xref: /dflybsd-src/sys/dev/netif/em/if_em.c (revision 31c068aaf635ad9fa72dbc4c65b32d890ff7544d)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
115 
116 #define DEBUG_HW 0
117 
118 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
119 #define EM_VER	" 7.3.8"
120 
121 #define _EM_DEVICE(id, ret)	\
122 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
124 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
126 
127 static const struct em_vendor_info em_vendor_info_array[] = {
128 	EM_DEVICE(82540EM),
129 	EM_DEVICE(82540EM_LOM),
130 	EM_DEVICE(82540EP),
131 	EM_DEVICE(82540EP_LOM),
132 	EM_DEVICE(82540EP_LP),
133 
134 	EM_DEVICE(82541EI),
135 	EM_DEVICE(82541ER),
136 	EM_DEVICE(82541ER_LOM),
137 	EM_DEVICE(82541EI_MOBILE),
138 	EM_DEVICE(82541GI),
139 	EM_DEVICE(82541GI_LF),
140 	EM_DEVICE(82541GI_MOBILE),
141 
142 	EM_DEVICE(82542),
143 
144 	EM_DEVICE(82543GC_FIBER),
145 	EM_DEVICE(82543GC_COPPER),
146 
147 	EM_DEVICE(82544EI_COPPER),
148 	EM_DEVICE(82544EI_FIBER),
149 	EM_DEVICE(82544GC_COPPER),
150 	EM_DEVICE(82544GC_LOM),
151 
152 	EM_DEVICE(82545EM_COPPER),
153 	EM_DEVICE(82545EM_FIBER),
154 	EM_DEVICE(82545GM_COPPER),
155 	EM_DEVICE(82545GM_FIBER),
156 	EM_DEVICE(82545GM_SERDES),
157 
158 	EM_DEVICE(82546EB_COPPER),
159 	EM_DEVICE(82546EB_FIBER),
160 	EM_DEVICE(82546EB_QUAD_COPPER),
161 	EM_DEVICE(82546GB_COPPER),
162 	EM_DEVICE(82546GB_FIBER),
163 	EM_DEVICE(82546GB_SERDES),
164 	EM_DEVICE(82546GB_PCIE),
165 	EM_DEVICE(82546GB_QUAD_COPPER),
166 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
167 
168 	EM_DEVICE(82547EI),
169 	EM_DEVICE(82547EI_MOBILE),
170 	EM_DEVICE(82547GI),
171 
172 	EM_EMX_DEVICE(82571EB_COPPER),
173 	EM_EMX_DEVICE(82571EB_FIBER),
174 	EM_EMX_DEVICE(82571EB_SERDES),
175 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
182 
183 	EM_EMX_DEVICE(82572EI_COPPER),
184 	EM_EMX_DEVICE(82572EI_FIBER),
185 	EM_EMX_DEVICE(82572EI_SERDES),
186 	EM_EMX_DEVICE(82572EI),
187 
188 	EM_EMX_DEVICE(82573E),
189 	EM_EMX_DEVICE(82573E_IAMT),
190 	EM_EMX_DEVICE(82573L),
191 
192 	EM_DEVICE(82583V),
193 
194 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
198 
199 	EM_DEVICE(ICH8_IGP_M_AMT),
200 	EM_DEVICE(ICH8_IGP_AMT),
201 	EM_DEVICE(ICH8_IGP_C),
202 	EM_DEVICE(ICH8_IFE),
203 	EM_DEVICE(ICH8_IFE_GT),
204 	EM_DEVICE(ICH8_IFE_G),
205 	EM_DEVICE(ICH8_IGP_M),
206 	EM_DEVICE(ICH8_82567V_3),
207 
208 	EM_DEVICE(ICH9_IGP_M_AMT),
209 	EM_DEVICE(ICH9_IGP_AMT),
210 	EM_DEVICE(ICH9_IGP_C),
211 	EM_DEVICE(ICH9_IGP_M),
212 	EM_DEVICE(ICH9_IGP_M_V),
213 	EM_DEVICE(ICH9_IFE),
214 	EM_DEVICE(ICH9_IFE_GT),
215 	EM_DEVICE(ICH9_IFE_G),
216 	EM_DEVICE(ICH9_BM),
217 
218 	EM_EMX_DEVICE(82574L),
219 	EM_EMX_DEVICE(82574LA),
220 
221 	EM_DEVICE(ICH10_R_BM_LM),
222 	EM_DEVICE(ICH10_R_BM_LF),
223 	EM_DEVICE(ICH10_R_BM_V),
224 	EM_DEVICE(ICH10_D_BM_LM),
225 	EM_DEVICE(ICH10_D_BM_LF),
226 	EM_DEVICE(ICH10_D_BM_V),
227 
228 	EM_DEVICE(PCH_M_HV_LM),
229 	EM_DEVICE(PCH_M_HV_LC),
230 	EM_DEVICE(PCH_D_HV_DM),
231 	EM_DEVICE(PCH_D_HV_DC),
232 
233 	EM_DEVICE(PCH2_LV_LM),
234 	EM_DEVICE(PCH2_LV_V),
235 
236 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
237 	EM_EMX_DEVICE(PCH_LPT_I217_V),
238 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
240 
241 	/* required last entry */
242 	EM_DEVICE_NULL
243 };
244 
245 static int	em_probe(device_t);
246 static int	em_attach(device_t);
247 static int	em_detach(device_t);
248 static int	em_shutdown(device_t);
249 static int	em_suspend(device_t);
250 static int	em_resume(device_t);
251 
252 static void	em_init(void *);
253 static void	em_stop(struct adapter *);
254 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
255 static void	em_start(struct ifnet *, struct ifaltq_subque *);
256 #ifdef IFPOLL_ENABLE
257 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
258 static void	em_npoll_compat(struct ifnet *, void *, int);
259 #endif
260 static void	em_watchdog(struct ifnet *);
261 static void	em_media_status(struct ifnet *, struct ifmediareq *);
262 static int	em_media_change(struct ifnet *);
263 static void	em_timer(void *);
264 
265 static void	em_intr(void *);
266 static void	em_intr_mask(void *);
267 static void	em_intr_body(struct adapter *, boolean_t);
268 static void	em_rxeof(struct adapter *, int);
269 static void	em_txeof(struct adapter *);
270 static void	em_tx_collect(struct adapter *);
271 static void	em_tx_purge(struct adapter *);
272 static void	em_enable_intr(struct adapter *);
273 static void	em_disable_intr(struct adapter *);
274 
275 static int	em_dma_malloc(struct adapter *, bus_size_t,
276 		    struct em_dma_alloc *);
277 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
278 static void	em_init_tx_ring(struct adapter *);
279 static int	em_init_rx_ring(struct adapter *);
280 static int	em_create_tx_ring(struct adapter *);
281 static int	em_create_rx_ring(struct adapter *);
282 static void	em_destroy_tx_ring(struct adapter *, int);
283 static void	em_destroy_rx_ring(struct adapter *, int);
284 static int	em_newbuf(struct adapter *, int, int);
285 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
286 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
287 		    struct mbuf *);
288 static int	em_txcsum(struct adapter *, struct mbuf *,
289 		    uint32_t *, uint32_t *);
290 static int	em_tso_pullup(struct adapter *, struct mbuf **);
291 static int	em_tso_setup(struct adapter *, struct mbuf *,
292 		    uint32_t *, uint32_t *);
293 
294 static int	em_get_hw_info(struct adapter *);
295 static int 	em_is_valid_eaddr(const uint8_t *);
296 static int	em_alloc_pci_res(struct adapter *);
297 static void	em_free_pci_res(struct adapter *);
298 static int	em_reset(struct adapter *);
299 static void	em_setup_ifp(struct adapter *);
300 static void	em_init_tx_unit(struct adapter *);
301 static void	em_init_rx_unit(struct adapter *);
302 static void	em_update_stats(struct adapter *);
303 static void	em_set_promisc(struct adapter *);
304 static void	em_disable_promisc(struct adapter *);
305 static void	em_set_multi(struct adapter *);
306 static void	em_update_link_status(struct adapter *);
307 static void	em_smartspeed(struct adapter *);
308 static void	em_set_itr(struct adapter *, uint32_t);
309 static void	em_disable_aspm(struct adapter *);
310 
311 /* Hardware workarounds */
312 static int	em_82547_fifo_workaround(struct adapter *, int);
313 static void	em_82547_update_fifo_head(struct adapter *, int);
314 static int	em_82547_tx_fifo_reset(struct adapter *);
315 static void	em_82547_move_tail(void *);
316 static void	em_82547_move_tail_serialized(struct adapter *);
317 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
318 
319 static void	em_print_debug_info(struct adapter *);
320 static void	em_print_nvm_info(struct adapter *);
321 static void	em_print_hw_stats(struct adapter *);
322 
323 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
324 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
325 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
326 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
327 static void	em_add_sysctl(struct adapter *adapter);
328 
329 /* Management and WOL Support */
330 static void	em_get_mgmt(struct adapter *);
331 static void	em_rel_mgmt(struct adapter *);
332 static void	em_get_hw_control(struct adapter *);
333 static void	em_rel_hw_control(struct adapter *);
334 static void	em_enable_wol(device_t);
335 
336 static device_method_t em_methods[] = {
337 	/* Device interface */
338 	DEVMETHOD(device_probe,		em_probe),
339 	DEVMETHOD(device_attach,	em_attach),
340 	DEVMETHOD(device_detach,	em_detach),
341 	DEVMETHOD(device_shutdown,	em_shutdown),
342 	DEVMETHOD(device_suspend,	em_suspend),
343 	DEVMETHOD(device_resume,	em_resume),
344 	DEVMETHOD_END
345 };
346 
347 static driver_t em_driver = {
348 	"em",
349 	em_methods,
350 	sizeof(struct adapter),
351 };
352 
353 static devclass_t em_devclass;
354 
355 DECLARE_DUMMY_MODULE(if_em);
356 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
357 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
358 
359 /*
360  * Tunables
361  */
362 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
363 static int	em_rxd = EM_DEFAULT_RXD;
364 static int	em_txd = EM_DEFAULT_TXD;
365 static int	em_smart_pwr_down = 0;
366 
367 /* Controls whether promiscuous also shows bad packets */
368 static int	em_debug_sbp = FALSE;
369 
370 static int	em_82573_workaround = 1;
371 static int	em_msi_enable = 1;
372 
373 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
374 TUNABLE_INT("hw.em.rxd", &em_rxd);
375 TUNABLE_INT("hw.em.txd", &em_txd);
376 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
377 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
378 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
379 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
380 
381 /* Global used in WOL setup with multiport cards */
382 static int	em_global_quad_port_a = 0;
383 
384 /* Set this to one to display debug statistics */
385 static int	em_display_debug_stats = 0;
386 
387 #if !defined(KTR_IF_EM)
388 #define KTR_IF_EM	KTR_ALL
389 #endif
390 KTR_INFO_MASTER(if_em);
391 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
392 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
393 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
394 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
395 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
396 #define logif(name)	KTR_LOG(if_em_ ## name)
397 
398 static int
399 em_probe(device_t dev)
400 {
401 	const struct em_vendor_info *ent;
402 	uint16_t vid, did;
403 
404 	vid = pci_get_vendor(dev);
405 	did = pci_get_device(dev);
406 
407 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
408 		if (vid == ent->vendor_id && did == ent->device_id) {
409 			device_set_desc(dev, ent->desc);
410 			device_set_async_attach(dev, TRUE);
411 			return (ent->ret);
412 		}
413 	}
414 	return (ENXIO);
415 }
416 
417 static int
418 em_attach(device_t dev)
419 {
420 	struct adapter *adapter = device_get_softc(dev);
421 	struct ifnet *ifp = &adapter->arpcom.ac_if;
422 	int tsize, rsize;
423 	int error = 0;
424 	uint16_t eeprom_data, device_id, apme_mask;
425 	driver_intr_t *intr_func;
426 
427 	adapter->dev = adapter->osdep.dev = dev;
428 
429 	callout_init_mp(&adapter->timer);
430 	callout_init_mp(&adapter->tx_fifo_timer);
431 
432 	ifmedia_init(&adapter->media, IFM_IMASK,
433 	    em_media_change, em_media_status);
434 
435 	/* Determine hardware and mac info */
436 	error = em_get_hw_info(adapter);
437 	if (error) {
438 		device_printf(dev, "Identify hardware failed\n");
439 		goto fail;
440 	}
441 
442 	/* Setup PCI resources */
443 	error = em_alloc_pci_res(adapter);
444 	if (error) {
445 		device_printf(dev, "Allocation of PCI resources failed\n");
446 		goto fail;
447 	}
448 
449 	/*
450 	 * For ICH8 and family we need to map the flash memory,
451 	 * and this must happen after the MAC is identified.
452 	 */
453 	if (adapter->hw.mac.type == e1000_ich8lan ||
454 	    adapter->hw.mac.type == e1000_ich9lan ||
455 	    adapter->hw.mac.type == e1000_ich10lan ||
456 	    adapter->hw.mac.type == e1000_pchlan ||
457 	    adapter->hw.mac.type == e1000_pch2lan ||
458 	    adapter->hw.mac.type == e1000_pch_lpt) {
459 		adapter->flash_rid = EM_BAR_FLASH;
460 
461 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
462 					&adapter->flash_rid, RF_ACTIVE);
463 		if (adapter->flash == NULL) {
464 			device_printf(dev, "Mapping of Flash failed\n");
465 			error = ENXIO;
466 			goto fail;
467 		}
468 		adapter->osdep.flash_bus_space_tag =
469 		    rman_get_bustag(adapter->flash);
470 		adapter->osdep.flash_bus_space_handle =
471 		    rman_get_bushandle(adapter->flash);
472 
473 		/*
474 		 * This is used in the shared code
475 		 * XXX this goof is actually not used.
476 		 */
477 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
478 	}
479 
480 	switch (adapter->hw.mac.type) {
481 	case e1000_82571:
482 	case e1000_82572:
483 		/*
484 		 * Pullup extra 4bytes into the first data segment, see:
485 		 * 82571/82572 specification update errata #7
486 		 *
487 		 * NOTE:
488 		 * 4bytes instead of 2bytes, which are mentioned in the
489 		 * errata, are pulled; mainly to keep rest of the data
490 		 * properly aligned.
491 		 */
492 		adapter->flags |= EM_FLAG_TSO_PULLEX;
493 		/* FALL THROUGH */
494 
495 	default:
496 		if (pci_is_pcie(dev))
497 			adapter->flags |= EM_FLAG_TSO;
498 		break;
499 	}
500 
501 	/* Do Shared Code initialization */
502 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
503 		device_printf(dev, "Setup of Shared code failed\n");
504 		error = ENXIO;
505 		goto fail;
506 	}
507 
508 	e1000_get_bus_info(&adapter->hw);
509 
510 	/*
511 	 * Validate number of transmit and receive descriptors.  It
512 	 * must not exceed hardware maximum, and must be multiple
513 	 * of E1000_DBA_ALIGN.
