xref: /dflybsd-src/sys/dev/netif/dc/if_dc.c (revision f9fe93f03de041eedefb44d56c0b849ed1413129)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.37 2005/09/04 23:19:12 swildner Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Conexant LANfinity (www.conexant.com)
50  *
51  * Datasheets for the 21143 are available at developer.intel.com.
52  * Datasheets for the clone parts can be found at their respective sites.
53  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54  * The PNIC II is essentially a Macronix 98715A chip; the only difference
55  * worth noting is that its multicast hash table is only 128 bits wide
56  * instead of 512.
57  *
58  * Written by Bill Paul <wpaul@ee.columbia.edu>
59  * Electrical Engineering Department
60  * Columbia University, New York City
61  */
62 
63 /*
64  * The Intel 21143 is the successor to the DEC 21140. It is basically
65  * the same as the 21140 but with a few new features. The 21143 supports
66  * three kinds of media attachments:
67  *
68  * o MII port, for 10Mbps and 100Mbps support and NWAY
69  *   autonegotiation provided by an external PHY.
70  * o SYM port, for symbol mode 100Mbps support.
71  * o 10baseT port.
72  * o AUI/BNC port.
73  *
74  * The 100Mbps SYM port and 10baseT port can be used together in
75  * combination with the internal NWAY support to create a 10/100
76  * autosensing configuration.
77  *
78  * Note that not all tulip workalikes are handled in this driver: we only
79  * deal with those which are relatively well behaved. The Winbond is
80  * handled separately due to its different register offsets and the
81  * special handling needed for its various bugs. The PNIC is handled
82  * here, but I'm not thrilled about it.
83  *
84  * All of the workalike chips use some form of MII transceiver support
85  * with the exception of the Macronix chips, which also have a SYM port.
86  * The ASIX AX88140A is also documented to have a SYM port, but all
87  * the cards I've seen use an MII transceiver, probably because the
88  * AX88140A doesn't support internal NWAY.
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 #include <sys/thread2.h>
100 
101 #include <net/if.h>
102 #include <net/ifq_var.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/vlan/if_vlan_var.h>
109 
110 #include <net/bpf.h>
111 
112 #include <vm/vm.h>              /* for vtophys */
113 #include <vm/pmap.h>            /* for vtophys */
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
123 
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define DC_USEIOSPACE
128 
129 #include "if_dcreg.h"
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 static struct dc_type dc_devs[] = {
138 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
139 		"Intel 21143 10/100BaseTX" },
140 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
141 		"Davicom DM9009 10/100BaseTX" },
142 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
143 		"Davicom DM9100 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
145 		"Davicom DM9102 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 		"Davicom DM9102A 10/100BaseTX" },
148 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
149 		"ADMtek AL981 10/100BaseTX" },
150 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
151 		"ADMtek AN985 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
153 		"ADMtek ADM9511 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
155 		"ADMtek ADM9513 10/100BaseTX" },
156 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
157 		"ASIX AX88140A 10/100BaseTX" },
158 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
159 		"ASIX AX88141 10/100BaseTX" },
160 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
161 		"Macronix 98713 10/100BaseTX" },
162 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
163 		"Macronix 98713A 10/100BaseTX" },
164 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
165 		"Compex RL100-TX 10/100BaseTX" },
166 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
167 		"Compex RL100-TX 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
169 		"Macronix 98715/98715A 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
171 		"Macronix 98715AEC-C 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
173 		"Macronix 98725 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
175 		"Macronix 98727/98732 10/100BaseTX" },
176 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
177 		"LC82C115 PNIC II 10/100BaseTX" },
178 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
179 		"82c168 PNIC 10/100BaseTX" },
180 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
181 		"82c169 PNIC 10/100BaseTX" },
182 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
183 		"Accton EN1217 10/100BaseTX" },
184 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
185 		"Accton EN2242 MiniPCI 10/100BaseTX" },
186 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
187 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
188 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
189 		"3Com OfficeConnect 10/100B" },
190 	{ 0, 0, NULL }
191 };
192 
193 static int dc_probe		(device_t);
194 static int dc_attach		(device_t);
195 static int dc_detach		(device_t);
196 static int dc_suspend		(device_t);
197 static int dc_resume		(device_t);
198 static void dc_acpi		(device_t);
199 static struct dc_type *dc_devtype	(device_t);
200 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
201 static int dc_encap		(struct dc_softc *, struct mbuf *,
202 					u_int32_t *);
203 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
204 static int dc_rx_resync		(struct dc_softc *);
205 static void dc_rxeof		(struct dc_softc *);
206 static void dc_txeof		(struct dc_softc *);
207 static void dc_tick		(void *);
208 static void dc_tx_underrun	(struct dc_softc *);
209 static void dc_intr		(void *);
210 static void dc_start		(struct ifnet *);
211 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
212 					struct ucred *);
213 #ifdef DEVICE_POLLING
214 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
215 					int count);
216 #endif
217 static void dc_init		(void *);
218 static void dc_stop		(struct dc_softc *);
219 static void dc_watchdog		(struct ifnet *);
220 static void dc_shutdown		(device_t);
221 static int dc_ifmedia_upd	(struct ifnet *);
222 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
223 
224 static void dc_delay		(struct dc_softc *);
225 static void dc_eeprom_idle	(struct dc_softc *);
