xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision 4c77af2da1d56e9bf10a0f03e974dbbf6a967810)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_ifpoll.h"
97 
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_poll.h>
121 #include <net/ifq_var.h>
122 #include <net/vlan/if_vlan_var.h>
123 #include <net/vlan/if_vlan_ether.h>
124 
125 #include <netinet/ip.h>
126 #include <netinet/tcp.h>
127 #include <netinet/udp.h>
128 
129 #include <bus/pci/pcivar.h>
130 #include <bus/pci/pcireg.h>
131 
132 #include <dev/netif/ig_hal/e1000_api.h>
133 #include <dev/netif/ig_hal/e1000_82571.h>
134 #include <dev/netif/em/if_em.h>
135 
136 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
137 #define EM_VER	" 7.3.4"
138 
139 #define _EM_DEVICE(id, ret)	\
140 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
141 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
142 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
143 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
144 
145 static const struct em_vendor_info em_vendor_info_array[] = {
146 	EM_DEVICE(82540EM),
147 	EM_DEVICE(82540EM_LOM),
148 	EM_DEVICE(82540EP),
149 	EM_DEVICE(82540EP_LOM),
150 	EM_DEVICE(82540EP_LP),
151 
152 	EM_DEVICE(82541EI),
153 	EM_DEVICE(82541ER),
154 	EM_DEVICE(82541ER_LOM),
155 	EM_DEVICE(82541EI_MOBILE),
156 	EM_DEVICE(82541GI),
157 	EM_DEVICE(82541GI_LF),
158 	EM_DEVICE(82541GI_MOBILE),
159 
160 	EM_DEVICE(82542),
161 
162 	EM_DEVICE(82543GC_FIBER),
163 	EM_DEVICE(82543GC_COPPER),
164 
165 	EM_DEVICE(82544EI_COPPER),
166 	EM_DEVICE(82544EI_FIBER),
167 	EM_DEVICE(82544GC_COPPER),
168 	EM_DEVICE(82544GC_LOM),
169 
170 	EM_DEVICE(82545EM_COPPER),
171 	EM_DEVICE(82545EM_FIBER),
172 	EM_DEVICE(82545GM_COPPER),
173 	EM_DEVICE(82545GM_FIBER),
174 	EM_DEVICE(82545GM_SERDES),
175 
176 	EM_DEVICE(82546EB_COPPER),
177 	EM_DEVICE(82546EB_FIBER),
178 	EM_DEVICE(82546EB_QUAD_COPPER),
179 	EM_DEVICE(82546GB_COPPER),
180 	EM_DEVICE(82546GB_FIBER),
181 	EM_DEVICE(82546GB_SERDES),
182 	EM_DEVICE(82546GB_PCIE),
183 	EM_DEVICE(82546GB_QUAD_COPPER),
184 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
185 
186 	EM_DEVICE(82547EI),
187 	EM_DEVICE(82547EI_MOBILE),
188 	EM_DEVICE(82547GI),
189 
190 	EM_EMX_DEVICE(82571EB_COPPER),
191 	EM_EMX_DEVICE(82571EB_FIBER),
192 	EM_EMX_DEVICE(82571EB_SERDES),
193 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
194 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
195 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
196 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
197 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
198 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
199 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
200 
201 	EM_EMX_DEVICE(82572EI_COPPER),
202 	EM_EMX_DEVICE(82572EI_FIBER),
203 	EM_EMX_DEVICE(82572EI_SERDES),
204 	EM_EMX_DEVICE(82572EI),
205 
206 	EM_EMX_DEVICE(82573E),
207 	EM_EMX_DEVICE(82573E_IAMT),
208 	EM_EMX_DEVICE(82573L),
209 
210 	EM_DEVICE(82583V),
211 
212 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
213 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
214 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
215 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
216 
217 	EM_DEVICE(ICH8_IGP_M_AMT),
218 	EM_DEVICE(ICH8_IGP_AMT),
219 	EM_DEVICE(ICH8_IGP_C),
220 	EM_DEVICE(ICH8_IFE),
221 	EM_DEVICE(ICH8_IFE_GT),
222 	EM_DEVICE(ICH8_IFE_G),
223 	EM_DEVICE(ICH8_IGP_M),
224 	EM_DEVICE(ICH8_82567V_3),
225 
226 	EM_DEVICE(ICH9_IGP_M_AMT),
227 	EM_DEVICE(ICH9_IGP_AMT),
228 	EM_DEVICE(ICH9_IGP_C),
229 	EM_DEVICE(ICH9_IGP_M),
230 	EM_DEVICE(ICH9_IGP_M_V),
231 	EM_DEVICE(ICH9_IFE),
232 	EM_DEVICE(ICH9_IFE_GT),
233 	EM_DEVICE(ICH9_IFE_G),
234 	EM_DEVICE(ICH9_BM),
235 
236 	EM_EMX_DEVICE(82574L),
237 	EM_EMX_DEVICE(82574LA),
238 
239 	EM_DEVICE(ICH10_R_BM_LM),
240 	EM_DEVICE(ICH10_R_BM_LF),
241 	EM_DEVICE(ICH10_R_BM_V),
242 	EM_DEVICE(ICH10_D_BM_LM),
243 	EM_DEVICE(ICH10_D_BM_LF),
244 	EM_DEVICE(ICH10_D_BM_V),
245 
246 	EM_DEVICE(PCH_M_HV_LM),
247 	EM_DEVICE(PCH_M_HV_LC),
248 	EM_DEVICE(PCH_D_HV_DM),
249 	EM_DEVICE(PCH_D_HV_DC),
250 
251 	EM_DEVICE(PCH2_LV_LM),
252 	EM_DEVICE(PCH2_LV_V),
253 
254 	/* required last entry */
255 	EM_DEVICE_NULL
256 };
257 
258 static int	em_probe(device_t);
259 static int	em_attach(device_t);
260 static int	em_detach(device_t);
261 static int	em_shutdown(device_t);
262 static int	em_suspend(device_t);
263 static int	em_resume(device_t);
264 
265 static void	em_init(void *);
266 static void	em_stop(struct adapter *);
267 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
268 static void	em_start(struct ifnet *, struct ifaltq_subque *);
269 #ifdef IFPOLL_ENABLE
270 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
271 static void	em_npoll_compat(struct ifnet *, void *, int);
272 #endif
273 static void	em_watchdog(struct ifnet *);
274 static void	em_media_status(struct ifnet *, struct ifmediareq *);
275 static int	em_media_change(struct ifnet *);
276 static void	em_timer(void *);
277 
278 static void	em_intr(void *);
279 static void	em_intr_mask(void *);
280 static void	em_intr_body(struct adapter *, boolean_t);
281 static void	em_rxeof(struct adapter *, int);
282 static void	em_txeof(struct adapter *);
283 static void	em_tx_collect(struct adapter *);
284 static void	em_tx_purge(struct adapter *);
285 static void	em_enable_intr(struct adapter *);
286 static void	em_disable_intr(struct adapter *);
287 
288 static int	em_dma_malloc(struct adapter *, bus_size_t,
289 		    struct em_dma_alloc *);
290 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
291 static void	em_init_tx_ring(struct adapter *);
292 static int	em_init_rx_ring(struct adapter *);
293 static int	em_create_tx_ring(struct adapter *);
294 static int	em_create_rx_ring(struct adapter *);
295 static void	em_destroy_tx_ring(struct adapter *, int);
296 static void	em_destroy_rx_ring(struct adapter *, int);
297 static int	em_newbuf(struct adapter *, int, int);
298 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
299 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
300 		    struct mbuf *);
301 static int	em_txcsum(struct adapter *, struct mbuf *,
302 		    uint32_t *, uint32_t *);
303 static int	em_tso_pullup(struct adapter *, struct mbuf **);
304 static int	em_tso_setup(struct adapter *, struct mbuf *,
305 		    uint32_t *, uint32_t *);
306 
307 static int	em_get_hw_info(struct adapter *);
308 static int 	em_is_valid_eaddr(const uint8_t *);
309 static int	em_alloc_pci_res(struct adapter *);
310 static void	em_free_pci_res(struct adapter *);
311 static int	em_reset(struct adapter *);
312 static void	em_setup_ifp(struct adapter *);
313 static void	em_init_tx_unit(struct adapter *);
314 static void	em_init_rx_unit(struct adapter *);
315 static void	em_update_stats(struct adapter *);
316 static void	em_set_promisc(struct adapter *);
317 static void	em_disable_promisc(struct adapter *);
318 static void	em_set_multi(struct adapter *);
319 static void	em_update_link_status(struct adapter *);
320 static void	em_smartspeed(struct adapter *);
321 static void	em_set_itr(struct adapter *, uint32_t);
322 static void	em_disable_aspm(struct adapter *);
323 
324 /* Hardware workarounds */
325 static int	em_82547_fifo_workaround(struct adapter *, int);
326 static void	em_82547_update_fifo_head(struct adapter *, int);
327 static int	em_82547_tx_fifo_reset(struct adapter *);
328 static void	em_82547_move_tail(void *);
329 static void	em_82547_move_tail_serialized(struct adapter *);
330 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
331 
332 static void	em_print_debug_info(struct adapter *);
333 static void	em_print_nvm_info(struct adapter *);
334 static void	em_print_hw_stats(struct adapter *);
335 
336 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
337 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
338 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
339 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
340 static void	em_add_sysctl(struct adapter *adapter);
341 
342 /* Management and WOL Support */
343 static void	em_get_mgmt(struct adapter *);
344 static void	em_rel_mgmt(struct adapter *);
345 static void	em_get_hw_control(struct adapter *);
346 static void	em_rel_hw_control(struct adapter *);
347 static void	em_enable_wol(device_t);
348 
349 static device_method_t em_methods[] = {
350 	/* Device interface */
351 	DEVMETHOD(device_probe,		em_probe),
352 	DEVMETHOD(device_attach,	em_attach),
353 	DEVMETHOD(device_detach,	em_detach),
354 	DEVMETHOD(device_shutdown,	em_shutdown),
355 	DEVMETHOD(device_suspend,	em_suspend),
356 	DEVMETHOD(device_resume,	em_resume),
357 	DEVMETHOD_END
358 };
359 
360 static driver_t em_driver = {
361 	"em",
362 	em_methods,
363 	sizeof(struct adapter),
364 };
365 
366 static devclass_t em_devclass;
367 
368 DECLARE_DUMMY_MODULE(if_em);
369 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
370 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
371 
372 /*
373  * Tunables
374  */
375 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
376 static int	em_rxd = EM_DEFAULT_RXD;
377 static int	em_txd = EM_DEFAULT_TXD;
378 static int	em_smart_pwr_down = 0;
379 
380 /* Controls whether promiscuous also shows bad packets */
381 static int	em_debug_sbp = FALSE;
382 
383 static int	em_82573_workaround = 1;
384 static int	em_msi_enable = 1;
385 
386 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
387 TUNABLE_INT("hw.em.rxd", &em_rxd);
388 TUNABLE_INT("hw.em.txd", &em_txd);
389 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
390 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
391 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
392 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
393 
394 /* Global used in WOL setup with multiport cards */
395 static int	em_global_quad_port_a = 0;
396 
397 /* Set this to one to display debug statistics */
398 static int	em_display_debug_stats = 0;
399 
400 #if !defined(KTR_IF_EM)
401 #define KTR_IF_EM	KTR_ALL
402 #endif
403 KTR_INFO_MASTER(if_em);
404 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
405 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
406 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
407 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
408 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
409 #define logif(name)	KTR_LOG(if_em_ ## name)
410 
411 static int
412 em_probe(device_t dev)
413 {
414 	const struct em_vendor_info *ent;
415 	uint16_t vid, did;
416 
417 	vid = pci_get_vendor(dev);
418 	did = pci_get_device(dev);
419 
420 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
421 		if (vid == ent->vendor_id && did == ent->device_id) {
422 			device_set_desc(dev, ent->desc);
423 			device_set_async_attach(dev, TRUE);
424 			return (ent->ret);
425 		}
426 	}
427 	return (ENXIO);
428 }
429 
430 static int
431 em_attach(device_t dev)
432 {
433 	struct adapter *adapter = device_get_softc(dev);
434 	struct ifnet *ifp = &adapter->arpcom.ac_if;
435 	int tsize, rsize;
436 	int error = 0;
437 	uint16_t eeprom_data, device_id, apme_mask;
438 	driver_intr_t *intr_func;
439 
440 	adapter->dev = adapter->osdep.dev = dev;
441 
442 	callout_init_mp(&adapter->timer);
443 	callout_init_mp(&adapter->tx_fifo_timer);
444 
445 	/* Determine hardware and mac info */
446 	error = em_get_hw_info(adapter);
447 	if (error) {
448 		device_printf(dev, "Identify hardware failed\n");
449 		goto fail;
450 	}
451 
452 	/* Setup PCI resources */
453 	error = em_alloc_pci_res(adapter);
454 	if (error) {
455 		device_printf(dev, "Allocation of PCI resources failed\n");
456 		goto fail;
457 	}
458 
459 	/*
460 	 * For ICH8 and family we need to map the flash memory,
461 	 * and this must happen after the MAC is identified.
462 	 */
463 	if (adapter->hw.mac.type == e1000_ich8lan ||
464 	    adapter->hw.mac.type == e1000_ich9lan ||
465 	    adapter->hw.mac.type == e1000_ich10lan ||
466 	    adapter->hw.mac.type == e1000_pchlan ||
467 	    adapter->hw.mac.type == e1000_pch2lan) {
468 		adapter->flash_rid = EM_BAR_FLASH;
469 
470 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
471 					&adapter->flash_rid, RF_ACTIVE);
472 		if (adapter->flash == NULL) {
473 			device_printf(dev, "Mapping of Flash failed\n");
474 			error = ENXIO;
475 			goto fail;
476 		}
477 		adapter->osdep.flash_bus_space_tag =
478 		    rman_get_bustag(adapter->flash);
479 		adapter->osdep.flash_bus_space_handle =
480 		    rman_get_bushandle(adapter->flash);
481 
482 		/*
483 		 * This is used in the shared code
484 		 * XXX this goof is actually not used.
485 		 */
486 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
487 	}
488 
489 	switch (adapter->hw.mac.type) {
490 	case e1000_82571:
491 	case e1000_82572:
492 		/*
493 		 * Pullup extra 4bytes into the first data segment, see:
494 		 * 82571/82572 specification update errata #7
495 		 *
496 		 * NOTE:
497 		 * 4bytes instead of 2bytes, which are mentioned in the
498 		 * errata, are pulled; mainly to keep rest of the data
499 		 * properly aligned.
500 		 */
501 		adapter->flags |= EM_FLAG_TSO_PULLEX;
502 		/* FALL THROUGH */
503 
504 	case e1000_82573:
505 	case e1000_82574:
506 	case e1000_80003es2lan:
507 		adapter->flags |= EM_FLAG_TSO;
508 		break;
509 
510 	default:
511 		break;
512 	}
513 
514 	/* Do Shared Code initialization */
515 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
516 		device_printf(dev, "Setup of Shared code failed\n");
517 		error = ENXIO;
518 		goto fail;
519 	}
520 
521 	e1000_get_bus_info(&adapter->hw);
522 
523 	/*
524 	 * Validate number of transmit and receive descriptors.  It
525 	 * must not exceed hardware maximum, and must be multiple
526 	 * of E1000_DBA_ALIGN.