514 	 */
515 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
516 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
517 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
518 	    em_txd < EM_MIN_TXD) {
519 		if (adapter->hw.mac.type < e1000_82544)
520 			adapter->num_tx_desc = EM_MAX_TXD_82543;
521 		else
522 			adapter->num_tx_desc = EM_DEFAULT_TXD;
523 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
524 		    adapter->num_tx_desc, em_txd);
525 	} else {
526 		adapter->num_tx_desc = em_txd;
527 	}
528 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
529 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
530 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
531 	    em_rxd < EM_MIN_RXD) {
532 		if (adapter->hw.mac.type < e1000_82544)
533 			adapter->num_rx_desc = EM_MAX_RXD_82543;
534 		else
535 			adapter->num_rx_desc = EM_DEFAULT_RXD;
536 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
537 		    adapter->num_rx_desc, em_rxd);
538 	} else {
539 		adapter->num_rx_desc = em_rxd;
540 	}
541 
542 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
543 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
544 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
545 	adapter->rx_buffer_len = MCLBYTES;
546 
547 	/*
548 	 * Interrupt throttle rate
549 	 */
550 	if (em_int_throttle_ceil == 0) {
551 		adapter->int_throttle_ceil = 0;
552 	} else {
553 		int throttle = em_int_throttle_ceil;
554 
555 		if (throttle < 0)
556 			throttle = EM_DEFAULT_ITR;
557 
558 		/* Recalculate the tunable value to get the exact frequency. */
559 		throttle = 1000000000 / 256 / throttle;
560 
561 		/* Upper 16bits of ITR is reserved and should be zero */
562 		if (throttle & 0xffff0000)
563 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
564 
565 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
566 	}
567 
568 	e1000_init_script_state_82541(&adapter->hw, TRUE);
569 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
570 
571 	/* Copper options */
572 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
573 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
574 		adapter->hw.phy.disable_polarity_correction = FALSE;
575 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
576 	}
577 
578 	/* Set the frame limits assuming standard ethernet sized frames. */
579 	adapter->hw.mac.max_frame_size =
580 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
581 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
582 
583 	/* This controls when hardware reports transmit completion status. */
584 	adapter->hw.mac.report_tx_early = 1;
585 
586 	/*
587 	 * Create top level busdma tag
588 	 */
589 	error = bus_dma_tag_create(NULL, 1, 0,
590 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
591 			NULL, NULL,
592 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
593 			0, &adapter->parent_dtag);
594 	if (error) {
595 		device_printf(dev, "could not create top level DMA tag\n");
596 		goto fail;
597 	}
598 
599 	/*
600 	 * Allocate Transmit Descriptor ring
601 	 */
602 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
603 			 EM_DBA_ALIGN);
604 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
605 	if (error) {
606 		device_printf(dev, "Unable to allocate tx_desc memory\n");
607 		goto fail;
608 	}
609 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
610 
611 	/*
612 	 * Allocate Receive Descriptor ring
613 	 */
614 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
615 			 EM_DBA_ALIGN);
616 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
617 	if (error) {
618 		device_printf(dev, "Unable to allocate rx_desc memory\n");
619 		goto fail;
620 	}
621 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
622 
623 	/* Allocate multicast array memory. */
624 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
625 	    M_DEVBUF, M_WAITOK);
626 
627 	/* Indicate SOL/IDER usage */
628 	if (e1000_check_reset_block(&adapter->hw)) {
629 		device_printf(dev,
630 		    "PHY reset is blocked due to SOL/IDER session.\n");
631 	}
632 
633 	/* Disable EEE */
634 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
635 
636 	/*
637 	 * Start from a known state, this is important in reading the
638 	 * nvm and mac from that.
639 	 */
640 	e1000_reset_hw(&adapter->hw);
641 
642 	/* Make sure we have a good EEPROM before we read from it */
643 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
644 		/*
645 		 * Some PCI-E parts fail the first check due to
646 		 * the link being in sleep state, call it again,
647 		 * if it fails a second time its a real issue.
648 		 */
649 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
650 			device_printf(dev,
651 			    "The EEPROM Checksum Is Not Valid\n");
652 			error = EIO;
653 			goto fail;
654 		}
655 	}
656 
657 	/* Copy the permanent MAC address out of the EEPROM */
658 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
659 		device_printf(dev, "EEPROM read error while reading MAC"
660 		    " address\n");
661 		error = EIO;
662 		goto fail;
663 	}
664 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
665 		device_printf(dev, "Invalid MAC address\n");
666 		error = EIO;
667 		goto fail;
668 	}
669 
670 	/* Allocate transmit descriptors and buffers */
671 	error = em_create_tx_ring(adapter);
672 	if (error) {
673 		device_printf(dev, "Could not setup transmit structures\n");
674 		goto fail;
675 	}
676 
677 	/* Allocate receive descriptors and buffers */
678 	error = em_create_rx_ring(adapter);
679 	if (error) {
680 		device_printf(dev, "Could not setup receive structures\n");
681 		goto fail;
682 	}
683 
684 	/* Manually turn off all interrupts */
685 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
686 
687 	/* Determine if we have to control management hardware */
688 	if (e1000_enable_mng_pass_thru(&adapter->hw))
689 		adapter->flags |= EM_FLAG_HAS_MGMT;
690 
691 	/*
692 	 * Setup Wake-on-Lan
693 	 */
694 	apme_mask = EM_EEPROM_APME;
695 	eeprom_data = 0;
696 	switch (adapter->hw.mac.type) {
697 	case e1000_82542:
698 	case e1000_82543:
699 		break;
700 
701 	case e1000_82573:
702 	case e1000_82583:
703 		adapter->flags |= EM_FLAG_HAS_AMT;
704 		/* FALL THROUGH */
705 
706 	case e1000_82546:
707 	case e1000_82546_rev_3:
708 	case e1000_82571:
709 	case e1000_82572:
710 	case e1000_80003es2lan:
711 		if (adapter->hw.bus.func == 1) {
712 			e1000_read_nvm(&adapter->hw,
713 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
714 		} else {
715 			e1000_read_nvm(&adapter->hw,
716 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
717 		}
718 		break;
719 
720 	case e1000_ich8lan:
721 	case e1000_ich9lan:
722 	case e1000_ich10lan:
723 	case e1000_pchlan:
724 	case e1000_pch2lan:
725 		apme_mask = E1000_WUC_APME;
726 		adapter->flags |= EM_FLAG_HAS_AMT;
727 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
728 		break;
729 
730 	default:
731 		e1000_read_nvm(&adapter->hw,
732 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
733 		break;
734 	}
735 	if (eeprom_data & apme_mask)
736 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
737 
738 	/*
739          * We have the eeprom settings, now apply the special cases
740          * where the eeprom may be wrong or the board won't support
741          * wake on lan on a particular port
742 	 */
743 	device_id = pci_get_device(dev);
744         switch (device_id) {
745 	case E1000_DEV_ID_82546GB_PCIE:
746 		adapter->wol = 0;
747 		break;
748 
749 	case E1000_DEV_ID_82546EB_FIBER:
750 	case E1000_DEV_ID_82546GB_FIBER:
751 	case E1000_DEV_ID_82571EB_FIBER:
752 		/*
753 		 * Wake events only supported on port A for dual fiber
754 		 * regardless of eeprom setting
755 		 */
756 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
757 		    E1000_STATUS_FUNC_1)
758 			adapter->wol = 0;
759 		break;
760 
761 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
762 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
763 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
764 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
765                 /* if quad port adapter, disable WoL on all but port A */
766 		if (em_global_quad_port_a != 0)
767 			adapter->wol = 0;
768 		/* Reset for multiple quad port adapters */
769 		if (++em_global_quad_port_a == 4)
770 			em_global_quad_port_a = 0;
771                 break;
772 	}
773 
774 	/* XXX disable wol */
775 	adapter->wol = 0;
776 
777 	/* Setup OS specific network interface */
778 	em_setup_ifp(adapter);
779 
780 	/* Add sysctl tree, must after em_setup_ifp() */
781 	em_add_sysctl(adapter);
782 
783 #ifdef IFPOLL_ENABLE
784 	/* Polling setup */
785 	ifpoll_compat_setup(&adapter->npoll,
786 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
787 	    device_get_unit(dev), ifp->if_serializer);
788 #endif
789 
790 	/* Reset the hardware */
791 	error = em_reset(adapter);
792 	if (error) {
793 		/*
794 		 * Some 82573 parts fail the first reset, call it again,
795 		 * if it fails a second time its a real issue.
796 		 */
797 		error = em_reset(adapter);
798 		if (error) {
799 			device_printf(dev, "Unable to reset the hardware\n");
800 			ether_ifdetach(ifp);
801 			goto fail;
802 		}
803 	}
804 
805 	/* Initialize statistics */
806 	em_update_stats(adapter);
807 
808 	adapter->hw.mac.get_link_status = 1;
809 	em_update_link_status(adapter);
810 
811 	/* Do we need workaround for 82544 PCI-X adapter? */
812 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
813 	    adapter->hw.mac.type == e1000_82544)
814 		adapter->pcix_82544 = TRUE;
815 	else
816 		adapter->pcix_82544 = FALSE;
817 
818 	if (adapter->pcix_82544) {
819 		/*
820 		 * 82544 on PCI-X may split one TX segment
821 		 * into two TX descs, so we double its number
822 		 * of spare TX desc here.
823 		 */
824 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
825 	} else {
826 		adapter->spare_tx_desc = EM_TX_SPARE;
827 	}
828 	if (adapter->flags & EM_FLAG_TSO)
829 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
830 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
831 
832 	/*
833 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
834 	 * and tx_int_nsegs:
835 	 * (spare_tx_desc + EM_TX_RESERVED) <=
836 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
837 	 */
838 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
839 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
840 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
841 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
842 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
843 
844 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
845 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
846 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
847 
848 	/* Non-AMT based hardware can now take control from firmware */
849 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
850 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
851 		em_get_hw_control(adapter);
852 
853 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
854 
855 	/*
856 	 * Missing Interrupt Following ICR read:
857 	 *
858 	 * 82571/82572 specification update errata #76
859 	 * 82573 specification update errata #31
860 	 * 82574 specification update errata #12
861 	 * 82583 specification update errata #4
862 	 */
863 	intr_func = em_intr;
864 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
865 	    (adapter->hw.mac.type == e1000_82571 ||
866 	     adapter->hw.mac.type == e1000_82572 ||
867 	     adapter->hw.mac.type == e1000_82573 ||
868 	     adapter->hw.mac.type == e1000_82574 ||
869 	     adapter->hw.mac.type == e1000_82583))
870 		intr_func = em_intr_mask;
871 
872 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
873 			       intr_func, adapter, &adapter->intr_tag,
874 			       ifp->if_serializer);
875 	if (error) {
876 		device_printf(dev, "Failed to register interrupt handler");
877 		ether_ifdetach(ifp);
878 		goto fail;
879 	}
880 	return (0);
881 fail:
882 	em_detach(dev);
883 	return (error);
884 }
885 
886 static int
887 em_detach(device_t dev)
888 {
889 	struct adapter *adapter = device_get_softc(dev);
890 
891 	if (device_is_attached(dev)) {
892 		struct ifnet *ifp = &adapter->arpcom.ac_if;
893 
894 		lwkt_serialize_enter(ifp->if_serializer);
895 
896 		em_stop(adapter);
897 
898 		e1000_phy_hw_reset(&adapter->hw);
899 
900 		em_rel_mgmt(adapter);
901 		em_rel_hw_control(adapter);
902 
903 		if (adapter->wol) {
904 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
905 					E1000_WUC_PME_EN);
906 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
907 			em_enable_wol(dev);
908 		}
909 
910 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
911 
912 		lwkt_serialize_exit(ifp->if_serializer);
913 
914 		ether_ifdetach(ifp);
915 	} else if (adapter->memory != NULL) {
916 		em_rel_hw_control(adapter);
917 	}
918 
919 	ifmedia_removeall(&adapter->media);
920 	bus_generic_detach(dev);
921 
922 	em_free_pci_res(adapter);
923 
924 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
925 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
926 
927 	/* Free Transmit Descriptor ring */
928 	if (adapter->tx_desc_base)
929 		em_dma_free(adapter, &adapter->txdma);
930 
931 	/* Free Receive Descriptor ring */
932 	if (adapter->rx_desc_base)
933 		em_dma_free(adapter, &adapter->rxdma);
934 
935 	/* Free top level busdma tag */
936 	if (adapter->parent_dtag != NULL)
937 		bus_dma_tag_destroy(adapter->parent_dtag);
938 
939 	if (adapter->mta != NULL)
940 		kfree(adapter->mta, M_DEVBUF);
941 
942 	return (0);
943 }
944 
945 static int
946 em_shutdown(device_t dev)
947 {
948 	return em_suspend(dev);
949 }
950 
951 static int
952 em_suspend(device_t dev)
953 {
954 	struct adapter *adapter = device_get_softc(dev);
955 	struct ifnet *ifp = &adapter->arpcom.ac_if;
956 
957 	lwkt_serialize_enter(ifp->if_serializer);
958 
959 	em_stop(adapter);
960 
961 	em_rel_mgmt(adapter);
962 	em_rel_hw_control(adapter);
963 
964 	if (adapter->wol) {
965 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
966 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
967 		em_enable_wol(dev);
968 	}
969 
970 	lwkt_serialize_exit(ifp->if_serializer);
971 
972 	return bus_generic_suspend(dev);
973 }
974 
975 static int
976 em_resume(device_t dev)
977 {
978 	struct adapter *adapter = device_get_softc(dev);
979 	struct ifnet *ifp = &adapter->arpcom.ac_if;
980 
981 	lwkt_serialize_enter(ifp->if_serializer);
982 
983 	if (adapter->hw.mac.type == e1000_pch2lan)
984 		e1000_resume_workarounds_pchlan(&adapter->hw);
985 
986 	em_init(adapter);
987 	em_get_mgmt(adapter);
988 	if_devstart(ifp);
989 
990 	lwkt_serialize_exit(ifp->if_serializer);
991 
992 	return bus_generic_resume(dev);
993 }
994 
995 static void
996 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
997 {
998 	struct adapter *adapter = ifp->if_softc;
999 	struct mbuf *m_head;
1000 	int idx = -1, nsegs = 0;
1001 
1002 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1003 	ASSERT_SERIALIZED(ifp->if_serializer);
1004 
1005 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1006 		return;
1007 
1008 	if (!adapter->link_active) {
1009 		ifq_purge(&ifp->if_snd);
1010 		return;
1011 	}
1012 
1013 	while (!ifq_is_empty(&ifp->if_snd)) {
1014 		/* Now do we at least have a minimal? */
1015 		if (EM_IS_OACTIVE(adapter)) {
1016 			em_tx_collect(adapter);
1017 			if (EM_IS_OACTIVE(adapter)) {
1018 				ifq_set_oactive(&ifp->if_snd);
1019 				adapter->no_tx_desc_avail1++;
1020 				break;
1021 			}
1022 		}
1023 
1024 		logif(pkt_txqueue);
1025 		m_head = ifq_dequeue(&ifp->if_snd);
1026 		if (m_head == NULL)
1027 			break;
1028 
1029 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1030 			IFNET_STAT_INC(ifp, oerrors, 1);
1031 			em_tx_collect(adapter);
1032 			continue;
1033 		}
1034 
1035 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1036 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1037 			nsegs = 0;
1038 			idx = -1;
1039 		}
1040 
1041 		/* Send a copy of the frame to the BPF listener */
1042 		ETHER_BPF_MTAP(ifp, m_head);
1043 
1044 		/* Set timeout in case hardware has problems transmitting. */
1045 		ifp->if_timer = EM_TX_TIMEOUT;
1046 	}
1047 	if (idx >= 0)
1048 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1049 }
1050 
1051 static int
1052 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1053 {
1054 	struct adapter *adapter = ifp->if_softc;
1055 	struct ifreq *ifr = (struct ifreq *)data;
1056 	uint16_t eeprom_data = 0;
1057 	int max_frame_size, mask, reinit;
1058 	int error = 0;
1059 
1060 	ASSERT_SERIALIZED(ifp->if_serializer);
1061 
1062 	switch (command) {
1063 	case SIOCSIFMTU:
1064 		switch (adapter->hw.mac.type) {
1065 		case e1000_82573:
1066 			/*
1067 			 * 82573 only supports jumbo frames
1068 			 * if ASPM is disabled.