226 static void dc_eeprom_putbyte	(struct dc_softc *, int);
227 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
228 static void dc_eeprom_getword_pnic
229 				(struct dc_softc *, int, u_int16_t *);
230 static void dc_eeprom_width	(struct dc_softc *);
231 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
232 							int, int);
233 
234 static void dc_mii_writebit	(struct dc_softc *, int);
235 static int dc_mii_readbit	(struct dc_softc *);
236 static void dc_mii_sync		(struct dc_softc *);
237 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
238 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
239 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
240 static int dc_miibus_readreg	(device_t, int, int);
241 static int dc_miibus_writereg	(device_t, int, int, int);
242 static void dc_miibus_statchg	(device_t);
243 static void dc_miibus_mediainit	(device_t);
244 
245 static u_int32_t dc_crc_mask	(struct dc_softc *);
246 static void dc_setcfg		(struct dc_softc *, int);
247 static void dc_setfilt_21143	(struct dc_softc *);
248 static void dc_setfilt_asix	(struct dc_softc *);
249 static void dc_setfilt_admtek	(struct dc_softc *);
250 
251 static void dc_setfilt		(struct dc_softc *);
252 
253 static void dc_reset		(struct dc_softc *);
254 static int dc_list_rx_init	(struct dc_softc *);
255 static int dc_list_tx_init	(struct dc_softc *);
256 
257 static void dc_read_srom	(struct dc_softc *, int);
258 static void dc_parse_21143_srom	(struct dc_softc *);
259 static void dc_decode_leaf_sia	(struct dc_softc *,
260 				    struct dc_eblock_sia *);
261 static void dc_decode_leaf_mii	(struct dc_softc *,
262 				    struct dc_eblock_mii *);
263 static void dc_decode_leaf_sym	(struct dc_softc *,
264 				    struct dc_eblock_sym *);
265 static void dc_apply_fixup	(struct dc_softc *, int);
266 
267 #ifdef DC_USEIOSPACE
268 #define DC_RES			SYS_RES_IOPORT
269 #define DC_RID			DC_PCI_CFBIO
270 #else
271 #define DC_RES			SYS_RES_MEMORY
272 #define DC_RID			DC_PCI_CFBMA
273 #endif
274 
275 static device_method_t dc_methods[] = {
276 	/* Device interface */
277 	DEVMETHOD(device_probe,		dc_probe),
278 	DEVMETHOD(device_attach,	dc_attach),
279 	DEVMETHOD(device_detach,	dc_detach),
280 	DEVMETHOD(device_suspend,	dc_suspend),
281 	DEVMETHOD(device_resume,	dc_resume),
282 	DEVMETHOD(device_shutdown,	dc_shutdown),
283 
284 	/* bus interface */
285 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
286 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
287 
288 	/* MII interface */
289 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
290 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
291 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
292 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
293 
294 	{ 0, 0 }
295 };
296 
297 static driver_t dc_driver = {
298 	"dc",
299 	dc_methods,
300 	sizeof(struct dc_softc)
301 };
302 
303 static devclass_t dc_devclass;
304 
305 #ifdef __i386__
306 static int dc_quick=1;
307 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
308 	&dc_quick,0,"do not mdevget in dc driver");
309 #endif
310 
311 DECLARE_DUMMY_MODULE(if_dc);
312 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
313 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
314 
315 #define DC_SETBIT(sc, reg, x)				\
316 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
317 
318 #define DC_CLRBIT(sc, reg, x)				\
319 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
320 
321 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
322 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
323 
324 static void
325 dc_delay(struct dc_softc *sc)
326 {
327 	int			idx;
328 
329 	for (idx = (300 / 33) + 1; idx > 0; idx--)
330 		CSR_READ_4(sc, DC_BUSCTL);
331 }
332 
333 static void
334 dc_eeprom_width(struct dc_softc *sc)
335 {
336 	int i;
337 
338 	/* Force EEPROM to idle state. */
339 	dc_eeprom_idle(sc);
340 
341 	/* Enter EEPROM access mode. */
342 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
343 	dc_delay(sc);
344 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
345 	dc_delay(sc);
346 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
347 	dc_delay(sc);
348 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
349 	dc_delay(sc);
350 
351 	for (i = 3; i--;) {
352 		if (6 & (1 << i))
353 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
354 		else
355 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
356 		dc_delay(sc);
357 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
358 		dc_delay(sc);
359 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
360 		dc_delay(sc);
361 	}
362 
363 	for (i = 1; i <= 12; i++) {
364 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
365 		dc_delay(sc);
366 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
367 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
368 			dc_delay(sc);
369 			break;
370 		}
371 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
372 		dc_delay(sc);
373 	}
374 
375 	/* Turn off EEPROM access mode. */
376 	dc_eeprom_idle(sc);
377 
378 	if (i < 4 || i > 12)
379 		sc->dc_romwidth = 6;
380 	else
381 		sc->dc_romwidth = i;
382 
383 	/* Enter EEPROM access mode. */
384 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
385 	dc_delay(sc);
386 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
387 	dc_delay(sc);
388 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
389 	dc_delay(sc);
390 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
391 	dc_delay(sc);
392 
393 	/* Turn off EEPROM access mode. */
394 	dc_eeprom_idle(sc);
395 }
396 
397 static void
398 dc_eeprom_idle(struct dc_softc *sc)
399 {
400 	int		i;
401 
402 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
403 	dc_delay(sc);
404 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
405 	dc_delay(sc);
406 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
407 	dc_delay(sc);
408 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
409 	dc_delay(sc);
410 
411 	for (i = 0; i < 25; i++) {
412 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413 		dc_delay(sc);
414 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 		dc_delay(sc);
416 	}
417 
418 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419 	dc_delay(sc);
420 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
421 	dc_delay(sc);
422 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
423 
424 	return;
425 }
426 
427 /*
428  * Send a read command and address to the EEPROM, check for ACK.