527 	 */
528 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
529 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
530 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
531 	    em_txd < EM_MIN_TXD) {
532 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
533 		    EM_DEFAULT_TXD, em_txd);
534 		adapter->num_tx_desc = EM_DEFAULT_TXD;
535 	} else {
536 		adapter->num_tx_desc = em_txd;
537 	}
538 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
539 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
540 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
541 	    em_rxd < EM_MIN_RXD) {
542 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
543 		    EM_DEFAULT_RXD, em_rxd);
544 		adapter->num_rx_desc = EM_DEFAULT_RXD;
545 	} else {
546 		adapter->num_rx_desc = em_rxd;
547 	}
548 
549 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
550 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
551 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
552 	adapter->rx_buffer_len = MCLBYTES;
553 
554 	/*
555 	 * Interrupt throttle rate
556 	 */
557 	if (em_int_throttle_ceil == 0) {
558 		adapter->int_throttle_ceil = 0;
559 	} else {
560 		int throttle = em_int_throttle_ceil;
561 
562 		if (throttle < 0)
563 			throttle = EM_DEFAULT_ITR;
564 
565 		/* Recalculate the tunable value to get the exact frequency. */
566 		throttle = 1000000000 / 256 / throttle;
567 
568 		/* Upper 16bits of ITR is reserved and should be zero */
569 		if (throttle & 0xffff0000)
570 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
571 
572 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
573 	}
574 
575 	e1000_init_script_state_82541(&adapter->hw, TRUE);
576 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
577 
578 	/* Copper options */
579 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
580 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
581 		adapter->hw.phy.disable_polarity_correction = FALSE;
582 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
583 	}
584 
585 	/* Set the frame limits assuming standard ethernet sized frames. */
586 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
587 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
588 
589 	/* This controls when hardware reports transmit completion status. */
590 	adapter->hw.mac.report_tx_early = 1;
591 
592 	/*
593 	 * Create top level busdma tag
594 	 */
595 	error = bus_dma_tag_create(NULL, 1, 0,
596 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
597 			NULL, NULL,
598 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
599 			0, &adapter->parent_dtag);
600 	if (error) {
601 		device_printf(dev, "could not create top level DMA tag\n");
602 		goto fail;
603 	}
604 
605 	/*
606 	 * Allocate Transmit Descriptor ring
607 	 */
608 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
609 			 EM_DBA_ALIGN);
610 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
611 	if (error) {
612 		device_printf(dev, "Unable to allocate tx_desc memory\n");
613 		goto fail;
614 	}
615 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
616 
617 	/*
618 	 * Allocate Receive Descriptor ring
619 	 */
620 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
621 			 EM_DBA_ALIGN);
622 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
623 	if (error) {
624 		device_printf(dev, "Unable to allocate rx_desc memory\n");
625 		goto fail;
626 	}
627 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
628 
629 	/* Allocate multicast array memory. */
630 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
631 	    M_DEVBUF, M_WAITOK);
632 
633 	/* Indicate SOL/IDER usage */
634 	if (e1000_check_reset_block(&adapter->hw)) {
635 		device_printf(dev,
636 		    "PHY reset is blocked due to SOL/IDER session.\n");
637 	}
638 
639 	/*
640 	 * Start from a known state, this is important in reading the
641 	 * nvm and mac from that.
642 	 */
643 	e1000_reset_hw(&adapter->hw);
644 
645 	/* Make sure we have a good EEPROM before we read from it */
646 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
647 		/*
648 		 * Some PCI-E parts fail the first check due to
649 		 * the link being in sleep state, call it again,
650 		 * if it fails a second time its a real issue.
651 		 */
652 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
653 			device_printf(dev,
654 			    "The EEPROM Checksum Is Not Valid\n");
655 			error = EIO;
656 			goto fail;
657 		}
658 	}
659 
660 	/* Copy the permanent MAC address out of the EEPROM */
661 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
662 		device_printf(dev, "EEPROM read error while reading MAC"
663 		    " address\n");
664 		error = EIO;
665 		goto fail;
666 	}
667 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
668 		device_printf(dev, "Invalid MAC address\n");
669 		error = EIO;
670 		goto fail;
671 	}
672 
673 	/* Allocate transmit descriptors and buffers */
674 	error = em_create_tx_ring(adapter);
675 	if (error) {
676 		device_printf(dev, "Could not setup transmit structures\n");
677 		goto fail;
678 	}
679 
680 	/* Allocate receive descriptors and buffers */
681 	error = em_create_rx_ring(adapter);
682 	if (error) {
683 		device_printf(dev, "Could not setup receive structures\n");
684 		goto fail;
685 	}
686 
687 	/* Manually turn off all interrupts */
688 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
689 
690 	/* Determine if we have to control management hardware */
691 	if (e1000_enable_mng_pass_thru(&adapter->hw))
692 		adapter->flags |= EM_FLAG_HAS_MGMT;
693 
694 	/*
695 	 * Setup Wake-on-Lan
696 	 */
697 	apme_mask = EM_EEPROM_APME;
698 	eeprom_data = 0;
699 	switch (adapter->hw.mac.type) {
700 	case e1000_82542:
701 	case e1000_82543:
702 		break;
703 
704 	case e1000_82573:
705 	case e1000_82583:
706 		adapter->flags |= EM_FLAG_HAS_AMT;
707 		/* FALL THROUGH */
708 
709 	case e1000_82546:
710 	case e1000_82546_rev_3:
711 	case e1000_82571:
712 	case e1000_82572:
713 	case e1000_80003es2lan:
714 		if (adapter->hw.bus.func == 1) {
715 			e1000_read_nvm(&adapter->hw,
716 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
717 		} else {
718 			e1000_read_nvm(&adapter->hw,
719 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
720 		}
721 		break;
722 
723 	case e1000_ich8lan:
724 	case e1000_ich9lan:
725 	case e1000_ich10lan:
726 	case e1000_pchlan:
727 	case e1000_pch2lan:
728 		apme_mask = E1000_WUC_APME;
729 		adapter->flags |= EM_FLAG_HAS_AMT;
730 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
731 		break;
732 
733 	default:
734 		e1000_read_nvm(&adapter->hw,
735 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
736 		break;
737 	}
738 	if (eeprom_data & apme_mask)
739 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
740 
741 	/*
742          * We have the eeprom settings, now apply the special cases
743          * where the eeprom may be wrong or the board won't support
744          * wake on lan on a particular port
745 	 */
746 	device_id = pci_get_device(dev);
747         switch (device_id) {
748 	case E1000_DEV_ID_82546GB_PCIE:
749 		adapter->wol = 0;
750 		break;
751 
752 	case E1000_DEV_ID_82546EB_FIBER:
753 	case E1000_DEV_ID_82546GB_FIBER:
754 	case E1000_DEV_ID_82571EB_FIBER:
755 		/*
756 		 * Wake events only supported on port A for dual fiber
757 		 * regardless of eeprom setting
758 		 */
759 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
760 		    E1000_STATUS_FUNC_1)
761 			adapter->wol = 0;
762 		break;
763 
764 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
765 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
766 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
767 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
768                 /* if quad port adapter, disable WoL on all but port A */
769 		if (em_global_quad_port_a != 0)
770 			adapter->wol = 0;
771 		/* Reset for multiple quad port adapters */
772 		if (++em_global_quad_port_a == 4)
773 			em_global_quad_port_a = 0;
774                 break;
775 	}
776 
777 	/* XXX disable wol */
778 	adapter->wol = 0;
779 
780 	/* Setup OS specific network interface */
781 	em_setup_ifp(adapter);
782 
783 	/* Add sysctl tree, must after em_setup_ifp() */
784 	em_add_sysctl(adapter);
785 
786 #ifdef IFPOLL_ENABLE
787 	/* Polling setup */
788 	ifpoll_compat_setup(&adapter->npoll,
789 	    &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
790 	    ifp->if_serializer);
791 #endif
792 
793 	/* Reset the hardware */
794 	error = em_reset(adapter);
795 	if (error) {
796 		device_printf(dev, "Unable to reset the hardware\n");
797 		goto fail;
798 	}
799 
800 	/* Initialize statistics */
801 	em_update_stats(adapter);
802 
803 	adapter->hw.mac.get_link_status = 1;
804 	em_update_link_status(adapter);
805 
806 	/* Do we need workaround for 82544 PCI-X adapter? */
807 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
808 	    adapter->hw.mac.type == e1000_82544)
809 		adapter->pcix_82544 = TRUE;
810 	else
811 		adapter->pcix_82544 = FALSE;
812 
813 	if (adapter->pcix_82544) {
814 		/*
815 		 * 82544 on PCI-X may split one TX segment
816 		 * into two TX descs, so we double its number
817 		 * of spare TX desc here.
818 		 */
819 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
820 	} else {
821 		adapter->spare_tx_desc = EM_TX_SPARE;
822 	}
823 	if (adapter->flags & EM_FLAG_TSO)
824 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
825 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
826 
827 	/*
828 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
829 	 * and tx_int_nsegs:
830 	 * (spare_tx_desc + EM_TX_RESERVED) <=
831 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
832 	 */
833 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
834 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
835 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
836 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
837 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
838 
839 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
840 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
841 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
842 
843 	/* Non-AMT based hardware can now take control from firmware */
844 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
845 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
846 		em_get_hw_control(adapter);
847 
848 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
849 
850 	/*
851 	 * Missing Interrupt Following ICR read:
852 	 *
853 	 * 82571/82572 specification update errata #76
854 	 * 82573 specification update errata #31
855 	 * 82574 specification update errata #12
856 	 * 82583 specification update errata #4
857 	 */
858 	intr_func = em_intr;
859 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
860 	    (adapter->hw.mac.type == e1000_82571 ||
861 	     adapter->hw.mac.type == e1000_82572 ||
862 	     adapter->hw.mac.type == e1000_82573 ||
863 	     adapter->hw.mac.type == e1000_82574 ||
864 	     adapter->hw.mac.type == e1000_82583))
865 		intr_func = em_intr_mask;
866 
867 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
868 			       intr_func, adapter, &adapter->intr_tag,
869 			       ifp->if_serializer);
870 	if (error) {
871 		device_printf(dev, "Failed to register interrupt handler");
872 		ether_ifdetach(&adapter->arpcom.ac_if);
873 		goto fail;
874 	}
875 	return (0);
876 fail:
877 	em_detach(dev);
878 	return (error);
879 }
880 
881 static int
882 em_detach(device_t dev)
883 {
884 	struct adapter *adapter = device_get_softc(dev);
885 
886 	if (device_is_attached(dev)) {
887 		struct ifnet *ifp = &adapter->arpcom.ac_if;
888 
889 		lwkt_serialize_enter(ifp->if_serializer);
890 
891 		em_stop(adapter);
892 
893 		e1000_phy_hw_reset(&adapter->hw);
894 
895 		em_rel_mgmt(adapter);
896 		em_rel_hw_control(adapter);
897 
898 		if (adapter->wol) {
899 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
900 					E1000_WUC_PME_EN);
901 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
902 			em_enable_wol(dev);
903 		}
904 
905 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
906 
907 		lwkt_serialize_exit(ifp->if_serializer);
908 
909 		ether_ifdetach(ifp);
910 	} else if (adapter->memory != NULL) {
911 		em_rel_hw_control(adapter);
912 	}
913 	bus_generic_detach(dev);
914 
915 	em_free_pci_res(adapter);
916 
917 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
918 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
919 
920 	/* Free Transmit Descriptor ring */
921 	if (adapter->tx_desc_base)
922 		em_dma_free(adapter, &adapter->txdma);
923 
924 	/* Free Receive Descriptor ring */
925 	if (adapter->rx_desc_base)
926 		em_dma_free(adapter, &adapter->rxdma);
927 
928 	/* Free top level busdma tag */
929 	if (adapter->parent_dtag != NULL)
930 		bus_dma_tag_destroy(adapter->parent_dtag);
931 
932 	/* Free sysctl tree */
933 	if (adapter->sysctl_tree != NULL)
934 		sysctl_ctx_free(&adapter->sysctl_ctx);
935 
936 	if (adapter->mta != NULL)
937 		kfree(adapter->mta, M_DEVBUF);
938 
939 	return (0);
940 }
941 
942 static int
943 em_shutdown(device_t dev)
944 {
945 	return em_suspend(dev);
946 }
947 
948 static int
949 em_suspend(device_t dev)
950 {
951 	struct adapter *adapter = device_get_softc(dev);
952 	struct ifnet *ifp = &adapter->arpcom.ac_if;
953 
954 	lwkt_serialize_enter(ifp->if_serializer);
955 
956 	em_stop(adapter);
957 
958 	em_rel_mgmt(adapter);
959 	em_rel_hw_control(adapter);
960 
961 	if (adapter->wol) {
962 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
963 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
964 		em_enable_wol(dev);
965 	}
966 
967 	lwkt_serialize_exit(ifp->if_serializer);
968 
969 	return bus_generic_suspend(dev);
970 }
971 
972 static int
973 em_resume(device_t dev)
974 {
975 	struct adapter *adapter = device_get_softc(dev);
976 	struct ifnet *ifp = &adapter->arpcom.ac_if;
977 
978 	lwkt_serialize_enter(ifp->if_serializer);
979 
980 	if (adapter->hw.mac.type == e1000_pch2lan)
981 		e1000_resume_workarounds_pchlan(&adapter->hw);
982 
983 	em_init(adapter);
984 	em_get_mgmt(adapter);
985 	if_devstart(ifp);
986 
987 	lwkt_serialize_exit(ifp->if_serializer);
988 
989 	return bus_generic_resume(dev);
990 }
991 
992 static void
993 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
994 {
995 	struct adapter *adapter = ifp->if_softc;
996 	struct mbuf *m_head;
997 	int idx = -1, nsegs = 0;
998 
999 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1000 	ASSERT_SERIALIZED(ifp->if_serializer);
1001 
1002 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1003 		return;
1004 
1005 	if (!adapter->link_active) {
1006 		ifq_purge(&ifp->if_snd);
1007 		return;
1008 	}
1009 
1010 	while (!ifq_is_empty(&ifp->if_snd)) {
1011 		/* Now do we at least have a minimal? */
1012 		if (EM_IS_OACTIVE(adapter)) {
1013 			em_tx_collect(adapter);
1014 			if (EM_IS_OACTIVE(adapter)) {
1015 				ifq_set_oactive(&ifp->if_snd);
1016 				adapter->no_tx_desc_avail1++;
1017 				break;
1018 			}
1019 		}
1020 
1021 		logif(pkt_txqueue);
1022 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1023 		if (m_head == NULL)
1024 			break;
1025 
1026 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1027 			IFNET_STAT_INC(ifp, oerrors, 1);
1028 			em_tx_collect(adapter);
1029 			continue;
1030 		}
1031 
1032 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1033 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1034 			nsegs = 0;
1035 			idx = -1;
1036 		}
1037 
1038 		/* Send a copy of the frame to the BPF listener */
1039 		ETHER_BPF_MTAP(ifp, m_head);
1040 
1041 		/* Set timeout in case hardware has problems transmitting. */
1042 		ifp->if_timer = EM_TX_TIMEOUT;
1043 	}
1044 	if (idx >= 0)
1045 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1046 }
1047 
1048 static int
1049 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1050 {
1051 	struct adapter *adapter = ifp->if_softc;
1052 	struct ifreq *ifr = (struct ifreq *)data;
1053 	uint16_t eeprom_data = 0;
1054 	int max_frame_size, mask, reinit;
1055 	int error = 0;
1056 
1057 	ASSERT_SERIALIZED(ifp->if_serializer);
1058 
1059 	switch (command) {
1060 	case SIOCSIFMTU:
1061 		switch (adapter->hw.mac.type) {
1062 		case e1000_82573:
1063 			/*
1064 			 * 82573 only supports jumbo frames
1065 			 * if ASPM is disabled.
