xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision 5aa42fef418118d7414e8b76fbb5ae50738ffea0)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2014, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
115 
116 #define DEBUG_HW 0
117 
118 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
119 #define EM_VER	" 7.4.2"
120 
121 #define _EM_DEVICE(id, ret)	\
122 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
124 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
126 
127 static const struct em_vendor_info em_vendor_info_array[] = {
128 	EM_DEVICE(82540EM),
129 	EM_DEVICE(82540EM_LOM),
130 	EM_DEVICE(82540EP),
131 	EM_DEVICE(82540EP_LOM),
132 	EM_DEVICE(82540EP_LP),
133 
134 	EM_DEVICE(82541EI),
135 	EM_DEVICE(82541ER),
136 	EM_DEVICE(82541ER_LOM),
137 	EM_DEVICE(82541EI_MOBILE),
138 	EM_DEVICE(82541GI),
139 	EM_DEVICE(82541GI_LF),
140 	EM_DEVICE(82541GI_MOBILE),
141 
142 	EM_DEVICE(82542),
143 
144 	EM_DEVICE(82543GC_FIBER),
145 	EM_DEVICE(82543GC_COPPER),
146 
147 	EM_DEVICE(82544EI_COPPER),
148 	EM_DEVICE(82544EI_FIBER),
149 	EM_DEVICE(82544GC_COPPER),
150 	EM_DEVICE(82544GC_LOM),
151 
152 	EM_DEVICE(82545EM_COPPER),
153 	EM_DEVICE(82545EM_FIBER),
154 	EM_DEVICE(82545GM_COPPER),
155 	EM_DEVICE(82545GM_FIBER),
156 	EM_DEVICE(82545GM_SERDES),
157 
158 	EM_DEVICE(82546EB_COPPER),
159 	EM_DEVICE(82546EB_FIBER),
160 	EM_DEVICE(82546EB_QUAD_COPPER),
161 	EM_DEVICE(82546GB_COPPER),
162 	EM_DEVICE(82546GB_FIBER),
163 	EM_DEVICE(82546GB_SERDES),
164 	EM_DEVICE(82546GB_PCIE),
165 	EM_DEVICE(82546GB_QUAD_COPPER),
166 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
167 
168 	EM_DEVICE(82547EI),
169 	EM_DEVICE(82547EI_MOBILE),
170 	EM_DEVICE(82547GI),
171 
172 	EM_EMX_DEVICE(82571EB_COPPER),
173 	EM_EMX_DEVICE(82571EB_FIBER),
174 	EM_EMX_DEVICE(82571EB_SERDES),
175 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
182 
183 	EM_EMX_DEVICE(82572EI_COPPER),
184 	EM_EMX_DEVICE(82572EI_FIBER),
185 	EM_EMX_DEVICE(82572EI_SERDES),
186 	EM_EMX_DEVICE(82572EI),
187 
188 	EM_EMX_DEVICE(82573E),
189 	EM_EMX_DEVICE(82573E_IAMT),
190 	EM_EMX_DEVICE(82573L),
191 
192 	EM_DEVICE(82583V),
193 
194 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
198 
199 	EM_DEVICE(ICH8_IGP_M_AMT),
200 	EM_DEVICE(ICH8_IGP_AMT),
201 	EM_DEVICE(ICH8_IGP_C),
202 	EM_DEVICE(ICH8_IFE),
203 	EM_DEVICE(ICH8_IFE_GT),
204 	EM_DEVICE(ICH8_IFE_G),
205 	EM_DEVICE(ICH8_IGP_M),
206 	EM_DEVICE(ICH8_82567V_3),
207 
208 	EM_DEVICE(ICH9_IGP_M_AMT),
209 	EM_DEVICE(ICH9_IGP_AMT),
210 	EM_DEVICE(ICH9_IGP_C),
211 	EM_DEVICE(ICH9_IGP_M),
212 	EM_DEVICE(ICH9_IGP_M_V),
213 	EM_DEVICE(ICH9_IFE),
214 	EM_DEVICE(ICH9_IFE_GT),
215 	EM_DEVICE(ICH9_IFE_G),
216 	EM_DEVICE(ICH9_BM),
217 
218 	EM_EMX_DEVICE(82574L),
219 	EM_EMX_DEVICE(82574LA),
220 
221 	EM_DEVICE(ICH10_R_BM_LM),
222 	EM_DEVICE(ICH10_R_BM_LF),
223 	EM_DEVICE(ICH10_R_BM_V),
224 	EM_DEVICE(ICH10_D_BM_LM),
225 	EM_DEVICE(ICH10_D_BM_LF),
226 	EM_DEVICE(ICH10_D_BM_V),
227 
228 	EM_DEVICE(PCH_M_HV_LM),
229 	EM_DEVICE(PCH_M_HV_LC),
230 	EM_DEVICE(PCH_D_HV_DM),
231 	EM_DEVICE(PCH_D_HV_DC),
232 
233 	EM_DEVICE(PCH2_LV_LM),
234 	EM_DEVICE(PCH2_LV_V),
235 
236 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
237 	EM_EMX_DEVICE(PCH_LPT_I217_V),
238 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
240 	EM_EMX_DEVICE(PCH_I218_LM2),
241 	EM_EMX_DEVICE(PCH_I218_V2),
242 	EM_EMX_DEVICE(PCH_I218_LM3),
243 	EM_EMX_DEVICE(PCH_I218_V3),
244 
245 	/* required last entry */
246 	EM_DEVICE_NULL
247 };
248 
249 static int	em_probe(device_t);
250 static int	em_attach(device_t);
251 static int	em_detach(device_t);
252 static int	em_shutdown(device_t);
253 static int	em_suspend(device_t);
254 static int	em_resume(device_t);
255 
256 static void	em_init(void *);
257 static void	em_stop(struct adapter *);
258 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
259 static void	em_start(struct ifnet *, struct ifaltq_subque *);
260 #ifdef IFPOLL_ENABLE
261 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
262 static void	em_npoll_compat(struct ifnet *, void *, int);
263 #endif
264 static void	em_watchdog(struct ifnet *);
265 static void	em_media_status(struct ifnet *, struct ifmediareq *);
266 static int	em_media_change(struct ifnet *);
267 static void	em_timer(void *);
268 
269 static void	em_intr(void *);
270 static void	em_intr_mask(void *);
271 static void	em_intr_body(struct adapter *, boolean_t);
272 static void	em_rxeof(struct adapter *, int);
273 static void	em_txeof(struct adapter *);
274 static void	em_tx_collect(struct adapter *);
275 static void	em_tx_purge(struct adapter *);
276 static void	em_enable_intr(struct adapter *);
277 static void	em_disable_intr(struct adapter *);
278 
279 static int	em_dma_malloc(struct adapter *, bus_size_t,
280 		    struct em_dma_alloc *);
281 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
282 static void	em_init_tx_ring(struct adapter *);
283 static int	em_init_rx_ring(struct adapter *);
284 static int	em_create_tx_ring(struct adapter *);
285 static int	em_create_rx_ring(struct adapter *);
286 static void	em_destroy_tx_ring(struct adapter *, int);
287 static void	em_destroy_rx_ring(struct adapter *, int);
288 static int	em_newbuf(struct adapter *, int, int);
289 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
290 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
291 		    struct mbuf *);
292 static int	em_txcsum(struct adapter *, struct mbuf *,
293 		    uint32_t *, uint32_t *);
294 static int	em_tso_pullup(struct adapter *, struct mbuf **);
295 static int	em_tso_setup(struct adapter *, struct mbuf *,
296 		    uint32_t *, uint32_t *);
297 
298 static int	em_get_hw_info(struct adapter *);
299 static int 	em_is_valid_eaddr(const uint8_t *);
300 static int	em_alloc_pci_res(struct adapter *);
301 static void	em_free_pci_res(struct adapter *);
302 static int	em_reset(struct adapter *);
303 static void	em_setup_ifp(struct adapter *);
304 static void	em_init_tx_unit(struct adapter *);
305 static void	em_init_rx_unit(struct adapter *);
306 static void	em_update_stats(struct adapter *);
307 static void	em_set_promisc(struct adapter *);
308 static void	em_disable_promisc(struct adapter *);
309 static void	em_set_multi(struct adapter *);
310 static void	em_update_link_status(struct adapter *);
311 static void	em_smartspeed(struct adapter *);
312 static void	em_set_itr(struct adapter *, uint32_t);
313 static void	em_disable_aspm(struct adapter *);
314 
315 /* Hardware workarounds */
316 static int	em_82547_fifo_workaround(struct adapter *, int);
317 static void	em_82547_update_fifo_head(struct adapter *, int);
318 static int	em_82547_tx_fifo_reset(struct adapter *);
319 static void	em_82547_move_tail(void *);
320 static void	em_82547_move_tail_serialized(struct adapter *);
321 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
322 
323 static void	em_print_debug_info(struct adapter *);
324 static void	em_print_nvm_info(struct adapter *);
325 static void	em_print_hw_stats(struct adapter *);
326 
327 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
328 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
329 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
330 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
331 static void	em_add_sysctl(struct adapter *adapter);
332 
333 /* Management and WOL Support */
334 static void	em_get_mgmt(struct adapter *);
335 static void	em_rel_mgmt(struct adapter *);
336 static void	em_get_hw_control(struct adapter *);
337 static void	em_rel_hw_control(struct adapter *);
338 static void	em_enable_wol(device_t);
339 
340 static device_method_t em_methods[] = {
341 	/* Device interface */
342 	DEVMETHOD(device_probe,		em_probe),
343 	DEVMETHOD(device_attach,	em_attach),
344 	DEVMETHOD(device_detach,	em_detach),
345 	DEVMETHOD(device_shutdown,	em_shutdown),
346 	DEVMETHOD(device_suspend,	em_suspend),
347 	DEVMETHOD(device_resume,	em_resume),
348 	DEVMETHOD_END
349 };
350 
351 static driver_t em_driver = {
352 	"em",
353 	em_methods,
354 	sizeof(struct adapter),
355 };
356 
357 static devclass_t em_devclass;
358 
359 DECLARE_DUMMY_MODULE(if_em);
360 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
361 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
362 
363 /*
364  * Tunables
365  */
366 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
367 static int	em_rxd = EM_DEFAULT_RXD;
368 static int	em_txd = EM_DEFAULT_TXD;
369 static int	em_smart_pwr_down = 0;
370 
371 /* Controls whether promiscuous also shows bad packets */
372 static int	em_debug_sbp = FALSE;
373 
374 static int	em_82573_workaround = 1;
375 static int	em_msi_enable = 1;
376 
377 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
378 TUNABLE_INT("hw.em.rxd", &em_rxd);
379 TUNABLE_INT("hw.em.txd", &em_txd);
380 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
381 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
382 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
383 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
384 
385 /* Global used in WOL setup with multiport cards */
386 static int	em_global_quad_port_a = 0;
387 
388 /* Set this to one to display debug statistics */
389 static int	em_display_debug_stats = 0;
390 
391 #if !defined(KTR_IF_EM)
392 #define KTR_IF_EM	KTR_ALL
393 #endif
394 KTR_INFO_MASTER(if_em);
395 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
396 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
397 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
398 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
399 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
400 #define logif(name)	KTR_LOG(if_em_ ## name)
401 
402 static int
403 em_probe(device_t dev)
404 {
405 	const struct em_vendor_info *ent;
406 	uint16_t vid, did;
407 
408 	vid = pci_get_vendor(dev);
409 	did = pci_get_device(dev);
410 
411 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
412 		if (vid == ent->vendor_id && did == ent->device_id) {
413 			device_set_desc(dev, ent->desc);
414 			device_set_async_attach(dev, TRUE);
415 			return (ent->ret);
416 		}
417 	}
418 	return (ENXIO);
419 }
420 
421 static int
422 em_attach(device_t dev)
423 {
424 	struct adapter *adapter = device_get_softc(dev);
425 	struct ifnet *ifp = &adapter->arpcom.ac_if;
426 	int tsize, rsize;
427 	int error = 0;
428 	uint16_t eeprom_data, device_id, apme_mask;
429 	driver_intr_t *intr_func;
430 
431 	adapter->dev = adapter->osdep.dev = dev;
432 
433 	callout_init_mp(&adapter->timer);
434 	callout_init_mp(&adapter->tx_fifo_timer);
435 
436 	ifmedia_init(&adapter->media, IFM_IMASK,
437 	    em_media_change, em_media_status);
438 
439 	/* Determine hardware and mac info */
440 	error = em_get_hw_info(adapter);
441 	if (error) {
442 		device_printf(dev, "Identify hardware failed\n");
443 		goto fail;
444 	}
445 
446 	/* Setup PCI resources */
447 	error = em_alloc_pci_res(adapter);
448 	if (error) {
449 		device_printf(dev, "Allocation of PCI resources failed\n");
450 		goto fail;
451 	}
452 
453 	/*
454 	 * For ICH8 and family we need to map the flash memory,
455 	 * and this must happen after the MAC is identified.
456 	 */
457 	if (adapter->hw.mac.type == e1000_ich8lan ||
458 	    adapter->hw.mac.type == e1000_ich9lan ||
459 	    adapter->hw.mac.type == e1000_ich10lan ||
460 	    adapter->hw.mac.type == e1000_pchlan ||
461 	    adapter->hw.mac.type == e1000_pch2lan ||
462 	    adapter->hw.mac.type == e1000_pch_lpt) {
463 		adapter->flash_rid = EM_BAR_FLASH;
464 
465 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
466 					&adapter->flash_rid, RF_ACTIVE);
467 		if (adapter->flash == NULL) {
468 			device_printf(dev, "Mapping of Flash failed\n");
469 			error = ENXIO;
470 			goto fail;
471 		}
472 		adapter->osdep.flash_bus_space_tag =
473 		    rman_get_bustag(adapter->flash);
474 		adapter->osdep.flash_bus_space_handle =
475 		    rman_get_bushandle(adapter->flash);
476 
477 		/*
478 		 * This is used in the shared code
479 		 * XXX this goof is actually not used.
480 		 */
481 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
482 	}
483 
484 	switch (adapter->hw.mac.type) {
485 	case e1000_82571:
486 	case e1000_82572:
487 	case e1000_pch_lpt:
488 		/*
489 		 * Pullup extra 4bytes into the first data segment for
490 		 * TSO, see:
491 		 * 82571/82572 specification update errata #7
492 		 *
493 		 * Same applies to I217 (and maybe I218).
494 		 *
495 		 * NOTE:
496 		 * 4bytes instead of 2bytes, which are mentioned in the
497 		 * errata, are pulled; mainly to keep rest of the data
498 		 * properly aligned.
499 		 */
500 		adapter->flags |= EM_FLAG_TSO_PULLEX;
501 		/* FALL THROUGH */
502 
503 	default:
504 		if (pci_is_pcie(dev))
505 			adapter->flags |= EM_FLAG_TSO;
506 		break;
507 	}
508 
509 	/* Do Shared Code initialization */
510 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
511 		device_printf(dev, "Setup of Shared code failed\n");
512 		error = ENXIO;
513 		goto fail;
514 	}
515 
516 	e1000_get_bus_info(&adapter->hw);
517 
518 	/*
519 	 * Validate number of transmit and receive descriptors.  It
520 	 * must not exceed hardware maximum, and must be multiple
521 	 * of E1000_DBA_ALIGN.