429  */
430 static void
431 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
432 {
433 	int		d, i;
434 
435 	d = DC_EECMD_READ >> 6;
436 	for (i = 3; i--; ) {
437 		if (d & (1 << i))
438 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
439 		else
440 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
441 		dc_delay(sc);
442 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
443 		dc_delay(sc);
444 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445 		dc_delay(sc);
446 	}
447 
448 	/*
449 	 * Feed in each bit and strobe the clock.
450 	 */
451 	for (i = sc->dc_romwidth; i--;) {
452 		if (addr & (1 << i)) {
453 			SIO_SET(DC_SIO_EE_DATAIN);
454 		} else {
455 			SIO_CLR(DC_SIO_EE_DATAIN);
456 		}
457 		dc_delay(sc);
458 		SIO_SET(DC_SIO_EE_CLK);
459 		dc_delay(sc);
460 		SIO_CLR(DC_SIO_EE_CLK);
461 		dc_delay(sc);
462 	}
463 
464 	return;
465 }
466 
467 /*
468  * Read a word of data stored in the EEPROM at address 'addr.'
469  * The PNIC 82c168/82c169 has its own non-standard way to read
470  * the EEPROM.
471  */
472 static void
473 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
474 {
475 	int		i;
476 	u_int32_t		r;
477 
478 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
479 
480 	for (i = 0; i < DC_TIMEOUT; i++) {
481 		DELAY(1);
482 		r = CSR_READ_4(sc, DC_SIO);
483 		if (!(r & DC_PN_SIOCTL_BUSY)) {
484 			*dest = (u_int16_t)(r & 0xFFFF);
485 			return;
486 		}
487 	}
488 
489 	return;
490 }
491 
492 /*
493  * Read a word of data stored in the EEPROM at address 'addr.'
494  */
495 static void
496 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
497 {
498 	int		i;
499 	u_int16_t		word = 0;
500 
501 	/* Force EEPROM to idle state. */
502 	dc_eeprom_idle(sc);
503 
504 	/* Enter EEPROM access mode. */
505 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
506 	dc_delay(sc);
507 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
508 	dc_delay(sc);
509 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
510 	dc_delay(sc);
511 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
512 	dc_delay(sc);
513 
514 	/*
515 	 * Send address of word we want to read.
516 	 */
517 	dc_eeprom_putbyte(sc, addr);
518 
519 	/*
520 	 * Start reading bits from EEPROM.
521 	 */
522 	for (i = 0x8000; i; i >>= 1) {
523 		SIO_SET(DC_SIO_EE_CLK);
524 		dc_delay(sc);
525 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
526 			word |= i;
527 		dc_delay(sc);
528 		SIO_CLR(DC_SIO_EE_CLK);
529 		dc_delay(sc);
530 	}
531 
532 	/* Turn off EEPROM access mode. */
533 	dc_eeprom_idle(sc);
534 
535 	*dest = word;
536 
537 	return;
538 }
539 
540 /*
541  * Read a sequence of words from the EEPROM.
542  */
543 static void
544 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
545 {
546 	int			i;
547 	u_int16_t		word = 0, *ptr;
548 
549 	for (i = 0; i < cnt; i++) {
550 		if (DC_IS_PNIC(sc))
551 			dc_eeprom_getword_pnic(sc, off + i, &word);
552 		else
553 			dc_eeprom_getword(sc, off + i, &word);
554 		ptr = (u_int16_t *)(dest + (i * 2));
555 		if (swap)
556 			*ptr = ntohs(word);
557 		else
558 			*ptr = word;
559 	}
560 
561 	return;
562 }
563 
564 /*
565  * The following two routines are taken from the Macronix 98713
566  * Application Notes pp.19-21.
567  */
568 /*
569  * Write a bit to the MII bus.
570  */
571 static void
572 dc_mii_writebit(struct dc_softc *sc, int bit)
573 {
574 	if (bit)
575 		CSR_WRITE_4(sc, DC_SIO,
576 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
577 	else
578 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
579 
580 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
581 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
582 
583 	return;
584 }
585 
586 /*
587  * Read a bit from the MII bus.
588  */
589 static int
590 dc_mii_readbit(struct dc_softc *sc)
591 {
592 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
593 	CSR_READ_4(sc, DC_SIO);
594 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
595 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
596 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
597 		return(1);
598 
599 	return(0);
600 }
601 
602 /*
603  * Sync the PHYs by setting data bit and strobing the clock 32 times.
604  */
605 static void
606 dc_mii_sync(struct dc_softc *sc)
607 {
608 	int		i;
609 
610 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
611 
612 	for (i = 0; i < 32; i++)
613 		dc_mii_writebit(sc, 1);
614 
615 	return;
616 }
617 
618 /*
619  * Clock a series of bits through the MII.
620  */
621 static void
622 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
623 {
624 	int			i;
625 
626 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
627 		dc_mii_writebit(sc, bits & i);
628 }
629 
630 /*
631  * Read an PHY register through the MII.
632  */
633 static int
634 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
635 {
636 	int ack, i;
637 
638 	crit_enter();
639 
640 	/*
641 	 * Set up frame for RX.
642 	 */
643 	frame->mii_stdelim = DC_MII_STARTDELIM;
644 	frame->mii_opcode = DC_MII_READOP;
645 	frame->mii_turnaround = 0;
646 	frame->mii_data = 0;
647 
648 	/*
649 	 * Sync the PHYs.