1066 			 */
1067 			e1000_read_nvm(&adapter->hw,
1068 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1069 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1070 				max_frame_size = ETHER_MAX_LEN;
1071 				break;
1072 			}
1073 			/* FALL THROUGH */
1074 
1075 		/* Limit Jumbo Frame size */
1076 		case e1000_82571:
1077 		case e1000_82572:
1078 		case e1000_ich9lan:
1079 		case e1000_ich10lan:
1080 		case e1000_pch2lan:
1081 		case e1000_82574:
1082 		case e1000_82583:
1083 		case e1000_80003es2lan:
1084 			max_frame_size = 9234;
1085 			break;
1086 
1087 		case e1000_pchlan:
1088 			max_frame_size = 4096;
1089 			break;
1090 
1091 		/* Adapters that do not support jumbo frames */
1092 		case e1000_82542:
1093 		case e1000_ich8lan:
1094 			max_frame_size = ETHER_MAX_LEN;
1095 			break;
1096 
1097 		default:
1098 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1099 			break;
1100 		}
1101 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1102 		    ETHER_CRC_LEN) {
1103 			error = EINVAL;
1104 			break;
1105 		}
1106 
1107 		ifp->if_mtu = ifr->ifr_mtu;
1108 		adapter->max_frame_size =
1109 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1110 
1111 		if (ifp->if_flags & IFF_RUNNING)
1112 			em_init(adapter);
1113 		break;
1114 
1115 	case SIOCSIFFLAGS:
1116 		if (ifp->if_flags & IFF_UP) {
1117 			if ((ifp->if_flags & IFF_RUNNING)) {
1118 				if ((ifp->if_flags ^ adapter->if_flags) &
1119 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1120 					em_disable_promisc(adapter);
1121 					em_set_promisc(adapter);
1122 				}
1123 			} else {
1124 				em_init(adapter);
1125 			}
1126 		} else if (ifp->if_flags & IFF_RUNNING) {
1127 			em_stop(adapter);
1128 		}
1129 		adapter->if_flags = ifp->if_flags;
1130 		break;
1131 
1132 	case SIOCADDMULTI:
1133 	case SIOCDELMULTI:
1134 		if (ifp->if_flags & IFF_RUNNING) {
1135 			em_disable_intr(adapter);
1136 			em_set_multi(adapter);
1137 			if (adapter->hw.mac.type == e1000_82542 &&
1138 			    adapter->hw.revision_id == E1000_REVISION_2)
1139 				em_init_rx_unit(adapter);
1140 #ifdef IFPOLL_ENABLE
1141 			if (!(ifp->if_flags & IFF_NPOLLING))
1142 #endif
1143 				em_enable_intr(adapter);
1144 		}
1145 		break;
1146 
1147 	case SIOCSIFMEDIA:
1148 		/* Check SOL/IDER usage */
1149 		if (e1000_check_reset_block(&adapter->hw)) {
1150 			device_printf(adapter->dev, "Media change is"
1151 			    " blocked due to SOL/IDER session.\n");
1152 			break;
1153 		}
1154 		/* FALL THROUGH */
1155 
1156 	case SIOCGIFMEDIA:
1157 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1158 		break;
1159 
1160 	case SIOCSIFCAP:
1161 		reinit = 0;
1162 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1163 		if (mask & IFCAP_RXCSUM) {
1164 			ifp->if_capenable ^= IFCAP_RXCSUM;
1165 			reinit = 1;
1166 		}
1167 		if (mask & IFCAP_TXCSUM) {
1168 			ifp->if_capenable ^= IFCAP_TXCSUM;
1169 			if (ifp->if_capenable & IFCAP_TXCSUM)
1170 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1171 			else
1172 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1173 		}
1174 		if (mask & IFCAP_TSO) {
1175 			ifp->if_capenable ^= IFCAP_TSO;
1176 			if (ifp->if_capenable & IFCAP_TSO)
1177 				ifp->if_hwassist |= CSUM_TSO;
1178 			else
1179 				ifp->if_hwassist &= ~CSUM_TSO;
1180 		}
1181 		if (mask & IFCAP_VLAN_HWTAGGING) {
1182 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1183 			reinit = 1;
1184 		}
1185 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1186 			em_init(adapter);
1187 		break;
1188 
1189 	default:
1190 		error = ether_ioctl(ifp, command, data);
1191 		break;
1192 	}
1193 	return (error);
1194 }
1195 
1196 static void
1197 em_watchdog(struct ifnet *ifp)
1198 {
1199 	struct adapter *adapter = ifp->if_softc;
1200 
1201 	ASSERT_SERIALIZED(ifp->if_serializer);
1202 
1203 	/*
1204 	 * The timer is set to 5 every time start queues a packet.
1205 	 * Then txeof keeps resetting it as long as it cleans at
1206 	 * least one descriptor.
1207 	 * Finally, anytime all descriptors are clean the timer is
1208 	 * set to 0.
1209 	 */
1210 
1211 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1212 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1213 		/*
1214 		 * If we reach here, all TX jobs are completed and
1215 		 * the TX engine should have been idled for some time.
1216 		 * We don't need to call if_devstart() here.
1217 		 */
1218 		ifq_clr_oactive(&ifp->if_snd);
1219 		ifp->if_timer = 0;
1220 		return;
1221 	}
1222 
1223 	/*
1224 	 * If we are in this routine because of pause frames, then
1225 	 * don't reset the hardware.
1226 	 */
1227 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1228 	    E1000_STATUS_TXOFF) {
1229 		ifp->if_timer = EM_TX_TIMEOUT;
1230 		return;
1231 	}
1232 
1233 	if (e1000_check_for_link(&adapter->hw) == 0)
1234 		if_printf(ifp, "watchdog timeout -- resetting\n");
1235 
1236 	IFNET_STAT_INC(ifp, oerrors, 1);
1237 	adapter->watchdog_events++;
1238 
1239 	em_init(adapter);
1240 
1241 	if (!ifq_is_empty(&ifp->if_snd))
1242 		if_devstart(ifp);
1243 }
1244 
1245 static void
1246 em_init(void *xsc)
1247 {
1248 	struct adapter *adapter = xsc;
1249 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1250 	device_t dev = adapter->dev;
1251 
1252 	ASSERT_SERIALIZED(ifp->if_serializer);
1253 
1254 	em_stop(adapter);
1255 
1256 	/* Get the latest mac address, User can use a LAA */
1257         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1258 
1259 	/* Put the address into the Receive Address Array */
1260 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1261 
1262 	/*
1263 	 * With the 82571 adapter, RAR[0] may be overwritten
1264 	 * when the other port is reset, we make a duplicate
1265 	 * in RAR[14] for that eventuality, this assures
1266 	 * the interface continues to function.
1267 	 */
1268 	if (adapter->hw.mac.type == e1000_82571) {
1269 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1270 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1271 		    E1000_RAR_ENTRIES - 1);
1272 	}
1273 
1274 	/* Reset the hardware */
1275 	if (em_reset(adapter)) {
1276 		device_printf(dev, "Unable to reset the hardware\n");
1277 		/* XXX em_stop()? */
1278 		return;
1279 	}
1280 	em_update_link_status(adapter);
1281 
1282 	/* Setup VLAN support, basic and offload if available */
1283 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1284 
1285 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1286 		uint32_t ctrl;
1287 
1288 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1289 		ctrl |= E1000_CTRL_VME;
1290 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1291 	}
1292 
1293 	/* Configure for OS presence */
1294 	em_get_mgmt(adapter);
1295 
1296 	/* Prepare transmit descriptors and buffers */
1297 	em_init_tx_ring(adapter);
1298 	em_init_tx_unit(adapter);
1299 
1300 	/* Setup Multicast table */
1301 	em_set_multi(adapter);
1302 
1303 	/* Prepare receive descriptors and buffers */
1304 	if (em_init_rx_ring(adapter)) {
1305 		device_printf(dev, "Could not setup receive structures\n");
1306 		em_stop(adapter);
1307 		return;
1308 	}
1309 	em_init_rx_unit(adapter);
1310 
1311 	/* Don't lose promiscuous settings */
1312 	em_set_promisc(adapter);
1313 
1314 	ifp->if_flags |= IFF_RUNNING;
1315 	ifq_clr_oactive(&ifp->if_snd);
1316 
1317 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1318 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1319 
1320 	/* MSI/X configuration for 82574 */
1321 	if (adapter->hw.mac.type == e1000_82574) {
1322 		int tmp;
1323 
1324 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1325 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1326 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1327 		/*
1328 		 * XXX MSIX
1329 		 * Set the IVAR - interrupt vector routing.
1330 		 * Each nibble represents a vector, high bit
1331 		 * is enable, other 3 bits are the MSIX table
1332 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1333 		 * Link (other) to 2, hence the magic number.
1334 		 */
1335 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1336 	}
1337 
1338 #ifdef IFPOLL_ENABLE
1339 	/*
1340 	 * Only enable interrupts if we are not polling, make sure
1341 	 * they are off otherwise.
1342 	 */
1343 	if (ifp->if_flags & IFF_NPOLLING)
1344 		em_disable_intr(adapter);
1345 	else
1346 #endif /* IFPOLL_ENABLE */
1347 		em_enable_intr(adapter);
1348 
1349 	/* AMT based hardware can now take control from firmware */
1350 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1351 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1352 	    adapter->hw.mac.type >= e1000_82571)
1353 		em_get_hw_control(adapter);
1354 }
1355 
1356 #ifdef IFPOLL_ENABLE
1357 
1358 static void
1359 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1360 {
1361 	struct adapter *adapter = ifp->if_softc;
1362 
1363 	ASSERT_SERIALIZED(ifp->if_serializer);
1364 
1365 	if (adapter->npoll.ifpc_stcount-- == 0) {
1366 		uint32_t reg_icr;
1367 
1368 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1369 
1370 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1371 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1372 			callout_stop(&adapter->timer);
1373 			adapter->hw.mac.get_link_status = 1;
1374 			em_update_link_status(adapter);
1375 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1376 		}
1377 	}
1378 
1379 	em_rxeof(adapter, count);
1380 	em_txeof(adapter);
1381 
1382 	if (!ifq_is_empty(&ifp->if_snd))
1383 		if_devstart(ifp);
1384 }
1385 
1386 static void
1387 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1388 {
1389 	struct adapter *adapter = ifp->if_softc;
1390 
1391 	ASSERT_SERIALIZED(ifp->if_serializer);
1392 
1393 	if (info != NULL) {
1394 		int cpuid = adapter->npoll.ifpc_cpuid;
1395 
1396                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1397 		info->ifpi_rx[cpuid].arg = NULL;
1398 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1399 
1400 		if (ifp->if_flags & IFF_RUNNING)
1401 			em_disable_intr(adapter);
1402 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1403 	} else {
1404 		if (ifp->if_flags & IFF_RUNNING)
1405 			em_enable_intr(adapter);
1406 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1407 	}
1408 }
1409 
1410 #endif /* IFPOLL_ENABLE */
1411 
1412 static void
1413 em_intr(void *xsc)
1414 {
1415 	em_intr_body(xsc, TRUE);
1416 }
1417 
1418 static void
1419 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1420 {
1421 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1422 	uint32_t reg_icr;
1423 
1424 	logif(intr_beg);
1425 	ASSERT_SERIALIZED(ifp->if_serializer);
1426 
1427 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1428 
1429 	if (chk_asserted &&
1430 	    ((adapter->hw.mac.type >= e1000_82571 &&
1431 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1432 	     reg_icr == 0)) {
1433 		logif(intr_end);
1434 		return;
1435 	}
1436 
1437 	/*
1438 	 * XXX: some laptops trigger several spurious interrupts
1439 	 * on em(4) when in the resume cycle. The ICR register
1440 	 * reports all-ones value in this case. Processing such
1441 	 * interrupts would lead to a freeze. I don't know why.
1442 	 */
1443 	if (reg_icr == 0xffffffff) {
1444 		logif(intr_end);
1445 		return;
1446 	}
1447 
1448 	if (ifp->if_flags & IFF_RUNNING) {
1449 		if (reg_icr &
1450 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1451 			em_rxeof(adapter, -1);
1452 		if (reg_icr & E1000_ICR_TXDW) {
1453 			em_txeof(adapter);
1454 			if (!ifq_is_empty(&ifp->if_snd))
1455 				if_devstart(ifp);
1456 		}
1457 	}
1458 
1459 	/* Link status change */
1460 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1461 		callout_stop(&adapter->timer);
1462 		adapter->hw.mac.get_link_status = 1;
1463 		em_update_link_status(adapter);
1464 
1465 		/* Deal with TX cruft when link lost */
1466 		em_tx_purge(adapter);
1467 
1468 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1469 	}
1470 
1471 	if (reg_icr & E1000_ICR_RXO)
1472 		adapter->rx_overruns++;
1473 
1474 	logif(intr_end);
1475 }
1476 
1477 static void
1478 em_intr_mask(void *xsc)
1479 {
1480 	struct adapter *adapter = xsc;
1481 
1482 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1483 	/*
1484 	 * NOTE:
1485 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1486 	 * so don't check it.
1487 	 */
1488 	em_intr_body(adapter, FALSE);
1489 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1490 }
1491 
1492 static void
1493 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1494 {
1495 	struct adapter *adapter = ifp->if_softc;
1496 	u_char fiber_type = IFM_1000_SX;
1497 
1498 	ASSERT_SERIALIZED(ifp->if_serializer);
1499 
1500 	em_update_link_status(adapter);
1501 
1502 	ifmr->ifm_status = IFM_AVALID;
1503 	ifmr->ifm_active = IFM_ETHER;
1504 
1505 	if (!adapter->link_active)
1506 		return;
1507 
1508 	ifmr->ifm_status |= IFM_ACTIVE;
1509 
1510 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1511 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1512 		if (adapter->hw.mac.type == e1000_82545)
1513 			fiber_type = IFM_1000_LX;
1514 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1515 	} else {
1516 		switch (adapter->link_speed) {
1517 		case 10:
1518 			ifmr->ifm_active |= IFM_10_T;
1519 			break;
1520 		case 100:
1521 			ifmr->ifm_active |= IFM_100_TX;
1522 			break;
1523 
1524 		case 1000:
1525 			ifmr->ifm_active |= IFM_1000_T;
1526 			break;
1527 		}
1528 		if (adapter->link_duplex == FULL_DUPLEX)
1529 			ifmr->ifm_active |= IFM_FDX;
1530 		else
1531 			ifmr->ifm_active |= IFM_HDX;
1532 	}
1533 }
1534 
1535 static int
1536 em_media_change(struct ifnet *ifp)
1537 {
1538 	struct adapter *adapter = ifp->if_softc;
1539 	struct ifmedia *ifm = &adapter->media;
1540 
1541 	ASSERT_SERIALIZED(ifp->if_serializer);
1542 
1543 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1544 		return (EINVAL);
1545 
1546 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1547 	case IFM_AUTO:
1548 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1549 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1550 		break;
1551 
1552 	case IFM_1000_LX:
1553 	case IFM_1000_SX:
1554 	case IFM_1000_T:
1555 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1556 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1557 		break;
1558 
1559 	case IFM_100_TX:
1560 		adapter->hw.mac.autoneg = FALSE;
1561 		adapter->hw.phy.autoneg_advertised = 0;
1562 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1563 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1564 		else
1565 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1566 		break;
1567 
1568 	case IFM_10_T:
1569 		adapter->hw.mac.autoneg = FALSE;
1570 		adapter->hw.phy.autoneg_advertised = 0;
1571 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1572 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1573 		else
1574 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1575 		break;
1576 
1577 	default:
1578 		if_printf(ifp, "Unsupported media type\n");
1579 		break;
1580 	}
1581 
1582 	em_init(adapter);
1583 
1584 	return (0);
1585 }
1586 
1587 static int
1588 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1589     int *segs_used, int *idx)
1590 {
1591 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1592 	bus_dmamap_t map;
1593 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1594 	struct e1000_tx_desc *ctxd = NULL;
1595 	struct mbuf *m_head = *m_headp;
1596 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1597 	int maxsegs, nsegs, i, j, first, last = 0, error;
1598 
1599 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1600 		error = em_tso_pullup(adapter, m_headp);
1601 		if (error)
1602 			return error;
1603 		m_head = *m_headp;
1604 	}
1605 
1606 	txd_upper = txd_lower = 0;
1607 	txd_used = 0;
1608 
1609 	/*
1610 	 * Capture the first descriptor index, this descriptor
1611 	 * will have the index of the EOP which is the only one
1612 	 * that now gets a DONE bit writeback.
1613 	 */
1614 	first = adapter->next_avail_tx_desc;
1615 	tx_buffer = &adapter->tx_buffer_area[first];
1616 	tx_buffer_mapped = tx_buffer;
1617 	map = tx_buffer->map;
1618 
1619 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1620 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1621 		("not enough spare TX desc"));
1622 	if (adapter->pcix_82544) {
1623 		/* Half it; see the comment in em_attach() */
1624 		maxsegs >>= 1;
1625 	}
1626 	if (maxsegs > EM_MAX_SCATTER)
1627 		maxsegs = EM_MAX_SCATTER;
1628 
1629 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1630 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1631 	if (error) {
1632 		if (error == ENOBUFS)
1633 			adapter->mbuf_alloc_failed++;
1634 		else
1635 			adapter->no_tx_dma_setup++;
1636 
1637 		m_freem(*m_headp);
1638 		*m_headp = NULL;
1639 		return error;
1640 	}
1641         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1642 
1643 	m_head = *m_headp;
1644 	adapter->tx_nsegs += nsegs;
1645 	*segs_used += nsegs;
1646 
1647 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1648 		/* TSO will consume one TX desc */
1649 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1650 		adapter->tx_nsegs += i;
1651 		*segs_used += i;
1652 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1653 		/* TX csum offloading will consume one TX desc */
1654 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1655 		adapter->tx_nsegs += i;
1656 		*segs_used += i;
1657 	}
1658 	i = adapter->next_avail_tx_desc;
1659 
1660 	/* Set up our transmit descriptors */
1661 	for (j = 0; j < nsegs; j++) {
1662 		/* If adapter is 82544 and on PCIX bus */
1663 		if(adapter->pcix_82544) {
1664 			DESC_ARRAY desc_array;
1665 			uint32_t array_elements, counter;
1666 
1667 			/*
1668 			 * Check the Address and Length combination and
1669 			 * split the data accordingly
1670 			 */
1671 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1672 						segs[j].ds_len, &desc_array);
1673 			for (counter = 0; counter < array_elements; counter++) {
1674 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1675 
1676 				tx_buffer = &adapter->tx_buffer_area[i];
1677 				ctxd = &adapter->tx_desc_base[i];
1678 
1679 				ctxd->buffer_addr = htole64(
1680 				    desc_array.descriptor[counter].address);
1681 				ctxd->lower.data = htole32(
1682 				    E1000_TXD_CMD_IFCS | txd_lower |
1683 				    desc_array.descriptor[counter].length);
1684 				ctxd->upper.data = htole32(txd_upper);
1685 
1686 				last = i;
1687 				if (++i == adapter->num_tx_desc)
1688 					i = 0;
1689 
1690 				txd_used++;
1691                         }
1692 		} else {
1693 			tx_buffer = &adapter->tx_buffer_area[i];
1694 			ctxd = &adapter->tx_desc_base[i];
1695 
1696 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1697 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1698 						   txd_lower | segs[j].ds_len);
1699 			ctxd->upper.data = htole32(txd_upper);
1700 
1701 			last = i;
1702 			if (++i == adapter->num_tx_desc)
1703 				i = 0;
1704 		}
1705 	}
1706 
1707 	adapter->next_avail_tx_desc = i;
1708 	if (adapter->pcix_82544) {
1709 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1710 		adapter->num_tx_desc_avail -= txd_used;
1711 	} else {
1712 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1713 		adapter->num_tx_desc_avail -= nsegs;
1714 	}
1715 
1716         /* Handle VLAN tag */
1717 	if (m_head->m_flags & M_VLANTAG) {
1718 		/* Set the vlan id. */
1719 		ctxd->upper.fields.special =
1720 		    htole16(m_head->m_pkthdr.ether_vlantag);
1721 
1722 		/* Tell hardware to add tag */
1723 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1724 	}
1725 
1726 	tx_buffer->m_head = m_head;
1727 	tx_buffer_mapped->map = tx_buffer->map;
1728 	tx_buffer->map = map;
1729 
1730 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1731 		adapter->tx_nsegs = 0;
1732 
1733 		/*
1734 		 * Report Status (RS) is turned on
1735 		 * every tx_int_nsegs descriptors.
