xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision 5339dfe4986a925a95b80dbf103e448cb44c3bf6)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
115 
116 #define DEBUG_HW 0
117 
118 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
119 #define EM_VER	" 7.3.8"
120 
121 #define _EM_DEVICE(id, ret)	\
122 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
124 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
126 
127 static const struct em_vendor_info em_vendor_info_array[] = {
128 	EM_DEVICE(82540EM),
129 	EM_DEVICE(82540EM_LOM),
130 	EM_DEVICE(82540EP),
131 	EM_DEVICE(82540EP_LOM),
132 	EM_DEVICE(82540EP_LP),
133 
134 	EM_DEVICE(82541EI),
135 	EM_DEVICE(82541ER),
136 	EM_DEVICE(82541ER_LOM),
137 	EM_DEVICE(82541EI_MOBILE),
138 	EM_DEVICE(82541GI),
139 	EM_DEVICE(82541GI_LF),
140 	EM_DEVICE(82541GI_MOBILE),
141 
142 	EM_DEVICE(82542),
143 
144 	EM_DEVICE(82543GC_FIBER),
145 	EM_DEVICE(82543GC_COPPER),
146 
147 	EM_DEVICE(82544EI_COPPER),
148 	EM_DEVICE(82544EI_FIBER),
149 	EM_DEVICE(82544GC_COPPER),
150 	EM_DEVICE(82544GC_LOM),
151 
152 	EM_DEVICE(82545EM_COPPER),
153 	EM_DEVICE(82545EM_FIBER),
154 	EM_DEVICE(82545GM_COPPER),
155 	EM_DEVICE(82545GM_FIBER),
156 	EM_DEVICE(82545GM_SERDES),
157 
158 	EM_DEVICE(82546EB_COPPER),
159 	EM_DEVICE(82546EB_FIBER),
160 	EM_DEVICE(82546EB_QUAD_COPPER),
161 	EM_DEVICE(82546GB_COPPER),
162 	EM_DEVICE(82546GB_FIBER),
163 	EM_DEVICE(82546GB_SERDES),
164 	EM_DEVICE(82546GB_PCIE),
165 	EM_DEVICE(82546GB_QUAD_COPPER),
166 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
167 
168 	EM_DEVICE(82547EI),
169 	EM_DEVICE(82547EI_MOBILE),
170 	EM_DEVICE(82547GI),
171 
172 	EM_EMX_DEVICE(82571EB_COPPER),
173 	EM_EMX_DEVICE(82571EB_FIBER),
174 	EM_EMX_DEVICE(82571EB_SERDES),
175 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
182 
183 	EM_EMX_DEVICE(82572EI_COPPER),
184 	EM_EMX_DEVICE(82572EI_FIBER),
185 	EM_EMX_DEVICE(82572EI_SERDES),
186 	EM_EMX_DEVICE(82572EI),
187 
188 	EM_EMX_DEVICE(82573E),
189 	EM_EMX_DEVICE(82573E_IAMT),
190 	EM_EMX_DEVICE(82573L),
191 
192 	EM_DEVICE(82583V),
193 
194 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
198 
199 	EM_DEVICE(ICH8_IGP_M_AMT),
200 	EM_DEVICE(ICH8_IGP_AMT),
201 	EM_DEVICE(ICH8_IGP_C),
202 	EM_DEVICE(ICH8_IFE),
203 	EM_DEVICE(ICH8_IFE_GT),
204 	EM_DEVICE(ICH8_IFE_G),
205 	EM_DEVICE(ICH8_IGP_M),
206 	EM_DEVICE(ICH8_82567V_3),
207 
208 	EM_DEVICE(ICH9_IGP_M_AMT),
209 	EM_DEVICE(ICH9_IGP_AMT),
210 	EM_DEVICE(ICH9_IGP_C),
211 	EM_DEVICE(ICH9_IGP_M),
212 	EM_DEVICE(ICH9_IGP_M_V),
213 	EM_DEVICE(ICH9_IFE),
214 	EM_DEVICE(ICH9_IFE_GT),
215 	EM_DEVICE(ICH9_IFE_G),
216 	EM_DEVICE(ICH9_BM),
217 
218 	EM_EMX_DEVICE(82574L),
219 	EM_EMX_DEVICE(82574LA),
220 
221 	EM_DEVICE(ICH10_R_BM_LM),
222 	EM_DEVICE(ICH10_R_BM_LF),
223 	EM_DEVICE(ICH10_R_BM_V),
224 	EM_DEVICE(ICH10_D_BM_LM),
225 	EM_DEVICE(ICH10_D_BM_LF),
226 	EM_DEVICE(ICH10_D_BM_V),
227 
228 	EM_DEVICE(PCH_M_HV_LM),
229 	EM_DEVICE(PCH_M_HV_LC),
230 	EM_DEVICE(PCH_D_HV_DM),
231 	EM_DEVICE(PCH_D_HV_DC),
232 
233 	EM_DEVICE(PCH2_LV_LM),
234 	EM_DEVICE(PCH2_LV_V),
235 
236 	EM_DEVICE(PCH_LPT_I217_LM),
237 	EM_DEVICE(PCH_LPT_I217_V),
238 	EM_DEVICE(PCH_LPTLP_I218_LM),
239 	EM_DEVICE(PCH_LPTLP_I218_V),
240 
241 	/* required last entry */
242 	EM_DEVICE_NULL
243 };
244 
245 static int	em_probe(device_t);
246 static int	em_attach(device_t);
247 static int	em_detach(device_t);
248 static int	em_shutdown(device_t);
249 static int	em_suspend(device_t);
250 static int	em_resume(device_t);
251 
252 static void	em_init(void *);
253 static void	em_stop(struct adapter *);
254 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
255 static void	em_start(struct ifnet *, struct ifaltq_subque *);
256 #ifdef IFPOLL_ENABLE
257 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
258 static void	em_npoll_compat(struct ifnet *, void *, int);
259 #endif
260 static void	em_watchdog(struct ifnet *);
261 static void	em_media_status(struct ifnet *, struct ifmediareq *);
262 static int	em_media_change(struct ifnet *);
263 static void	em_timer(void *);
264 
265 static void	em_intr(void *);
266 static void	em_intr_mask(void *);
267 static void	em_intr_body(struct adapter *, boolean_t);
268 static void	em_rxeof(struct adapter *, int);
269 static void	em_txeof(struct adapter *);
270 static void	em_tx_collect(struct adapter *);
271 static void	em_tx_purge(struct adapter *);
272 static void	em_enable_intr(struct adapter *);
273 static void	em_disable_intr(struct adapter *);
274 
275 static int	em_dma_malloc(struct adapter *, bus_size_t,
276 		    struct em_dma_alloc *);
277 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
278 static void	em_init_tx_ring(struct adapter *);
279 static int	em_init_rx_ring(struct adapter *);
280 static int	em_create_tx_ring(struct adapter *);
281 static int	em_create_rx_ring(struct adapter *);
282 static void	em_destroy_tx_ring(struct adapter *, int);
283 static void	em_destroy_rx_ring(struct adapter *, int);
284 static int	em_newbuf(struct adapter *, int, int);
285 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
286 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
287 		    struct mbuf *);
288 static int	em_txcsum(struct adapter *, struct mbuf *,
289 		    uint32_t *, uint32_t *);
290 static int	em_tso_pullup(struct adapter *, struct mbuf **);
291 static int	em_tso_setup(struct adapter *, struct mbuf *,
292 		    uint32_t *, uint32_t *);
293 
294 static int	em_get_hw_info(struct adapter *);
295 static int 	em_is_valid_eaddr(const uint8_t *);
296 static int	em_alloc_pci_res(struct adapter *);
297 static void	em_free_pci_res(struct adapter *);
298 static int	em_reset(struct adapter *);
299 static void	em_setup_ifp(struct adapter *);
300 static void	em_init_tx_unit(struct adapter *);
301 static void	em_init_rx_unit(struct adapter *);
302 static void	em_update_stats(struct adapter *);
303 static void	em_set_promisc(struct adapter *);
304 static void	em_disable_promisc(struct adapter *);
305 static void	em_set_multi(struct adapter *);
306 static void	em_update_link_status(struct adapter *);
307 static void	em_smartspeed(struct adapter *);
308 static void	em_set_itr(struct adapter *, uint32_t);
309 static void	em_disable_aspm(struct adapter *);
310 
311 /* Hardware workarounds */
312 static int	em_82547_fifo_workaround(struct adapter *, int);
313 static void	em_82547_update_fifo_head(struct adapter *, int);
314 static int	em_82547_tx_fifo_reset(struct adapter *);
315 static void	em_82547_move_tail(void *);
316 static void	em_82547_move_tail_serialized(struct adapter *);
317 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
318 
319 static void	em_print_debug_info(struct adapter *);
320 static void	em_print_nvm_info(struct adapter *);
321 static void	em_print_hw_stats(struct adapter *);
322 
323 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
324 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
325 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
326 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
327 static void	em_add_sysctl(struct adapter *adapter);
328 
329 /* Management and WOL Support */
330 static void	em_get_mgmt(struct adapter *);
331 static void	em_rel_mgmt(struct adapter *);
332 static void	em_get_hw_control(struct adapter *);
333 static void	em_rel_hw_control(struct adapter *);
334 static void	em_enable_wol(device_t);
335 
336 static device_method_t em_methods[] = {
337 	/* Device interface */
338 	DEVMETHOD(device_probe,		em_probe),
339 	DEVMETHOD(device_attach,	em_attach),
340 	DEVMETHOD(device_detach,	em_detach),
341 	DEVMETHOD(device_shutdown,	em_shutdown),
342 	DEVMETHOD(device_suspend,	em_suspend),
343 	DEVMETHOD(device_resume,	em_resume),
344 	DEVMETHOD_END
345 };
346 
347 static driver_t em_driver = {
348 	"em",
349 	em_methods,
350 	sizeof(struct adapter),
351 };
352 
353 static devclass_t em_devclass;
354 
355 DECLARE_DUMMY_MODULE(if_em);
356 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
357 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
358 
359 /*
360  * Tunables
361  */
362 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
363 static int	em_rxd = EM_DEFAULT_RXD;
364 static int	em_txd = EM_DEFAULT_TXD;
365 static int	em_smart_pwr_down = 0;
366 
367 /* Controls whether promiscuous also shows bad packets */
368 static int	em_debug_sbp = FALSE;
369 
370 static int	em_82573_workaround = 1;
371 static int	em_msi_enable = 1;
372 
373 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
374 TUNABLE_INT("hw.em.rxd", &em_rxd);
375 TUNABLE_INT("hw.em.txd", &em_txd);
376 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
377 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
378 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
379 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
380 
381 /* Global used in WOL setup with multiport cards */
382 static int	em_global_quad_port_a = 0;
383 
384 /* Set this to one to display debug statistics */
385 static int	em_display_debug_stats = 0;
386 
387 #if !defined(KTR_IF_EM)
388 #define KTR_IF_EM	KTR_ALL
389 #endif
390 KTR_INFO_MASTER(if_em);
391 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
392 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
393 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
394 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
395 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
396 #define logif(name)	KTR_LOG(if_em_ ## name)
397 
398 static int
399 em_probe(device_t dev)
400 {
401 	const struct em_vendor_info *ent;
402 	uint16_t vid, did;
403 
404 	vid = pci_get_vendor(dev);
405 	did = pci_get_device(dev);
406 
407 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
408 		if (vid == ent->vendor_id && did == ent->device_id) {
409 			device_set_desc(dev, ent->desc);
410 			device_set_async_attach(dev, TRUE);
411 			return (ent->ret);
412 		}
413 	}
414 	return (ENXIO);
415 }
416 
417 static int
418 em_attach(device_t dev)
419 {
420 	struct adapter *adapter = device_get_softc(dev);
421 	struct ifnet *ifp = &adapter->arpcom.ac_if;
422 	int tsize, rsize;
423 	int error = 0;
424 	uint16_t eeprom_data, device_id, apme_mask;
425 	driver_intr_t *intr_func;
426 
427 	adapter->dev = adapter->osdep.dev = dev;
428 
429 	callout_init_mp(&adapter->timer);
430 	callout_init_mp(&adapter->tx_fifo_timer);
431 
432 	/* Determine hardware and mac info */
433 	error = em_get_hw_info(adapter);
434 	if (error) {
435 		device_printf(dev, "Identify hardware failed\n");
436 		goto fail;
437 	}
438 
439 	/* Setup PCI resources */
440 	error = em_alloc_pci_res(adapter);
441 	if (error) {
442 		device_printf(dev, "Allocation of PCI resources failed\n");
443 		goto fail;
444 	}
445 
446 	/*
447 	 * For ICH8 and family we need to map the flash memory,
448 	 * and this must happen after the MAC is identified.
449 	 */
450 	if (adapter->hw.mac.type == e1000_ich8lan ||
451 	    adapter->hw.mac.type == e1000_ich9lan ||
452 	    adapter->hw.mac.type == e1000_ich10lan ||
453 	    adapter->hw.mac.type == e1000_pchlan ||
454 	    adapter->hw.mac.type == e1000_pch2lan ||
455 	    adapter->hw.mac.type == e1000_pch_lpt) {
456 		adapter->flash_rid = EM_BAR_FLASH;
457 
458 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
459 					&adapter->flash_rid, RF_ACTIVE);
460 		if (adapter->flash == NULL) {
461 			device_printf(dev, "Mapping of Flash failed\n");
462 			error = ENXIO;
463 			goto fail;
464 		}
465 		adapter->osdep.flash_bus_space_tag =
466 		    rman_get_bustag(adapter->flash);
467 		adapter->osdep.flash_bus_space_handle =
468 		    rman_get_bushandle(adapter->flash);
469 
470 		/*
471 		 * This is used in the shared code
472 		 * XXX this goof is actually not used.
473 		 */
474 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
475 	}
476 
477 	switch (adapter->hw.mac.type) {
478 	case e1000_82571:
479 	case e1000_82572:
480 		/*
481 		 * Pullup extra 4bytes into the first data segment, see:
482 		 * 82571/82572 specification update errata #7
483 		 *
484 		 * NOTE:
485 		 * 4bytes instead of 2bytes, which are mentioned in the
486 		 * errata, are pulled; mainly to keep rest of the data
487 		 * properly aligned.
488 		 */
489 		adapter->flags |= EM_FLAG_TSO_PULLEX;
490 		/* FALL THROUGH */
491 
492 	default:
493 		if (pci_is_pcie(dev))
494 			adapter->flags |= EM_FLAG_TSO;
495 		break;
496 	}
497 
498 	/* Do Shared Code initialization */
499 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
500 		device_printf(dev, "Setup of Shared code failed\n");
501 		error = ENXIO;
502 		goto fail;
503 	}
504 
505 	e1000_get_bus_info(&adapter->hw);
506 
507 	/*
508 	 * Validate number of transmit and receive descriptors.  It
509 	 * must not exceed hardware maximum, and must be multiple
510 	 * of E1000_DBA_ALIGN.