650 	 */
651 	dc_mii_sync(sc);
652 
653 	/*
654 	 * Send command/address info.
655 	 */
656 	dc_mii_send(sc, frame->mii_stdelim, 2);
657 	dc_mii_send(sc, frame->mii_opcode, 2);
658 	dc_mii_send(sc, frame->mii_phyaddr, 5);
659 	dc_mii_send(sc, frame->mii_regaddr, 5);
660 
661 #ifdef notdef
662 	/* Idle bit */
663 	dc_mii_writebit(sc, 1);
664 	dc_mii_writebit(sc, 0);
665 #endif
666 
667 	/* Check for ack */
668 	ack = dc_mii_readbit(sc);
669 
670 	/*
671 	 * Now try reading data bits. If the ack failed, we still
672 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
673 	 */
674 	if (ack) {
675 		for(i = 0; i < 16; i++) {
676 			dc_mii_readbit(sc);
677 		}
678 		goto fail;
679 	}
680 
681 	for (i = 0x8000; i; i >>= 1) {
682 		if (!ack) {
683 			if (dc_mii_readbit(sc))
684 				frame->mii_data |= i;
685 		}
686 	}
687 
688 fail:
689 
690 	dc_mii_writebit(sc, 0);
691 	dc_mii_writebit(sc, 0);
692 
693 	crit_exit();
694 
695 	if (ack)
696 		return(1);
697 	return(0);
698 }
699 
700 /*
701  * Write to a PHY register through the MII.
702  */
703 static int
704 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
705 {
706 	crit_enter();
707 
708 	/*
709 	 * Set up frame for TX.
710 	 */
711 
712 	frame->mii_stdelim = DC_MII_STARTDELIM;
713 	frame->mii_opcode = DC_MII_WRITEOP;
714 	frame->mii_turnaround = DC_MII_TURNAROUND;
715 
716 	/*
717 	 * Sync the PHYs.
718 	 */
719 	dc_mii_sync(sc);
720 
721 	dc_mii_send(sc, frame->mii_stdelim, 2);
722 	dc_mii_send(sc, frame->mii_opcode, 2);
723 	dc_mii_send(sc, frame->mii_phyaddr, 5);
724 	dc_mii_send(sc, frame->mii_regaddr, 5);
725 	dc_mii_send(sc, frame->mii_turnaround, 2);
726 	dc_mii_send(sc, frame->mii_data, 16);
727 
728 	/* Idle bit. */
729 	dc_mii_writebit(sc, 0);
730 	dc_mii_writebit(sc, 0);
731 
732 	crit_exit();
733 
734 	return(0);
735 }
736 
737 static int
738 dc_miibus_readreg(device_t dev, int phy, int reg)
739 {
740 	struct dc_mii_frame	frame;
741 	struct dc_softc		*sc;
742 	int			i, rval, phy_reg = 0;
743 
744 	sc = device_get_softc(dev);
745 	bzero((char *)&frame, sizeof(frame));
746 
747 	/*
748 	 * Note: both the AL981 and AN985 have internal PHYs,
749 	 * however the AL981 provides direct access to the PHY
750 	 * registers while the AN985 uses a serial MII interface.
751 	 * The AN985's MII interface is also buggy in that you
752 	 * can read from any MII address (0 to 31), but only address 1
753 	 * behaves normally. To deal with both cases, we pretend
754 	 * that the PHY is at MII address 1.
755 	 */
756 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
757 		return(0);
758 
759 	/*
760 	 * Note: the ukphy probes of the RS7112 report a PHY at
761 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
762 	 * so we only respond to correct one.
763 	 */
764 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
765 		return(0);
766 
767 	if (sc->dc_pmode != DC_PMODE_MII) {
768 		if (phy == (MII_NPHY - 1)) {
769 			switch(reg) {
770 			case MII_BMSR:
771 			/*
772 			 * Fake something to make the probe
773 			 * code think there's a PHY here.