1736 		 */
1737 		cmd = E1000_TXD_CMD_RS;
1738 
1739 		/*
1740 		 * Keep track of the descriptor, which will
1741 		 * be written back by hardware.
1742 		 */
1743 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1744 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1745 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1746 	}
1747 
1748 	/*
1749 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1750 	 */
1751 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1752 
1753 	if (adapter->hw.mac.type == e1000_82547) {
1754 		/*
1755 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1756 		 * E1000 that this frame is available to transmit.
1757 		 */
1758 		if (adapter->link_duplex == HALF_DUPLEX) {
1759 			em_82547_move_tail_serialized(adapter);
1760 		} else {
1761 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1762 			em_82547_update_fifo_head(adapter,
1763 			    m_head->m_pkthdr.len);
1764 		}
1765 	} else {
1766 		/*
1767 		 * Defer TDT updating, until enough descriptors are setup
1768 		 */
1769 		*idx = i;
1770 	}
1771 	return (0);
1772 }
1773 
1774 /*
1775  * 82547 workaround to avoid controller hang in half-duplex environment.
1776  * The workaround is to avoid queuing a large packet that would span
1777  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1778  * in this case.  We do that only when FIFO is quiescent.
1779  */
1780 static void
1781 em_82547_move_tail_serialized(struct adapter *adapter)
1782 {
1783 	struct e1000_tx_desc *tx_desc;
1784 	uint16_t hw_tdt, sw_tdt, length = 0;
1785 	bool eop = 0;
1786 
1787 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1788 
1789 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1790 	sw_tdt = adapter->next_avail_tx_desc;
1791 
1792 	while (hw_tdt != sw_tdt) {
1793 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1794 		length += tx_desc->lower.flags.length;
1795 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1796 		if (++hw_tdt == adapter->num_tx_desc)
1797 			hw_tdt = 0;
1798 
1799 		if (eop) {
1800 			if (em_82547_fifo_workaround(adapter, length)) {
1801 				adapter->tx_fifo_wrk_cnt++;
1802 				callout_reset(&adapter->tx_fifo_timer, 1,
1803 					em_82547_move_tail, adapter);
1804 				break;
1805 			}
1806 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1807 			em_82547_update_fifo_head(adapter, length);
1808 			length = 0;
1809 		}
1810 	}
1811 }
1812 
1813 static void
1814 em_82547_move_tail(void *xsc)
1815 {
1816 	struct adapter *adapter = xsc;
1817 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1818 
1819 	lwkt_serialize_enter(ifp->if_serializer);
1820 	em_82547_move_tail_serialized(adapter);
1821 	lwkt_serialize_exit(ifp->if_serializer);
1822 }
1823 
1824 static int
1825 em_82547_fifo_workaround(struct adapter *adapter, int len)
1826 {
1827 	int fifo_space, fifo_pkt_len;
1828 
1829 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1830 
1831 	if (adapter->link_duplex == HALF_DUPLEX) {
1832 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1833 
1834 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1835 			if (em_82547_tx_fifo_reset(adapter))
1836 				return (0);
1837 			else
1838 				return (1);
1839 		}
1840 	}
1841 	return (0);
1842 }
1843 
1844 static void
1845 em_82547_update_fifo_head(struct adapter *adapter, int len)
1846 {
1847 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1848 
1849 	/* tx_fifo_head is always 16 byte aligned */
1850 	adapter->tx_fifo_head += fifo_pkt_len;
1851 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1852 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1853 }
1854 
1855 static int
1856 em_82547_tx_fifo_reset(struct adapter *adapter)
1857 {
1858 	uint32_t tctl;
1859 
1860 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1861 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1862 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1863 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1864 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1865 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1866 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1867 		/* Disable TX unit */
1868 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1869 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1870 		    tctl & ~E1000_TCTL_EN);
1871 
1872 		/* Reset FIFO pointers */
1873 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1874 		    adapter->tx_head_addr);
1875 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1876 		    adapter->tx_head_addr);
1877 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1878 		    adapter->tx_head_addr);
1879 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1880 		    adapter->tx_head_addr);
1881 
1882 		/* Re-enable TX unit */
1883 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1884 		E1000_WRITE_FLUSH(&adapter->hw);
1885 
1886 		adapter->tx_fifo_head = 0;
1887 		adapter->tx_fifo_reset_cnt++;
1888 
1889 		return (TRUE);
1890 	} else {
1891 		return (FALSE);
1892 	}
1893 }
1894 
1895 static void
1896 em_set_promisc(struct adapter *adapter)
1897 {
1898 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1899 	uint32_t reg_rctl;
1900 
1901 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1902 
1903 	if (ifp->if_flags & IFF_PROMISC) {
1904 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1905 		/* Turn this on if you want to see bad packets */
1906 		if (em_debug_sbp)
1907 			reg_rctl |= E1000_RCTL_SBP;
1908 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1909 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1910 		reg_rctl |= E1000_RCTL_MPE;
1911 		reg_rctl &= ~E1000_RCTL_UPE;
1912 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1913 	}
1914 }
1915 
1916 static void
1917 em_disable_promisc(struct adapter *adapter)
1918 {
1919 	uint32_t reg_rctl;
1920 
1921 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1922 
1923 	reg_rctl &= ~E1000_RCTL_UPE;
1924 	reg_rctl &= ~E1000_RCTL_MPE;
1925 	reg_rctl &= ~E1000_RCTL_SBP;
1926 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1927 }
1928 
1929 static void
1930 em_set_multi(struct adapter *adapter)
1931 {
1932 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1933 	struct ifmultiaddr *ifma;
1934 	uint32_t reg_rctl = 0;
1935 	uint8_t *mta;
1936 	int mcnt = 0;
1937 
1938 	mta = adapter->mta;
1939 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1940 
1941 	if (adapter->hw.mac.type == e1000_82542 &&
1942 	    adapter->hw.revision_id == E1000_REVISION_2) {
1943 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1944 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1945 			e1000_pci_clear_mwi(&adapter->hw);
1946 		reg_rctl |= E1000_RCTL_RST;
1947 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1948 		msec_delay(5);
1949 	}
1950 
1951 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1952 		if (ifma->ifma_addr->sa_family != AF_LINK)
1953 			continue;
1954 
1955 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1956 			break;
1957 
1958 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1959 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1960 		mcnt++;
1961 	}
1962 
1963 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1964 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1965 		reg_rctl |= E1000_RCTL_MPE;
1966 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1967 	} else {
1968 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1969 	}
1970 
1971 	if (adapter->hw.mac.type == e1000_82542 &&
1972 	    adapter->hw.revision_id == E1000_REVISION_2) {
1973 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1974 		reg_rctl &= ~E1000_RCTL_RST;
1975 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1976 		msec_delay(5);
1977 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1978 			e1000_pci_set_mwi(&adapter->hw);
1979 	}
1980 }
1981 
1982 /*
1983  * This routine checks for link status and updates statistics.
1984  */
1985 static void
1986 em_timer(void *xsc)
1987 {
1988 	struct adapter *adapter = xsc;
1989 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1990 
1991 	lwkt_serialize_enter(ifp->if_serializer);
1992 
1993 	em_update_link_status(adapter);
1994 	em_update_stats(adapter);
1995 
1996 	/* Reset LAA into RAR[0] on 82571 */
1997 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1998 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1999 
2000 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2001 		em_print_hw_stats(adapter);
2002 
2003 	em_smartspeed(adapter);
2004 
2005 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2006 
2007 	lwkt_serialize_exit(ifp->if_serializer);
2008 }
2009 
2010 static void
2011 em_update_link_status(struct adapter *adapter)
2012 {
2013 	struct e1000_hw *hw = &adapter->hw;
2014 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2015 	device_t dev = adapter->dev;
2016 	uint32_t link_check = 0;
2017 
2018 	/* Get the cached link value or read phy for real */
2019 	switch (hw->phy.media_type) {
2020 	case e1000_media_type_copper:
2021 		if (hw->mac.get_link_status) {
2022 			/* Do the work to read phy */
2023 			e1000_check_for_link(hw);
2024 			link_check = !hw->mac.get_link_status;
2025 			if (link_check) /* ESB2 fix */
2026 				e1000_cfg_on_link_up(hw);
2027 		} else {
2028 			link_check = TRUE;
2029 		}
2030 		break;
2031 
2032 	case e1000_media_type_fiber:
2033 		e1000_check_for_link(hw);
2034 		link_check =
2035 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2036 		break;
2037 
2038 	case e1000_media_type_internal_serdes:
2039 		e1000_check_for_link(hw);
2040 		link_check = adapter->hw.mac.serdes_has_link;
2041 		break;
2042 
2043 	case e1000_media_type_unknown:
2044 	default:
2045 		break;
2046 	}
2047 
2048 	/* Now check for a transition */
2049 	if (link_check && adapter->link_active == 0) {
2050 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2051 		    &adapter->link_duplex);
2052 
2053 		/*
2054 		 * Check if we should enable/disable SPEED_MODE bit on
2055 		 * 82571/82572
2056 		 */
2057 		if (adapter->link_speed != SPEED_1000 &&
2058 		    (hw->mac.type == e1000_82571 ||
2059 		     hw->mac.type == e1000_82572)) {
2060 			int tarc0;
2061 
2062 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2063 			tarc0 &= ~SPEED_MODE_BIT;
2064 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2065 		}
2066 		if (bootverbose) {
2067 			device_printf(dev, "Link is up %d Mbps %s\n",
2068 			    adapter->link_speed,
2069 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2070 			    "Full Duplex" : "Half Duplex"));
2071 		}
2072 		adapter->link_active = 1;
2073 		adapter->smartspeed = 0;
2074 		ifp->if_baudrate = adapter->link_speed * 1000000;
2075 		ifp->if_link_state = LINK_STATE_UP;
2076 		if_link_state_change(ifp);
2077 	} else if (!link_check && adapter->link_active == 1) {
2078 		ifp->if_baudrate = adapter->link_speed = 0;
2079 		adapter->link_duplex = 0;
2080 		if (bootverbose)
2081 			device_printf(dev, "Link is Down\n");
2082 		adapter->link_active = 0;
2083 #if 0
2084 		/* Link down, disable watchdog */
2085 		if->if_timer = 0;
2086 #endif
2087 		ifp->if_link_state = LINK_STATE_DOWN;
2088 		if_link_state_change(ifp);
2089 	}
2090 }
2091 
2092 static void
2093 em_stop(struct adapter *adapter)
2094 {
2095 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2096 	int i;
2097 
2098 	ASSERT_SERIALIZED(ifp->if_serializer);
2099 
2100 	em_disable_intr(adapter);
2101 
2102 	callout_stop(&adapter->timer);
2103 	callout_stop(&adapter->tx_fifo_timer);
2104 
2105 	ifp->if_flags &= ~IFF_RUNNING;
2106 	ifq_clr_oactive(&ifp->if_snd);
2107 	ifp->if_timer = 0;
2108 
2109 	e1000_reset_hw(&adapter->hw);
2110 	if (adapter->hw.mac.type >= e1000_82544)
2111 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2112 
2113 	for (i = 0; i < adapter->num_tx_desc; i++) {
2114 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2115 
2116 		if (tx_buffer->m_head != NULL) {
2117 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2118 			m_freem(tx_buffer->m_head);
2119 			tx_buffer->m_head = NULL;
2120 		}
2121 	}
2122 
2123 	for (i = 0; i < adapter->num_rx_desc; i++) {
2124 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2125 
2126 		if (rx_buffer->m_head != NULL) {
2127 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2128 			m_freem(rx_buffer->m_head);
2129 			rx_buffer->m_head = NULL;
2130 		}
2131 	}
2132 
2133 	if (adapter->fmp != NULL)
2134 		m_freem(adapter->fmp);
2135 	adapter->fmp = NULL;
2136 	adapter->lmp = NULL;
2137 
2138 	adapter->csum_flags = 0;
2139 	adapter->csum_lhlen = 0;
2140 	adapter->csum_iphlen = 0;
2141 	adapter->csum_thlen = 0;
2142 	adapter->csum_mss = 0;
2143 	adapter->csum_pktlen = 0;
2144 
2145 	adapter->tx_dd_head = 0;
2146 	adapter->tx_dd_tail = 0;
2147 	adapter->tx_nsegs = 0;
2148 }
2149 
2150 static int
2151 em_get_hw_info(struct adapter *adapter)
2152 {
2153 	device_t dev = adapter->dev;
2154 
2155 	/* Save off the information about this board */
2156 	adapter->hw.vendor_id = pci_get_vendor(dev);
2157 	adapter->hw.device_id = pci_get_device(dev);
2158 	adapter->hw.revision_id = pci_get_revid(dev);
2159 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2160 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2161 
2162 	/* Do Shared Code Init and Setup */
2163 	if (e1000_set_mac_type(&adapter->hw))
2164 		return ENXIO;
2165 	return 0;
2166 }
2167 
2168 static int
2169 em_alloc_pci_res(struct adapter *adapter)
2170 {
2171 	device_t dev = adapter->dev;
2172 	u_int intr_flags;
2173 	int val, rid, msi_enable;
2174 
2175 	/* Enable bus mastering */
2176 	pci_enable_busmaster(dev);
2177 
2178 	adapter->memory_rid = EM_BAR_MEM;
2179 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2180 				&adapter->memory_rid, RF_ACTIVE);
2181 	if (adapter->memory == NULL) {
2182 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2183 		return (ENXIO);
2184 	}
2185 	adapter->osdep.mem_bus_space_tag =
2186 	    rman_get_bustag(adapter->memory);
2187 	adapter->osdep.mem_bus_space_handle =
2188 	    rman_get_bushandle(adapter->memory);
2189 
2190 	/* XXX This is quite goofy, it is not actually used */
2191 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2192 
2193 	/* Only older adapters use IO mapping */
2194 	if (adapter->hw.mac.type > e1000_82543 &&
2195 	    adapter->hw.mac.type < e1000_82571) {
2196 		/* Figure our where our IO BAR is ? */
2197 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2198 			val = pci_read_config(dev, rid, 4);
2199 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2200 				adapter->io_rid = rid;
2201 				break;
2202 			}
2203 			rid += 4;
2204 			/* check for 64bit BAR */
2205 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2206 				rid += 4;
2207 		}
2208 		if (rid >= PCIR_CARDBUSCIS) {
2209 			device_printf(dev, "Unable to locate IO BAR\n");
2210 			return (ENXIO);
2211 		}
2212 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2213 					&adapter->io_rid, RF_ACTIVE);
2214 		if (adapter->ioport == NULL) {
2215 			device_printf(dev, "Unable to allocate bus resource: "
2216 			    "ioport\n");
2217 			return (ENXIO);
2218 		}
2219 		adapter->hw.io_base = 0;
2220 		adapter->osdep.io_bus_space_tag =
2221 		    rman_get_bustag(adapter->ioport);
2222 		adapter->osdep.io_bus_space_handle =
2223 		    rman_get_bushandle(adapter->ioport);
2224 	}
2225 
2226 	/*
2227 	 * Don't enable MSI-X on 82574, see:
2228 	 * 82574 specification update errata #15
2229 	 *
2230 	 * Don't enable MSI on PCI/PCI-X chips, see:
2231 	 * 82540 specification update errata #6
2232 	 * 82545 specification update errata #4
2233 	 *
2234 	 * Don't enable MSI on 82571/82572, see:
2235 	 * 82571/82572 specification update errata #63
2236 	 */
2237 	msi_enable = em_msi_enable;
2238 	if (msi_enable &&
2239 	    (!pci_is_pcie(dev) ||
2240 	     adapter->hw.mac.type == e1000_82571 ||
2241 	     adapter->hw.mac.type == e1000_82572))
2242 		msi_enable = 0;
2243 
2244 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2245 	    &adapter->intr_rid, &intr_flags);
2246 
2247 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2248 		int unshared;
2249 
2250 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2251 		if (!unshared) {
2252 			adapter->flags |= EM_FLAG_SHARED_INTR;
2253 			if (bootverbose)
2254 				device_printf(dev, "IRQ shared\n");
2255 		} else {
2256 			intr_flags &= ~RF_SHAREABLE;
2257 			if (bootverbose)
2258 				device_printf(dev, "IRQ unshared\n");
2259 		}
2260 	}
2261 
2262 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2263 	    &adapter->intr_rid, intr_flags);
2264 	if (adapter->intr_res == NULL) {
2265 		device_printf(dev, "Unable to allocate bus resource: "
2266 		    "interrupt\n");
2267 		return (ENXIO);
2268 	}
2269 
2270 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2271 	adapter->hw.back = &adapter->osdep;
2272 	return (0);
2273 }
2274 
2275 static void
2276 em_free_pci_res(struct adapter *adapter)
2277 {
2278 	device_t dev = adapter->dev;
2279 
2280 	if (adapter->intr_res != NULL) {
2281 		bus_release_resource(dev, SYS_RES_IRQ,
2282 		    adapter->intr_rid, adapter->intr_res);
2283 	}
2284 
2285 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2286 		pci_release_msi(dev);
2287 
2288 	if (adapter->memory != NULL) {
2289 		bus_release_resource(dev, SYS_RES_MEMORY,
2290 		    adapter->memory_rid, adapter->memory);
2291 	}
2292 
2293 	if (adapter->flash != NULL) {
2294 		bus_release_resource(dev, SYS_RES_MEMORY,
2295 		    adapter->flash_rid, adapter->flash);
2296 	}
2297 
2298 	if (adapter->ioport != NULL) {
2299 		bus_release_resource(dev, SYS_RES_IOPORT,
2300 		    adapter->io_rid, adapter->ioport);
2301 	}
2302 }
2303 
2304 static int
2305 em_reset(struct adapter *adapter)
2306 {
2307 	device_t dev = adapter->dev;
2308 	uint16_t rx_buffer_size;
2309 	uint32_t pba;
2310 
2311 	/* When hardware is reset, fifo_head is also reset */
2312 	adapter->tx_fifo_head = 0;
2313 
2314 	/* Set up smart power down as default off on newer adapters. */
2315 	if (!em_smart_pwr_down &&
2316 	    (adapter->hw.mac.type == e1000_82571 ||
2317 	     adapter->hw.mac.type == e1000_82572)) {
2318 		uint16_t phy_tmp = 0;
2319 
2320 		/* Speed up time to link by disabling smart power down. */
2321 		e1000_read_phy_reg(&adapter->hw,
2322 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2323 		phy_tmp &= ~IGP02E1000_PM_SPD;
2324 		e1000_write_phy_reg(&adapter->hw,
2325 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2326 	}
2327 
2328 	/*
2329 	 * Packet Buffer Allocation (PBA)
2330 	 * Writing PBA sets the receive portion of the buffer
2331 	 * the remainder is used for the transmit buffer.