522 	 */
523 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
524 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
525 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
526 	    em_txd < EM_MIN_TXD) {
527 		if (adapter->hw.mac.type < e1000_82544)
528 			adapter->num_tx_desc = EM_MAX_TXD_82543;
529 		else
530 			adapter->num_tx_desc = EM_DEFAULT_TXD;
531 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
532 		    adapter->num_tx_desc, em_txd);
533 	} else {
534 		adapter->num_tx_desc = em_txd;
535 	}
536 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
537 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
538 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
539 	    em_rxd < EM_MIN_RXD) {
540 		if (adapter->hw.mac.type < e1000_82544)
541 			adapter->num_rx_desc = EM_MAX_RXD_82543;
542 		else
543 			adapter->num_rx_desc = EM_DEFAULT_RXD;
544 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
545 		    adapter->num_rx_desc, em_rxd);
546 	} else {
547 		adapter->num_rx_desc = em_rxd;
548 	}
549 
550 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
551 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
552 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
553 	adapter->rx_buffer_len = MCLBYTES;
554 
555 	/*
556 	 * Interrupt throttle rate
557 	 */
558 	if (em_int_throttle_ceil == 0) {
559 		adapter->int_throttle_ceil = 0;
560 	} else {
561 		int throttle = em_int_throttle_ceil;
562 
563 		if (throttle < 0)
564 			throttle = EM_DEFAULT_ITR;
565 
566 		/* Recalculate the tunable value to get the exact frequency. */
567 		throttle = 1000000000 / 256 / throttle;
568 
569 		/* Upper 16bits of ITR is reserved and should be zero */
570 		if (throttle & 0xffff0000)
571 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
572 
573 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
574 	}
575 
576 	e1000_init_script_state_82541(&adapter->hw, TRUE);
577 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
578 
579 	/* Copper options */
580 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
581 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
582 		adapter->hw.phy.disable_polarity_correction = FALSE;
583 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
584 	}
585 
586 	/* Set the frame limits assuming standard ethernet sized frames. */
587 	adapter->hw.mac.max_frame_size =
588 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
589 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
590 
591 	/* This controls when hardware reports transmit completion status. */
592 	adapter->hw.mac.report_tx_early = 1;
593 
594 	/*
595 	 * Create top level busdma tag
596 	 */
597 	error = bus_dma_tag_create(NULL, 1, 0,
598 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
599 			NULL, NULL,
600 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
601 			0, &adapter->parent_dtag);
602 	if (error) {
603 		device_printf(dev, "could not create top level DMA tag\n");
604 		goto fail;
605 	}
606 
607 	/*
608 	 * Allocate Transmit Descriptor ring
609 	 */
610 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
611 			 EM_DBA_ALIGN);
612 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
613 	if (error) {
614 		device_printf(dev, "Unable to allocate tx_desc memory\n");
615 		goto fail;
616 	}
617 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
618 
619 	/*
620 	 * Allocate Receive Descriptor ring
621 	 */
622 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
623 			 EM_DBA_ALIGN);
624 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
625 	if (error) {
626 		device_printf(dev, "Unable to allocate rx_desc memory\n");
627 		goto fail;
628 	}
629 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
630 
631 	/* Allocate multicast array memory. */
632 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
633 	    M_DEVBUF, M_WAITOK);
634 
635 	/* Indicate SOL/IDER usage */
636 	if (e1000_check_reset_block(&adapter->hw)) {
637 		device_printf(dev,
638 		    "PHY reset is blocked due to SOL/IDER session.\n");
639 	}
640 
641 	/* Disable EEE */
642 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
643 
644 	/*
645 	 * Start from a known state, this is important in reading the
646 	 * nvm and mac from that.
647 	 */
648 	e1000_reset_hw(&adapter->hw);
649 
650 	/* Make sure we have a good EEPROM before we read from it */
651 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
652 		/*
653 		 * Some PCI-E parts fail the first check due to
654 		 * the link being in sleep state, call it again,
655 		 * if it fails a second time its a real issue.
656 		 */
657 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
658 			device_printf(dev,
659 			    "The EEPROM Checksum Is Not Valid\n");
660 			error = EIO;
661 			goto fail;
662 		}
663 	}
664 
665 	/* Copy the permanent MAC address out of the EEPROM */
666 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
667 		device_printf(dev, "EEPROM read error while reading MAC"
668 		    " address\n");
669 		error = EIO;
670 		goto fail;
671 	}
672 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
673 		device_printf(dev, "Invalid MAC address\n");
674 		error = EIO;
675 		goto fail;
676 	}
677 
678 	/* Disable ULP support */
679 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
680 
681 	/* Allocate transmit descriptors and buffers */
682 	error = em_create_tx_ring(adapter);
683 	if (error) {
684 		device_printf(dev, "Could not setup transmit structures\n");
685 		goto fail;
686 	}
687 
688 	/* Allocate receive descriptors and buffers */
689 	error = em_create_rx_ring(adapter);
690 	if (error) {
691 		device_printf(dev, "Could not setup receive structures\n");
692 		goto fail;
693 	}
694 
695 	/* Manually turn off all interrupts */
696 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
697 
698 	/* Determine if we have to control management hardware */
699 	if (e1000_enable_mng_pass_thru(&adapter->hw))
700 		adapter->flags |= EM_FLAG_HAS_MGMT;
701 
702 	/*
703 	 * Setup Wake-on-Lan
704 	 */
705 	apme_mask = EM_EEPROM_APME;
706 	eeprom_data = 0;
707 	switch (adapter->hw.mac.type) {
708 	case e1000_82542:
709 	case e1000_82543:
710 		break;
711 
712 	case e1000_82573:
713 	case e1000_82583:
714 		adapter->flags |= EM_FLAG_HAS_AMT;
715 		/* FALL THROUGH */
716 
717 	case e1000_82546:
718 	case e1000_82546_rev_3:
719 	case e1000_82571:
720 	case e1000_82572:
721 	case e1000_80003es2lan:
722 		if (adapter->hw.bus.func == 1) {
723 			e1000_read_nvm(&adapter->hw,
724 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
725 		} else {
726 			e1000_read_nvm(&adapter->hw,
727 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
728 		}
729 		break;
730 
731 	case e1000_ich8lan:
732 	case e1000_ich9lan:
733 	case e1000_ich10lan:
734 	case e1000_pchlan:
735 	case e1000_pch2lan:
736 		apme_mask = E1000_WUC_APME;
737 		adapter->flags |= EM_FLAG_HAS_AMT;
738 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
739 		break;
740 
741 	default:
742 		e1000_read_nvm(&adapter->hw,
743 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
744 		break;
745 	}
746 	if (eeprom_data & apme_mask)
747 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
748 
749 	/*
750          * We have the eeprom settings, now apply the special cases
751          * where the eeprom may be wrong or the board won't support
752          * wake on lan on a particular port
753 	 */
754 	device_id = pci_get_device(dev);
755         switch (device_id) {
756 	case E1000_DEV_ID_82546GB_PCIE:
757 		adapter->wol = 0;
758 		break;
759 
760 	case E1000_DEV_ID_82546EB_FIBER:
761 	case E1000_DEV_ID_82546GB_FIBER:
762 	case E1000_DEV_ID_82571EB_FIBER:
763 		/*
764 		 * Wake events only supported on port A for dual fiber
765 		 * regardless of eeprom setting
766 		 */
767 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
768 		    E1000_STATUS_FUNC_1)
769 			adapter->wol = 0;
770 		break;
771 
772 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
773 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
774 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
775 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
776                 /* if quad port adapter, disable WoL on all but port A */
777 		if (em_global_quad_port_a != 0)
778 			adapter->wol = 0;
779 		/* Reset for multiple quad port adapters */
780 		if (++em_global_quad_port_a == 4)
781 			em_global_quad_port_a = 0;
782                 break;
783 	}
784 
785 	/* XXX disable wol */
786 	adapter->wol = 0;
787 
788 	/* Setup OS specific network interface */
789 	em_setup_ifp(adapter);
790 
791 	/* Add sysctl tree, must after em_setup_ifp() */
792 	em_add_sysctl(adapter);
793 
794 #ifdef IFPOLL_ENABLE
795 	/* Polling setup */
796 	ifpoll_compat_setup(&adapter->npoll,
797 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
798 	    device_get_unit(dev), ifp->if_serializer);
799 #endif
800 
801 	/* Reset the hardware */
802 	error = em_reset(adapter);
803 	if (error) {
804 		/*
805 		 * Some 82573 parts fail the first reset, call it again,
806 		 * if it fails a second time its a real issue.
807 		 */
808 		error = em_reset(adapter);
809 		if (error) {
810 			device_printf(dev, "Unable to reset the hardware\n");
811 			ether_ifdetach(ifp);
812 			goto fail;
813 		}
814 	}
815 
816 	/* Initialize statistics */
817 	em_update_stats(adapter);
818 
819 	adapter->hw.mac.get_link_status = 1;
820 	em_update_link_status(adapter);
821 
822 	/* Do we need workaround for 82544 PCI-X adapter? */
823 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
824 	    adapter->hw.mac.type == e1000_82544)
825 		adapter->pcix_82544 = TRUE;
826 	else
827 		adapter->pcix_82544 = FALSE;
828 
829 	if (adapter->pcix_82544) {
830 		/*
831 		 * 82544 on PCI-X may split one TX segment
832 		 * into two TX descs, so we double its number
833 		 * of spare TX desc here.
834 		 */
835 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
836 	} else {
837 		adapter->spare_tx_desc = EM_TX_SPARE;
838 	}
839 	if (adapter->flags & EM_FLAG_TSO)
840 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
841 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
842 
843 	/*
844 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
845 	 * and tx_int_nsegs:
846 	 * (spare_tx_desc + EM_TX_RESERVED) <=
847 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
848 	 */
849 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
850 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
851 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
852 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
853 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
854 
855 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
856 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
857 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
858 
859 	/* Non-AMT based hardware can now take control from firmware */
860 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
861 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
862 		em_get_hw_control(adapter);
863 
864 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
865 
866 	/*
867 	 * Missing Interrupt Following ICR read:
868 	 *
869 	 * 82571/82572 specification update errata #76
870 	 * 82573 specification update errata #31
871 	 * 82574 specification update errata #12
872 	 * 82583 specification update errata #4
873 	 */
874 	intr_func = em_intr;
875 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
876 	    (adapter->hw.mac.type == e1000_82571 ||
877 	     adapter->hw.mac.type == e1000_82572 ||
878 	     adapter->hw.mac.type == e1000_82573 ||
879 	     adapter->hw.mac.type == e1000_82574 ||
880 	     adapter->hw.mac.type == e1000_82583))
881 		intr_func = em_intr_mask;
882 
883 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
884 			       intr_func, adapter, &adapter->intr_tag,
885 			       ifp->if_serializer);
886 	if (error) {
887 		device_printf(dev, "Failed to register interrupt handler");
888 		ether_ifdetach(ifp);
889 		goto fail;
890 	}
891 	return (0);
892 fail:
893 	em_detach(dev);
894 	return (error);
895 }
896 
897 static int
898 em_detach(device_t dev)
899 {
900 	struct adapter *adapter = device_get_softc(dev);
901 
902 	if (device_is_attached(dev)) {
903 		struct ifnet *ifp = &adapter->arpcom.ac_if;
904 
905 		lwkt_serialize_enter(ifp->if_serializer);
906 
907 		em_stop(adapter);
908 
909 		e1000_phy_hw_reset(&adapter->hw);
910 
911 		em_rel_mgmt(adapter);
912 		em_rel_hw_control(adapter);
913 
914 		if (adapter->wol) {
915 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
916 					E1000_WUC_PME_EN);
917 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
918 			em_enable_wol(dev);
919 		}
920 
921 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
922 
923 		lwkt_serialize_exit(ifp->if_serializer);
924 
925 		ether_ifdetach(ifp);
926 	} else if (adapter->memory != NULL) {
927 		em_rel_hw_control(adapter);
928 	}
929 
930 	ifmedia_removeall(&adapter->media);
931 	bus_generic_detach(dev);
932 
933 	em_free_pci_res(adapter);
934 
935 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
936 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
937 
938 	/* Free Transmit Descriptor ring */
939 	if (adapter->tx_desc_base)
940 		em_dma_free(adapter, &adapter->txdma);
941 
942 	/* Free Receive Descriptor ring */
943 	if (adapter->rx_desc_base)
944 		em_dma_free(adapter, &adapter->rxdma);
945 
946 	/* Free top level busdma tag */
947 	if (adapter->parent_dtag != NULL)
948 		bus_dma_tag_destroy(adapter->parent_dtag);
949 
950 	if (adapter->mta != NULL)
951 		kfree(adapter->mta, M_DEVBUF);
952 
953 	return (0);
954 }
955 
956 static int
957 em_shutdown(device_t dev)
958 {
959 	return em_suspend(dev);
960 }
961 
962 static int
963 em_suspend(device_t dev)
964 {
965 	struct adapter *adapter = device_get_softc(dev);
966 	struct ifnet *ifp = &adapter->arpcom.ac_if;
967 
968 	lwkt_serialize_enter(ifp->if_serializer);
969 
970 	em_stop(adapter);
971 
972 	em_rel_mgmt(adapter);
973 	em_rel_hw_control(adapter);
974 
975 	if (adapter->wol) {
976 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
977 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
978 		em_enable_wol(dev);
979 	}
980 
981 	lwkt_serialize_exit(ifp->if_serializer);
982 
983 	return bus_generic_suspend(dev);
984 }
985 
986 static int
987 em_resume(device_t dev)
988 {
989 	struct adapter *adapter = device_get_softc(dev);
990 	struct ifnet *ifp = &adapter->arpcom.ac_if;
991 
992 	lwkt_serialize_enter(ifp->if_serializer);
993 
994 	if (adapter->hw.mac.type == e1000_pch2lan)
995 		e1000_resume_workarounds_pchlan(&adapter->hw);
996 
997 	em_init(adapter);
998 	em_get_mgmt(adapter);
999 	if_devstart(ifp);
1000 
1001 	lwkt_serialize_exit(ifp->if_serializer);
1002 
1003 	return bus_generic_resume(dev);
1004 }
1005 
1006 static void
1007 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1008 {
1009 	struct adapter *adapter = ifp->if_softc;
1010 	struct mbuf *m_head;
1011 	int idx = -1, nsegs = 0;
1012 
1013 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1014 	ASSERT_SERIALIZED(ifp->if_serializer);
1015 
1016 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1017 		return;
1018 
1019 	if (!adapter->link_active) {
1020 		ifq_purge(&ifp->if_snd);
1021 		return;
1022 	}
1023 
1024 	while (!ifq_is_empty(&ifp->if_snd)) {
1025 		/* Now do we at least have a minimal? */
1026 		if (EM_IS_OACTIVE(adapter)) {
1027 			em_tx_collect(adapter);
1028 			if (EM_IS_OACTIVE(adapter)) {
1029 				ifq_set_oactive(&ifp->if_snd);
1030 				adapter->no_tx_desc_avail1++;
1031 				break;
1032 			}
1033 		}
1034 
1035 		logif(pkt_txqueue);
1036 		m_head = ifq_dequeue(&ifp->if_snd);
1037 		if (m_head == NULL)
1038 			break;
1039 
1040 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1041 			IFNET_STAT_INC(ifp, oerrors, 1);
1042 			em_tx_collect(adapter);
1043 			continue;
1044 		}
1045 
1046 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1047 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1048 			nsegs = 0;
1049 			idx = -1;
1050 		}
1051 
1052 		/* Send a copy of the frame to the BPF listener */
1053 		ETHER_BPF_MTAP(ifp, m_head);
1054 
1055 		/* Set timeout in case hardware has problems transmitting. */
1056 		ifp->if_timer = EM_TX_TIMEOUT;
1057 	}
1058 	if (idx >= 0)
1059 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1060 }
1061 
1062 static int
1063 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1064 {
1065 	struct adapter *adapter = ifp->if_softc;
1066 	struct ifreq *ifr = (struct ifreq *)data;
1067 	uint16_t eeprom_data = 0;
1068 	int max_frame_size, mask, reinit;
1069 	int error = 0;
1070 
1071 	ASSERT_SERIALIZED(ifp->if_serializer);
1072 
1073 	switch (command) {
1074 	case SIOCSIFMTU:
1075 		switch (adapter->hw.mac.type) {
1076 		case e1000_82573:
1077 			/*
1078 			 * 82573 only supports jumbo frames
1079 			 * if ASPM is disabled.