511 	 */
512 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
513 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
514 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
515 	    em_txd < EM_MIN_TXD) {
516 		if (adapter->hw.mac.type < e1000_82544)
517 			adapter->num_tx_desc = EM_MAX_TXD_82543;
518 		else
519 			adapter->num_tx_desc = EM_DEFAULT_TXD;
520 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
521 		    adapter->num_tx_desc, em_txd);
522 	} else {
523 		adapter->num_tx_desc = em_txd;
524 	}
525 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
526 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
527 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
528 	    em_rxd < EM_MIN_RXD) {
529 		if (adapter->hw.mac.type < e1000_82544)
530 			adapter->num_rx_desc = EM_MAX_RXD_82543;
531 		else
532 			adapter->num_rx_desc = EM_DEFAULT_RXD;
533 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
534 		    adapter->num_rx_desc, em_rxd);
535 	} else {
536 		adapter->num_rx_desc = em_rxd;
537 	}
538 
539 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
540 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
541 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
542 	adapter->rx_buffer_len = MCLBYTES;
543 
544 	/*
545 	 * Interrupt throttle rate
546 	 */
547 	if (em_int_throttle_ceil == 0) {
548 		adapter->int_throttle_ceil = 0;
549 	} else {
550 		int throttle = em_int_throttle_ceil;
551 
552 		if (throttle < 0)
553 			throttle = EM_DEFAULT_ITR;
554 
555 		/* Recalculate the tunable value to get the exact frequency. */
556 		throttle = 1000000000 / 256 / throttle;
557 
558 		/* Upper 16bits of ITR is reserved and should be zero */
559 		if (throttle & 0xffff0000)
560 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
561 
562 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
563 	}
564 
565 	e1000_init_script_state_82541(&adapter->hw, TRUE);
566 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
567 
568 	/* Copper options */
569 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
570 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
571 		adapter->hw.phy.disable_polarity_correction = FALSE;
572 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
573 	}
574 
575 	/* Set the frame limits assuming standard ethernet sized frames. */
576 	adapter->hw.mac.max_frame_size =
577 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
578 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
579 
580 	/* This controls when hardware reports transmit completion status. */
581 	adapter->hw.mac.report_tx_early = 1;
582 
583 	/*
584 	 * Create top level busdma tag
585 	 */
586 	error = bus_dma_tag_create(NULL, 1, 0,
587 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
588 			NULL, NULL,
589 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
590 			0, &adapter->parent_dtag);
591 	if (error) {
592 		device_printf(dev, "could not create top level DMA tag\n");
593 		goto fail;
594 	}
595 
596 	/*
597 	 * Allocate Transmit Descriptor ring
598 	 */
599 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
600 			 EM_DBA_ALIGN);
601 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
602 	if (error) {
603 		device_printf(dev, "Unable to allocate tx_desc memory\n");
604 		goto fail;
605 	}
606 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
607 
608 	/*
609 	 * Allocate Receive Descriptor ring
610 	 */
611 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
612 			 EM_DBA_ALIGN);
613 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
614 	if (error) {
615 		device_printf(dev, "Unable to allocate rx_desc memory\n");
616 		goto fail;
617 	}
618 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
619 
620 	/* Allocate multicast array memory. */
621 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
622 	    M_DEVBUF, M_WAITOK);
623 
624 	/* Indicate SOL/IDER usage */
625 	if (e1000_check_reset_block(&adapter->hw)) {
626 		device_printf(dev,
627 		    "PHY reset is blocked due to SOL/IDER session.\n");
628 	}
629 
630 	/* Disable EEE */
631 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
632 
633 	/*
634 	 * Start from a known state, this is important in reading the
635 	 * nvm and mac from that.
636 	 */
637 	e1000_reset_hw(&adapter->hw);
638 
639 	/* Make sure we have a good EEPROM before we read from it */
640 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
641 		/*
642 		 * Some PCI-E parts fail the first check due to
643 		 * the link being in sleep state, call it again,
644 		 * if it fails a second time its a real issue.
645 		 */
646 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
647 			device_printf(dev,
648 			    "The EEPROM Checksum Is Not Valid\n");
649 			error = EIO;
650 			goto fail;
651 		}
652 	}
653 
654 	/* Copy the permanent MAC address out of the EEPROM */
655 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
656 		device_printf(dev, "EEPROM read error while reading MAC"
657 		    " address\n");
658 		error = EIO;
659 		goto fail;
660 	}
661 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
662 		device_printf(dev, "Invalid MAC address\n");
663 		error = EIO;
664 		goto fail;
665 	}
666 
667 	/* Allocate transmit descriptors and buffers */
668 	error = em_create_tx_ring(adapter);
669 	if (error) {
670 		device_printf(dev, "Could not setup transmit structures\n");
671 		goto fail;
672 	}
673 
674 	/* Allocate receive descriptors and buffers */
675 	error = em_create_rx_ring(adapter);
676 	if (error) {
677 		device_printf(dev, "Could not setup receive structures\n");
678 		goto fail;
679 	}
680 
681 	/* Manually turn off all interrupts */
682 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
683 
684 	/* Determine if we have to control management hardware */
685 	if (e1000_enable_mng_pass_thru(&adapter->hw))
686 		adapter->flags |= EM_FLAG_HAS_MGMT;
687 
688 	/*
689 	 * Setup Wake-on-Lan
690 	 */
691 	apme_mask = EM_EEPROM_APME;
692 	eeprom_data = 0;
693 	switch (adapter->hw.mac.type) {
694 	case e1000_82542:
695 	case e1000_82543:
696 		break;
697 
698 	case e1000_82573:
699 	case e1000_82583:
700 		adapter->flags |= EM_FLAG_HAS_AMT;
701 		/* FALL THROUGH */
702 
703 	case e1000_82546:
704 	case e1000_82546_rev_3:
705 	case e1000_82571:
706 	case e1000_82572:
707 	case e1000_80003es2lan:
708 		if (adapter->hw.bus.func == 1) {
709 			e1000_read_nvm(&adapter->hw,
710 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
711 		} else {
712 			e1000_read_nvm(&adapter->hw,
713 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
714 		}
715 		break;
716 
717 	case e1000_ich8lan:
718 	case e1000_ich9lan:
719 	case e1000_ich10lan:
720 	case e1000_pchlan:
721 	case e1000_pch2lan:
722 		apme_mask = E1000_WUC_APME;
723 		adapter->flags |= EM_FLAG_HAS_AMT;
724 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
725 		break;
726 
727 	default:
728 		e1000_read_nvm(&adapter->hw,
729 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
730 		break;
731 	}
732 	if (eeprom_data & apme_mask)
733 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
734 
735 	/*
736          * We have the eeprom settings, now apply the special cases
737          * where the eeprom may be wrong or the board won't support
738          * wake on lan on a particular port
739 	 */
740 	device_id = pci_get_device(dev);
741         switch (device_id) {
742 	case E1000_DEV_ID_82546GB_PCIE:
743 		adapter->wol = 0;
744 		break;
745 
746 	case E1000_DEV_ID_82546EB_FIBER:
747 	case E1000_DEV_ID_82546GB_FIBER:
748 	case E1000_DEV_ID_82571EB_FIBER:
749 		/*
750 		 * Wake events only supported on port A for dual fiber
751 		 * regardless of eeprom setting
752 		 */
753 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
754 		    E1000_STATUS_FUNC_1)
755 			adapter->wol = 0;
756 		break;
757 
758 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
759 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
760 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
761 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
762                 /* if quad port adapter, disable WoL on all but port A */
763 		if (em_global_quad_port_a != 0)
764 			adapter->wol = 0;
765 		/* Reset for multiple quad port adapters */
766 		if (++em_global_quad_port_a == 4)
767 			em_global_quad_port_a = 0;
768                 break;
769 	}
770 
771 	/* XXX disable wol */
772 	adapter->wol = 0;
773 
774 	/* Setup OS specific network interface */
775 	em_setup_ifp(adapter);
776 
777 	/* Add sysctl tree, must after em_setup_ifp() */
778 	em_add_sysctl(adapter);
779 
780 #ifdef IFPOLL_ENABLE
781 	/* Polling setup */
782 	ifpoll_compat_setup(&adapter->npoll,
783 	    &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
784 	    ifp->if_serializer);
785 #endif
786 
787 	/* Reset the hardware */
788 	error = em_reset(adapter);
789 	if (error) {
790 		device_printf(dev, "Unable to reset the hardware\n");
791 		goto fail;
792 	}
793 
794 	/* Initialize statistics */
795 	em_update_stats(adapter);
796 
797 	adapter->hw.mac.get_link_status = 1;
798 	em_update_link_status(adapter);
799 
800 	/* Do we need workaround for 82544 PCI-X adapter? */
801 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
802 	    adapter->hw.mac.type == e1000_82544)
803 		adapter->pcix_82544 = TRUE;
804 	else
805 		adapter->pcix_82544 = FALSE;
806 
807 	if (adapter->pcix_82544) {
808 		/*
809 		 * 82544 on PCI-X may split one TX segment
810 		 * into two TX descs, so we double its number
811 		 * of spare TX desc here.
812 		 */
813 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
814 	} else {
815 		adapter->spare_tx_desc = EM_TX_SPARE;
816 	}
817 	if (adapter->flags & EM_FLAG_TSO)
818 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
819 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
820 
821 	/*
822 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
823 	 * and tx_int_nsegs:
824 	 * (spare_tx_desc + EM_TX_RESERVED) <=
825 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
826 	 */
827 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
828 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
829 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
830 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
831 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
832 
833 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
834 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
835 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
836 
837 	/* Non-AMT based hardware can now take control from firmware */
838 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
839 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
840 		em_get_hw_control(adapter);
841 
842 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
843 
844 	/*
845 	 * Missing Interrupt Following ICR read:
846 	 *
847 	 * 82571/82572 specification update errata #76
848 	 * 82573 specification update errata #31
849 	 * 82574 specification update errata #12
850 	 * 82583 specification update errata #4
851 	 */
852 	intr_func = em_intr;
853 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
854 	    (adapter->hw.mac.type == e1000_82571 ||
855 	     adapter->hw.mac.type == e1000_82572 ||
856 	     adapter->hw.mac.type == e1000_82573 ||
857 	     adapter->hw.mac.type == e1000_82574 ||
858 	     adapter->hw.mac.type == e1000_82583))
859 		intr_func = em_intr_mask;
860 
861 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
862 			       intr_func, adapter, &adapter->intr_tag,
863 			       ifp->if_serializer);
864 	if (error) {
865 		device_printf(dev, "Failed to register interrupt handler");
866 		ether_ifdetach(&adapter->arpcom.ac_if);
867 		goto fail;
868 	}
869 	return (0);
870 fail:
871 	em_detach(dev);
872 	return (error);
873 }
874 
875 static int
876 em_detach(device_t dev)
877 {
878 	struct adapter *adapter = device_get_softc(dev);
879 
880 	if (device_is_attached(dev)) {
881 		struct ifnet *ifp = &adapter->arpcom.ac_if;
882 
883 		lwkt_serialize_enter(ifp->if_serializer);
884 
885 		em_stop(adapter);
886 
887 		e1000_phy_hw_reset(&adapter->hw);
888 
889 		em_rel_mgmt(adapter);
890 		em_rel_hw_control(adapter);
891 
892 		if (adapter->wol) {
893 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
894 					E1000_WUC_PME_EN);
895 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
896 			em_enable_wol(dev);
897 		}
898 
899 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
900 
901 		lwkt_serialize_exit(ifp->if_serializer);
902 
903 		ether_ifdetach(ifp);
904 	} else if (adapter->memory != NULL) {
905 		em_rel_hw_control(adapter);
906 	}
907 	bus_generic_detach(dev);
908 
909 	em_free_pci_res(adapter);
910 
911 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
912 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
913 
914 	/* Free Transmit Descriptor ring */
915 	if (adapter->tx_desc_base)
916 		em_dma_free(adapter, &adapter->txdma);
917 
918 	/* Free Receive Descriptor ring */
919 	if (adapter->rx_desc_base)
920 		em_dma_free(adapter, &adapter->rxdma);
921 
922 	/* Free top level busdma tag */
923 	if (adapter->parent_dtag != NULL)
924 		bus_dma_tag_destroy(adapter->parent_dtag);
925 
926 	/* Free sysctl tree */
927 	if (adapter->sysctl_tree != NULL)
928 		sysctl_ctx_free(&adapter->sysctl_ctx);
929 
930 	if (adapter->mta != NULL)
931 		kfree(adapter->mta, M_DEVBUF);
932 
933 	return (0);
934 }
935 
936 static int
937 em_shutdown(device_t dev)
938 {
939 	return em_suspend(dev);
940 }
941 
942 static int
943 em_suspend(device_t dev)
944 {
945 	struct adapter *adapter = device_get_softc(dev);
946 	struct ifnet *ifp = &adapter->arpcom.ac_if;
947 
948 	lwkt_serialize_enter(ifp->if_serializer);
949 
950 	em_stop(adapter);
951 
952 	em_rel_mgmt(adapter);
953 	em_rel_hw_control(adapter);
954 
955 	if (adapter->wol) {
956 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
957 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
958 		em_enable_wol(dev);
959 	}
960 
961 	lwkt_serialize_exit(ifp->if_serializer);
962 
963 	return bus_generic_suspend(dev);
964 }
965 
966 static int
967 em_resume(device_t dev)
968 {
969 	struct adapter *adapter = device_get_softc(dev);
970 	struct ifnet *ifp = &adapter->arpcom.ac_if;
971 
972 	lwkt_serialize_enter(ifp->if_serializer);
973 
974 	if (adapter->hw.mac.type == e1000_pch2lan)
975 		e1000_resume_workarounds_pchlan(&adapter->hw);
976 
977 	em_init(adapter);
978 	em_get_mgmt(adapter);
979 	if_devstart(ifp);
980 
981 	lwkt_serialize_exit(ifp->if_serializer);
982 
983 	return bus_generic_resume(dev);
984 }
985 
986 static void
987 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
988 {
989 	struct adapter *adapter = ifp->if_softc;
990 	struct mbuf *m_head;
991 	int idx = -1, nsegs = 0;
992 
993 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
994 	ASSERT_SERIALIZED(ifp->if_serializer);
995 
996 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
997 		return;
998 
999 	if (!adapter->link_active) {
1000 		ifq_purge(&ifp->if_snd);
1001 		return;
1002 	}
1003 
1004 	while (!ifq_is_empty(&ifp->if_snd)) {
1005 		/* Now do we at least have a minimal? */
1006 		if (EM_IS_OACTIVE(adapter)) {
1007 			em_tx_collect(adapter);
1008 			if (EM_IS_OACTIVE(adapter)) {
1009 				ifq_set_oactive(&ifp->if_snd);
1010 				adapter->no_tx_desc_avail1++;
1011 				break;
1012 			}
1013 		}
1014 
1015 		logif(pkt_txqueue);
1016 		m_head = ifq_dequeue(&ifp->if_snd);
1017 		if (m_head == NULL)
1018 			break;
1019 
1020 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1021 			IFNET_STAT_INC(ifp, oerrors, 1);
1022 			em_tx_collect(adapter);
1023 			continue;
1024 		}
1025 
1026 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1027 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1028 			nsegs = 0;
1029 			idx = -1;
1030 		}
1031 
1032 		/* Send a copy of the frame to the BPF listener */
1033 		ETHER_BPF_MTAP(ifp, m_head);
1034 
1035 		/* Set timeout in case hardware has problems transmitting. */
1036 		ifp->if_timer = EM_TX_TIMEOUT;
1037 	}
1038 	if (idx >= 0)
1039 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1040 }
1041 
1042 static int
1043 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1044 {
1045 	struct adapter *adapter = ifp->if_softc;
1046 	struct ifreq *ifr = (struct ifreq *)data;
1047 	uint16_t eeprom_data = 0;
1048 	int max_frame_size, mask, reinit;
1049 	int error = 0;
1050 
1051 	ASSERT_SERIALIZED(ifp->if_serializer);
1052 
1053 	switch (command) {
1054 	case SIOCSIFMTU:
1055 		switch (adapter->hw.mac.type) {
1056 		case e1000_82573:
1057 			/*
1058 			 * 82573 only supports jumbo frames
1059 			 * if ASPM is disabled.
