xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision 77e3c6197d83fa89d04233c0ca2f2d524d2d38c6)
1 /*
2  *
3  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 2001-2006, Intel Corporation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  *  1. Redistributions of source code must retain the above copyright notice,
12  *     this list of conditions and the following disclaimer.
13  *
14  *  2. Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in the
16  *     documentation and/or other materials provided with the distribution.
17  *
18  *  3. Neither the name of the Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived from
20  *     this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
36  *
37  * This code is derived from software contributed to The DragonFly Project
38  * by Matthew Dillon <dillon@backplane.com>
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  * 3. Neither the name of The DragonFly Project nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific, prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
57  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
58  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
59  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
60  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
61  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
62  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.56 2007/03/24 05:57:49 sephe Exp $
68  * $FreeBSD$
69  */
70 /*
71  * SERIALIZATION API RULES:
72  *
73  * - If the driver uses the same serializer for the interrupt as for the
74  *   ifnet, most of the serialization will be done automatically for the
75  *   driver.
76  *
77  * - ifmedia entry points will be serialized by the ifmedia code using the
78  *   ifnet serializer.
79  *
80  * - if_* entry points except for if_input will be serialized by the IF
81  *   and protocol layers.
82  *
83  * - The device driver must be sure to serialize access from timeout code
84  *   installed by the device driver.
85  *
86  * - The device driver typically holds the serializer at the time it wishes
87  *   to call if_input.  If so, it should pass the serializer to if_input and
88  *   note that the serializer might be dropped temporarily by if_input
89  *   (e.g. in case it has to bridge the packet to another interface).
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 #include "opt_inet.h"
98 
99 #include <sys/param.h>
100 #include <sys/bus.h>
101 #include <sys/endian.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/module.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 
113 #include <net/bpf.h>
114 #include <net/ethernet.h>
115 #include <net/if.h>
116 #include <net/if_arp.h>
117 #include <net/if_dl.h>
118 #include <net/if_media.h>
119 #include <net/if_types.h>
120 #include <net/ifq_var.h>
121 #include <net/vlan/if_vlan_var.h>
122 
123 #ifdef INET
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/in_var.h>
127 #include <netinet/ip.h>
128 #include <netinet/tcp.h>
129 #include <netinet/udp.h>
130 #endif
131 
132 #include <dev/netif/em/if_em_hw.h>
133 #include <dev/netif/em/if_em.h>
134 
135 #define EM_X60_WORKAROUND
136 
137 /*********************************************************************
138  *  Set this to one to display debug statistics
139  *********************************************************************/
140 int	em_display_debug_stats = 0;
141 
142 /*********************************************************************
143  *  Driver version
144  *********************************************************************/
145 
146 char em_driver_version[] = "6.2.9";
147 
148 
149 /*********************************************************************
150  *  PCI Device ID Table
151  *
152  *  Used by probe to select devices to load on
153  *  Last field stores an index into em_strings
154  *  Last entry must be all 0s
155  *
156  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
157  *********************************************************************/
158 
159 static em_vendor_info_t em_vendor_info_array[] =
160 {
161 	/* Intel(R) PRO/1000 Network Connection */
162 	{ 0x8086, E1000_DEV_ID_82540EM,		PCI_ANY_ID, PCI_ANY_ID, 0},
163 	{ 0x8086, E1000_DEV_ID_82540EM_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
164 	{ 0x8086, E1000_DEV_ID_82540EP,		PCI_ANY_ID, PCI_ANY_ID, 0},
165 	{ 0x8086, E1000_DEV_ID_82540EP_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
166 	{ 0x8086, E1000_DEV_ID_82540EP_LP,	PCI_ANY_ID, PCI_ANY_ID, 0},
167 
168 	{ 0x8086, E1000_DEV_ID_82541EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
169 	{ 0x8086, E1000_DEV_ID_82541ER,		PCI_ANY_ID, PCI_ANY_ID, 0},
170 	{ 0x8086, E1000_DEV_ID_82541ER_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
171 	{ 0x8086, E1000_DEV_ID_82541EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
172 	{ 0x8086, E1000_DEV_ID_82541GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
173 	{ 0x8086, E1000_DEV_ID_82541GI_LF,	PCI_ANY_ID, PCI_ANY_ID, 0},
174 	{ 0x8086, E1000_DEV_ID_82541GI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
175 
176 	{ 0x8086, E1000_DEV_ID_82542,		PCI_ANY_ID, PCI_ANY_ID, 0},
177 
178 	{ 0x8086, E1000_DEV_ID_82543GC_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
179 	{ 0x8086, E1000_DEV_ID_82543GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
180 
181 	{ 0x8086, E1000_DEV_ID_82544EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
182 	{ 0x8086, E1000_DEV_ID_82544EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
183 	{ 0x8086, E1000_DEV_ID_82544GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
184 	{ 0x8086, E1000_DEV_ID_82544GC_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
185 
186 	{ 0x8086, E1000_DEV_ID_82545EM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
187 	{ 0x8086, E1000_DEV_ID_82545EM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
188 	{ 0x8086, E1000_DEV_ID_82545GM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
189 	{ 0x8086, E1000_DEV_ID_82545GM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
190 	{ 0x8086, E1000_DEV_ID_82545GM_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
191 
192 	{ 0x8086, E1000_DEV_ID_82546EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
193 	{ 0x8086, E1000_DEV_ID_82546EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
194 	{ 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
195 	{ 0x8086, E1000_DEV_ID_82546GB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
196 	{ 0x8086, E1000_DEV_ID_82546GB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
197 	{ 0x8086, E1000_DEV_ID_82546GB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
198 	{ 0x8086, E1000_DEV_ID_82546GB_PCIE,	PCI_ANY_ID, PCI_ANY_ID, 0},
199 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
200 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
201 						PCI_ANY_ID, PCI_ANY_ID, 0},
202 
203 	{ 0x8086, E1000_DEV_ID_82547EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
204 	{ 0x8086, E1000_DEV_ID_82547EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
205 	{ 0x8086, E1000_DEV_ID_82547GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
206 
207 	{ 0x8086, E1000_DEV_ID_82571EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
208 	{ 0x8086, E1000_DEV_ID_82571EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
209 	{ 0x8086, E1000_DEV_ID_82571EB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
210 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
211 						PCI_ANY_ID, PCI_ANY_ID, 0},
212 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE,
213 						PCI_ANY_ID, PCI_ANY_ID, 0},
214 
215 	{ 0x8086, E1000_DEV_ID_82572EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
216 	{ 0x8086, E1000_DEV_ID_82572EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
217 	{ 0x8086, E1000_DEV_ID_82572EI_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
218 	{ 0x8086, E1000_DEV_ID_82572EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
219 
220 	{ 0x8086, E1000_DEV_ID_82573E,		PCI_ANY_ID, PCI_ANY_ID, 0},
221 	{ 0x8086, E1000_DEV_ID_82573E_IAMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
222 	{ 0x8086, E1000_DEV_ID_82573L,		PCI_ANY_ID, PCI_ANY_ID, 0},
223 
224 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
225 						PCI_ANY_ID, PCI_ANY_ID, 0},
226 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
227 						PCI_ANY_ID, PCI_ANY_ID, 0},
228 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
229 						PCI_ANY_ID, PCI_ANY_ID, 0},
230 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
231 						PCI_ANY_ID, PCI_ANY_ID, 0},
232 
233 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
234 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
235 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
236 	{ 0x8086, E1000_DEV_ID_ICH8_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
237 	{ 0x8086, E1000_DEV_ID_ICH8_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
238 	{ 0x8086, E1000_DEV_ID_ICH8_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
239 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M,	PCI_ANY_ID, PCI_ANY_ID, 0},
240 
241 	{ 0x8086, 0x101A, PCI_ANY_ID, PCI_ANY_ID, 0},
242 	{ 0x8086, 0x1014, PCI_ANY_ID, PCI_ANY_ID, 0},
243 	/* required last entry */
244 	{ 0, 0, 0, 0, 0}
245 };
246 
247 /*********************************************************************
248  *  Table of branding strings for all supported NICs.
249  *********************************************************************/
250 
251 static const char *em_strings[] = {
252 	"Intel(R) PRO/1000 Network Connection"
253 };
254 
255 /*********************************************************************
256  *  Function prototypes
257  *********************************************************************/
258 static int	em_probe(device_t);
259 static int	em_attach(device_t);
260 static int	em_detach(device_t);
261 static int	em_shutdown(device_t);
262 static void	em_intr(void *);
263 static int	em_suspend(device_t);
264 static int	em_resume(device_t);
265 static void	em_start(struct ifnet *);
266 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
267 static void	em_watchdog(struct ifnet *);
268 static void	em_init(void *);
269 static void	em_stop(void *);
270 static void	em_media_status(struct ifnet *, struct ifmediareq *);
271 static int	em_media_change(struct ifnet *);
272 static void	em_identify_hardware(struct adapter *);
273 static int	em_allocate_pci_resources(device_t);
274 static void	em_free_pci_resources(device_t);
275 static void	em_local_timer(void *);
276 static int	em_hardware_init(struct adapter *);
277 static void	em_setup_interface(device_t, struct adapter *);
278 static int	em_setup_transmit_structures(struct adapter *);
279 static void	em_initialize_transmit_unit(struct adapter *);
280 static int	em_setup_receive_structures(struct adapter *);
281 static void	em_initialize_receive_unit(struct adapter *);
282 static void	em_enable_intr(struct adapter *);
283 static void	em_disable_intr(struct adapter *);
284 static void	em_free_transmit_structures(struct adapter *);
285 static void	em_free_receive_structures(struct adapter *);
286 static void	em_update_stats_counters(struct adapter *);
287 static void	em_txeof(struct adapter *);
288 static int	em_allocate_receive_structures(struct adapter *);
289 static void	em_rxeof(struct adapter *, int);
290 static void	em_receive_checksum(struct adapter *, struct em_rx_desc *,
291 				    struct mbuf *);
292 static void	em_transmit_checksum_setup(struct adapter *, struct mbuf *,
293 					   uint32_t *, uint32_t *);
294 static void	em_set_promisc(struct adapter *);
295 static void	em_disable_promisc(struct adapter *);
296 static void	em_set_multi(struct adapter *);
297 static void	em_print_hw_stats(struct adapter *);
298 static void	em_update_link_status(struct adapter *);
299 static int	em_get_buf(int i, struct adapter *, struct mbuf *, int how);
300 static void	em_enable_vlans(struct adapter *);
301 static void	em_disable_vlans(struct adapter *);
302 static int	em_encap(struct adapter *, struct mbuf *);
303 static void	em_smartspeed(struct adapter *);
304 static int	em_82547_fifo_workaround(struct adapter *, int);
305 static void	em_82547_update_fifo_head(struct adapter *, int);
306 static int	em_82547_tx_fifo_reset(struct adapter *);
307 static void	em_82547_move_tail(void *);
308 static void	em_82547_move_tail_serialized(struct adapter *);
309 static int	em_dma_malloc(struct adapter *, bus_size_t,
310 			      struct em_dma_alloc *);
311 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
312 static void	em_print_debug_info(struct adapter *);
313 static int	em_is_valid_ether_addr(uint8_t *);
314 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
315 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
316 static uint32_t	em_fill_descriptors(bus_addr_t address, uint32_t length,
317 				   PDESC_ARRAY desc_array);
318 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
319 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
320 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
321 					const char *,
322 					struct em_int_delay_info *, int, int);
323 
324 /*********************************************************************
325  *  FreeBSD Device Interface Entry Points
326  *********************************************************************/
327 
328 static device_method_t em_methods[] = {
329 	/* Device interface */
330 	DEVMETHOD(device_probe, em_probe),
331 	DEVMETHOD(device_attach, em_attach),
332 	DEVMETHOD(device_detach, em_detach),
333 	DEVMETHOD(device_shutdown, em_shutdown),
334 	DEVMETHOD(device_suspend, em_suspend),
335 	DEVMETHOD(device_resume, em_resume),
336 	{0, 0}
337 };
338 
339 static driver_t em_driver = {
340 	"em", em_methods, sizeof(struct adapter),
341 };
342 
343 static devclass_t em_devclass;
344 
345 DECLARE_DUMMY_MODULE(if_em);
346 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
347 
348 /*********************************************************************
349  *  Tunable default values.
350  *********************************************************************/
351 
352 #define E1000_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
353 #define E1000_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
354 
355 static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
356 static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
357 static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
358 static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
359 static int em_int_throttle_ceil = 10000;
360 static int em_rxd = EM_DEFAULT_RXD;
361 static int em_txd = EM_DEFAULT_TXD;
362 static int em_smart_pwr_down = FALSE;
363 
364 TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
365 TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
366 TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
367 TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
368 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
369 TUNABLE_INT("hw.em.rxd", &em_rxd);
370 TUNABLE_INT("hw.em.txd", &em_txd);
371 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
372 
373 /*
374  * Kernel trace for characterization of operations
375  */
376 #if !defined(KTR_IF_EM)
377 #define KTR_IF_EM	KTR_ALL
378 #endif
379 KTR_INFO_MASTER(if_em);
380 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
381 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
382 #ifdef DEVICE_POLLING
383 KTR_INFO(KTR_IF_EM, if_em, poll_beg, 2, "poll begin", 0);
384 KTR_INFO(KTR_IF_EM, if_em, poll_end, 3, "poll end", 0);
385 #endif
386 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
387 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
388 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
389 #define logif(name)	KTR_LOG(if_em_ ## name)
390 
391 /*********************************************************************
392  *  Device identification routine
393  *
394  *  em_probe determines if the driver should be loaded on
395  *  adapter based on PCI vendor/device id of the adapter.
396  *
397  *  return 0 on success, positive on failure
398  *********************************************************************/
399 
400 static int
401 em_probe(device_t dev)
402 {
403 	em_vendor_info_t *ent;
404 
405 	uint16_t pci_vendor_id = 0;
406 	uint16_t pci_device_id = 0;
407 	uint16_t pci_subvendor_id = 0;
408 	uint16_t pci_subdevice_id = 0;
409 	char adapter_name[60];
410 
411 	INIT_DEBUGOUT("em_probe: begin");
412 
413 	pci_vendor_id = pci_get_vendor(dev);
414 	if (pci_vendor_id != EM_VENDOR_ID)
415 		return (ENXIO);
416 
417 	pci_device_id = pci_get_device(dev);
418 	pci_subvendor_id = pci_get_subvendor(dev);
419 	pci_subdevice_id = pci_get_subdevice(dev);
420 
421 	ent = em_vendor_info_array;
422 	while (ent->vendor_id != 0) {
423 		if ((pci_vendor_id == ent->vendor_id) &&
424 		    (pci_device_id == ent->device_id) &&
425 
426 		    ((pci_subvendor_id == ent->subvendor_id) ||
427 		     (ent->subvendor_id == PCI_ANY_ID)) &&
428 
429 		    ((pci_subdevice_id == ent->subdevice_id) ||
430 		     (ent->subdevice_id == PCI_ANY_ID))) {
431 			ksnprintf(adapter_name, sizeof(adapter_name),
432 				 "%s, Version - %s",  em_strings[ent->index],
433 				 em_driver_version);
434 			device_set_desc_copy(dev, adapter_name);
435 			return (0);
436 		}
437 		ent++;
438 	}
439 
440 	return (ENXIO);
441 }
442 
443 /*********************************************************************
444  *  Device initialization routine
445  *
446  *  The attach entry point is called when the driver is being loaded.