1080 			 */
1081 			e1000_read_nvm(&adapter->hw,
1082 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1083 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1084 				max_frame_size = ETHER_MAX_LEN;
1085 				break;
1086 			}
1087 			/* FALL THROUGH */
1088 
1089 		/* Limit Jumbo Frame size */
1090 		case e1000_82571:
1091 		case e1000_82572:
1092 		case e1000_ich9lan:
1093 		case e1000_ich10lan:
1094 		case e1000_pch2lan:
1095 		case e1000_pch_lpt:
1096 		case e1000_82574:
1097 		case e1000_82583:
1098 		case e1000_80003es2lan:
1099 			max_frame_size = 9234;
1100 			break;
1101 
1102 		case e1000_pchlan:
1103 			max_frame_size = 4096;
1104 			break;
1105 
1106 		/* Adapters that do not support jumbo frames */
1107 		case e1000_82542:
1108 		case e1000_ich8lan:
1109 			max_frame_size = ETHER_MAX_LEN;
1110 			break;
1111 
1112 		default:
1113 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1114 			break;
1115 		}
1116 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1117 		    ETHER_CRC_LEN) {
1118 			error = EINVAL;
1119 			break;
1120 		}
1121 
1122 		ifp->if_mtu = ifr->ifr_mtu;
1123 		adapter->hw.mac.max_frame_size =
1124 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1125 
1126 		if (ifp->if_flags & IFF_RUNNING)
1127 			em_init(adapter);
1128 		break;
1129 
1130 	case SIOCSIFFLAGS:
1131 		if (ifp->if_flags & IFF_UP) {
1132 			if ((ifp->if_flags & IFF_RUNNING)) {
1133 				if ((ifp->if_flags ^ adapter->if_flags) &
1134 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1135 					em_disable_promisc(adapter);
1136 					em_set_promisc(adapter);
1137 				}
1138 			} else {
1139 				em_init(adapter);
1140 			}
1141 		} else if (ifp->if_flags & IFF_RUNNING) {
1142 			em_stop(adapter);
1143 		}
1144 		adapter->if_flags = ifp->if_flags;
1145 		break;
1146 
1147 	case SIOCADDMULTI:
1148 	case SIOCDELMULTI:
1149 		if (ifp->if_flags & IFF_RUNNING) {
1150 			em_disable_intr(adapter);
1151 			em_set_multi(adapter);
1152 			if (adapter->hw.mac.type == e1000_82542 &&
1153 			    adapter->hw.revision_id == E1000_REVISION_2)
1154 				em_init_rx_unit(adapter);
1155 #ifdef IFPOLL_ENABLE
1156 			if (!(ifp->if_flags & IFF_NPOLLING))
1157 #endif
1158 				em_enable_intr(adapter);
1159 		}
1160 		break;
1161 
1162 	case SIOCSIFMEDIA:
1163 		/* Check SOL/IDER usage */
1164 		if (e1000_check_reset_block(&adapter->hw)) {
1165 			device_printf(adapter->dev, "Media change is"
1166 			    " blocked due to SOL/IDER session.\n");
1167 			break;
1168 		}
1169 		/* FALL THROUGH */
1170 
1171 	case SIOCGIFMEDIA:
1172 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1173 		break;
1174 
1175 	case SIOCSIFCAP:
1176 		reinit = 0;
1177 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1178 		if (mask & IFCAP_RXCSUM) {
1179 			ifp->if_capenable ^= IFCAP_RXCSUM;
1180 			reinit = 1;
1181 		}
1182 		if (mask & IFCAP_TXCSUM) {
1183 			ifp->if_capenable ^= IFCAP_TXCSUM;
1184 			if (ifp->if_capenable & IFCAP_TXCSUM)
1185 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1186 			else
1187 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1188 		}
1189 		if (mask & IFCAP_TSO) {
1190 			ifp->if_capenable ^= IFCAP_TSO;
1191 			if (ifp->if_capenable & IFCAP_TSO)
1192 				ifp->if_hwassist |= CSUM_TSO;
1193 			else
1194 				ifp->if_hwassist &= ~CSUM_TSO;
1195 		}
1196 		if (mask & IFCAP_VLAN_HWTAGGING) {
1197 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1198 			reinit = 1;
1199 		}
1200 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1201 			em_init(adapter);
1202 		break;
1203 
1204 	default:
1205 		error = ether_ioctl(ifp, command, data);
1206 		break;
1207 	}
1208 	return (error);
1209 }
1210 
1211 static void
1212 em_watchdog(struct ifnet *ifp)
1213 {
1214 	struct adapter *adapter = ifp->if_softc;
1215 
1216 	ASSERT_SERIALIZED(ifp->if_serializer);
1217 
1218 	/*
1219 	 * The timer is set to 5 every time start queues a packet.
1220 	 * Then txeof keeps resetting it as long as it cleans at
1221 	 * least one descriptor.
1222 	 * Finally, anytime all descriptors are clean the timer is
1223 	 * set to 0.
1224 	 */
1225 
1226 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1227 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1228 		/*
1229 		 * If we reach here, all TX jobs are completed and
1230 		 * the TX engine should have been idled for some time.
1231 		 * We don't need to call if_devstart() here.
1232 		 */
1233 		ifq_clr_oactive(&ifp->if_snd);
1234 		ifp->if_timer = 0;
1235 		return;
1236 	}
1237 
1238 	/*
1239 	 * If we are in this routine because of pause frames, then
1240 	 * don't reset the hardware.
1241 	 */
1242 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1243 	    E1000_STATUS_TXOFF) {
1244 		ifp->if_timer = EM_TX_TIMEOUT;
1245 		return;
1246 	}
1247 
1248 	if (e1000_check_for_link(&adapter->hw) == 0)
1249 		if_printf(ifp, "watchdog timeout -- resetting\n");
1250 
1251 	IFNET_STAT_INC(ifp, oerrors, 1);
1252 	adapter->watchdog_events++;
1253 
1254 	em_init(adapter);
1255 
1256 	if (!ifq_is_empty(&ifp->if_snd))
1257 		if_devstart(ifp);
1258 }
1259 
1260 static void
1261 em_init(void *xsc)
1262 {
1263 	struct adapter *adapter = xsc;
1264 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1265 	device_t dev = adapter->dev;
1266 
1267 	ASSERT_SERIALIZED(ifp->if_serializer);
1268 
1269 	em_stop(adapter);
1270 
1271 	/* Get the latest mac address, User can use a LAA */
1272         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1273 
1274 	/* Put the address into the Receive Address Array */
1275 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1276 
1277 	/*
1278 	 * With the 82571 adapter, RAR[0] may be overwritten
1279 	 * when the other port is reset, we make a duplicate
1280 	 * in RAR[14] for that eventuality, this assures
1281 	 * the interface continues to function.
1282 	 */
1283 	if (adapter->hw.mac.type == e1000_82571) {
1284 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1285 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1286 		    E1000_RAR_ENTRIES - 1);
1287 	}
1288 
1289 	/* Reset the hardware */
1290 	if (em_reset(adapter)) {
1291 		device_printf(dev, "Unable to reset the hardware\n");
1292 		/* XXX em_stop()? */
1293 		return;
1294 	}
1295 	em_update_link_status(adapter);
1296 
1297 	/* Setup VLAN support, basic and offload if available */
1298 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1299 
1300 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1301 		uint32_t ctrl;
1302 
1303 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1304 		ctrl |= E1000_CTRL_VME;
1305 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1306 	}
1307 
1308 	/* Configure for OS presence */
1309 	em_get_mgmt(adapter);
1310 
1311 	/* Prepare transmit descriptors and buffers */
1312 	em_init_tx_ring(adapter);
1313 	em_init_tx_unit(adapter);
1314 
1315 	/* Setup Multicast table */
1316 	em_set_multi(adapter);
1317 
1318 	/* Prepare receive descriptors and buffers */
1319 	if (em_init_rx_ring(adapter)) {
1320 		device_printf(dev, "Could not setup receive structures\n");
1321 		em_stop(adapter);
1322 		return;
1323 	}
1324 	em_init_rx_unit(adapter);
1325 
1326 	/* Don't lose promiscuous settings */
1327 	em_set_promisc(adapter);
1328 
1329 	ifp->if_flags |= IFF_RUNNING;
1330 	ifq_clr_oactive(&ifp->if_snd);
1331 
1332 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1333 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1334 
1335 	/* MSI/X configuration for 82574 */
1336 	if (adapter->hw.mac.type == e1000_82574) {
1337 		int tmp;
1338 
1339 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1340 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1341 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1342 		/*
1343 		 * XXX MSIX
1344 		 * Set the IVAR - interrupt vector routing.
1345 		 * Each nibble represents a vector, high bit
1346 		 * is enable, other 3 bits are the MSIX table
1347 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1348 		 * Link (other) to 2, hence the magic number.
1349 		 */
1350 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1351 	}
1352 
1353 #ifdef IFPOLL_ENABLE
1354 	/*
1355 	 * Only enable interrupts if we are not polling, make sure
1356 	 * they are off otherwise.
1357 	 */
1358 	if (ifp->if_flags & IFF_NPOLLING)
1359 		em_disable_intr(adapter);
1360 	else
1361 #endif /* IFPOLL_ENABLE */
1362 		em_enable_intr(adapter);
1363 
1364 	/* AMT based hardware can now take control from firmware */
1365 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1366 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1367 	    adapter->hw.mac.type >= e1000_82571)
1368 		em_get_hw_control(adapter);
1369 }
1370 
1371 #ifdef IFPOLL_ENABLE
1372 
1373 static void
1374 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1375 {
1376 	struct adapter *adapter = ifp->if_softc;
1377 
1378 	ASSERT_SERIALIZED(ifp->if_serializer);
1379 
1380 	if (adapter->npoll.ifpc_stcount-- == 0) {
1381 		uint32_t reg_icr;
1382 
1383 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1384 
1385 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1386 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1387 			callout_stop(&adapter->timer);
1388 			adapter->hw.mac.get_link_status = 1;
1389 			em_update_link_status(adapter);
1390 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1391 		}
1392 	}
1393 
1394 	em_rxeof(adapter, count);
1395 	em_txeof(adapter);
1396 
1397 	if (!ifq_is_empty(&ifp->if_snd))
1398 		if_devstart(ifp);
1399 }
1400 
1401 static void
1402 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1403 {
1404 	struct adapter *adapter = ifp->if_softc;
1405 
1406 	ASSERT_SERIALIZED(ifp->if_serializer);
1407 
1408 	if (info != NULL) {
1409 		int cpuid = adapter->npoll.ifpc_cpuid;
1410 
1411                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1412 		info->ifpi_rx[cpuid].arg = NULL;
1413 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1414 
1415 		if (ifp->if_flags & IFF_RUNNING)
1416 			em_disable_intr(adapter);
1417 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1418 	} else {
1419 		if (ifp->if_flags & IFF_RUNNING)
1420 			em_enable_intr(adapter);
1421 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1422 	}
1423 }
1424 
1425 #endif /* IFPOLL_ENABLE */
1426 
1427 static void
1428 em_intr(void *xsc)
1429 {
1430 	em_intr_body(xsc, TRUE);
1431 }
1432 
1433 static void
1434 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1435 {
1436 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1437 	uint32_t reg_icr;
1438 
1439 	logif(intr_beg);
1440 	ASSERT_SERIALIZED(ifp->if_serializer);
1441 
1442 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1443 
1444 	if (chk_asserted &&
1445 	    ((adapter->hw.mac.type >= e1000_82571 &&
1446 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1447 	     reg_icr == 0)) {
1448 		logif(intr_end);
1449 		return;
1450 	}
1451 
1452 	/*
1453 	 * XXX: some laptops trigger several spurious interrupts
1454 	 * on em(4) when in the resume cycle. The ICR register
1455 	 * reports all-ones value in this case. Processing such
1456 	 * interrupts would lead to a freeze. I don't know why.
1457 	 */
1458 	if (reg_icr == 0xffffffff) {
1459 		logif(intr_end);
1460 		return;
1461 	}
1462 
1463 	if (ifp->if_flags & IFF_RUNNING) {
1464 		if (reg_icr &
1465 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1466 			em_rxeof(adapter, -1);
1467 		if (reg_icr & E1000_ICR_TXDW) {
1468 			em_txeof(adapter);
1469 			if (!ifq_is_empty(&ifp->if_snd))
1470 				if_devstart(ifp);
1471 		}
1472 	}
1473 
1474 	/* Link status change */
1475 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1476 		callout_stop(&adapter->timer);
1477 		adapter->hw.mac.get_link_status = 1;
1478 		em_update_link_status(adapter);
1479 
1480 		/* Deal with TX cruft when link lost */
1481 		em_tx_purge(adapter);
1482 
1483 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1484 	}
1485 
1486 	if (reg_icr & E1000_ICR_RXO)
1487 		adapter->rx_overruns++;
1488 
1489 	logif(intr_end);
1490 }
1491 
1492 static void
1493 em_intr_mask(void *xsc)
1494 {
1495 	struct adapter *adapter = xsc;
1496 
1497 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1498 	/*
1499 	 * NOTE:
1500 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1501 	 * so don't check it.
1502 	 */
1503 	em_intr_body(adapter, FALSE);
1504 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1505 }
1506 
1507 static void
1508 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1509 {
1510 	struct adapter *adapter = ifp->if_softc;
1511 	u_char fiber_type = IFM_1000_SX;
1512 
1513 	ASSERT_SERIALIZED(ifp->if_serializer);
1514 
1515 	em_update_link_status(adapter);
1516 
1517 	ifmr->ifm_status = IFM_AVALID;
1518 	ifmr->ifm_active = IFM_ETHER;
1519 
1520 	if (!adapter->link_active)
1521 		return;
1522 
1523 	ifmr->ifm_status |= IFM_ACTIVE;
1524 
1525 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1526 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1527 		if (adapter->hw.mac.type == e1000_82545)
1528 			fiber_type = IFM_1000_LX;
1529 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1530 	} else {
1531 		switch (adapter->link_speed) {
1532 		case 10:
1533 			ifmr->ifm_active |= IFM_10_T;
1534 			break;
1535 		case 100:
1536 			ifmr->ifm_active |= IFM_100_TX;
1537 			break;
1538 
1539 		case 1000:
1540 			ifmr->ifm_active |= IFM_1000_T;
1541 			break;
1542 		}
1543 		if (adapter->link_duplex == FULL_DUPLEX)
1544 			ifmr->ifm_active |= IFM_FDX;
1545 		else
1546 			ifmr->ifm_active |= IFM_HDX;
1547 	}
1548 }
1549 
1550 static int
1551 em_media_change(struct ifnet *ifp)
1552 {
1553 	struct adapter *adapter = ifp->if_softc;
1554 	struct ifmedia *ifm = &adapter->media;
1555 
1556 	ASSERT_SERIALIZED(ifp->if_serializer);
1557 
1558 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1559 		return (EINVAL);
1560 
1561 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1562 	case IFM_AUTO:
1563 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1564 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1565 		break;
1566 
1567 	case IFM_1000_LX:
1568 	case IFM_1000_SX:
1569 	case IFM_1000_T:
1570 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1571 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1572 		break;
1573 
1574 	case IFM_100_TX:
1575 		adapter->hw.mac.autoneg = FALSE;
1576 		adapter->hw.phy.autoneg_advertised = 0;
1577 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1578 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1579 		else
1580 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1581 		break;
1582 
1583 	case IFM_10_T:
1584 		adapter->hw.mac.autoneg = FALSE;
1585 		adapter->hw.phy.autoneg_advertised = 0;
1586 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1587 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1588 		else
1589 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1590 		break;
1591 
1592 	default:
1593 		if_printf(ifp, "Unsupported media type\n");
1594 		break;
1595 	}
1596 
1597 	em_init(adapter);
1598 
1599 	return (0);
1600 }
1601 
1602 static int
1603 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1604     int *segs_used, int *idx)
1605 {
1606 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1607 	bus_dmamap_t map;
1608 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1609 	struct e1000_tx_desc *ctxd = NULL;
1610 	struct mbuf *m_head = *m_headp;
1611 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1612 	int maxsegs, nsegs, i, j, first, last = 0, error;
1613 
1614 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1615 		error = em_tso_pullup(adapter, m_headp);
1616 		if (error)
1617 			return error;
1618 		m_head = *m_headp;
1619 	}
1620 
1621 	txd_upper = txd_lower = 0;
1622 	txd_used = 0;
1623 
1624 	/*
1625 	 * Capture the first descriptor index, this descriptor
1626 	 * will have the index of the EOP which is the only one
1627 	 * that now gets a DONE bit writeback.