1060 			 */
1061 			e1000_read_nvm(&adapter->hw,
1062 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1063 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1064 				max_frame_size = ETHER_MAX_LEN;
1065 				break;
1066 			}
1067 			/* FALL THROUGH */
1068 
1069 		/* Limit Jumbo Frame size */
1070 		case e1000_82571:
1071 		case e1000_82572:
1072 		case e1000_ich9lan:
1073 		case e1000_ich10lan:
1074 		case e1000_pch2lan:
1075 		case e1000_pch_lpt:
1076 		case e1000_82574:
1077 		case e1000_82583:
1078 		case e1000_80003es2lan:
1079 			max_frame_size = 9234;
1080 			break;
1081 
1082 		case e1000_pchlan:
1083 			max_frame_size = 4096;
1084 			break;
1085 
1086 		/* Adapters that do not support jumbo frames */
1087 		case e1000_82542:
1088 		case e1000_ich8lan:
1089 			max_frame_size = ETHER_MAX_LEN;
1090 			break;
1091 
1092 		default:
1093 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1094 			break;
1095 		}
1096 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1097 		    ETHER_CRC_LEN) {
1098 			error = EINVAL;
1099 			break;
1100 		}
1101 
1102 		ifp->if_mtu = ifr->ifr_mtu;
1103 		adapter->hw.mac.max_frame_size =
1104 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1105 
1106 		if (ifp->if_flags & IFF_RUNNING)
1107 			em_init(adapter);
1108 		break;
1109 
1110 	case SIOCSIFFLAGS:
1111 		if (ifp->if_flags & IFF_UP) {
1112 			if ((ifp->if_flags & IFF_RUNNING)) {
1113 				if ((ifp->if_flags ^ adapter->if_flags) &
1114 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1115 					em_disable_promisc(adapter);
1116 					em_set_promisc(adapter);
1117 				}
1118 			} else {
1119 				em_init(adapter);
1120 			}
1121 		} else if (ifp->if_flags & IFF_RUNNING) {
1122 			em_stop(adapter);
1123 		}
1124 		adapter->if_flags = ifp->if_flags;
1125 		break;
1126 
1127 	case SIOCADDMULTI:
1128 	case SIOCDELMULTI:
1129 		if (ifp->if_flags & IFF_RUNNING) {
1130 			em_disable_intr(adapter);
1131 			em_set_multi(adapter);
1132 			if (adapter->hw.mac.type == e1000_82542 &&
1133 			    adapter->hw.revision_id == E1000_REVISION_2)
1134 				em_init_rx_unit(adapter);
1135 #ifdef IFPOLL_ENABLE
1136 			if (!(ifp->if_flags & IFF_NPOLLING))
1137 #endif
1138 				em_enable_intr(adapter);
1139 		}
1140 		break;
1141 
1142 	case SIOCSIFMEDIA:
1143 		/* Check SOL/IDER usage */
1144 		if (e1000_check_reset_block(&adapter->hw)) {
1145 			device_printf(adapter->dev, "Media change is"
1146 			    " blocked due to SOL/IDER session.\n");
1147 			break;
1148 		}
1149 		/* FALL THROUGH */
1150 
1151 	case SIOCGIFMEDIA:
1152 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1153 		break;
1154 
1155 	case SIOCSIFCAP:
1156 		reinit = 0;
1157 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1158 		if (mask & IFCAP_RXCSUM) {
1159 			ifp->if_capenable ^= IFCAP_RXCSUM;
1160 			reinit = 1;
1161 		}
1162 		if (mask & IFCAP_TXCSUM) {
1163 			ifp->if_capenable ^= IFCAP_TXCSUM;
1164 			if (ifp->if_capenable & IFCAP_TXCSUM)
1165 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1166 			else
1167 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1168 		}
1169 		if (mask & IFCAP_TSO) {
1170 			ifp->if_capenable ^= IFCAP_TSO;
1171 			if (ifp->if_capenable & IFCAP_TSO)
1172 				ifp->if_hwassist |= CSUM_TSO;
1173 			else
1174 				ifp->if_hwassist &= ~CSUM_TSO;
1175 		}
1176 		if (mask & IFCAP_VLAN_HWTAGGING) {
1177 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1178 			reinit = 1;
1179 		}
1180 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1181 			em_init(adapter);
1182 		break;
1183 
1184 	default:
1185 		error = ether_ioctl(ifp, command, data);
1186 		break;
1187 	}
1188 	return (error);
1189 }
1190 
1191 static void
1192 em_watchdog(struct ifnet *ifp)
1193 {
1194 	struct adapter *adapter = ifp->if_softc;
1195 
1196 	ASSERT_SERIALIZED(ifp->if_serializer);
1197 
1198 	/*
1199 	 * The timer is set to 5 every time start queues a packet.
1200 	 * Then txeof keeps resetting it as long as it cleans at
1201 	 * least one descriptor.
1202 	 * Finally, anytime all descriptors are clean the timer is
1203 	 * set to 0.
1204 	 */
1205 
1206 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1207 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1208 		/*
1209 		 * If we reach here, all TX jobs are completed and
1210 		 * the TX engine should have been idled for some time.
1211 		 * We don't need to call if_devstart() here.
1212 		 */
1213 		ifq_clr_oactive(&ifp->if_snd);
1214 		ifp->if_timer = 0;
1215 		return;
1216 	}
1217 
1218 	/*
1219 	 * If we are in this routine because of pause frames, then
1220 	 * don't reset the hardware.
1221 	 */
1222 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1223 	    E1000_STATUS_TXOFF) {
1224 		ifp->if_timer = EM_TX_TIMEOUT;
1225 		return;
1226 	}
1227 
1228 	if (e1000_check_for_link(&adapter->hw) == 0)
1229 		if_printf(ifp, "watchdog timeout -- resetting\n");
1230 
1231 	IFNET_STAT_INC(ifp, oerrors, 1);
1232 	adapter->watchdog_events++;
1233 
1234 	em_init(adapter);
1235 
1236 	if (!ifq_is_empty(&ifp->if_snd))
1237 		if_devstart(ifp);
1238 }
1239 
1240 static void
1241 em_init(void *xsc)
1242 {
1243 	struct adapter *adapter = xsc;
1244 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1245 	device_t dev = adapter->dev;
1246 
1247 	ASSERT_SERIALIZED(ifp->if_serializer);
1248 
1249 	em_stop(adapter);
1250 
1251 	/* Get the latest mac address, User can use a LAA */
1252         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1253 
1254 	/* Put the address into the Receive Address Array */
1255 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1256 
1257 	/*
1258 	 * With the 82571 adapter, RAR[0] may be overwritten
1259 	 * when the other port is reset, we make a duplicate
1260 	 * in RAR[14] for that eventuality, this assures
1261 	 * the interface continues to function.
1262 	 */
1263 	if (adapter->hw.mac.type == e1000_82571) {
1264 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1265 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1266 		    E1000_RAR_ENTRIES - 1);
1267 	}
1268 
1269 	/* Reset the hardware */
1270 	if (em_reset(adapter)) {
1271 		device_printf(dev, "Unable to reset the hardware\n");
1272 		/* XXX em_stop()? */
1273 		return;
1274 	}
1275 	em_update_link_status(adapter);
1276 
1277 	/* Setup VLAN support, basic and offload if available */
1278 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1279 
1280 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1281 		uint32_t ctrl;
1282 
1283 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1284 		ctrl |= E1000_CTRL_VME;
1285 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1286 	}
1287 
1288 	/* Configure for OS presence */
1289 	em_get_mgmt(adapter);
1290 
1291 	/* Prepare transmit descriptors and buffers */
1292 	em_init_tx_ring(adapter);
1293 	em_init_tx_unit(adapter);
1294 
1295 	/* Setup Multicast table */
1296 	em_set_multi(adapter);
1297 
1298 	/* Prepare receive descriptors and buffers */
1299 	if (em_init_rx_ring(adapter)) {
1300 		device_printf(dev, "Could not setup receive structures\n");
1301 		em_stop(adapter);
1302 		return;
1303 	}
1304 	em_init_rx_unit(adapter);
1305 
1306 	/* Don't lose promiscuous settings */
1307 	em_set_promisc(adapter);
1308 
1309 	ifp->if_flags |= IFF_RUNNING;
1310 	ifq_clr_oactive(&ifp->if_snd);
1311 
1312 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1313 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1314 
1315 	/* MSI/X configuration for 82574 */
1316 	if (adapter->hw.mac.type == e1000_82574) {
1317 		int tmp;
1318 
1319 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1320 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1321 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1322 		/*
1323 		 * XXX MSIX
1324 		 * Set the IVAR - interrupt vector routing.
1325 		 * Each nibble represents a vector, high bit
1326 		 * is enable, other 3 bits are the MSIX table
1327 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1328 		 * Link (other) to 2, hence the magic number.
1329 		 */
1330 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1331 	}
1332 
1333 #ifdef IFPOLL_ENABLE
1334 	/*
1335 	 * Only enable interrupts if we are not polling, make sure
1336 	 * they are off otherwise.
1337 	 */
1338 	if (ifp->if_flags & IFF_NPOLLING)
1339 		em_disable_intr(adapter);
1340 	else
1341 #endif /* IFPOLL_ENABLE */
1342 		em_enable_intr(adapter);
1343 
1344 	/* AMT based hardware can now take control from firmware */
1345 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1346 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1347 	    adapter->hw.mac.type >= e1000_82571)
1348 		em_get_hw_control(adapter);
1349 }
1350 
1351 #ifdef IFPOLL_ENABLE
1352 
1353 static void
1354 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1355 {
1356 	struct adapter *adapter = ifp->if_softc;
1357 
1358 	ASSERT_SERIALIZED(ifp->if_serializer);
1359 
1360 	if (adapter->npoll.ifpc_stcount-- == 0) {
1361 		uint32_t reg_icr;
1362 
1363 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1364 
1365 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1366 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1367 			callout_stop(&adapter->timer);
1368 			adapter->hw.mac.get_link_status = 1;
1369 			em_update_link_status(adapter);
1370 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1371 		}
1372 	}
1373 
1374 	em_rxeof(adapter, count);
1375 	em_txeof(adapter);
1376 
1377 	if (!ifq_is_empty(&ifp->if_snd))
1378 		if_devstart(ifp);
1379 }
1380 
1381 static void
1382 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1383 {
1384 	struct adapter *adapter = ifp->if_softc;
1385 
1386 	ASSERT_SERIALIZED(ifp->if_serializer);
1387 
1388 	if (info != NULL) {
1389 		int cpuid = adapter->npoll.ifpc_cpuid;
1390 
1391                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1392 		info->ifpi_rx[cpuid].arg = NULL;
1393 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1394 
1395 		if (ifp->if_flags & IFF_RUNNING)
1396 			em_disable_intr(adapter);
1397 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1398 	} else {
1399 		if (ifp->if_flags & IFF_RUNNING)
1400 			em_enable_intr(adapter);
1401 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1402 	}
1403 }
1404 
1405 #endif /* IFPOLL_ENABLE */
1406 
1407 static void
1408 em_intr(void *xsc)
1409 {
1410 	em_intr_body(xsc, TRUE);
1411 }
1412 
1413 static void
1414 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1415 {
1416 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1417 	uint32_t reg_icr;
1418 
1419 	logif(intr_beg);
1420 	ASSERT_SERIALIZED(ifp->if_serializer);
1421 
1422 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1423 
1424 	if (chk_asserted &&
1425 	    ((adapter->hw.mac.type >= e1000_82571 &&
1426 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1427 	     reg_icr == 0)) {
1428 		logif(intr_end);
1429 		return;
1430 	}
1431 
1432 	/*
1433 	 * XXX: some laptops trigger several spurious interrupts
1434 	 * on em(4) when in the resume cycle. The ICR register
1435 	 * reports all-ones value in this case. Processing such
1436 	 * interrupts would lead to a freeze. I don't know why.
1437 	 */
1438 	if (reg_icr == 0xffffffff) {
1439 		logif(intr_end);
1440 		return;
1441 	}
1442 
1443 	if (ifp->if_flags & IFF_RUNNING) {
1444 		if (reg_icr &
1445 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1446 			em_rxeof(adapter, -1);
1447 		if (reg_icr & E1000_ICR_TXDW) {
1448 			em_txeof(adapter);
1449 			if (!ifq_is_empty(&ifp->if_snd))
1450 				if_devstart(ifp);
1451 		}
1452 	}
1453 
1454 	/* Link status change */
1455 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1456 		callout_stop(&adapter->timer);
1457 		adapter->hw.mac.get_link_status = 1;
1458 		em_update_link_status(adapter);
1459 
1460 		/* Deal with TX cruft when link lost */
1461 		em_tx_purge(adapter);
1462 
1463 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1464 	}
1465 
1466 	if (reg_icr & E1000_ICR_RXO)
1467 		adapter->rx_overruns++;
1468 
1469 	logif(intr_end);
1470 }
1471 
1472 static void
1473 em_intr_mask(void *xsc)
1474 {
1475 	struct adapter *adapter = xsc;
1476 
1477 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1478 	/*
1479 	 * NOTE:
1480 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1481 	 * so don't check it.
1482 	 */
1483 	em_intr_body(adapter, FALSE);
1484 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1485 }
1486 
1487 static void
1488 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1489 {
1490 	struct adapter *adapter = ifp->if_softc;
1491 	u_char fiber_type = IFM_1000_SX;
1492 
1493 	ASSERT_SERIALIZED(ifp->if_serializer);
1494 
1495 	em_update_link_status(adapter);
1496 
1497 	ifmr->ifm_status = IFM_AVALID;
1498 	ifmr->ifm_active = IFM_ETHER;
1499 
1500 	if (!adapter->link_active)
1501 		return;
1502 
1503 	ifmr->ifm_status |= IFM_ACTIVE;
1504 
1505 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1506 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1507 		if (adapter->hw.mac.type == e1000_82545)
1508 			fiber_type = IFM_1000_LX;
1509 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1510 	} else {
1511 		switch (adapter->link_speed) {
1512 		case 10:
1513 			ifmr->ifm_active |= IFM_10_T;
1514 			break;
1515 		case 100:
1516 			ifmr->ifm_active |= IFM_100_TX;
1517 			break;
1518 
1519 		case 1000:
1520 			ifmr->ifm_active |= IFM_1000_T;
1521 			break;
1522 		}
1523 		if (adapter->link_duplex == FULL_DUPLEX)
1524 			ifmr->ifm_active |= IFM_FDX;
1525 		else
1526 			ifmr->ifm_active |= IFM_HDX;
1527 	}
1528 }
1529 
1530 static int
1531 em_media_change(struct ifnet *ifp)
1532 {
1533 	struct adapter *adapter = ifp->if_softc;
1534 	struct ifmedia *ifm = &adapter->media;
1535 
1536 	ASSERT_SERIALIZED(ifp->if_serializer);
1537 
1538 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1539 		return (EINVAL);
1540 
1541 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1542 	case IFM_AUTO:
1543 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1544 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1545 		break;
1546 
1547 	case IFM_1000_LX:
1548 	case IFM_1000_SX:
1549 	case IFM_1000_T:
1550 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1551 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1552 		break;
1553 
1554 	case IFM_100_TX:
1555 		adapter->hw.mac.autoneg = FALSE;
1556 		adapter->hw.phy.autoneg_advertised = 0;
1557 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1558 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1559 		else
1560 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1561 		break;
1562 
1563 	case IFM_10_T:
1564 		adapter->hw.mac.autoneg = FALSE;
1565 		adapter->hw.phy.autoneg_advertised = 0;
1566 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1567 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1568 		else
1569 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1570 		break;
1571 
1572 	default:
1573 		if_printf(ifp, "Unsupported media type\n");
1574 		break;
1575 	}
1576 
1577 	em_init(adapter);
1578 
1579 	return (0);
1580 }
1581 
1582 static int
1583 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1584     int *segs_used, int *idx)
1585 {
1586 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1587 	bus_dmamap_t map;
1588 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1589 	struct e1000_tx_desc *ctxd = NULL;
1590 	struct mbuf *m_head = *m_headp;
1591 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1592 	int maxsegs, nsegs, i, j, first, last = 0, error;
1593 
1594 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1595 		error = em_tso_pullup(adapter, m_headp);
1596 		if (error)
1597 			return error;
1598 		m_head = *m_headp;
1599 	}
1600 
1601 	txd_upper = txd_lower = 0;
1602 	txd_used = 0;
1603 
1604 	/*
1605 	 * Capture the first descriptor index, this descriptor
1606 	 * will have the index of the EOP which is the only one
1607 	 * that now gets a DONE bit writeback.
1608 	 */
1609 	first = adapter->next_avail_tx_desc;
1610 	tx_buffer = &adapter->tx_buffer_area[first];
1611 	tx_buffer_mapped = tx_buffer;
1612 	map = tx_buffer->map;
1613 
1614 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1615 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1616 		("not enough spare TX desc"));
1617 	if (adapter->pcix_82544) {
1618 		/* Half it; see the comment in em_attach() */
1619 		maxsegs >>= 1;
1620 	}
1621 	if (maxsegs > EM_MAX_SCATTER)
1622 		maxsegs = EM_MAX_SCATTER;
1623 
1624 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1625 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1626 	if (error) {
1627 		if (error == ENOBUFS)
1628 			adapter->mbuf_alloc_failed++;
1629 		else
1630 			adapter->no_tx_dma_setup++;
1631 
1632 		m_freem(*m_headp);
1633 		*m_headp = NULL;
1634 		return error;
1635 	}
1636         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1637 
1638 	m_head = *m_headp;
1639 	adapter->tx_nsegs += nsegs;
1640 	*segs_used += nsegs;
1641 
1642 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1643 		/* TSO will consume one TX desc */
1644 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1645 		adapter->tx_nsegs += i;
1646 		*segs_used += i;
1647 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1648 		/* TX csum offloading will consume one TX desc */
1649 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1650 		adapter->tx_nsegs += i;
1651 		*segs_used += i;
1652 	}
1653 
1654         /* Handle VLAN tag */
1655 	if (m_head->m_flags & M_VLANTAG) {
1656 		/* Set the vlan id. */
1657 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1658 		/* Tell hardware to add tag */
1659 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1660 	}
1661 
1662 	i = adapter->next_avail_tx_desc;
1663 
1664 	/* Set up our transmit descriptors */
1665 	for (j = 0; j < nsegs; j++) {
1666 		/* If adapter is 82544 and on PCIX bus */
1667 		if(adapter->pcix_82544) {
1668 			DESC_ARRAY desc_array;
1669 			uint32_t array_elements, counter;
1670 
1671 			/*
1672 			 * Check the Address and Length combination and
1673 			 * split the data accordingly
1674 			 */
1675 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1676 						segs[j].ds_len, &desc_array);
1677 			for (counter = 0; counter < array_elements; counter++) {
1678 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1679 
1680 				tx_buffer = &adapter->tx_buffer_area[i];
1681 				ctxd = &adapter->tx_desc_base[i];
1682 
1683 				ctxd->buffer_addr = htole64(
1684 				    desc_array.descriptor[counter].address);
1685 				ctxd->lower.data = htole32(
1686 				    E1000_TXD_CMD_IFCS | txd_lower |
1687 				    desc_array.descriptor[counter].length);
1688 				ctxd->upper.data = htole32(txd_upper);
1689 
1690 				last = i;
1691 				if (++i == adapter->num_tx_desc)
1692 					i = 0;
1693 
1694 				txd_used++;
1695                         }
1696 		} else {
1697 			tx_buffer = &adapter->tx_buffer_area[i];
1698 			ctxd = &adapter->tx_desc_base[i];
1699 
1700 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1701 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1702 						   txd_lower | segs[j].ds_len);
1703 			ctxd->upper.data = htole32(txd_upper);
1704 
1705 			last = i;
1706 			if (++i == adapter->num_tx_desc)
1707 				i = 0;
1708 		}
1709 	}
1710 
1711 	adapter->next_avail_tx_desc = i;
1712 	if (adapter->pcix_82544) {
1713 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1714 		adapter->num_tx_desc_avail -= txd_used;
1715 	} else {
1716 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1717 		adapter->num_tx_desc_avail -= nsegs;
1718 	}
1719 
1720 	tx_buffer->m_head = m_head;
1721 	tx_buffer_mapped->map = tx_buffer->map;
1722 	tx_buffer->map = map;
1723 
1724 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1725 		adapter->tx_nsegs = 0;
1726 
1727 		/*
1728 		 * Report Status (RS) is turned on
1729 		 * every tx_int_nsegs descriptors.