2332 	 *
2333 	 * Devices before the 82547 had a Packet Buffer of 64K.
2334 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2335 	 * After the 82547 the buffer was reduced to 40K.
2336 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2337 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2338 	 */
2339 	switch (adapter->hw.mac.type) {
2340 	case e1000_82547:
2341 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2342 		if (adapter->max_frame_size > 8192)
2343 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2344 		else
2345 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2346 		adapter->tx_fifo_head = 0;
2347 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2348 		adapter->tx_fifo_size =
2349 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2350 		break;
2351 
2352 	/* Total Packet Buffer on these is 48K */
2353 	case e1000_82571:
2354 	case e1000_82572:
2355 	case e1000_80003es2lan:
2356 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2357 		break;
2358 
2359 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2360 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2361 		break;
2362 
2363 	case e1000_82574:
2364 	case e1000_82583:
2365 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2366 		break;
2367 
2368 	case e1000_ich8lan:
2369 		pba = E1000_PBA_8K;
2370 		break;
2371 
2372 	case e1000_ich9lan:
2373 	case e1000_ich10lan:
2374 #define E1000_PBA_10K	0x000A
2375 		pba = E1000_PBA_10K;
2376 		break;
2377 
2378 	case e1000_pchlan:
2379 	case e1000_pch2lan:
2380 		pba = E1000_PBA_26K;
2381 		break;
2382 
2383 	default:
2384 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2385 		if (adapter->max_frame_size > 8192)
2386 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2387 		else
2388 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2389 	}
2390 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2391 
2392 	/*
2393 	 * These parameters control the automatic generation (Tx) and
2394 	 * response (Rx) to Ethernet PAUSE frames.
2395 	 * - High water mark should allow for at least two frames to be
2396 	 *   received after sending an XOFF.
2397 	 * - Low water mark works best when it is very near the high water mark.
2398 	 *   This allows the receiver to restart by sending XON when it has
2399 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2400 	 *   restart after one full frame is pulled from the buffer. There
2401 	 *   could be several smaller frames in the buffer and if so they will
2402 	 *   not trigger the XON until their total number reduces the buffer
2403 	 *   by 1500.
2404 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2405 	 */
2406 	rx_buffer_size =
2407 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2408 
2409 	adapter->hw.fc.high_water = rx_buffer_size -
2410 				    roundup2(adapter->max_frame_size, 1024);
2411 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2412 
2413 	if (adapter->hw.mac.type == e1000_80003es2lan)
2414 		adapter->hw.fc.pause_time = 0xFFFF;
2415 	else
2416 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2417 
2418 	adapter->hw.fc.send_xon = TRUE;
2419 
2420 	adapter->hw.fc.requested_mode = e1000_fc_full;
2421 
2422 	/*
2423 	 * Device specific overrides/settings
2424 	 */
2425 	switch (adapter->hw.mac.type) {
2426 	case e1000_pchlan:
2427 		/* Workaround: no TX flow ctrl for PCH */
2428 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2429 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2430 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2431 			adapter->hw.fc.high_water = 0x3500;
2432 			adapter->hw.fc.low_water = 0x1500;
2433 		} else {
2434 			adapter->hw.fc.high_water = 0x5000;
2435 			adapter->hw.fc.low_water = 0x3000;
2436 		}
2437 		adapter->hw.fc.refresh_time = 0x1000;
2438 		break;
2439 
2440 	case e1000_pch2lan:
2441 		adapter->hw.fc.high_water = 0x5C20;
2442 		adapter->hw.fc.low_water = 0x5048;
2443 		adapter->hw.fc.pause_time = 0x0650;
2444 		adapter->hw.fc.refresh_time = 0x0400;
2445 		/* Jumbos need adjusted PBA */
2446 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2447 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2448 		else
2449 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2450 		break;
2451 
2452 	case e1000_ich9lan:
2453 	case e1000_ich10lan:
2454 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2455 			adapter->hw.fc.high_water = 0x2800;
2456 			adapter->hw.fc.low_water =
2457 			    adapter->hw.fc.high_water - 8;
2458 			break;
2459 		}
2460 		/* FALL THROUGH */
2461 	default:
2462 		if (adapter->hw.mac.type == e1000_80003es2lan)
2463 			adapter->hw.fc.pause_time = 0xFFFF;
2464 		break;
2465 	}
2466 
2467 	/* Issue a global reset */
2468 	e1000_reset_hw(&adapter->hw);
2469 	if (adapter->hw.mac.type >= e1000_82544)
2470 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2471 	em_disable_aspm(adapter);
2472 
2473 	if (e1000_init_hw(&adapter->hw) < 0) {
2474 		device_printf(dev, "Hardware Initialization Failed\n");
2475 		return (EIO);
2476 	}
2477 
2478 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2479 	e1000_get_phy_info(&adapter->hw);
2480 	e1000_check_for_link(&adapter->hw);
2481 
2482 	return (0);
2483 }
2484 
2485 static void
2486 em_setup_ifp(struct adapter *adapter)
2487 {
2488 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2489 
2490 	if_initname(ifp, device_get_name(adapter->dev),
2491 		    device_get_unit(adapter->dev));
2492 	ifp->if_softc = adapter;
2493 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2494 	ifp->if_init =  em_init;
2495 	ifp->if_ioctl = em_ioctl;
2496 	ifp->if_start = em_start;
2497 #ifdef IFPOLL_ENABLE
2498 	ifp->if_npoll = em_npoll;
2499 #endif
2500 	ifp->if_watchdog = em_watchdog;
2501 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2502 	ifq_set_ready(&ifp->if_snd);
2503 
2504 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2505 
2506 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2507 	if (adapter->hw.mac.type >= e1000_82543)
2508 		ifp->if_capabilities |= IFCAP_HWCSUM;
2509 	if (adapter->flags & EM_FLAG_TSO)
2510 		ifp->if_capabilities |= IFCAP_TSO;
2511 	ifp->if_capenable = ifp->if_capabilities;
2512 
2513 	if (ifp->if_capenable & IFCAP_TXCSUM)
2514 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2515 	if (ifp->if_capenable & IFCAP_TSO)
2516 		ifp->if_hwassist |= CSUM_TSO;
2517 
2518 	/*
2519 	 * Tell the upper layer(s) we support long frames.
2520 	 */
2521 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2522 
2523 	/*
2524 	 * Specify the media types supported by this adapter and register
2525 	 * callbacks to update media and link information
2526 	 */
2527 	ifmedia_init(&adapter->media, IFM_IMASK,
2528 		     em_media_change, em_media_status);
2529 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2530 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2531 		u_char fiber_type = IFM_1000_SX; /* default type */
2532 
2533 		if (adapter->hw.mac.type == e1000_82545)
2534 			fiber_type = IFM_1000_LX;
2535 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2536 			    0, NULL);
2537 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2538 	} else {
2539 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2540 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2541 			    0, NULL);
2542 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2543 			    0, NULL);
2544 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2545 			    0, NULL);
2546 		if (adapter->hw.phy.type != e1000_phy_ife) {
2547 			ifmedia_add(&adapter->media,
2548 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2549 			ifmedia_add(&adapter->media,
2550 				IFM_ETHER | IFM_1000_T, 0, NULL);
2551 		}
2552 	}
2553 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2554 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2555 }
2556 
2557 
2558 /*
2559  * Workaround for SmartSpeed on 82541 and 82547 controllers
2560  */
2561 static void
2562 em_smartspeed(struct adapter *adapter)
2563 {
2564 	uint16_t phy_tmp;
2565 
2566 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2567 	    adapter->hw.mac.autoneg == 0 ||
2568 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2569 		return;
2570 
2571 	if (adapter->smartspeed == 0) {
2572 		/*
2573 		 * If Master/Slave config fault is asserted twice,
2574 		 * we assume back-to-back
2575 		 */
2576 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2577 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2578 			return;
2579 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2580 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2581 			e1000_read_phy_reg(&adapter->hw,
2582 			    PHY_1000T_CTRL, &phy_tmp);
2583 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2584 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2585 				e1000_write_phy_reg(&adapter->hw,
2586 				    PHY_1000T_CTRL, phy_tmp);
2587 				adapter->smartspeed++;
2588 				if (adapter->hw.mac.autoneg &&
2589 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2590 				    !e1000_read_phy_reg(&adapter->hw,
2591 				     PHY_CONTROL, &phy_tmp)) {
2592 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2593 						   MII_CR_RESTART_AUTO_NEG;
2594 					e1000_write_phy_reg(&adapter->hw,
2595 					    PHY_CONTROL, phy_tmp);
2596 				}
2597 			}
2598 		}
2599 		return;
2600 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2601 		/* If still no link, perhaps using 2/3 pair cable */
2602 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2603 		phy_tmp |= CR_1000T_MS_ENABLE;
2604 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2605 		if (adapter->hw.mac.autoneg &&
2606 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2607 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2608 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2609 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2610 		}
2611 	}
2612 
2613 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2614 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2615 		adapter->smartspeed = 0;
2616 }
2617 
2618 static int
2619 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2620 	      struct em_dma_alloc *dma)
2621 {
2622 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2623 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2624 				&dma->dma_tag, &dma->dma_map,
2625 				&dma->dma_paddr);
2626 	if (dma->dma_vaddr == NULL)
2627 		return ENOMEM;
2628 	else
2629 		return 0;
2630 }
2631 
2632 static void
2633 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2634 {
2635 	if (dma->dma_tag == NULL)
2636 		return;
2637 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2638 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2639 	bus_dma_tag_destroy(dma->dma_tag);
2640 }
2641 
2642 static int
2643 em_create_tx_ring(struct adapter *adapter)
2644 {
2645 	device_t dev = adapter->dev;
2646 	struct em_buffer *tx_buffer;
2647 	int error, i;
2648 
2649 	adapter->tx_buffer_area =
2650 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2651 			M_DEVBUF, M_WAITOK | M_ZERO);
2652 
2653 	/*
2654 	 * Create DMA tags for tx buffers
2655 	 */
2656 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2657 			1, 0,			/* alignment, bounds */
2658 			BUS_SPACE_MAXADDR,	/* lowaddr */
2659 			BUS_SPACE_MAXADDR,	/* highaddr */
2660 			NULL, NULL,		/* filter, filterarg */
2661 			EM_TSO_SIZE,		/* maxsize */
2662 			EM_MAX_SCATTER,		/* nsegments */
2663 			PAGE_SIZE,		/* maxsegsize */
2664 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2665 			BUS_DMA_ONEBPAGE,	/* flags */
2666 			&adapter->txtag);
2667 	if (error) {
2668 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2669 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2670 		adapter->tx_buffer_area = NULL;
2671 		return error;
2672 	}
2673 
2674 	/*
2675 	 * Create DMA maps for tx buffers
2676 	 */
2677 	for (i = 0; i < adapter->num_tx_desc; i++) {
2678 		tx_buffer = &adapter->tx_buffer_area[i];
2679 
2680 		error = bus_dmamap_create(adapter->txtag,
2681 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2682 					  &tx_buffer->map);
2683 		if (error) {
2684 			device_printf(dev, "Unable to create TX DMA map\n");
2685 			em_destroy_tx_ring(adapter, i);
2686 			return error;
2687 		}
2688 	}
2689 	return (0);
2690 }
2691 
2692 static void
2693 em_init_tx_ring(struct adapter *adapter)
2694 {
2695 	/* Clear the old ring contents */
2696 	bzero(adapter->tx_desc_base,
2697 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2698 
2699 	/* Reset state */
2700 	adapter->next_avail_tx_desc = 0;
2701 	adapter->next_tx_to_clean = 0;
2702 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2703 }
2704 
2705 static void
2706 em_init_tx_unit(struct adapter *adapter)
2707 {
2708 	uint32_t tctl, tarc, tipg = 0;
2709 	uint64_t bus_addr;
2710 
2711 	/* Setup the Base and Length of the Tx Descriptor Ring */
2712 	bus_addr = adapter->txdma.dma_paddr;
2713 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2714 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2715 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2716 	    (uint32_t)(bus_addr >> 32));
2717 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2718 	    (uint32_t)bus_addr);
2719 	/* Setup the HW Tx Head and Tail descriptor pointers */
2720 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2721 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2722 
2723 	/* Set the default values for the Tx Inter Packet Gap timer */
2724 	switch (adapter->hw.mac.type) {
2725 	case e1000_82542:
2726 		tipg = DEFAULT_82542_TIPG_IPGT;
2727 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2728 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2729 		break;
2730 
2731 	case e1000_80003es2lan:
2732 		tipg = DEFAULT_82543_TIPG_IPGR1;
2733 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2734 		    E1000_TIPG_IPGR2_SHIFT;
2735 		break;
2736 
2737 	default:
2738 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2739 		    adapter->hw.phy.media_type ==
2740 		    e1000_media_type_internal_serdes)
2741 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2742 		else
2743 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2744 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2745 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2746 		break;
2747 	}
2748 
2749 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2750 
2751 	/* NOTE: 0 is not allowed for TIDV */
2752 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2753 	if(adapter->hw.mac.type >= e1000_82540)
2754 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2755 
2756 	if (adapter->hw.mac.type == e1000_82571 ||
2757 	    adapter->hw.mac.type == e1000_82572) {
2758 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2759 		tarc |= SPEED_MODE_BIT;
2760 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2761 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2762 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2763 		tarc |= 1;
2764 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2765 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2766 		tarc |= 1;
2767 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2768 	}
2769 
2770 	/* Program the Transmit Control Register */
2771 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2772 	tctl &= ~E1000_TCTL_CT;
2773 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2774 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2775 
2776 	if (adapter->hw.mac.type >= e1000_82571)
2777 		tctl |= E1000_TCTL_MULR;
2778 
2779 	/* This write will effectively turn on the transmit unit. */
2780 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2781 
2782 	if (adapter->hw.mac.type == e1000_82571 ||
2783 	    adapter->hw.mac.type == e1000_82572 ||
2784 	    adapter->hw.mac.type == e1000_80003es2lan) {
2785 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2786 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2787 		tarc &= ~(1 << 28);
2788 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2789 	}
2790 }
2791 
2792 static void
2793 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2794 {
2795 	struct em_buffer *tx_buffer;
2796 	int i;
2797 
2798 	if (adapter->tx_buffer_area == NULL)
2799 		return;
2800 
2801 	for (i = 0; i < ndesc; i++) {
2802 		tx_buffer = &adapter->tx_buffer_area[i];
2803 
2804 		KKASSERT(tx_buffer->m_head == NULL);
2805 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2806 	}
2807 	bus_dma_tag_destroy(adapter->txtag);
2808 
2809 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2810 	adapter->tx_buffer_area = NULL;
2811 }
2812 
2813 /*
2814  * The offload context needs to be set when we transfer the first
2815  * packet of a particular protocol (TCP/UDP).  This routine has been
2816  * enhanced to deal with inserted VLAN headers.