774 			 */
775 				return(BMSR_MEDIAMASK);
776 				break;
777 			case MII_PHYIDR1:
778 				if (DC_IS_PNIC(sc))
779 					return(DC_VENDORID_LO);
780 				return(DC_VENDORID_DEC);
781 				break;
782 			case MII_PHYIDR2:
783 				if (DC_IS_PNIC(sc))
784 					return(DC_DEVICEID_82C168);
785 				return(DC_DEVICEID_21143);
786 				break;
787 			default:
788 				return(0);
789 				break;
790 			}
791 		} else
792 			return(0);
793 	}
794 
795 	if (DC_IS_PNIC(sc)) {
796 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
797 		    (phy << 23) | (reg << 18));
798 		for (i = 0; i < DC_TIMEOUT; i++) {
799 			DELAY(1);
800 			rval = CSR_READ_4(sc, DC_PN_MII);
801 			if (!(rval & DC_PN_MII_BUSY)) {
802 				rval &= 0xFFFF;
803 				return(rval == 0xFFFF ? 0 : rval);
804 			}
805 		}
806 		return(0);
807 	}
808 
809 	if (DC_IS_COMET(sc)) {
810 		switch(reg) {
811 		case MII_BMCR:
812 			phy_reg = DC_AL_BMCR;
813 			break;
814 		case MII_BMSR:
815 			phy_reg = DC_AL_BMSR;
816 			break;
817 		case MII_PHYIDR1:
818 			phy_reg = DC_AL_VENID;
819 			break;
820 		case MII_PHYIDR2:
821 			phy_reg = DC_AL_DEVID;
822 			break;
823 		case MII_ANAR:
824 			phy_reg = DC_AL_ANAR;
825 			break;
826 		case MII_ANLPAR:
827 			phy_reg = DC_AL_LPAR;
828 			break;
829 		case MII_ANER:
830 			phy_reg = DC_AL_ANER;
831 			break;
832 		default:
833 			if_printf(&sc->arpcom.ac_if,
834 				  "phy_read: bad phy register %x\n", reg);
835 			return(0);
836 			break;
837 		}
838 
839 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
840 
841 		if (rval == 0xFFFF)
842 			return(0);
843 		return(rval);
844 	}
845 
846 	frame.mii_phyaddr = phy;
847 	frame.mii_regaddr = reg;
848 	if (sc->dc_type == DC_TYPE_98713) {
849 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
850 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
851 	}
852 	dc_mii_readreg(sc, &frame);
853 	if (sc->dc_type == DC_TYPE_98713)
854 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
855 
856 	return(frame.mii_data);
857 }
858 
859 static int
860 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
861 {
862 	struct dc_softc		*sc;
863 	struct dc_mii_frame	frame;
864 	int			i, phy_reg = 0;
865 
866 	sc = device_get_softc(dev);
867 	bzero((char *)&frame, sizeof(frame));
868 
869 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
870 		return(0);
871 
872 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
873 		return(0);
874 
875 	if (DC_IS_PNIC(sc)) {
876 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
877 		    (phy << 23) | (reg << 10) | data);
878 		for (i = 0; i < DC_TIMEOUT; i++) {
879 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
880 				break;
881 		}
882 		return(0);
883 	}
884 
885 	if (DC_IS_COMET(sc)) {
886 		switch(reg) {
887 		case MII_BMCR:
888 			phy_reg = DC_AL_BMCR;
889 			break;
890 		case MII_BMSR:
891 			phy_reg = DC_AL_BMSR;
892 			break;
893 		case MII_PHYIDR1:
894 			phy_reg = DC_AL_VENID;
895 			break;
896 		case MII_PHYIDR2:
897 			phy_reg = DC_AL_DEVID;
898 			break;
899 		case MII_ANAR:
900 			phy_reg = DC_AL_ANAR;
901 			break;
902 		case MII_ANLPAR:
903 			phy_reg = DC_AL_LPAR;
904 			break;
905 		case MII_ANER:
906 			phy_reg = DC_AL_ANER;
907 			break;
908 		default:
909 			if_printf(&sc->arpcom.ac_if,
910 				  "phy_write: bad phy register %x\n", reg);
911 			return(0);
912 			break;
913 		}
914 
915 		CSR_WRITE_4(sc, phy_reg, data);
916 		return(0);
917 	}
918 
919 	frame.mii_phyaddr = phy;
920 	frame.mii_regaddr = reg;
921 	frame.mii_data = data;
922 
923 	if (sc->dc_type == DC_TYPE_98713) {
924 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
925 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
926 	}
927 	dc_mii_writereg(sc, &frame);
928 	if (sc->dc_type == DC_TYPE_98713)
929 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
930 
931 	return(0);
932 }
933 
934 static void
935 dc_miibus_statchg(device_t dev)
936 {
937 	struct dc_softc		*sc;
938 	struct mii_data		*mii;
939 	struct ifmedia		*ifm;
940 
941 	sc = device_get_softc(dev);
942 	if (DC_IS_ADMTEK(sc))
943 		return;
944 
945 	mii = device_get_softc(sc->dc_miibus);
946 	ifm = &mii->mii_media;
947 	if (DC_IS_DAVICOM(sc) &&
948 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
949 		dc_setcfg(sc, ifm->ifm_media);
950 		sc->dc_if_media = ifm->ifm_media;
951 	} else {
952 		dc_setcfg(sc, mii->mii_media_active);
953 		sc->dc_if_media = mii->mii_media_active;
954 	}
955 
956 	return;
957 }
958 
959 /*
960  * Special support for DM9102A cards with HomePNA PHYs. Note:
961  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
962  * to be impossible to talk to the management interface of the DM9801
963  * PHY (its MDIO pin is not connected to anything). Consequently,
964  * the driver has to just 'know' about the additional mode and deal
965  * with it itself. *sigh*
966  */
967 static void
968 dc_miibus_mediainit(device_t dev)
969 {
970 	struct dc_softc		*sc;
971 	struct mii_data		*mii;
972 	struct ifmedia		*ifm;
973 	int			rev;
974 
975 	rev = pci_get_revid(dev);
976 
977 	sc = device_get_softc(dev);
978 	mii = device_get_softc(sc->dc_miibus);
979 	ifm = &mii->mii_media;
980 
981 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
982 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
983 
984 	return;
985 }
986 
987 #define DC_BITS_512	9
988 #define DC_BITS_128	7
989 #define DC_BITS_64	6
990 
991 static u_int32_t
992 dc_crc_mask(struct dc_softc *sc)
993 {
994 	/*
995 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
996 	 * chips is only 128 bits wide.
997 	 */
998 	if (sc->dc_flags & DC_128BIT_HASH)
999 		return ((1 << DC_BITS_128) - 1);
1000 
1001 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1002 	if (sc->dc_flags & DC_64BIT_HASH)
1003 		return ((1 << DC_BITS_64) - 1);
1004 
1005 	return ((1 << DC_BITS_512) - 1);
1006 }
1007 
1008 /*
1009  * 21143-style RX filter setup routine. Filter programming is done by
1010  * downloading a special setup frame into the TX engine. 21143, Macronix,
1011  * PNIC, PNIC II and Davicom chips are programmed this way.