447  *  This routine identifies the type of hardware, allocates all resources
448  *  and initializes the hardware.
449  *
450  *  return 0 on success, positive on failure
451  *********************************************************************/
452 
453 static int
454 em_attach(device_t dev)
455 {
456 	struct adapter *adapter;
457 	int tsize, rsize;
458 	int error = 0;
459 
460 	INIT_DEBUGOUT("em_attach: begin");
461 
462 	adapter = device_get_softc(dev);
463 
464 	callout_init(&adapter->timer);
465 	callout_init(&adapter->tx_fifo_timer);
466 
467 	adapter->dev = dev;
468 	adapter->osdep.dev = dev;
469 
470 	/* SYSCTL stuff */
471 	sysctl_ctx_init(&adapter->sysctl_ctx);
472 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
473 					       SYSCTL_STATIC_CHILDREN(_hw),
474 					       OID_AUTO,
475 					       device_get_nameunit(dev),
476 					       CTLFLAG_RD,
477 					       0, "");
478 
479 	if (adapter->sysctl_tree == NULL) {
480 		device_printf(dev, "Unable to create sysctl tree\n");
481 		return EIO;
482 	}
483 
484 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
485 			SYSCTL_CHILDREN(adapter->sysctl_tree),
486 			OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW,
487 			(void *)adapter, 0,
488 			em_sysctl_debug_info, "I", "Debug Information");
489 
490 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
491 			SYSCTL_CHILDREN(adapter->sysctl_tree),
492 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW,
493 			(void *)adapter, 0,
494 			em_sysctl_stats, "I", "Statistics");
495 
496 	/* Determine hardware revision */
497 	em_identify_hardware(adapter);
498 
499 	/* Set up some sysctls for the tunable interrupt delays */
500 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
501 				"receive interrupt delay in usecs",
502 				&adapter->rx_int_delay,
503 				E1000_REG_OFFSET(&adapter->hw, RDTR),
504 				em_rx_int_delay_dflt);
505 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
506 				"transmit interrupt delay in usecs",
507 				&adapter->tx_int_delay,
508 				E1000_REG_OFFSET(&adapter->hw, TIDV),
509 				em_tx_int_delay_dflt);
510 	if (adapter->hw.mac_type >= em_82540) {
511 		em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
512 					"receive interrupt delay limit in usecs",
513 					&adapter->rx_abs_int_delay,
514 					E1000_REG_OFFSET(&adapter->hw, RADV),
515 					em_rx_abs_int_delay_dflt);
516 		em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
517 					"transmit interrupt delay limit in usecs",
518 					&adapter->tx_abs_int_delay,
519 					E1000_REG_OFFSET(&adapter->hw, TADV),
520 					em_tx_abs_int_delay_dflt);
521 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
522 			SYSCTL_CHILDREN(adapter->sysctl_tree),
523 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
524 			adapter, 0, em_sysctl_int_throttle, "I", NULL);
525 	}
526 
527 	/*
528 	 * Validate number of transmit and receive descriptors. It
529 	 * must not exceed hardware maximum, and must be multiple
530 	 * of EM_DBA_ALIGN.
531 	 */
532 	if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 ||
533 	    (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) ||
534 	    (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) ||
535 	    (em_txd < EM_MIN_TXD)) {
536 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
537 			      EM_DEFAULT_TXD, em_txd);
538 		adapter->num_tx_desc = EM_DEFAULT_TXD;
539 	} else {
540 		adapter->num_tx_desc = em_txd;
541 	}
542 
543 	if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 ||
544 	    (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) ||
545 	    (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) ||
546 	    (em_rxd < EM_MIN_RXD)) {
547 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
548 			      EM_DEFAULT_RXD, em_rxd);
549 		adapter->num_rx_desc = EM_DEFAULT_RXD;
550 	} else {
551 		adapter->num_rx_desc = em_rxd;
552 	}
553 
554 	adapter->hw.autoneg = DO_AUTO_NEG;
555 	adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
556 	adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
557 	adapter->hw.tbi_compatibility_en = TRUE;
558 	adapter->rx_buffer_len = EM_RXBUFFER_2048;
559 
560 	adapter->hw.phy_init_script = 1;
561 	adapter->hw.phy_reset_disable = FALSE;
562 
563 #ifndef EM_MASTER_SLAVE
564 	adapter->hw.master_slave = em_ms_hw_default;
565 #else
566 	adapter->hw.master_slave = EM_MASTER_SLAVE;
567 #endif
568 
569 	/*
570 	 * Set the max frame size assuming standard ethernet
571 	 * sized frames.
572 	 */
573 	adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
574 
575 	adapter->hw.min_frame_size =
576 	    MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
577 
578 	/*
579 	 * This controls when hardware reports transmit completion
580 	 * status.
581 	 */
582 	adapter->hw.report_tx_early = 1;
583 
584 	error = em_allocate_pci_resources(dev);
585 	if (error)
586 		goto fail;
587 
588 	/* Initialize eeprom parameters */
589 	em_init_eeprom_params(&adapter->hw);
590 
591 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc),
592 			 EM_DBA_ALIGN);
593 
594 	/* Allocate Transmit Descriptor ring */
595 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
596 	if (error) {
597 		device_printf(dev, "Unable to allocate TxDescriptor memory\n");
598 		goto fail;
599 	}
600 	adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr;
601 
602 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc),
603 			 EM_DBA_ALIGN);
604 
605 	/* Allocate Receive Descriptor ring */
606 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
607 	if (error) {
608 		device_printf(dev, "Unable to allocate rx_desc memory\n");
609 		goto fail;
610 	}
611 	adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr;
612 
613 	/* Initialize the hardware */
614 	if (em_hardware_init(adapter)) {
615 		device_printf(dev, "Unable to initialize the hardware\n");
616 		error = EIO;
617 		goto fail;
618 	}
619 
620 	/* Copy the permanent MAC address out of the EEPROM */
621 	if (em_read_mac_addr(&adapter->hw) < 0) {
622 		device_printf(dev,
623 			      "EEPROM read error while reading MAC address\n");
624 		error = EIO;
625 		goto fail;
626 	}
627 
628 	if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
629 		device_printf(dev, "Invalid MAC address\n");
630 		error = EIO;
631 		goto fail;
632 	}
633 
634 	/* Setup OS specific network interface */
635 	em_setup_interface(dev, adapter);
636 
637 	/* Initialize statistics */
638 	em_clear_hw_cntrs(&adapter->hw);
639 	em_update_stats_counters(adapter);
640 	adapter->hw.get_link_status = 1;
641 	em_update_link_status(adapter);
642 
643 	/* Indicate SOL/IDER usage */
644 	if (em_check_phy_reset_block(&adapter->hw)) {
645 		device_printf(dev, "PHY reset is blocked due to "
646 			      "SOL/IDER session.\n");
647 	}
648 
649 	/* Identify 82544 on PCIX */
650 	em_get_bus_info(&adapter->hw);
651 	if (adapter->hw.bus_type == em_bus_type_pcix &&
652 	    adapter->hw.mac_type == em_82544)
653 		adapter->pcix_82544 = TRUE;
654 	else
655 		adapter->pcix_82544 = FALSE;
656 
657 	error = bus_setup_intr(dev, adapter->res_interrupt, INTR_NETSAFE,
658 			   em_intr, adapter,
659 			   &adapter->int_handler_tag,
660 			   adapter->interface_data.ac_if.if_serializer);
661 	if (error) {
662 		device_printf(dev, "Error registering interrupt handler!\n");
663 		ether_ifdetach(&adapter->interface_data.ac_if);
664 		goto fail;
665 	}
666 
667 	INIT_DEBUGOUT("em_attach: end");
668 	return(0);
669 
670 fail:
671 	em_detach(dev);
672 	return(error);
673 }
674 
675 /*********************************************************************
676  *  Device removal routine
677  *
678  *  The detach entry point is called when the driver is being removed.
679  *  This routine stops the adapter and deallocates all the resources
680  *  that were allocated for driver operation.
681  *
682  *  return 0 on success, positive on failure
683  *********************************************************************/
684 
685 static int
686 em_detach(device_t dev)
687 {
688 	struct adapter *adapter = device_get_softc(dev);
689 
690 	INIT_DEBUGOUT("em_detach: begin");
691 
692 	if (device_is_attached(dev)) {
693 		struct ifnet *ifp = &adapter->interface_data.ac_if;
694 
695 		lwkt_serialize_enter(ifp->if_serializer);
696 		adapter->in_detach = 1;
697 		em_stop(adapter);
698 		em_phy_hw_reset(&adapter->hw);
699 		bus_teardown_intr(dev, adapter->res_interrupt,
700 				  adapter->int_handler_tag);
701 		lwkt_serialize_exit(ifp->if_serializer);
702 
703 		ether_ifdetach(ifp);
704 	}
705 	bus_generic_detach(dev);
706 
707 	em_free_pci_resources(dev);
708 
709 	/* Free Transmit Descriptor ring */
710 	if (adapter->tx_desc_base != NULL) {
711 		em_dma_free(adapter, &adapter->txdma);
712 		adapter->tx_desc_base = NULL;
713 	}
714 
715 	/* Free Receive Descriptor ring */
716 	if (adapter->rx_desc_base != NULL) {
717 		em_dma_free(adapter, &adapter->rxdma);
718 		adapter->rx_desc_base = NULL;
719 	}
720 
721 	/* Free sysctl tree */
722 	if (adapter->sysctl_tree != NULL) {
723 		adapter->sysctl_tree = NULL;
724 		sysctl_ctx_free(&adapter->sysctl_ctx);
725 	}
726 
727 	return (0);
728 }
729 
730 /*********************************************************************
731  *
732  *  Shutdown entry point
733  *
734  **********************************************************************/
735 
736 static int
737 em_shutdown(device_t dev)
738 {
739 	struct adapter *adapter = device_get_softc(dev);
740 	struct ifnet *ifp = &adapter->interface_data.ac_if;
741 
742 	lwkt_serialize_enter(ifp->if_serializer);
743 	em_stop(adapter);
744 	lwkt_serialize_exit(ifp->if_serializer);
745 
746 	return (0);
747 }
748 
749 /*
750  * Suspend/resume device methods.
751  */
752 static int
753 em_suspend(device_t dev)
754 {
755 	struct adapter *adapter = device_get_softc(dev);
756 	struct ifnet *ifp = &adapter->interface_data.ac_if;
757 
758 	lwkt_serialize_enter(ifp->if_serializer);
759 	em_stop(adapter);
760 	lwkt_serialize_exit(ifp->if_serializer);
761 	return (0);
762 }
763 
764 static int
765 em_resume(device_t dev)
766 {
767 	struct adapter *adapter = device_get_softc(dev);
768 	struct ifnet *ifp = &adapter->interface_data.ac_if;
769 
770 	lwkt_serialize_enter(ifp->if_serializer);
771 	ifp->if_flags &= ~IFF_RUNNING;
772 	em_init(adapter);
773 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
774 		em_start(ifp);
775 	lwkt_serialize_exit(ifp->if_serializer);
776 
777 	return bus_generic_resume(dev);
778 }
779 
780 /*********************************************************************
781  *  Transmit entry point
782  *
783  *  em_start is called by the stack to initiate a transmit.
784  *  The driver will remain in this routine as long as there are
785  *  packets to transmit and transmit resources are available.
786  *  In case resources are not available stack is notified and
787  *  the packet is requeued.
788  **********************************************************************/
789 
790 static void
791 em_start(struct ifnet *ifp)
792 {
793 	struct mbuf *m_head;
794 	struct adapter *adapter = ifp->if_softc;
795 
796 	ASSERT_SERIALIZED(ifp->if_serializer);
797 
798 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
799 		return;
800 	if (!adapter->link_active)
801 		return;
802 	while (!ifq_is_empty(&ifp->if_snd)) {
803 		m_head = ifq_poll(&ifp->if_snd);
804 
805 		if (m_head == NULL)
806 			break;
807 
808 		logif(pkt_txqueue);
809 		if (em_encap(adapter, m_head)) {
810 			ifp->if_flags |= IFF_OACTIVE;
811 			break;
812 		}
813 		ifq_dequeue(&ifp->if_snd, m_head);
814 
815 		/* Send a copy of the frame to the BPF listener */
816 		BPF_MTAP(ifp, m_head);
817 
818 		/* Set timeout in case hardware has problems transmitting. */
819 		ifp->if_timer = EM_TX_TIMEOUT;
820 	}
821 }
822 
823 /*********************************************************************
824  *  Ioctl entry point
825  *
826  *  em_ioctl is called when the user wants to configure the
827  *  interface.
828  *
829  *  return 0 on success, positive on failure
830  **********************************************************************/
831 
832 static int
833 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
834 {
835 	int max_frame_size, mask, error = 0, reinit = 0;
836 	struct ifreq *ifr = (struct ifreq *) data;
837 	struct adapter *adapter = ifp->if_softc;
838 	uint16_t eeprom_data = 0;
839 
840 	ASSERT_SERIALIZED(ifp->if_serializer);
841 
842 	if (adapter->in_detach)
843 		return 0;
844 
845 	switch (command) {
846 	case SIOCSIFMTU:
847 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
848 		switch (adapter->hw.mac_type) {
849 		case em_82573:
850 			/*
851 			 * 82573 only supports jumbo frames
852 			 * if ASPM is disabled.
853 			 */
854 			em_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3,
855 			    1, &eeprom_data);
856 			if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
857 				max_frame_size = ETHER_MAX_LEN;
858 				break;
859 			}
860 			/* Allow Jumbo frames */
861 			/* FALLTHROUGH */
862 		case em_82571:
863 		case em_82572:
864 		case em_80003es2lan:	/* Limit Jumbo Frame size */
865 			max_frame_size = 9234;
866 			break;
867 		case em_ich8lan:
868 			/* ICH8 does not support jumbo frames */
869 			max_frame_size = ETHER_MAX_LEN;
870 			break;
871 		default:
872 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
873 			break;
874 		}
875 		if (ifr->ifr_mtu >
876 			max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
877 			error = EINVAL;
878 		} else {
879 			ifp->if_mtu = ifr->ifr_mtu;
880 			adapter->hw.max_frame_size =
881 			ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
882 			ifp->if_flags &= ~IFF_RUNNING;
883 			em_init(adapter);
884 		}
885 		break;
886 	case SIOCSIFFLAGS:
887 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS "
888 			       "(Set Interface Flags)");
889 		if (ifp->if_flags & IFF_UP) {
890 			if (!(ifp->if_flags & IFF_RUNNING)) {
891 				em_init(adapter);
892 			} else if ((ifp->if_flags ^ adapter->if_flags) &
893 				   IFF_PROMISC) {
894 				em_disable_promisc(adapter);
895 				em_set_promisc(adapter);
896 			}
897 		} else {
898 			if (ifp->if_flags & IFF_RUNNING)
899 				em_stop(adapter);
900 		}
901 		adapter->if_flags = ifp->if_flags;
902 		break;
903 	case SIOCADDMULTI:
904 	case SIOCDELMULTI:
905 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
906 		if (ifp->if_flags & IFF_RUNNING) {
907 			em_disable_intr(adapter);
908 			em_set_multi(adapter);
909 			if (adapter->hw.mac_type == em_82542_rev2_0)
910 				em_initialize_receive_unit(adapter);
911 #ifdef DEVICE_POLLING
912 			/* Do not enable interrupt if polling(4) is enabled */
913 			if ((ifp->if_flags & IFF_POLLING) == 0)
914 #endif
915 			em_enable_intr(adapter);
916 		}
917 		break;
918 	case SIOCSIFMEDIA:
919 		/* Check SOL/IDER usage */
920 		if (em_check_phy_reset_block(&adapter->hw)) {
921 			if_printf(ifp, "Media change is blocked due to "
922 				  "SOL/IDER session.\n");
923 			break;
924 		}
925 		/* FALLTHROUGH */
926 	case SIOCGIFMEDIA:
927 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA "
928 			       "(Get/Set Interface Media)");
929 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
930 		break;
931 	case SIOCSIFCAP:
932 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
933 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
934 		if (mask & IFCAP_HWCSUM) {
935 			ifp->if_capenable ^= IFCAP_HWCSUM;
936 			reinit = 1;
937 		}
938 		if (mask & IFCAP_VLAN_HWTAGGING) {
939 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
940 			reinit = 1;
941 		}
942 		if (reinit && (ifp->if_flags & IFF_RUNNING)) {
943 			ifp->if_flags &= ~IFF_RUNNING;
944 			em_init(adapter);
945 		}
946 		break;
947 	default:
948 		error = ether_ioctl(ifp, command, data);
949 		break;
950 	}
951 
952 	return (error);
953 }
954 
955 /*********************************************************************
956  *  Watchdog entry point
957  *
958  *  This routine is called whenever hardware quits transmitting.