2817  *
2818  * If the new packet's ether header length, ip header length and
2819  * csum offloading type are same as the previous packet, we should
2820  * avoid allocating a new csum context descriptor; mainly to take
2821  * advantage of the pipeline effect of the TX data read request.
2822  *
2823  * This function returns number of TX descrptors allocated for
2824  * csum context.
2825  */
2826 static int
2827 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2828 	  uint32_t *txd_upper, uint32_t *txd_lower)
2829 {
2830 	struct e1000_context_desc *TXD;
2831 	int curr_txd, ehdrlen, csum_flags;
2832 	uint32_t cmd, hdr_len, ip_hlen;
2833 
2834 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2835 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2836 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2837 
2838 	if (adapter->csum_lhlen == ehdrlen &&
2839 	    adapter->csum_iphlen == ip_hlen &&
2840 	    adapter->csum_flags == csum_flags) {
2841 		/*
2842 		 * Same csum offload context as the previous packets;
2843 		 * just return.
2844 		 */
2845 		*txd_upper = adapter->csum_txd_upper;
2846 		*txd_lower = adapter->csum_txd_lower;
2847 		return 0;
2848 	}
2849 
2850 	/*
2851 	 * Setup a new csum offload context.
2852 	 */
2853 
2854 	curr_txd = adapter->next_avail_tx_desc;
2855 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2856 
2857 	cmd = 0;
2858 
2859 	/* Setup of IP header checksum. */
2860 	if (csum_flags & CSUM_IP) {
2861 		/*
2862 		 * Start offset for header checksum calculation.
2863 		 * End offset for header checksum calculation.
2864 		 * Offset of place to put the checksum.
2865 		 */
2866 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2867 		TXD->lower_setup.ip_fields.ipcse =
2868 		    htole16(ehdrlen + ip_hlen - 1);
2869 		TXD->lower_setup.ip_fields.ipcso =
2870 		    ehdrlen + offsetof(struct ip, ip_sum);
2871 		cmd |= E1000_TXD_CMD_IP;
2872 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2873 	}
2874 	hdr_len = ehdrlen + ip_hlen;
2875 
2876 	if (csum_flags & CSUM_TCP) {
2877 		/*
2878 		 * Start offset for payload checksum calculation.
2879 		 * End offset for payload checksum calculation.
2880 		 * Offset of place to put the checksum.
2881 		 */
2882 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2883 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2884 		TXD->upper_setup.tcp_fields.tucso =
2885 		    hdr_len + offsetof(struct tcphdr, th_sum);
2886 		cmd |= E1000_TXD_CMD_TCP;
2887 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2888 	} else if (csum_flags & CSUM_UDP) {
2889 		/*
2890 		 * Start offset for header checksum calculation.
2891 		 * End offset for header checksum calculation.
2892 		 * Offset of place to put the checksum.
2893 		 */
2894 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2895 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2896 		TXD->upper_setup.tcp_fields.tucso =
2897 		    hdr_len + offsetof(struct udphdr, uh_sum);
2898 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2899 	}
2900 
2901 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2902 		     E1000_TXD_DTYP_D;		/* Data descr */
2903 
2904 	/* Save the information for this csum offloading context */
2905 	adapter->csum_lhlen = ehdrlen;
2906 	adapter->csum_iphlen = ip_hlen;
2907 	adapter->csum_flags = csum_flags;
2908 	adapter->csum_txd_upper = *txd_upper;
2909 	adapter->csum_txd_lower = *txd_lower;
2910 
2911 	TXD->tcp_seg_setup.data = htole32(0);
2912 	TXD->cmd_and_length =
2913 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2914 
2915 	if (++curr_txd == adapter->num_tx_desc)
2916 		curr_txd = 0;
2917 
2918 	KKASSERT(adapter->num_tx_desc_avail > 0);
2919 	adapter->num_tx_desc_avail--;
2920 
2921 	adapter->next_avail_tx_desc = curr_txd;
2922 	return 1;
2923 }
2924 
2925 static void
2926 em_txeof(struct adapter *adapter)
2927 {
2928 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2929 	struct em_buffer *tx_buffer;
2930 	int first, num_avail;
2931 
2932 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2933 		return;
2934 
2935 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2936 		return;
2937 
2938 	num_avail = adapter->num_tx_desc_avail;
2939 	first = adapter->next_tx_to_clean;
2940 
2941 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2942 		struct e1000_tx_desc *tx_desc;
2943 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2944 
2945 		tx_desc = &adapter->tx_desc_base[dd_idx];
2946 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2947 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2948 
2949 			if (++dd_idx == adapter->num_tx_desc)
2950 				dd_idx = 0;
2951 
2952 			while (first != dd_idx) {
2953 				logif(pkt_txclean);
2954 
2955 				num_avail++;
2956 
2957 				tx_buffer = &adapter->tx_buffer_area[first];
2958 				if (tx_buffer->m_head) {
2959 					IFNET_STAT_INC(ifp, opackets, 1);
2960 					bus_dmamap_unload(adapter->txtag,
2961 							  tx_buffer->map);
2962 					m_freem(tx_buffer->m_head);
2963 					tx_buffer->m_head = NULL;
2964 				}
2965 
2966 				if (++first == adapter->num_tx_desc)
2967 					first = 0;
2968 			}
2969 		} else {
2970 			break;
2971 		}
2972 	}
2973 	adapter->next_tx_to_clean = first;
2974 	adapter->num_tx_desc_avail = num_avail;
2975 
2976 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2977 		adapter->tx_dd_head = 0;
2978 		adapter->tx_dd_tail = 0;
2979 	}
2980 
2981 	if (!EM_IS_OACTIVE(adapter)) {
2982 		ifq_clr_oactive(&ifp->if_snd);
2983 
2984 		/* All clean, turn off the timer */
2985 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2986 			ifp->if_timer = 0;
2987 	}
2988 }
2989 
2990 static void
2991 em_tx_collect(struct adapter *adapter)
2992 {
2993 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2994 	struct em_buffer *tx_buffer;
2995 	int tdh, first, num_avail, dd_idx = -1;
2996 
2997 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2998 		return;
2999 
3000 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3001 	if (tdh == adapter->next_tx_to_clean)
3002 		return;
3003 
3004 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3005 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3006 
3007 	num_avail = adapter->num_tx_desc_avail;
3008 	first = adapter->next_tx_to_clean;
3009 
3010 	while (first != tdh) {
3011 		logif(pkt_txclean);
3012 
3013 		num_avail++;
3014 
3015 		tx_buffer = &adapter->tx_buffer_area[first];
3016 		if (tx_buffer->m_head) {
3017 			IFNET_STAT_INC(ifp, opackets, 1);
3018 			bus_dmamap_unload(adapter->txtag,
3019 					  tx_buffer->map);
3020 			m_freem(tx_buffer->m_head);
3021 			tx_buffer->m_head = NULL;
3022 		}
3023 
3024 		if (first == dd_idx) {
3025 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3026 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3027 				adapter->tx_dd_head = 0;
3028 				adapter->tx_dd_tail = 0;
3029 				dd_idx = -1;
3030 			} else {
3031 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3032 			}
3033 		}
3034 
3035 		if (++first == adapter->num_tx_desc)
3036 			first = 0;
3037 	}
3038 	adapter->next_tx_to_clean = first;
3039 	adapter->num_tx_desc_avail = num_avail;
3040 
3041 	if (!EM_IS_OACTIVE(adapter)) {
3042 		ifq_clr_oactive(&ifp->if_snd);
3043 
3044 		/* All clean, turn off the timer */
3045 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3046 			ifp->if_timer = 0;
3047 	}
3048 }
3049 
3050 /*
3051  * When Link is lost sometimes there is work still in the TX ring
3052  * which will result in a watchdog, rather than allow that do an
3053  * attempted cleanup and then reinit here.  Note that this has been
3054  * seens mostly with fiber adapters.
3055  */
3056 static void
3057 em_tx_purge(struct adapter *adapter)
3058 {
3059 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3060 
3061 	if (!adapter->link_active && ifp->if_timer) {
3062 		em_tx_collect(adapter);
3063 		if (ifp->if_timer) {
3064 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3065 			ifp->if_timer = 0;
3066 			em_init(adapter);
3067 		}
3068 	}
3069 }
3070 
3071 static int
3072 em_newbuf(struct adapter *adapter, int i, int init)
3073 {
3074 	struct mbuf *m;
3075 	bus_dma_segment_t seg;
3076 	bus_dmamap_t map;
3077 	struct em_buffer *rx_buffer;
3078 	int error, nseg;
3079 
3080 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3081 	if (m == NULL) {
3082 		adapter->mbuf_cluster_failed++;
3083 		if (init) {
3084 			if_printf(&adapter->arpcom.ac_if,
3085 				  "Unable to allocate RX mbuf\n");
3086 		}
3087 		return (ENOBUFS);
3088 	}
3089 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3090 
3091 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3092 		m_adj(m, ETHER_ALIGN);
3093 
3094 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3095 			adapter->rx_sparemap, m,
3096 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3097 	if (error) {
3098 		m_freem(m);
3099 		if (init) {
3100 			if_printf(&adapter->arpcom.ac_if,
3101 				  "Unable to load RX mbuf\n");
3102 		}
3103 		return (error);
3104 	}
3105 
3106 	rx_buffer = &adapter->rx_buffer_area[i];
3107 	if (rx_buffer->m_head != NULL)
3108 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3109 
3110 	map = rx_buffer->map;
3111 	rx_buffer->map = adapter->rx_sparemap;
3112 	adapter->rx_sparemap = map;
3113 
3114 	rx_buffer->m_head = m;
3115 
3116 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3117 	return (0);
3118 }
3119 
3120 static int
3121 em_create_rx_ring(struct adapter *adapter)
3122 {
3123 	device_t dev = adapter->dev;
3124 	struct em_buffer *rx_buffer;
3125 	int i, error;
3126 
3127 	adapter->rx_buffer_area =
3128 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3129 			M_DEVBUF, M_WAITOK | M_ZERO);
3130 
3131 	/*
3132 	 * Create DMA tag for rx buffers
3133 	 */
3134 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3135 			1, 0,			/* alignment, bounds */
3136 			BUS_SPACE_MAXADDR,	/* lowaddr */
3137 			BUS_SPACE_MAXADDR,	/* highaddr */
3138 			NULL, NULL,		/* filter, filterarg */
3139 			MCLBYTES,		/* maxsize */
3140 			1,			/* nsegments */
3141 			MCLBYTES,		/* maxsegsize */
3142 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3143 			&adapter->rxtag);
3144 	if (error) {
3145 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3146 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3147 		adapter->rx_buffer_area = NULL;
3148 		return error;
3149 	}
3150 
3151 	/*
3152 	 * Create spare DMA map for rx buffers
3153 	 */
3154 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3155 				  &adapter->rx_sparemap);
3156 	if (error) {
3157 		device_printf(dev, "Unable to create spare RX DMA map\n");
3158 		bus_dma_tag_destroy(adapter->rxtag);
3159 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3160 		adapter->rx_buffer_area = NULL;
3161 		return error;
3162 	}
3163 
3164 	/*
3165 	 * Create DMA maps for rx buffers
3166 	 */
3167 	for (i = 0; i < adapter->num_rx_desc; i++) {
3168 		rx_buffer = &adapter->rx_buffer_area[i];
3169 
3170 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3171 					  &rx_buffer->map);
3172 		if (error) {
3173 			device_printf(dev, "Unable to create RX DMA map\n");
3174 			em_destroy_rx_ring(adapter, i);
3175 			return error;
3176 		}
3177 	}
3178 	return (0);
3179 }
3180 
3181 static int
3182 em_init_rx_ring(struct adapter *adapter)
3183 {
3184 	int i, error;
3185 
3186 	/* Reset descriptor ring */
3187 	bzero(adapter->rx_desc_base,
3188 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3189 
3190 	/* Allocate new ones. */
3191 	for (i = 0; i < adapter->num_rx_desc; i++) {
3192 		error = em_newbuf(adapter, i, 1);
3193 		if (error)
3194 			return (error);
3195 	}
3196 
3197 	/* Setup our descriptor pointers */
3198 	adapter->next_rx_desc_to_check = 0;
3199 
3200 	return (0);
3201 }
3202 
3203 static void
3204 em_init_rx_unit(struct adapter *adapter)
3205 {
3206 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3207 	uint64_t bus_addr;
3208 	uint32_t rctl;
3209 
3210 	/*
3211 	 * Make sure receives are disabled while setting
3212 	 * up the descriptor ring
3213 	 */
3214 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3215 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3216 
3217 	if (adapter->hw.mac.type >= e1000_82540) {
3218 		uint32_t itr;
3219 
3220 		/*
3221 		 * Set the interrupt throttling rate. Value is calculated
3222 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3223 		 */
3224 		if (adapter->int_throttle_ceil)
3225 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3226 		else
3227 			itr = 0;
3228 		em_set_itr(adapter, itr);
3229 	}
3230 
3231 	/* Disable accelerated ackknowledge */
3232 	if (adapter->hw.mac.type == e1000_82574) {
3233 		E1000_WRITE_REG(&adapter->hw,
3234 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3235 	}
3236 
3237 	/* Receive Checksum Offload for TCP and UDP */
3238 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3239 		uint32_t rxcsum;
3240 
3241 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3242 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3243 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3244 	}
3245 
3246 	/*
3247 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3248 	 * long latencies are observed, like Lenovo X60. This
3249 	 * change eliminates the problem, but since having positive
3250 	 * values in RDTR is a known source of problems on other
3251 	 * platforms another solution is being sought.