1012  *
1013  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1014  * address (our node address) and a 512-bit hash filter for multicast
1015  * frames. We also sneak the broadcast address into the hash filter since
1016  * we need that too.
1017  */
1018 void
1019 dc_setfilt_21143(struct dc_softc *sc)
1020 {
1021 	struct dc_desc		*sframe;
1022 	u_int32_t		h, crc_mask, *sp;
1023 	struct ifmultiaddr	*ifma;
1024 	struct ifnet		*ifp;
1025 	int			i;
1026 
1027 	ifp = &sc->arpcom.ac_if;
1028 
1029 	i = sc->dc_cdata.dc_tx_prod;
1030 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1031 	sc->dc_cdata.dc_tx_cnt++;
1032 	sframe = &sc->dc_ldata->dc_tx_list[i];
1033 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1034 	bzero((char *)sp, DC_SFRAME_LEN);
1035 
1036 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1037 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1038 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1039 
1040 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1041 
1042 	/* If we want promiscuous mode, set the allframes bit. */
1043 	if (ifp->if_flags & IFF_PROMISC)
1044 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1045 	else
1046 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1047 
1048 	if (ifp->if_flags & IFF_ALLMULTI)
1049 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1050 	else
1051 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1052 
1053 	crc_mask = dc_crc_mask(sc);
1054 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1055 		if (ifma->ifma_addr->sa_family != AF_LINK)
1056 			continue;
1057 		h = ether_crc32_le(
1058 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1059 			ETHER_ADDR_LEN) & crc_mask;
1060 		sp[h >> 4] |= 1 << (h & 0xF);
1061 	}
1062 
1063 	if (ifp->if_flags & IFF_BROADCAST) {
1064 		h = ether_crc32_le(ifp->if_broadcastaddr,
1065 				   ETHER_ADDR_LEN) & crc_mask;
1066 		sp[h >> 4] |= 1 << (h & 0xF);
1067 	}
1068 
1069 	/* Set our MAC address */
1070 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1071 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1072 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1073 
1074 	sframe->dc_status = DC_TXSTAT_OWN;
1075 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1076 
1077 	/*
1078 	 * The PNIC takes an exceedingly long time to process its
1079 	 * setup frame; wait 10ms after posting the setup frame
1080 	 * before proceeding, just so it has time to swallow its
1081 	 * medicine.
1082 	 */
1083 	DELAY(10000);
1084 
1085 	ifp->if_timer = 5;
1086 
1087 	return;
1088 }
1089 
1090 void
1091 dc_setfilt_admtek(struct dc_softc *sc)
1092 {
1093 	struct ifnet		*ifp;
1094 	int			h = 0;
1095 	u_int32_t		crc_mask;
1096 	u_int32_t		hashes[2] = { 0, 0 };
1097 	struct ifmultiaddr	*ifma;
1098 
1099 	ifp = &sc->arpcom.ac_if;
1100 
1101 	/* Init our MAC address */
1102 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1103 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1104 
1105 	/* If we want promiscuous mode, set the allframes bit. */
1106 	if (ifp->if_flags & IFF_PROMISC)
1107 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1108 	else
1109 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1110 
1111 	if (ifp->if_flags & IFF_ALLMULTI)
1112 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1113 	else
1114 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1115 
1116 	/* first, zot all the existing hash bits */
1117 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1118 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1119 
1120 	/*
1121 	 * If we're already in promisc or allmulti mode, we
1122 	 * don't have to bother programming the multicast filter.
1123 	 */
1124 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1125 		return;
1126 
1127 	/* now program new ones */
1128 	if (DC_IS_CENTAUR(sc))
1129 		crc_mask = dc_crc_mask(sc);
1130 	else
1131 		crc_mask = 0x3f;
1132 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1133 		if (ifma->ifma_addr->sa_family != AF_LINK)
1134 			continue;
1135 		if (DC_IS_CENTAUR(sc)) {
1136 			h = ether_crc32_le(
1137 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1138 				ETHER_ADDR_LEN) & crc_mask;
1139 		} else {
1140 			h = ether_crc32_be(
1141 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1142 				ETHER_ADDR_LEN);
1143 			h = (h >> 26) & crc_mask;
1144 		}
1145 		if (h < 32)
1146 			hashes[0] |= (1 << h);
1147 		else
1148 			hashes[1] |= (1 << (h - 32));
1149 	}
1150 
1151 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1152 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1153 
1154 	return;
1155 }
1156 
1157 void
1158 dc_setfilt_asix(struct dc_softc *sc)
1159 {
1160 	struct ifnet		*ifp;
1161 	int			h = 0;
1162 	u_int32_t		hashes[2] = { 0, 0 };
1163 	struct ifmultiaddr	*ifma;
1164 
1165 	ifp = &sc->arpcom.ac_if;
1166 
1167         /* Init our MAC address */
1168         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1169         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1170 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1171         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1172         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1173 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1174 
1175 	/* If we want promiscuous mode, set the allframes bit. */
1176 	if (ifp->if_flags & IFF_PROMISC)
1177 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1178 	else
1179 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1180 
1181 	if (ifp->if_flags & IFF_ALLMULTI)
1182 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1183 	else
1184 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1185 
1186 	/*
1187 	 * The ASIX chip has a special bit to enable reception
1188 	 * of broadcast frames.