959  *
960  **********************************************************************/
961 
962 static void
963 em_watchdog(struct ifnet *ifp)
964 {
965 	struct adapter *adapter = ifp->if_softc;
966 
967 	/*
968 	 * If we are in this routine because of pause frames, then
969 	 * don't reset the hardware.
970 	 */
971 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
972 		ifp->if_timer = EM_TX_TIMEOUT;
973 		return;
974 	}
975 
976 	if (em_check_for_link(&adapter->hw) == 0)
977 		if_printf(ifp, "watchdog timeout -- resetting\n");
978 
979 	ifp->if_flags &= ~IFF_RUNNING;
980 	em_init(adapter);
981 
982 	adapter->watchdog_timeouts++;
983 }
984 
985 /*********************************************************************
986  *  Init entry point
987  *
988  *  This routine is used in two ways. It is used by the stack as
989  *  init entry point in network interface structure. It is also used
990  *  by the driver as a hw/sw initialization routine to get to a
991  *  consistent state.
992  *
993  *  return 0 on success, positive on failure
994  **********************************************************************/
995 
996 static void
997 em_init(void *arg)
998 {
999 	struct adapter *adapter = arg;
1000 	uint32_t pba;
1001 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1002 
1003 	ASSERT_SERIALIZED(ifp->if_serializer);
1004 
1005 	INIT_DEBUGOUT("em_init: begin");
1006 
1007 	if (ifp->if_flags & IFF_RUNNING)
1008 		return;
1009 
1010 	em_stop(adapter);
1011 
1012 	/*
1013 	 * Packet Buffer Allocation (PBA)
1014 	 * Writing PBA sets the receive portion of the buffer
1015 	 * the remainder is used for the transmit buffer.
1016 	 *
1017 	 * Devices before the 82547 had a Packet Buffer of 64K.
1018 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1019 	 * After the 82547 the buffer was reduced to 40K.
1020 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1021 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1022 	 */
1023 	switch (adapter->hw.mac_type) {
1024 	case em_82547:
1025 	case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1026 		if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1027 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1028 		else
1029 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1030 
1031 		adapter->tx_fifo_head = 0;
1032 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1033 		adapter->tx_fifo_size =
1034 			(E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1035 		break;
1036 	/* Total Packet Buffer on these is 48K */
1037 	case em_82571:
1038 	case em_82572:
1039 	case em_80003es2lan:
1040 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1041 		break;
1042 	case em_82573: /* 82573: Total Packet Buffer is 32K */
1043 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1044 		break;
1045 	case em_ich8lan:
1046 		pba = E1000_PBA_8K;
1047 		break;
1048 	default:
1049 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1050 		if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1051 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1052 		else
1053 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1054 	}
1055 
1056 	INIT_DEBUGOUT1("em_init: pba=%dK",pba);
1057 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
1058 
1059 	/* Get the latest mac address, User can use a LAA */
1060 	bcopy(adapter->interface_data.ac_enaddr, adapter->hw.mac_addr,
1061 	      ETHER_ADDR_LEN);
1062 
1063 	/* Initialize the hardware */
1064 	if (em_hardware_init(adapter)) {
1065 		if_printf(ifp, "Unable to initialize the hardware\n");
1066 		return;
1067 	}
1068 	em_update_link_status(adapter);
1069 
1070 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1071 		em_enable_vlans(adapter);
1072 
1073 	/* Set hardware offload abilities */
1074 	if (adapter->hw.mac_type >= em_82543) {
1075 		if (ifp->if_capenable & IFCAP_TXCSUM)
1076 			ifp->if_hwassist = EM_CHECKSUM_FEATURES;
1077 		else
1078 			ifp->if_hwassist = 0;
1079 	}
1080 
1081 	/* Prepare transmit descriptors and buffers */
1082 	if (em_setup_transmit_structures(adapter)) {
1083 		if_printf(ifp, "Could not setup transmit structures\n");
1084 		em_stop(adapter);
1085 		return;
1086 	}
1087 	em_initialize_transmit_unit(adapter);
1088 
1089 	/* Setup Multicast table */
1090 	em_set_multi(adapter);
1091 
1092 	/* Prepare receive descriptors and buffers */
1093 	if (em_setup_receive_structures(adapter)) {
1094 		if_printf(ifp, "Could not setup receive structures\n");
1095 		em_stop(adapter);
1096 		return;
1097 	}
1098 	em_initialize_receive_unit(adapter);
1099 
1100 	/* Don't lose promiscuous settings */
1101 	em_set_promisc(adapter);
1102 
1103 	ifp->if_flags |= IFF_RUNNING;
1104 	ifp->if_flags &= ~IFF_OACTIVE;
1105 
1106 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1107 	em_clear_hw_cntrs(&adapter->hw);
1108 
1109 #ifdef DEVICE_POLLING
1110 	/* Do not enable interrupt if polling(4) is enabled */
1111 	if (ifp->if_flags & IFF_POLLING)
1112 		em_disable_intr(adapter);
1113 	else
1114 #endif
1115 	em_enable_intr(adapter);
1116 
1117 	/* Don't reset the phy next time init gets called */
1118 	adapter->hw.phy_reset_disable = TRUE;
1119 }
1120 
1121 #ifdef DEVICE_POLLING
1122 
1123 static void
1124 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1125 {
1126 	struct adapter *adapter = ifp->if_softc;
1127 	uint32_t reg_icr;
1128 
1129 	logif(poll_beg);
1130 
1131 	ASSERT_SERIALIZED(ifp->if_serializer);
1132 
1133 	switch(cmd) {
1134 	case POLL_REGISTER:
1135 		em_disable_intr(adapter);
1136 		break;
1137 	case POLL_DEREGISTER:
1138 		em_enable_intr(adapter);
1139 		break;
1140 	case POLL_AND_CHECK_STATUS:
1141 		reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1142 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1143 			callout_stop(&adapter->timer);
1144 			adapter->hw.get_link_status = 1;
1145 			em_check_for_link(&adapter->hw);
1146 			em_update_link_status(adapter);
1147 			callout_reset(&adapter->timer, hz, em_local_timer,
1148 				      adapter);
1149 		}
1150 		/* fall through */
1151 	case POLL_ONLY:
1152 		if (ifp->if_flags & IFF_RUNNING) {
1153 			em_rxeof(adapter, count);
1154 			em_txeof(adapter);
1155 
1156 			if (!ifq_is_empty(&ifp->if_snd))
1157 				em_start(ifp);
1158 		}
1159 		break;
1160 	}
1161 	logif(poll_end);
1162 }
1163 
1164 #endif /* DEVICE_POLLING */
1165 
1166 /*********************************************************************
1167  *
1168  *  Interrupt Service routine
1169  *
1170  *********************************************************************/
1171 static void
1172 em_intr(void *arg)
1173 {
1174 	uint32_t reg_icr;
1175 	struct ifnet *ifp;
1176 	struct adapter *adapter = arg;
1177 
1178 	ifp = &adapter->interface_data.ac_if;
1179 
1180 	logif(intr_beg);
1181 	ASSERT_SERIALIZED(ifp->if_serializer);
1182 
1183 	reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1184 	if ((adapter->hw.mac_type >= em_82571 &&
1185 	     (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1186 	    reg_icr == 0) {
1187 		logif(intr_end);
1188 		return;
1189 	}
1190 
1191 	/*
1192 	 * XXX: some laptops trigger several spurious interrupts on em(4)
1193 	 * when in the resume cycle. The ICR register reports all-ones
1194 	 * value in this case. Processing such interrupts would lead to
1195 	 * a freeze. I don't know why.
1196 	 */
1197 	if (reg_icr == 0xffffffff) {
1198 		logif(intr_end);
1199 		return;
1200 	}
1201 
1202 	/*
1203 	 * note: do not attempt to improve efficiency by looping.  This
1204 	 * only results in unnecessary piecemeal collection of received
1205 	 * packets and unnecessary piecemeal cleanups of the transmit ring.
1206 	 */
1207 	if (ifp->if_flags & IFF_RUNNING) {
1208 		em_rxeof(adapter, -1);
1209 		em_txeof(adapter);
1210 	}
1211 
1212 	/* Link status change */
1213 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1214 		callout_stop(&adapter->timer);
1215 		adapter->hw.get_link_status = 1;
1216 		em_check_for_link(&adapter->hw);
1217 		em_update_link_status(adapter);
1218 		callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1219 	}
1220 
1221 	if (reg_icr & E1000_ICR_RXO)
1222 		adapter->rx_overruns++;
1223 
1224 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1225 		em_start(ifp);
1226 	logif(intr_end);
1227 }
1228 
1229 /*********************************************************************
1230  *
1231  *  Media Ioctl callback
1232  *
1233  *  This routine is called whenever the user queries the status of
1234  *  the interface using ifconfig.
1235  *
1236  **********************************************************************/
1237 static void
1238 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1239 {
1240 	struct adapter *adapter = ifp->if_softc;
1241 	u_char fiber_type = IFM_1000_SX;
1242 
1243 	INIT_DEBUGOUT("em_media_status: begin");
1244 
1245 	ASSERT_SERIALIZED(ifp->if_serializer);
1246 
1247 	em_check_for_link(&adapter->hw);
1248 	em_update_link_status(adapter);
1249 
1250 	ifmr->ifm_status = IFM_AVALID;
1251 	ifmr->ifm_active = IFM_ETHER;
1252 
1253 	if (!adapter->link_active)
1254 		return;
1255 
1256 	ifmr->ifm_status |= IFM_ACTIVE;
1257 
1258 	if (adapter->hw.media_type == em_media_type_fiber ||
1259 	    adapter->hw.media_type == em_media_type_internal_serdes) {
1260 		if (adapter->hw.mac_type == em_82545)
1261 			fiber_type = IFM_1000_LX;
1262 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1263 	} else {
1264 		switch (adapter->link_speed) {
1265 		case 10:
1266 			ifmr->ifm_active |= IFM_10_T;
1267 			break;
1268 		case 100:
1269 			ifmr->ifm_active |= IFM_100_TX;
1270 			break;
1271 		case 1000:
1272 			ifmr->ifm_active |= IFM_1000_T;
1273 			break;
1274 		}
1275 		if (adapter->link_duplex == FULL_DUPLEX)
1276 			ifmr->ifm_active |= IFM_FDX;
1277 		else
1278 			ifmr->ifm_active |= IFM_HDX;
1279 	}
1280 }
1281 
1282 /*********************************************************************
1283  *
1284  *  Media Ioctl callback
1285  *
1286  *  This routine is called when the user changes speed/duplex using
1287  *  media/mediopt option with ifconfig.
1288  *
1289  **********************************************************************/
1290 static int
1291 em_media_change(struct ifnet *ifp)
1292 {
1293 	struct adapter *adapter = ifp->if_softc;
1294 	struct ifmedia *ifm = &adapter->media;
1295 
1296 	INIT_DEBUGOUT("em_media_change: begin");
1297 
1298 	ASSERT_SERIALIZED(ifp->if_serializer);
1299 
1300 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1301 		return (EINVAL);
1302 
1303 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1304 	case IFM_AUTO:
1305 		adapter->hw.autoneg = DO_AUTO_NEG;
1306 		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1307 		break;
1308 	case IFM_1000_LX:
1309 	case IFM_1000_SX:
1310 	case IFM_1000_T:
1311 		adapter->hw.autoneg = DO_AUTO_NEG;
1312 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
1313 		break;
1314 	case IFM_100_TX:
1315 		adapter->hw.autoneg = FALSE;
1316 		adapter->hw.autoneg_advertised = 0;
1317 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1318 			adapter->hw.forced_speed_duplex = em_100_full;
1319 		else
1320 			adapter->hw.forced_speed_duplex = em_100_half;
1321 		break;
1322 	case IFM_10_T:
1323 		adapter->hw.autoneg = FALSE;
1324 		adapter->hw.autoneg_advertised = 0;
1325 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1326 			adapter->hw.forced_speed_duplex = em_10_full;
1327 		else
1328 			adapter->hw.forced_speed_duplex = em_10_half;
1329 		break;
1330 	default:
1331 		if_printf(ifp, "Unsupported media type\n");
1332 	}
1333 	/*
1334 	 * As the speed/duplex settings may have changed we need to
1335 	 * reset the PHY.
1336 	 */
1337 	adapter->hw.phy_reset_disable = FALSE;
1338 
1339 	ifp->if_flags &= ~IFF_RUNNING;
1340 	em_init(adapter);
1341 
1342 	return(0);
1343 }
1344 
1345 static void
1346 em_tx_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1347 	 int error)
1348 {
1349 	struct em_q *q = arg;
1350 
1351 	if (error)
1352 		return;
1353 	KASSERT(nsegs <= EM_MAX_SCATTER,
1354 		("Too many DMA segments returned when mapping tx packet"));
1355 	q->nsegs = nsegs;
1356 	bcopy(seg, q->segs, nsegs * sizeof(seg[0]));
1357 }
1358 
1359 /*********************************************************************
1360  *
1361  *  This routine maps the mbufs to tx descriptors.
1362  *
1363  *  return 0 on success, positive on failure
1364  **********************************************************************/
1365 static int
1366 em_encap(struct adapter *adapter, struct mbuf *m_head)
1367 {
1368 	uint32_t txd_upper = 0, txd_lower = 0, txd_used = 0, txd_saved = 0;
1369 	int i, j, error, last = 0;
1370 
1371 	struct ifvlan *ifv = NULL;
1372 	struct em_q q;
1373 	struct em_buffer *tx_buffer = NULL, *tx_buffer_first;
1374 	bus_dmamap_t map;
1375 	struct em_tx_desc *current_tx_desc = NULL;
1376 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1377 
1378 	/*
1379 	 * Force a cleanup if number of TX descriptors
1380 	 * available hits the threshold
1381 	 */
1382 	if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1383 		em_txeof(adapter);
1384 		if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1385 			adapter->no_tx_desc_avail1++;
1386 			return (ENOBUFS);
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * Capture the first descriptor index, this descriptor will have
1392 	 * the index of the EOP which is the only one that now gets a
1393 	 * DONE bit writeback.