1069 			 */
1070 			e1000_read_nvm(&adapter->hw,
1071 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1072 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1073 				max_frame_size = ETHER_MAX_LEN;
1074 				break;
1075 			}
1076 			/* FALL THROUGH */
1077 
1078 		/* Limit Jumbo Frame size */
1079 		case e1000_82571:
1080 		case e1000_82572:
1081 		case e1000_ich9lan:
1082 		case e1000_ich10lan:
1083 		case e1000_pch2lan:
1084 		case e1000_pch_lpt:
1085 		case e1000_82574:
1086 		case e1000_82583:
1087 		case e1000_80003es2lan:
1088 			max_frame_size = 9234;
1089 			break;
1090 
1091 		case e1000_pchlan:
1092 			max_frame_size = 4096;
1093 			break;
1094 
1095 		/* Adapters that do not support jumbo frames */
1096 		case e1000_82542:
1097 		case e1000_ich8lan:
1098 			max_frame_size = ETHER_MAX_LEN;
1099 			break;
1100 
1101 		default:
1102 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1103 			break;
1104 		}
1105 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1106 		    ETHER_CRC_LEN) {
1107 			error = EINVAL;
1108 			break;
1109 		}
1110 
1111 		ifp->if_mtu = ifr->ifr_mtu;
1112 		adapter->hw.mac.max_frame_size =
1113 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1114 
1115 		if (ifp->if_flags & IFF_RUNNING)
1116 			em_init(adapter);
1117 		break;
1118 
1119 	case SIOCSIFFLAGS:
1120 		if (ifp->if_flags & IFF_UP) {
1121 			if ((ifp->if_flags & IFF_RUNNING)) {
1122 				if ((ifp->if_flags ^ adapter->if_flags) &
1123 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1124 					em_disable_promisc(adapter);
1125 					em_set_promisc(adapter);
1126 				}
1127 			} else {
1128 				em_init(adapter);
1129 			}
1130 		} else if (ifp->if_flags & IFF_RUNNING) {
1131 			em_stop(adapter);
1132 		}
1133 		adapter->if_flags = ifp->if_flags;
1134 		break;
1135 
1136 	case SIOCADDMULTI:
1137 	case SIOCDELMULTI:
1138 		if (ifp->if_flags & IFF_RUNNING) {
1139 			em_disable_intr(adapter);
1140 			em_set_multi(adapter);
1141 			if (adapter->hw.mac.type == e1000_82542 &&
1142 			    adapter->hw.revision_id == E1000_REVISION_2)
1143 				em_init_rx_unit(adapter);
1144 #ifdef IFPOLL_ENABLE
1145 			if (!(ifp->if_flags & IFF_NPOLLING))
1146 #endif
1147 				em_enable_intr(adapter);
1148 		}
1149 		break;
1150 
1151 	case SIOCSIFMEDIA:
1152 		/* Check SOL/IDER usage */
1153 		if (e1000_check_reset_block(&adapter->hw)) {
1154 			device_printf(adapter->dev, "Media change is"
1155 			    " blocked due to SOL/IDER session.\n");
1156 			break;
1157 		}
1158 		/* FALL THROUGH */
1159 
1160 	case SIOCGIFMEDIA:
1161 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1162 		break;
1163 
1164 	case SIOCSIFCAP:
1165 		reinit = 0;
1166 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1167 		if (mask & IFCAP_RXCSUM) {
1168 			ifp->if_capenable ^= IFCAP_RXCSUM;
1169 			reinit = 1;
1170 		}
1171 		if (mask & IFCAP_TXCSUM) {
1172 			ifp->if_capenable ^= IFCAP_TXCSUM;
1173 			if (ifp->if_capenable & IFCAP_TXCSUM)
1174 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1175 			else
1176 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1177 		}
1178 		if (mask & IFCAP_TSO) {
1179 			ifp->if_capenable ^= IFCAP_TSO;
1180 			if (ifp->if_capenable & IFCAP_TSO)
1181 				ifp->if_hwassist |= CSUM_TSO;
1182 			else
1183 				ifp->if_hwassist &= ~CSUM_TSO;
1184 		}
1185 		if (mask & IFCAP_VLAN_HWTAGGING) {
1186 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1187 			reinit = 1;
1188 		}
1189 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1190 			em_init(adapter);
1191 		break;
1192 
1193 	default:
1194 		error = ether_ioctl(ifp, command, data);
1195 		break;
1196 	}
1197 	return (error);
1198 }
1199 
1200 static void
1201 em_watchdog(struct ifnet *ifp)
1202 {
1203 	struct adapter *adapter = ifp->if_softc;
1204 
1205 	ASSERT_SERIALIZED(ifp->if_serializer);
1206 
1207 	/*
1208 	 * The timer is set to 5 every time start queues a packet.
1209 	 * Then txeof keeps resetting it as long as it cleans at
1210 	 * least one descriptor.
1211 	 * Finally, anytime all descriptors are clean the timer is
1212 	 * set to 0.
1213 	 */
1214 
1215 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1216 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1217 		/*
1218 		 * If we reach here, all TX jobs are completed and
1219 		 * the TX engine should have been idled for some time.
1220 		 * We don't need to call if_devstart() here.
1221 		 */
1222 		ifq_clr_oactive(&ifp->if_snd);
1223 		ifp->if_timer = 0;
1224 		return;
1225 	}
1226 
1227 	/*
1228 	 * If we are in this routine because of pause frames, then
1229 	 * don't reset the hardware.
1230 	 */
1231 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1232 	    E1000_STATUS_TXOFF) {
1233 		ifp->if_timer = EM_TX_TIMEOUT;
1234 		return;
1235 	}
1236 
1237 	if (e1000_check_for_link(&adapter->hw) == 0)
1238 		if_printf(ifp, "watchdog timeout -- resetting\n");
1239 
1240 	IFNET_STAT_INC(ifp, oerrors, 1);
1241 	adapter->watchdog_events++;
1242 
1243 	em_init(adapter);
1244 
1245 	if (!ifq_is_empty(&ifp->if_snd))
1246 		if_devstart(ifp);
1247 }
1248 
1249 static void
1250 em_init(void *xsc)
1251 {
1252 	struct adapter *adapter = xsc;
1253 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1254 	device_t dev = adapter->dev;
1255 
1256 	ASSERT_SERIALIZED(ifp->if_serializer);
1257 
1258 	em_stop(adapter);
1259 
1260 	/* Get the latest mac address, User can use a LAA */
1261         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1262 
1263 	/* Put the address into the Receive Address Array */
1264 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1265 
1266 	/*
1267 	 * With the 82571 adapter, RAR[0] may be overwritten
1268 	 * when the other port is reset, we make a duplicate
1269 	 * in RAR[14] for that eventuality, this assures
1270 	 * the interface continues to function.
1271 	 */
1272 	if (adapter->hw.mac.type == e1000_82571) {
1273 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1274 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1275 		    E1000_RAR_ENTRIES - 1);
1276 	}
1277 
1278 	/* Reset the hardware */
1279 	if (em_reset(adapter)) {
1280 		device_printf(dev, "Unable to reset the hardware\n");
1281 		/* XXX em_stop()? */
1282 		return;
1283 	}
1284 	em_update_link_status(adapter);
1285 
1286 	/* Setup VLAN support, basic and offload if available */
1287 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1288 
1289 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1290 		uint32_t ctrl;
1291 
1292 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1293 		ctrl |= E1000_CTRL_VME;
1294 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1295 	}
1296 
1297 	/* Configure for OS presence */
1298 	em_get_mgmt(adapter);
1299 
1300 	/* Prepare transmit descriptors and buffers */
1301 	em_init_tx_ring(adapter);
1302 	em_init_tx_unit(adapter);
1303 
1304 	/* Setup Multicast table */
1305 	em_set_multi(adapter);
1306 
1307 	/* Prepare receive descriptors and buffers */
1308 	if (em_init_rx_ring(adapter)) {
1309 		device_printf(dev, "Could not setup receive structures\n");
1310 		em_stop(adapter);
1311 		return;
1312 	}
1313 	em_init_rx_unit(adapter);
1314 
1315 	/* Don't lose promiscuous settings */
1316 	em_set_promisc(adapter);
1317 
1318 	ifp->if_flags |= IFF_RUNNING;
1319 	ifq_clr_oactive(&ifp->if_snd);
1320 
1321 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1322 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1323 
1324 	/* MSI/X configuration for 82574 */
1325 	if (adapter->hw.mac.type == e1000_82574) {
1326 		int tmp;
1327 
1328 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1329 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1330 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1331 		/*
1332 		 * XXX MSIX
1333 		 * Set the IVAR - interrupt vector routing.
1334 		 * Each nibble represents a vector, high bit
1335 		 * is enable, other 3 bits are the MSIX table
1336 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1337 		 * Link (other) to 2, hence the magic number.
1338 		 */
1339 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1340 	}
1341 
1342 #ifdef IFPOLL_ENABLE
1343 	/*
1344 	 * Only enable interrupts if we are not polling, make sure
1345 	 * they are off otherwise.
1346 	 */
1347 	if (ifp->if_flags & IFF_NPOLLING)
1348 		em_disable_intr(adapter);
1349 	else
1350 #endif /* IFPOLL_ENABLE */
1351 		em_enable_intr(adapter);
1352 
1353 	/* AMT based hardware can now take control from firmware */
1354 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1355 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1356 	    adapter->hw.mac.type >= e1000_82571)
1357 		em_get_hw_control(adapter);
1358 }
1359 
1360 #ifdef IFPOLL_ENABLE
1361 
1362 static void
1363 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1364 {
1365 	struct adapter *adapter = ifp->if_softc;
1366 
1367 	ASSERT_SERIALIZED(ifp->if_serializer);
1368 
1369 	if (adapter->npoll.ifpc_stcount-- == 0) {
1370 		uint32_t reg_icr;
1371 
1372 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1373 
1374 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1375 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1376 			callout_stop(&adapter->timer);
1377 			adapter->hw.mac.get_link_status = 1;
1378 			em_update_link_status(adapter);
1379 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1380 		}
1381 	}
1382 
1383 	em_rxeof(adapter, count);
1384 	em_txeof(adapter);
1385 
1386 	if (!ifq_is_empty(&ifp->if_snd))
1387 		if_devstart(ifp);
1388 }
1389 
1390 static void
1391 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1392 {
1393 	struct adapter *adapter = ifp->if_softc;
1394 
1395 	ASSERT_SERIALIZED(ifp->if_serializer);
1396 
1397 	if (info != NULL) {
1398 		int cpuid = adapter->npoll.ifpc_cpuid;
1399 
1400                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1401 		info->ifpi_rx[cpuid].arg = NULL;
1402 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1403 
1404 		if (ifp->if_flags & IFF_RUNNING)
1405 			em_disable_intr(adapter);
1406 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1407 	} else {
1408 		if (ifp->if_flags & IFF_RUNNING)
1409 			em_enable_intr(adapter);
1410 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1411 	}
1412 }
1413 
1414 #endif /* IFPOLL_ENABLE */
1415 
1416 static void
1417 em_intr(void *xsc)
1418 {
1419 	em_intr_body(xsc, TRUE);
1420 }
1421 
1422 static void
1423 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1424 {
1425 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1426 	uint32_t reg_icr;
1427 
1428 	logif(intr_beg);
1429 	ASSERT_SERIALIZED(ifp->if_serializer);
1430 
1431 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1432 
1433 	if (chk_asserted &&
1434 	    ((adapter->hw.mac.type >= e1000_82571 &&
1435 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1436 	     reg_icr == 0)) {
1437 		logif(intr_end);
1438 		return;
1439 	}
1440 
1441 	/*
1442 	 * XXX: some laptops trigger several spurious interrupts
1443 	 * on em(4) when in the resume cycle. The ICR register
1444 	 * reports all-ones value in this case. Processing such
1445 	 * interrupts would lead to a freeze. I don't know why.
1446 	 */
1447 	if (reg_icr == 0xffffffff) {
1448 		logif(intr_end);
1449 		return;
1450 	}
1451 
1452 	if (ifp->if_flags & IFF_RUNNING) {
1453 		if (reg_icr &
1454 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1455 			em_rxeof(adapter, -1);
1456 		if (reg_icr & E1000_ICR_TXDW) {
1457 			em_txeof(adapter);
1458 			if (!ifq_is_empty(&ifp->if_snd))
1459 				if_devstart(ifp);
1460 		}
1461 	}
1462 
1463 	/* Link status change */
1464 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1465 		callout_stop(&adapter->timer);
1466 		adapter->hw.mac.get_link_status = 1;
1467 		em_update_link_status(adapter);
1468 
1469 		/* Deal with TX cruft when link lost */
1470 		em_tx_purge(adapter);
1471 
1472 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1473 	}
1474 
1475 	if (reg_icr & E1000_ICR_RXO)
1476 		adapter->rx_overruns++;
1477 
1478 	logif(intr_end);
1479 }
1480 
1481 static void
1482 em_intr_mask(void *xsc)
1483 {
1484 	struct adapter *adapter = xsc;
1485 
1486 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1487 	/*
1488 	 * NOTE:
1489 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1490 	 * so don't check it.
1491 	 */
1492 	em_intr_body(adapter, FALSE);
1493 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1494 }
1495 
1496 static void
1497 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1498 {
1499 	struct adapter *adapter = ifp->if_softc;
1500 	u_char fiber_type = IFM_1000_SX;
1501 
1502 	ASSERT_SERIALIZED(ifp->if_serializer);
1503 
1504 	em_update_link_status(adapter);
1505 
1506 	ifmr->ifm_status = IFM_AVALID;
1507 	ifmr->ifm_active = IFM_ETHER;
1508 
1509 	if (!adapter->link_active)
1510 		return;
1511 
1512 	ifmr->ifm_status |= IFM_ACTIVE;
1513 
1514 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1515 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1516 		if (adapter->hw.mac.type == e1000_82545)
1517 			fiber_type = IFM_1000_LX;
1518 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1519 	} else {
1520 		switch (adapter->link_speed) {
1521 		case 10:
1522 			ifmr->ifm_active |= IFM_10_T;
1523 			break;
1524 		case 100:
1525 			ifmr->ifm_active |= IFM_100_TX;
1526 			break;
1527 
1528 		case 1000:
1529 			ifmr->ifm_active |= IFM_1000_T;
1530 			break;
1531 		}
1532 		if (adapter->link_duplex == FULL_DUPLEX)
1533 			ifmr->ifm_active |= IFM_FDX;
1534 		else
1535 			ifmr->ifm_active |= IFM_HDX;
1536 	}
1537 }
1538 
1539 static int
1540 em_media_change(struct ifnet *ifp)
1541 {
1542 	struct adapter *adapter = ifp->if_softc;
1543 	struct ifmedia *ifm = &adapter->media;
1544 
1545 	ASSERT_SERIALIZED(ifp->if_serializer);
1546 
1547 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1548 		return (EINVAL);
1549 
1550 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1551 	case IFM_AUTO:
1552 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1553 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1554 		break;
1555 
1556 	case IFM_1000_LX:
1557 	case IFM_1000_SX:
1558 	case IFM_1000_T:
1559 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1560 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1561 		break;
1562 
1563 	case IFM_100_TX:
1564 		adapter->hw.mac.autoneg = FALSE;
1565 		adapter->hw.phy.autoneg_advertised = 0;
1566 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1567 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1568 		else
1569 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1570 		break;
1571 
1572 	case IFM_10_T:
1573 		adapter->hw.mac.autoneg = FALSE;
1574 		adapter->hw.phy.autoneg_advertised = 0;
1575 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1576 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1577 		else
1578 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1579 		break;
1580 
1581 	default:
1582 		if_printf(ifp, "Unsupported media type\n");
1583 		break;
1584 	}
1585 
1586 	em_init(adapter);
1587 
1588 	return (0);
1589 }
1590 
1591 static int
1592 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1593     int *segs_used, int *idx)
1594 {
1595 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1596 	bus_dmamap_t map;
1597 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1598 	struct e1000_tx_desc *ctxd = NULL;
1599 	struct mbuf *m_head = *m_headp;
1600 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1601 	int maxsegs, nsegs, i, j, first, last = 0, error;
1602 
1603 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1604 		error = em_tso_pullup(adapter, m_headp);
1605 		if (error)
1606 			return error;
1607 		m_head = *m_headp;
1608 	}
1609 
1610 	txd_upper = txd_lower = 0;
1611 	txd_used = 0;
1612 
1613 	/*
1614 	 * Capture the first descriptor index, this descriptor
1615 	 * will have the index of the EOP which is the only one
1616 	 * that now gets a DONE bit writeback.