1189 	 */
1190 	if (ifp->if_flags & IFF_BROADCAST)
1191 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1192 	else
1193 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1194 
1195 	/* first, zot all the existing hash bits */
1196 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1197 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1198 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1199 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1200 
1201 	/*
1202 	 * If we're already in promisc or allmulti mode, we
1203 	 * don't have to bother programming the multicast filter.
1204 	 */
1205 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1206 		return;
1207 
1208 	/* now program new ones */
1209 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1210 		if (ifma->ifma_addr->sa_family != AF_LINK)
1211 			continue;
1212 		h = ether_crc32_be(
1213 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1214 			ETHER_ADDR_LEN);
1215 		h = (h >> 26) & 0x3f;
1216 		if (h < 32)
1217 			hashes[0] |= (1 << h);
1218 		else
1219 			hashes[1] |= (1 << (h - 32));
1220 	}
1221 
1222 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1223 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1224 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1225 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1226 
1227 	return;
1228 }
1229 
1230 static void
1231 dc_setfilt(struct dc_softc *sc)
1232 {
1233 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1234 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1235 		dc_setfilt_21143(sc);
1236 
1237 	if (DC_IS_ASIX(sc))
1238 		dc_setfilt_asix(sc);
1239 
1240 	if (DC_IS_ADMTEK(sc))
1241 		dc_setfilt_admtek(sc);
1242 
1243 	return;
1244 }
1245 
1246 /*
1247  * In order to fiddle with the
1248  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1249  * first have to put the transmit and/or receive logic in the idle state.
1250  */
1251 static void
1252 dc_setcfg(struct dc_softc *sc, int media)
1253 {
1254 	int			i, restart = 0;
1255 	u_int32_t		isr;
1256 
1257 	if (IFM_SUBTYPE(media) == IFM_NONE)
1258 		return;
1259 
1260 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1261 		restart = 1;
1262 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1263 
1264 		for (i = 0; i < DC_TIMEOUT; i++) {
1265 			isr = CSR_READ_4(sc, DC_ISR);
1266 			if (isr & DC_ISR_TX_IDLE ||
1267 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1268 				break;
1269 			DELAY(10);
1270 		}
1271 
1272 		if (i == DC_TIMEOUT) {
1273 			if_printf(&sc->arpcom.ac_if,
1274 			    "failed to force tx and rx to idle state\n");
1275 		}
1276 	}
1277 
1278 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1279 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1280 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1281 		if (sc->dc_pmode == DC_PMODE_MII) {
1282 			int	watchdogreg;
1283 
1284 			if (DC_IS_INTEL(sc)) {
1285 			/* there's a write enable bit here that reads as 1 */
1286 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1287 				watchdogreg &= ~DC_WDOG_CTLWREN;
1288 				watchdogreg |= DC_WDOG_JABBERDIS;
1289 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1290 			} else {
1291 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1292 			}
1293 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1294 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1295 			if (sc->dc_type == DC_TYPE_98713)
1296 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1297 				    DC_NETCFG_SCRAMBLER));
1298 			if (!DC_IS_DAVICOM(sc))
1299 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1300 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1301 			if (DC_IS_INTEL(sc))
1302 				dc_apply_fixup(sc, IFM_AUTO);
1303 		} else {
1304 			if (DC_IS_PNIC(sc)) {
1305 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1306 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1307 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1308 			}
1309 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1310 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1311 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1312 			if (DC_IS_INTEL(sc))
1313 				dc_apply_fixup(sc,
1314 				    (media & IFM_GMASK) == IFM_FDX ?
1315 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1316 		}
1317 	}
1318 
1319 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1320 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1321 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1322 		if (sc->dc_pmode == DC_PMODE_MII) {
1323 			int	watchdogreg;
1324 
1325 			/* there's a write enable bit here that reads as 1 */
1326 			if (DC_IS_INTEL(sc)) {
1327 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1328 				watchdogreg &= ~DC_WDOG_CTLWREN;
1329 				watchdogreg |= DC_WDOG_JABBERDIS;
1330 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1331 			} else {
1332 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1333 			}
1334 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1335 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1336 			if (sc->dc_type == DC_TYPE_98713)
1337 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1338 			if (!DC_IS_DAVICOM(sc))
1339 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1340 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1341 			if (DC_IS_INTEL(sc))
1342 				dc_apply_fixup(sc, IFM_AUTO);
1343 		} else {
1344 			if (DC_IS_PNIC(sc)) {
1345 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1346 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1347 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1348 			}
1349 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1350 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1351 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1352 			if (DC_IS_INTEL(sc)) {
1353 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1354 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1355 				if ((media & IFM_GMASK) == IFM_FDX)
1356 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1357 				else
1358 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1359 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1360 				DC_CLRBIT(sc, DC_10BTCTRL,
1361 				    DC_TCTL_AUTONEGENBL);
1362 				dc_apply_fixup(sc,
1363 				    (media & IFM_GMASK) == IFM_FDX ?
1364 				    IFM_10_T|IFM_FDX : IFM_10_T);
1365 				DELAY(20000);
1366 			}
1367 		}
1368 	}
1369 
1370 	/*
1371 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1372 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1373 	 * on the external MII port.