1394 	 */
1395 	tx_buffer_first = &adapter->tx_buffer_area[adapter->next_avail_tx_desc];
1396 
1397 	/*
1398 	 * Map the packet for DMA.
1399 	 */
1400 	map = tx_buffer_first->map;
1401 	error = bus_dmamap_load_mbuf(adapter->txtag, map, m_head, em_tx_cb,
1402 				     &q, BUS_DMA_NOWAIT);
1403 	if (error != 0) {
1404 		adapter->no_tx_dma_setup++;
1405 		return (error);
1406 	}
1407 	KASSERT(q.nsegs != 0, ("em_encap: empty packet"));
1408 
1409 	if (q.nsegs > (adapter->num_tx_desc_avail - 2)) {
1410 		adapter->no_tx_desc_avail2++;
1411 		error = ENOBUFS;
1412 		goto fail;
1413 	}
1414 
1415 	if (ifp->if_hwassist > 0) {
1416 		em_transmit_checksum_setup(adapter,  m_head,
1417 					   &txd_upper, &txd_lower);
1418 	}
1419 
1420 	/* Find out if we are in vlan mode */
1421 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1422 	    m_head->m_pkthdr.rcvif != NULL &&
1423 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1424 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1425 
1426 	i = adapter->next_avail_tx_desc;
1427 	if (adapter->pcix_82544)
1428 		txd_saved = i;
1429 
1430 	/* Set up our transmit descriptors */
1431 	for (j = 0; j < q.nsegs; j++) {
1432 		/* If adapter is 82544 and on PCIX bus */
1433 		if(adapter->pcix_82544) {
1434 			DESC_ARRAY desc_array;
1435 			uint32_t array_elements, counter;
1436 
1437 			/*
1438 			 * Check the Address and Length combination and
1439 			 * split the data accordingly
1440 			 */
1441 			array_elements = em_fill_descriptors(q.segs[j].ds_addr,
1442 						q.segs[j].ds_len, &desc_array);
1443 			for (counter = 0; counter < array_elements; counter++) {
1444 				if (txd_used == adapter->num_tx_desc_avail) {
1445 					adapter->next_avail_tx_desc = txd_saved;
1446 					adapter->no_tx_desc_avail2++;
1447 					error = ENOBUFS;
1448 					goto fail;
1449 				}
1450 				tx_buffer = &adapter->tx_buffer_area[i];
1451 				current_tx_desc = &adapter->tx_desc_base[i];
1452 				current_tx_desc->buffer_addr = htole64(
1453 					desc_array.descriptor[counter].address);
1454 				current_tx_desc->lower.data = htole32(
1455 					adapter->txd_cmd | txd_lower |
1456 					(uint16_t)desc_array.descriptor[counter].length);
1457 				current_tx_desc->upper.data = htole32(txd_upper);
1458 
1459 				last = i;
1460 				if (++i == adapter->num_tx_desc)
1461 					i = 0;
1462 
1463 				tx_buffer->m_head = NULL;
1464 				tx_buffer->next_eop = -1;
1465 				txd_used++;
1466 			}
1467 		} else {
1468 			tx_buffer = &adapter->tx_buffer_area[i];
1469 			current_tx_desc = &adapter->tx_desc_base[i];
1470 
1471 			current_tx_desc->buffer_addr = htole64(q.segs[j].ds_addr);
1472 			current_tx_desc->lower.data = htole32(
1473 				adapter->txd_cmd | txd_lower | q.segs[j].ds_len);
1474 			current_tx_desc->upper.data = htole32(txd_upper);
1475 
1476 			last = i;
1477 			if (++i == adapter->num_tx_desc)
1478 				i = 0;
1479 
1480 			tx_buffer->m_head = NULL;
1481 			tx_buffer->next_eop = -1;
1482 		}
1483 	}
1484 
1485 	adapter->next_avail_tx_desc = i;
1486 	if (adapter->pcix_82544)
1487 		adapter->num_tx_desc_avail -= txd_used;
1488 	else
1489 		adapter->num_tx_desc_avail -= q.nsegs;
1490 
1491 	if (ifv != NULL) {
1492 		/* Set the vlan id */
1493 		current_tx_desc->upper.fields.special = htole16(ifv->ifv_tag);
1494 
1495 		/* Tell hardware to add tag */
1496 		current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
1497 	}
1498 
1499 	tx_buffer->m_head = m_head;
1500 	tx_buffer_first->map = tx_buffer->map;
1501 	tx_buffer->map = map;
1502 	bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1503 
1504 	/*
1505 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1506 	 * and Report Status (RS)
1507 	 */
1508 	current_tx_desc->lower.data |=
1509 		htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
1510 
1511 	/*
1512 	 * Keep track in the first buffer which descriptor will be
1513 	 * written back.
1514 	 */
1515 	tx_buffer_first->next_eop = last;
1516 
1517 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
1518 			BUS_DMASYNC_PREWRITE);
1519 
1520 	/*
1521 	 * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
1522 	 * that this frame is available to transmit.
1523 	 */
1524 	if (adapter->hw.mac_type == em_82547 &&
1525 	    adapter->link_duplex == HALF_DUPLEX) {
1526 		em_82547_move_tail_serialized(adapter);
1527 	} else {
1528 		E1000_WRITE_REG(&adapter->hw, TDT, i);
1529 		if (adapter->hw.mac_type == em_82547) {
1530 			em_82547_update_fifo_head(adapter,
1531 						  m_head->m_pkthdr.len);
1532 		}
1533 	}
1534 
1535 	return (0);
1536 fail:
1537 	bus_dmamap_unload(adapter->txtag, map);
1538 	return error;
1539 }
1540 
1541 /*********************************************************************
1542  *
1543  * 82547 workaround to avoid controller hang in half-duplex environment.
1544  * The workaround is to avoid queuing a large packet that would span
1545  * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1546  * in this case. We do that only when FIFO is quiescent.
1547  *
1548  **********************************************************************/
1549 static void
1550 em_82547_move_tail(void *arg)
1551 {
1552 	struct adapter *adapter = arg;
1553 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1554 
1555 	lwkt_serialize_enter(ifp->if_serializer);
1556 	em_82547_move_tail_serialized(adapter);
1557 	lwkt_serialize_exit(ifp->if_serializer);
1558 }
1559 
1560 static void
1561 em_82547_move_tail_serialized(struct adapter *adapter)
1562 {
1563 	uint16_t hw_tdt;
1564 	uint16_t sw_tdt;
1565 	struct em_tx_desc *tx_desc;
1566 	uint16_t length = 0;
1567 	boolean_t eop = 0;
1568 
1569 	hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
1570 	sw_tdt = adapter->next_avail_tx_desc;
1571 
1572 	while (hw_tdt != sw_tdt) {
1573 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1574 		length += tx_desc->lower.flags.length;
1575 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1576 		if (++hw_tdt == adapter->num_tx_desc)
1577 			hw_tdt = 0;
1578 
1579 		if (eop) {
1580 			if (em_82547_fifo_workaround(adapter, length)) {
1581 				adapter->tx_fifo_wrk_cnt++;
1582 				callout_reset(&adapter->tx_fifo_timer, 1,
1583 					em_82547_move_tail, adapter);
1584 				break;
1585 			}
1586 			E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
1587 			em_82547_update_fifo_head(adapter, length);
1588 			length = 0;
1589 		}
1590 	}
1591 }
1592 
1593 static int
1594 em_82547_fifo_workaround(struct adapter *adapter, int len)
1595 {
1596 	int fifo_space, fifo_pkt_len;
1597 
1598 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1599 
1600 	if (adapter->link_duplex == HALF_DUPLEX) {
1601 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1602 
1603 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1604 			if (em_82547_tx_fifo_reset(adapter))
1605 				return (0);
1606 			else
1607 				return (1);
1608 		}
1609 	}
1610 
1611 	return (0);
1612 }
1613 
1614 static void
1615 em_82547_update_fifo_head(struct adapter *adapter, int len)
1616 {
1617 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1618 
1619 	/* tx_fifo_head is always 16 byte aligned */
1620 	adapter->tx_fifo_head += fifo_pkt_len;
1621 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1622 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1623 }
1624 
1625 static int
1626 em_82547_tx_fifo_reset(struct adapter *adapter)
1627 {
1628 	uint32_t tctl;
1629 
1630 	if (E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH) &&
1631 	    E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH) &&
1632 	    E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS) &&
1633 	    E1000_READ_REG(&adapter->hw, TDFPC) == 0) {
1634 		/* Disable TX unit */
1635 		tctl = E1000_READ_REG(&adapter->hw, TCTL);
1636 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
1637 
1638 		/* Reset FIFO pointers */
1639 		E1000_WRITE_REG(&adapter->hw, TDFT,  adapter->tx_head_addr);
1640 		E1000_WRITE_REG(&adapter->hw, TDFH,  adapter->tx_head_addr);
1641 		E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
1642 		E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
1643 
1644 		/* Re-enable TX unit */
1645 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1646 		E1000_WRITE_FLUSH(&adapter->hw);
1647 
1648 		adapter->tx_fifo_head = 0;
1649 		adapter->tx_fifo_reset_cnt++;
1650 
1651 		return (TRUE);
1652 	} else {
1653 		return (FALSE);
1654 	}
1655 }
1656 
1657 static void
1658 em_set_promisc(struct adapter *adapter)
1659 {
1660 	uint32_t reg_rctl;
1661 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1662 
1663 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1664 
1665 	adapter->em_insert_vlan_header = 0;
1666 	if (ifp->if_flags & IFF_PROMISC) {
1667 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1668 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1669 
1670 		/*
1671 		 * Disable VLAN stripping in promiscous mode.
1672 		 * This enables bridging of vlan tagged frames to occur
1673 		 * and also allows vlan tags to be seen in tcpdump.
1674 		 */
1675 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1676 			em_disable_vlans(adapter);
1677 		adapter->em_insert_vlan_header = 1;
1678 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1679 		reg_rctl |= E1000_RCTL_MPE;
1680 		reg_rctl &= ~E1000_RCTL_UPE;
1681 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1682 	}
1683 }
1684 
1685 static void
1686 em_disable_promisc(struct adapter *adapter)
1687 {
1688 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1689 
1690 	uint32_t reg_rctl;
1691 
1692 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1693 
1694 	reg_rctl &= (~E1000_RCTL_UPE);
1695 	reg_rctl &= (~E1000_RCTL_MPE);
1696 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1697 
1698 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1699 		em_enable_vlans(adapter);
1700 	adapter->em_insert_vlan_header = 0;
1701 }
1702 
1703 /*********************************************************************
1704  *  Multicast Update
1705  *
1706  *  This routine is called whenever multicast address list is updated.
1707  *
1708  **********************************************************************/
1709 
1710 static void
1711 em_set_multi(struct adapter *adapter)
1712 {
1713 	uint32_t reg_rctl = 0;
1714 	uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
1715 	struct ifmultiaddr *ifma;
1716 	int mcnt = 0;
1717 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1718 
1719 	IOCTL_DEBUGOUT("em_set_multi: begin");
1720 
1721 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1722 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1723 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1724 			em_pci_clear_mwi(&adapter->hw);
1725 		reg_rctl |= E1000_RCTL_RST;
1726 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1727 		msec_delay(5);
1728 	}
1729 
1730 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1731 		if (ifma->ifma_addr->sa_family != AF_LINK)
1732 			continue;
1733 
1734 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1735 			break;
1736 
1737 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1738 		      &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
1739 		mcnt++;
1740 	}
1741 
1742 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1743 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1744 		reg_rctl |= E1000_RCTL_MPE;
1745 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1746 	} else {
1747 		em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
1748 	}
1749 
1750 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1751 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1752 		reg_rctl &= ~E1000_RCTL_RST;
1753 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1754 		msec_delay(5);
1755 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1756                         em_pci_set_mwi(&adapter->hw);
1757 	}
1758 }
1759 
1760 /*********************************************************************
1761  *  Timer routine
1762  *
1763  *  This routine checks for link status and updates statistics.
1764  *
1765  **********************************************************************/
1766 
1767 static void
1768 em_local_timer(void *arg)
1769 {
1770 	struct ifnet *ifp;
1771 	struct adapter *adapter = arg;
1772 	ifp = &adapter->interface_data.ac_if;
1773 
1774 	lwkt_serialize_enter(ifp->if_serializer);
1775 
1776 	em_check_for_link(&adapter->hw);
1777 	em_update_link_status(adapter);
1778 	em_update_stats_counters(adapter);
1779 	if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING)
1780 		em_print_hw_stats(adapter);
1781 	em_smartspeed(adapter);
1782 
1783 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1784 
1785 	lwkt_serialize_exit(ifp->if_serializer);
1786 }
1787 
1788 static void
1789 em_update_link_status(struct adapter *adapter)
1790 {
1791 	struct ifnet *ifp;
1792 	ifp = &adapter->interface_data.ac_if;
1793 
1794 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
1795 		if (adapter->link_active == 0) {
1796 			em_get_speed_and_duplex(&adapter->hw,
1797 						&adapter->link_speed,
1798 						&adapter->link_duplex);
1799 			/* Check if we may set SPEED_MODE bit on PCI-E */
1800 			if (adapter->link_speed == SPEED_1000 &&
1801 			    (adapter->hw.mac_type == em_82571 ||
1802 			     adapter->hw.mac_type == em_82572)) {
1803 				int tarc0;
1804 
1805 				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
1806 				tarc0 |= SPEED_MODE_BIT;
1807 				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
1808 			}
1809 			if (bootverbose) {
1810 				if_printf(&adapter->interface_data.ac_if,
1811 					  "Link is up %d Mbps %s\n",
1812 					  adapter->link_speed,
1813 					  adapter->link_duplex == FULL_DUPLEX ?
1814 						"Full Duplex" : "Half Duplex");
1815 			}
1816 			adapter->link_active = 1;
1817 			adapter->smartspeed = 0;
1818 			ifp->if_baudrate = adapter->link_speed * 1000000;
1819 			ifp->if_link_state = LINK_STATE_UP;
1820 			if_link_state_change(ifp);
1821 		}
1822 	} else {
1823 		if (adapter->link_active == 1) {
1824 			ifp->if_baudrate = 0;
1825 			adapter->link_speed = 0;
1826 			adapter->link_duplex = 0;
1827 			if (bootverbose) {
1828 				if_printf(&adapter->interface_data.ac_if,
1829 					  "Link is Down\n");
1830 			}
1831 			adapter->link_active = 0;
1832 			ifp->if_link_state = LINK_STATE_DOWN;
1833 			if_link_state_change(ifp);
1834 		}
1835 	}
1836 }
1837 
1838 /*********************************************************************
1839  *
1840  *  This routine disables all traffic on the adapter by issuing a
1841  *  global reset on the MAC and deallocates TX/RX buffers.