1617 	 */
1618 	first = adapter->next_avail_tx_desc;
1619 	tx_buffer = &adapter->tx_buffer_area[first];
1620 	tx_buffer_mapped = tx_buffer;
1621 	map = tx_buffer->map;
1622 
1623 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1624 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1625 		("not enough spare TX desc"));
1626 	if (adapter->pcix_82544) {
1627 		/* Half it; see the comment in em_attach() */
1628 		maxsegs >>= 1;
1629 	}
1630 	if (maxsegs > EM_MAX_SCATTER)
1631 		maxsegs = EM_MAX_SCATTER;
1632 
1633 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1634 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1635 	if (error) {
1636 		if (error == ENOBUFS)
1637 			adapter->mbuf_alloc_failed++;
1638 		else
1639 			adapter->no_tx_dma_setup++;
1640 
1641 		m_freem(*m_headp);
1642 		*m_headp = NULL;
1643 		return error;
1644 	}
1645         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1646 
1647 	m_head = *m_headp;
1648 	adapter->tx_nsegs += nsegs;
1649 	*segs_used += nsegs;
1650 
1651 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1652 		/* TSO will consume one TX desc */
1653 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1654 		adapter->tx_nsegs += i;
1655 		*segs_used += i;
1656 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1657 		/* TX csum offloading will consume one TX desc */
1658 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1659 		adapter->tx_nsegs += i;
1660 		*segs_used += i;
1661 	}
1662 
1663         /* Handle VLAN tag */
1664 	if (m_head->m_flags & M_VLANTAG) {
1665 		/* Set the vlan id. */
1666 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1667 		/* Tell hardware to add tag */
1668 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1669 	}
1670 
1671 	i = adapter->next_avail_tx_desc;
1672 
1673 	/* Set up our transmit descriptors */
1674 	for (j = 0; j < nsegs; j++) {
1675 		/* If adapter is 82544 and on PCIX bus */
1676 		if(adapter->pcix_82544) {
1677 			DESC_ARRAY desc_array;
1678 			uint32_t array_elements, counter;
1679 
1680 			/*
1681 			 * Check the Address and Length combination and
1682 			 * split the data accordingly
1683 			 */
1684 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1685 						segs[j].ds_len, &desc_array);
1686 			for (counter = 0; counter < array_elements; counter++) {
1687 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1688 
1689 				tx_buffer = &adapter->tx_buffer_area[i];
1690 				ctxd = &adapter->tx_desc_base[i];
1691 
1692 				ctxd->buffer_addr = htole64(
1693 				    desc_array.descriptor[counter].address);
1694 				ctxd->lower.data = htole32(
1695 				    E1000_TXD_CMD_IFCS | txd_lower |
1696 				    desc_array.descriptor[counter].length);
1697 				ctxd->upper.data = htole32(txd_upper);
1698 
1699 				last = i;
1700 				if (++i == adapter->num_tx_desc)
1701 					i = 0;
1702 
1703 				txd_used++;
1704                         }
1705 		} else {
1706 			tx_buffer = &adapter->tx_buffer_area[i];
1707 			ctxd = &adapter->tx_desc_base[i];
1708 
1709 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1710 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1711 						   txd_lower | segs[j].ds_len);
1712 			ctxd->upper.data = htole32(txd_upper);
1713 
1714 			last = i;
1715 			if (++i == adapter->num_tx_desc)
1716 				i = 0;
1717 		}
1718 	}
1719 
1720 	adapter->next_avail_tx_desc = i;
1721 	if (adapter->pcix_82544) {
1722 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1723 		adapter->num_tx_desc_avail -= txd_used;
1724 	} else {
1725 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1726 		adapter->num_tx_desc_avail -= nsegs;
1727 	}
1728 
1729 	tx_buffer->m_head = m_head;
1730 	tx_buffer_mapped->map = tx_buffer->map;
1731 	tx_buffer->map = map;
1732 
1733 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1734 		adapter->tx_nsegs = 0;
1735 
1736 		/*
1737 		 * Report Status (RS) is turned on
1738 		 * every tx_int_nsegs descriptors.
1739 		 */
1740 		cmd = E1000_TXD_CMD_RS;
1741 
1742 		/*
1743 		 * Keep track of the descriptor, which will
1744 		 * be written back by hardware.
1745 		 */
1746 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1747 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1748 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1749 	}
1750 
1751 	/*
1752 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1753 	 */
1754 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1755 
1756 	if (adapter->hw.mac.type == e1000_82547) {
1757 		/*
1758 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1759 		 * E1000 that this frame is available to transmit.
1760 		 */
1761 		if (adapter->link_duplex == HALF_DUPLEX) {
1762 			em_82547_move_tail_serialized(adapter);
1763 		} else {
1764 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1765 			em_82547_update_fifo_head(adapter,
1766 			    m_head->m_pkthdr.len);
1767 		}
1768 	} else {
1769 		/*
1770 		 * Defer TDT updating, until enough descriptors are setup
1771 		 */
1772 		*idx = i;
1773 	}
1774 	return (0);
1775 }
1776 
1777 /*
1778  * 82547 workaround to avoid controller hang in half-duplex environment.
1779  * The workaround is to avoid queuing a large packet that would span
1780  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1781  * in this case.  We do that only when FIFO is quiescent.
1782  */
1783 static void
1784 em_82547_move_tail_serialized(struct adapter *adapter)
1785 {
1786 	struct e1000_tx_desc *tx_desc;
1787 	uint16_t hw_tdt, sw_tdt, length = 0;
1788 	bool eop = 0;
1789 
1790 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1791 
1792 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1793 	sw_tdt = adapter->next_avail_tx_desc;
1794 
1795 	while (hw_tdt != sw_tdt) {
1796 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1797 		length += tx_desc->lower.flags.length;
1798 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1799 		if (++hw_tdt == adapter->num_tx_desc)
1800 			hw_tdt = 0;
1801 
1802 		if (eop) {
1803 			if (em_82547_fifo_workaround(adapter, length)) {
1804 				adapter->tx_fifo_wrk_cnt++;
1805 				callout_reset(&adapter->tx_fifo_timer, 1,
1806 					em_82547_move_tail, adapter);
1807 				break;
1808 			}
1809 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1810 			em_82547_update_fifo_head(adapter, length);
1811 			length = 0;
1812 		}
1813 	}
1814 }
1815 
1816 static void
1817 em_82547_move_tail(void *xsc)
1818 {
1819 	struct adapter *adapter = xsc;
1820 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1821 
1822 	lwkt_serialize_enter(ifp->if_serializer);
1823 	em_82547_move_tail_serialized(adapter);
1824 	lwkt_serialize_exit(ifp->if_serializer);
1825 }
1826 
1827 static int
1828 em_82547_fifo_workaround(struct adapter *adapter, int len)
1829 {
1830 	int fifo_space, fifo_pkt_len;
1831 
1832 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1833 
1834 	if (adapter->link_duplex == HALF_DUPLEX) {
1835 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1836 
1837 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1838 			if (em_82547_tx_fifo_reset(adapter))
1839 				return (0);
1840 			else
1841 				return (1);
1842 		}
1843 	}
1844 	return (0);
1845 }
1846 
1847 static void
1848 em_82547_update_fifo_head(struct adapter *adapter, int len)
1849 {
1850 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1851 
1852 	/* tx_fifo_head is always 16 byte aligned */
1853 	adapter->tx_fifo_head += fifo_pkt_len;
1854 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1855 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1856 }
1857 
1858 static int
1859 em_82547_tx_fifo_reset(struct adapter *adapter)
1860 {
1861 	uint32_t tctl;
1862 
1863 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1864 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1865 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1866 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1867 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1868 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1869 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1870 		/* Disable TX unit */
1871 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1872 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1873 		    tctl & ~E1000_TCTL_EN);
1874 
1875 		/* Reset FIFO pointers */
1876 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1877 		    adapter->tx_head_addr);
1878 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1879 		    adapter->tx_head_addr);
1880 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1881 		    adapter->tx_head_addr);
1882 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1883 		    adapter->tx_head_addr);
1884 
1885 		/* Re-enable TX unit */
1886 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1887 		E1000_WRITE_FLUSH(&adapter->hw);
1888 
1889 		adapter->tx_fifo_head = 0;
1890 		adapter->tx_fifo_reset_cnt++;
1891 
1892 		return (TRUE);
1893 	} else {
1894 		return (FALSE);
1895 	}
1896 }
1897 
1898 static void
1899 em_set_promisc(struct adapter *adapter)
1900 {
1901 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1902 	uint32_t reg_rctl;
1903 
1904 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1905 
1906 	if (ifp->if_flags & IFF_PROMISC) {
1907 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1908 		/* Turn this on if you want to see bad packets */
1909 		if (em_debug_sbp)
1910 			reg_rctl |= E1000_RCTL_SBP;
1911 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1912 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1913 		reg_rctl |= E1000_RCTL_MPE;
1914 		reg_rctl &= ~E1000_RCTL_UPE;
1915 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1916 	}
1917 }
1918 
1919 static void
1920 em_disable_promisc(struct adapter *adapter)
1921 {
1922 	uint32_t reg_rctl;
1923 
1924 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1925 
1926 	reg_rctl &= ~E1000_RCTL_UPE;
1927 	reg_rctl &= ~E1000_RCTL_MPE;
1928 	reg_rctl &= ~E1000_RCTL_SBP;
1929 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1930 }
1931 
1932 static void
1933 em_set_multi(struct adapter *adapter)
1934 {
1935 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1936 	struct ifmultiaddr *ifma;
1937 	uint32_t reg_rctl = 0;
1938 	uint8_t *mta;
1939 	int mcnt = 0;
1940 
1941 	mta = adapter->mta;
1942 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1943 
1944 	if (adapter->hw.mac.type == e1000_82542 &&
1945 	    adapter->hw.revision_id == E1000_REVISION_2) {
1946 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1947 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1948 			e1000_pci_clear_mwi(&adapter->hw);
1949 		reg_rctl |= E1000_RCTL_RST;
1950 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1951 		msec_delay(5);
1952 	}
1953 
1954 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1955 		if (ifma->ifma_addr->sa_family != AF_LINK)
1956 			continue;
1957 
1958 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1959 			break;
1960 
1961 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1962 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1963 		mcnt++;
1964 	}
1965 
1966 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1967 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1968 		reg_rctl |= E1000_RCTL_MPE;
1969 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1970 	} else {
1971 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1972 	}
1973 
1974 	if (adapter->hw.mac.type == e1000_82542 &&
1975 	    adapter->hw.revision_id == E1000_REVISION_2) {
1976 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1977 		reg_rctl &= ~E1000_RCTL_RST;
1978 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1979 		msec_delay(5);
1980 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1981 			e1000_pci_set_mwi(&adapter->hw);
1982 	}
1983 }
1984 
1985 /*
1986  * This routine checks for link status and updates statistics.
1987  */
1988 static void
1989 em_timer(void *xsc)
1990 {
1991 	struct adapter *adapter = xsc;
1992 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1993 
1994 	lwkt_serialize_enter(ifp->if_serializer);
1995 
1996 	em_update_link_status(adapter);
1997 	em_update_stats(adapter);
1998 
1999 	/* Reset LAA into RAR[0] on 82571 */
2000 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2001 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2002 
2003 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2004 		em_print_hw_stats(adapter);
2005 
2006 	em_smartspeed(adapter);
2007 
2008 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2009 
2010 	lwkt_serialize_exit(ifp->if_serializer);
2011 }
2012 
2013 static void
2014 em_update_link_status(struct adapter *adapter)
2015 {
2016 	struct e1000_hw *hw = &adapter->hw;
2017 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2018 	device_t dev = adapter->dev;
2019 	uint32_t link_check = 0;
2020 
2021 	/* Get the cached link value or read phy for real */
2022 	switch (hw->phy.media_type) {
2023 	case e1000_media_type_copper:
2024 		if (hw->mac.get_link_status) {
2025 			/* Do the work to read phy */
2026 			e1000_check_for_link(hw);
2027 			link_check = !hw->mac.get_link_status;
2028 			if (link_check) /* ESB2 fix */
2029 				e1000_cfg_on_link_up(hw);
2030 		} else {
2031 			link_check = TRUE;
2032 		}
2033 		break;
2034 
2035 	case e1000_media_type_fiber:
2036 		e1000_check_for_link(hw);
2037 		link_check =
2038 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2039 		break;
2040 
2041 	case e1000_media_type_internal_serdes:
2042 		e1000_check_for_link(hw);
2043 		link_check = adapter->hw.mac.serdes_has_link;
2044 		break;
2045 
2046 	case e1000_media_type_unknown:
2047 	default:
2048 		break;
2049 	}
2050 
2051 	/* Now check for a transition */
2052 	if (link_check && adapter->link_active == 0) {
2053 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2054 		    &adapter->link_duplex);
2055 
2056 		/*
2057 		 * Check if we should enable/disable SPEED_MODE bit on
2058 		 * 82571/82572
2059 		 */
2060 		if (adapter->link_speed != SPEED_1000 &&
2061 		    (hw->mac.type == e1000_82571 ||
2062 		     hw->mac.type == e1000_82572)) {
2063 			int tarc0;
2064 
2065 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2066 			tarc0 &= ~SPEED_MODE_BIT;
2067 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2068 		}
2069 		if (bootverbose) {
2070 			device_printf(dev, "Link is up %d Mbps %s\n",
2071 			    adapter->link_speed,
2072 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2073 			    "Full Duplex" : "Half Duplex"));
2074 		}
2075 		adapter->link_active = 1;
2076 		adapter->smartspeed = 0;
2077 		ifp->if_baudrate = adapter->link_speed * 1000000;
2078 		ifp->if_link_state = LINK_STATE_UP;
2079 		if_link_state_change(ifp);
2080 	} else if (!link_check && adapter->link_active == 1) {
2081 		ifp->if_baudrate = adapter->link_speed = 0;
2082 		adapter->link_duplex = 0;
2083 		if (bootverbose)
2084 			device_printf(dev, "Link is Down\n");
2085 		adapter->link_active = 0;
2086 #if 0
2087 		/* Link down, disable watchdog */
2088 		if->if_timer = 0;
2089 #endif
2090 		ifp->if_link_state = LINK_STATE_DOWN;
2091 		if_link_state_change(ifp);
2092 	}
2093 }
2094 
2095 static void
2096 em_stop(struct adapter *adapter)
2097 {
2098 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2099 	int i;
2100 
2101 	ASSERT_SERIALIZED(ifp->if_serializer);
2102 
2103 	em_disable_intr(adapter);
2104 
2105 	callout_stop(&adapter->timer);
2106 	callout_stop(&adapter->tx_fifo_timer);
2107 
2108 	ifp->if_flags &= ~IFF_RUNNING;
2109 	ifq_clr_oactive(&ifp->if_snd);
2110 	ifp->if_timer = 0;
2111 
2112 	e1000_reset_hw(&adapter->hw);
2113 	if (adapter->hw.mac.type >= e1000_82544)
2114 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2115 
2116 	for (i = 0; i < adapter->num_tx_desc; i++) {
2117 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2118 
2119 		if (tx_buffer->m_head != NULL) {
2120 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2121 			m_freem(tx_buffer->m_head);
2122 			tx_buffer->m_head = NULL;
2123 		}
2124 	}
2125 
2126 	for (i = 0; i < adapter->num_rx_desc; i++) {
2127 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2128 
2129 		if (rx_buffer->m_head != NULL) {
2130 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2131 			m_freem(rx_buffer->m_head);
2132 			rx_buffer->m_head = NULL;
2133 		}
2134 	}
2135 
2136 	if (adapter->fmp != NULL)
2137 		m_freem(adapter->fmp);
2138 	adapter->fmp = NULL;
2139 	adapter->lmp = NULL;
2140 
2141 	adapter->csum_flags = 0;
2142 	adapter->csum_lhlen = 0;
2143 	adapter->csum_iphlen = 0;
2144 	adapter->csum_thlen = 0;
2145 	adapter->csum_mss = 0;
2146 	adapter->csum_pktlen = 0;
2147 
2148 	adapter->tx_dd_head = 0;
2149 	adapter->tx_dd_tail = 0;
2150 	adapter->tx_nsegs = 0;
2151 }
2152 
2153 static int
2154 em_get_hw_info(struct adapter *adapter)
2155 {
2156 	device_t dev = adapter->dev;
2157 
2158 	/* Save off the information about this board */
2159 	adapter->hw.vendor_id = pci_get_vendor(dev);
2160 	adapter->hw.device_id = pci_get_device(dev);
2161 	adapter->hw.revision_id = pci_get_revid(dev);
2162 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2163 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2164 
2165 	/* Do Shared Code Init and Setup */
2166 	if (e1000_set_mac_type(&adapter->hw))
2167 		return ENXIO;
2168 	return 0;
2169 }
2170 
2171 static int
2172 em_alloc_pci_res(struct adapter *adapter)
2173 {
2174 	device_t dev = adapter->dev;
2175 	u_int intr_flags;
2176 	int val, rid, msi_enable;
2177 
2178 	/* Enable bus mastering */
2179 	pci_enable_busmaster(dev);
2180 
2181 	adapter->memory_rid = EM_BAR_MEM;
2182 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2183 				&adapter->memory_rid, RF_ACTIVE);
2184 	if (adapter->memory == NULL) {
2185 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2186 		return (ENXIO);
2187 	}
2188 	adapter->osdep.mem_bus_space_tag =
2189 	    rman_get_bustag(adapter->memory);
2190 	adapter->osdep.mem_bus_space_handle =
2191 	    rman_get_bushandle(adapter->memory);
2192 
2193 	/* XXX This is quite goofy, it is not actually used */
2194 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2195 
2196 	/* Only older adapters use IO mapping */
2197 	if (adapter->hw.mac.type > e1000_82543 &&
2198 	    adapter->hw.mac.type < e1000_82571) {
2199 		/* Figure our where our IO BAR is ? */
2200 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2201 			val = pci_read_config(dev, rid, 4);
2202 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2203 				adapter->io_rid = rid;
2204 				break;
2205 			}
2206 			rid += 4;
2207 			/* check for 64bit BAR */
2208 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2209 				rid += 4;
2210 		}
2211 		if (rid >= PCIR_CARDBUSCIS) {
2212 			device_printf(dev, "Unable to locate IO BAR\n");
2213 			return (ENXIO);
2214 		}
2215 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2216 					&adapter->io_rid, RF_ACTIVE);
2217 		if (adapter->ioport == NULL) {
2218 			device_printf(dev, "Unable to allocate bus resource: "
2219 			    "ioport\n");
2220 			return (ENXIO);
2221 		}
2222 		adapter->hw.io_base = 0;
2223 		adapter->osdep.io_bus_space_tag =
2224 		    rman_get_bustag(adapter->ioport);
2225 		adapter->osdep.io_bus_space_handle =
2226 		    rman_get_bushandle(adapter->ioport);
2227 	}
2228 
2229 	/*
2230 	 * Don't enable MSI-X on 82574, see:
2231 	 * 82574 specification update errata #15
2232 	 *
2233 	 * Don't enable MSI on PCI/PCI-X chips, see:
2234 	 * 82540 specification update errata #6
2235 	 * 82545 specification update errata #4
2236 	 *
2237 	 * Don't enable MSI on 82571/82572, see:
2238 	 * 82571/82572 specification update errata #63
2239 	 */
2240 	msi_enable = em_msi_enable;
2241 	if (msi_enable &&
2242 	    (!pci_is_pcie(dev) ||
2243 	     adapter->hw.mac.type == e1000_82571 ||
2244 	     adapter->hw.mac.type == e1000_82572))
2245 		msi_enable = 0;
2246 
2247 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2248 	    &adapter->intr_rid, &intr_flags);
2249 
2250 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2251 		int unshared;
2252 
2253 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2254 		if (!unshared) {
2255 			adapter->flags |= EM_FLAG_SHARED_INTR;
2256 			if (bootverbose)
2257 				device_printf(dev, "IRQ shared\n");
2258 		} else {
2259 			intr_flags &= ~RF_SHAREABLE;
2260 			if (bootverbose)
2261 				device_printf(dev, "IRQ unshared\n");
2262 		}
2263 	}
2264 
2265 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2266 	    &adapter->intr_rid, intr_flags);
2267 	if (adapter->intr_res == NULL) {
2268 		device_printf(dev, "Unable to allocate bus resource: "
2269 		    "interrupt\n");
2270 		return (ENXIO);
2271 	}
2272 
2273 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2274 	adapter->hw.back = &adapter->osdep;
2275 	return (0);
2276 }
2277 
2278 static void
2279 em_free_pci_res(struct adapter *adapter)
2280 {
2281 	device_t dev = adapter->dev;
2282 
2283 	if (adapter->intr_res != NULL) {
2284 		bus_release_resource(dev, SYS_RES_IRQ,
2285 		    adapter->intr_rid, adapter->intr_res);
2286 	}
2287 
2288 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2289 		pci_release_msi(dev);
2290 
2291 	if (adapter->memory != NULL) {
2292 		bus_release_resource(dev, SYS_RES_MEMORY,
2293 		    adapter->memory_rid, adapter->memory);
2294 	}
2295 
2296 	if (adapter->flash != NULL) {
2297 		bus_release_resource(dev, SYS_RES_MEMORY,
2298 		    adapter->flash_rid, adapter->flash);
2299 	}
2300 
2301 	if (adapter->ioport != NULL) {
2302 		bus_release_resource(dev, SYS_RES_IOPORT,
2303 		    adapter->io_rid, adapter->ioport);
2304 	}
2305 }
2306 
2307 static int
2308 em_reset(struct adapter *adapter)
2309 {
2310 	device_t dev = adapter->dev;
2311 	uint16_t rx_buffer_size;
2312 	uint32_t pba;
2313 
2314 	/* When hardware is reset, fifo_head is also reset */
2315 	adapter->tx_fifo_head = 0;
2316 
2317 	/* Set up smart power down as default off on newer adapters. */
2318 	if (!em_smart_pwr_down &&
2319 	    (adapter->hw.mac.type == e1000_82571 ||
2320 	     adapter->hw.mac.type == e1000_82572)) {
2321 		uint16_t phy_tmp = 0;
2322 
2323 		/* Speed up time to link by disabling smart power down. */
2324 		e1000_read_phy_reg(&adapter->hw,
2325 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2326 		phy_tmp &= ~IGP02E1000_PM_SPD;
2327 		e1000_write_phy_reg(&adapter->hw,
2328 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2329 	}
2330 
2331 	/*
2332 	 * Packet Buffer Allocation (PBA)
2333 	 * Writing PBA sets the receive portion of the buffer
2334 	 * the remainder is used for the transmit buffer.