1730 		 */
1731 		cmd = E1000_TXD_CMD_RS;
1732 
1733 		/*
1734 		 * Keep track of the descriptor, which will
1735 		 * be written back by hardware.
1736 		 */
1737 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1738 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1739 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1740 	}
1741 
1742 	/*
1743 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1744 	 */
1745 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1746 
1747 	if (adapter->hw.mac.type == e1000_82547) {
1748 		/*
1749 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1750 		 * E1000 that this frame is available to transmit.
1751 		 */
1752 		if (adapter->link_duplex == HALF_DUPLEX) {
1753 			em_82547_move_tail_serialized(adapter);
1754 		} else {
1755 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1756 			em_82547_update_fifo_head(adapter,
1757 			    m_head->m_pkthdr.len);
1758 		}
1759 	} else {
1760 		/*
1761 		 * Defer TDT updating, until enough descriptors are setup
1762 		 */
1763 		*idx = i;
1764 	}
1765 	return (0);
1766 }
1767 
1768 /*
1769  * 82547 workaround to avoid controller hang in half-duplex environment.
1770  * The workaround is to avoid queuing a large packet that would span
1771  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1772  * in this case.  We do that only when FIFO is quiescent.
1773  */
1774 static void
1775 em_82547_move_tail_serialized(struct adapter *adapter)
1776 {
1777 	struct e1000_tx_desc *tx_desc;
1778 	uint16_t hw_tdt, sw_tdt, length = 0;
1779 	bool eop = 0;
1780 
1781 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1782 
1783 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1784 	sw_tdt = adapter->next_avail_tx_desc;
1785 
1786 	while (hw_tdt != sw_tdt) {
1787 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1788 		length += tx_desc->lower.flags.length;
1789 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1790 		if (++hw_tdt == adapter->num_tx_desc)
1791 			hw_tdt = 0;
1792 
1793 		if (eop) {
1794 			if (em_82547_fifo_workaround(adapter, length)) {
1795 				adapter->tx_fifo_wrk_cnt++;
1796 				callout_reset(&adapter->tx_fifo_timer, 1,
1797 					em_82547_move_tail, adapter);
1798 				break;
1799 			}
1800 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1801 			em_82547_update_fifo_head(adapter, length);
1802 			length = 0;
1803 		}
1804 	}
1805 }
1806 
1807 static void
1808 em_82547_move_tail(void *xsc)
1809 {
1810 	struct adapter *adapter = xsc;
1811 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1812 
1813 	lwkt_serialize_enter(ifp->if_serializer);
1814 	em_82547_move_tail_serialized(adapter);
1815 	lwkt_serialize_exit(ifp->if_serializer);
1816 }
1817 
1818 static int
1819 em_82547_fifo_workaround(struct adapter *adapter, int len)
1820 {
1821 	int fifo_space, fifo_pkt_len;
1822 
1823 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1824 
1825 	if (adapter->link_duplex == HALF_DUPLEX) {
1826 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1827 
1828 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1829 			if (em_82547_tx_fifo_reset(adapter))
1830 				return (0);
1831 			else
1832 				return (1);
1833 		}
1834 	}
1835 	return (0);
1836 }
1837 
1838 static void
1839 em_82547_update_fifo_head(struct adapter *adapter, int len)
1840 {
1841 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1842 
1843 	/* tx_fifo_head is always 16 byte aligned */
1844 	adapter->tx_fifo_head += fifo_pkt_len;
1845 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1846 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1847 }
1848 
1849 static int
1850 em_82547_tx_fifo_reset(struct adapter *adapter)
1851 {
1852 	uint32_t tctl;
1853 
1854 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1855 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1856 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1857 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1858 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1859 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1860 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1861 		/* Disable TX unit */
1862 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1863 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1864 		    tctl & ~E1000_TCTL_EN);
1865 
1866 		/* Reset FIFO pointers */
1867 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1868 		    adapter->tx_head_addr);
1869 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1870 		    adapter->tx_head_addr);
1871 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1872 		    adapter->tx_head_addr);
1873 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1874 		    adapter->tx_head_addr);
1875 
1876 		/* Re-enable TX unit */
1877 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1878 		E1000_WRITE_FLUSH(&adapter->hw);
1879 
1880 		adapter->tx_fifo_head = 0;
1881 		adapter->tx_fifo_reset_cnt++;
1882 
1883 		return (TRUE);
1884 	} else {
1885 		return (FALSE);
1886 	}
1887 }
1888 
1889 static void
1890 em_set_promisc(struct adapter *adapter)
1891 {
1892 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1893 	uint32_t reg_rctl;
1894 
1895 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1896 
1897 	if (ifp->if_flags & IFF_PROMISC) {
1898 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1899 		/* Turn this on if you want to see bad packets */
1900 		if (em_debug_sbp)
1901 			reg_rctl |= E1000_RCTL_SBP;
1902 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1903 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1904 		reg_rctl |= E1000_RCTL_MPE;
1905 		reg_rctl &= ~E1000_RCTL_UPE;
1906 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1907 	}
1908 }
1909 
1910 static void
1911 em_disable_promisc(struct adapter *adapter)
1912 {
1913 	uint32_t reg_rctl;
1914 
1915 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1916 
1917 	reg_rctl &= ~E1000_RCTL_UPE;
1918 	reg_rctl &= ~E1000_RCTL_MPE;
1919 	reg_rctl &= ~E1000_RCTL_SBP;
1920 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1921 }
1922 
1923 static void
1924 em_set_multi(struct adapter *adapter)
1925 {
1926 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1927 	struct ifmultiaddr *ifma;
1928 	uint32_t reg_rctl = 0;
1929 	uint8_t *mta;
1930 	int mcnt = 0;
1931 
1932 	mta = adapter->mta;
1933 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1934 
1935 	if (adapter->hw.mac.type == e1000_82542 &&
1936 	    adapter->hw.revision_id == E1000_REVISION_2) {
1937 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1938 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1939 			e1000_pci_clear_mwi(&adapter->hw);
1940 		reg_rctl |= E1000_RCTL_RST;
1941 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1942 		msec_delay(5);
1943 	}
1944 
1945 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1946 		if (ifma->ifma_addr->sa_family != AF_LINK)
1947 			continue;
1948 
1949 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1950 			break;
1951 
1952 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1953 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1954 		mcnt++;
1955 	}
1956 
1957 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1958 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1959 		reg_rctl |= E1000_RCTL_MPE;
1960 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1961 	} else {
1962 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1963 	}
1964 
1965 	if (adapter->hw.mac.type == e1000_82542 &&
1966 	    adapter->hw.revision_id == E1000_REVISION_2) {
1967 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1968 		reg_rctl &= ~E1000_RCTL_RST;
1969 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1970 		msec_delay(5);
1971 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1972 			e1000_pci_set_mwi(&adapter->hw);
1973 	}
1974 }
1975 
1976 /*
1977  * This routine checks for link status and updates statistics.
1978  */
1979 static void
1980 em_timer(void *xsc)
1981 {
1982 	struct adapter *adapter = xsc;
1983 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1984 
1985 	lwkt_serialize_enter(ifp->if_serializer);
1986 
1987 	em_update_link_status(adapter);
1988 	em_update_stats(adapter);
1989 
1990 	/* Reset LAA into RAR[0] on 82571 */
1991 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1992 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1993 
1994 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1995 		em_print_hw_stats(adapter);
1996 
1997 	em_smartspeed(adapter);
1998 
1999 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2000 
2001 	lwkt_serialize_exit(ifp->if_serializer);
2002 }
2003 
2004 static void
2005 em_update_link_status(struct adapter *adapter)
2006 {
2007 	struct e1000_hw *hw = &adapter->hw;
2008 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2009 	device_t dev = adapter->dev;
2010 	uint32_t link_check = 0;
2011 
2012 	/* Get the cached link value or read phy for real */
2013 	switch (hw->phy.media_type) {
2014 	case e1000_media_type_copper:
2015 		if (hw->mac.get_link_status) {
2016 			/* Do the work to read phy */
2017 			e1000_check_for_link(hw);
2018 			link_check = !hw->mac.get_link_status;
2019 			if (link_check) /* ESB2 fix */
2020 				e1000_cfg_on_link_up(hw);
2021 		} else {
2022 			link_check = TRUE;
2023 		}
2024 		break;
2025 
2026 	case e1000_media_type_fiber:
2027 		e1000_check_for_link(hw);
2028 		link_check =
2029 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2030 		break;
2031 
2032 	case e1000_media_type_internal_serdes:
2033 		e1000_check_for_link(hw);
2034 		link_check = adapter->hw.mac.serdes_has_link;
2035 		break;
2036 
2037 	case e1000_media_type_unknown:
2038 	default:
2039 		break;
2040 	}
2041 
2042 	/* Now check for a transition */
2043 	if (link_check && adapter->link_active == 0) {
2044 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2045 		    &adapter->link_duplex);
2046 
2047 		/*
2048 		 * Check if we should enable/disable SPEED_MODE bit on
2049 		 * 82571/82572
2050 		 */
2051 		if (adapter->link_speed != SPEED_1000 &&
2052 		    (hw->mac.type == e1000_82571 ||
2053 		     hw->mac.type == e1000_82572)) {
2054 			int tarc0;
2055 
2056 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2057 			tarc0 &= ~SPEED_MODE_BIT;
2058 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2059 		}
2060 		if (bootverbose) {
2061 			device_printf(dev, "Link is up %d Mbps %s\n",
2062 			    adapter->link_speed,
2063 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2064 			    "Full Duplex" : "Half Duplex"));
2065 		}
2066 		adapter->link_active = 1;
2067 		adapter->smartspeed = 0;
2068 		ifp->if_baudrate = adapter->link_speed * 1000000;
2069 		ifp->if_link_state = LINK_STATE_UP;
2070 		if_link_state_change(ifp);
2071 	} else if (!link_check && adapter->link_active == 1) {
2072 		ifp->if_baudrate = adapter->link_speed = 0;
2073 		adapter->link_duplex = 0;
2074 		if (bootverbose)
2075 			device_printf(dev, "Link is Down\n");
2076 		adapter->link_active = 0;
2077 #if 0
2078 		/* Link down, disable watchdog */
2079 		if->if_timer = 0;
2080 #endif
2081 		ifp->if_link_state = LINK_STATE_DOWN;
2082 		if_link_state_change(ifp);
2083 	}
2084 }
2085 
2086 static void
2087 em_stop(struct adapter *adapter)
2088 {
2089 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2090 	int i;
2091 
2092 	ASSERT_SERIALIZED(ifp->if_serializer);
2093 
2094 	em_disable_intr(adapter);
2095 
2096 	callout_stop(&adapter->timer);
2097 	callout_stop(&adapter->tx_fifo_timer);
2098 
2099 	ifp->if_flags &= ~IFF_RUNNING;
2100 	ifq_clr_oactive(&ifp->if_snd);
2101 	ifp->if_timer = 0;
2102 
2103 	e1000_reset_hw(&adapter->hw);
2104 	if (adapter->hw.mac.type >= e1000_82544)
2105 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2106 
2107 	for (i = 0; i < adapter->num_tx_desc; i++) {
2108 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2109 
2110 		if (tx_buffer->m_head != NULL) {
2111 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2112 			m_freem(tx_buffer->m_head);
2113 			tx_buffer->m_head = NULL;
2114 		}
2115 	}
2116 
2117 	for (i = 0; i < adapter->num_rx_desc; i++) {
2118 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2119 
2120 		if (rx_buffer->m_head != NULL) {
2121 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2122 			m_freem(rx_buffer->m_head);
2123 			rx_buffer->m_head = NULL;
2124 		}
2125 	}
2126 
2127 	if (adapter->fmp != NULL)
2128 		m_freem(adapter->fmp);
2129 	adapter->fmp = NULL;
2130 	adapter->lmp = NULL;
2131 
2132 	adapter->csum_flags = 0;
2133 	adapter->csum_lhlen = 0;
2134 	adapter->csum_iphlen = 0;
2135 	adapter->csum_thlen = 0;
2136 	adapter->csum_mss = 0;
2137 	adapter->csum_pktlen = 0;
2138 
2139 	adapter->tx_dd_head = 0;
2140 	adapter->tx_dd_tail = 0;
2141 	adapter->tx_nsegs = 0;
2142 }
2143 
2144 static int
2145 em_get_hw_info(struct adapter *adapter)
2146 {
2147 	device_t dev = adapter->dev;
2148 
2149 	/* Save off the information about this board */
2150 	adapter->hw.vendor_id = pci_get_vendor(dev);
2151 	adapter->hw.device_id = pci_get_device(dev);
2152 	adapter->hw.revision_id = pci_get_revid(dev);
2153 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2154 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2155 
2156 	/* Do Shared Code Init and Setup */
2157 	if (e1000_set_mac_type(&adapter->hw))
2158 		return ENXIO;
2159 	return 0;
2160 }
2161 
2162 static int
2163 em_alloc_pci_res(struct adapter *adapter)
2164 {
2165 	device_t dev = adapter->dev;
2166 	u_int intr_flags;
2167 	int val, rid, msi_enable;
2168 
2169 	/* Enable bus mastering */
2170 	pci_enable_busmaster(dev);
2171 
2172 	adapter->memory_rid = EM_BAR_MEM;
2173 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2174 				&adapter->memory_rid, RF_ACTIVE);
2175 	if (adapter->memory == NULL) {
2176 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2177 		return (ENXIO);
2178 	}
2179 	adapter->osdep.mem_bus_space_tag =
2180 	    rman_get_bustag(adapter->memory);
2181 	adapter->osdep.mem_bus_space_handle =
2182 	    rman_get_bushandle(adapter->memory);
2183 
2184 	/* XXX This is quite goofy, it is not actually used */
2185 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2186 
2187 	/* Only older adapters use IO mapping */
2188 	if (adapter->hw.mac.type > e1000_82543 &&
2189 	    adapter->hw.mac.type < e1000_82571) {
2190 		/* Figure our where our IO BAR is ? */
2191 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2192 			val = pci_read_config(dev, rid, 4);
2193 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2194 				adapter->io_rid = rid;
2195 				break;
2196 			}
2197 			rid += 4;
2198 			/* check for 64bit BAR */
2199 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2200 				rid += 4;
2201 		}
2202 		if (rid >= PCIR_CARDBUSCIS) {
2203 			device_printf(dev, "Unable to locate IO BAR\n");
2204 			return (ENXIO);
2205 		}
2206 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2207 					&adapter->io_rid, RF_ACTIVE);
2208 		if (adapter->ioport == NULL) {
2209 			device_printf(dev, "Unable to allocate bus resource: "
2210 			    "ioport\n");
2211 			return (ENXIO);
2212 		}
2213 		adapter->hw.io_base = 0;
2214 		adapter->osdep.io_bus_space_tag =
2215 		    rman_get_bustag(adapter->ioport);
2216 		adapter->osdep.io_bus_space_handle =
2217 		    rman_get_bushandle(adapter->ioport);
2218 	}
2219 
2220 	/*
2221 	 * Don't enable MSI-X on 82574, see:
2222 	 * 82574 specification update errata #15
2223 	 *
2224 	 * Don't enable MSI on PCI/PCI-X chips, see:
2225 	 * 82540 specification update errata #6
2226 	 * 82545 specification update errata #4
2227 	 *
2228 	 * Don't enable MSI on 82571/82572, see:
2229 	 * 82571/82572 specification update errata #63
2230 	 */
2231 	msi_enable = em_msi_enable;
2232 	if (msi_enable &&
2233 	    (!pci_is_pcie(dev) ||
2234 	     adapter->hw.mac.type == e1000_82571 ||
2235 	     adapter->hw.mac.type == e1000_82572))
2236 		msi_enable = 0;
2237 
2238 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2239 	    &adapter->intr_rid, &intr_flags);
2240 
2241 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2242 		int unshared;
2243 
2244 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2245 		if (!unshared) {
2246 			adapter->flags |= EM_FLAG_SHARED_INTR;
2247 			if (bootverbose)
2248 				device_printf(dev, "IRQ shared\n");
2249 		} else {
2250 			intr_flags &= ~RF_SHAREABLE;
2251 			if (bootverbose)
2252 				device_printf(dev, "IRQ unshared\n");
2253 		}
2254 	}
2255 
2256 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2257 	    &adapter->intr_rid, intr_flags);
2258 	if (adapter->intr_res == NULL) {
2259 		device_printf(dev, "Unable to allocate bus resource: "
2260 		    "interrupt\n");
2261 		return (ENXIO);
2262 	}
2263 
2264 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2265 	adapter->hw.back = &adapter->osdep;
2266 	return (0);
2267 }
2268 
2269 static void
2270 em_free_pci_res(struct adapter *adapter)
2271 {
2272 	device_t dev = adapter->dev;
2273 
2274 	if (adapter->intr_res != NULL) {
2275 		bus_release_resource(dev, SYS_RES_IRQ,
2276 		    adapter->intr_rid, adapter->intr_res);
2277 	}
2278 
2279 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2280 		pci_release_msi(dev);
2281 
2282 	if (adapter->memory != NULL) {
2283 		bus_release_resource(dev, SYS_RES_MEMORY,
2284 		    adapter->memory_rid, adapter->memory);
2285 	}
2286 
2287 	if (adapter->flash != NULL) {
2288 		bus_release_resource(dev, SYS_RES_MEMORY,
2289 		    adapter->flash_rid, adapter->flash);
2290 	}
2291 
2292 	if (adapter->ioport != NULL) {
2293 		bus_release_resource(dev, SYS_RES_IOPORT,
2294 		    adapter->io_rid, adapter->ioport);
2295 	}
2296 }
2297 
2298 static int
2299 em_reset(struct adapter *adapter)
2300 {
2301 	device_t dev = adapter->dev;
2302 	uint16_t rx_buffer_size;
2303 	uint32_t pba;
2304 
2305 	/* When hardware is reset, fifo_head is also reset */
2306 	adapter->tx_fifo_head = 0;
2307 
2308 	/* Set up smart power down as default off on newer adapters. */
2309 	if (!em_smart_pwr_down &&
2310 	    (adapter->hw.mac.type == e1000_82571 ||
2311 	     adapter->hw.mac.type == e1000_82572)) {
2312 		uint16_t phy_tmp = 0;
2313 
2314 		/* Speed up time to link by disabling smart power down. */
2315 		e1000_read_phy_reg(&adapter->hw,
2316 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2317 		phy_tmp &= ~IGP02E1000_PM_SPD;
2318 		e1000_write_phy_reg(&adapter->hw,
2319 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2320 	}
2321 
2322 	/*
2323 	 * Packet Buffer Allocation (PBA)
2324 	 * Writing PBA sets the receive portion of the buffer
2325 	 * the remainder is used for the transmit buffer.