1842  *
1843  **********************************************************************/
1844 
1845 static void
1846 em_stop(void *arg)
1847 {
1848 	struct ifnet   *ifp;
1849 	struct adapter * adapter = arg;
1850 	ifp = &adapter->interface_data.ac_if;
1851 
1852 	ASSERT_SERIALIZED(ifp->if_serializer);
1853 
1854 	INIT_DEBUGOUT("em_stop: begin");
1855 	em_disable_intr(adapter);
1856 	em_reset_hw(&adapter->hw);
1857 	callout_stop(&adapter->timer);
1858 	callout_stop(&adapter->tx_fifo_timer);
1859 	em_free_transmit_structures(adapter);
1860 	em_free_receive_structures(adapter);
1861 
1862 	/* Tell the stack that the interface is no longer active */
1863 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1864 	ifp->if_timer = 0;
1865 }
1866 
1867 /*********************************************************************
1868  *
1869  *  Determine hardware revision.
1870  *
1871  **********************************************************************/
1872 static void
1873 em_identify_hardware(struct adapter *adapter)
1874 {
1875 	device_t dev = adapter->dev;
1876 
1877 	/* Make sure our PCI config space has the necessary stuff set */
1878 	adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1879 	if (!((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
1880 	      (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN))) {
1881 		device_printf(dev, "Memory Access and/or Bus Master bits "
1882 			      "were not set!\n");
1883 		adapter->hw.pci_cmd_word |= PCIM_CMD_BUSMASTEREN |
1884 					    PCIM_CMD_MEMEN;
1885 		pci_write_config(dev, PCIR_COMMAND,
1886 				 adapter->hw.pci_cmd_word, 2);
1887 	}
1888 
1889 	/* Save off the information about this board */
1890 	adapter->hw.vendor_id = pci_get_vendor(dev);
1891 	adapter->hw.device_id = pci_get_device(dev);
1892 	adapter->hw.revision_id = pci_get_revid(dev);
1893 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
1894 	adapter->hw.subsystem_id = pci_get_subdevice(dev);
1895 
1896 	/* Identify the MAC */
1897 	if (em_set_mac_type(&adapter->hw))
1898 		device_printf(dev, "Unknown MAC Type\n");
1899 
1900 	if (adapter->hw.mac_type == em_82541 ||
1901 	    adapter->hw.mac_type == em_82541_rev_2 ||
1902 	    adapter->hw.mac_type == em_82547 ||
1903 	    adapter->hw.mac_type == em_82547_rev_2)
1904 		adapter->hw.phy_init_script = TRUE;
1905 }
1906 
1907 static int
1908 em_allocate_pci_resources(device_t dev)
1909 {
1910 	struct adapter *adapter = device_get_softc(dev);
1911 	int rid;
1912 
1913 	rid = PCIR_BAR(0);
1914 	adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1915 						     &rid, RF_ACTIVE);
1916 	if (adapter->res_memory == NULL) {
1917 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1918 		return ENXIO;
1919 	}
1920 	adapter->osdep.mem_bus_space_tag =
1921 		rman_get_bustag(adapter->res_memory);
1922 	adapter->osdep.mem_bus_space_handle =
1923 	    rman_get_bushandle(adapter->res_memory);
1924 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
1925 
1926 	if (adapter->hw.mac_type > em_82543) {
1927 		/* Figure our where our IO BAR is ? */
1928 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1929 			uint32_t val;
1930 
1931 			val = pci_read_config(dev, rid, 4);
1932 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1933 				adapter->io_rid = rid;
1934 				break;
1935 			}
1936 			rid += 4;
1937 			/* check for 64bit BAR */
1938 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1939 				rid += 4;
1940 		}
1941 		if (rid >= PCIR_CIS) {
1942 			device_printf(dev, "Unable to locate IO BAR\n");
1943 			return (ENXIO);
1944  		}
1945 
1946 		adapter->res_ioport = bus_alloc_resource_any(dev,
1947 		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1948 		if (!(adapter->res_ioport)) {
1949 			device_printf(dev, "Unable to allocate bus resource: "
1950 				      "ioport\n");
1951 			return ENXIO;
1952 		}
1953 		adapter->hw.io_base = 0;
1954 		adapter->osdep.io_bus_space_tag =
1955 			rman_get_bustag(adapter->res_ioport);
1956 		adapter->osdep.io_bus_space_handle =
1957 			rman_get_bushandle(adapter->res_ioport);
1958 	}
1959 
1960 	/* For ICH8 we need to find the flash memory. */
1961 	if (adapter->hw.mac_type == em_ich8lan) {
1962 		rid = EM_FLASH;
1963 		adapter->flash_mem = bus_alloc_resource_any(dev,
1964 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
1965 		if (adapter->flash_mem == NULL) {
1966 			device_printf(dev, "Unable to allocate bus resource: "
1967 				      "flash memory\n");
1968 			return ENXIO;
1969 		}
1970 		adapter->osdep.flash_bus_space_tag =
1971 		    rman_get_bustag(adapter->flash_mem);
1972 		adapter->osdep.flash_bus_space_handle =
1973 		    rman_get_bushandle(adapter->flash_mem);
1974 	}
1975 
1976 	rid = 0x0;
1977 	adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1978 	    &rid, RF_SHAREABLE | RF_ACTIVE);
1979 	if (adapter->res_interrupt == NULL) {
1980 		device_printf(dev, "Unable to allocate bus resource: "
1981 			      "interrupt\n");
1982 		return ENXIO;
1983 	}
1984 
1985 	adapter->hw.back = &adapter->osdep;
1986 
1987 	return 0;
1988 }
1989 
1990 static void
1991 em_free_pci_resources(device_t dev)
1992 {
1993 	struct adapter *adapter = device_get_softc(dev);
1994 
1995 	if (adapter->res_interrupt != NULL) {
1996 		bus_release_resource(dev, SYS_RES_IRQ, 0,
1997 				     adapter->res_interrupt);
1998 	}
1999 	if (adapter->res_memory != NULL) {
2000 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2001 				     adapter->res_memory);
2002 	}
2003 
2004 	if (adapter->res_ioport != NULL) {
2005 		bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid,
2006 				     adapter->res_ioport);
2007 	}
2008 
2009 	if (adapter->flash_mem != NULL) {
2010 		bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH,
2011 				     adapter->flash_mem);
2012 	}
2013 }
2014 
2015 /*********************************************************************
2016  *
2017  *  Initialize the hardware to a configuration as specified by the
2018  *  adapter structure. The controller is reset, the EEPROM is
2019  *  verified, the MAC address is set, then the shared initialization
2020  *  routines are called.
2021  *
2022  **********************************************************************/
2023 static int
2024 em_hardware_init(struct adapter *adapter)
2025 {
2026 	uint16_t	rx_buffer_size;
2027 
2028 	INIT_DEBUGOUT("em_hardware_init: begin");
2029 	/* Issue a global reset */
2030 	em_reset_hw(&adapter->hw);
2031 
2032 	/* When hardware is reset, fifo_head is also reset */
2033 	adapter->tx_fifo_head = 0;
2034 
2035 	/* Make sure we have a good EEPROM before we read from it */
2036 	if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2037 		if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2038 			device_printf(adapter->dev,
2039 				      "The EEPROM Checksum Is Not Valid\n");
2040 			return (EIO);
2041 		}
2042 	}
2043 
2044 	if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
2045 		device_printf(adapter->dev,
2046 			      "EEPROM read error while reading part number\n");
2047 		return (EIO);
2048 	}
2049 
2050 	/* Set up smart power down as default off on newer adapters. */
2051 	if (!em_smart_pwr_down &&
2052 	    (adapter->hw.mac_type == em_82571 ||
2053 	     adapter->hw.mac_type == em_82572)) {
2054 		uint16_t phy_tmp = 0;
2055 
2056 		/* Speed up time to link by disabling smart power down. */
2057 		em_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2058 				&phy_tmp);
2059 		phy_tmp &= ~IGP02E1000_PM_SPD;
2060 		em_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2061 				 phy_tmp);
2062 	}
2063 
2064 	/*
2065 	 * These parameters control the automatic generation (Tx) and
2066 	 * response (Rx) to Ethernet PAUSE frames.
2067 	 * - High water mark should allow for at least two frames to be
2068 	 *   received after sending an XOFF.
2069 	 * - Low water mark works best when it is very near the high water mark.
2070 	 *   This allows the receiver to restart by sending XON when it has
2071 	 *   drained a bit.  Here we use an arbitary value of 1500 which will
2072 	 *   restart after one full frame is pulled from the buffer.  There
2073 	 *   could be several smaller frames in the buffer and if so they will
2074 	 *   not trigger the XON until their total number reduces the buffer
2075 	 *   by 1500.
2076 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2077 	 */
2078 	rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10);
2079 
2080 	adapter->hw.fc_high_water =
2081 	    rx_buffer_size - roundup2(adapter->hw.max_frame_size, 1024);
2082 	adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
2083 	if (adapter->hw.mac_type == em_80003es2lan)
2084 		adapter->hw.fc_pause_time = 0xFFFF;
2085 	else
2086 		adapter->hw.fc_pause_time = 0x1000;
2087 	adapter->hw.fc_send_xon = TRUE;
2088 	adapter->hw.fc = E1000_FC_FULL;
2089 
2090 	if (em_init_hw(&adapter->hw) < 0) {
2091 		device_printf(adapter->dev, "Hardware Initialization Failed");
2092 		return (EIO);
2093 	}
2094 
2095 	em_check_for_link(&adapter->hw);
2096 
2097 	return (0);
2098 }
2099 
2100 /*********************************************************************
2101  *
2102  *  Setup networking device structure and register an interface.
2103  *
2104  **********************************************************************/
2105 static void
2106 em_setup_interface(device_t dev, struct adapter *adapter)
2107 {
2108 	struct ifnet *ifp;
2109 	u_char fiber_type = IFM_1000_SX;	/* default type */
2110 	INIT_DEBUGOUT("em_setup_interface: begin");
2111 
2112 	ifp = &adapter->interface_data.ac_if;
2113 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2114 	ifp->if_mtu = ETHERMTU;
2115 	ifp->if_baudrate = 1000000000;
2116 	ifp->if_init =  em_init;
2117 	ifp->if_softc = adapter;
2118 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2119 	ifp->if_ioctl = em_ioctl;
2120 	ifp->if_start = em_start;
2121 #ifdef DEVICE_POLLING
2122 	ifp->if_poll = em_poll;
2123 #endif
2124 	ifp->if_watchdog = em_watchdog;
2125 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2126 	ifq_set_ready(&ifp->if_snd);
2127 
2128 	if (adapter->hw.mac_type >= em_82543)
2129 		ifp->if_capabilities |= IFCAP_HWCSUM;
2130 
2131 	ifp->if_capenable = ifp->if_capabilities;
2132 
2133 	ether_ifattach(ifp, adapter->hw.mac_addr, NULL);
2134 
2135 	/*
2136 	 * Tell the upper layer(s) we support long frames.
2137 	 */
2138 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2139 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2140 #if 0
2141 	ifp->if_capenable |= IFCAP_VLAN_MTU;
2142 #endif
2143 
2144 	/*
2145 	 * Specify the media types supported by this adapter and register
2146 	 * callbacks to update media and link information
2147 	 */
2148 	ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
2149 		     em_media_status);
2150 	if (adapter->hw.media_type == em_media_type_fiber ||
2151 	    adapter->hw.media_type == em_media_type_internal_serdes) {
2152 		if (adapter->hw.mac_type == em_82545)
2153 			fiber_type = IFM_1000_LX;
2154 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2155 			    0, NULL);
2156 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2157 	} else {
2158 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2159 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2160 			    0, NULL);
2161 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2162 			    0, NULL);
2163 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2164 			    0, NULL);
2165 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
2166 			    0, NULL);
2167 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2168 	}
2169 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2170 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2171 }
2172 
2173 /*********************************************************************
2174  *
2175  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2176  *
2177  **********************************************************************/
2178 static void
2179 em_smartspeed(struct adapter *adapter)
2180 {
2181 	uint16_t phy_tmp;
2182 
2183 	if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
2184 	    !adapter->hw.autoneg ||
2185 	    !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2186 		return;
2187 
2188 	if (adapter->smartspeed == 0) {
2189 		/*
2190 		 * If Master/Slave config fault is asserted twice,
2191 		 * we assume back-to-back.
2192 		 */
2193 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2194 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2195 			return;
2196 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2197 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2198 			em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2199 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2200 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2201 				em_write_phy_reg(&adapter->hw,
2202 						 PHY_1000T_CTRL, phy_tmp);
2203 				adapter->smartspeed++;
2204 				if (adapter->hw.autoneg &&
2205 				    !em_phy_setup_autoneg(&adapter->hw) &&
2206 				    !em_read_phy_reg(&adapter->hw, PHY_CTRL,
2207 						     &phy_tmp)) {
2208 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2209 						    MII_CR_RESTART_AUTO_NEG);
2210 					em_write_phy_reg(&adapter->hw,
2211 							 PHY_CTRL, phy_tmp);
2212 				}
2213 			}
2214 		}
2215 		return;
2216 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2217 		/* If still no link, perhaps using 2/3 pair cable */
2218 		em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2219 		phy_tmp |= CR_1000T_MS_ENABLE;
2220 		em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2221 		if (adapter->hw.autoneg &&
2222 		    !em_phy_setup_autoneg(&adapter->hw) &&
2223 		    !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
2224 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2225 				    MII_CR_RESTART_AUTO_NEG);
2226 			em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
2227 		}
2228 	}
2229 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2230 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2231 		adapter->smartspeed = 0;
2232 }
2233 
2234 /*
2235  * Manage DMA'able memory.
2236  */
2237 static void
2238 em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2239 {
2240 	if (error)
2241 		return;
2242 	*(bus_addr_t *)arg = segs->ds_addr;
2243 }
2244 
2245 static int
2246 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2247 	      struct em_dma_alloc *dma)
2248 {
2249 	device_t dev = adapter->dev;
2250 	int error;
2251 
2252 	error = bus_dma_tag_create(NULL,		/* parent */
2253 				   EM_DBA_ALIGN, 0,	/* alignment, bounds */
2254 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2255 				   BUS_SPACE_MAXADDR,	/* highaddr */
2256 				   NULL, NULL,		/* filter, filterarg */
2257 				   size,		/* maxsize */
2258 				   1,			/* nsegments */
2259 				   size,		/* maxsegsize */
2260 				   0,			/* flags */
2261 				   &dma->dma_tag);
2262 	if (error) {
2263 		device_printf(dev, "%s: bus_dma_tag_create failed; error %d\n",
2264 			      __func__, error);
2265 		return error;
2266 	}
2267 
2268 	error = bus_dmamem_alloc(dma->dma_tag, (void**)&dma->dma_vaddr,
2269 				 BUS_DMA_WAITOK, &dma->dma_map);
2270 	if (error) {
2271 		device_printf(dev, "%s: bus_dmammem_alloc failed; "
2272 			      "size %llu, error %d\n",
2273 			      __func__, (uintmax_t)size, error);
2274 		goto fail;
2275 	}
2276 
2277 	error = bus_dmamap_load(dma->dma_tag, dma->dma_map,
2278 				dma->dma_vaddr, size,
2279 				em_dmamap_cb, &dma->dma_paddr,
2280 				BUS_DMA_WAITOK);
2281 	if (error) {
2282 		device_printf(dev, "%s: bus_dmamap_load failed; error %u\n",
2283 			      __func__, error);
2284 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2285 		goto fail;
2286 	}
2287 
2288 	return 0;
2289 fail:
2290 	bus_dma_tag_destroy(dma->dma_tag);
2291 	dma->dma_tag = NULL;
2292 	return error;
2293 }
2294 
2295 static void
2296 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2297 {
2298 	if (dma->dma_tag != NULL) {
2299 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2300 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2301 		bus_dma_tag_destroy(dma->dma_tag);
2302 		dma->dma_tag = NULL;
2303 	}
2304 }
2305 
2306 /*********************************************************************
2307  *
2308  *  Allocate and initialize transmit structures.