2335 	 *
2336 	 * Devices before the 82547 had a Packet Buffer of 64K.
2337 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2338 	 * After the 82547 the buffer was reduced to 40K.
2339 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2340 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2341 	 */
2342 	switch (adapter->hw.mac.type) {
2343 	case e1000_82547:
2344 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2345 		if (adapter->hw.mac.max_frame_size > 8192)
2346 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2347 		else
2348 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2349 		adapter->tx_fifo_head = 0;
2350 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2351 		adapter->tx_fifo_size =
2352 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2353 		break;
2354 
2355 	/* Total Packet Buffer on these is 48K */
2356 	case e1000_82571:
2357 	case e1000_82572:
2358 	case e1000_80003es2lan:
2359 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2360 		break;
2361 
2362 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2363 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2364 		break;
2365 
2366 	case e1000_82574:
2367 	case e1000_82583:
2368 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2369 		break;
2370 
2371 	case e1000_ich8lan:
2372 		pba = E1000_PBA_8K;
2373 		break;
2374 
2375 	case e1000_ich9lan:
2376 	case e1000_ich10lan:
2377 #define E1000_PBA_10K	0x000A
2378 		pba = E1000_PBA_10K;
2379 		break;
2380 
2381 	case e1000_pchlan:
2382 	case e1000_pch2lan:
2383 	case e1000_pch_lpt:
2384 		pba = E1000_PBA_26K;
2385 		break;
2386 
2387 	default:
2388 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2389 		if (adapter->hw.mac.max_frame_size > 8192)
2390 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2391 		else
2392 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2393 	}
2394 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2395 
2396 	/*
2397 	 * These parameters control the automatic generation (Tx) and
2398 	 * response (Rx) to Ethernet PAUSE frames.
2399 	 * - High water mark should allow for at least two frames to be
2400 	 *   received after sending an XOFF.
2401 	 * - Low water mark works best when it is very near the high water mark.
2402 	 *   This allows the receiver to restart by sending XON when it has
2403 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2404 	 *   restart after one full frame is pulled from the buffer. There
2405 	 *   could be several smaller frames in the buffer and if so they will
2406 	 *   not trigger the XON until their total number reduces the buffer
2407 	 *   by 1500.
2408 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2409 	 */
2410 	rx_buffer_size =
2411 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2412 
2413 	adapter->hw.fc.high_water = rx_buffer_size -
2414 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2415 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2416 
2417 	if (adapter->hw.mac.type == e1000_80003es2lan)
2418 		adapter->hw.fc.pause_time = 0xFFFF;
2419 	else
2420 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2421 
2422 	adapter->hw.fc.send_xon = TRUE;
2423 
2424 	adapter->hw.fc.requested_mode = e1000_fc_full;
2425 
2426 	/*
2427 	 * Device specific overrides/settings
2428 	 */
2429 	switch (adapter->hw.mac.type) {
2430 	case e1000_pchlan:
2431 		/* Workaround: no TX flow ctrl for PCH */
2432 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2433 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2434 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2435 			adapter->hw.fc.high_water = 0x3500;
2436 			adapter->hw.fc.low_water = 0x1500;
2437 		} else {
2438 			adapter->hw.fc.high_water = 0x5000;
2439 			adapter->hw.fc.low_water = 0x3000;
2440 		}
2441 		adapter->hw.fc.refresh_time = 0x1000;
2442 		break;
2443 
2444 	case e1000_pch2lan:
2445 	case e1000_pch_lpt:
2446 		adapter->hw.fc.high_water = 0x5C20;
2447 		adapter->hw.fc.low_water = 0x5048;
2448 		adapter->hw.fc.pause_time = 0x0650;
2449 		adapter->hw.fc.refresh_time = 0x0400;
2450 		/* Jumbos need adjusted PBA */
2451 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2452 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2453 		else
2454 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2455 		break;
2456 
2457 	case e1000_ich9lan:
2458 	case e1000_ich10lan:
2459 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2460 			adapter->hw.fc.high_water = 0x2800;
2461 			adapter->hw.fc.low_water =
2462 			    adapter->hw.fc.high_water - 8;
2463 			break;
2464 		}
2465 		/* FALL THROUGH */
2466 	default:
2467 		if (adapter->hw.mac.type == e1000_80003es2lan)
2468 			adapter->hw.fc.pause_time = 0xFFFF;
2469 		break;
2470 	}
2471 
2472 	/* Issue a global reset */
2473 	e1000_reset_hw(&adapter->hw);
2474 	if (adapter->hw.mac.type >= e1000_82544)
2475 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2476 	em_disable_aspm(adapter);
2477 
2478 	if (e1000_init_hw(&adapter->hw) < 0) {
2479 		device_printf(dev, "Hardware Initialization Failed\n");
2480 		return (EIO);
2481 	}
2482 
2483 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2484 	e1000_get_phy_info(&adapter->hw);
2485 	e1000_check_for_link(&adapter->hw);
2486 
2487 	return (0);
2488 }
2489 
2490 static void
2491 em_setup_ifp(struct adapter *adapter)
2492 {
2493 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2494 
2495 	if_initname(ifp, device_get_name(adapter->dev),
2496 		    device_get_unit(adapter->dev));
2497 	ifp->if_softc = adapter;
2498 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2499 	ifp->if_init =  em_init;
2500 	ifp->if_ioctl = em_ioctl;
2501 	ifp->if_start = em_start;
2502 #ifdef IFPOLL_ENABLE
2503 	ifp->if_npoll = em_npoll;
2504 #endif
2505 	ifp->if_watchdog = em_watchdog;
2506 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2507 	ifq_set_ready(&ifp->if_snd);
2508 
2509 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2510 
2511 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2512 	if (adapter->hw.mac.type >= e1000_82543)
2513 		ifp->if_capabilities |= IFCAP_HWCSUM;
2514 	if (adapter->flags & EM_FLAG_TSO)
2515 		ifp->if_capabilities |= IFCAP_TSO;
2516 	ifp->if_capenable = ifp->if_capabilities;
2517 
2518 	if (ifp->if_capenable & IFCAP_TXCSUM)
2519 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2520 	if (ifp->if_capenable & IFCAP_TSO)
2521 		ifp->if_hwassist |= CSUM_TSO;
2522 
2523 	/*
2524 	 * Tell the upper layer(s) we support long frames.
2525 	 */
2526 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2527 
2528 	/*
2529 	 * Specify the media types supported by this adapter and register
2530 	 * callbacks to update media and link information
2531 	 */
2532 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2533 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2534 		u_char fiber_type = IFM_1000_SX; /* default type */
2535 
2536 		if (adapter->hw.mac.type == e1000_82545)
2537 			fiber_type = IFM_1000_LX;
2538 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2539 			    0, NULL);
2540 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2541 	} else {
2542 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2543 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2544 			    0, NULL);
2545 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2546 			    0, NULL);
2547 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2548 			    0, NULL);
2549 		if (adapter->hw.phy.type != e1000_phy_ife) {
2550 			ifmedia_add(&adapter->media,
2551 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2552 			ifmedia_add(&adapter->media,
2553 				IFM_ETHER | IFM_1000_T, 0, NULL);
2554 		}
2555 	}
2556 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2557 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2558 }
2559 
2560 
2561 /*
2562  * Workaround for SmartSpeed on 82541 and 82547 controllers
2563  */
2564 static void
2565 em_smartspeed(struct adapter *adapter)
2566 {
2567 	uint16_t phy_tmp;
2568 
2569 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2570 	    adapter->hw.mac.autoneg == 0 ||
2571 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2572 		return;
2573 
2574 	if (adapter->smartspeed == 0) {
2575 		/*
2576 		 * If Master/Slave config fault is asserted twice,
2577 		 * we assume back-to-back
2578 		 */
2579 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2580 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2581 			return;
2582 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2583 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2584 			e1000_read_phy_reg(&adapter->hw,
2585 			    PHY_1000T_CTRL, &phy_tmp);
2586 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2587 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2588 				e1000_write_phy_reg(&adapter->hw,
2589 				    PHY_1000T_CTRL, phy_tmp);
2590 				adapter->smartspeed++;
2591 				if (adapter->hw.mac.autoneg &&
2592 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2593 				    !e1000_read_phy_reg(&adapter->hw,
2594 				     PHY_CONTROL, &phy_tmp)) {
2595 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2596 						   MII_CR_RESTART_AUTO_NEG;
2597 					e1000_write_phy_reg(&adapter->hw,
2598 					    PHY_CONTROL, phy_tmp);
2599 				}
2600 			}
2601 		}
2602 		return;
2603 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2604 		/* If still no link, perhaps using 2/3 pair cable */
2605 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2606 		phy_tmp |= CR_1000T_MS_ENABLE;
2607 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2608 		if (adapter->hw.mac.autoneg &&
2609 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2610 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2611 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2612 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2613 		}
2614 	}
2615 
2616 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2617 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2618 		adapter->smartspeed = 0;
2619 }
2620 
2621 static int
2622 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2623 	      struct em_dma_alloc *dma)
2624 {
2625 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2626 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2627 				&dma->dma_tag, &dma->dma_map,
2628 				&dma->dma_paddr);
2629 	if (dma->dma_vaddr == NULL)
2630 		return ENOMEM;
2631 	else
2632 		return 0;
2633 }
2634 
2635 static void
2636 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2637 {
2638 	if (dma->dma_tag == NULL)
2639 		return;
2640 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2641 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2642 	bus_dma_tag_destroy(dma->dma_tag);
2643 }
2644 
2645 static int
2646 em_create_tx_ring(struct adapter *adapter)
2647 {
2648 	device_t dev = adapter->dev;
2649 	struct em_buffer *tx_buffer;
2650 	int error, i;
2651 
2652 	adapter->tx_buffer_area =
2653 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2654 			M_DEVBUF, M_WAITOK | M_ZERO);
2655 
2656 	/*
2657 	 * Create DMA tags for tx buffers
2658 	 */
2659 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2660 			1, 0,			/* alignment, bounds */
2661 			BUS_SPACE_MAXADDR,	/* lowaddr */
2662 			BUS_SPACE_MAXADDR,	/* highaddr */
2663 			NULL, NULL,		/* filter, filterarg */
2664 			EM_TSO_SIZE,		/* maxsize */
2665 			EM_MAX_SCATTER,		/* nsegments */
2666 			PAGE_SIZE,		/* maxsegsize */
2667 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2668 			BUS_DMA_ONEBPAGE,	/* flags */
2669 			&adapter->txtag);
2670 	if (error) {
2671 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2672 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2673 		adapter->tx_buffer_area = NULL;
2674 		return error;
2675 	}
2676 
2677 	/*
2678 	 * Create DMA maps for tx buffers
2679 	 */
2680 	for (i = 0; i < adapter->num_tx_desc; i++) {
2681 		tx_buffer = &adapter->tx_buffer_area[i];
2682 
2683 		error = bus_dmamap_create(adapter->txtag,
2684 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2685 					  &tx_buffer->map);
2686 		if (error) {
2687 			device_printf(dev, "Unable to create TX DMA map\n");
2688 			em_destroy_tx_ring(adapter, i);
2689 			return error;
2690 		}
2691 	}
2692 	return (0);
2693 }
2694 
2695 static void
2696 em_init_tx_ring(struct adapter *adapter)
2697 {
2698 	/* Clear the old ring contents */
2699 	bzero(adapter->tx_desc_base,
2700 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2701 
2702 	/* Reset state */
2703 	adapter->next_avail_tx_desc = 0;
2704 	adapter->next_tx_to_clean = 0;
2705 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2706 }
2707 
2708 static void
2709 em_init_tx_unit(struct adapter *adapter)
2710 {
2711 	uint32_t tctl, tarc, tipg = 0;
2712 	uint64_t bus_addr;
2713 
2714 	/* Setup the Base and Length of the Tx Descriptor Ring */
2715 	bus_addr = adapter->txdma.dma_paddr;
2716 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2717 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2718 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2719 	    (uint32_t)(bus_addr >> 32));
2720 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2721 	    (uint32_t)bus_addr);
2722 	/* Setup the HW Tx Head and Tail descriptor pointers */
2723 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2724 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2725 
2726 	/* Set the default values for the Tx Inter Packet Gap timer */
2727 	switch (adapter->hw.mac.type) {
2728 	case e1000_82542:
2729 		tipg = DEFAULT_82542_TIPG_IPGT;
2730 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2731 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2732 		break;
2733 
2734 	case e1000_80003es2lan:
2735 		tipg = DEFAULT_82543_TIPG_IPGR1;
2736 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2737 		    E1000_TIPG_IPGR2_SHIFT;
2738 		break;
2739 
2740 	default:
2741 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2742 		    adapter->hw.phy.media_type ==
2743 		    e1000_media_type_internal_serdes)
2744 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2745 		else
2746 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2747 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2748 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2749 		break;
2750 	}
2751 
2752 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2753 
2754 	/* NOTE: 0 is not allowed for TIDV */
2755 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2756 	if(adapter->hw.mac.type >= e1000_82540)
2757 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2758 
2759 	if (adapter->hw.mac.type == e1000_82571 ||
2760 	    adapter->hw.mac.type == e1000_82572) {
2761 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2762 		tarc |= SPEED_MODE_BIT;
2763 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2764 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2765 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2766 		tarc |= 1;
2767 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2768 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2769 		tarc |= 1;
2770 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2771 	}
2772 
2773 	/* Program the Transmit Control Register */
2774 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2775 	tctl &= ~E1000_TCTL_CT;
2776 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2777 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2778 
2779 	if (adapter->hw.mac.type >= e1000_82571)
2780 		tctl |= E1000_TCTL_MULR;
2781 
2782 	/* This write will effectively turn on the transmit unit. */
2783 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2784 
2785 	if (adapter->hw.mac.type == e1000_82571 ||
2786 	    adapter->hw.mac.type == e1000_82572 ||
2787 	    adapter->hw.mac.type == e1000_80003es2lan) {
2788 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2789 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2790 		tarc &= ~(1 << 28);
2791 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2792 	}
2793 }
2794 
2795 static void
2796 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2797 {
2798 	struct em_buffer *tx_buffer;
2799 	int i;
2800 
2801 	if (adapter->tx_buffer_area == NULL)
2802 		return;
2803 
2804 	for (i = 0; i < ndesc; i++) {
2805 		tx_buffer = &adapter->tx_buffer_area[i];
2806 
2807 		KKASSERT(tx_buffer->m_head == NULL);
2808 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2809 	}
2810 	bus_dma_tag_destroy(adapter->txtag);
2811 
2812 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2813 	adapter->tx_buffer_area = NULL;
2814 }
2815 
2816 /*
2817  * The offload context needs to be set when we transfer the first
2818  * packet of a particular protocol (TCP/UDP).  This routine has been
2819  * enhanced to deal with inserted VLAN headers.