2326 	 *
2327 	 * Devices before the 82547 had a Packet Buffer of 64K.
2328 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2329 	 * After the 82547 the buffer was reduced to 40K.
2330 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2331 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2332 	 */
2333 	switch (adapter->hw.mac.type) {
2334 	case e1000_82547:
2335 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2336 		if (adapter->hw.mac.max_frame_size > 8192)
2337 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2338 		else
2339 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2340 		adapter->tx_fifo_head = 0;
2341 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2342 		adapter->tx_fifo_size =
2343 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2344 		break;
2345 
2346 	/* Total Packet Buffer on these is 48K */
2347 	case e1000_82571:
2348 	case e1000_82572:
2349 	case e1000_80003es2lan:
2350 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2351 		break;
2352 
2353 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2354 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2355 		break;
2356 
2357 	case e1000_82574:
2358 	case e1000_82583:
2359 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2360 		break;
2361 
2362 	case e1000_ich8lan:
2363 		pba = E1000_PBA_8K;
2364 		break;
2365 
2366 	case e1000_ich9lan:
2367 	case e1000_ich10lan:
2368 #define E1000_PBA_10K	0x000A
2369 		pba = E1000_PBA_10K;
2370 		break;
2371 
2372 	case e1000_pchlan:
2373 	case e1000_pch2lan:
2374 	case e1000_pch_lpt:
2375 		pba = E1000_PBA_26K;
2376 		break;
2377 
2378 	default:
2379 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2380 		if (adapter->hw.mac.max_frame_size > 8192)
2381 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2382 		else
2383 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2384 	}
2385 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2386 
2387 	/*
2388 	 * These parameters control the automatic generation (Tx) and
2389 	 * response (Rx) to Ethernet PAUSE frames.
2390 	 * - High water mark should allow for at least two frames to be
2391 	 *   received after sending an XOFF.
2392 	 * - Low water mark works best when it is very near the high water mark.
2393 	 *   This allows the receiver to restart by sending XON when it has
2394 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2395 	 *   restart after one full frame is pulled from the buffer. There
2396 	 *   could be several smaller frames in the buffer and if so they will
2397 	 *   not trigger the XON until their total number reduces the buffer
2398 	 *   by 1500.
2399 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2400 	 */
2401 	rx_buffer_size =
2402 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2403 
2404 	adapter->hw.fc.high_water = rx_buffer_size -
2405 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2406 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2407 
2408 	if (adapter->hw.mac.type == e1000_80003es2lan)
2409 		adapter->hw.fc.pause_time = 0xFFFF;
2410 	else
2411 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2412 
2413 	adapter->hw.fc.send_xon = TRUE;
2414 
2415 	adapter->hw.fc.requested_mode = e1000_fc_full;
2416 
2417 	/*
2418 	 * Device specific overrides/settings
2419 	 */
2420 	switch (adapter->hw.mac.type) {
2421 	case e1000_pchlan:
2422 		/* Workaround: no TX flow ctrl for PCH */
2423 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2424 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2425 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2426 			adapter->hw.fc.high_water = 0x3500;
2427 			adapter->hw.fc.low_water = 0x1500;
2428 		} else {
2429 			adapter->hw.fc.high_water = 0x5000;
2430 			adapter->hw.fc.low_water = 0x3000;
2431 		}
2432 		adapter->hw.fc.refresh_time = 0x1000;
2433 		break;
2434 
2435 	case e1000_pch2lan:
2436 	case e1000_pch_lpt:
2437 		adapter->hw.fc.high_water = 0x5C20;
2438 		adapter->hw.fc.low_water = 0x5048;
2439 		adapter->hw.fc.pause_time = 0x0650;
2440 		adapter->hw.fc.refresh_time = 0x0400;
2441 		/* Jumbos need adjusted PBA */
2442 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2443 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2444 		else
2445 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2446 		break;
2447 
2448 	case e1000_ich9lan:
2449 	case e1000_ich10lan:
2450 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2451 			adapter->hw.fc.high_water = 0x2800;
2452 			adapter->hw.fc.low_water =
2453 			    adapter->hw.fc.high_water - 8;
2454 			break;
2455 		}
2456 		/* FALL THROUGH */
2457 	default:
2458 		if (adapter->hw.mac.type == e1000_80003es2lan)
2459 			adapter->hw.fc.pause_time = 0xFFFF;
2460 		break;
2461 	}
2462 
2463 	/* Issue a global reset */
2464 	e1000_reset_hw(&adapter->hw);
2465 	if (adapter->hw.mac.type >= e1000_82544)
2466 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2467 	em_disable_aspm(adapter);
2468 
2469 	if (e1000_init_hw(&adapter->hw) < 0) {
2470 		device_printf(dev, "Hardware Initialization Failed\n");
2471 		return (EIO);
2472 	}
2473 
2474 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2475 	e1000_get_phy_info(&adapter->hw);
2476 	e1000_check_for_link(&adapter->hw);
2477 
2478 	return (0);
2479 }
2480 
2481 static void
2482 em_setup_ifp(struct adapter *adapter)
2483 {
2484 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2485 
2486 	if_initname(ifp, device_get_name(adapter->dev),
2487 		    device_get_unit(adapter->dev));
2488 	ifp->if_softc = adapter;
2489 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2490 	ifp->if_init =  em_init;
2491 	ifp->if_ioctl = em_ioctl;
2492 	ifp->if_start = em_start;
2493 #ifdef IFPOLL_ENABLE
2494 	ifp->if_npoll = em_npoll;
2495 #endif
2496 	ifp->if_watchdog = em_watchdog;
2497 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2498 	ifq_set_ready(&ifp->if_snd);
2499 
2500 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2501 
2502 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2503 	if (adapter->hw.mac.type >= e1000_82543)
2504 		ifp->if_capabilities |= IFCAP_HWCSUM;
2505 	if (adapter->flags & EM_FLAG_TSO)
2506 		ifp->if_capabilities |= IFCAP_TSO;
2507 	ifp->if_capenable = ifp->if_capabilities;
2508 
2509 	if (ifp->if_capenable & IFCAP_TXCSUM)
2510 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2511 	if (ifp->if_capenable & IFCAP_TSO)
2512 		ifp->if_hwassist |= CSUM_TSO;
2513 
2514 	/*
2515 	 * Tell the upper layer(s) we support long frames.
2516 	 */
2517 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2518 
2519 	/*
2520 	 * Specify the media types supported by this adapter and register
2521 	 * callbacks to update media and link information
2522 	 */
2523 	ifmedia_init(&adapter->media, IFM_IMASK,
2524 		     em_media_change, em_media_status);
2525 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2526 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2527 		u_char fiber_type = IFM_1000_SX; /* default type */
2528 
2529 		if (adapter->hw.mac.type == e1000_82545)
2530 			fiber_type = IFM_1000_LX;
2531 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2532 			    0, NULL);
2533 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2534 	} else {
2535 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2536 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2537 			    0, NULL);
2538 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2539 			    0, NULL);
2540 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2541 			    0, NULL);
2542 		if (adapter->hw.phy.type != e1000_phy_ife) {
2543 			ifmedia_add(&adapter->media,
2544 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2545 			ifmedia_add(&adapter->media,
2546 				IFM_ETHER | IFM_1000_T, 0, NULL);
2547 		}
2548 	}
2549 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2550 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2551 }
2552 
2553 
2554 /*
2555  * Workaround for SmartSpeed on 82541 and 82547 controllers
2556  */
2557 static void
2558 em_smartspeed(struct adapter *adapter)
2559 {
2560 	uint16_t phy_tmp;
2561 
2562 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2563 	    adapter->hw.mac.autoneg == 0 ||
2564 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2565 		return;
2566 
2567 	if (adapter->smartspeed == 0) {
2568 		/*
2569 		 * If Master/Slave config fault is asserted twice,
2570 		 * we assume back-to-back
2571 		 */
2572 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2573 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2574 			return;
2575 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2576 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2577 			e1000_read_phy_reg(&adapter->hw,
2578 			    PHY_1000T_CTRL, &phy_tmp);
2579 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2580 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2581 				e1000_write_phy_reg(&adapter->hw,
2582 				    PHY_1000T_CTRL, phy_tmp);
2583 				adapter->smartspeed++;
2584 				if (adapter->hw.mac.autoneg &&
2585 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2586 				    !e1000_read_phy_reg(&adapter->hw,
2587 				     PHY_CONTROL, &phy_tmp)) {
2588 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2589 						   MII_CR_RESTART_AUTO_NEG;
2590 					e1000_write_phy_reg(&adapter->hw,
2591 					    PHY_CONTROL, phy_tmp);
2592 				}
2593 			}
2594 		}
2595 		return;
2596 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2597 		/* If still no link, perhaps using 2/3 pair cable */
2598 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2599 		phy_tmp |= CR_1000T_MS_ENABLE;
2600 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2601 		if (adapter->hw.mac.autoneg &&
2602 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2603 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2604 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2605 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2606 		}
2607 	}
2608 
2609 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2610 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2611 		adapter->smartspeed = 0;
2612 }
2613 
2614 static int
2615 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2616 	      struct em_dma_alloc *dma)
2617 {
2618 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2619 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2620 				&dma->dma_tag, &dma->dma_map,
2621 				&dma->dma_paddr);
2622 	if (dma->dma_vaddr == NULL)
2623 		return ENOMEM;
2624 	else
2625 		return 0;
2626 }
2627 
2628 static void
2629 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2630 {
2631 	if (dma->dma_tag == NULL)
2632 		return;
2633 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2634 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2635 	bus_dma_tag_destroy(dma->dma_tag);
2636 }
2637 
2638 static int
2639 em_create_tx_ring(struct adapter *adapter)
2640 {
2641 	device_t dev = adapter->dev;
2642 	struct em_buffer *tx_buffer;
2643 	int error, i;
2644 
2645 	adapter->tx_buffer_area =
2646 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2647 			M_DEVBUF, M_WAITOK | M_ZERO);
2648 
2649 	/*
2650 	 * Create DMA tags for tx buffers
2651 	 */
2652 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2653 			1, 0,			/* alignment, bounds */
2654 			BUS_SPACE_MAXADDR,	/* lowaddr */
2655 			BUS_SPACE_MAXADDR,	/* highaddr */
2656 			NULL, NULL,		/* filter, filterarg */
2657 			EM_TSO_SIZE,		/* maxsize */
2658 			EM_MAX_SCATTER,		/* nsegments */
2659 			PAGE_SIZE,		/* maxsegsize */
2660 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2661 			BUS_DMA_ONEBPAGE,	/* flags */
2662 			&adapter->txtag);
2663 	if (error) {
2664 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2665 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2666 		adapter->tx_buffer_area = NULL;
2667 		return error;
2668 	}
2669 
2670 	/*
2671 	 * Create DMA maps for tx buffers
2672 	 */
2673 	for (i = 0; i < adapter->num_tx_desc; i++) {
2674 		tx_buffer = &adapter->tx_buffer_area[i];
2675 
2676 		error = bus_dmamap_create(adapter->txtag,
2677 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2678 					  &tx_buffer->map);
2679 		if (error) {
2680 			device_printf(dev, "Unable to create TX DMA map\n");
2681 			em_destroy_tx_ring(adapter, i);
2682 			return error;
2683 		}
2684 	}
2685 	return (0);
2686 }
2687 
2688 static void
2689 em_init_tx_ring(struct adapter *adapter)
2690 {
2691 	/* Clear the old ring contents */
2692 	bzero(adapter->tx_desc_base,
2693 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2694 
2695 	/* Reset state */
2696 	adapter->next_avail_tx_desc = 0;
2697 	adapter->next_tx_to_clean = 0;
2698 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2699 }
2700 
2701 static void
2702 em_init_tx_unit(struct adapter *adapter)
2703 {
2704 	uint32_t tctl, tarc, tipg = 0;
2705 	uint64_t bus_addr;
2706 
2707 	/* Setup the Base and Length of the Tx Descriptor Ring */
2708 	bus_addr = adapter->txdma.dma_paddr;
2709 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2710 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2711 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2712 	    (uint32_t)(bus_addr >> 32));
2713 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2714 	    (uint32_t)bus_addr);
2715 	/* Setup the HW Tx Head and Tail descriptor pointers */
2716 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2717 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2718 
2719 	/* Set the default values for the Tx Inter Packet Gap timer */
2720 	switch (adapter->hw.mac.type) {
2721 	case e1000_82542:
2722 		tipg = DEFAULT_82542_TIPG_IPGT;
2723 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2724 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2725 		break;
2726 
2727 	case e1000_80003es2lan:
2728 		tipg = DEFAULT_82543_TIPG_IPGR1;
2729 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2730 		    E1000_TIPG_IPGR2_SHIFT;
2731 		break;
2732 
2733 	default:
2734 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2735 		    adapter->hw.phy.media_type ==
2736 		    e1000_media_type_internal_serdes)
2737 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2738 		else
2739 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2740 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2741 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2742 		break;
2743 	}
2744 
2745 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2746 
2747 	/* NOTE: 0 is not allowed for TIDV */
2748 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2749 	if(adapter->hw.mac.type >= e1000_82540)
2750 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2751 
2752 	if (adapter->hw.mac.type == e1000_82571 ||
2753 	    adapter->hw.mac.type == e1000_82572) {
2754 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2755 		tarc |= SPEED_MODE_BIT;
2756 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2757 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2758 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2759 		tarc |= 1;
2760 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2761 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2762 		tarc |= 1;
2763 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2764 	}
2765 
2766 	/* Program the Transmit Control Register */
2767 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2768 	tctl &= ~E1000_TCTL_CT;
2769 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2770 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2771 
2772 	if (adapter->hw.mac.type >= e1000_82571)
2773 		tctl |= E1000_TCTL_MULR;
2774 
2775 	/* This write will effectively turn on the transmit unit. */
2776 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2777 
2778 	if (adapter->hw.mac.type == e1000_82571 ||
2779 	    adapter->hw.mac.type == e1000_82572 ||
2780 	    adapter->hw.mac.type == e1000_80003es2lan) {
2781 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2782 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2783 		tarc &= ~(1 << 28);
2784 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2785 	}
2786 }
2787 
2788 static void
2789 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2790 {
2791 	struct em_buffer *tx_buffer;
2792 	int i;
2793 
2794 	if (adapter->tx_buffer_area == NULL)
2795 		return;
2796 
2797 	for (i = 0; i < ndesc; i++) {
2798 		tx_buffer = &adapter->tx_buffer_area[i];
2799 
2800 		KKASSERT(tx_buffer->m_head == NULL);
2801 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2802 	}
2803 	bus_dma_tag_destroy(adapter->txtag);
2804 
2805 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2806 	adapter->tx_buffer_area = NULL;
2807 }
2808 
2809 /*
2810  * The offload context needs to be set when we transfer the first
2811  * packet of a particular protocol (TCP/UDP).  This routine has been
2812  * enhanced to deal with inserted VLAN headers.