2309  *
2310  **********************************************************************/
2311 static int
2312 em_setup_transmit_structures(struct adapter *adapter)
2313 {
2314 	struct em_buffer *tx_buffer;
2315 	bus_size_t size;
2316 	int error, i;
2317 
2318 	/*
2319 	 * Setup DMA descriptor areas.
2320 	 */
2321 	size = roundup2(adapter->hw.max_frame_size, MCLBYTES);
2322 	if (bus_dma_tag_create(NULL,			/* parent */
2323 			       1, 0,			/* alignment, bounds */
2324 			       BUS_SPACE_MAXADDR,	/* lowaddr */
2325 			       BUS_SPACE_MAXADDR,	/* highaddr */
2326 			       NULL, NULL,		/* filter, filterarg */
2327 			       size,			/* maxsize */
2328 			       EM_MAX_SCATTER,		/* nsegments */
2329 			       size,			/* maxsegsize */
2330 			       0,			/* flags */
2331 			       &adapter->txtag)) {
2332 		device_printf(adapter->dev, "Unable to allocate TX DMA tag\n");
2333 		return(ENOMEM);
2334 	}
2335 
2336 	adapter->tx_buffer_area =
2337 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2338 			M_DEVBUF, M_WAITOK | M_ZERO);
2339 
2340 	bzero(adapter->tx_desc_base,
2341 	      sizeof(struct em_tx_desc) * adapter->num_tx_desc);
2342 	tx_buffer = adapter->tx_buffer_area;
2343 	for (i = 0; i < adapter->num_tx_desc; i++) {
2344 		error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
2345 		if (error) {
2346 			device_printf(adapter->dev,
2347 				      "Unable to create TX DMA map\n");
2348 			goto fail;
2349 		}
2350 		tx_buffer++;
2351 	}
2352 
2353 	adapter->next_avail_tx_desc = 0;
2354 	adapter->next_tx_to_clean = 0;
2355 
2356 	/* Set number of descriptors available */
2357 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2358 
2359 	/* Set checksum context */
2360 	adapter->active_checksum_context = OFFLOAD_NONE;
2361 
2362 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2363 			BUS_DMASYNC_PREWRITE);
2364 
2365 	return (0);
2366 fail:
2367 	em_free_transmit_structures(adapter);
2368 	return (error);
2369 }
2370 
2371 /*********************************************************************
2372  *
2373  *  Enable transmit unit.
2374  *
2375  **********************************************************************/
2376 static void
2377 em_initialize_transmit_unit(struct adapter *adapter)
2378 {
2379 	uint32_t reg_tctl;
2380 	uint32_t reg_tipg = 0;
2381 	uint64_t bus_addr;
2382 
2383 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2384 
2385 	/* Setup the Base and Length of the Tx Descriptor Ring */
2386 	bus_addr = adapter->txdma.dma_paddr;
2387 	E1000_WRITE_REG(&adapter->hw, TDLEN,
2388 			adapter->num_tx_desc * sizeof(struct em_tx_desc));
2389 	E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
2390 	E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
2391 
2392 	/* Setup the HW Tx Head and Tail descriptor pointers */
2393 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
2394 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
2395 
2396 	HW_DEBUGOUT2("Base = %x, Length = %x\n",
2397 		     E1000_READ_REG(&adapter->hw, TDBAL),
2398 		     E1000_READ_REG(&adapter->hw, TDLEN));
2399 
2400 	/* Set the default values for the Tx Inter Packet Gap timer */
2401 	switch (adapter->hw.mac_type) {
2402 	case em_82542_rev2_0:
2403 	case em_82542_rev2_1:
2404 		reg_tipg = DEFAULT_82542_TIPG_IPGT;
2405 		reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2406 		reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2407 		break;
2408 	case em_80003es2lan:
2409 		reg_tipg = DEFAULT_82543_TIPG_IPGR1;
2410 		reg_tipg |=
2411 		    DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2412 		break;
2413 	default:
2414 		if (adapter->hw.media_type == em_media_type_fiber ||
2415 		    adapter->hw.media_type == em_media_type_internal_serdes)
2416 			reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2417 		else
2418 			reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2419 		reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2420 		reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2421 	}
2422 
2423 	E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
2424 	E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
2425 	if (adapter->hw.mac_type >= em_82540) {
2426 		E1000_WRITE_REG(&adapter->hw, TADV,
2427 				adapter->tx_abs_int_delay.value);
2428 	}
2429 
2430 	/* Program the Transmit Control Register */
2431 	reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
2432 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2433 	if (adapter->hw.mac_type >= em_82571)
2434 		reg_tctl |= E1000_TCTL_MULR;
2435 	if (adapter->link_duplex == 1)
2436 		reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2437 	else
2438 		reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2439 
2440 	/* This write will effectively turn on the transmit unit. */
2441 	E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
2442 
2443 	/* Setup Transmit Descriptor Base Settings */
2444 	adapter->txd_cmd = E1000_TXD_CMD_IFCS;
2445 
2446 	if (adapter->tx_int_delay.value > 0)
2447 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2448 }
2449 
2450 /*********************************************************************
2451  *
2452  *  Free all transmit related data structures.
2453  *
2454  **********************************************************************/
2455 static void
2456 em_free_transmit_structures(struct adapter *adapter)
2457 {
2458 	struct em_buffer *tx_buffer;
2459 	int i;
2460 
2461 	INIT_DEBUGOUT("free_transmit_structures: begin");
2462 
2463 	if (adapter->tx_buffer_area != NULL) {
2464 		tx_buffer = adapter->tx_buffer_area;
2465 		for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
2466 			if (tx_buffer->m_head != NULL) {
2467 				bus_dmamap_unload(adapter->txtag,
2468 						  tx_buffer->map);
2469 				m_freem(tx_buffer->m_head);
2470 			}
2471 
2472 			if (tx_buffer->map != NULL) {
2473 				bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2474 				tx_buffer->map = NULL;
2475  			}
2476 			tx_buffer->m_head = NULL;
2477 		}
2478 	}
2479 	if (adapter->tx_buffer_area != NULL) {
2480 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2481 		adapter->tx_buffer_area = NULL;
2482 	}
2483 	if (adapter->txtag != NULL) {
2484 		bus_dma_tag_destroy(adapter->txtag);
2485 		adapter->txtag = NULL;
2486 	}
2487 }
2488 
2489 /*********************************************************************
2490  *
2491  *  The offload context needs to be set when we transfer the first
2492  *  packet of a particular protocol (TCP/UDP). We change the
2493  *  context only if the protocol type changes.
2494  *
2495  **********************************************************************/
2496 static void
2497 em_transmit_checksum_setup(struct adapter *adapter,
2498 			   struct mbuf *mp,
2499 			   uint32_t *txd_upper,
2500 			   uint32_t *txd_lower)
2501 {
2502 	struct em_context_desc *TXD;
2503 	struct em_buffer *tx_buffer;
2504 	int curr_txd;
2505 
2506 	if (mp->m_pkthdr.csum_flags) {
2507 		if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
2508 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2509 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2510 			if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
2511 				return;
2512 			else
2513 				adapter->active_checksum_context = OFFLOAD_TCP_IP;
2514 		} else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
2515 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2516 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2517 			if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
2518 				return;
2519 			else
2520 				adapter->active_checksum_context = OFFLOAD_UDP_IP;
2521 		} else {
2522 			*txd_upper = 0;
2523 			*txd_lower = 0;
2524 			return;
2525 		}
2526 	} else {
2527 		*txd_upper = 0;
2528 		*txd_lower = 0;
2529 		return;
2530 	}
2531 
2532 	/*
2533 	 * If we reach this point, the checksum offload context
2534 	 * needs to be reset.
2535 	 */
2536 	curr_txd = adapter->next_avail_tx_desc;
2537 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2538 	TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
2539 
2540 	TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
2541 	TXD->lower_setup.ip_fields.ipcso =
2542 	    ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
2543 	TXD->lower_setup.ip_fields.ipcse =
2544 	    htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
2545 
2546 	TXD->upper_setup.tcp_fields.tucss =
2547 	    ETHER_HDR_LEN + sizeof(struct ip);
2548 	TXD->upper_setup.tcp_fields.tucse = htole16(0);
2549 
2550 	if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
2551 		TXD->upper_setup.tcp_fields.tucso =
2552 			ETHER_HDR_LEN + sizeof(struct ip) +
2553 			offsetof(struct tcphdr, th_sum);
2554 	} else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
2555 		TXD->upper_setup.tcp_fields.tucso =
2556 			ETHER_HDR_LEN + sizeof(struct ip) +
2557 			offsetof(struct udphdr, uh_sum);
2558 	}
2559 
2560 	TXD->tcp_seg_setup.data = htole32(0);
2561 	TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
2562 
2563 	tx_buffer->m_head = NULL;
2564 	tx_buffer->next_eop = -1;
2565 
2566 	if (++curr_txd == adapter->num_tx_desc)
2567 		curr_txd = 0;
2568 
2569 	adapter->num_tx_desc_avail--;
2570 	adapter->next_avail_tx_desc = curr_txd;
2571 }
2572 
2573 /**********************************************************************
2574  *
2575  *  Examine each tx_buffer in the used queue. If the hardware is done
2576  *  processing the packet then free associated resources. The
2577  *  tx_buffer is put back on the free queue.
2578  *
2579  **********************************************************************/
2580 
2581 static void
2582 em_txeof(struct adapter *adapter)
2583 {
2584 	int first, last, done, num_avail;
2585 	struct em_buffer *tx_buffer;
2586 	struct em_tx_desc *tx_desc, *eop_desc;
2587 	struct ifnet *ifp = &adapter->interface_data.ac_if;
2588 
2589 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2590 		return;
2591 
2592 	num_avail = adapter->num_tx_desc_avail;
2593 	first = adapter->next_tx_to_clean;
2594 	tx_desc = &adapter->tx_desc_base[first];
2595 	tx_buffer = &adapter->tx_buffer_area[first];
2596 	last = tx_buffer->next_eop;
2597 	KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2598 	eop_desc = &adapter->tx_desc_base[last];
2599 
2600 	/*
2601 	 * Now caculate the terminating index for the cleanup loop below
2602 	 */
2603 	if (++last == adapter->num_tx_desc)
2604 		last = 0;
2605 	done = last;
2606 
2607 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2608 			BUS_DMASYNC_POSTREAD);
2609 
2610 	while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2611 		while (first != done) {
2612 			tx_desc->upper.data = 0;
2613 			tx_desc->lower.data = 0;
2614 			num_avail++;
2615 
2616 			logif(pkt_txclean);
2617 
2618 			if (tx_buffer->m_head) {
2619 				ifp->if_opackets++;
2620 				bus_dmamap_sync(adapter->txtag, tx_buffer->map,
2621 						BUS_DMASYNC_POSTWRITE);
2622 				bus_dmamap_unload(adapter->txtag,
2623 						  tx_buffer->map);
2624 
2625 				m_freem(tx_buffer->m_head);
2626 				tx_buffer->m_head = NULL;
2627 			}
2628 			tx_buffer->next_eop = -1;
2629 
2630 			if (++first == adapter->num_tx_desc)
2631 				first = 0;
2632 
2633 			tx_buffer = &adapter->tx_buffer_area[first];
2634 			tx_desc = &adapter->tx_desc_base[first];
2635 		}
2636 		/* See if we can continue to the next packet */
2637 		last = tx_buffer->next_eop;
2638 		if (last != -1) {
2639 			KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2640 			eop_desc = &adapter->tx_desc_base[last];
2641 			if (++last == adapter->num_tx_desc)
2642 				last = 0;
2643 			done = last;
2644 		} else {
2645 			break;
2646 		}
2647 	}
2648 
2649 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2650 			BUS_DMASYNC_PREWRITE);
2651 
2652 	adapter->next_tx_to_clean = first;
2653 
2654 	/*
2655 	 * If we have enough room, clear IFF_OACTIVE to tell the stack
2656 	 * that it is OK to send packets.
2657 	 * If there are no pending descriptors, clear the timeout. Otherwise,
2658 	 * if some descriptors have been freed, restart the timeout.
2659 	 */
2660 	if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
2661 		ifp->if_flags &= ~IFF_OACTIVE;
2662 		if (num_avail == adapter->num_tx_desc)
2663 			ifp->if_timer = 0;
2664 		else if (num_avail == adapter->num_tx_desc_avail)
2665 			ifp->if_timer = EM_TX_TIMEOUT;
2666 	}
2667 	adapter->num_tx_desc_avail = num_avail;
2668 }
2669 
2670 /*********************************************************************
2671  *
2672  *  Get a buffer from system mbuf buffer pool.
2673  *
2674  **********************************************************************/
2675 static int
2676 em_get_buf(int i, struct adapter *adapter, struct mbuf *nmp, int how)
2677 {
2678 	struct mbuf *mp = nmp;
2679 	struct em_buffer *rx_buffer;
2680 	struct ifnet *ifp;
2681 	bus_addr_t paddr;
2682 	int error;
2683 
2684 	ifp = &adapter->interface_data.ac_if;
2685 
2686 	if (mp == NULL) {
2687 		mp = m_getcl(how, MT_DATA, M_PKTHDR);
2688 		if (mp == NULL) {
2689 			adapter->mbuf_cluster_failed++;
2690 			return (ENOBUFS);
2691 		}
2692 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2693 	} else {
2694 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2695 		mp->m_data = mp->m_ext.ext_buf;
2696 		mp->m_next = NULL;
2697 	}
2698 
2699 	if (ifp->if_mtu <= ETHERMTU)
2700 		m_adj(mp, ETHER_ALIGN);
2701 
2702 	rx_buffer = &adapter->rx_buffer_area[i];
2703 
2704 	/*
2705 	 * Using memory from the mbuf cluster pool, invoke the
2706 	 * bus_dma machinery to arrange the memory mapping.
2707 	 */
2708 	error = bus_dmamap_load(adapter->rxtag, rx_buffer->map,
2709 				mtod(mp, void *), mp->m_len,
2710 				em_dmamap_cb, &paddr, 0);
2711 	if (error) {
2712 		m_free(mp);
2713 		return (error);
2714 	}
2715 	rx_buffer->m_head = mp;
2716 	adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
2717 	bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
2718 
2719 	return (0);
2720 }
2721 
2722 /*********************************************************************
2723  *
2724  *  Allocate memory for rx_buffer structures. Since we use one
2725  *  rx_buffer per received packet, the maximum number of rx_buffer's
2726  *  that we'll need is equal to the number of receive descriptors
2727  *  that we've allocated.