2820  *
2821  * If the new packet's ether header length, ip header length and
2822  * csum offloading type are same as the previous packet, we should
2823  * avoid allocating a new csum context descriptor; mainly to take
2824  * advantage of the pipeline effect of the TX data read request.
2825  *
2826  * This function returns number of TX descrptors allocated for
2827  * csum context.
2828  */
2829 static int
2830 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2831 	  uint32_t *txd_upper, uint32_t *txd_lower)
2832 {
2833 	struct e1000_context_desc *TXD;
2834 	int curr_txd, ehdrlen, csum_flags;
2835 	uint32_t cmd, hdr_len, ip_hlen;
2836 
2837 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2838 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2839 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2840 
2841 	if (adapter->csum_lhlen == ehdrlen &&
2842 	    adapter->csum_iphlen == ip_hlen &&
2843 	    adapter->csum_flags == csum_flags) {
2844 		/*
2845 		 * Same csum offload context as the previous packets;
2846 		 * just return.
2847 		 */
2848 		*txd_upper = adapter->csum_txd_upper;
2849 		*txd_lower = adapter->csum_txd_lower;
2850 		return 0;
2851 	}
2852 
2853 	/*
2854 	 * Setup a new csum offload context.
2855 	 */
2856 
2857 	curr_txd = adapter->next_avail_tx_desc;
2858 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2859 
2860 	cmd = 0;
2861 
2862 	/* Setup of IP header checksum. */
2863 	if (csum_flags & CSUM_IP) {
2864 		/*
2865 		 * Start offset for header checksum calculation.
2866 		 * End offset for header checksum calculation.
2867 		 * Offset of place to put the checksum.
2868 		 */
2869 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2870 		TXD->lower_setup.ip_fields.ipcse =
2871 		    htole16(ehdrlen + ip_hlen - 1);
2872 		TXD->lower_setup.ip_fields.ipcso =
2873 		    ehdrlen + offsetof(struct ip, ip_sum);
2874 		cmd |= E1000_TXD_CMD_IP;
2875 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2876 	}
2877 	hdr_len = ehdrlen + ip_hlen;
2878 
2879 	if (csum_flags & CSUM_TCP) {
2880 		/*
2881 		 * Start offset for payload checksum calculation.
2882 		 * End offset for payload checksum calculation.
2883 		 * Offset of place to put the checksum.
2884 		 */
2885 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2886 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2887 		TXD->upper_setup.tcp_fields.tucso =
2888 		    hdr_len + offsetof(struct tcphdr, th_sum);
2889 		cmd |= E1000_TXD_CMD_TCP;
2890 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2891 	} else if (csum_flags & CSUM_UDP) {
2892 		/*
2893 		 * Start offset for header checksum calculation.
2894 		 * End offset for header checksum calculation.
2895 		 * Offset of place to put the checksum.
2896 		 */
2897 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2898 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2899 		TXD->upper_setup.tcp_fields.tucso =
2900 		    hdr_len + offsetof(struct udphdr, uh_sum);
2901 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2902 	}
2903 
2904 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2905 		     E1000_TXD_DTYP_D;		/* Data descr */
2906 
2907 	/* Save the information for this csum offloading context */
2908 	adapter->csum_lhlen = ehdrlen;
2909 	adapter->csum_iphlen = ip_hlen;
2910 	adapter->csum_flags = csum_flags;
2911 	adapter->csum_txd_upper = *txd_upper;
2912 	adapter->csum_txd_lower = *txd_lower;
2913 
2914 	TXD->tcp_seg_setup.data = htole32(0);
2915 	TXD->cmd_and_length =
2916 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2917 
2918 	if (++curr_txd == adapter->num_tx_desc)
2919 		curr_txd = 0;
2920 
2921 	KKASSERT(adapter->num_tx_desc_avail > 0);
2922 	adapter->num_tx_desc_avail--;
2923 
2924 	adapter->next_avail_tx_desc = curr_txd;
2925 	return 1;
2926 }
2927 
2928 static void
2929 em_txeof(struct adapter *adapter)
2930 {
2931 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2932 	struct em_buffer *tx_buffer;
2933 	int first, num_avail;
2934 
2935 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2936 		return;
2937 
2938 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2939 		return;
2940 
2941 	num_avail = adapter->num_tx_desc_avail;
2942 	first = adapter->next_tx_to_clean;
2943 
2944 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2945 		struct e1000_tx_desc *tx_desc;
2946 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2947 
2948 		tx_desc = &adapter->tx_desc_base[dd_idx];
2949 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2950 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2951 
2952 			if (++dd_idx == adapter->num_tx_desc)
2953 				dd_idx = 0;
2954 
2955 			while (first != dd_idx) {
2956 				logif(pkt_txclean);
2957 
2958 				num_avail++;
2959 
2960 				tx_buffer = &adapter->tx_buffer_area[first];
2961 				if (tx_buffer->m_head) {
2962 					IFNET_STAT_INC(ifp, opackets, 1);
2963 					bus_dmamap_unload(adapter->txtag,
2964 							  tx_buffer->map);
2965 					m_freem(tx_buffer->m_head);
2966 					tx_buffer->m_head = NULL;
2967 				}
2968 
2969 				if (++first == adapter->num_tx_desc)
2970 					first = 0;
2971 			}
2972 		} else {
2973 			break;
2974 		}
2975 	}
2976 	adapter->next_tx_to_clean = first;
2977 	adapter->num_tx_desc_avail = num_avail;
2978 
2979 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2980 		adapter->tx_dd_head = 0;
2981 		adapter->tx_dd_tail = 0;
2982 	}
2983 
2984 	if (!EM_IS_OACTIVE(adapter)) {
2985 		ifq_clr_oactive(&ifp->if_snd);
2986 
2987 		/* All clean, turn off the timer */
2988 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2989 			ifp->if_timer = 0;
2990 	}
2991 }
2992 
2993 static void
2994 em_tx_collect(struct adapter *adapter)
2995 {
2996 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2997 	struct em_buffer *tx_buffer;
2998 	int tdh, first, num_avail, dd_idx = -1;
2999 
3000 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3001 		return;
3002 
3003 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3004 	if (tdh == adapter->next_tx_to_clean)
3005 		return;
3006 
3007 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3008 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3009 
3010 	num_avail = adapter->num_tx_desc_avail;
3011 	first = adapter->next_tx_to_clean;
3012 
3013 	while (first != tdh) {
3014 		logif(pkt_txclean);
3015 
3016 		num_avail++;
3017 
3018 		tx_buffer = &adapter->tx_buffer_area[first];
3019 		if (tx_buffer->m_head) {
3020 			IFNET_STAT_INC(ifp, opackets, 1);
3021 			bus_dmamap_unload(adapter->txtag,
3022 					  tx_buffer->map);
3023 			m_freem(tx_buffer->m_head);
3024 			tx_buffer->m_head = NULL;
3025 		}
3026 
3027 		if (first == dd_idx) {
3028 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3029 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3030 				adapter->tx_dd_head = 0;
3031 				adapter->tx_dd_tail = 0;
3032 				dd_idx = -1;
3033 			} else {
3034 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3035 			}
3036 		}
3037 
3038 		if (++first == adapter->num_tx_desc)
3039 			first = 0;
3040 	}
3041 	adapter->next_tx_to_clean = first;
3042 	adapter->num_tx_desc_avail = num_avail;
3043 
3044 	if (!EM_IS_OACTIVE(adapter)) {
3045 		ifq_clr_oactive(&ifp->if_snd);
3046 
3047 		/* All clean, turn off the timer */
3048 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3049 			ifp->if_timer = 0;
3050 	}
3051 }
3052 
3053 /*
3054  * When Link is lost sometimes there is work still in the TX ring
3055  * which will result in a watchdog, rather than allow that do an
3056  * attempted cleanup and then reinit here.  Note that this has been
3057  * seens mostly with fiber adapters.
3058  */
3059 static void
3060 em_tx_purge(struct adapter *adapter)
3061 {
3062 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3063 
3064 	if (!adapter->link_active && ifp->if_timer) {
3065 		em_tx_collect(adapter);
3066 		if (ifp->if_timer) {
3067 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3068 			ifp->if_timer = 0;
3069 			em_init(adapter);
3070 		}
3071 	}
3072 }
3073 
3074 static int
3075 em_newbuf(struct adapter *adapter, int i, int init)
3076 {
3077 	struct mbuf *m;
3078 	bus_dma_segment_t seg;
3079 	bus_dmamap_t map;
3080 	struct em_buffer *rx_buffer;
3081 	int error, nseg;
3082 
3083 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3084 	if (m == NULL) {
3085 		adapter->mbuf_cluster_failed++;
3086 		if (init) {
3087 			if_printf(&adapter->arpcom.ac_if,
3088 				  "Unable to allocate RX mbuf\n");
3089 		}
3090 		return (ENOBUFS);
3091 	}
3092 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3093 
3094 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3095 		m_adj(m, ETHER_ALIGN);
3096 
3097 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3098 			adapter->rx_sparemap, m,
3099 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3100 	if (error) {
3101 		m_freem(m);
3102 		if (init) {
3103 			if_printf(&adapter->arpcom.ac_if,
3104 				  "Unable to load RX mbuf\n");
3105 		}
3106 		return (error);
3107 	}
3108 
3109 	rx_buffer = &adapter->rx_buffer_area[i];
3110 	if (rx_buffer->m_head != NULL)
3111 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3112 
3113 	map = rx_buffer->map;
3114 	rx_buffer->map = adapter->rx_sparemap;
3115 	adapter->rx_sparemap = map;
3116 
3117 	rx_buffer->m_head = m;
3118 
3119 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3120 	return (0);
3121 }
3122 
3123 static int
3124 em_create_rx_ring(struct adapter *adapter)
3125 {
3126 	device_t dev = adapter->dev;
3127 	struct em_buffer *rx_buffer;
3128 	int i, error;
3129 
3130 	adapter->rx_buffer_area =
3131 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3132 			M_DEVBUF, M_WAITOK | M_ZERO);
3133 
3134 	/*
3135 	 * Create DMA tag for rx buffers
3136 	 */
3137 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3138 			1, 0,			/* alignment, bounds */
3139 			BUS_SPACE_MAXADDR,	/* lowaddr */
3140 			BUS_SPACE_MAXADDR,	/* highaddr */
3141 			NULL, NULL,		/* filter, filterarg */
3142 			MCLBYTES,		/* maxsize */
3143 			1,			/* nsegments */
3144 			MCLBYTES,		/* maxsegsize */
3145 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3146 			&adapter->rxtag);
3147 	if (error) {
3148 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3149 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3150 		adapter->rx_buffer_area = NULL;
3151 		return error;
3152 	}
3153 
3154 	/*
3155 	 * Create spare DMA map for rx buffers
3156 	 */
3157 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3158 				  &adapter->rx_sparemap);
3159 	if (error) {
3160 		device_printf(dev, "Unable to create spare RX DMA map\n");
3161 		bus_dma_tag_destroy(adapter->rxtag);
3162 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3163 		adapter->rx_buffer_area = NULL;
3164 		return error;
3165 	}
3166 
3167 	/*
3168 	 * Create DMA maps for rx buffers
3169 	 */
3170 	for (i = 0; i < adapter->num_rx_desc; i++) {
3171 		rx_buffer = &adapter->rx_buffer_area[i];
3172 
3173 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3174 					  &rx_buffer->map);
3175 		if (error) {
3176 			device_printf(dev, "Unable to create RX DMA map\n");
3177 			em_destroy_rx_ring(adapter, i);
3178 			return error;
3179 		}
3180 	}
3181 	return (0);
3182 }
3183 
3184 static int
3185 em_init_rx_ring(struct adapter *adapter)
3186 {
3187 	int i, error;
3188 
3189 	/* Reset descriptor ring */
3190 	bzero(adapter->rx_desc_base,
3191 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3192 
3193 	/* Allocate new ones. */
3194 	for (i = 0; i < adapter->num_rx_desc; i++) {
3195 		error = em_newbuf(adapter, i, 1);
3196 		if (error)
3197 			return (error);
3198 	}
3199 
3200 	/* Setup our descriptor pointers */
3201 	adapter->next_rx_desc_to_check = 0;
3202 
3203 	return (0);
3204 }
3205 
3206 static void
3207 em_init_rx_unit(struct adapter *adapter)
3208 {
3209 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3210 	uint64_t bus_addr;
3211 	uint32_t rctl;
3212 
3213 	/*
3214 	 * Make sure receives are disabled while setting
3215 	 * up the descriptor ring
3216 	 */
3217 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3218 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3219 
3220 	if (adapter->hw.mac.type >= e1000_82540) {
3221 		uint32_t itr;
3222 
3223 		/*
3224 		 * Set the interrupt throttling rate. Value is calculated
3225 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3226 		 */
3227 		if (adapter->int_throttle_ceil)
3228 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3229 		else
3230 			itr = 0;
3231 		em_set_itr(adapter, itr);
3232 	}
3233 
3234 	/* Disable accelerated ackknowledge */
3235 	if (adapter->hw.mac.type == e1000_82574) {
3236 		E1000_WRITE_REG(&adapter->hw,
3237 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3238 	}
3239 
3240 	/* Receive Checksum Offload for TCP and UDP */
3241 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3242 		uint32_t rxcsum;
3243 
3244 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3245 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3246 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3247 	}
3248 
3249 	/*
3250 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3251 	 * long latencies are observed, like Lenovo X60. This
3252 	 * change eliminates the problem, but since having positive
3253 	 * values in RDTR is a known source of problems on other
3254 	 * platforms another solution is being sought.