3252 	 */
3253 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3254 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3255 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3256 	}
3257 
3258 	/*
3259 	 * Setup the Base and Length of the Rx Descriptor Ring
3260 	 */
3261 	bus_addr = adapter->rxdma.dma_paddr;
3262 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3263 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3264 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3265 	    (uint32_t)(bus_addr >> 32));
3266 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3267 	    (uint32_t)bus_addr);
3268 
3269 	/*
3270 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3271 	 */
3272 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3273 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3274 
3275 	/* Set PTHRESH for improved jumbo performance */
3276 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3277 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3278 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3279 	    (ifp->if_mtu > ETHERMTU)) {
3280 		uint32_t rxdctl;
3281 
3282 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3283 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3284 	}
3285 
3286 	if (adapter->hw.mac.type == e1000_pch2lan) {
3287 		if (ifp->if_mtu > ETHERMTU)
3288 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3289 		else
3290 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3291 	}
3292 
3293 	/* Setup the Receive Control Register */
3294 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3295 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3296 		E1000_RCTL_RDMTS_HALF |
3297 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3298 
3299 	/* Make sure VLAN Filters are off */
3300 	rctl &= ~E1000_RCTL_VFE;
3301 
3302 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3303 		rctl |= E1000_RCTL_SBP;
3304 	else
3305 		rctl &= ~E1000_RCTL_SBP;
3306 
3307 	switch (adapter->rx_buffer_len) {
3308 	default:
3309 	case 2048:
3310 		rctl |= E1000_RCTL_SZ_2048;
3311 		break;
3312 
3313 	case 4096:
3314 		rctl |= E1000_RCTL_SZ_4096 |
3315 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3316 		break;
3317 
3318 	case 8192:
3319 		rctl |= E1000_RCTL_SZ_8192 |
3320 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3321 		break;
3322 
3323 	case 16384:
3324 		rctl |= E1000_RCTL_SZ_16384 |
3325 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3326 		break;
3327 	}
3328 
3329 	if (ifp->if_mtu > ETHERMTU)
3330 		rctl |= E1000_RCTL_LPE;
3331 	else
3332 		rctl &= ~E1000_RCTL_LPE;
3333 
3334 	/* Enable Receives */
3335 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3336 }
3337 
3338 static void
3339 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3340 {
3341 	struct em_buffer *rx_buffer;
3342 	int i;
3343 
3344 	if (adapter->rx_buffer_area == NULL)
3345 		return;
3346 
3347 	for (i = 0; i < ndesc; i++) {
3348 		rx_buffer = &adapter->rx_buffer_area[i];
3349 
3350 		KKASSERT(rx_buffer->m_head == NULL);
3351 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3352 	}
3353 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3354 	bus_dma_tag_destroy(adapter->rxtag);
3355 
3356 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3357 	adapter->rx_buffer_area = NULL;
3358 }
3359 
3360 static void
3361 em_rxeof(struct adapter *adapter, int count)
3362 {
3363 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3364 	uint8_t status, accept_frame = 0, eop = 0;
3365 	uint16_t len, desc_len, prev_len_adj;
3366 	struct e1000_rx_desc *current_desc;
3367 	struct mbuf *mp;
3368 	int i;
3369 
3370 	i = adapter->next_rx_desc_to_check;
3371 	current_desc = &adapter->rx_desc_base[i];
3372 
3373 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3374 		return;
3375 
3376 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3377 		struct mbuf *m = NULL;
3378 
3379 		logif(pkt_receive);
3380 
3381 		mp = adapter->rx_buffer_area[i].m_head;
3382 
3383 		/*
3384 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3385 		 * needs to access the last received byte in the mbuf.
3386 		 */
3387 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3388 				BUS_DMASYNC_POSTREAD);
3389 
3390 		accept_frame = 1;
3391 		prev_len_adj = 0;
3392 		desc_len = le16toh(current_desc->length);
3393 		status = current_desc->status;
3394 		if (status & E1000_RXD_STAT_EOP) {
3395 			count--;
3396 			eop = 1;
3397 			if (desc_len < ETHER_CRC_LEN) {
3398 				len = 0;
3399 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3400 			} else {
3401 				len = desc_len - ETHER_CRC_LEN;
3402 			}
3403 		} else {
3404 			eop = 0;
3405 			len = desc_len;
3406 		}
3407 
3408 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3409 			uint8_t	last_byte;
3410 			uint32_t pkt_len = desc_len;
3411 
3412 			if (adapter->fmp != NULL)
3413 				pkt_len += adapter->fmp->m_pkthdr.len;
3414 
3415 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3416 			if (TBI_ACCEPT(&adapter->hw, status,
3417 			    current_desc->errors, pkt_len, last_byte,
3418 			    adapter->min_frame_size, adapter->max_frame_size)) {
3419 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3420 				    &adapter->stats, pkt_len,
3421 				    adapter->hw.mac.addr,
3422 				    adapter->max_frame_size);
3423 				if (len > 0)
3424 					len--;
3425 			} else {
3426 				accept_frame = 0;
3427 			}
3428 		}
3429 
3430 		if (accept_frame) {
3431 			if (em_newbuf(adapter, i, 0) != 0) {
3432 				IFNET_STAT_INC(ifp, iqdrops, 1);
3433 				goto discard;
3434 			}
3435 
3436 			/* Assign correct length to the current fragment */
3437 			mp->m_len = len;
3438 
3439 			if (adapter->fmp == NULL) {
3440 				mp->m_pkthdr.len = len;
3441 				adapter->fmp = mp; /* Store the first mbuf */
3442 				adapter->lmp = mp;
3443 			} else {
3444 				/*
3445 				 * Chain mbuf's together
3446 				 */
3447 
3448 				/*
3449 				 * Adjust length of previous mbuf in chain if
3450 				 * we received less than 4 bytes in the last
3451 				 * descriptor.
3452 				 */
3453 				if (prev_len_adj > 0) {
3454 					adapter->lmp->m_len -= prev_len_adj;
3455 					adapter->fmp->m_pkthdr.len -=
3456 					    prev_len_adj;
3457 				}
3458 				adapter->lmp->m_next = mp;
3459 				adapter->lmp = adapter->lmp->m_next;
3460 				adapter->fmp->m_pkthdr.len += len;
3461 			}
3462 
3463 			if (eop) {
3464 				adapter->fmp->m_pkthdr.rcvif = ifp;
3465 				IFNET_STAT_INC(ifp, ipackets, 1);
3466 
3467 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3468 					em_rxcsum(adapter, current_desc,
3469 						  adapter->fmp);
3470 				}
3471 
3472 				if (status & E1000_RXD_STAT_VP) {
3473 					adapter->fmp->m_pkthdr.ether_vlantag =
3474 					    (le16toh(current_desc->special) &
3475 					    E1000_RXD_SPC_VLAN_MASK);
3476 					adapter->fmp->m_flags |= M_VLANTAG;
3477 				}
3478 				m = adapter->fmp;
3479 				adapter->fmp = NULL;
3480 				adapter->lmp = NULL;
3481 			}
3482 		} else {
3483 			IFNET_STAT_INC(ifp, ierrors, 1);
3484 discard:
3485 #ifdef foo
3486 			/* Reuse loaded DMA map and just update mbuf chain */
3487 			mp = adapter->rx_buffer_area[i].m_head;
3488 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3489 			mp->m_data = mp->m_ext.ext_buf;
3490 			mp->m_next = NULL;
3491 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3492 				m_adj(mp, ETHER_ALIGN);
3493 #endif
3494 			if (adapter->fmp != NULL) {
3495 				m_freem(adapter->fmp);
3496 				adapter->fmp = NULL;
3497 				adapter->lmp = NULL;
3498 			}
3499 			m = NULL;
3500 		}
3501 
3502 		/* Zero out the receive descriptors status. */
3503 		current_desc->status = 0;
3504 
3505 		if (m != NULL)
3506 			ifp->if_input(ifp, m);
3507 
3508 		/* Advance our pointers to the next descriptor. */
3509 		if (++i == adapter->num_rx_desc)
3510 			i = 0;
3511 		current_desc = &adapter->rx_desc_base[i];
3512 	}
3513 	adapter->next_rx_desc_to_check = i;
3514 
3515 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3516 	if (--i < 0)
3517 		i = adapter->num_rx_desc - 1;
3518 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3519 }
3520 
3521 static void
3522 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3523 	  struct mbuf *mp)
3524 {
3525 	/* 82543 or newer only */
3526 	if (adapter->hw.mac.type < e1000_82543 ||
3527 	    /* Ignore Checksum bit is set */
3528 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3529 		return;
3530 
3531 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3532 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3533 		/* IP Checksum Good */
3534 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3535 	}
3536 
3537 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3538 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3539 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3540 					   CSUM_PSEUDO_HDR |
3541 					   CSUM_FRAG_NOT_CHECKED;
3542 		mp->m_pkthdr.csum_data = htons(0xffff);
3543 	}
3544 }
3545 
3546 static void
3547 em_enable_intr(struct adapter *adapter)
3548 {
3549 	uint32_t ims_mask = IMS_ENABLE_MASK;
3550 
3551 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3552 
3553 #if 0
3554 	/* XXX MSIX */
3555 	if (adapter->hw.mac.type == e1000_82574) {
3556 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3557 		ims_mask |= EM_MSIX_MASK;
3558         }
3559 #endif
3560 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3561 }
3562 
3563 static void
3564 em_disable_intr(struct adapter *adapter)
3565 {
3566 	uint32_t clear = 0xffffffff;
3567 
3568 	/*
3569 	 * The first version of 82542 had an errata where when link was forced
3570 	 * it would stay up even up even if the cable was disconnected.
3571 	 * Sequence errors were used to detect the disconnect and then the
3572 	 * driver would unforce the link.  This code in the in the ISR.  For
3573 	 * this to work correctly the Sequence error interrupt had to be
3574 	 * enabled all the time.
3575 	 */
3576 	if (adapter->hw.mac.type == e1000_82542 &&
3577 	    adapter->hw.revision_id == E1000_REVISION_2)
3578 		clear &= ~E1000_ICR_RXSEQ;
3579 	else if (adapter->hw.mac.type == e1000_82574)
3580 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3581 
3582 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3583 
3584 	adapter->npoll.ifpc_stcount = 0;
3585 
3586 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3587 }
3588 
3589 /*
3590  * Bit of a misnomer, what this really means is
3591  * to enable OS management of the system... aka
3592  * to disable special hardware management features
3593  */
3594 static void
3595 em_get_mgmt(struct adapter *adapter)
3596 {
3597 	/* A shared code workaround */
3598 #define E1000_82542_MANC2H E1000_MANC2H
3599 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3600 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3601 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3602 
3603 		/* disable hardware interception of ARP */
3604 		manc &= ~(E1000_MANC_ARP_EN);
3605 
3606                 /* enable receiving management packets to the host */
3607                 if (adapter->hw.mac.type >= e1000_82571) {
3608 			manc |= E1000_MANC_EN_MNG2HOST;
3609 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3610 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3611 			manc2h |= E1000_MNG2HOST_PORT_623;
3612 			manc2h |= E1000_MNG2HOST_PORT_664;
3613 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3614 		}
3615 
3616 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3617 	}
3618 }
3619 
3620 /*
3621  * Give control back to hardware management
3622  * controller if there is one.
3623  */
3624 static void
3625 em_rel_mgmt(struct adapter *adapter)
3626 {
3627 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3628 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3629 
3630 		/* re-enable hardware interception of ARP */
3631 		manc |= E1000_MANC_ARP_EN;
3632 
3633 		if (adapter->hw.mac.type >= e1000_82571)
3634 			manc &= ~E1000_MANC_EN_MNG2HOST;
3635 
3636 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3637 	}
3638 }
3639 
3640 /*
3641  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3642  * For ASF and Pass Through versions of f/w this means that
3643  * the driver is loaded.  For AMT version (only with 82573)
3644  * of the f/w this means that the network i/f is open.
3645  */
3646 static void
3647 em_get_hw_control(struct adapter *adapter)
3648 {
3649 	/* Let firmware know the driver has taken over */
3650 	if (adapter->hw.mac.type == e1000_82573) {
3651 		uint32_t swsm;
3652 
3653 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3654 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3655 		    swsm | E1000_SWSM_DRV_LOAD);
3656 	} else {
3657 		uint32_t ctrl_ext;
3658 
3659 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3660 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3661 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3662 	}
3663 	adapter->flags |= EM_FLAG_HW_CTRL;
3664 }
3665 
3666 /*
3667  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3668  * For ASF and Pass Through versions of f/w this means that the
3669  * driver is no longer loaded.  For AMT version (only with 82573)
3670  * of the f/w this means that the network i/f is closed.
3671  */
3672 static void
3673 em_rel_hw_control(struct adapter *adapter)
3674 {
3675 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3676 		return;
3677 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3678 
3679 	/* Let firmware taken over control of h/w */
3680 	if (adapter->hw.mac.type == e1000_82573) {
3681 		uint32_t swsm;
3682 
3683 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3684 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3685 		    swsm & ~E1000_SWSM_DRV_LOAD);
3686 	} else {
3687 		uint32_t ctrl_ext;
3688 
3689 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3690 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3691 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3692 	}
3693 }
3694 
3695 static int
3696 em_is_valid_eaddr(const uint8_t *addr)
3697 {
3698 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3699 
3700 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3701 		return (FALSE);
3702 
3703 	return (TRUE);
3704 }
3705 
3706 /*
3707  * Enable PCI Wake On Lan capability
3708  */
3709 void
3710 em_enable_wol(device_t dev)
3711 {
3712 	uint16_t cap, status;
3713 	uint8_t id;
3714 
3715 	/* First find the capabilities pointer*/
3716 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3717 
3718 	/* Read the PM Capabilities */
3719 	id = pci_read_config(dev, cap, 1);
3720 	if (id != PCIY_PMG)     /* Something wrong */
3721 		return;
3722 
3723 	/*
3724 	 * OK, we have the power capabilities,
3725 	 * so now get the status register
3726 	 */
3727 	cap += PCIR_POWER_STATUS;
3728 	status = pci_read_config(dev, cap, 2);
3729 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3730 	pci_write_config(dev, cap, status, 2);
3731 }
3732 
3733 
3734 /*
3735  * 82544 Coexistence issue workaround.
3736  *    There are 2 issues.
3737  *       1. Transmit Hang issue.
3738  *    To detect this issue, following equation can be used...
3739  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3740  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3741  *
3742  *       2. DAC issue.
3743  *    To detect this issue, following equation can be used...
3744  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3745  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3746  *
3747  *    WORKAROUND:
3748  *	  Make sure we do not have ending address
3749  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3750  */
3751 static uint32_t
3752 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3753 {
3754 	uint32_t safe_terminator;
3755 
3756 	/*
3757 	 * Since issue is sensitive to length and address.
3758 	 * Let us first check the address...