2728  *
2729  **********************************************************************/
2730 static int
2731 em_allocate_receive_structures(struct adapter *adapter)
2732 {
2733 	int i, error, size;
2734 	struct em_buffer *rx_buffer;
2735 
2736 	size = adapter->num_rx_desc * sizeof(struct em_buffer);
2737 	adapter->rx_buffer_area = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
2738 
2739 	error = bus_dma_tag_create(NULL,		/* parent */
2740 				   1, 0,		/* alignment, bounds */
2741 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2742 				   BUS_SPACE_MAXADDR,	/* highaddr */
2743 				   NULL, NULL,		/* filter, filterarg */
2744 				   MCLBYTES,		/* maxsize */
2745 				   1,			/* nsegments */
2746 				   MCLBYTES,		/* maxsegsize */
2747 				   0,			/* flags */
2748 				   &adapter->rxtag);
2749 	if (error) {
2750 		device_printf(adapter->dev, "%s: bus_dma_tag_create failed; "
2751 			      "error %u\n", __func__, error);
2752 		goto fail;
2753 	}
2754 
2755 	rx_buffer = adapter->rx_buffer_area;
2756 	for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2757 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
2758 					  &rx_buffer->map);
2759 		if (error) {
2760 			device_printf(adapter->dev,
2761 				      "%s: bus_dmamap_create failed; "
2762 				      "error %u\n", __func__, error);
2763 			goto fail;
2764 		}
2765 	}
2766 
2767 	for (i = 0; i < adapter->num_rx_desc; i++) {
2768 		error = em_get_buf(i, adapter, NULL, MB_WAIT);
2769 		if (error)
2770 			goto fail;
2771 	}
2772 
2773 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2774 			BUS_DMASYNC_PREWRITE);
2775 
2776 	return (0);
2777 fail:
2778 	em_free_receive_structures(adapter);
2779 	return (error);
2780 }
2781 
2782 /*********************************************************************
2783  *
2784  *  Allocate and initialize receive structures.
2785  *
2786  **********************************************************************/
2787 static int
2788 em_setup_receive_structures(struct adapter *adapter)
2789 {
2790 	int error;
2791 
2792 	bzero(adapter->rx_desc_base,
2793 	      sizeof(struct em_rx_desc) * adapter->num_rx_desc);
2794 
2795 	error = em_allocate_receive_structures(adapter);
2796 	if (error)
2797 		return (error);
2798 
2799 	/* Setup our descriptor pointers */
2800 	adapter->next_rx_desc_to_check = 0;
2801 
2802 	return (0);
2803 }
2804 
2805 /*********************************************************************
2806  *
2807  *  Enable receive unit.
2808  *
2809  **********************************************************************/
2810 static void
2811 em_initialize_receive_unit(struct adapter *adapter)
2812 {
2813 	uint32_t reg_rctl;
2814 	uint32_t reg_rxcsum;
2815 	struct ifnet *ifp;
2816 	uint64_t bus_addr;
2817 
2818 	INIT_DEBUGOUT("em_initialize_receive_unit: begin");
2819 
2820 	ifp = &adapter->interface_data.ac_if;
2821 
2822 	/*
2823 	 * Make sure receives are disabled while setting
2824 	 * up the descriptor ring
2825 	 */
2826 	E1000_WRITE_REG(&adapter->hw, RCTL, 0);
2827 
2828 	/* Set the Receive Delay Timer Register */
2829 	E1000_WRITE_REG(&adapter->hw, RDTR,
2830 			adapter->rx_int_delay.value | E1000_RDT_FPDB);
2831 
2832 	if(adapter->hw.mac_type >= em_82540) {
2833 		E1000_WRITE_REG(&adapter->hw, RADV,
2834 				adapter->rx_abs_int_delay.value);
2835 
2836 		/* Set the interrupt throttling rate in 256ns increments */
2837 		if (em_int_throttle_ceil) {
2838 			E1000_WRITE_REG(&adapter->hw, ITR,
2839 				1000000000 / 256 / em_int_throttle_ceil);
2840 		} else {
2841 			E1000_WRITE_REG(&adapter->hw, ITR, 0);
2842 		}
2843 	}
2844 
2845 	/* Setup the Base and Length of the Rx Descriptor Ring */
2846 	bus_addr = adapter->rxdma.dma_paddr;
2847 	E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
2848 			sizeof(struct em_rx_desc));
2849 	E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
2850 	E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
2851 
2852 	/* Setup the Receive Control Register */
2853 	reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2854 		   E1000_RCTL_RDMTS_HALF |
2855 		   (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
2856 
2857 	if (adapter->hw.tbi_compatibility_on == TRUE)
2858 		reg_rctl |= E1000_RCTL_SBP;
2859 
2860 	switch (adapter->rx_buffer_len) {
2861 	default:
2862 	case EM_RXBUFFER_2048:
2863 		reg_rctl |= E1000_RCTL_SZ_2048;
2864 		break;
2865 	case EM_RXBUFFER_4096:
2866 		reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX |
2867 			    E1000_RCTL_LPE;
2868 		break;
2869 	case EM_RXBUFFER_8192:
2870 		reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX |
2871 			    E1000_RCTL_LPE;
2872 		break;
2873 	case EM_RXBUFFER_16384:
2874 		reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX |
2875 			    E1000_RCTL_LPE;
2876 		break;
2877 	}
2878 
2879 	if (ifp->if_mtu > ETHERMTU)
2880 		reg_rctl |= E1000_RCTL_LPE;
2881 
2882 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
2883 	if ((adapter->hw.mac_type >= em_82543) &&
2884 	    (ifp->if_capenable & IFCAP_RXCSUM)) {
2885 		reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
2886 		reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2887 		E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
2888 	}
2889 
2890 #ifdef EM_X60_WORKAROUND
2891 	if (adapter->hw.mac_type == em_82573)
2892 		E1000_WRITE_REG(&adapter->hw, RDTR, 32);
2893 #endif
2894 
2895 	/* Enable Receives */
2896 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
2897 
2898 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
2899 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
2900 	E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
2901 }
2902 
2903 /*********************************************************************
2904  *
2905  *  Free receive related data structures.
2906  *
2907  **********************************************************************/
2908 static void
2909 em_free_receive_structures(struct adapter *adapter)
2910 {
2911 	struct em_buffer *rx_buffer;
2912 	int i;
2913 
2914 	INIT_DEBUGOUT("free_receive_structures: begin");
2915 
2916 	if (adapter->rx_buffer_area != NULL) {
2917 		rx_buffer = adapter->rx_buffer_area;
2918 		for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2919 			if (rx_buffer->m_head != NULL) {
2920 				bus_dmamap_unload(adapter->rxtag,
2921 						  rx_buffer->map);
2922 				m_freem(rx_buffer->m_head);
2923 				rx_buffer->m_head = NULL;
2924 			}
2925 			if (rx_buffer->map != NULL) {
2926 				bus_dmamap_destroy(adapter->rxtag,
2927 						   rx_buffer->map);
2928 				rx_buffer->map = NULL;
2929 			}
2930 		}
2931 	}
2932 	if (adapter->rx_buffer_area != NULL) {
2933 		kfree(adapter->rx_buffer_area, M_DEVBUF);
2934 		adapter->rx_buffer_area = NULL;
2935 	}
2936 	if (adapter->rxtag != NULL) {
2937 		bus_dma_tag_destroy(adapter->rxtag);
2938 		adapter->rxtag = NULL;
2939 	}
2940 }
2941 
2942 /*********************************************************************
2943  *
2944  *  This routine executes in interrupt context. It replenishes
2945  *  the mbufs in the descriptor and sends data which has been
2946  *  dma'ed into host memory to upper layer.
2947  *
2948  *  We loop at most count times if count is > 0, or until done if
2949  *  count < 0.
2950  *
2951  *********************************************************************/
2952 static void
2953 em_rxeof(struct adapter *adapter, int count)
2954 {
2955 	struct ifnet *ifp;
2956 	struct mbuf *mp;
2957 	uint8_t accept_frame = 0;
2958 	uint8_t eop = 0;
2959 	uint16_t len, desc_len, prev_len_adj;
2960 	int i;
2961 
2962 	/* Pointer to the receive descriptor being examined. */
2963 	struct em_rx_desc *current_desc;
2964 
2965 	ifp = &adapter->interface_data.ac_if;
2966 	i = adapter->next_rx_desc_to_check;
2967 	current_desc = &adapter->rx_desc_base[i];
2968 
2969 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2970 			BUS_DMASYNC_POSTREAD);
2971 
2972 	if (!(current_desc->status & E1000_RXD_STAT_DD))
2973 		return;
2974 
2975 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
2976 		logif(pkt_receive);
2977 		mp = adapter->rx_buffer_area[i].m_head;
2978 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
2979 				BUS_DMASYNC_POSTREAD);
2980 		bus_dmamap_unload(adapter->rxtag,
2981 				  adapter->rx_buffer_area[i].map);
2982 
2983 		accept_frame = 1;
2984 		prev_len_adj = 0;
2985 		desc_len = le16toh(current_desc->length);
2986 		if (current_desc->status & E1000_RXD_STAT_EOP) {
2987 			count--;
2988 			eop = 1;
2989 			if (desc_len < ETHER_CRC_LEN) {
2990 				len = 0;
2991 				prev_len_adj = ETHER_CRC_LEN - desc_len;
2992 			} else {
2993 				len = desc_len - ETHER_CRC_LEN;
2994 			}
2995 		} else {
2996 			eop = 0;
2997 			len = desc_len;
2998 		}
2999 
3000 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3001 			uint8_t last_byte;
3002 			uint32_t pkt_len = desc_len;
3003 
3004 			if (adapter->fmp != NULL)
3005 				pkt_len += adapter->fmp->m_pkthdr.len;
3006 
3007 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3008 
3009 			if (TBI_ACCEPT(&adapter->hw, current_desc->status,
3010 				       current_desc->errors,
3011 				       pkt_len, last_byte)) {
3012 				em_tbi_adjust_stats(&adapter->hw,
3013 						    &adapter->stats,
3014 						    pkt_len,
3015 						    adapter->hw.mac_addr);
3016 				if (len > 0)
3017 					len--;
3018 			} else {
3019 				accept_frame = 0;
3020 			}
3021 		}
3022 
3023 		if (accept_frame) {
3024 			if (em_get_buf(i, adapter, NULL, MB_DONTWAIT) == ENOBUFS) {
3025 				adapter->dropped_pkts++;
3026 				em_get_buf(i, adapter, mp, MB_DONTWAIT);
3027 				if (adapter->fmp != NULL)
3028 					m_freem(adapter->fmp);
3029 				adapter->fmp = NULL;
3030 				adapter->lmp = NULL;
3031 				goto skip;
3032 			}
3033 
3034 			/* Assign correct length to the current fragment */
3035 			mp->m_len = len;
3036 
3037 			if (adapter->fmp == NULL) {
3038 				mp->m_pkthdr.len = len;
3039 				adapter->fmp = mp;	 /* Store the first mbuf */
3040 				adapter->lmp = mp;
3041 			} else {
3042 				/* Chain mbuf's together */
3043 				/*
3044 				 * Adjust length of previous mbuf in chain if
3045 				 * we received less than 4 bytes in the last
3046 				 * descriptor.
3047 				 */
3048 				if (prev_len_adj > 0) {
3049 					adapter->lmp->m_len -= prev_len_adj;
3050 					adapter->fmp->m_pkthdr.len -= prev_len_adj;
3051 				}
3052 				adapter->lmp->m_next = mp;
3053 				adapter->lmp = adapter->lmp->m_next;
3054 				adapter->fmp->m_pkthdr.len += len;
3055 			}
3056 
3057 			if (eop) {
3058 				adapter->fmp->m_pkthdr.rcvif = ifp;
3059 				ifp->if_ipackets++;
3060 
3061 				em_receive_checksum(adapter, current_desc,
3062 						    adapter->fmp);
3063 				if (current_desc->status & E1000_RXD_STAT_VP) {
3064 					VLAN_INPUT_TAG(adapter->fmp,
3065 						       (current_desc->special &
3066 							E1000_RXD_SPC_VLAN_MASK));
3067 				} else {
3068 					ifp->if_input(ifp, adapter->fmp);
3069 				}
3070 				adapter->fmp = NULL;
3071 				adapter->lmp = NULL;
3072 			}
3073 		} else {
3074 			adapter->dropped_pkts++;
3075 			em_get_buf(i, adapter, mp, MB_DONTWAIT);
3076 			if (adapter->fmp != NULL)
3077 				m_freem(adapter->fmp);
3078 			adapter->fmp = NULL;
3079 			adapter->lmp = NULL;
3080 		}
3081 
3082 skip:
3083 		/* Zero out the receive descriptors status. */
3084 		current_desc->status = 0;
3085 
3086 		/* Advance our pointers to the next descriptor. */
3087 		if (++i == adapter->num_rx_desc) {
3088 			i = 0;
3089 			current_desc = adapter->rx_desc_base;
3090 		} else {
3091 			current_desc++;
3092 		}
3093 	}
3094 
3095 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3096 			BUS_DMASYNC_PREWRITE);
3097 
3098 	adapter->next_rx_desc_to_check = i;
3099 
3100 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3101 	if (--i < 0)
3102 		i = adapter->num_rx_desc - 1;
3103 
3104 	E1000_WRITE_REG(&adapter->hw, RDT, i);
3105 }
3106 
3107 /*********************************************************************
3108  *
3109  *  Verify that the hardware indicated that the checksum is valid.
3110  *  Inform the stack about the status of checksum so that stack
3111  *  doesn't spend time verifying the checksum.
3112  *
3113  *********************************************************************/
3114 static void
3115 em_receive_checksum(struct adapter *adapter,
3116 		    struct em_rx_desc *rx_desc,
3117 		    struct mbuf *mp)
3118 {
3119 	/* 82543 or newer only */
3120 	if ((adapter->hw.mac_type < em_82543) ||
3121 	    /* Ignore Checksum bit is set */
3122 	    (rx_desc->status & E1000_RXD_STAT_IXSM)) {
3123 		mp->m_pkthdr.csum_flags = 0;
3124 		return;
3125 	}
3126 
3127 	if (rx_desc->status & E1000_RXD_STAT_IPCS) {
3128 		/* Did it pass? */
3129 		if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3130 			/* IP Checksum Good */
3131 			mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
3132 			mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3133 		} else {
3134 			mp->m_pkthdr.csum_flags = 0;
3135 		}
3136 	}
3137 
3138 	if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
3139 		/* Did it pass? */
3140 		if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3141 			mp->m_pkthdr.csum_flags |=
3142 			(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
3143 			mp->m_pkthdr.csum_data = htons(0xffff);
3144 		}
3145 	}
3146 }
3147 
3148 
3149 static void
3150 em_enable_vlans(struct adapter *adapter)
3151 {
3152 	uint32_t ctrl;
3153 
3154 	E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
3155 
3156 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3157 	ctrl |= E1000_CTRL_VME;
3158 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3159 }
3160 
3161 static void
3162 em_disable_vlans(struct adapter *adapter)
3163 {
3164 	uint32_t ctrl;
3165 
3166 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3167 	ctrl &= ~E1000_CTRL_VME;
3168 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3169 }
3170 
3171 /*
3172  * note: we must call bus_enable_intr() prior to enabling the hardware
3173  * interrupt and bus_disable_intr() after disabling the hardware interrupt
3174  * in order to avoid handler execution races from scheduled interrupt
3175  * threads.
3176  */
3177 static void
3178 em_enable_intr(struct adapter *adapter)
3179 {
3180 	struct ifnet *ifp = &adapter->interface_data.ac_if;
3181 
3182 	if ((ifp->if_flags & IFF_POLLING) == 0) {
3183 		lwkt_serialize_handler_enable(ifp->if_serializer);
3184 		E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
3185 	}
3186 }
3187 
3188 static void
3189 em_disable_intr(struct adapter *adapter)
3190 {
3191 	/*
3192 	 * The first version of 82542 had an errata where when link was forced
3193 	 * it would stay up even up even if the cable was disconnected.