1628 	 */
1629 	first = adapter->next_avail_tx_desc;
1630 	tx_buffer = &adapter->tx_buffer_area[first];
1631 	tx_buffer_mapped = tx_buffer;
1632 	map = tx_buffer->map;
1633 
1634 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1635 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1636 		("not enough spare TX desc"));
1637 	if (adapter->pcix_82544) {
1638 		/* Half it; see the comment in em_attach() */
1639 		maxsegs >>= 1;
1640 	}
1641 	if (maxsegs > EM_MAX_SCATTER)
1642 		maxsegs = EM_MAX_SCATTER;
1643 
1644 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1645 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1646 	if (error) {
1647 		if (error == ENOBUFS)
1648 			adapter->mbuf_alloc_failed++;
1649 		else
1650 			adapter->no_tx_dma_setup++;
1651 
1652 		m_freem(*m_headp);
1653 		*m_headp = NULL;
1654 		return error;
1655 	}
1656         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1657 
1658 	m_head = *m_headp;
1659 	adapter->tx_nsegs += nsegs;
1660 	*segs_used += nsegs;
1661 
1662 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1663 		/* TSO will consume one TX desc */
1664 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1665 		adapter->tx_nsegs += i;
1666 		*segs_used += i;
1667 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1668 		/* TX csum offloading will consume one TX desc */
1669 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1670 		adapter->tx_nsegs += i;
1671 		*segs_used += i;
1672 	}
1673 
1674         /* Handle VLAN tag */
1675 	if (m_head->m_flags & M_VLANTAG) {
1676 		/* Set the vlan id. */
1677 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1678 		/* Tell hardware to add tag */
1679 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1680 	}
1681 
1682 	i = adapter->next_avail_tx_desc;
1683 
1684 	/* Set up our transmit descriptors */
1685 	for (j = 0; j < nsegs; j++) {
1686 		/* If adapter is 82544 and on PCIX bus */
1687 		if(adapter->pcix_82544) {
1688 			DESC_ARRAY desc_array;
1689 			uint32_t array_elements, counter;
1690 
1691 			/*
1692 			 * Check the Address and Length combination and
1693 			 * split the data accordingly
1694 			 */
1695 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1696 						segs[j].ds_len, &desc_array);
1697 			for (counter = 0; counter < array_elements; counter++) {
1698 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1699 
1700 				tx_buffer = &adapter->tx_buffer_area[i];
1701 				ctxd = &adapter->tx_desc_base[i];
1702 
1703 				ctxd->buffer_addr = htole64(
1704 				    desc_array.descriptor[counter].address);
1705 				ctxd->lower.data = htole32(
1706 				    E1000_TXD_CMD_IFCS | txd_lower |
1707 				    desc_array.descriptor[counter].length);
1708 				ctxd->upper.data = htole32(txd_upper);
1709 
1710 				last = i;
1711 				if (++i == adapter->num_tx_desc)
1712 					i = 0;
1713 
1714 				txd_used++;
1715                         }
1716 		} else {
1717 			tx_buffer = &adapter->tx_buffer_area[i];
1718 			ctxd = &adapter->tx_desc_base[i];
1719 
1720 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1721 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1722 						   txd_lower | segs[j].ds_len);
1723 			ctxd->upper.data = htole32(txd_upper);
1724 
1725 			last = i;
1726 			if (++i == adapter->num_tx_desc)
1727 				i = 0;
1728 		}
1729 	}
1730 
1731 	adapter->next_avail_tx_desc = i;
1732 	if (adapter->pcix_82544) {
1733 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1734 		adapter->num_tx_desc_avail -= txd_used;
1735 	} else {
1736 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1737 		adapter->num_tx_desc_avail -= nsegs;
1738 	}
1739 
1740 	tx_buffer->m_head = m_head;
1741 	tx_buffer_mapped->map = tx_buffer->map;
1742 	tx_buffer->map = map;
1743 
1744 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1745 		adapter->tx_nsegs = 0;
1746 
1747 		/*
1748 		 * Report Status (RS) is turned on
1749 		 * every tx_int_nsegs descriptors.
1750 		 */
1751 		cmd = E1000_TXD_CMD_RS;
1752 
1753 		/*
1754 		 * Keep track of the descriptor, which will
1755 		 * be written back by hardware.
1756 		 */
1757 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1758 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1759 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1760 	}
1761 
1762 	/*
1763 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1764 	 */
1765 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1766 
1767 	if (adapter->hw.mac.type == e1000_82547) {
1768 		/*
1769 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1770 		 * E1000 that this frame is available to transmit.
1771 		 */
1772 		if (adapter->link_duplex == HALF_DUPLEX) {
1773 			em_82547_move_tail_serialized(adapter);
1774 		} else {
1775 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1776 			em_82547_update_fifo_head(adapter,
1777 			    m_head->m_pkthdr.len);
1778 		}
1779 	} else {
1780 		/*
1781 		 * Defer TDT updating, until enough descriptors are setup
1782 		 */
1783 		*idx = i;
1784 	}
1785 	return (0);
1786 }
1787 
1788 /*
1789  * 82547 workaround to avoid controller hang in half-duplex environment.
1790  * The workaround is to avoid queuing a large packet that would span
1791  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1792  * in this case.  We do that only when FIFO is quiescent.
1793  */
1794 static void
1795 em_82547_move_tail_serialized(struct adapter *adapter)
1796 {
1797 	struct e1000_tx_desc *tx_desc;
1798 	uint16_t hw_tdt, sw_tdt, length = 0;
1799 	bool eop = 0;
1800 
1801 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1802 
1803 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1804 	sw_tdt = adapter->next_avail_tx_desc;
1805 
1806 	while (hw_tdt != sw_tdt) {
1807 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1808 		length += tx_desc->lower.flags.length;
1809 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1810 		if (++hw_tdt == adapter->num_tx_desc)
1811 			hw_tdt = 0;
1812 
1813 		if (eop) {
1814 			if (em_82547_fifo_workaround(adapter, length)) {
1815 				adapter->tx_fifo_wrk_cnt++;
1816 				callout_reset(&adapter->tx_fifo_timer, 1,
1817 					em_82547_move_tail, adapter);
1818 				break;
1819 			}
1820 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1821 			em_82547_update_fifo_head(adapter, length);
1822 			length = 0;
1823 		}
1824 	}
1825 }
1826 
1827 static void
1828 em_82547_move_tail(void *xsc)
1829 {
1830 	struct adapter *adapter = xsc;
1831 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1832 
1833 	lwkt_serialize_enter(ifp->if_serializer);
1834 	em_82547_move_tail_serialized(adapter);
1835 	lwkt_serialize_exit(ifp->if_serializer);
1836 }
1837 
1838 static int
1839 em_82547_fifo_workaround(struct adapter *adapter, int len)
1840 {
1841 	int fifo_space, fifo_pkt_len;
1842 
1843 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1844 
1845 	if (adapter->link_duplex == HALF_DUPLEX) {
1846 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1847 
1848 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1849 			if (em_82547_tx_fifo_reset(adapter))
1850 				return (0);
1851 			else
1852 				return (1);
1853 		}
1854 	}
1855 	return (0);
1856 }
1857 
1858 static void
1859 em_82547_update_fifo_head(struct adapter *adapter, int len)
1860 {
1861 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1862 
1863 	/* tx_fifo_head is always 16 byte aligned */
1864 	adapter->tx_fifo_head += fifo_pkt_len;
1865 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1866 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1867 }
1868 
1869 static int
1870 em_82547_tx_fifo_reset(struct adapter *adapter)
1871 {
1872 	uint32_t tctl;
1873 
1874 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1875 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1876 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1877 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1878 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1879 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1880 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1881 		/* Disable TX unit */
1882 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1883 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1884 		    tctl & ~E1000_TCTL_EN);
1885 
1886 		/* Reset FIFO pointers */
1887 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1888 		    adapter->tx_head_addr);
1889 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1890 		    adapter->tx_head_addr);
1891 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1892 		    adapter->tx_head_addr);
1893 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1894 		    adapter->tx_head_addr);
1895 
1896 		/* Re-enable TX unit */
1897 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1898 		E1000_WRITE_FLUSH(&adapter->hw);
1899 
1900 		adapter->tx_fifo_head = 0;
1901 		adapter->tx_fifo_reset_cnt++;
1902 
1903 		return (TRUE);
1904 	} else {
1905 		return (FALSE);
1906 	}
1907 }
1908 
1909 static void
1910 em_set_promisc(struct adapter *adapter)
1911 {
1912 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1913 	uint32_t reg_rctl;
1914 
1915 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1916 
1917 	if (ifp->if_flags & IFF_PROMISC) {
1918 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1919 		/* Turn this on if you want to see bad packets */
1920 		if (em_debug_sbp)
1921 			reg_rctl |= E1000_RCTL_SBP;
1922 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1923 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1924 		reg_rctl |= E1000_RCTL_MPE;
1925 		reg_rctl &= ~E1000_RCTL_UPE;
1926 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1927 	}
1928 }
1929 
1930 static void
1931 em_disable_promisc(struct adapter *adapter)
1932 {
1933 	uint32_t reg_rctl;
1934 
1935 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1936 
1937 	reg_rctl &= ~E1000_RCTL_UPE;
1938 	reg_rctl &= ~E1000_RCTL_MPE;
1939 	reg_rctl &= ~E1000_RCTL_SBP;
1940 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1941 }
1942 
1943 static void
1944 em_set_multi(struct adapter *adapter)
1945 {
1946 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1947 	struct ifmultiaddr *ifma;
1948 	uint32_t reg_rctl = 0;
1949 	uint8_t *mta;
1950 	int mcnt = 0;
1951 
1952 	mta = adapter->mta;
1953 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1954 
1955 	if (adapter->hw.mac.type == e1000_82542 &&
1956 	    adapter->hw.revision_id == E1000_REVISION_2) {
1957 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1958 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1959 			e1000_pci_clear_mwi(&adapter->hw);
1960 		reg_rctl |= E1000_RCTL_RST;
1961 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1962 		msec_delay(5);
1963 	}
1964 
1965 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1966 		if (ifma->ifma_addr->sa_family != AF_LINK)
1967 			continue;
1968 
1969 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1970 			break;
1971 
1972 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1973 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1974 		mcnt++;
1975 	}
1976 
1977 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1978 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1979 		reg_rctl |= E1000_RCTL_MPE;
1980 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1981 	} else {
1982 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1983 	}
1984 
1985 	if (adapter->hw.mac.type == e1000_82542 &&
1986 	    adapter->hw.revision_id == E1000_REVISION_2) {
1987 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1988 		reg_rctl &= ~E1000_RCTL_RST;
1989 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1990 		msec_delay(5);
1991 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1992 			e1000_pci_set_mwi(&adapter->hw);
1993 	}
1994 }
1995 
1996 /*
1997  * This routine checks for link status and updates statistics.
1998  */
1999 static void
2000 em_timer(void *xsc)
2001 {
2002 	struct adapter *adapter = xsc;
2003 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2004 
2005 	lwkt_serialize_enter(ifp->if_serializer);
2006 
2007 	em_update_link_status(adapter);
2008 	em_update_stats(adapter);
2009 
2010 	/* Reset LAA into RAR[0] on 82571 */
2011 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2012 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2013 
2014 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2015 		em_print_hw_stats(adapter);
2016 
2017 	em_smartspeed(adapter);
2018 
2019 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2020 
2021 	lwkt_serialize_exit(ifp->if_serializer);
2022 }
2023 
2024 static void
2025 em_update_link_status(struct adapter *adapter)
2026 {
2027 	struct e1000_hw *hw = &adapter->hw;
2028 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2029 	device_t dev = adapter->dev;
2030 	uint32_t link_check = 0;
2031 
2032 	/* Get the cached link value or read phy for real */
2033 	switch (hw->phy.media_type) {
2034 	case e1000_media_type_copper:
2035 		if (hw->mac.get_link_status) {
2036 			/* Do the work to read phy */
2037 			e1000_check_for_link(hw);
2038 			link_check = !hw->mac.get_link_status;
2039 			if (link_check) /* ESB2 fix */
2040 				e1000_cfg_on_link_up(hw);
2041 		} else {
2042 			link_check = TRUE;
2043 		}
2044 		break;
2045 
2046 	case e1000_media_type_fiber:
2047 		e1000_check_for_link(hw);
2048 		link_check =
2049 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2050 		break;
2051 
2052 	case e1000_media_type_internal_serdes:
2053 		e1000_check_for_link(hw);
2054 		link_check = adapter->hw.mac.serdes_has_link;
2055 		break;
2056 
2057 	case e1000_media_type_unknown:
2058 	default:
2059 		break;
2060 	}
2061 
2062 	/* Now check for a transition */
2063 	if (link_check && adapter->link_active == 0) {
2064 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2065 		    &adapter->link_duplex);
2066 
2067 		/*
2068 		 * Check if we should enable/disable SPEED_MODE bit on
2069 		 * 82571/82572
2070 		 */
2071 		if (adapter->link_speed != SPEED_1000 &&
2072 		    (hw->mac.type == e1000_82571 ||
2073 		     hw->mac.type == e1000_82572)) {
2074 			int tarc0;
2075 
2076 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2077 			tarc0 &= ~SPEED_MODE_BIT;
2078 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2079 		}
2080 		if (bootverbose) {
2081 			device_printf(dev, "Link is up %d Mbps %s\n",
2082 			    adapter->link_speed,
2083 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2084 			    "Full Duplex" : "Half Duplex"));
2085 		}
2086 		adapter->link_active = 1;
2087 		adapter->smartspeed = 0;
2088 		ifp->if_baudrate = adapter->link_speed * 1000000;
2089 		ifp->if_link_state = LINK_STATE_UP;
2090 		if_link_state_change(ifp);
2091 	} else if (!link_check && adapter->link_active == 1) {
2092 		ifp->if_baudrate = adapter->link_speed = 0;
2093 		adapter->link_duplex = 0;
2094 		if (bootverbose)
2095 			device_printf(dev, "Link is Down\n");
2096 		adapter->link_active = 0;
2097 #if 0
2098 		/* Link down, disable watchdog */
2099 		if->if_timer = 0;
2100 #endif
2101 		ifp->if_link_state = LINK_STATE_DOWN;
2102 		if_link_state_change(ifp);
2103 	}
2104 }
2105 
2106 static void
2107 em_stop(struct adapter *adapter)
2108 {
2109 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2110 	int i;
2111 
2112 	ASSERT_SERIALIZED(ifp->if_serializer);
2113 
2114 	em_disable_intr(adapter);
2115 
2116 	callout_stop(&adapter->timer);
2117 	callout_stop(&adapter->tx_fifo_timer);
2118 
2119 	ifp->if_flags &= ~IFF_RUNNING;
2120 	ifq_clr_oactive(&ifp->if_snd);
2121 	ifp->if_timer = 0;
2122 
2123 	e1000_reset_hw(&adapter->hw);
2124 	if (adapter->hw.mac.type >= e1000_82544)
2125 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2126 
2127 	for (i = 0; i < adapter->num_tx_desc; i++) {
2128 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2129 
2130 		if (tx_buffer->m_head != NULL) {
2131 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2132 			m_freem(tx_buffer->m_head);
2133 			tx_buffer->m_head = NULL;
2134 		}
2135 	}
2136 
2137 	for (i = 0; i < adapter->num_rx_desc; i++) {
2138 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2139 
2140 		if (rx_buffer->m_head != NULL) {
2141 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2142 			m_freem(rx_buffer->m_head);
2143 			rx_buffer->m_head = NULL;
2144 		}
2145 	}
2146 
2147 	if (adapter->fmp != NULL)
2148 		m_freem(adapter->fmp);
2149 	adapter->fmp = NULL;
2150 	adapter->lmp = NULL;
2151 
2152 	adapter->csum_flags = 0;
2153 	adapter->csum_lhlen = 0;
2154 	adapter->csum_iphlen = 0;
2155 	adapter->csum_thlen = 0;
2156 	adapter->csum_mss = 0;
2157 	adapter->csum_pktlen = 0;
2158 
2159 	adapter->tx_dd_head = 0;
2160 	adapter->tx_dd_tail = 0;
2161 	adapter->tx_nsegs = 0;
2162 }
2163 
2164 static int
2165 em_get_hw_info(struct adapter *adapter)
2166 {
2167 	device_t dev = adapter->dev;
2168 
2169 	/* Save off the information about this board */
2170 	adapter->hw.vendor_id = pci_get_vendor(dev);
2171 	adapter->hw.device_id = pci_get_device(dev);
2172 	adapter->hw.revision_id = pci_get_revid(dev);
2173 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2174 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2175 
2176 	/* Do Shared Code Init and Setup */
2177 	if (e1000_set_mac_type(&adapter->hw))
2178 		return ENXIO;
2179 	return 0;
2180 }
2181 
2182 static int
2183 em_alloc_pci_res(struct adapter *adapter)
2184 {
2185 	device_t dev = adapter->dev;
2186 	u_int intr_flags;
2187 	int val, rid, msi_enable;
2188 
2189 	/* Enable bus mastering */
2190 	pci_enable_busmaster(dev);
2191 
2192 	adapter->memory_rid = EM_BAR_MEM;
2193 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2194 				&adapter->memory_rid, RF_ACTIVE);
2195 	if (adapter->memory == NULL) {
2196 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2197 		return (ENXIO);
2198 	}
2199 	adapter->osdep.mem_bus_space_tag =
2200 	    rman_get_bustag(adapter->memory);
2201 	adapter->osdep.mem_bus_space_handle =
2202 	    rman_get_bushandle(adapter->memory);
2203 
2204 	/* XXX This is quite goofy, it is not actually used */
2205 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2206 
2207 	/* Only older adapters use IO mapping */
2208 	if (adapter->hw.mac.type > e1000_82543 &&
2209 	    adapter->hw.mac.type < e1000_82571) {
2210 		/* Figure our where our IO BAR is ? */
2211 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2212 			val = pci_read_config(dev, rid, 4);
2213 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2214 				adapter->io_rid = rid;
2215 				break;
2216 			}
2217 			rid += 4;
2218 			/* check for 64bit BAR */
2219 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2220 				rid += 4;
2221 		}
2222 		if (rid >= PCIR_CARDBUSCIS) {
2223 			device_printf(dev, "Unable to locate IO BAR\n");
2224 			return (ENXIO);
2225 		}
2226 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2227 					&adapter->io_rid, RF_ACTIVE);
2228 		if (adapter->ioport == NULL) {
2229 			device_printf(dev, "Unable to allocate bus resource: "
2230 			    "ioport\n");
2231 			return (ENXIO);
2232 		}
2233 		adapter->hw.io_base = 0;
2234 		adapter->osdep.io_bus_space_tag =
2235 		    rman_get_bustag(adapter->ioport);
2236 		adapter->osdep.io_bus_space_handle =
2237 		    rman_get_bushandle(adapter->ioport);
2238 	}
2239 
2240 	/*
2241 	 * Don't enable MSI-X on 82574, see:
2242 	 * 82574 specification update errata #15
2243 	 *
2244 	 * Don't enable MSI on PCI/PCI-X chips, see:
2245 	 * 82540 specification update errata #6
2246 	 * 82545 specification update errata #4
2247 	 *
2248 	 * Don't enable MSI on 82571/82572, see:
2249 	 * 82571/82572 specification update errata #63
2250 	 */
2251 	msi_enable = em_msi_enable;
2252 	if (msi_enable &&
2253 	    (!pci_is_pcie(dev) ||
2254 	     adapter->hw.mac.type == e1000_82571 ||
2255 	     adapter->hw.mac.type == e1000_82572))
2256 		msi_enable = 0;
2257 
2258 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2259 	    &adapter->intr_rid, &intr_flags);
2260 
2261 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2262 		int unshared;
2263 
2264 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2265 		if (!unshared) {
2266 			adapter->flags |= EM_FLAG_SHARED_INTR;
2267 			if (bootverbose)
2268 				device_printf(dev, "IRQ shared\n");
2269 		} else {
2270 			intr_flags &= ~RF_SHAREABLE;
2271 			if (bootverbose)
2272 				device_printf(dev, "IRQ unshared\n");
2273 		}
2274 	}
2275 
2276 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2277 	    &adapter->intr_rid, intr_flags);
2278 	if (adapter->intr_res == NULL) {
2279 		device_printf(dev, "Unable to allocate bus resource: "
2280 		    "interrupt\n");
2281 		return (ENXIO);
2282 	}
2283 
2284 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2285 	adapter->hw.back = &adapter->osdep;
2286 	return (0);
2287 }
2288 
2289 static void
2290 em_free_pci_res(struct adapter *adapter)
2291 {
2292 	device_t dev = adapter->dev;
2293 
2294 	if (adapter->intr_res != NULL) {
2295 		bus_release_resource(dev, SYS_RES_IRQ,
2296 		    adapter->intr_rid, adapter->intr_res);
2297 	}
2298 
2299 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2300 		pci_release_msi(dev);
2301 
2302 	if (adapter->memory != NULL) {
2303 		bus_release_resource(dev, SYS_RES_MEMORY,
2304 		    adapter->memory_rid, adapter->memory);
2305 	}
2306 
2307 	if (adapter->flash != NULL) {
2308 		bus_release_resource(dev, SYS_RES_MEMORY,
2309 		    adapter->flash_rid, adapter->flash);
2310 	}
2311 
2312 	if (adapter->ioport != NULL) {
2313 		bus_release_resource(dev, SYS_RES_IOPORT,
2314 		    adapter->io_rid, adapter->ioport);
2315 	}
2316 }
2317 
2318 static int
2319 em_reset(struct adapter *adapter)
2320 {
2321 	device_t dev = adapter->dev;
2322 	uint16_t rx_buffer_size;
2323 	uint32_t pba;
2324 
2325 	/* When hardware is reset, fifo_head is also reset */
2326 	adapter->tx_fifo_head = 0;
2327 
2328 	/* Set up smart power down as default off on newer adapters. */
2329 	if (!em_smart_pwr_down &&
2330 	    (adapter->hw.mac.type == e1000_82571 ||
2331 	     adapter->hw.mac.type == e1000_82572)) {
2332 		uint16_t phy_tmp = 0;
2333 
2334 		/* Speed up time to link by disabling smart power down. */
2335 		e1000_read_phy_reg(&adapter->hw,
2336 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2337 		phy_tmp &= ~IGP02E1000_PM_SPD;
2338 		e1000_write_phy_reg(&adapter->hw,
2339 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2340 	}
2341 
2342 	/*
2343 	 * Packet Buffer Allocation (PBA)
2344 	 * Writing PBA sets the receive portion of the buffer
2345 	 * the remainder is used for the transmit buffer.