3255 	 */
3256 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3257 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3258 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3259 	}
3260 
3261 	/*
3262 	 * Setup the Base and Length of the Rx Descriptor Ring
3263 	 */
3264 	bus_addr = adapter->rxdma.dma_paddr;
3265 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3266 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3267 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3268 	    (uint32_t)(bus_addr >> 32));
3269 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3270 	    (uint32_t)bus_addr);
3271 
3272 	/*
3273 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3274 	 */
3275 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3276 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3277 
3278 	/* Set PTHRESH for improved jumbo performance */
3279 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3280 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3281 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3282 	    (ifp->if_mtu > ETHERMTU)) {
3283 		uint32_t rxdctl;
3284 
3285 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3286 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3287 	}
3288 
3289 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3290 		if (ifp->if_mtu > ETHERMTU)
3291 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3292 		else
3293 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3294 	}
3295 
3296 	/* Setup the Receive Control Register */
3297 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3298 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3299 		E1000_RCTL_RDMTS_HALF |
3300 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3301 
3302 	/* Make sure VLAN Filters are off */
3303 	rctl &= ~E1000_RCTL_VFE;
3304 
3305 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3306 		rctl |= E1000_RCTL_SBP;
3307 	else
3308 		rctl &= ~E1000_RCTL_SBP;
3309 
3310 	switch (adapter->rx_buffer_len) {
3311 	default:
3312 	case 2048:
3313 		rctl |= E1000_RCTL_SZ_2048;
3314 		break;
3315 
3316 	case 4096:
3317 		rctl |= E1000_RCTL_SZ_4096 |
3318 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3319 		break;
3320 
3321 	case 8192:
3322 		rctl |= E1000_RCTL_SZ_8192 |
3323 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3324 		break;
3325 
3326 	case 16384:
3327 		rctl |= E1000_RCTL_SZ_16384 |
3328 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3329 		break;
3330 	}
3331 
3332 	if (ifp->if_mtu > ETHERMTU)
3333 		rctl |= E1000_RCTL_LPE;
3334 	else
3335 		rctl &= ~E1000_RCTL_LPE;
3336 
3337 	/* Enable Receives */
3338 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3339 }
3340 
3341 static void
3342 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3343 {
3344 	struct em_buffer *rx_buffer;
3345 	int i;
3346 
3347 	if (adapter->rx_buffer_area == NULL)
3348 		return;
3349 
3350 	for (i = 0; i < ndesc; i++) {
3351 		rx_buffer = &adapter->rx_buffer_area[i];
3352 
3353 		KKASSERT(rx_buffer->m_head == NULL);
3354 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3355 	}
3356 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3357 	bus_dma_tag_destroy(adapter->rxtag);
3358 
3359 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3360 	adapter->rx_buffer_area = NULL;
3361 }
3362 
3363 static void
3364 em_rxeof(struct adapter *adapter, int count)
3365 {
3366 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3367 	uint8_t status, accept_frame = 0, eop = 0;
3368 	uint16_t len, desc_len, prev_len_adj;
3369 	struct e1000_rx_desc *current_desc;
3370 	struct mbuf *mp;
3371 	int i;
3372 
3373 	i = adapter->next_rx_desc_to_check;
3374 	current_desc = &adapter->rx_desc_base[i];
3375 
3376 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3377 		return;
3378 
3379 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3380 		struct mbuf *m = NULL;
3381 
3382 		logif(pkt_receive);
3383 
3384 		mp = adapter->rx_buffer_area[i].m_head;
3385 
3386 		/*
3387 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3388 		 * needs to access the last received byte in the mbuf.
3389 		 */
3390 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3391 				BUS_DMASYNC_POSTREAD);
3392 
3393 		accept_frame = 1;
3394 		prev_len_adj = 0;
3395 		desc_len = le16toh(current_desc->length);
3396 		status = current_desc->status;
3397 		if (status & E1000_RXD_STAT_EOP) {
3398 			count--;
3399 			eop = 1;
3400 			if (desc_len < ETHER_CRC_LEN) {
3401 				len = 0;
3402 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3403 			} else {
3404 				len = desc_len - ETHER_CRC_LEN;
3405 			}
3406 		} else {
3407 			eop = 0;
3408 			len = desc_len;
3409 		}
3410 
3411 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3412 			uint8_t	last_byte;
3413 			uint32_t pkt_len = desc_len;
3414 
3415 			if (adapter->fmp != NULL)
3416 				pkt_len += adapter->fmp->m_pkthdr.len;
3417 
3418 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3419 			if (TBI_ACCEPT(&adapter->hw, status,
3420 			    current_desc->errors, pkt_len, last_byte,
3421 			    adapter->min_frame_size,
3422 			    adapter->hw.mac.max_frame_size)) {
3423 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3424 				    &adapter->stats, pkt_len,
3425 				    adapter->hw.mac.addr,
3426 				    adapter->hw.mac.max_frame_size);
3427 				if (len > 0)
3428 					len--;
3429 			} else {
3430 				accept_frame = 0;
3431 			}
3432 		}
3433 
3434 		if (accept_frame) {
3435 			if (em_newbuf(adapter, i, 0) != 0) {
3436 				IFNET_STAT_INC(ifp, iqdrops, 1);
3437 				goto discard;
3438 			}
3439 
3440 			/* Assign correct length to the current fragment */
3441 			mp->m_len = len;
3442 
3443 			if (adapter->fmp == NULL) {
3444 				mp->m_pkthdr.len = len;
3445 				adapter->fmp = mp; /* Store the first mbuf */
3446 				adapter->lmp = mp;
3447 			} else {
3448 				/*
3449 				 * Chain mbuf's together
3450 				 */
3451 
3452 				/*
3453 				 * Adjust length of previous mbuf in chain if
3454 				 * we received less than 4 bytes in the last
3455 				 * descriptor.
3456 				 */
3457 				if (prev_len_adj > 0) {
3458 					adapter->lmp->m_len -= prev_len_adj;
3459 					adapter->fmp->m_pkthdr.len -=
3460 					    prev_len_adj;
3461 				}
3462 				adapter->lmp->m_next = mp;
3463 				adapter->lmp = adapter->lmp->m_next;
3464 				adapter->fmp->m_pkthdr.len += len;
3465 			}
3466 
3467 			if (eop) {
3468 				adapter->fmp->m_pkthdr.rcvif = ifp;
3469 				IFNET_STAT_INC(ifp, ipackets, 1);
3470 
3471 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3472 					em_rxcsum(adapter, current_desc,
3473 						  adapter->fmp);
3474 				}
3475 
3476 				if (status & E1000_RXD_STAT_VP) {
3477 					adapter->fmp->m_pkthdr.ether_vlantag =
3478 					    (le16toh(current_desc->special) &
3479 					    E1000_RXD_SPC_VLAN_MASK);
3480 					adapter->fmp->m_flags |= M_VLANTAG;
3481 				}
3482 				m = adapter->fmp;
3483 				adapter->fmp = NULL;
3484 				adapter->lmp = NULL;
3485 			}
3486 		} else {
3487 			IFNET_STAT_INC(ifp, ierrors, 1);
3488 discard:
3489 #ifdef foo
3490 			/* Reuse loaded DMA map and just update mbuf chain */
3491 			mp = adapter->rx_buffer_area[i].m_head;
3492 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3493 			mp->m_data = mp->m_ext.ext_buf;
3494 			mp->m_next = NULL;
3495 			if (adapter->hw.mac.max_frame_size <=
3496 			    (MCLBYTES - ETHER_ALIGN))
3497 				m_adj(mp, ETHER_ALIGN);
3498 #endif
3499 			if (adapter->fmp != NULL) {
3500 				m_freem(adapter->fmp);
3501 				adapter->fmp = NULL;
3502 				adapter->lmp = NULL;
3503 			}
3504 			m = NULL;
3505 		}
3506 
3507 		/* Zero out the receive descriptors status. */
3508 		current_desc->status = 0;
3509 
3510 		if (m != NULL)
3511 			ifp->if_input(ifp, m, NULL, -1);
3512 
3513 		/* Advance our pointers to the next descriptor. */
3514 		if (++i == adapter->num_rx_desc)
3515 			i = 0;
3516 		current_desc = &adapter->rx_desc_base[i];
3517 	}
3518 	adapter->next_rx_desc_to_check = i;
3519 
3520 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3521 	if (--i < 0)
3522 		i = adapter->num_rx_desc - 1;
3523 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3524 }
3525 
3526 static void
3527 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3528 	  struct mbuf *mp)
3529 {
3530 	/* 82543 or newer only */
3531 	if (adapter->hw.mac.type < e1000_82543 ||
3532 	    /* Ignore Checksum bit is set */
3533 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3534 		return;
3535 
3536 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3537 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3538 		/* IP Checksum Good */
3539 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3540 	}
3541 
3542 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3543 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3544 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3545 					   CSUM_PSEUDO_HDR |
3546 					   CSUM_FRAG_NOT_CHECKED;
3547 		mp->m_pkthdr.csum_data = htons(0xffff);
3548 	}
3549 }
3550 
3551 static void
3552 em_enable_intr(struct adapter *adapter)
3553 {
3554 	uint32_t ims_mask = IMS_ENABLE_MASK;
3555 
3556 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3557 
3558 #if 0
3559 	/* XXX MSIX */
3560 	if (adapter->hw.mac.type == e1000_82574) {
3561 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3562 		ims_mask |= EM_MSIX_MASK;
3563         }
3564 #endif
3565 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3566 }
3567 
3568 static void
3569 em_disable_intr(struct adapter *adapter)
3570 {
3571 	uint32_t clear = 0xffffffff;
3572 
3573 	/*
3574 	 * The first version of 82542 had an errata where when link was forced
3575 	 * it would stay up even up even if the cable was disconnected.
3576 	 * Sequence errors were used to detect the disconnect and then the
3577 	 * driver would unforce the link.  This code in the in the ISR.  For
3578 	 * this to work correctly the Sequence error interrupt had to be
3579 	 * enabled all the time.
3580 	 */
3581 	if (adapter->hw.mac.type == e1000_82542 &&
3582 	    adapter->hw.revision_id == E1000_REVISION_2)
3583 		clear &= ~E1000_ICR_RXSEQ;
3584 	else if (adapter->hw.mac.type == e1000_82574)
3585 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3586 
3587 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3588 
3589 	adapter->npoll.ifpc_stcount = 0;
3590 
3591 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3592 }
3593 
3594 /*
3595  * Bit of a misnomer, what this really means is
3596  * to enable OS management of the system... aka
3597  * to disable special hardware management features
3598  */
3599 static void
3600 em_get_mgmt(struct adapter *adapter)
3601 {
3602 	/* A shared code workaround */
3603 #define E1000_82542_MANC2H E1000_MANC2H
3604 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3605 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3606 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3607 
3608 		/* disable hardware interception of ARP */
3609 		manc &= ~(E1000_MANC_ARP_EN);
3610 
3611                 /* enable receiving management packets to the host */
3612                 if (adapter->hw.mac.type >= e1000_82571) {
3613 			manc |= E1000_MANC_EN_MNG2HOST;
3614 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3615 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3616 			manc2h |= E1000_MNG2HOST_PORT_623;
3617 			manc2h |= E1000_MNG2HOST_PORT_664;
3618 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3619 		}
3620 
3621 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3622 	}
3623 }
3624 
3625 /*
3626  * Give control back to hardware management
3627  * controller if there is one.
3628  */
3629 static void
3630 em_rel_mgmt(struct adapter *adapter)
3631 {
3632 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3633 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3634 
3635 		/* re-enable hardware interception of ARP */
3636 		manc |= E1000_MANC_ARP_EN;
3637 
3638 		if (adapter->hw.mac.type >= e1000_82571)
3639 			manc &= ~E1000_MANC_EN_MNG2HOST;
3640 
3641 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3642 	}
3643 }
3644 
3645 /*
3646  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3647  * For ASF and Pass Through versions of f/w this means that
3648  * the driver is loaded.  For AMT version (only with 82573)
3649  * of the f/w this means that the network i/f is open.
3650  */
3651 static void
3652 em_get_hw_control(struct adapter *adapter)
3653 {
3654 	/* Let firmware know the driver has taken over */
3655 	if (adapter->hw.mac.type == e1000_82573) {
3656 		uint32_t swsm;
3657 
3658 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3659 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3660 		    swsm | E1000_SWSM_DRV_LOAD);
3661 	} else {
3662 		uint32_t ctrl_ext;
3663 
3664 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3665 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3666 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3667 	}
3668 	adapter->flags |= EM_FLAG_HW_CTRL;
3669 }
3670 
3671 /*
3672  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3673  * For ASF and Pass Through versions of f/w this means that the
3674  * driver is no longer loaded.  For AMT version (only with 82573)
3675  * of the f/w this means that the network i/f is closed.
3676  */
3677 static void
3678 em_rel_hw_control(struct adapter *adapter)
3679 {
3680 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3681 		return;
3682 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3683 
3684 	/* Let firmware taken over control of h/w */
3685 	if (adapter->hw.mac.type == e1000_82573) {
3686 		uint32_t swsm;
3687 
3688 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3689 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3690 		    swsm & ~E1000_SWSM_DRV_LOAD);
3691 	} else {
3692 		uint32_t ctrl_ext;
3693 
3694 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3695 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3696 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3697 	}
3698 }
3699 
3700 static int
3701 em_is_valid_eaddr(const uint8_t *addr)
3702 {
3703 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3704 
3705 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3706 		return (FALSE);
3707 
3708 	return (TRUE);
3709 }
3710 
3711 /*
3712  * Enable PCI Wake On Lan capability
3713  */
3714 void
3715 em_enable_wol(device_t dev)
3716 {
3717 	uint16_t cap, status;
3718 	uint8_t id;
3719 
3720 	/* First find the capabilities pointer*/
3721 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3722 
3723 	/* Read the PM Capabilities */
3724 	id = pci_read_config(dev, cap, 1);
3725 	if (id != PCIY_PMG)     /* Something wrong */
3726 		return;
3727 
3728 	/*
3729 	 * OK, we have the power capabilities,
3730 	 * so now get the status register
3731 	 */
3732 	cap += PCIR_POWER_STATUS;
3733 	status = pci_read_config(dev, cap, 2);
3734 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3735 	pci_write_config(dev, cap, status, 2);
3736 }
3737 
3738 
3739 /*
3740  * 82544 Coexistence issue workaround.
3741  *    There are 2 issues.
3742  *       1. Transmit Hang issue.
3743  *    To detect this issue, following equation can be used...
3744  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3745  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3746  *
3747  *       2. DAC issue.
3748  *    To detect this issue, following equation can be used...
3749  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3750  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3751  *
3752  *    WORKAROUND:
3753  *	  Make sure we do not have ending address
3754  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3755  */
3756 static uint32_t
3757 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3758 {
3759 	uint32_t safe_terminator;
3760 
3761 	/*
3762 	 * Since issue is sensitive to length and address.
3763 	 * Let us first check the address...
