_print_debug_info(adapter);
3127 	}
3128 
3129 	return(error);
3130 }
3131 
3132 static int
3133 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3134 {
3135 	int error;
3136 	int result;
3137 	struct adapter *adapter;
3138 
3139 	result = -1;
3140 	error = sysctl_handle_int(oidp, &result, 0, req);
3141 
3142 	if (error || !req->newptr)
3143 		return(error);
3144 
3145 	if (result == 1) {
3146 		adapter = (struct adapter *)arg1;
3147 		em_print_hw_stats(adapter);
3148 	}
3149 
3150 	return(error);
3151 }
3152 
3153 static int
3154 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
3155 {
3156 	struct em_int_delay_info *info;
3157 	struct adapter *adapter;
3158 	uint32_t regval;
3159 	int error;
3160 	int usecs;
3161 	int ticks;
3162 
3163 	info = (struct em_int_delay_info *)arg1;
3164 	adapter = info->adapter;
3165 	usecs = info->value;
3166 	error = sysctl_handle_int(oidp, &usecs, 0, req);
3167 	if (error != 0 || req->newptr == NULL)
3168 		return(error);
3169 	if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
3170 		return(EINVAL);
3171 	info->value = usecs;
3172 	ticks = E1000_USECS_TO_TICKS(usecs);
3173 
3174 	lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3175 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
3176 	regval = (regval & ~0xffff) | (ticks & 0xffff);
3177 	/* Handle a few special cases. */
3178 	switch (info->offset) {
3179 	case E1000_RDTR:
3180 	case E1000_82542_RDTR:
3181 		regval |= E1000_RDT_FPDB;
3182 		break;
3183 	case E1000_TIDV:
3184 	case E1000_82542_TIDV:
3185 		if (ticks == 0) {
3186 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
3187 			/* Don't write 0 into the TIDV register. */
3188 			regval++;
3189 		} else
3190 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3191 		break;
3192 	}
3193 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
3194 	lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3195 	return(0);
3196 }
3197 
3198 static void
3199 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
3200 			const char *description, struct em_int_delay_info *info,
3201 			int offset, int value)
3202 {
3203 	info->adapter = adapter;
3204 	info->offset = offset;
3205 	info->value = value;
3206 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3207 			SYSCTL_CHILDREN(adapter->sysctl_tree),
3208 			OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
3209 			info, 0, em_sysctl_int_delay, "I", description);
3210 }
3211 
3212 static int
3213 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3214 {
3215 	struct adapter *adapter = (void *)arg1;
3216 	int error;
3217 	int throttle;
3218 
3219 	throttle = em_int_throttle_ceil;
3220 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3221 	if (error || req->newptr == NULL)
3222 		return error;
3223 	if (throttle < 0 || throttle > 1000000000 / 256)
3224 		return EINVAL;
3225 	if (throttle) {
3226 		/*
3227 		 * Set the interrupt throttling rate in 256ns increments,
3228 		 * recalculate sysctl value assignment to get exact frequency.
3229 		 */
3230 		throttle = 1000000000 / 256 / throttle;
3231 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3232 		em_int_throttle_ceil = 1000000000 / 256 / throttle;
3233 		E1000_WRITE_REG(&adapter->hw, ITR, throttle);
3234 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3235 	} else {
3236 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3237 		em_int_throttle_ceil = 0;
3238 		E1000_WRITE_REG(&adapter->hw, ITR, 0);
3239 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3240 	}
3241 	device_printf(adapter->dev, "Interrupt moderation set to %d/sec\n",
3242 			em_int_throttle_ceil);
3243 	return 0;
3244 }
3245 
3246