2346 	 *
2347 	 * Devices before the 82547 had a Packet Buffer of 64K.
2348 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2349 	 * After the 82547 the buffer was reduced to 40K.
2350 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2351 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2352 	 */
2353 	switch (adapter->hw.mac.type) {
2354 	case e1000_82547:
2355 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2356 		if (adapter->hw.mac.max_frame_size > 8192)
2357 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2358 		else
2359 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2360 		adapter->tx_fifo_head = 0;
2361 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2362 		adapter->tx_fifo_size =
2363 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2364 		break;
2365 
2366 	/* Total Packet Buffer on these is 48K */
2367 	case e1000_82571:
2368 	case e1000_82572:
2369 	case e1000_80003es2lan:
2370 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2371 		break;
2372 
2373 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2374 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2375 		break;
2376 
2377 	case e1000_82574:
2378 	case e1000_82583:
2379 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2380 		break;
2381 
2382 	case e1000_ich8lan:
2383 		pba = E1000_PBA_8K;
2384 		break;
2385 
2386 	case e1000_ich9lan:
2387 	case e1000_ich10lan:
2388 #define E1000_PBA_10K	0x000A
2389 		pba = E1000_PBA_10K;
2390 		break;
2391 
2392 	case e1000_pchlan:
2393 	case e1000_pch2lan:
2394 	case e1000_pch_lpt:
2395 		pba = E1000_PBA_26K;
2396 		break;
2397 
2398 	default:
2399 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2400 		if (adapter->hw.mac.max_frame_size > 8192)
2401 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2402 		else
2403 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2404 	}
2405 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2406 
2407 	/*
2408 	 * These parameters control the automatic generation (Tx) and
2409 	 * response (Rx) to Ethernet PAUSE frames.
2410 	 * - High water mark should allow for at least two frames to be
2411 	 *   received after sending an XOFF.
2412 	 * - Low water mark works best when it is very near the high water mark.
2413 	 *   This allows the receiver to restart by sending XON when it has
2414 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2415 	 *   restart after one full frame is pulled from the buffer. There
2416 	 *   could be several smaller frames in the buffer and if so they will
2417 	 *   not trigger the XON until their total number reduces the buffer
2418 	 *   by 1500.
2419 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2420 	 */
2421 	rx_buffer_size =
2422 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2423 
2424 	adapter->hw.fc.high_water = rx_buffer_size -
2425 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2426 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2427 
2428 	if (adapter->hw.mac.type == e1000_80003es2lan)
2429 		adapter->hw.fc.pause_time = 0xFFFF;
2430 	else
2431 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2432 
2433 	adapter->hw.fc.send_xon = TRUE;
2434 
2435 	adapter->hw.fc.requested_mode = e1000_fc_full;
2436 
2437 	/*
2438 	 * Device specific overrides/settings
2439 	 */
2440 	switch (adapter->hw.mac.type) {
2441 	case e1000_pchlan:
2442 		/* Workaround: no TX flow ctrl for PCH */
2443 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2444 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2445 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2446 			adapter->hw.fc.high_water = 0x3500;
2447 			adapter->hw.fc.low_water = 0x1500;
2448 		} else {
2449 			adapter->hw.fc.high_water = 0x5000;
2450 			adapter->hw.fc.low_water = 0x3000;
2451 		}
2452 		adapter->hw.fc.refresh_time = 0x1000;
2453 		break;
2454 
2455 	case e1000_pch2lan:
2456 	case e1000_pch_lpt:
2457 		adapter->hw.fc.high_water = 0x5C20;
2458 		adapter->hw.fc.low_water = 0x5048;
2459 		adapter->hw.fc.pause_time = 0x0650;
2460 		adapter->hw.fc.refresh_time = 0x0400;
2461 		/* Jumbos need adjusted PBA */
2462 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2463 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2464 		else
2465 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2466 		break;
2467 
2468 	case e1000_ich9lan:
2469 	case e1000_ich10lan:
2470 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2471 			adapter->hw.fc.high_water = 0x2800;
2472 			adapter->hw.fc.low_water =
2473 			    adapter->hw.fc.high_water - 8;
2474 			break;
2475 		}
2476 		/* FALL THROUGH */
2477 	default:
2478 		if (adapter->hw.mac.type == e1000_80003es2lan)
2479 			adapter->hw.fc.pause_time = 0xFFFF;
2480 		break;
2481 	}
2482 
2483 	/* Issue a global reset */
2484 	e1000_reset_hw(&adapter->hw);
2485 	if (adapter->hw.mac.type >= e1000_82544)
2486 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2487 	em_disable_aspm(adapter);
2488 
2489 	if (e1000_init_hw(&adapter->hw) < 0) {
2490 		device_printf(dev, "Hardware Initialization Failed\n");
2491 		return (EIO);
2492 	}
2493 
2494 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2495 	e1000_get_phy_info(&adapter->hw);
2496 	e1000_check_for_link(&adapter->hw);
2497 
2498 	return (0);
2499 }
2500 
2501 static void
2502 em_setup_ifp(struct adapter *adapter)
2503 {
2504 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2505 
2506 	if_initname(ifp, device_get_name(adapter->dev),
2507 		    device_get_unit(adapter->dev));
2508 	ifp->if_softc = adapter;
2509 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2510 	ifp->if_init =  em_init;
2511 	ifp->if_ioctl = em_ioctl;
2512 	ifp->if_start = em_start;
2513 #ifdef IFPOLL_ENABLE
2514 	ifp->if_npoll = em_npoll;
2515 #endif
2516 	ifp->if_watchdog = em_watchdog;
2517 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2518 	ifq_set_ready(&ifp->if_snd);
2519 
2520 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2521 
2522 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2523 	if (adapter->hw.mac.type >= e1000_82543)
2524 		ifp->if_capabilities |= IFCAP_HWCSUM;
2525 	if (adapter->flags & EM_FLAG_TSO)
2526 		ifp->if_capabilities |= IFCAP_TSO;
2527 	ifp->if_capenable = ifp->if_capabilities;
2528 
2529 	if (ifp->if_capenable & IFCAP_TXCSUM)
2530 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2531 	if (ifp->if_capenable & IFCAP_TSO)
2532 		ifp->if_hwassist |= CSUM_TSO;
2533 
2534 	/*
2535 	 * Tell the upper layer(s) we support long frames.
2536 	 */
2537 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2538 
2539 	/*
2540 	 * Specify the media types supported by this adapter and register
2541 	 * callbacks to update media and link information
2542 	 */
2543 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2544 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2545 		u_char fiber_type = IFM_1000_SX; /* default type */
2546 
2547 		if (adapter->hw.mac.type == e1000_82545)
2548 			fiber_type = IFM_1000_LX;
2549 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2550 			    0, NULL);
2551 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2552 	} else {
2553 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2554 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2555 			    0, NULL);
2556 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2557 			    0, NULL);
2558 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2559 			    0, NULL);
2560 		if (adapter->hw.phy.type != e1000_phy_ife) {
2561 			ifmedia_add(&adapter->media,
2562 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2563 			ifmedia_add(&adapter->media,
2564 				IFM_ETHER | IFM_1000_T, 0, NULL);
2565 		}
2566 	}
2567 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2568 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2569 }
2570 
2571 
2572 /*
2573  * Workaround for SmartSpeed on 82541 and 82547 controllers
2574  */
2575 static void
2576 em_smartspeed(struct adapter *adapter)
2577 {
2578 	uint16_t phy_tmp;
2579 
2580 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2581 	    adapter->hw.mac.autoneg == 0 ||
2582 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2583 		return;
2584 
2585 	if (adapter->smartspeed == 0) {
2586 		/*
2587 		 * If Master/Slave config fault is asserted twice,
2588 		 * we assume back-to-back
2589 		 */
2590 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2591 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2592 			return;
2593 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2594 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2595 			e1000_read_phy_reg(&adapter->hw,
2596 			    PHY_1000T_CTRL, &phy_tmp);
2597 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2598 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2599 				e1000_write_phy_reg(&adapter->hw,
2600 				    PHY_1000T_CTRL, phy_tmp);
2601 				adapter->smartspeed++;
2602 				if (adapter->hw.mac.autoneg &&
2603 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2604 				    !e1000_read_phy_reg(&adapter->hw,
2605 				     PHY_CONTROL, &phy_tmp)) {
2606 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2607 						   MII_CR_RESTART_AUTO_NEG;
2608 					e1000_write_phy_reg(&adapter->hw,
2609 					    PHY_CONTROL, phy_tmp);
2610 				}
2611 			}
2612 		}
2613 		return;
2614 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2615 		/* If still no link, perhaps using 2/3 pair cable */
2616 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2617 		phy_tmp |= CR_1000T_MS_ENABLE;
2618 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2619 		if (adapter->hw.mac.autoneg &&
2620 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2621 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2622 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2623 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2624 		}
2625 	}
2626 
2627 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2628 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2629 		adapter->smartspeed = 0;
2630 }
2631 
2632 static int
2633 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2634 	      struct em_dma_alloc *dma)
2635 {
2636 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2637 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2638 				&dma->dma_tag, &dma->dma_map,
2639 				&dma->dma_paddr);
2640 	if (dma->dma_vaddr == NULL)
2641 		return ENOMEM;
2642 	else
2643 		return 0;
2644 }
2645 
2646 static void
2647 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2648 {
2649 	if (dma->dma_tag == NULL)
2650 		return;
2651 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2652 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2653 	bus_dma_tag_destroy(dma->dma_tag);
2654 }
2655 
2656 static int
2657 em_create_tx_ring(struct adapter *adapter)
2658 {
2659 	device_t dev = adapter->dev;
2660 	struct em_buffer *tx_buffer;
2661 	int error, i;
2662 
2663 	adapter->tx_buffer_area =
2664 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2665 			M_DEVBUF, M_WAITOK | M_ZERO);
2666 
2667 	/*
2668 	 * Create DMA tags for tx buffers
2669 	 */
2670 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2671 			1, 0,			/* alignment, bounds */
2672 			BUS_SPACE_MAXADDR,	/* lowaddr */
2673 			BUS_SPACE_MAXADDR,	/* highaddr */
2674 			NULL, NULL,		/* filter, filterarg */
2675 			EM_TSO_SIZE,		/* maxsize */
2676 			EM_MAX_SCATTER,		/* nsegments */
2677 			PAGE_SIZE,		/* maxsegsize */
2678 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2679 			BUS_DMA_ONEBPAGE,	/* flags */
2680 			&adapter->txtag);
2681 	if (error) {
2682 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2683 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2684 		adapter->tx_buffer_area = NULL;
2685 		return error;
2686 	}
2687 
2688 	/*
2689 	 * Create DMA maps for tx buffers
2690 	 */
2691 	for (i = 0; i < adapter->num_tx_desc; i++) {
2692 		tx_buffer = &adapter->tx_buffer_area[i];
2693 
2694 		error = bus_dmamap_create(adapter->txtag,
2695 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2696 					  &tx_buffer->map);
2697 		if (error) {
2698 			device_printf(dev, "Unable to create TX DMA map\n");
2699 			em_destroy_tx_ring(adapter, i);
2700 			return error;
2701 		}
2702 	}
2703 	return (0);
2704 }
2705 
2706 static void
2707 em_init_tx_ring(struct adapter *adapter)
2708 {
2709 	/* Clear the old ring contents */
2710 	bzero(adapter->tx_desc_base,
2711 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2712 
2713 	/* Reset state */
2714 	adapter->next_avail_tx_desc = 0;
2715 	adapter->next_tx_to_clean = 0;
2716 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2717 }
2718 
2719 static void
2720 em_init_tx_unit(struct adapter *adapter)
2721 {
2722 	uint32_t tctl, tarc, tipg = 0;
2723 	uint64_t bus_addr;
2724 
2725 	/* Setup the Base and Length of the Tx Descriptor Ring */
2726 	bus_addr = adapter->txdma.dma_paddr;
2727 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2728 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2729 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2730 	    (uint32_t)(bus_addr >> 32));
2731 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2732 	    (uint32_t)bus_addr);
2733 	/* Setup the HW Tx Head and Tail descriptor pointers */
2734 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2735 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2736 
2737 	/* Set the default values for the Tx Inter Packet Gap timer */
2738 	switch (adapter->hw.mac.type) {
2739 	case e1000_82542:
2740 		tipg = DEFAULT_82542_TIPG_IPGT;
2741 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2742 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2743 		break;
2744 
2745 	case e1000_80003es2lan:
2746 		tipg = DEFAULT_82543_TIPG_IPGR1;
2747 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2748 		    E1000_TIPG_IPGR2_SHIFT;
2749 		break;
2750 
2751 	default:
2752 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2753 		    adapter->hw.phy.media_type ==
2754 		    e1000_media_type_internal_serdes)
2755 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2756 		else
2757 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2758 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2759 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2760 		break;
2761 	}
2762 
2763 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2764 
2765 	/* NOTE: 0 is not allowed for TIDV */
2766 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2767 	if(adapter->hw.mac.type >= e1000_82540)
2768 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2769 
2770 	if (adapter->hw.mac.type == e1000_82571 ||
2771 	    adapter->hw.mac.type == e1000_82572) {
2772 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2773 		tarc |= SPEED_MODE_BIT;
2774 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2775 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2776 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2777 		tarc |= 1;
2778 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2779 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2780 		tarc |= 1;
2781 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2782 	}
2783 
2784 	/* Program the Transmit Control Register */
2785 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2786 	tctl &= ~E1000_TCTL_CT;
2787 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2788 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2789 
2790 	if (adapter->hw.mac.type >= e1000_82571)
2791 		tctl |= E1000_TCTL_MULR;
2792 
2793 	/* This write will effectively turn on the transmit unit. */
2794 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2795 
2796 	if (adapter->hw.mac.type == e1000_82571 ||
2797 	    adapter->hw.mac.type == e1000_82572 ||
2798 	    adapter->hw.mac.type == e1000_80003es2lan) {
2799 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2800 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2801 		tarc &= ~(1 << 28);
2802 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2803 	}
2804 }
2805 
2806 static void
2807 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2808 {
2809 	struct em_buffer *tx_buffer;
2810 	int i;
2811 
2812 	if (adapter->tx_buffer_area == NULL)
2813 		return;
2814 
2815 	for (i = 0; i < ndesc; i++) {
2816 		tx_buffer = &adapter->tx_buffer_area[i];
2817 
2818 		KKASSERT(tx_buffer->m_head == NULL);
2819 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2820 	}
2821 	bus_dma_tag_destroy(adapter->txtag);
2822 
2823 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2824 	adapter->tx_buffer_area = NULL;
2825 }
2826 
2827 /*
2828  * The offload context needs to be set when we transfer the first
2829  * packet of a particular protocol (TCP/UDP).  This routine has been
2830  * enhanced to deal with inserted VLAN headers.