2813  *
2814  * If the new packet's ether header length, ip header length and
2815  * csum offloading type are same as the previous packet, we should
2816  * avoid allocating a new csum context descriptor; mainly to take
2817  * advantage of the pipeline effect of the TX data read request.
2818  *
2819  * This function returns number of TX descrptors allocated for
2820  * csum context.
2821  */
2822 static int
2823 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2824 	  uint32_t *txd_upper, uint32_t *txd_lower)
2825 {
2826 	struct e1000_context_desc *TXD;
2827 	int curr_txd, ehdrlen, csum_flags;
2828 	uint32_t cmd, hdr_len, ip_hlen;
2829 
2830 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2831 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2832 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2833 
2834 	if (adapter->csum_lhlen == ehdrlen &&
2835 	    adapter->csum_iphlen == ip_hlen &&
2836 	    adapter->csum_flags == csum_flags) {
2837 		/*
2838 		 * Same csum offload context as the previous packets;
2839 		 * just return.
2840 		 */
2841 		*txd_upper = adapter->csum_txd_upper;
2842 		*txd_lower = adapter->csum_txd_lower;
2843 		return 0;
2844 	}
2845 
2846 	/*
2847 	 * Setup a new csum offload context.
2848 	 */
2849 
2850 	curr_txd = adapter->next_avail_tx_desc;
2851 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2852 
2853 	cmd = 0;
2854 
2855 	/* Setup of IP header checksum. */
2856 	if (csum_flags & CSUM_IP) {
2857 		/*
2858 		 * Start offset for header checksum calculation.
2859 		 * End offset for header checksum calculation.
2860 		 * Offset of place to put the checksum.
2861 		 */
2862 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2863 		TXD->lower_setup.ip_fields.ipcse =
2864 		    htole16(ehdrlen + ip_hlen - 1);
2865 		TXD->lower_setup.ip_fields.ipcso =
2866 		    ehdrlen + offsetof(struct ip, ip_sum);
2867 		cmd |= E1000_TXD_CMD_IP;
2868 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2869 	}
2870 	hdr_len = ehdrlen + ip_hlen;
2871 
2872 	if (csum_flags & CSUM_TCP) {
2873 		/*
2874 		 * Start offset for payload checksum calculation.
2875 		 * End offset for payload checksum calculation.
2876 		 * Offset of place to put the checksum.
2877 		 */
2878 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2879 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2880 		TXD->upper_setup.tcp_fields.tucso =
2881 		    hdr_len + offsetof(struct tcphdr, th_sum);
2882 		cmd |= E1000_TXD_CMD_TCP;
2883 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2884 	} else if (csum_flags & CSUM_UDP) {
2885 		/*
2886 		 * Start offset for header checksum calculation.
2887 		 * End offset for header checksum calculation.
2888 		 * Offset of place to put the checksum.
2889 		 */
2890 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2891 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2892 		TXD->upper_setup.tcp_fields.tucso =
2893 		    hdr_len + offsetof(struct udphdr, uh_sum);
2894 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2895 	}
2896 
2897 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2898 		     E1000_TXD_DTYP_D;		/* Data descr */
2899 
2900 	/* Save the information for this csum offloading context */
2901 	adapter->csum_lhlen = ehdrlen;
2902 	adapter->csum_iphlen = ip_hlen;
2903 	adapter->csum_flags = csum_flags;
2904 	adapter->csum_txd_upper = *txd_upper;
2905 	adapter->csum_txd_lower = *txd_lower;
2906 
2907 	TXD->tcp_seg_setup.data = htole32(0);
2908 	TXD->cmd_and_length =
2909 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2910 
2911 	if (++curr_txd == adapter->num_tx_desc)
2912 		curr_txd = 0;
2913 
2914 	KKASSERT(adapter->num_tx_desc_avail > 0);
2915 	adapter->num_tx_desc_avail--;
2916 
2917 	adapter->next_avail_tx_desc = curr_txd;
2918 	return 1;
2919 }
2920 
2921 static void
2922 em_txeof(struct adapter *adapter)
2923 {
2924 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2925 	struct em_buffer *tx_buffer;
2926 	int first, num_avail;
2927 
2928 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2929 		return;
2930 
2931 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2932 		return;
2933 
2934 	num_avail = adapter->num_tx_desc_avail;
2935 	first = adapter->next_tx_to_clean;
2936 
2937 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2938 		struct e1000_tx_desc *tx_desc;
2939 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2940 
2941 		tx_desc = &adapter->tx_desc_base[dd_idx];
2942 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2943 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2944 
2945 			if (++dd_idx == adapter->num_tx_desc)
2946 				dd_idx = 0;
2947 
2948 			while (first != dd_idx) {
2949 				logif(pkt_txclean);
2950 
2951 				num_avail++;
2952 
2953 				tx_buffer = &adapter->tx_buffer_area[first];
2954 				if (tx_buffer->m_head) {
2955 					IFNET_STAT_INC(ifp, opackets, 1);
2956 					bus_dmamap_unload(adapter->txtag,
2957 							  tx_buffer->map);
2958 					m_freem(tx_buffer->m_head);
2959 					tx_buffer->m_head = NULL;
2960 				}
2961 
2962 				if (++first == adapter->num_tx_desc)
2963 					first = 0;
2964 			}
2965 		} else {
2966 			break;
2967 		}
2968 	}
2969 	adapter->next_tx_to_clean = first;
2970 	adapter->num_tx_desc_avail = num_avail;
2971 
2972 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2973 		adapter->tx_dd_head = 0;
2974 		adapter->tx_dd_tail = 0;
2975 	}
2976 
2977 	if (!EM_IS_OACTIVE(adapter)) {
2978 		ifq_clr_oactive(&ifp->if_snd);
2979 
2980 		/* All clean, turn off the timer */
2981 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2982 			ifp->if_timer = 0;
2983 	}
2984 }
2985 
2986 static void
2987 em_tx_collect(struct adapter *adapter)
2988 {
2989 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2990 	struct em_buffer *tx_buffer;
2991 	int tdh, first, num_avail, dd_idx = -1;
2992 
2993 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2994 		return;
2995 
2996 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2997 	if (tdh == adapter->next_tx_to_clean)
2998 		return;
2999 
3000 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3001 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3002 
3003 	num_avail = adapter->num_tx_desc_avail;
3004 	first = adapter->next_tx_to_clean;
3005 
3006 	while (first != tdh) {
3007 		logif(pkt_txclean);
3008 
3009 		num_avail++;
3010 
3011 		tx_buffer = &adapter->tx_buffer_area[first];
3012 		if (tx_buffer->m_head) {
3013 			IFNET_STAT_INC(ifp, opackets, 1);
3014 			bus_dmamap_unload(adapter->txtag,
3015 					  tx_buffer->map);
3016 			m_freem(tx_buffer->m_head);
3017 			tx_buffer->m_head = NULL;
3018 		}
3019 
3020 		if (first == dd_idx) {
3021 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3022 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3023 				adapter->tx_dd_head = 0;
3024 				adapter->tx_dd_tail = 0;
3025 				dd_idx = -1;
3026 			} else {
3027 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3028 			}
3029 		}
3030 
3031 		if (++first == adapter->num_tx_desc)
3032 			first = 0;
3033 	}
3034 	adapter->next_tx_to_clean = first;
3035 	adapter->num_tx_desc_avail = num_avail;
3036 
3037 	if (!EM_IS_OACTIVE(adapter)) {
3038 		ifq_clr_oactive(&ifp->if_snd);
3039 
3040 		/* All clean, turn off the timer */
3041 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3042 			ifp->if_timer = 0;
3043 	}
3044 }
3045 
3046 /*
3047  * When Link is lost sometimes there is work still in the TX ring
3048  * which will result in a watchdog, rather than allow that do an
3049  * attempted cleanup and then reinit here.  Note that this has been
3050  * seens mostly with fiber adapters.
3051  */
3052 static void
3053 em_tx_purge(struct adapter *adapter)
3054 {
3055 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3056 
3057 	if (!adapter->link_active && ifp->if_timer) {
3058 		em_tx_collect(adapter);
3059 		if (ifp->if_timer) {
3060 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3061 			ifp->if_timer = 0;
3062 			em_init(adapter);
3063 		}
3064 	}
3065 }
3066 
3067 static int
3068 em_newbuf(struct adapter *adapter, int i, int init)
3069 {
3070 	struct mbuf *m;
3071 	bus_dma_segment_t seg;
3072 	bus_dmamap_t map;
3073 	struct em_buffer *rx_buffer;
3074 	int error, nseg;
3075 
3076 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3077 	if (m == NULL) {
3078 		adapter->mbuf_cluster_failed++;
3079 		if (init) {
3080 			if_printf(&adapter->arpcom.ac_if,
3081 				  "Unable to allocate RX mbuf\n");
3082 		}
3083 		return (ENOBUFS);
3084 	}
3085 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3086 
3087 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3088 		m_adj(m, ETHER_ALIGN);
3089 
3090 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3091 			adapter->rx_sparemap, m,
3092 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3093 	if (error) {
3094 		m_freem(m);
3095 		if (init) {
3096 			if_printf(&adapter->arpcom.ac_if,
3097 				  "Unable to load RX mbuf\n");
3098 		}
3099 		return (error);
3100 	}
3101 
3102 	rx_buffer = &adapter->rx_buffer_area[i];
3103 	if (rx_buffer->m_head != NULL)
3104 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3105 
3106 	map = rx_buffer->map;
3107 	rx_buffer->map = adapter->rx_sparemap;
3108 	adapter->rx_sparemap = map;
3109 
3110 	rx_buffer->m_head = m;
3111 
3112 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3113 	return (0);
3114 }
3115 
3116 static int
3117 em_create_rx_ring(struct adapter *adapter)
3118 {
3119 	device_t dev = adapter->dev;
3120 	struct em_buffer *rx_buffer;
3121 	int i, error;
3122 
3123 	adapter->rx_buffer_area =
3124 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3125 			M_DEVBUF, M_WAITOK | M_ZERO);
3126 
3127 	/*
3128 	 * Create DMA tag for rx buffers
3129 	 */
3130 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3131 			1, 0,			/* alignment, bounds */
3132 			BUS_SPACE_MAXADDR,	/* lowaddr */
3133 			BUS_SPACE_MAXADDR,	/* highaddr */
3134 			NULL, NULL,		/* filter, filterarg */
3135 			MCLBYTES,		/* maxsize */
3136 			1,			/* nsegments */
3137 			MCLBYTES,		/* maxsegsize */
3138 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3139 			&adapter->rxtag);
3140 	if (error) {
3141 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3142 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3143 		adapter->rx_buffer_area = NULL;
3144 		return error;
3145 	}
3146 
3147 	/*
3148 	 * Create spare DMA map for rx buffers
3149 	 */
3150 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3151 				  &adapter->rx_sparemap);
3152 	if (error) {
3153 		device_printf(dev, "Unable to create spare RX DMA map\n");
3154 		bus_dma_tag_destroy(adapter->rxtag);
3155 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3156 		adapter->rx_buffer_area = NULL;
3157 		return error;
3158 	}
3159 
3160 	/*
3161 	 * Create DMA maps for rx buffers
3162 	 */
3163 	for (i = 0; i < adapter->num_rx_desc; i++) {
3164 		rx_buffer = &adapter->rx_buffer_area[i];
3165 
3166 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3167 					  &rx_buffer->map);
3168 		if (error) {
3169 			device_printf(dev, "Unable to create RX DMA map\n");
3170 			em_destroy_rx_ring(adapter, i);
3171 			return error;
3172 		}
3173 	}
3174 	return (0);
3175 }
3176 
3177 static int
3178 em_init_rx_ring(struct adapter *adapter)
3179 {
3180 	int i, error;
3181 
3182 	/* Reset descriptor ring */
3183 	bzero(adapter->rx_desc_base,
3184 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3185 
3186 	/* Allocate new ones. */
3187 	for (i = 0; i < adapter->num_rx_desc; i++) {
3188 		error = em_newbuf(adapter, i, 1);
3189 		if (error)
3190 			return (error);
3191 	}
3192 
3193 	/* Setup our descriptor pointers */
3194 	adapter->next_rx_desc_to_check = 0;
3195 
3196 	return (0);
3197 }
3198 
3199 static void
3200 em_init_rx_unit(struct adapter *adapter)
3201 {
3202 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3203 	uint64_t bus_addr;
3204 	uint32_t rctl;
3205 
3206 	/*
3207 	 * Make sure receives are disabled while setting
3208 	 * up the descriptor ring
3209 	 */
3210 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3211 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3212 
3213 	if (adapter->hw.mac.type >= e1000_82540) {
3214 		uint32_t itr;
3215 
3216 		/*
3217 		 * Set the interrupt throttling rate. Value is calculated
3218 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3219 		 */
3220 		if (adapter->int_throttle_ceil)
3221 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3222 		else
3223 			itr = 0;
3224 		em_set_itr(adapter, itr);
3225 	}
3226 
3227 	/* Disable accelerated ackknowledge */
3228 	if (adapter->hw.mac.type == e1000_82574) {
3229 		E1000_WRITE_REG(&adapter->hw,
3230 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3231 	}
3232 
3233 	/* Receive Checksum Offload for TCP and UDP */
3234 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3235 		uint32_t rxcsum;
3236 
3237 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3238 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3239 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3240 	}
3241 
3242 	/*
3243 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3244 	 * long latencies are observed, like Lenovo X60. This
3245 	 * change eliminates the problem, but since having positive
3246 	 * values in RDTR is a known source of problems on other
3247 	 * platforms another solution is being sought.