3194 	 * Sequence errors were used to detect the disconnect and then the
3195 	 * driver would unforce the link.  This code in the in the ISR.  For
3196 	 * this to work correctly the Sequence error interrupt had to be
3197 	 * enabled all the time.
3198 	 */
3199 	if (adapter->hw.mac_type == em_82542_rev2_0) {
3200 		E1000_WRITE_REG(&adapter->hw, IMC,
3201 				(0xffffffff & ~E1000_IMC_RXSEQ));
3202 	} else {
3203 		E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
3204 	}
3205 
3206 	lwkt_serialize_handler_disable(adapter->interface_data.ac_if.if_serializer);
3207 }
3208 
3209 static int
3210 em_is_valid_ether_addr(uint8_t *addr)
3211 {
3212 	static const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3213 
3214 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3215 		return (FALSE);
3216 	else
3217 		return (TRUE);
3218 }
3219 
3220 void
3221 em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3222 {
3223 	pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
3224 }
3225 
3226 void
3227 em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3228 {
3229 	*value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
3230 }
3231 
3232 void
3233 em_pci_set_mwi(struct em_hw *hw)
3234 {
3235 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3236 			 (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
3237 }
3238 
3239 void
3240 em_pci_clear_mwi(struct em_hw *hw)
3241 {
3242 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3243 			 (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
3244 }
3245 
3246 uint32_t
3247 em_io_read(struct em_hw *hw, unsigned long port)
3248 {
3249 	struct em_osdep *io = hw->back;
3250 
3251 	return bus_space_read_4(io->io_bus_space_tag,
3252 				io->io_bus_space_handle, port);
3253 }
3254 
3255 void
3256 em_io_write(struct em_hw *hw, unsigned long port, uint32_t value)
3257 {
3258 	struct em_osdep *io = hw->back;
3259 
3260 	bus_space_write_4(io->io_bus_space_tag,
3261 			  io->io_bus_space_handle, port, value);
3262 }
3263 
3264 /*
3265  * We may eventually really do this, but its unnecessary
3266  * for now so we just return unsupported.
3267  */
3268 int32_t
3269 em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3270 {
3271 	return (0);
3272 }
3273 
3274 
3275 /*********************************************************************
3276  * 82544 Coexistence issue workaround.
3277  *    There are 2 issues.
3278  *	1. Transmit Hang issue.
3279  *    To detect this issue, following equation can be used...
3280  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3281  *          If SUM[3:0] is in between 1 to 4, we will have this issue.
3282  *
3283  *	2. DAC issue.
3284  *    To detect this issue, following equation can be used...
3285  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3286  *          If SUM[3:0] is in between 9 to c, we will have this issue.
3287  *
3288  *
3289  *    WORKAROUND:
3290  *          Make sure we do not have ending address as 1,2,3,4(Hang) or
3291  *          9,a,b,c (DAC)
3292  *
3293 *************************************************************************/
3294 static uint32_t
3295 em_fill_descriptors(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3296 {
3297 	/* Since issue is sensitive to length and address.*/
3298 	/* Let us first check the address...*/
3299 	uint32_t safe_terminator;
3300 	if (length <= 4) {
3301 		desc_array->descriptor[0].address = address;
3302 		desc_array->descriptor[0].length = length;
3303 		desc_array->elements = 1;
3304 		return (desc_array->elements);
3305 	}
3306 	safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3307 	/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3308 	if (safe_terminator == 0 ||
3309 	    (safe_terminator > 4 && safe_terminator < 9) ||
3310 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3311 		desc_array->descriptor[0].address = address;
3312 		desc_array->descriptor[0].length = length;
3313 		desc_array->elements = 1;
3314 		return (desc_array->elements);
3315 	}
3316 
3317 	desc_array->descriptor[0].address = address;
3318 	desc_array->descriptor[0].length = length - 4;
3319 	desc_array->descriptor[1].address = address + (length - 4);
3320 	desc_array->descriptor[1].length = 4;
3321 	desc_array->elements = 2;
3322 	return (desc_array->elements);
3323 }
3324 
3325 /**********************************************************************
3326  *
3327  *  Update the board statistics counters.
3328  *
3329  **********************************************************************/
3330 static void
3331 em_update_stats_counters(struct adapter *adapter)
3332 {
3333 	struct ifnet   *ifp;
3334 
3335 	if (adapter->hw.media_type == em_media_type_copper ||
3336 	    (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
3337 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
3338 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
3339 	}
3340 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
3341 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
3342 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
3343 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
3344 
3345 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
3346 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
3347 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
3348 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
3349 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
3350 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
3351 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
3352 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
3353 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
3354 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
3355 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
3356 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
3357 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
3358 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
3359 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
3360 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
3361 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
3362 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
3363 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
3364 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
3365 
3366 	/* For the 64-bit byte counters the low dword must be read first. */
3367 	/* Both registers clear on the read of the high dword */
3368 
3369 	adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
3370 	adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
3371 	adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
3372 	adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
3373 
3374 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
3375 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
3376 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
3377 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
3378 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
3379 
3380 	adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
3381 	adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
3382 	adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
3383 	adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
3384 
3385 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
3386 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
3387 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
3388 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
3389 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
3390 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
3391 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
3392 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
3393 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
3394 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
3395 
3396 	if (adapter->hw.mac_type >= em_82543) {
3397 		adapter->stats.algnerrc +=
3398 		    E1000_READ_REG(&adapter->hw, ALGNERRC);
3399 		adapter->stats.rxerrc +=
3400 		    E1000_READ_REG(&adapter->hw, RXERRC);
3401 		adapter->stats.tncrs +=
3402 		    E1000_READ_REG(&adapter->hw, TNCRS);
3403 		adapter->stats.cexterr +=
3404 		    E1000_READ_REG(&adapter->hw, CEXTERR);
3405 		adapter->stats.tsctc +=
3406 		    E1000_READ_REG(&adapter->hw, TSCTC);
3407 		adapter->stats.tsctfc +=
3408 		    E1000_READ_REG(&adapter->hw, TSCTFC);
3409 	}
3410 	ifp = &adapter->interface_data.ac_if;
3411 
3412 	/* Fill out the OS statistics structure */
3413 	ifp->if_collisions = adapter->stats.colc;
3414 
3415 	/* Rx Errors */
3416 	ifp->if_ierrors =
3417 		adapter->dropped_pkts +
3418 		adapter->stats.rxerrc +
3419 		adapter->stats.crcerrs +
3420 		adapter->stats.algnerrc +
3421 		adapter->stats.ruc + adapter->stats.roc +
3422 		adapter->stats.mpc + adapter->stats.cexterr +
3423 		adapter->rx_overruns;
3424 
3425 	/* Tx Errors */
3426 	ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol +
3427 			  adapter->watchdog_timeouts;
3428 }
3429 
3430 
3431 /**********************************************************************
3432  *
3433  *  This routine is called only when em_display_debug_stats is enabled.
3434  *  This routine provides a way to take a look at important statistics
3435  *  maintained by the driver and hardware.
3436  *
3437  **********************************************************************/
3438 static void
3439 em_print_debug_info(struct adapter *adapter)
3440 {
3441 	device_t dev= adapter->dev;
3442 	uint8_t *hw_addr = adapter->hw.hw_addr;
3443 
3444 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3445 	device_printf(dev, "CTRL  = 0x%x RCTL = 0x%x\n",
3446 		      E1000_READ_REG(&adapter->hw, CTRL),
3447 		      E1000_READ_REG(&adapter->hw, RCTL));
3448 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk\n",
3449 		      ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),
3450 		      (E1000_READ_REG(&adapter->hw, PBA) & 0xffff));
3451 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3452 		      adapter->hw.fc_high_water, adapter->hw.fc_low_water);
3453 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3454 		      E1000_READ_REG(&adapter->hw, TIDV),
3455 		      E1000_READ_REG(&adapter->hw, TADV));
3456 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3457 		      E1000_READ_REG(&adapter->hw, RDTR),
3458 		      E1000_READ_REG(&adapter->hw, RADV));
3459 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3460 		      (long long)adapter->tx_fifo_wrk_cnt,
3461 		      (long long)adapter->tx_fifo_reset_cnt);
3462 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3463 		      E1000_READ_REG(&adapter->hw, TDH),
3464 		      E1000_READ_REG(&adapter->hw, TDT));
3465 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3466 		      adapter->num_tx_desc_avail);
3467 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3468 		      adapter->no_tx_desc_avail1);
3469 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3470 		      adapter->no_tx_desc_avail2);
3471 	device_printf(dev, "Std mbuf failed = %ld\n",
3472 		      adapter->mbuf_alloc_failed);
3473 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3474 		      adapter->mbuf_cluster_failed);
3475 	device_printf(dev, "Driver dropped packets = %ld\n",
3476 		      adapter->dropped_pkts);
3477 }
3478 
3479 static void
3480 em_print_hw_stats(struct adapter *adapter)
3481 {
3482 	device_t dev= adapter->dev;
3483 
3484 	device_printf(dev, "Excessive collisions = %lld\n",
3485 		      (long long)adapter->stats.ecol);
3486 	device_printf(dev, "Symbol errors = %lld\n",
3487 		      (long long)adapter->stats.symerrs);
3488 	device_printf(dev, "Sequence errors = %lld\n",
3489 		      (long long)adapter->stats.sec);
3490 	device_printf(dev, "Defer count = %lld\n",
3491 		      (long long)adapter->stats.dc);
3492 
3493 	device_printf(dev, "Missed Packets = %lld\n",
3494 		      (long long)adapter->stats.mpc);
3495 	device_printf(dev, "Receive No Buffers = %lld\n",
3496 		      (long long)adapter->stats.rnbc);
3497 	/* RLEC is inaccurate on some hardware, calculate our own. */
3498 	device_printf(dev, "Receive Length errors = %lld\n",
3499 		      (long long)adapter->stats.roc +
3500 		      (long long)adapter->stats.ruc);
3501 	device_printf(dev, "Receive errors = %lld\n",
3502 		      (long long)adapter->stats.rxerrc);
3503 	device_printf(dev, "Crc errors = %lld\n",
3504 		      (long long)adapter->stats.crcerrs);
3505 	device_printf(dev, "Alignment errors = %lld\n",
3506 		      (long long)adapter->stats.algnerrc);
3507 	device_printf(dev, "Carrier extension errors = %lld\n",
3508 		      (long long)adapter->stats.cexterr);
3509 	device_printf(dev, "RX overruns = %lu\n", adapter->rx_overruns);
3510 	device_printf(dev, "Watchdog timeouts = %lu\n",
3511 		      adapter->watchdog_timeouts);
3512 
3513 	device_printf(dev, "XON Rcvd = %lld\n",
3514 		      (long long)adapter->stats.xonrxc);
3515 	device_printf(dev, "XON Xmtd = %lld\n",
3516 		      (long long)adapter->stats.xontxc);
3517 	device_printf(dev, "XOFF Rcvd = %lld\n",
3518 		      (long long)adapter->stats.xoffrxc);
3519 	device_printf(dev, "XOFF Xmtd = %lld\n",
3520 		      (long long)adapter->stats.xofftxc);
3521 
3522 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3523 		      (long long)adapter->stats.gprc);
3524 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3525 		      (long long)adapter->stats.gptc);
3526 }
3527 
3528 static int
3529 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3530 {
3531 	int error;
3532 	int result;
3533 	struct adapter *adapter;
3534 
3535 	result = -1;
3536 	error = sysctl_handle_int(oidp, &result, 0, req);
3537 
3538 	if (error || !req->newptr)
3539 		return (error);
3540 
3541 	if (result == 1) {
3542 		adapter = (struct adapter *)arg1;
3543 		em_print_debug_info(adapter);
3544 	}
3545 
3546 	return (error);
3547 }
3548 
3549 static int
3550 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3551 {
3552 	int error;
3553 	int result;
3554 	struct adapter *adapter;
3555 
3556 	result = -1;
3557 	error = sysctl_handle_int(oidp, &result, 0, req);
3558 
3559 	if (error || !req->newptr)
3560 		return (error);
3561 
3562 	if (result == 1) {
3563 		adapter = (struct adapter *)arg1;
3564 		em_print_hw_stats(adapter);
3565 	}
3566 
3567 	return (error);
3568 }
3569 
3570 static int
3571 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
3572 {
3573 	struct em_int_delay_info *info;
3574 	struct adapter *adapter;
3575 	uint32_t regval;
3576 	int error;
3577 	int usecs;
3578 	int ticks;
3579 
3580 	info = (struct em_int_delay_info *)arg1;
3581 	adapter = info->adapter;
3582 	usecs = info->value;
3583 	error = sysctl_handle_int(oidp, &usecs, 0, req);
3584 	if (error != 0 || req->newptr == NULL)
3585 		return (error);
3586 	if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
3587 		return (EINVAL);
3588 	info->value = usecs;
3589 	ticks = E1000_USECS_TO_TICKS(usecs);
3590 
3591 	lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3592 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
3593 	regval = (regval & ~0xffff) | (ticks & 0xffff);
3594 	/* Handle a few special cases. */
3595 	switch (info->offset) {
3596 	case E1000_RDTR:
3597 	case E1000_82542_RDTR:
3598 		regval |= E1000_RDT_FPDB;
3599 		break;
3600 	case E1000_TIDV:
3601 	case E1000_82542_TIDV:
3602 		if (ticks == 0) {
3603 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
3604 			/* Don't write 0 into the TIDV register. */
3605 			regval++;
3606 		} else
3607 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3608 		break;
3609 	}
3610 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
3611 	lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3612 	return (0);
3613 }
3614 
3615 static void
3616 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
3617 			const char *description, struct em_int_delay_info *info,
3618 			int offset, int value)
3619 {
3620 	info->adapter = adapter;
3621 	info->offset = offset;
3622 	info->value = value;
3623 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3624 			SYSCTL_CHILDREN(adapter->sysctl_tree),
3625 			OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
3626 			info, 0, em_sysctl_int_delay, "I", description);
3627 }
3628 
3629 static int
3630 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3631 {
3632 	struct adapter *adapter = (void *)arg1;
3633 	int error;
3634 	int throttle;
3635 
3636 	throttle = em_int_throttle_ceil;
3637 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3638 	if (error || req->newptr == NULL)
3639 		return error;
3640 	if (throttle < 0 || throttle > 1000000000 / 256)
3641 		return EINVAL;
3642 	if (throttle) {
3643 		/*
3644 		 * Set the interrupt throttling rate in 256ns increments,
3645 		 * recalculate sysctl value assignment to get exact frequency.
3646 		 */
3647 		throttle = 1000000000 / 256 / throttle;
3648 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3649 		em_int_throttle_ceil = 1000000000 / 256 / throttle;
3650 		E1000_WRITE_REG(&adapter->hw, ITR, throttle);
3651 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3652 	} else {
3653 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3654 		em_int_throttle_ceil = 0;
3655 		E1000_WRITE_REG(&adapter->hw, ITR, 0);
3656 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3657 	}
3658 	device_printf(adapter->dev, "Interrupt moderation set to %d/sec\n",
3659 			em_int_throttle_ceil);
3660 	return 0;
3661 }
3662