2831  *
2832  * If the new packet's ether header length, ip header length and
2833  * csum offloading type are same as the previous packet, we should
2834  * avoid allocating a new csum context descriptor; mainly to take
2835  * advantage of the pipeline effect of the TX data read request.
2836  *
2837  * This function returns number of TX descrptors allocated for
2838  * csum context.
2839  */
2840 static int
2841 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2842 	  uint32_t *txd_upper, uint32_t *txd_lower)
2843 {
2844 	struct e1000_context_desc *TXD;
2845 	int curr_txd, ehdrlen, csum_flags;
2846 	uint32_t cmd, hdr_len, ip_hlen;
2847 
2848 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2849 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2850 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2851 
2852 	if (adapter->csum_lhlen == ehdrlen &&
2853 	    adapter->csum_iphlen == ip_hlen &&
2854 	    adapter->csum_flags == csum_flags) {
2855 		/*
2856 		 * Same csum offload context as the previous packets;
2857 		 * just return.
2858 		 */
2859 		*txd_upper = adapter->csum_txd_upper;
2860 		*txd_lower = adapter->csum_txd_lower;
2861 		return 0;
2862 	}
2863 
2864 	/*
2865 	 * Setup a new csum offload context.
2866 	 */
2867 
2868 	curr_txd = adapter->next_avail_tx_desc;
2869 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2870 
2871 	cmd = 0;
2872 
2873 	/* Setup of IP header checksum. */
2874 	if (csum_flags & CSUM_IP) {
2875 		/*
2876 		 * Start offset for header checksum calculation.
2877 		 * End offset for header checksum calculation.
2878 		 * Offset of place to put the checksum.
2879 		 */
2880 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2881 		TXD->lower_setup.ip_fields.ipcse =
2882 		    htole16(ehdrlen + ip_hlen - 1);
2883 		TXD->lower_setup.ip_fields.ipcso =
2884 		    ehdrlen + offsetof(struct ip, ip_sum);
2885 		cmd |= E1000_TXD_CMD_IP;
2886 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2887 	}
2888 	hdr_len = ehdrlen + ip_hlen;
2889 
2890 	if (csum_flags & CSUM_TCP) {
2891 		/*
2892 		 * Start offset for payload checksum calculation.
2893 		 * End offset for payload checksum calculation.
2894 		 * Offset of place to put the checksum.
2895 		 */
2896 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2897 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2898 		TXD->upper_setup.tcp_fields.tucso =
2899 		    hdr_len + offsetof(struct tcphdr, th_sum);
2900 		cmd |= E1000_TXD_CMD_TCP;
2901 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2902 	} else if (csum_flags & CSUM_UDP) {
2903 		/*
2904 		 * Start offset for header checksum calculation.
2905 		 * End offset for header checksum calculation.
2906 		 * Offset of place to put the checksum.
2907 		 */
2908 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2909 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2910 		TXD->upper_setup.tcp_fields.tucso =
2911 		    hdr_len + offsetof(struct udphdr, uh_sum);
2912 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2913 	}
2914 
2915 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2916 		     E1000_TXD_DTYP_D;		/* Data descr */
2917 
2918 	/* Save the information for this csum offloading context */
2919 	adapter->csum_lhlen = ehdrlen;
2920 	adapter->csum_iphlen = ip_hlen;
2921 	adapter->csum_flags = csum_flags;
2922 	adapter->csum_txd_upper = *txd_upper;
2923 	adapter->csum_txd_lower = *txd_lower;
2924 
2925 	TXD->tcp_seg_setup.data = htole32(0);
2926 	TXD->cmd_and_length =
2927 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2928 
2929 	if (++curr_txd == adapter->num_tx_desc)
2930 		curr_txd = 0;
2931 
2932 	KKASSERT(adapter->num_tx_desc_avail > 0);
2933 	adapter->num_tx_desc_avail--;
2934 
2935 	adapter->next_avail_tx_desc = curr_txd;
2936 	return 1;
2937 }
2938 
2939 static void
2940 em_txeof(struct adapter *adapter)
2941 {
2942 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2943 	struct em_buffer *tx_buffer;
2944 	int first, num_avail;
2945 
2946 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2947 		return;
2948 
2949 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2950 		return;
2951 
2952 	num_avail = adapter->num_tx_desc_avail;
2953 	first = adapter->next_tx_to_clean;
2954 
2955 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2956 		struct e1000_tx_desc *tx_desc;
2957 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2958 
2959 		tx_desc = &adapter->tx_desc_base[dd_idx];
2960 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2961 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2962 
2963 			if (++dd_idx == adapter->num_tx_desc)
2964 				dd_idx = 0;
2965 
2966 			while (first != dd_idx) {
2967 				logif(pkt_txclean);
2968 
2969 				num_avail++;
2970 
2971 				tx_buffer = &adapter->tx_buffer_area[first];
2972 				if (tx_buffer->m_head) {
2973 					IFNET_STAT_INC(ifp, opackets, 1);
2974 					bus_dmamap_unload(adapter->txtag,
2975 							  tx_buffer->map);
2976 					m_freem(tx_buffer->m_head);
2977 					tx_buffer->m_head = NULL;
2978 				}
2979 
2980 				if (++first == adapter->num_tx_desc)
2981 					first = 0;
2982 			}
2983 		} else {
2984 			break;
2985 		}
2986 	}
2987 	adapter->next_tx_to_clean = first;
2988 	adapter->num_tx_desc_avail = num_avail;
2989 
2990 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2991 		adapter->tx_dd_head = 0;
2992 		adapter->tx_dd_tail = 0;
2993 	}
2994 
2995 	if (!EM_IS_OACTIVE(adapter)) {
2996 		ifq_clr_oactive(&ifp->if_snd);
2997 
2998 		/* All clean, turn off the timer */
2999 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3000 			ifp->if_timer = 0;
3001 	}
3002 }
3003 
3004 static void
3005 em_tx_collect(struct adapter *adapter)
3006 {
3007 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3008 	struct em_buffer *tx_buffer;
3009 	int tdh, first, num_avail, dd_idx = -1;
3010 
3011 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3012 		return;
3013 
3014 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3015 	if (tdh == adapter->next_tx_to_clean)
3016 		return;
3017 
3018 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3019 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3020 
3021 	num_avail = adapter->num_tx_desc_avail;
3022 	first = adapter->next_tx_to_clean;
3023 
3024 	while (first != tdh) {
3025 		logif(pkt_txclean);
3026 
3027 		num_avail++;
3028 
3029 		tx_buffer = &adapter->tx_buffer_area[first];
3030 		if (tx_buffer->m_head) {
3031 			IFNET_STAT_INC(ifp, opackets, 1);
3032 			bus_dmamap_unload(adapter->txtag,
3033 					  tx_buffer->map);
3034 			m_freem(tx_buffer->m_head);
3035 			tx_buffer->m_head = NULL;
3036 		}
3037 
3038 		if (first == dd_idx) {
3039 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3040 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3041 				adapter->tx_dd_head = 0;
3042 				adapter->tx_dd_tail = 0;
3043 				dd_idx = -1;
3044 			} else {
3045 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3046 			}
3047 		}
3048 
3049 		if (++first == adapter->num_tx_desc)
3050 			first = 0;
3051 	}
3052 	adapter->next_tx_to_clean = first;
3053 	adapter->num_tx_desc_avail = num_avail;
3054 
3055 	if (!EM_IS_OACTIVE(adapter)) {
3056 		ifq_clr_oactive(&ifp->if_snd);
3057 
3058 		/* All clean, turn off the timer */
3059 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3060 			ifp->if_timer = 0;
3061 	}
3062 }
3063 
3064 /*
3065  * When Link is lost sometimes there is work still in the TX ring
3066  * which will result in a watchdog, rather than allow that do an
3067  * attempted cleanup and then reinit here.  Note that this has been
3068  * seens mostly with fiber adapters.
3069  */
3070 static void
3071 em_tx_purge(struct adapter *adapter)
3072 {
3073 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3074 
3075 	if (!adapter->link_active && ifp->if_timer) {
3076 		em_tx_collect(adapter);
3077 		if (ifp->if_timer) {
3078 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3079 			ifp->if_timer = 0;
3080 			em_init(adapter);
3081 		}
3082 	}
3083 }
3084 
3085 static int
3086 em_newbuf(struct adapter *adapter, int i, int init)
3087 {
3088 	struct mbuf *m;
3089 	bus_dma_segment_t seg;
3090 	bus_dmamap_t map;
3091 	struct em_buffer *rx_buffer;
3092 	int error, nseg;
3093 
3094 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3095 	if (m == NULL) {
3096 		adapter->mbuf_cluster_failed++;
3097 		if (init) {
3098 			if_printf(&adapter->arpcom.ac_if,
3099 				  "Unable to allocate RX mbuf\n");
3100 		}
3101 		return (ENOBUFS);
3102 	}
3103 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3104 
3105 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3106 		m_adj(m, ETHER_ALIGN);
3107 
3108 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3109 			adapter->rx_sparemap, m,
3110 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3111 	if (error) {
3112 		m_freem(m);
3113 		if (init) {
3114 			if_printf(&adapter->arpcom.ac_if,
3115 				  "Unable to load RX mbuf\n");
3116 		}
3117 		return (error);
3118 	}
3119 
3120 	rx_buffer = &adapter->rx_buffer_area[i];
3121 	if (rx_buffer->m_head != NULL)
3122 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3123 
3124 	map = rx_buffer->map;
3125 	rx_buffer->map = adapter->rx_sparemap;
3126 	adapter->rx_sparemap = map;
3127 
3128 	rx_buffer->m_head = m;
3129 
3130 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3131 	return (0);
3132 }
3133 
3134 static int
3135 em_create_rx_ring(struct adapter *adapter)
3136 {
3137 	device_t dev = adapter->dev;
3138 	struct em_buffer *rx_buffer;
3139 	int i, error;
3140 
3141 	adapter->rx_buffer_area =
3142 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3143 			M_DEVBUF, M_WAITOK | M_ZERO);
3144 
3145 	/*
3146 	 * Create DMA tag for rx buffers
3147 	 */
3148 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3149 			1, 0,			/* alignment, bounds */
3150 			BUS_SPACE_MAXADDR,	/* lowaddr */
3151 			BUS_SPACE_MAXADDR,	/* highaddr */
3152 			NULL, NULL,		/* filter, filterarg */
3153 			MCLBYTES,		/* maxsize */
3154 			1,			/* nsegments */
3155 			MCLBYTES,		/* maxsegsize */
3156 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3157 			&adapter->rxtag);
3158 	if (error) {
3159 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3160 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3161 		adapter->rx_buffer_area = NULL;
3162 		return error;
3163 	}
3164 
3165 	/*
3166 	 * Create spare DMA map for rx buffers
3167 	 */
3168 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3169 				  &adapter->rx_sparemap);
3170 	if (error) {
3171 		device_printf(dev, "Unable to create spare RX DMA map\n");
3172 		bus_dma_tag_destroy(adapter->rxtag);
3173 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3174 		adapter->rx_buffer_area = NULL;
3175 		return error;
3176 	}
3177 
3178 	/*
3179 	 * Create DMA maps for rx buffers
3180 	 */
3181 	for (i = 0; i < adapter->num_rx_desc; i++) {
3182 		rx_buffer = &adapter->rx_buffer_area[i];
3183 
3184 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3185 					  &rx_buffer->map);
3186 		if (error) {
3187 			device_printf(dev, "Unable to create RX DMA map\n");
3188 			em_destroy_rx_ring(adapter, i);
3189 			return error;
3190 		}
3191 	}
3192 	return (0);
3193 }
3194 
3195 static int
3196 em_init_rx_ring(struct adapter *adapter)
3197 {
3198 	int i, error;
3199 
3200 	/* Reset descriptor ring */
3201 	bzero(adapter->rx_desc_base,
3202 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3203 
3204 	/* Allocate new ones. */
3205 	for (i = 0; i < adapter->num_rx_desc; i++) {
3206 		error = em_newbuf(adapter, i, 1);
3207 		if (error)
3208 			return (error);
3209 	}
3210 
3211 	/* Setup our descriptor pointers */
3212 	adapter->next_rx_desc_to_check = 0;
3213 
3214 	return (0);
3215 }
3216 
3217 static void
3218 em_init_rx_unit(struct adapter *adapter)
3219 {
3220 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3221 	uint64_t bus_addr;
3222 	uint32_t rctl;
3223 
3224 	/*
3225 	 * Make sure receives are disabled while setting
3226 	 * up the descriptor ring
3227 	 */
3228 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3229 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3230 
3231 	if (adapter->hw.mac.type >= e1000_82540) {
3232 		uint32_t itr;
3233 
3234 		/*
3235 		 * Set the interrupt throttling rate. Value is calculated
3236 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3237 		 */
3238 		if (adapter->int_throttle_ceil)
3239 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3240 		else
3241 			itr = 0;
3242 		em_set_itr(adapter, itr);
3243 	}
3244 
3245 	/* Disable accelerated ackknowledge */
3246 	if (adapter->hw.mac.type == e1000_82574) {
3247 		E1000_WRITE_REG(&adapter->hw,
3248 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3249 	}
3250 
3251 	/* Receive Checksum Offload for TCP and UDP */
3252 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3253 		uint32_t rxcsum;
3254 
3255 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3256 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3257 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3258 	}
3259 
3260 	/*
3261 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3262 	 * long latencies are observed, like Lenovo X60. This
3263 	 * change eliminates the problem, but since having positive
3264 	 * values in RDTR is a known source of problems on other
3265 	 * platforms another solution is being sought.