3248 	 */
3249 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3250 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3251 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3252 	}
3253 
3254 	/*
3255 	 * Setup the Base and Length of the Rx Descriptor Ring
3256 	 */
3257 	bus_addr = adapter->rxdma.dma_paddr;
3258 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3259 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3260 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3261 	    (uint32_t)(bus_addr >> 32));
3262 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3263 	    (uint32_t)bus_addr);
3264 
3265 	/*
3266 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3267 	 */
3268 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3269 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3270 
3271 	/* Set PTHRESH for improved jumbo performance */
3272 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3273 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3274 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3275 	    (ifp->if_mtu > ETHERMTU)) {
3276 		uint32_t rxdctl;
3277 
3278 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3279 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3280 	}
3281 
3282 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3283 		if (ifp->if_mtu > ETHERMTU)
3284 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3285 		else
3286 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3287 	}
3288 
3289 	/* Setup the Receive Control Register */
3290 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3291 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3292 		E1000_RCTL_RDMTS_HALF |
3293 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3294 
3295 	/* Make sure VLAN Filters are off */
3296 	rctl &= ~E1000_RCTL_VFE;
3297 
3298 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3299 		rctl |= E1000_RCTL_SBP;
3300 	else
3301 		rctl &= ~E1000_RCTL_SBP;
3302 
3303 	switch (adapter->rx_buffer_len) {
3304 	default:
3305 	case 2048:
3306 		rctl |= E1000_RCTL_SZ_2048;
3307 		break;
3308 
3309 	case 4096:
3310 		rctl |= E1000_RCTL_SZ_4096 |
3311 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3312 		break;
3313 
3314 	case 8192:
3315 		rctl |= E1000_RCTL_SZ_8192 |
3316 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3317 		break;
3318 
3319 	case 16384:
3320 		rctl |= E1000_RCTL_SZ_16384 |
3321 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3322 		break;
3323 	}
3324 
3325 	if (ifp->if_mtu > ETHERMTU)
3326 		rctl |= E1000_RCTL_LPE;
3327 	else
3328 		rctl &= ~E1000_RCTL_LPE;
3329 
3330 	/* Enable Receives */
3331 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3332 }
3333 
3334 static void
3335 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3336 {
3337 	struct em_buffer *rx_buffer;
3338 	int i;
3339 
3340 	if (adapter->rx_buffer_area == NULL)
3341 		return;
3342 
3343 	for (i = 0; i < ndesc; i++) {
3344 		rx_buffer = &adapter->rx_buffer_area[i];
3345 
3346 		KKASSERT(rx_buffer->m_head == NULL);
3347 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3348 	}
3349 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3350 	bus_dma_tag_destroy(adapter->rxtag);
3351 
3352 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3353 	adapter->rx_buffer_area = NULL;
3354 }
3355 
3356 static void
3357 em_rxeof(struct adapter *adapter, int count)
3358 {
3359 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3360 	uint8_t status, accept_frame = 0, eop = 0;
3361 	uint16_t len, desc_len, prev_len_adj;
3362 	struct e1000_rx_desc *current_desc;
3363 	struct mbuf *mp;
3364 	int i;
3365 
3366 	i = adapter->next_rx_desc_to_check;
3367 	current_desc = &adapter->rx_desc_base[i];
3368 
3369 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3370 		return;
3371 
3372 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3373 		struct mbuf *m = NULL;
3374 
3375 		logif(pkt_receive);
3376 
3377 		mp = adapter->rx_buffer_area[i].m_head;
3378 
3379 		/*
3380 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3381 		 * needs to access the last received byte in the mbuf.
3382 		 */
3383 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3384 				BUS_DMASYNC_POSTREAD);
3385 
3386 		accept_frame = 1;
3387 		prev_len_adj = 0;
3388 		desc_len = le16toh(current_desc->length);
3389 		status = current_desc->status;
3390 		if (status & E1000_RXD_STAT_EOP) {
3391 			count--;
3392 			eop = 1;
3393 			if (desc_len < ETHER_CRC_LEN) {
3394 				len = 0;
3395 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3396 			} else {
3397 				len = desc_len - ETHER_CRC_LEN;
3398 			}
3399 		} else {
3400 			eop = 0;
3401 			len = desc_len;
3402 		}
3403 
3404 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3405 			uint8_t	last_byte;
3406 			uint32_t pkt_len = desc_len;
3407 
3408 			if (adapter->fmp != NULL)
3409 				pkt_len += adapter->fmp->m_pkthdr.len;
3410 
3411 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3412 			if (TBI_ACCEPT(&adapter->hw, status,
3413 			    current_desc->errors, pkt_len, last_byte,
3414 			    adapter->min_frame_size,
3415 			    adapter->hw.mac.max_frame_size)) {
3416 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3417 				    &adapter->stats, pkt_len,
3418 				    adapter->hw.mac.addr,
3419 				    adapter->hw.mac.max_frame_size);
3420 				if (len > 0)
3421 					len--;
3422 			} else {
3423 				accept_frame = 0;
3424 			}
3425 		}
3426 
3427 		if (accept_frame) {
3428 			if (em_newbuf(adapter, i, 0) != 0) {
3429 				IFNET_STAT_INC(ifp, iqdrops, 1);
3430 				goto discard;
3431 			}
3432 
3433 			/* Assign correct length to the current fragment */
3434 			mp->m_len = len;
3435 
3436 			if (adapter->fmp == NULL) {
3437 				mp->m_pkthdr.len = len;
3438 				adapter->fmp = mp; /* Store the first mbuf */
3439 				adapter->lmp = mp;
3440 			} else {
3441 				/*
3442 				 * Chain mbuf's together
3443 				 */
3444 
3445 				/*
3446 				 * Adjust length of previous mbuf in chain if
3447 				 * we received less than 4 bytes in the last
3448 				 * descriptor.
3449 				 */
3450 				if (prev_len_adj > 0) {
3451 					adapter->lmp->m_len -= prev_len_adj;
3452 					adapter->fmp->m_pkthdr.len -=
3453 					    prev_len_adj;
3454 				}
3455 				adapter->lmp->m_next = mp;
3456 				adapter->lmp = adapter->lmp->m_next;
3457 				adapter->fmp->m_pkthdr.len += len;
3458 			}
3459 
3460 			if (eop) {
3461 				adapter->fmp->m_pkthdr.rcvif = ifp;
3462 				IFNET_STAT_INC(ifp, ipackets, 1);
3463 
3464 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3465 					em_rxcsum(adapter, current_desc,
3466 						  adapter->fmp);
3467 				}
3468 
3469 				if (status & E1000_RXD_STAT_VP) {
3470 					adapter->fmp->m_pkthdr.ether_vlantag =
3471 					    (le16toh(current_desc->special) &
3472 					    E1000_RXD_SPC_VLAN_MASK);
3473 					adapter->fmp->m_flags |= M_VLANTAG;
3474 				}
3475 				m = adapter->fmp;
3476 				adapter->fmp = NULL;
3477 				adapter->lmp = NULL;
3478 			}
3479 		} else {
3480 			IFNET_STAT_INC(ifp, ierrors, 1);
3481 discard:
3482 #ifdef foo
3483 			/* Reuse loaded DMA map and just update mbuf chain */
3484 			mp = adapter->rx_buffer_area[i].m_head;
3485 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3486 			mp->m_data = mp->m_ext.ext_buf;
3487 			mp->m_next = NULL;
3488 			if (adapter->hw.mac.max_frame_size <=
3489 			    (MCLBYTES - ETHER_ALIGN))
3490 				m_adj(mp, ETHER_ALIGN);
3491 #endif
3492 			if (adapter->fmp != NULL) {
3493 				m_freem(adapter->fmp);
3494 				adapter->fmp = NULL;
3495 				adapter->lmp = NULL;
3496 			}
3497 			m = NULL;
3498 		}
3499 
3500 		/* Zero out the receive descriptors status. */
3501 		current_desc->status = 0;
3502 
3503 		if (m != NULL)
3504 			ifp->if_input(ifp, m);
3505 
3506 		/* Advance our pointers to the next descriptor. */
3507 		if (++i == adapter->num_rx_desc)
3508 			i = 0;
3509 		current_desc = &adapter->rx_desc_base[i];
3510 	}
3511 	adapter->next_rx_desc_to_check = i;
3512 
3513 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3514 	if (--i < 0)
3515 		i = adapter->num_rx_desc - 1;
3516 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3517 }
3518 
3519 static void
3520 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3521 	  struct mbuf *mp)
3522 {
3523 	/* 82543 or newer only */
3524 	if (adapter->hw.mac.type < e1000_82543 ||
3525 	    /* Ignore Checksum bit is set */
3526 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3527 		return;
3528 
3529 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3530 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3531 		/* IP Checksum Good */
3532 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3533 	}
3534 
3535 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3536 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3537 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3538 					   CSUM_PSEUDO_HDR |
3539 					   CSUM_FRAG_NOT_CHECKED;
3540 		mp->m_pkthdr.csum_data = htons(0xffff);
3541 	}
3542 }
3543 
3544 static void
3545 em_enable_intr(struct adapter *adapter)
3546 {
3547 	uint32_t ims_mask = IMS_ENABLE_MASK;
3548 
3549 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3550 
3551 #if 0
3552 	/* XXX MSIX */
3553 	if (adapter->hw.mac.type == e1000_82574) {
3554 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3555 		ims_mask |= EM_MSIX_MASK;
3556         }
3557 #endif
3558 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3559 }
3560 
3561 static void
3562 em_disable_intr(struct adapter *adapter)
3563 {
3564 	uint32_t clear = 0xffffffff;
3565 
3566 	/*
3567 	 * The first version of 82542 had an errata where when link was forced
3568 	 * it would stay up even up even if the cable was disconnected.
3569 	 * Sequence errors were used to detect the disconnect and then the
3570 	 * driver would unforce the link.  This code in the in the ISR.  For
3571 	 * this to work correctly the Sequence error interrupt had to be
3572 	 * enabled all the time.
3573 	 */
3574 	if (adapter->hw.mac.type == e1000_82542 &&
3575 	    adapter->hw.revision_id == E1000_REVISION_2)
3576 		clear &= ~E1000_ICR_RXSEQ;
3577 	else if (adapter->hw.mac.type == e1000_82574)
3578 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3579 
3580 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3581 
3582 	adapter->npoll.ifpc_stcount = 0;
3583 
3584 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3585 }
3586 
3587 /*
3588  * Bit of a misnomer, what this really means is
3589  * to enable OS management of the system... aka
3590  * to disable special hardware management features
3591  */
3592 static void
3593 em_get_mgmt(struct adapter *adapter)
3594 {
3595 	/* A shared code workaround */
3596 #define E1000_82542_MANC2H E1000_MANC2H
3597 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3598 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3599 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3600 
3601 		/* disable hardware interception of ARP */
3602 		manc &= ~(E1000_MANC_ARP_EN);
3603 
3604                 /* enable receiving management packets to the host */
3605                 if (adapter->hw.mac.type >= e1000_82571) {
3606 			manc |= E1000_MANC_EN_MNG2HOST;
3607 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3608 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3609 			manc2h |= E1000_MNG2HOST_PORT_623;
3610 			manc2h |= E1000_MNG2HOST_PORT_664;
3611 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3612 		}
3613 
3614 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3615 	}
3616 }
3617 
3618 /*
3619  * Give control back to hardware management
3620  * controller if there is one.
3621  */
3622 static void
3623 em_rel_mgmt(struct adapter *adapter)
3624 {
3625 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3626 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3627 
3628 		/* re-enable hardware interception of ARP */
3629 		manc |= E1000_MANC_ARP_EN;
3630 
3631 		if (adapter->hw.mac.type >= e1000_82571)
3632 			manc &= ~E1000_MANC_EN_MNG2HOST;
3633 
3634 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3635 	}
3636 }
3637 
3638 /*
3639  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3640  * For ASF and Pass Through versions of f/w this means that
3641  * the driver is loaded.  For AMT version (only with 82573)
3642  * of the f/w this means that the network i/f is open.
3643  */
3644 static void
3645 em_get_hw_control(struct adapter *adapter)
3646 {
3647 	/* Let firmware know the driver has taken over */
3648 	if (adapter->hw.mac.type == e1000_82573) {
3649 		uint32_t swsm;
3650 
3651 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3652 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3653 		    swsm | E1000_SWSM_DRV_LOAD);
3654 	} else {
3655 		uint32_t ctrl_ext;
3656 
3657 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3658 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3659 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3660 	}
3661 	adapter->flags |= EM_FLAG_HW_CTRL;
3662 }
3663 
3664 /*
3665  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3666  * For ASF and Pass Through versions of f/w this means that the
3667  * driver is no longer loaded.  For AMT version (only with 82573)
3668  * of the f/w this means that the network i/f is closed.
3669  */
3670 static void
3671 em_rel_hw_control(struct adapter *adapter)
3672 {
3673 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3674 		return;
3675 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3676 
3677 	/* Let firmware taken over control of h/w */
3678 	if (adapter->hw.mac.type == e1000_82573) {
3679 		uint32_t swsm;
3680 
3681 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3682 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3683 		    swsm & ~E1000_SWSM_DRV_LOAD);
3684 	} else {
3685 		uint32_t ctrl_ext;
3686 
3687 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3688 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3689 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3690 	}
3691 }
3692 
3693 static int
3694 em_is_valid_eaddr(const uint8_t *addr)
3695 {
3696 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3697 
3698 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3699 		return (FALSE);
3700 
3701 	return (TRUE);
3702 }
3703 
3704 /*
3705  * Enable PCI Wake On Lan capability
3706  */
3707 void
3708 em_enable_wol(device_t dev)
3709 {
3710 	uint16_t cap, status;
3711 	uint8_t id;
3712 
3713 	/* First find the capabilities pointer*/
3714 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3715 
3716 	/* Read the PM Capabilities */
3717 	id = pci_read_config(dev, cap, 1);
3718 	if (id != PCIY_PMG)     /* Something wrong */
3719 		return;
3720 
3721 	/*
3722 	 * OK, we have the power capabilities,
3723 	 * so now get the status register
3724 	 */
3725 	cap += PCIR_POWER_STATUS;
3726 	status = pci_read_config(dev, cap, 2);
3727 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3728 	pci_write_config(dev, cap, status, 2);
3729 }
3730 
3731 
3732 /*
3733  * 82544 Coexistence issue workaround.
3734  *    There are 2 issues.
3735  *       1. Transmit Hang issue.
3736  *    To detect this issue, following equation can be used...
3737  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3738  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3739  *
3740  *       2. DAC issue.
3741  *    To detect this issue, following equation can be used...
3742  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3743  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3744  *
3745  *    WORKAROUND:
3746  *	  Make sure we do not have ending address
3747  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3748  */
3749 static uint32_t
3750 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3751 {
3752 	uint32_t safe_terminator;
3753 
3754 	/*
3755 	 * Since issue is sensitive to length and address.
3756 	 * Let us first check the address...