3764 	 */
3765 	if (length <= 4) {
3766 		desc_array->descriptor[0].address = address;
3767 		desc_array->descriptor[0].length = length;
3768 		desc_array->elements = 1;
3769 		return (desc_array->elements);
3770 	}
3771 
3772 	safe_terminator =
3773 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3774 
3775 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3776 	if (safe_terminator == 0 ||
3777 	    (safe_terminator > 4 && safe_terminator < 9) ||
3778 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3779 		desc_array->descriptor[0].address = address;
3780 		desc_array->descriptor[0].length = length;
3781 		desc_array->elements = 1;
3782 		return (desc_array->elements);
3783 	}
3784 
3785 	desc_array->descriptor[0].address = address;
3786 	desc_array->descriptor[0].length = length - 4;
3787 	desc_array->descriptor[1].address = address + (length - 4);
3788 	desc_array->descriptor[1].length = 4;
3789 	desc_array->elements = 2;
3790 	return (desc_array->elements);
3791 }
3792 
3793 static void
3794 em_update_stats(struct adapter *adapter)
3795 {
3796 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3797 
3798 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3799 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3800 		adapter->stats.symerrs +=
3801 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3802 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3803 	}
3804 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3805 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3806 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3807 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3808 
3809 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3810 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3811 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3812 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3813 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3814 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3815 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3816 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3817 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3818 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3819 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3820 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3821 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3822 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3823 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3824 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3825 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3826 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3827 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3828 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3829 
3830 	/* For the 64-bit byte counters the low dword must be read first. */
3831 	/* Both registers clear on the read of the high dword */
3832 
3833 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3834 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3835 
3836 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3837 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3838 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3839 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3840 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3841 
3842 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3843 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3844 
3845 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3846 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3847 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3848 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3849 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3850 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3851 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3852 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3853 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3854 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3855 
3856 	if (adapter->hw.mac.type >= e1000_82543) {
3857 		adapter->stats.algnerrc +=
3858 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3859 		adapter->stats.rxerrc +=
3860 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3861 		adapter->stats.tncrs +=
3862 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3863 		adapter->stats.cexterr +=
3864 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3865 		adapter->stats.tsctc +=
3866 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3867 		adapter->stats.tsctfc +=
3868 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3869 	}
3870 
3871 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3872 
3873 	/* Rx Errors */
3874 	IFNET_STAT_SET(ifp, ierrors,
3875 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3876 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3877 	    adapter->stats.ruc + adapter->stats.roc +
3878 	    adapter->stats.mpc + adapter->stats.cexterr);
3879 
3880 	/* Tx Errors */
3881 	IFNET_STAT_SET(ifp, oerrors,
3882 	    adapter->stats.ecol + adapter->stats.latecol +
3883 	    adapter->watchdog_events);
3884 }
3885 
3886 static void
3887 em_print_debug_info(struct adapter *adapter)
3888 {
3889 	device_t dev = adapter->dev;
3890 	uint8_t *hw_addr = adapter->hw.hw_addr;
3891 
3892 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3893 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3894 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3895 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3896 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3897 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3898 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3899 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3900 	    adapter->hw.fc.high_water,
3901 	    adapter->hw.fc.low_water);
3902 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3903 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3904 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3905 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3906 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3907 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3908 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3909 	    (long long)adapter->tx_fifo_wrk_cnt,
3910 	    (long long)adapter->tx_fifo_reset_cnt);
3911 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3912 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3913 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3914 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3915 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3916 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3917 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3918 	    adapter->num_tx_desc_avail);
3919 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3920 	    adapter->no_tx_desc_avail1);
3921 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3922 	    adapter->no_tx_desc_avail2);
3923 	device_printf(dev, "Std mbuf failed = %ld\n",
3924 	    adapter->mbuf_alloc_failed);
3925 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3926 	    adapter->mbuf_cluster_failed);
3927 	device_printf(dev, "Driver dropped packets = %ld\n",
3928 	    adapter->dropped_pkts);
3929 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3930 	    adapter->no_tx_dma_setup);
3931 }
3932 
3933 static void
3934 em_print_hw_stats(struct adapter *adapter)
3935 {
3936 	device_t dev = adapter->dev;
3937 
3938 	device_printf(dev, "Excessive collisions = %lld\n",
3939 	    (long long)adapter->stats.ecol);
3940 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3941 	device_printf(dev, "Symbol errors = %lld\n",
3942 	    (long long)adapter->stats.symerrs);
3943 #endif
3944 	device_printf(dev, "Sequence errors = %lld\n",
3945 	    (long long)adapter->stats.sec);
3946 	device_printf(dev, "Defer count = %lld\n",
3947 	    (long long)adapter->stats.dc);
3948 	device_printf(dev, "Missed Packets = %lld\n",
3949 	    (long long)adapter->stats.mpc);
3950 	device_printf(dev, "Receive No Buffers = %lld\n",
3951 	    (long long)adapter->stats.rnbc);
3952 	/* RLEC is inaccurate on some hardware, calculate our own. */
3953 	device_printf(dev, "Receive Length Errors = %lld\n",
3954 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3955 	device_printf(dev, "Receive errors = %lld\n",
3956 	    (long long)adapter->stats.rxerrc);
3957 	device_printf(dev, "Crc errors = %lld\n",
3958 	    (long long)adapter->stats.crcerrs);
3959 	device_printf(dev, "Alignment errors = %lld\n",
3960 	    (long long)adapter->stats.algnerrc);
3961 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3962 	    (long long)adapter->stats.cexterr);
3963 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3964 	device_printf(dev, "watchdog timeouts = %ld\n",
3965 	    adapter->watchdog_events);
3966 	device_printf(dev, "XON Rcvd = %lld\n",
3967 	    (long long)adapter->stats.xonrxc);
3968 	device_printf(dev, "XON Xmtd = %lld\n",
3969 	    (long long)adapter->stats.xontxc);
3970 	device_printf(dev, "XOFF Rcvd = %lld\n",
3971 	    (long long)adapter->stats.xoffrxc);
3972 	device_printf(dev, "XOFF Xmtd = %lld\n",
3973 	    (long long)adapter->stats.xofftxc);
3974 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3975 	    (long long)adapter->stats.gprc);
3976 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3977 	    (long long)adapter->stats.gptc);
3978 }
3979 
3980 static void
3981 em_print_nvm_info(struct adapter *adapter)
3982 {
3983 	uint16_t eeprom_data;
3984 	int i, j, row = 0;
3985 
3986 	/* Its a bit crude, but it gets the job done */
3987 	kprintf("\nInterface EEPROM Dump:\n");
3988 	kprintf("Offset\n0x0000  ");
3989 	for (i = 0, j = 0; i < 32; i++, j++) {
3990 		if (j == 8) { /* Make the offset block */
3991 			j = 0; ++row;
3992 			kprintf("\n0x00%x0  ",row);
3993 		}
3994 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3995 		kprintf("%04x ", eeprom_data);
3996 	}
3997 	kprintf("\n");
3998 }
3999 
4000 static int
4001 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4002 {
4003 	struct adapter *adapter;
4004 	struct ifnet *ifp;
4005 	int error, result;
4006 
4007 	result = -1;
4008 	error = sysctl_handle_int(oidp, &result, 0, req);
4009 	if (error || !req->newptr)
4010 		return (error);
4011 
4012 	adapter = (struct adapter *)arg1;
4013 	ifp = &adapter->arpcom.ac_if;
4014 
4015 	lwkt_serialize_enter(ifp->if_serializer);
4016 
4017 	if (result == 1)
4018 		em_print_debug_info(adapter);
4019 
4020 	/*
4021 	 * This value will cause a hex dump of the
4022 	 * first 32 16-bit words of the EEPROM to
4023 	 * the screen.
4024 	 */
4025 	if (result == 2)
4026 		em_print_nvm_info(adapter);
4027 
4028 	lwkt_serialize_exit(ifp->if_serializer);
4029 
4030 	return (error);
4031 }
4032 
4033 static int
4034 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4035 {
4036 	int error, result;
4037 
4038 	result = -1;
4039 	error = sysctl_handle_int(oidp, &result, 0, req);
4040 	if (error || !req->newptr)
4041 		return (error);
4042 
4043 	if (result == 1) {
4044 		struct adapter *adapter = (struct adapter *)arg1;
4045 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4046 
4047 		lwkt_serialize_enter(ifp->if_serializer);
4048 		em_print_hw_stats(adapter);
4049 		lwkt_serialize_exit(ifp->if_serializer);
4050 	}
4051 	return (error);
4052 }
4053 
4054 static void
4055 em_add_sysctl(struct adapter *adapter)
4056 {
4057 	struct sysctl_ctx_list *ctx;
4058 	struct sysctl_oid *tree;
4059 
4060 	ctx = device_get_sysctl_ctx(adapter->dev);
4061 	tree = device_get_sysctl_tree(adapter->dev);
4062 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4063 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4064 	    em_sysctl_debug_info, "I", "Debug Information");
4065 
4066 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4067 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4068 	    em_sysctl_stats, "I", "Statistics");
4069 
4070 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4071 	    OID_AUTO, "rxd", CTLFLAG_RD,
4072 	    &adapter->num_rx_desc, 0, NULL);
4073 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4074 	    OID_AUTO, "txd", CTLFLAG_RD,
4075 	    &adapter->num_tx_desc, 0, NULL);
4076 
4077 	if (adapter->hw.mac.type >= e1000_82540) {
4078 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4079 		    OID_AUTO, "int_throttle_ceil",
4080 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4081 		    em_sysctl_int_throttle, "I",
4082 		    "interrupt throttling rate");
4083 	}
4084 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4085 	    OID_AUTO, "int_tx_nsegs",
4086 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4087 	    em_sysctl_int_tx_nsegs, "I",
4088 	    "# segments per TX interrupt");
4089 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4090 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4091 	    &adapter->tx_wreg_nsegs, 0,
4092 	    "# segments before write to hardware register");
4093 }
4094 
4095 static int
4096 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4097 {
4098 	struct adapter *adapter = (void *)arg1;
4099 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4100 	int error, throttle;
4101 
4102 	throttle = adapter->int_throttle_ceil;
4103 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4104 	if (error || req->newptr == NULL)
4105 		return error;
4106 	if (throttle < 0 || throttle > 1000000000 / 256)
4107 		return EINVAL;
4108 
4109 	if (throttle) {
4110 		/*
4111 		 * Set the interrupt throttling rate in 256ns increments,
4112 		 * recalculate sysctl value assignment to get exact frequency.
4113 		 */
4114 		throttle = 1000000000 / 256 / throttle;
4115 
4116 		/* Upper 16bits of ITR is reserved and should be zero */
4117 		if (throttle & 0xffff0000)
4118 			return EINVAL;
4119 	}
4120 
4121 	lwkt_serialize_enter(ifp->if_serializer);
4122 
4123 	if (throttle)
4124 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4125 	else
4126 		adapter->int_throttle_ceil = 0;
4127 
4128 	if (ifp->if_flags & IFF_RUNNING)
4129 		em_set_itr(adapter, throttle);
4130 
4131 	lwkt_serialize_exit(ifp->if_serializer);
4132 
4133 	if (bootverbose) {
4134 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4135 			  adapter->int_throttle_ceil);
4136 	}
4137 	return 0;
4138 }
4139 
4140 static int
4141 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4142 {
4143 	struct adapter *adapter = (void *)arg1;
4144 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4145 	int error, segs;
4146 
4147 	segs = adapter->tx_int_nsegs;
4148 	error = sysctl_handle_int(oidp, &segs, 0, req);
4149 	if (error || req->newptr == NULL)
4150 		return error;
4151 	if (segs <= 0)
4152 		return EINVAL;
4153 
4154 	lwkt_serialize_enter(ifp->if_serializer);
4155 
4156 	/*
4157 	 * Don't allow int_tx_nsegs to become:
4158 	 * o  Less the oact_tx_desc
4159 	 * o  Too large that no TX desc will cause TX interrupt to
4160 	 *    be generated (OACTIVE will never recover)
4161 	 * o  Too small that will cause tx_dd[] overflow
4162 	 */
4163 	if (segs < adapter->oact_tx_desc ||
4164 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4165 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4166 		error = EINVAL;
4167 	} else {
4168 		error = 0;
4169 		adapter->tx_int_nsegs = segs;
4170 	}
4171 
4172 	lwkt_serialize_exit(ifp->if_serializer);
4173 
4174 	return error;
4175 }
4176 
4177 static void
4178 em_set_itr(struct adapter *adapter, uint32_t itr)
4179 {
4180 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4181 	if (adapter->hw.mac.type == e1000_82574) {
4182 		int i;
4183 
4184 		/*
4185 		 * When using MSIX interrupts we need to
4186 		 * throttle using the EITR register
4187 		 */
4188 		for (i = 0; i < 4; ++i) {
4189 			E1000_WRITE_REG(&adapter->hw,
4190 			    E1000_EITR_82574(i), itr);
4191 		}
4192 	}
4193 }
4194 
4195 static void
4196 em_disable_aspm(struct adapter *adapter)
4197 {
4198 	uint16_t link_cap, link_ctrl, disable;
4199 	uint8_t pcie_ptr, reg;
4200 	device_t dev = adapter->dev;
4201 
4202 	switch (adapter->hw.mac.type) {
4203 	case e1000_82571:
4204 	case e1000_82572:
4205 	case e1000_82573:
4206 		/*
4207 		 * 82573 specification update
4208 		 * errata #8 disable L0s
4209 		 * errata #41 disable L1
4210 		 *
4211 		 * 82571/82572 specification update
4212 		 # errata #13 disable L1
4213 		 * errata #68 disable L0s
4214 		 */
4215 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4216 		break;
4217 
4218 	case e1000_82574:
4219 	case e1000_82583:
4220 		/*
4221 		 * 82574 specification update errata #20
4222 		 * 82583 specification update errata #9
4223 		 *
4224 		 * There is no need to disable L1
4225 		 */
4226 		disable = PCIEM_LNKCTL_ASPM_L0S;
4227 		break;
4228 
4229 	default:
4230 		return;
4231 	}
4232 
4233 	pcie_ptr = pci_get_pciecap_ptr(dev);
4234 	if (pcie_ptr == 0)
4235 		return;
4236 
4237 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4238 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4239 		return;
4240 
4241 	if (bootverbose) {
4242 		if_printf(&adapter->arpcom.ac_if,
4243 		    "disable ASPM %#02x\n", disable);
4244 	}
4245 
4246 	reg = pcie_ptr + PCIER_LINKCTRL;
4247 	link_ctrl = pci_read_config(dev, reg, 2);
4248 	link_ctrl &= ~disable;
4249 	pci_write_config(dev, reg, link_ctrl, 2);
4250 }
4251 
4252 static int
4253 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4254 {
4255 	int iphlen, hoff, thoff, ex = 0;
4256 	struct mbuf *m;
4257 	struct ip *ip;
4258 
4259 	m = *mp;
4260 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4261 
4262 	iphlen = m->m_pkthdr.csum_iphlen;
4263 	thoff = m->m_pkthdr.csum_thlen;
4264 	hoff = m->m_pkthdr.csum_lhlen;
4265 
4266 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4267 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4268 	KASSERT(hoff > 0, ("invalid ether hlen"));
4269 
4270 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4271 		ex = 4;
4272 
4273 	if (m->m_len < hoff + iphlen + thoff + ex) {
4274 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4275 		if (m == NULL) {
4276 			*mp = NULL;
4277 			return ENOBUFS;
4278 		}
4279 		*mp = m;
4280 	}
4281 	ip = mtodoff(m, struct ip *, hoff);
4282 	ip->ip_len = 0;
4283 
4284 	return 0;
4285 }
4286 
4287 static int
4288 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4289     uint32_t *txd_upper, uint32_t *txd_lower)
4290 {
4291 	struct e1000_context_desc *TXD;
4292 	int hoff, iphlen, thoff, hlen;
4293 	int mss, pktlen, curr_txd;
4294 
4295 	iphlen = mp->m_pkthdr.csum_iphlen;
4296 	thoff = mp->m_pkthdr.csum_thlen;
4297 	hoff = mp->m_pkthdr.csum_lhlen;
4298 	mss = mp->m_pkthdr.tso_segsz;
4299 	pktlen = mp->m_pkthdr.len;
4300 
4301 	if (adapter->csum_flags == CSUM_TSO &&
4302 	    adapter->csum_iphlen == iphlen &&
4303 	    adapter->csum_lhlen == hoff &&
4304 	    adapter->csum_thlen == thoff &&
4305 	    adapter->csum_mss == mss &&
4306 	    adapter->csum_pktlen == pktlen) {
4307 		*txd_upper = adapter->csum_txd_upper;
4308 		*txd_lower = adapter->csum_txd_lower;
4309 		return 0;
4310 	}
4311 	hlen = hoff + iphlen + thoff;
4312 
4313 	/*
4314 	 * Setup a new TSO context.
4315 	 */
4316 
4317 	curr_txd = adapter->next_avail_tx_desc;
4318 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4319 
4320 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4321 		     E1000_TXD_DTYP_D |		/* Data descr type */
4322 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4323 
4324 	/* IP and/or TCP header checksum calculation and insertion. */
4325 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4326 
4327 	/*
4328 	 * Start offset for header checksum calculation.
4329 	 * End offset for header checksum calculation.
4330 	 * Offset of place put the checksum.
4331 	 */
4332 	TXD->lower_setup.ip_fields.ipcss = hoff;
4333 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4334 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4335 
4336 	/*
4337 	 * Start offset for payload checksum calculation.
4338 	 * End offset for payload checksum calculation.
4339 	 * Offset of place to put the checksum.
4340 	 */
4341 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4342 	TXD->upper_setup.tcp_fields.tucse = 0;
4343 	TXD->upper_setup.tcp_fields.tucso =
4344 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4345 
4346 	/*
4347 	 * Payload size per packet w/o any headers.
4348 	 * Length of all headers up to payload.
4349 	 */
4350 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4351 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4352 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4353 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4354 				E1000_TXD_CMD_TSE |	/* TSE context */
4355 				E1000_TXD_CMD_IP |	/* Do IP csum */
4356 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4357 				(pktlen - hlen));	/* Total len */
4358 
4359 	/* Save the information for this TSO context */
4360 	adapter->csum_flags = CSUM_TSO;
4361 	adapter->csum_lhlen = hoff;
4362 	adapter->csum_iphlen = iphlen;
4363 	adapter->csum_thlen = thoff;
4364 	adapter->csum_mss = mss;
4365 	adapter->csum_pktlen = pktlen;
4366 	adapter->csum_txd_upper = *txd_upper;
4367 	adapter->csum_txd_lower = *txd_lower;
4368 
4369 	if (++curr_txd == adapter->num_tx_desc)
4370 		curr_txd = 0;
4371 
4372 	KKASSERT(adapter->num_tx_desc_avail > 0);
4373 	adapter->num_tx_desc_avail--;
4374 
4375 	adapter->next_avail_tx_desc = curr_txd;
4376 	return 1;
4377 }
4378