3266 	 */
3267 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3268 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3269 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3270 	}
3271 
3272 	/*
3273 	 * Setup the Base and Length of the Rx Descriptor Ring
3274 	 */
3275 	bus_addr = adapter->rxdma.dma_paddr;
3276 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3277 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3278 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3279 	    (uint32_t)(bus_addr >> 32));
3280 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3281 	    (uint32_t)bus_addr);
3282 
3283 	/*
3284 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3285 	 */
3286 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3287 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3288 
3289 	/* Set PTHRESH for improved jumbo performance */
3290 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3291 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3292 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3293 	    (ifp->if_mtu > ETHERMTU)) {
3294 		uint32_t rxdctl;
3295 
3296 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3297 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3298 	}
3299 
3300 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3301 		if (ifp->if_mtu > ETHERMTU)
3302 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3303 		else
3304 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3305 	}
3306 
3307 	/* Setup the Receive Control Register */
3308 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3309 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3310 		E1000_RCTL_RDMTS_HALF |
3311 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3312 
3313 	/* Make sure VLAN Filters are off */
3314 	rctl &= ~E1000_RCTL_VFE;
3315 
3316 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3317 		rctl |= E1000_RCTL_SBP;
3318 	else
3319 		rctl &= ~E1000_RCTL_SBP;
3320 
3321 	switch (adapter->rx_buffer_len) {
3322 	default:
3323 	case 2048:
3324 		rctl |= E1000_RCTL_SZ_2048;
3325 		break;
3326 
3327 	case 4096:
3328 		rctl |= E1000_RCTL_SZ_4096 |
3329 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3330 		break;
3331 
3332 	case 8192:
3333 		rctl |= E1000_RCTL_SZ_8192 |
3334 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3335 		break;
3336 
3337 	case 16384:
3338 		rctl |= E1000_RCTL_SZ_16384 |
3339 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3340 		break;
3341 	}
3342 
3343 	if (ifp->if_mtu > ETHERMTU)
3344 		rctl |= E1000_RCTL_LPE;
3345 	else
3346 		rctl &= ~E1000_RCTL_LPE;
3347 
3348 	/* Enable Receives */
3349 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3350 }
3351 
3352 static void
3353 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3354 {
3355 	struct em_buffer *rx_buffer;
3356 	int i;
3357 
3358 	if (adapter->rx_buffer_area == NULL)
3359 		return;
3360 
3361 	for (i = 0; i < ndesc; i++) {
3362 		rx_buffer = &adapter->rx_buffer_area[i];
3363 
3364 		KKASSERT(rx_buffer->m_head == NULL);
3365 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3366 	}
3367 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3368 	bus_dma_tag_destroy(adapter->rxtag);
3369 
3370 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3371 	adapter->rx_buffer_area = NULL;
3372 }
3373 
3374 static void
3375 em_rxeof(struct adapter *adapter, int count)
3376 {
3377 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3378 	uint8_t status, accept_frame = 0, eop = 0;
3379 	uint16_t len, desc_len, prev_len_adj;
3380 	struct e1000_rx_desc *current_desc;
3381 	struct mbuf *mp;
3382 	int i;
3383 
3384 	i = adapter->next_rx_desc_to_check;
3385 	current_desc = &adapter->rx_desc_base[i];
3386 
3387 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3388 		return;
3389 
3390 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3391 		struct mbuf *m = NULL;
3392 
3393 		logif(pkt_receive);
3394 
3395 		mp = adapter->rx_buffer_area[i].m_head;
3396 
3397 		/*
3398 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3399 		 * needs to access the last received byte in the mbuf.
3400 		 */
3401 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3402 				BUS_DMASYNC_POSTREAD);
3403 
3404 		accept_frame = 1;
3405 		prev_len_adj = 0;
3406 		desc_len = le16toh(current_desc->length);
3407 		status = current_desc->status;
3408 		if (status & E1000_RXD_STAT_EOP) {
3409 			count--;
3410 			eop = 1;
3411 			if (desc_len < ETHER_CRC_LEN) {
3412 				len = 0;
3413 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3414 			} else {
3415 				len = desc_len - ETHER_CRC_LEN;
3416 			}
3417 		} else {
3418 			eop = 0;
3419 			len = desc_len;
3420 		}
3421 
3422 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3423 			uint8_t	last_byte;
3424 			uint32_t pkt_len = desc_len;
3425 
3426 			if (adapter->fmp != NULL)
3427 				pkt_len += adapter->fmp->m_pkthdr.len;
3428 
3429 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3430 			if (TBI_ACCEPT(&adapter->hw, status,
3431 			    current_desc->errors, pkt_len, last_byte,
3432 			    adapter->min_frame_size,
3433 			    adapter->hw.mac.max_frame_size)) {
3434 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3435 				    &adapter->stats, pkt_len,
3436 				    adapter->hw.mac.addr,
3437 				    adapter->hw.mac.max_frame_size);
3438 				if (len > 0)
3439 					len--;
3440 			} else {
3441 				accept_frame = 0;
3442 			}
3443 		}
3444 
3445 		if (accept_frame) {
3446 			if (em_newbuf(adapter, i, 0) != 0) {
3447 				IFNET_STAT_INC(ifp, iqdrops, 1);
3448 				goto discard;
3449 			}
3450 
3451 			/* Assign correct length to the current fragment */
3452 			mp->m_len = len;
3453 
3454 			if (adapter->fmp == NULL) {
3455 				mp->m_pkthdr.len = len;
3456 				adapter->fmp = mp; /* Store the first mbuf */
3457 				adapter->lmp = mp;
3458 			} else {
3459 				/*
3460 				 * Chain mbuf's together
3461 				 */
3462 
3463 				/*
3464 				 * Adjust length of previous mbuf in chain if
3465 				 * we received less than 4 bytes in the last
3466 				 * descriptor.
3467 				 */
3468 				if (prev_len_adj > 0) {
3469 					adapter->lmp->m_len -= prev_len_adj;
3470 					adapter->fmp->m_pkthdr.len -=
3471 					    prev_len_adj;
3472 				}
3473 				adapter->lmp->m_next = mp;
3474 				adapter->lmp = adapter->lmp->m_next;
3475 				adapter->fmp->m_pkthdr.len += len;
3476 			}
3477 
3478 			if (eop) {
3479 				adapter->fmp->m_pkthdr.rcvif = ifp;
3480 				IFNET_STAT_INC(ifp, ipackets, 1);
3481 
3482 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3483 					em_rxcsum(adapter, current_desc,
3484 						  adapter->fmp);
3485 				}
3486 
3487 				if (status & E1000_RXD_STAT_VP) {
3488 					adapter->fmp->m_pkthdr.ether_vlantag =
3489 					    (le16toh(current_desc->special) &
3490 					    E1000_RXD_SPC_VLAN_MASK);
3491 					adapter->fmp->m_flags |= M_VLANTAG;
3492 				}
3493 				m = adapter->fmp;
3494 				adapter->fmp = NULL;
3495 				adapter->lmp = NULL;
3496 			}
3497 		} else {
3498 			IFNET_STAT_INC(ifp, ierrors, 1);
3499 discard:
3500 #ifdef foo
3501 			/* Reuse loaded DMA map and just update mbuf chain */
3502 			mp = adapter->rx_buffer_area[i].m_head;
3503 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3504 			mp->m_data = mp->m_ext.ext_buf;
3505 			mp->m_next = NULL;
3506 			if (adapter->hw.mac.max_frame_size <=
3507 			    (MCLBYTES - ETHER_ALIGN))
3508 				m_adj(mp, ETHER_ALIGN);
3509 #endif
3510 			if (adapter->fmp != NULL) {
3511 				m_freem(adapter->fmp);
3512 				adapter->fmp = NULL;
3513 				adapter->lmp = NULL;
3514 			}
3515 			m = NULL;
3516 		}
3517 
3518 		/* Zero out the receive descriptors status. */
3519 		current_desc->status = 0;
3520 
3521 		if (m != NULL)
3522 			ifp->if_input(ifp, m, NULL, -1);
3523 
3524 		/* Advance our pointers to the next descriptor. */
3525 		if (++i == adapter->num_rx_desc)
3526 			i = 0;
3527 		current_desc = &adapter->rx_desc_base[i];
3528 	}
3529 	adapter->next_rx_desc_to_check = i;
3530 
3531 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3532 	if (--i < 0)
3533 		i = adapter->num_rx_desc - 1;
3534 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3535 }
3536 
3537 static void
3538 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3539 	  struct mbuf *mp)
3540 {
3541 	/* 82543 or newer only */
3542 	if (adapter->hw.mac.type < e1000_82543 ||
3543 	    /* Ignore Checksum bit is set */
3544 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3545 		return;
3546 
3547 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3548 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3549 		/* IP Checksum Good */
3550 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3551 	}
3552 
3553 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3554 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3555 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3556 					   CSUM_PSEUDO_HDR |
3557 					   CSUM_FRAG_NOT_CHECKED;
3558 		mp->m_pkthdr.csum_data = htons(0xffff);
3559 	}
3560 }
3561 
3562 static void
3563 em_enable_intr(struct adapter *adapter)
3564 {
3565 	uint32_t ims_mask = IMS_ENABLE_MASK;
3566 
3567 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3568 
3569 #if 0
3570 	/* XXX MSIX */
3571 	if (adapter->hw.mac.type == e1000_82574) {
3572 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3573 		ims_mask |= EM_MSIX_MASK;
3574         }
3575 #endif
3576 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3577 }
3578 
3579 static void
3580 em_disable_intr(struct adapter *adapter)
3581 {
3582 	uint32_t clear = 0xffffffff;
3583 
3584 	/*
3585 	 * The first version of 82542 had an errata where when link was forced
3586 	 * it would stay up even up even if the cable was disconnected.
3587 	 * Sequence errors were used to detect the disconnect and then the
3588 	 * driver would unforce the link.  This code in the in the ISR.  For
3589 	 * this to work correctly the Sequence error interrupt had to be
3590 	 * enabled all the time.
3591 	 */
3592 	if (adapter->hw.mac.type == e1000_82542 &&
3593 	    adapter->hw.revision_id == E1000_REVISION_2)
3594 		clear &= ~E1000_ICR_RXSEQ;
3595 	else if (adapter->hw.mac.type == e1000_82574)
3596 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3597 
3598 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3599 
3600 	adapter->npoll.ifpc_stcount = 0;
3601 
3602 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3603 }
3604 
3605 /*
3606  * Bit of a misnomer, what this really means is
3607  * to enable OS management of the system... aka
3608  * to disable special hardware management features
3609  */
3610 static void
3611 em_get_mgmt(struct adapter *adapter)
3612 {
3613 	/* A shared code workaround */
3614 #define E1000_82542_MANC2H E1000_MANC2H
3615 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3616 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3617 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3618 
3619 		/* disable hardware interception of ARP */
3620 		manc &= ~(E1000_MANC_ARP_EN);
3621 
3622                 /* enable receiving management packets to the host */
3623                 if (adapter->hw.mac.type >= e1000_82571) {
3624 			manc |= E1000_MANC_EN_MNG2HOST;
3625 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3626 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3627 			manc2h |= E1000_MNG2HOST_PORT_623;
3628 			manc2h |= E1000_MNG2HOST_PORT_664;
3629 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3630 		}
3631 
3632 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3633 	}
3634 }
3635 
3636 /*
3637  * Give control back to hardware management
3638  * controller if there is one.
3639  */
3640 static void
3641 em_rel_mgmt(struct adapter *adapter)
3642 {
3643 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3644 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3645 
3646 		/* re-enable hardware interception of ARP */
3647 		manc |= E1000_MANC_ARP_EN;
3648 
3649 		if (adapter->hw.mac.type >= e1000_82571)
3650 			manc &= ~E1000_MANC_EN_MNG2HOST;
3651 
3652 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3653 	}
3654 }
3655 
3656 /*
3657  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3658  * For ASF and Pass Through versions of f/w this means that
3659  * the driver is loaded.  For AMT version (only with 82573)
3660  * of the f/w this means that the network i/f is open.
3661  */
3662 static void
3663 em_get_hw_control(struct adapter *adapter)
3664 {
3665 	/* Let firmware know the driver has taken over */
3666 	if (adapter->hw.mac.type == e1000_82573) {
3667 		uint32_t swsm;
3668 
3669 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3670 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3671 		    swsm | E1000_SWSM_DRV_LOAD);
3672 	} else {
3673 		uint32_t ctrl_ext;
3674 
3675 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3676 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3677 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3678 	}
3679 	adapter->flags |= EM_FLAG_HW_CTRL;
3680 }
3681 
3682 /*
3683  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3684  * For ASF and Pass Through versions of f/w this means that the
3685  * driver is no longer loaded.  For AMT version (only with 82573)
3686  * of the f/w this means that the network i/f is closed.
3687  */
3688 static void
3689 em_rel_hw_control(struct adapter *adapter)
3690 {
3691 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3692 		return;
3693 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3694 
3695 	/* Let firmware taken over control of h/w */
3696 	if (adapter->hw.mac.type == e1000_82573) {
3697 		uint32_t swsm;
3698 
3699 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3700 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3701 		    swsm & ~E1000_SWSM_DRV_LOAD);
3702 	} else {
3703 		uint32_t ctrl_ext;
3704 
3705 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3706 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3707 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3708 	}
3709 }
3710 
3711 static int
3712 em_is_valid_eaddr(const uint8_t *addr)
3713 {
3714 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3715 
3716 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3717 		return (FALSE);
3718 
3719 	return (TRUE);
3720 }
3721 
3722 /*
3723  * Enable PCI Wake On Lan capability
3724  */
3725 void
3726 em_enable_wol(device_t dev)
3727 {
3728 	uint16_t cap, status;
3729 	uint8_t id;
3730 
3731 	/* First find the capabilities pointer*/
3732 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3733 
3734 	/* Read the PM Capabilities */
3735 	id = pci_read_config(dev, cap, 1);
3736 	if (id != PCIY_PMG)     /* Something wrong */
3737 		return;
3738 
3739 	/*
3740 	 * OK, we have the power capabilities,
3741 	 * so now get the status register
3742 	 */
3743 	cap += PCIR_POWER_STATUS;
3744 	status = pci_read_config(dev, cap, 2);
3745 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3746 	pci_write_config(dev, cap, status, 2);
3747 }
3748 
3749 
3750 /*
3751  * 82544 Coexistence issue workaround.
3752  *    There are 2 issues.
3753  *       1. Transmit Hang issue.
3754  *    To detect this issue, following equation can be used...
3755  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3756  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3757  *
3758  *       2. DAC issue.
3759  *    To detect this issue, following equation can be used...
3760  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3761  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3762  *
3763  *    WORKAROUND:
3764  *	  Make sure we do not have ending address
3765  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3766  */
3767 static uint32_t
3768 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3769 {
3770 	uint32_t safe_terminator;
3771 
3772 	/*
3773 	 * Since issue is sensitive to length and address.
3774 	 * Let us first check the address...