3757 	 */
3758 	if (length <= 4) {
3759 		desc_array->descriptor[0].address = address;
3760 		desc_array->descriptor[0].length = length;
3761 		desc_array->elements = 1;
3762 		return (desc_array->elements);
3763 	}
3764 
3765 	safe_terminator =
3766 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3767 
3768 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3769 	if (safe_terminator == 0 ||
3770 	    (safe_terminator > 4 && safe_terminator < 9) ||
3771 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3772 		desc_array->descriptor[0].address = address;
3773 		desc_array->descriptor[0].length = length;
3774 		desc_array->elements = 1;
3775 		return (desc_array->elements);
3776 	}
3777 
3778 	desc_array->descriptor[0].address = address;
3779 	desc_array->descriptor[0].length = length - 4;
3780 	desc_array->descriptor[1].address = address + (length - 4);
3781 	desc_array->descriptor[1].length = 4;
3782 	desc_array->elements = 2;
3783 	return (desc_array->elements);
3784 }
3785 
3786 static void
3787 em_update_stats(struct adapter *adapter)
3788 {
3789 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3790 
3791 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3792 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3793 		adapter->stats.symerrs +=
3794 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3795 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3796 	}
3797 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3798 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3799 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3800 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3801 
3802 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3803 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3804 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3805 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3806 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3807 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3808 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3809 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3810 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3811 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3812 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3813 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3814 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3815 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3816 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3817 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3818 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3819 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3820 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3821 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3822 
3823 	/* For the 64-bit byte counters the low dword must be read first. */
3824 	/* Both registers clear on the read of the high dword */
3825 
3826 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3827 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3828 
3829 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3830 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3831 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3832 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3833 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3834 
3835 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3836 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3837 
3838 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3839 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3840 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3841 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3842 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3843 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3844 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3845 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3846 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3847 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3848 
3849 	if (adapter->hw.mac.type >= e1000_82543) {
3850 		adapter->stats.algnerrc +=
3851 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3852 		adapter->stats.rxerrc +=
3853 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3854 		adapter->stats.tncrs +=
3855 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3856 		adapter->stats.cexterr +=
3857 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3858 		adapter->stats.tsctc +=
3859 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3860 		adapter->stats.tsctfc +=
3861 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3862 	}
3863 
3864 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3865 
3866 	/* Rx Errors */
3867 	IFNET_STAT_SET(ifp, ierrors,
3868 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3869 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3870 	    adapter->stats.ruc + adapter->stats.roc +
3871 	    adapter->stats.mpc + adapter->stats.cexterr);
3872 
3873 	/* Tx Errors */
3874 	IFNET_STAT_SET(ifp, oerrors,
3875 	    adapter->stats.ecol + adapter->stats.latecol +
3876 	    adapter->watchdog_events);
3877 }
3878 
3879 static void
3880 em_print_debug_info(struct adapter *adapter)
3881 {
3882 	device_t dev = adapter->dev;
3883 	uint8_t *hw_addr = adapter->hw.hw_addr;
3884 
3885 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3886 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3887 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3888 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3889 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3890 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3891 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3892 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3893 	    adapter->hw.fc.high_water,
3894 	    adapter->hw.fc.low_water);
3895 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3896 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3897 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3898 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3899 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3900 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3901 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3902 	    (long long)adapter->tx_fifo_wrk_cnt,
3903 	    (long long)adapter->tx_fifo_reset_cnt);
3904 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3905 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3906 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3907 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3908 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3909 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3910 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3911 	    adapter->num_tx_desc_avail);
3912 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3913 	    adapter->no_tx_desc_avail1);
3914 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3915 	    adapter->no_tx_desc_avail2);
3916 	device_printf(dev, "Std mbuf failed = %ld\n",
3917 	    adapter->mbuf_alloc_failed);
3918 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3919 	    adapter->mbuf_cluster_failed);
3920 	device_printf(dev, "Driver dropped packets = %ld\n",
3921 	    adapter->dropped_pkts);
3922 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3923 	    adapter->no_tx_dma_setup);
3924 }
3925 
3926 static void
3927 em_print_hw_stats(struct adapter *adapter)
3928 {
3929 	device_t dev = adapter->dev;
3930 
3931 	device_printf(dev, "Excessive collisions = %lld\n",
3932 	    (long long)adapter->stats.ecol);
3933 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3934 	device_printf(dev, "Symbol errors = %lld\n",
3935 	    (long long)adapter->stats.symerrs);
3936 #endif
3937 	device_printf(dev, "Sequence errors = %lld\n",
3938 	    (long long)adapter->stats.sec);
3939 	device_printf(dev, "Defer count = %lld\n",
3940 	    (long long)adapter->stats.dc);
3941 	device_printf(dev, "Missed Packets = %lld\n",
3942 	    (long long)adapter->stats.mpc);
3943 	device_printf(dev, "Receive No Buffers = %lld\n",
3944 	    (long long)adapter->stats.rnbc);
3945 	/* RLEC is inaccurate on some hardware, calculate our own. */
3946 	device_printf(dev, "Receive Length Errors = %lld\n",
3947 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3948 	device_printf(dev, "Receive errors = %lld\n",
3949 	    (long long)adapter->stats.rxerrc);
3950 	device_printf(dev, "Crc errors = %lld\n",
3951 	    (long long)adapter->stats.crcerrs);
3952 	device_printf(dev, "Alignment errors = %lld\n",
3953 	    (long long)adapter->stats.algnerrc);
3954 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3955 	    (long long)adapter->stats.cexterr);
3956 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3957 	device_printf(dev, "watchdog timeouts = %ld\n",
3958 	    adapter->watchdog_events);
3959 	device_printf(dev, "XON Rcvd = %lld\n",
3960 	    (long long)adapter->stats.xonrxc);
3961 	device_printf(dev, "XON Xmtd = %lld\n",
3962 	    (long long)adapter->stats.xontxc);
3963 	device_printf(dev, "XOFF Rcvd = %lld\n",
3964 	    (long long)adapter->stats.xoffrxc);
3965 	device_printf(dev, "XOFF Xmtd = %lld\n",
3966 	    (long long)adapter->stats.xofftxc);
3967 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3968 	    (long long)adapter->stats.gprc);
3969 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3970 	    (long long)adapter->stats.gptc);
3971 }
3972 
3973 static void
3974 em_print_nvm_info(struct adapter *adapter)
3975 {
3976 	uint16_t eeprom_data;
3977 	int i, j, row = 0;
3978 
3979 	/* Its a bit crude, but it gets the job done */
3980 	kprintf("\nInterface EEPROM Dump:\n");
3981 	kprintf("Offset\n0x0000  ");
3982 	for (i = 0, j = 0; i < 32; i++, j++) {
3983 		if (j == 8) { /* Make the offset block */
3984 			j = 0; ++row;
3985 			kprintf("\n0x00%x0  ",row);
3986 		}
3987 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3988 		kprintf("%04x ", eeprom_data);
3989 	}
3990 	kprintf("\n");
3991 }
3992 
3993 static int
3994 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3995 {
3996 	struct adapter *adapter;
3997 	struct ifnet *ifp;
3998 	int error, result;
3999 
4000 	result = -1;
4001 	error = sysctl_handle_int(oidp, &result, 0, req);
4002 	if (error || !req->newptr)
4003 		return (error);
4004 
4005 	adapter = (struct adapter *)arg1;
4006 	ifp = &adapter->arpcom.ac_if;
4007 
4008 	lwkt_serialize_enter(ifp->if_serializer);
4009 
4010 	if (result == 1)
4011 		em_print_debug_info(adapter);
4012 
4013 	/*
4014 	 * This value will cause a hex dump of the
4015 	 * first 32 16-bit words of the EEPROM to
4016 	 * the screen.
4017 	 */
4018 	if (result == 2)
4019 		em_print_nvm_info(adapter);
4020 
4021 	lwkt_serialize_exit(ifp->if_serializer);
4022 
4023 	return (error);
4024 }
4025 
4026 static int
4027 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4028 {
4029 	int error, result;
4030 
4031 	result = -1;
4032 	error = sysctl_handle_int(oidp, &result, 0, req);
4033 	if (error || !req->newptr)
4034 		return (error);
4035 
4036 	if (result == 1) {
4037 		struct adapter *adapter = (struct adapter *)arg1;
4038 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4039 
4040 		lwkt_serialize_enter(ifp->if_serializer);
4041 		em_print_hw_stats(adapter);
4042 		lwkt_serialize_exit(ifp->if_serializer);
4043 	}
4044 	return (error);
4045 }
4046 
4047 static void
4048 em_add_sysctl(struct adapter *adapter)
4049 {
4050 	sysctl_ctx_init(&adapter->sysctl_ctx);
4051 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4052 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4053 					device_get_nameunit(adapter->dev),
4054 					CTLFLAG_RD, 0, "");
4055 	if (adapter->sysctl_tree == NULL) {
4056 		device_printf(adapter->dev, "can't add sysctl node\n");
4057 	} else {
4058 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4059 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4060 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4061 		    em_sysctl_debug_info, "I", "Debug Information");
4062 
4063 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4064 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4065 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4066 		    em_sysctl_stats, "I", "Statistics");
4067 
4068 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4069 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4070 		    OID_AUTO, "rxd", CTLFLAG_RD,
4071 		    &adapter->num_rx_desc, 0, NULL);
4072 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4073 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4074 		    OID_AUTO, "txd", CTLFLAG_RD,
4075 		    &adapter->num_tx_desc, 0, NULL);
4076 
4077 		if (adapter->hw.mac.type >= e1000_82540) {
4078 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4079 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4080 			    OID_AUTO, "int_throttle_ceil",
4081 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4082 			    em_sysctl_int_throttle, "I",
4083 			    "interrupt throttling rate");
4084 		}
4085 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4086 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4087 		    OID_AUTO, "int_tx_nsegs",
4088 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4089 		    em_sysctl_int_tx_nsegs, "I",
4090 		    "# segments per TX interrupt");
4091 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4092 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4093 	            OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4094 		    &adapter->tx_wreg_nsegs, 0,
4095 		    "# segments before write to hardware register");
4096 	}
4097 }
4098 
4099 static int
4100 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4101 {
4102 	struct adapter *adapter = (void *)arg1;
4103 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4104 	int error, throttle;
4105 
4106 	throttle = adapter->int_throttle_ceil;
4107 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4108 	if (error || req->newptr == NULL)
4109 		return error;
4110 	if (throttle < 0 || throttle > 1000000000 / 256)
4111 		return EINVAL;
4112 
4113 	if (throttle) {
4114 		/*
4115 		 * Set the interrupt throttling rate in 256ns increments,
4116 		 * recalculate sysctl value assignment to get exact frequency.
4117 		 */
4118 		throttle = 1000000000 / 256 / throttle;
4119 
4120 		/* Upper 16bits of ITR is reserved and should be zero */
4121 		if (throttle & 0xffff0000)
4122 			return EINVAL;
4123 	}
4124 
4125 	lwkt_serialize_enter(ifp->if_serializer);
4126 
4127 	if (throttle)
4128 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4129 	else
4130 		adapter->int_throttle_ceil = 0;
4131 
4132 	if (ifp->if_flags & IFF_RUNNING)
4133 		em_set_itr(adapter, throttle);
4134 
4135 	lwkt_serialize_exit(ifp->if_serializer);
4136 
4137 	if (bootverbose) {
4138 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4139 			  adapter->int_throttle_ceil);
4140 	}
4141 	return 0;
4142 }
4143 
4144 static int
4145 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4146 {
4147 	struct adapter *adapter = (void *)arg1;
4148 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4149 	int error, segs;
4150 
4151 	segs = adapter->tx_int_nsegs;
4152 	error = sysctl_handle_int(oidp, &segs, 0, req);
4153 	if (error || req->newptr == NULL)
4154 		return error;
4155 	if (segs <= 0)
4156 		return EINVAL;
4157 
4158 	lwkt_serialize_enter(ifp->if_serializer);
4159 
4160 	/*
4161 	 * Don't allow int_tx_nsegs to become:
4162 	 * o  Less the oact_tx_desc
4163 	 * o  Too large that no TX desc will cause TX interrupt to
4164 	 *    be generated (OACTIVE will never recover)
4165 	 * o  Too small that will cause tx_dd[] overflow
4166 	 */
4167 	if (segs < adapter->oact_tx_desc ||
4168 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4169 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4170 		error = EINVAL;
4171 	} else {
4172 		error = 0;
4173 		adapter->tx_int_nsegs = segs;
4174 	}
4175 
4176 	lwkt_serialize_exit(ifp->if_serializer);
4177 
4178 	return error;
4179 }
4180 
4181 static void
4182 em_set_itr(struct adapter *adapter, uint32_t itr)
4183 {
4184 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4185 	if (adapter->hw.mac.type == e1000_82574) {
4186 		int i;
4187 
4188 		/*
4189 		 * When using MSIX interrupts we need to
4190 		 * throttle using the EITR register
4191 		 */
4192 		for (i = 0; i < 4; ++i) {
4193 			E1000_WRITE_REG(&adapter->hw,
4194 			    E1000_EITR_82574(i), itr);
4195 		}
4196 	}
4197 }
4198 
4199 static void
4200 em_disable_aspm(struct adapter *adapter)
4201 {
4202 	uint16_t link_cap, link_ctrl, disable;
4203 	uint8_t pcie_ptr, reg;
4204 	device_t dev = adapter->dev;
4205 
4206 	switch (adapter->hw.mac.type) {
4207 	case e1000_82571:
4208 	case e1000_82572:
4209 	case e1000_82573:
4210 		/*
4211 		 * 82573 specification update
4212 		 * errata #8 disable L0s
4213 		 * errata #41 disable L1
4214 		 *
4215 		 * 82571/82572 specification update
4216 		 # errata #13 disable L1
4217 		 * errata #68 disable L0s
4218 		 */
4219 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4220 		break;
4221 
4222 	case e1000_82574:
4223 	case e1000_82583:
4224 		/*
4225 		 * 82574 specification update errata #20
4226 		 * 82583 specification update errata #9
4227 		 *
4228 		 * There is no need to disable L1
4229 		 */
4230 		disable = PCIEM_LNKCTL_ASPM_L0S;
4231 		break;
4232 
4233 	default:
4234 		return;
4235 	}
4236 
4237 	pcie_ptr = pci_get_pciecap_ptr(dev);
4238 	if (pcie_ptr == 0)
4239 		return;
4240 
4241 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4242 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4243 		return;
4244 
4245 	if (bootverbose) {
4246 		if_printf(&adapter->arpcom.ac_if,
4247 		    "disable ASPM %#02x\n", disable);
4248 	}
4249 
4250 	reg = pcie_ptr + PCIER_LINKCTRL;
4251 	link_ctrl = pci_read_config(dev, reg, 2);
4252 	link_ctrl &= ~disable;
4253 	pci_write_config(dev, reg, link_ctrl, 2);
4254 }
4255 
4256 static int
4257 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4258 {
4259 	int iphlen, hoff, thoff, ex = 0;
4260 	struct mbuf *m;
4261 	struct ip *ip;
4262 
4263 	m = *mp;
4264 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4265 
4266 	iphlen = m->m_pkthdr.csum_iphlen;
4267 	thoff = m->m_pkthdr.csum_thlen;
4268 	hoff = m->m_pkthdr.csum_lhlen;
4269 
4270 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4271 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4272 	KASSERT(hoff > 0, ("invalid ether hlen"));
4273 
4274 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4275 		ex = 4;
4276 
4277 	if (m->m_len < hoff + iphlen + thoff + ex) {
4278 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4279 		if (m == NULL) {
4280 			*mp = NULL;
4281 			return ENOBUFS;
4282 		}
4283 		*mp = m;
4284 	}
4285 	ip = mtodoff(m, struct ip *, hoff);
4286 	ip->ip_len = 0;
4287 
4288 	return 0;
4289 }
4290 
4291 static int
4292 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4293     uint32_t *txd_upper, uint32_t *txd_lower)
4294 {
4295 	struct e1000_context_desc *TXD;
4296 	int hoff, iphlen, thoff, hlen;
4297 	int mss, pktlen, curr_txd;
4298 
4299 	iphlen = mp->m_pkthdr.csum_iphlen;
4300 	thoff = mp->m_pkthdr.csum_thlen;
4301 	hoff = mp->m_pkthdr.csum_lhlen;
4302 	mss = mp->m_pkthdr.tso_segsz;
4303 	pktlen = mp->m_pkthdr.len;
4304 
4305 	if (adapter->csum_flags == CSUM_TSO &&
4306 	    adapter->csum_iphlen == iphlen &&
4307 	    adapter->csum_lhlen == hoff &&
4308 	    adapter->csum_thlen == thoff &&
4309 	    adapter->csum_mss == mss &&
4310 	    adapter->csum_pktlen == pktlen) {
4311 		*txd_upper = adapter->csum_txd_upper;
4312 		*txd_lower = adapter->csum_txd_lower;
4313 		return 0;
4314 	}
4315 	hlen = hoff + iphlen + thoff;
4316 
4317 	/*
4318 	 * Setup a new TSO context.
4319 	 */
4320 
4321 	curr_txd = adapter->next_avail_tx_desc;
4322 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4323 
4324 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4325 		     E1000_TXD_DTYP_D |		/* Data descr type */
4326 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4327 
4328 	/* IP and/or TCP header checksum calculation and insertion. */
4329 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4330 
4331 	/*
4332 	 * Start offset for header checksum calculation.
4333 	 * End offset for header checksum calculation.
4334 	 * Offset of place put the checksum.
4335 	 */
4336 	TXD->lower_setup.ip_fields.ipcss = hoff;
4337 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4338 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4339 
4340 	/*
4341 	 * Start offset for payload checksum calculation.
4342 	 * End offset for payload checksum calculation.
4343 	 * Offset of place to put the checksum.
4344 	 */
4345 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4346 	TXD->upper_setup.tcp_fields.tucse = 0;
4347 	TXD->upper_setup.tcp_fields.tucso =
4348 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4349 
4350 	/*
4351 	 * Payload size per packet w/o any headers.
4352 	 * Length of all headers up to payload.
4353 	 */
4354 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4355 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4356 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4357 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4358 				E1000_TXD_CMD_TSE |	/* TSE context */
4359 				E1000_TXD_CMD_IP |	/* Do IP csum */
4360 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4361 				(pktlen - hlen));	/* Total len */
4362 
4363 	/* Save the information for this TSO context */
4364 	adapter->csum_flags = CSUM_TSO;
4365 	adapter->csum_lhlen = hoff;
4366 	adapter->csum_iphlen = iphlen;
4367 	adapter->csum_thlen = thoff;
4368 	adapter->csum_mss = mss;
4369 	adapter->csum_pktlen = pktlen;
4370 	adapter->csum_txd_upper = *txd_upper;
4371 	adapter->csum_txd_lower = *txd_lower;
4372 
4373 	if (++curr_txd == adapter->num_tx_desc)
4374 		curr_txd = 0;
4375 
4376 	KKASSERT(adapter->num_tx_desc_avail > 0);
4377 	adapter->num_tx_desc_avail--;
4378 
4379 	adapter->next_avail_tx_desc = curr_txd;
4380 	return 1;
4381 }
4382