3759 	 */
3760 	if (length <= 4) {
3761 		desc_array->descriptor[0].address = address;
3762 		desc_array->descriptor[0].length = length;
3763 		desc_array->elements = 1;
3764 		return (desc_array->elements);
3765 	}
3766 
3767 	safe_terminator =
3768 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3769 
3770 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3771 	if (safe_terminator == 0 ||
3772 	    (safe_terminator > 4 && safe_terminator < 9) ||
3773 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3774 		desc_array->descriptor[0].address = address;
3775 		desc_array->descriptor[0].length = length;
3776 		desc_array->elements = 1;
3777 		return (desc_array->elements);
3778 	}
3779 
3780 	desc_array->descriptor[0].address = address;
3781 	desc_array->descriptor[0].length = length - 4;
3782 	desc_array->descriptor[1].address = address + (length - 4);
3783 	desc_array->descriptor[1].length = 4;
3784 	desc_array->elements = 2;
3785 	return (desc_array->elements);
3786 }
3787 
3788 static void
3789 em_update_stats(struct adapter *adapter)
3790 {
3791 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3792 
3793 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3794 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3795 		adapter->stats.symerrs +=
3796 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3797 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3798 	}
3799 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3800 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3801 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3802 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3803 
3804 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3805 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3806 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3807 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3808 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3809 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3810 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3811 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3812 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3813 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3814 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3815 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3816 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3817 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3818 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3819 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3820 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3821 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3822 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3823 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3824 
3825 	/* For the 64-bit byte counters the low dword must be read first. */
3826 	/* Both registers clear on the read of the high dword */
3827 
3828 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3829 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3830 
3831 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3832 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3833 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3834 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3835 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3836 
3837 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3838 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3839 
3840 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3841 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3842 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3843 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3844 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3845 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3846 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3847 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3848 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3849 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3850 
3851 	if (adapter->hw.mac.type >= e1000_82543) {
3852 		adapter->stats.algnerrc +=
3853 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3854 		adapter->stats.rxerrc +=
3855 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3856 		adapter->stats.tncrs +=
3857 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3858 		adapter->stats.cexterr +=
3859 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3860 		adapter->stats.tsctc +=
3861 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3862 		adapter->stats.tsctfc +=
3863 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3864 	}
3865 
3866 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3867 
3868 	/* Rx Errors */
3869 	IFNET_STAT_SET(ifp, ierrors,
3870 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3871 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3872 	    adapter->stats.ruc + adapter->stats.roc +
3873 	    adapter->stats.mpc + adapter->stats.cexterr);
3874 
3875 	/* Tx Errors */
3876 	IFNET_STAT_SET(ifp, oerrors,
3877 	    adapter->stats.ecol + adapter->stats.latecol +
3878 	    adapter->watchdog_events);
3879 }
3880 
3881 static void
3882 em_print_debug_info(struct adapter *adapter)
3883 {
3884 	device_t dev = adapter->dev;
3885 	uint8_t *hw_addr = adapter->hw.hw_addr;
3886 
3887 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3888 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3889 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3890 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3891 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3892 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3893 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3894 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3895 	    adapter->hw.fc.high_water,
3896 	    adapter->hw.fc.low_water);
3897 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3898 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3899 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3900 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3901 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3902 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3903 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3904 	    (long long)adapter->tx_fifo_wrk_cnt,
3905 	    (long long)adapter->tx_fifo_reset_cnt);
3906 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3907 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3908 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3909 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3910 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3911 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3912 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3913 	    adapter->num_tx_desc_avail);
3914 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3915 	    adapter->no_tx_desc_avail1);
3916 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3917 	    adapter->no_tx_desc_avail2);
3918 	device_printf(dev, "Std mbuf failed = %ld\n",
3919 	    adapter->mbuf_alloc_failed);
3920 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3921 	    adapter->mbuf_cluster_failed);
3922 	device_printf(dev, "Driver dropped packets = %ld\n",
3923 	    adapter->dropped_pkts);
3924 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3925 	    adapter->no_tx_dma_setup);
3926 }
3927 
3928 static void
3929 em_print_hw_stats(struct adapter *adapter)
3930 {
3931 	device_t dev = adapter->dev;
3932 
3933 	device_printf(dev, "Excessive collisions = %lld\n",
3934 	    (long long)adapter->stats.ecol);
3935 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3936 	device_printf(dev, "Symbol errors = %lld\n",
3937 	    (long long)adapter->stats.symerrs);
3938 #endif
3939 	device_printf(dev, "Sequence errors = %lld\n",
3940 	    (long long)adapter->stats.sec);
3941 	device_printf(dev, "Defer count = %lld\n",
3942 	    (long long)adapter->stats.dc);
3943 	device_printf(dev, "Missed Packets = %lld\n",
3944 	    (long long)adapter->stats.mpc);
3945 	device_printf(dev, "Receive No Buffers = %lld\n",
3946 	    (long long)adapter->stats.rnbc);
3947 	/* RLEC is inaccurate on some hardware, calculate our own. */
3948 	device_printf(dev, "Receive Length Errors = %lld\n",
3949 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3950 	device_printf(dev, "Receive errors = %lld\n",
3951 	    (long long)adapter->stats.rxerrc);
3952 	device_printf(dev, "Crc errors = %lld\n",
3953 	    (long long)adapter->stats.crcerrs);
3954 	device_printf(dev, "Alignment errors = %lld\n",
3955 	    (long long)adapter->stats.algnerrc);
3956 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3957 	    (long long)adapter->stats.cexterr);
3958 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3959 	device_printf(dev, "watchdog timeouts = %ld\n",
3960 	    adapter->watchdog_events);
3961 	device_printf(dev, "XON Rcvd = %lld\n",
3962 	    (long long)adapter->stats.xonrxc);
3963 	device_printf(dev, "XON Xmtd = %lld\n",
3964 	    (long long)adapter->stats.xontxc);
3965 	device_printf(dev, "XOFF Rcvd = %lld\n",
3966 	    (long long)adapter->stats.xoffrxc);
3967 	device_printf(dev, "XOFF Xmtd = %lld\n",
3968 	    (long long)adapter->stats.xofftxc);
3969 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3970 	    (long long)adapter->stats.gprc);
3971 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3972 	    (long long)adapter->stats.gptc);
3973 }
3974 
3975 static void
3976 em_print_nvm_info(struct adapter *adapter)
3977 {
3978 	uint16_t eeprom_data;
3979 	int i, j, row = 0;
3980 
3981 	/* Its a bit crude, but it gets the job done */
3982 	kprintf("\nInterface EEPROM Dump:\n");
3983 	kprintf("Offset\n0x0000  ");
3984 	for (i = 0, j = 0; i < 32; i++, j++) {
3985 		if (j == 8) { /* Make the offset block */
3986 			j = 0; ++row;
3987 			kprintf("\n0x00%x0  ",row);
3988 		}
3989 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3990 		kprintf("%04x ", eeprom_data);
3991 	}
3992 	kprintf("\n");
3993 }
3994 
3995 static int
3996 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3997 {
3998 	struct adapter *adapter;
3999 	struct ifnet *ifp;
4000 	int error, result;
4001 
4002 	result = -1;
4003 	error = sysctl_handle_int(oidp, &result, 0, req);
4004 	if (error || !req->newptr)
4005 		return (error);
4006 
4007 	adapter = (struct adapter *)arg1;
4008 	ifp = &adapter->arpcom.ac_if;
4009 
4010 	lwkt_serialize_enter(ifp->if_serializer);
4011 
4012 	if (result == 1)
4013 		em_print_debug_info(adapter);
4014 
4015 	/*
4016 	 * This value will cause a hex dump of the
4017 	 * first 32 16-bit words of the EEPROM to
4018 	 * the screen.
4019 	 */
4020 	if (result == 2)
4021 		em_print_nvm_info(adapter);
4022 
4023 	lwkt_serialize_exit(ifp->if_serializer);
4024 
4025 	return (error);
4026 }
4027 
4028 static int
4029 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4030 {
4031 	int error, result;
4032 
4033 	result = -1;
4034 	error = sysctl_handle_int(oidp, &result, 0, req);
4035 	if (error || !req->newptr)
4036 		return (error);
4037 
4038 	if (result == 1) {
4039 		struct adapter *adapter = (struct adapter *)arg1;
4040 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4041 
4042 		lwkt_serialize_enter(ifp->if_serializer);
4043 		em_print_hw_stats(adapter);
4044 		lwkt_serialize_exit(ifp->if_serializer);
4045 	}
4046 	return (error);
4047 }
4048 
4049 static void
4050 em_add_sysctl(struct adapter *adapter)
4051 {
4052 	sysctl_ctx_init(&adapter->sysctl_ctx);
4053 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4054 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4055 					device_get_nameunit(adapter->dev),
4056 					CTLFLAG_RD, 0, "");
4057 	if (adapter->sysctl_tree == NULL) {
4058 		device_printf(adapter->dev, "can't add sysctl node\n");
4059 	} else {
4060 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4061 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4062 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4063 		    em_sysctl_debug_info, "I", "Debug Information");
4064 
4065 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4066 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4067 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4068 		    em_sysctl_stats, "I", "Statistics");
4069 
4070 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4071 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4072 		    OID_AUTO, "rxd", CTLFLAG_RD,
4073 		    &adapter->num_rx_desc, 0, NULL);
4074 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4075 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4076 		    OID_AUTO, "txd", CTLFLAG_RD,
4077 		    &adapter->num_tx_desc, 0, NULL);
4078 
4079 		if (adapter->hw.mac.type >= e1000_82540) {
4080 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4081 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4082 			    OID_AUTO, "int_throttle_ceil",
4083 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4084 			    em_sysctl_int_throttle, "I",
4085 			    "interrupt throttling rate");
4086 		}
4087 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4088 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4089 		    OID_AUTO, "int_tx_nsegs",
4090 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4091 		    em_sysctl_int_tx_nsegs, "I",
4092 		    "# segments per TX interrupt");
4093 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4094 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4095 	            OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4096 		    &adapter->tx_wreg_nsegs, 0,
4097 		    "# segments before write to hardware register");
4098 	}
4099 }
4100 
4101 static int
4102 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4103 {
4104 	struct adapter *adapter = (void *)arg1;
4105 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4106 	int error, throttle;
4107 
4108 	throttle = adapter->int_throttle_ceil;
4109 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4110 	if (error || req->newptr == NULL)
4111 		return error;
4112 	if (throttle < 0 || throttle > 1000000000 / 256)
4113 		return EINVAL;
4114 
4115 	if (throttle) {
4116 		/*
4117 		 * Set the interrupt throttling rate in 256ns increments,
4118 		 * recalculate sysctl value assignment to get exact frequency.
4119 		 */
4120 		throttle = 1000000000 / 256 / throttle;
4121 
4122 		/* Upper 16bits of ITR is reserved and should be zero */
4123 		if (throttle & 0xffff0000)
4124 			return EINVAL;
4125 	}
4126 
4127 	lwkt_serialize_enter(ifp->if_serializer);
4128 
4129 	if (throttle)
4130 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4131 	else
4132 		adapter->int_throttle_ceil = 0;
4133 
4134 	if (ifp->if_flags & IFF_RUNNING)
4135 		em_set_itr(adapter, throttle);
4136 
4137 	lwkt_serialize_exit(ifp->if_serializer);
4138 
4139 	if (bootverbose) {
4140 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4141 			  adapter->int_throttle_ceil);
4142 	}
4143 	return 0;
4144 }
4145 
4146 static int
4147 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4148 {
4149 	struct adapter *adapter = (void *)arg1;
4150 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4151 	int error, segs;
4152 
4153 	segs = adapter->tx_int_nsegs;
4154 	error = sysctl_handle_int(oidp, &segs, 0, req);
4155 	if (error || req->newptr == NULL)
4156 		return error;
4157 	if (segs <= 0)
4158 		return EINVAL;
4159 
4160 	lwkt_serialize_enter(ifp->if_serializer);
4161 
4162 	/*
4163 	 * Don't allow int_tx_nsegs to become:
4164 	 * o  Less the oact_tx_desc
4165 	 * o  Too large that no TX desc will cause TX interrupt to
4166 	 *    be generated (OACTIVE will never recover)
4167 	 * o  Too small that will cause tx_dd[] overflow
4168 	 */
4169 	if (segs < adapter->oact_tx_desc ||
4170 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4171 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4172 		error = EINVAL;
4173 	} else {
4174 		error = 0;
4175 		adapter->tx_int_nsegs = segs;
4176 	}
4177 
4178 	lwkt_serialize_exit(ifp->if_serializer);
4179 
4180 	return error;
4181 }
4182 
4183 static void
4184 em_set_itr(struct adapter *adapter, uint32_t itr)
4185 {
4186 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4187 	if (adapter->hw.mac.type == e1000_82574) {
4188 		int i;
4189 
4190 		/*
4191 		 * When using MSIX interrupts we need to
4192 		 * throttle using the EITR register
4193 		 */
4194 		for (i = 0; i < 4; ++i) {
4195 			E1000_WRITE_REG(&adapter->hw,
4196 			    E1000_EITR_82574(i), itr);
4197 		}
4198 	}
4199 }
4200 
4201 static void
4202 em_disable_aspm(struct adapter *adapter)
4203 {
4204 	uint16_t link_cap, link_ctrl, disable;
4205 	uint8_t pcie_ptr, reg;
4206 	device_t dev = adapter->dev;
4207 
4208 	switch (adapter->hw.mac.type) {
4209 	case e1000_82571:
4210 	case e1000_82572:
4211 	case e1000_82573:
4212 		/*
4213 		 * 82573 specification update
4214 		 * errata #8 disable L0s
4215 		 * errata #41 disable L1
4216 		 *
4217 		 * 82571/82572 specification update
4218 		 # errata #13 disable L1
4219 		 * errata #68 disable L0s
4220 		 */
4221 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4222 		break;
4223 
4224 	case e1000_82574:
4225 	case e1000_82583:
4226 		/*
4227 		 * 82574 specification update errata #20
4228 		 * 82583 specification update errata #9
4229 		 *
4230 		 * There is no need to disable L1
4231 		 */
4232 		disable = PCIEM_LNKCTL_ASPM_L0S;
4233 		break;
4234 
4235 	default:
4236 		return;
4237 	}
4238 
4239 	pcie_ptr = pci_get_pciecap_ptr(dev);
4240 	if (pcie_ptr == 0)
4241 		return;
4242 
4243 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4244 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4245 		return;
4246 
4247 	if (bootverbose) {
4248 		if_printf(&adapter->arpcom.ac_if,
4249 		    "disable ASPM %#02x\n", disable);
4250 	}
4251 
4252 	reg = pcie_ptr + PCIER_LINKCTRL;
4253 	link_ctrl = pci_read_config(dev, reg, 2);
4254 	link_ctrl &= ~disable;
4255 	pci_write_config(dev, reg, link_ctrl, 2);
4256 }
4257 
4258 static int
4259 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4260 {
4261 	int iphlen, hoff, thoff, ex = 0;
4262 	struct mbuf *m;
4263 	struct ip *ip;
4264 
4265 	m = *mp;
4266 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4267 
4268 	iphlen = m->m_pkthdr.csum_iphlen;
4269 	thoff = m->m_pkthdr.csum_thlen;
4270 	hoff = m->m_pkthdr.csum_lhlen;
4271 
4272 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4273 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4274 	KASSERT(hoff > 0, ("invalid ether hlen"));
4275 
4276 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4277 		ex = 4;
4278 
4279 	if (m->m_len < hoff + iphlen + thoff + ex) {
4280 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4281 		if (m == NULL) {
4282 			*mp = NULL;
4283 			return ENOBUFS;
4284 		}
4285 		*mp = m;
4286 	}
4287 	ip = mtodoff(m, struct ip *, hoff);
4288 	ip->ip_len = 0;
4289 
4290 	return 0;
4291 }
4292 
4293 static int
4294 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4295     uint32_t *txd_upper, uint32_t *txd_lower)
4296 {
4297 	struct e1000_context_desc *TXD;
4298 	int hoff, iphlen, thoff, hlen;
4299 	int mss, pktlen, curr_txd;
4300 
4301 	iphlen = mp->m_pkthdr.csum_iphlen;
4302 	thoff = mp->m_pkthdr.csum_thlen;
4303 	hoff = mp->m_pkthdr.csum_lhlen;
4304 	mss = mp->m_pkthdr.tso_segsz;
4305 	pktlen = mp->m_pkthdr.len;
4306 
4307 	if (adapter->csum_flags == CSUM_TSO &&
4308 	    adapter->csum_iphlen == iphlen &&
4309 	    adapter->csum_lhlen == hoff &&
4310 	    adapter->csum_thlen == thoff &&
4311 	    adapter->csum_mss == mss &&
4312 	    adapter->csum_pktlen == pktlen) {
4313 		*txd_upper = adapter->csum_txd_upper;
4314 		*txd_lower = adapter->csum_txd_lower;
4315 		return 0;
4316 	}
4317 	hlen = hoff + iphlen + thoff;
4318 
4319 	/*
4320 	 * Setup a new TSO context.
4321 	 */
4322 
4323 	curr_txd = adapter->next_avail_tx_desc;
4324 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4325 
4326 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4327 		     E1000_TXD_DTYP_D |		/* Data descr type */
4328 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4329 
4330 	/* IP and/or TCP header checksum calculation and insertion. */
4331 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4332 
4333 	/*
4334 	 * Start offset for header checksum calculation.
4335 	 * End offset for header checksum calculation.
4336 	 * Offset of place put the checksum.
4337 	 */
4338 	TXD->lower_setup.ip_fields.ipcss = hoff;
4339 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4340 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4341 
4342 	/*
4343 	 * Start offset for payload checksum calculation.
4344 	 * End offset for payload checksum calculation.
4345 	 * Offset of place to put the checksum.
4346 	 */
4347 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4348 	TXD->upper_setup.tcp_fields.tucse = 0;
4349 	TXD->upper_setup.tcp_fields.tucso =
4350 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4351 
4352 	/*
4353 	 * Payload size per packet w/o any headers.
4354 	 * Length of all headers up to payload.
4355 	 */
4356 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4357 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4358 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4359 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4360 				E1000_TXD_CMD_TSE |	/* TSE context */
4361 				E1000_TXD_CMD_IP |	/* Do IP csum */
4362 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4363 				(pktlen - hlen));	/* Total len */
4364 
4365 	/* Save the information for this TSO context */
4366 	adapter->csum_flags = CSUM_TSO;
4367 	adapter->csum_lhlen = hoff;
4368 	adapter->csum_iphlen = iphlen;
4369 	adapter->csum_thlen = thoff;
4370 	adapter->csum_mss = mss;
4371 	adapter->csum_pktlen = pktlen;
4372 	adapter->csum_txd_upper = *txd_upper;
4373 	adapter->csum_txd_lower = *txd_lower;
4374 
4375 	if (++curr_txd == adapter->num_tx_desc)
4376 		curr_txd = 0;
4377 
4378 	KKASSERT(adapter->num_tx_desc_avail > 0);
4379 	adapter->num_tx_desc_avail--;
4380 
4381 	adapter->next_avail_tx_desc = curr_txd;
4382 	return 1;
4383 }
4384