3775 	 */
3776 	if (length <= 4) {
3777 		desc_array->descriptor[0].address = address;
3778 		desc_array->descriptor[0].length = length;
3779 		desc_array->elements = 1;
3780 		return (desc_array->elements);
3781 	}
3782 
3783 	safe_terminator =
3784 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3785 
3786 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3787 	if (safe_terminator == 0 ||
3788 	    (safe_terminator > 4 && safe_terminator < 9) ||
3789 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3790 		desc_array->descriptor[0].address = address;
3791 		desc_array->descriptor[0].length = length;
3792 		desc_array->elements = 1;
3793 		return (desc_array->elements);
3794 	}
3795 
3796 	desc_array->descriptor[0].address = address;
3797 	desc_array->descriptor[0].length = length - 4;
3798 	desc_array->descriptor[1].address = address + (length - 4);
3799 	desc_array->descriptor[1].length = 4;
3800 	desc_array->elements = 2;
3801 	return (desc_array->elements);
3802 }
3803 
3804 static void
3805 em_update_stats(struct adapter *adapter)
3806 {
3807 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3808 
3809 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3810 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3811 		adapter->stats.symerrs +=
3812 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3813 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3814 	}
3815 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3816 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3817 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3818 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3819 
3820 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3821 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3822 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3823 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3824 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3825 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3826 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3827 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3828 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3829 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3830 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3831 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3832 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3833 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3834 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3835 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3836 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3837 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3838 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3839 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3840 
3841 	/* For the 64-bit byte counters the low dword must be read first. */
3842 	/* Both registers clear on the read of the high dword */
3843 
3844 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3845 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3846 
3847 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3848 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3849 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3850 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3851 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3852 
3853 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3854 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3855 
3856 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3857 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3858 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3859 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3860 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3861 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3862 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3863 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3864 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3865 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3866 
3867 	if (adapter->hw.mac.type >= e1000_82543) {
3868 		adapter->stats.algnerrc +=
3869 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3870 		adapter->stats.rxerrc +=
3871 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3872 		adapter->stats.tncrs +=
3873 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3874 		adapter->stats.cexterr +=
3875 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3876 		adapter->stats.tsctc +=
3877 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3878 		adapter->stats.tsctfc +=
3879 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3880 	}
3881 
3882 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3883 
3884 	/* Rx Errors */
3885 	IFNET_STAT_SET(ifp, ierrors,
3886 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3887 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3888 	    adapter->stats.ruc + adapter->stats.roc +
3889 	    adapter->stats.mpc + adapter->stats.cexterr);
3890 
3891 	/* Tx Errors */
3892 	IFNET_STAT_SET(ifp, oerrors,
3893 	    adapter->stats.ecol + adapter->stats.latecol +
3894 	    adapter->watchdog_events);
3895 }
3896 
3897 static void
3898 em_print_debug_info(struct adapter *adapter)
3899 {
3900 	device_t dev = adapter->dev;
3901 	uint8_t *hw_addr = adapter->hw.hw_addr;
3902 
3903 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3904 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3905 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3906 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3907 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3908 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3909 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3910 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3911 	    adapter->hw.fc.high_water,
3912 	    adapter->hw.fc.low_water);
3913 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3914 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3915 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3916 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3917 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3918 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3919 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3920 	    (long long)adapter->tx_fifo_wrk_cnt,
3921 	    (long long)adapter->tx_fifo_reset_cnt);
3922 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3923 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3924 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3925 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3926 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3927 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3928 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3929 	    adapter->num_tx_desc_avail);
3930 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3931 	    adapter->no_tx_desc_avail1);
3932 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3933 	    adapter->no_tx_desc_avail2);
3934 	device_printf(dev, "Std mbuf failed = %ld\n",
3935 	    adapter->mbuf_alloc_failed);
3936 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3937 	    adapter->mbuf_cluster_failed);
3938 	device_printf(dev, "Driver dropped packets = %ld\n",
3939 	    adapter->dropped_pkts);
3940 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3941 	    adapter->no_tx_dma_setup);
3942 }
3943 
3944 static void
3945 em_print_hw_stats(struct adapter *adapter)
3946 {
3947 	device_t dev = adapter->dev;
3948 
3949 	device_printf(dev, "Excessive collisions = %lld\n",
3950 	    (long long)adapter->stats.ecol);
3951 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3952 	device_printf(dev, "Symbol errors = %lld\n",
3953 	    (long long)adapter->stats.symerrs);
3954 #endif
3955 	device_printf(dev, "Sequence errors = %lld\n",
3956 	    (long long)adapter->stats.sec);
3957 	device_printf(dev, "Defer count = %lld\n",
3958 	    (long long)adapter->stats.dc);
3959 	device_printf(dev, "Missed Packets = %lld\n",
3960 	    (long long)adapter->stats.mpc);
3961 	device_printf(dev, "Receive No Buffers = %lld\n",
3962 	    (long long)adapter->stats.rnbc);
3963 	/* RLEC is inaccurate on some hardware, calculate our own. */
3964 	device_printf(dev, "Receive Length Errors = %lld\n",
3965 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3966 	device_printf(dev, "Receive errors = %lld\n",
3967 	    (long long)adapter->stats.rxerrc);
3968 	device_printf(dev, "Crc errors = %lld\n",
3969 	    (long long)adapter->stats.crcerrs);
3970 	device_printf(dev, "Alignment errors = %lld\n",
3971 	    (long long)adapter->stats.algnerrc);
3972 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3973 	    (long long)adapter->stats.cexterr);
3974 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3975 	device_printf(dev, "watchdog timeouts = %ld\n",
3976 	    adapter->watchdog_events);
3977 	device_printf(dev, "XON Rcvd = %lld\n",
3978 	    (long long)adapter->stats.xonrxc);
3979 	device_printf(dev, "XON Xmtd = %lld\n",
3980 	    (long long)adapter->stats.xontxc);
3981 	device_printf(dev, "XOFF Rcvd = %lld\n",
3982 	    (long long)adapter->stats.xoffrxc);
3983 	device_printf(dev, "XOFF Xmtd = %lld\n",
3984 	    (long long)adapter->stats.xofftxc);
3985 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3986 	    (long long)adapter->stats.gprc);
3987 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3988 	    (long long)adapter->stats.gptc);
3989 }
3990 
3991 static void
3992 em_print_nvm_info(struct adapter *adapter)
3993 {
3994 	uint16_t eeprom_data;
3995 	int i, j, row = 0;
3996 
3997 	/* Its a bit crude, but it gets the job done */
3998 	kprintf("\nInterface EEPROM Dump:\n");
3999 	kprintf("Offset\n0x0000  ");
4000 	for (i = 0, j = 0; i < 32; i++, j++) {
4001 		if (j == 8) { /* Make the offset block */
4002 			j = 0; ++row;
4003 			kprintf("\n0x00%x0  ",row);
4004 		}
4005 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4006 		kprintf("%04x ", eeprom_data);
4007 	}
4008 	kprintf("\n");
4009 }
4010 
4011 static int
4012 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4013 {
4014 	struct adapter *adapter;
4015 	struct ifnet *ifp;
4016 	int error, result;
4017 
4018 	result = -1;
4019 	error = sysctl_handle_int(oidp, &result, 0, req);
4020 	if (error || !req->newptr)
4021 		return (error);
4022 
4023 	adapter = (struct adapter *)arg1;
4024 	ifp = &adapter->arpcom.ac_if;
4025 
4026 	lwkt_serialize_enter(ifp->if_serializer);
4027 
4028 	if (result == 1)
4029 		em_print_debug_info(adapter);
4030 
4031 	/*
4032 	 * This value will cause a hex dump of the
4033 	 * first 32 16-bit words of the EEPROM to
4034 	 * the screen.
4035 	 */
4036 	if (result == 2)
4037 		em_print_nvm_info(adapter);
4038 
4039 	lwkt_serialize_exit(ifp->if_serializer);
4040 
4041 	return (error);
4042 }
4043 
4044 static int
4045 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4046 {
4047 	int error, result;
4048 
4049 	result = -1;
4050 	error = sysctl_handle_int(oidp, &result, 0, req);
4051 	if (error || !req->newptr)
4052 		return (error);
4053 
4054 	if (result == 1) {
4055 		struct adapter *adapter = (struct adapter *)arg1;
4056 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4057 
4058 		lwkt_serialize_enter(ifp->if_serializer);
4059 		em_print_hw_stats(adapter);
4060 		lwkt_serialize_exit(ifp->if_serializer);
4061 	}
4062 	return (error);
4063 }
4064 
4065 static void
4066 em_add_sysctl(struct adapter *adapter)
4067 {
4068 	struct sysctl_ctx_list *ctx;
4069 	struct sysctl_oid *tree;
4070 
4071 	ctx = device_get_sysctl_ctx(adapter->dev);
4072 	tree = device_get_sysctl_tree(adapter->dev);
4073 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4074 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4075 	    em_sysctl_debug_info, "I", "Debug Information");
4076 
4077 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4078 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4079 	    em_sysctl_stats, "I", "Statistics");
4080 
4081 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4082 	    OID_AUTO, "rxd", CTLFLAG_RD,
4083 	    &adapter->num_rx_desc, 0, NULL);
4084 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4085 	    OID_AUTO, "txd", CTLFLAG_RD,
4086 	    &adapter->num_tx_desc, 0, NULL);
4087 
4088 	if (adapter->hw.mac.type >= e1000_82540) {
4089 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4090 		    OID_AUTO, "int_throttle_ceil",
4091 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4092 		    em_sysctl_int_throttle, "I",
4093 		    "interrupt throttling rate");
4094 	}
4095 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4096 	    OID_AUTO, "int_tx_nsegs",
4097 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4098 	    em_sysctl_int_tx_nsegs, "I",
4099 	    "# segments per TX interrupt");
4100 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4101 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4102 	    &adapter->tx_wreg_nsegs, 0,
4103 	    "# segments before write to hardware register");
4104 }
4105 
4106 static int
4107 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4108 {
4109 	struct adapter *adapter = (void *)arg1;
4110 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4111 	int error, throttle;
4112 
4113 	throttle = adapter->int_throttle_ceil;
4114 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4115 	if (error || req->newptr == NULL)
4116 		return error;
4117 	if (throttle < 0 || throttle > 1000000000 / 256)
4118 		return EINVAL;
4119 
4120 	if (throttle) {
4121 		/*
4122 		 * Set the interrupt throttling rate in 256ns increments,
4123 		 * recalculate sysctl value assignment to get exact frequency.
4124 		 */
4125 		throttle = 1000000000 / 256 / throttle;
4126 
4127 		/* Upper 16bits of ITR is reserved and should be zero */
4128 		if (throttle & 0xffff0000)
4129 			return EINVAL;
4130 	}
4131 
4132 	lwkt_serialize_enter(ifp->if_serializer);
4133 
4134 	if (throttle)
4135 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4136 	else
4137 		adapter->int_throttle_ceil = 0;
4138 
4139 	if (ifp->if_flags & IFF_RUNNING)
4140 		em_set_itr(adapter, throttle);
4141 
4142 	lwkt_serialize_exit(ifp->if_serializer);
4143 
4144 	if (bootverbose) {
4145 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4146 			  adapter->int_throttle_ceil);
4147 	}
4148 	return 0;
4149 }
4150 
4151 static int
4152 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4153 {
4154 	struct adapter *adapter = (void *)arg1;
4155 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4156 	int error, segs;
4157 
4158 	segs = adapter->tx_int_nsegs;
4159 	error = sysctl_handle_int(oidp, &segs, 0, req);
4160 	if (error || req->newptr == NULL)
4161 		return error;
4162 	if (segs <= 0)
4163 		return EINVAL;
4164 
4165 	lwkt_serialize_enter(ifp->if_serializer);
4166 
4167 	/*
4168 	 * Don't allow int_tx_nsegs to become:
4169 	 * o  Less the oact_tx_desc
4170 	 * o  Too large that no TX desc will cause TX interrupt to
4171 	 *    be generated (OACTIVE will never recover)
4172 	 * o  Too small that will cause tx_dd[] overflow
4173 	 */
4174 	if (segs < adapter->oact_tx_desc ||
4175 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4176 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4177 		error = EINVAL;
4178 	} else {
4179 		error = 0;
4180 		adapter->tx_int_nsegs = segs;
4181 	}
4182 
4183 	lwkt_serialize_exit(ifp->if_serializer);
4184 
4185 	return error;
4186 }
4187 
4188 static void
4189 em_set_itr(struct adapter *adapter, uint32_t itr)
4190 {
4191 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4192 	if (adapter->hw.mac.type == e1000_82574) {
4193 		int i;
4194 
4195 		/*
4196 		 * When using MSIX interrupts we need to
4197 		 * throttle using the EITR register
4198 		 */
4199 		for (i = 0; i < 4; ++i) {
4200 			E1000_WRITE_REG(&adapter->hw,
4201 			    E1000_EITR_82574(i), itr);
4202 		}
4203 	}
4204 }
4205 
4206 static void
4207 em_disable_aspm(struct adapter *adapter)
4208 {
4209 	uint16_t link_cap, link_ctrl, disable;
4210 	uint8_t pcie_ptr, reg;
4211 	device_t dev = adapter->dev;
4212 
4213 	switch (adapter->hw.mac.type) {
4214 	case e1000_82571:
4215 	case e1000_82572:
4216 	case e1000_82573:
4217 		/*
4218 		 * 82573 specification update
4219 		 * errata #8 disable L0s
4220 		 * errata #41 disable L1
4221 		 *
4222 		 * 82571/82572 specification update
4223 		 # errata #13 disable L1
4224 		 * errata #68 disable L0s
4225 		 */
4226 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4227 		break;
4228 
4229 	case e1000_82574:
4230 	case e1000_82583:
4231 		/*
4232 		 * 82574 specification update errata #20
4233 		 * 82583 specification update errata #9
4234 		 *
4235 		 * There is no need to disable L1
4236 		 */
4237 		disable = PCIEM_LNKCTL_ASPM_L0S;
4238 		break;
4239 
4240 	default:
4241 		return;
4242 	}
4243 
4244 	pcie_ptr = pci_get_pciecap_ptr(dev);
4245 	if (pcie_ptr == 0)
4246 		return;
4247 
4248 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4249 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4250 		return;
4251 
4252 	if (bootverbose) {
4253 		if_printf(&adapter->arpcom.ac_if,
4254 		    "disable ASPM %#02x\n", disable);
4255 	}
4256 
4257 	reg = pcie_ptr + PCIER_LINKCTRL;
4258 	link_ctrl = pci_read_config(dev, reg, 2);
4259 	link_ctrl &= ~disable;
4260 	pci_write_config(dev, reg, link_ctrl, 2);
4261 }
4262 
4263 static int
4264 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4265 {
4266 	int iphlen, hoff, thoff, ex = 0;
4267 	struct mbuf *m;
4268 	struct ip *ip;
4269 
4270 	m = *mp;
4271 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4272 
4273 	iphlen = m->m_pkthdr.csum_iphlen;
4274 	thoff = m->m_pkthdr.csum_thlen;
4275 	hoff = m->m_pkthdr.csum_lhlen;
4276 
4277 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4278 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4279 	KASSERT(hoff > 0, ("invalid ether hlen"));
4280 
4281 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4282 		ex = 4;
4283 
4284 	if (m->m_len < hoff + iphlen + thoff + ex) {
4285 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4286 		if (m == NULL) {
4287 			*mp = NULL;
4288 			return ENOBUFS;
4289 		}
4290 		*mp = m;
4291 	}
4292 	ip = mtodoff(m, struct ip *, hoff);
4293 	ip->ip_len = 0;
4294 
4295 	return 0;
4296 }
4297 
4298 static int
4299 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4300     uint32_t *txd_upper, uint32_t *txd_lower)
4301 {
4302 	struct e1000_context_desc *TXD;
4303 	int hoff, iphlen, thoff, hlen;
4304 	int mss, pktlen, curr_txd;
4305 
4306 	iphlen = mp->m_pkthdr.csum_iphlen;
4307 	thoff = mp->m_pkthdr.csum_thlen;
4308 	hoff = mp->m_pkthdr.csum_lhlen;
4309 	mss = mp->m_pkthdr.tso_segsz;
4310 	pktlen = mp->m_pkthdr.len;
4311 
4312 	if (adapter->csum_flags == CSUM_TSO &&
4313 	    adapter->csum_iphlen == iphlen &&
4314 	    adapter->csum_lhlen == hoff &&
4315 	    adapter->csum_thlen == thoff &&
4316 	    adapter->csum_mss == mss &&
4317 	    adapter->csum_pktlen == pktlen) {
4318 		*txd_upper = adapter->csum_txd_upper;
4319 		*txd_lower = adapter->csum_txd_lower;
4320 		return 0;
4321 	}
4322 	hlen = hoff + iphlen + thoff;
4323 
4324 	/*
4325 	 * Setup a new TSO context.
4326 	 */
4327 
4328 	curr_txd = adapter->next_avail_tx_desc;
4329 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4330 
4331 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4332 		     E1000_TXD_DTYP_D |		/* Data descr type */
4333 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4334 
4335 	/* IP and/or TCP header checksum calculation and insertion. */
4336 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4337 
4338 	/*
4339 	 * Start offset for header checksum calculation.
4340 	 * End offset for header checksum calculation.
4341 	 * Offset of place put the checksum.
4342 	 */
4343 	TXD->lower_setup.ip_fields.ipcss = hoff;
4344 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4345 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4346 
4347 	/*
4348 	 * Start offset for payload checksum calculation.
4349 	 * End offset for payload checksum calculation.
4350 	 * Offset of place to put the checksum.
4351 	 */
4352 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4353 	TXD->upper_setup.tcp_fields.tucse = 0;
4354 	TXD->upper_setup.tcp_fields.tucso =
4355 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4356 
4357 	/*
4358 	 * Payload size per packet w/o any headers.
4359 	 * Length of all headers up to payload.
4360 	 */
4361 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4362 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4363 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4364 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4365 				E1000_TXD_CMD_TSE |	/* TSE context */
4366 				E1000_TXD_CMD_IP |	/* Do IP csum */
4367 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4368 				(pktlen - hlen));	/* Total len */
4369 
4370 	/* Save the information for this TSO context */
4371 	adapter->csum_flags = CSUM_TSO;
4372 	adapter->csum_lhlen = hoff;
4373 	adapter->csum_iphlen = iphlen;
4374 	adapter->csum_thlen = thoff;
4375 	adapter->csum_mss = mss;
4376 	adapter->csum_pktlen = pktlen;
4377 	adapter->csum_txd_upper = *txd_upper;
4378 	adapter->csum_txd_lower = *txd_lower;
4379 
4380 	if (++curr_txd == adapter->num_tx_desc)
4381 		curr_txd = 0;
4382 
4383 	KKASSERT(adapter->num_tx_desc_avail > 0);
4384 	adapter->num_tx_desc_avail--;
4385 
4386 	adapter->next_avail_tx_desc = curr_txd;
4387 	return 1;
4388 }
4389