1374 	 */
1375 	if (DC_IS_DAVICOM(sc)) {
1376 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1377 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1378 			sc->dc_link = 1;
1379 		} else {
1380 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1381 		}
1382 	}
1383 
1384 	if ((media & IFM_GMASK) == IFM_FDX) {
1385 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1386 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1387 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1388 	} else {
1389 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1390 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1391 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1392 	}
1393 
1394 	if (restart)
1395 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1396 
1397 	return;
1398 }
1399 
1400 static void
1401 dc_reset(struct dc_softc *sc)
1402 {
1403 	int		i;
1404 
1405 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1406 
1407 	for (i = 0; i < DC_TIMEOUT; i++) {
1408 		DELAY(10);
1409 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1410 			break;
1411 	}
1412 
1413 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1414 		DELAY(10000);
1415 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1416 		i = 0;
1417 	}
1418 
1419 	if (i == DC_TIMEOUT)
1420 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1421 
1422 	/* Wait a little while for the chip to get its brains in order. */
1423 	DELAY(1000);
1424 
1425 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1426 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1427 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1428 
1429 	/*
1430 	 * Bring the SIA out of reset. In some cases, it looks
1431 	 * like failing to unreset the SIA soon enough gets it
1432 	 * into a state where it will never come out of reset
1433 	 * until we reset the whole chip again.
1434 	 */
1435 	if (DC_IS_INTEL(sc)) {
1436 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1437 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1438 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1439 	}
1440 
1441         return;
1442 }
1443 
1444 static struct dc_type
1445 *dc_devtype(device_t dev)
1446 {
1447 	struct dc_type		*t;
1448 	u_int32_t		rev;
1449 
1450 	t = dc_devs;
1451 
1452 	while(t->dc_name != NULL) {
1453 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1454 		    (pci_get_device(dev) == t->dc_did)) {
1455 			/* Check the PCI revision */
1456 			rev = pci_get_revid(dev);
1457 			if (t->dc_did == DC_DEVICEID_98713 &&
1458 			    rev >= DC_REVISION_98713A)
1459 				t++;
1460 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1461 			    rev >= DC_REVISION_98713A)
1462 				t++;
1463 			if (t->dc_did == DC_DEVICEID_987x5 &&
1464 			    rev >= DC_REVISION_98715AEC_C)
1465 				t++;
1466 			if (t->dc_did == DC_DEVICEID_987x5 &&
1467 			    rev >= DC_REVISION_98725)
1468 				t++;
1469 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1470 			    rev >= DC_REVISION_88141)
1471 				t++;
1472 			if (t->dc_did == DC_DEVICEID_82C168 &&
1473 			    rev >= DC_REVISION_82C169)
1474 				t++;
1475 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1476 			    rev >= DC_REVISION_DM9102A)
1477 				t++;
1478 			return(t);
1479 		}
1480 		t++;
1481 	}
1482 
1483 	return(NULL);
1484 }
1485 
1486 /*
1487  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1488  * IDs against our list and return a device name if we find a match.
1489  * We do a little bit of extra work to identify the exact type of
1490  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1491  * but different revision IDs. The same is true for 98715/98715A
1492  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1493  * cases, the exact chip revision affects driver behavior.
1494  */
1495 static int
1496 dc_probe(device_t dev)
1497 {
1498 	struct dc_type		*t;
1499 
1500 	t = dc_devtype(dev);
1501 
1502 	if (t != NULL) {
1503 		device_set_desc(dev, t->dc_name);
1504 		return(0);
1505 	}
1506 
1507 	return(ENXIO);
1508 }
1509 
1510 static void
1511 dc_acpi(device_t dev)
1512 {
1513 	u_int32_t		r, cptr;
1514 
1515 	/* Find the location of the capabilities block */
1516 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1517 
1518 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1519 	if (r == 0x01) {
1520 
1521 		r = pci_read_config(dev, cptr + 4, 4);
1522 		if (r & DC_PSTATE_D3) {
1523 			u_int32_t		iobase, membase, irq;
1524 			struct dc_softc		*sc;
1525 
1526 			/* Save important PCI config data. */
1527 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1528 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1529 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1530 
1531 			sc = device_get_softc(dev);
1532 			/* Reset the power state. */
1533 			if_printf(&sc->arpcom.ac_if,
1534 				  "chip is in D%d power mode "
1535 				  "-- setting to D0\n", r & DC_PSTATE_D3);
1536 			r &= 0xFFFFFFFC;
1537 			pci_write_config(dev, cptr + 4, r, 4);
1538 
1539 			/* Restore PCI config data. */
1540 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1541 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1542 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1543 		}
1544 	}
1545 }
1546 
1547 static void
1548 dc_apply_fixup(struct dc_softc *sc, int media)
1549 {
1550 	struct dc_mediainfo	*m;
1551 	u_int8_t		*p;
1552 	int			i;
1553 	u_int32_t		reg;
1554 
1555 	m = sc->dc_mi;
1556 
1557 	while (m != NULL) {
1558 		if (m->dc_media == media)
1559 			break;
1560 		m = m->dc_next;
1561 	}
1562 
1563 	if (m == NULL)
1564 		return;
1565 
1566 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1567 		reg = (p[0] | (p[1] << 8)) << 16;
1568 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1569 	}
1570 
1571 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1572 		reg = (p[0] | (p[1] << 8)) << 16;
1573 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1574 	}
1575 
1576 	return;
1577 }
1578 
1579 static void
1580 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1581 {
1582 	struct dc_mediainfo	*m;
1583 
1584 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1585 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1586 	case DC_SIA_CODE_10BT:
1587 		m->dc_media = IFM_10_T;
1588 		break;
1589 
1590 	case DC_SIA_CODE_10BT_FDX:
1591 		m->dc_media = IFM_10_T|IFM_FDX;
1592 		break;
1593 
1594 	case DC_SIA_CODE_10B2:
1595 		m->dc_media = IFM_10_2;
1596 		break;
1597 
1598 	case DC_SIA_CODE_10B5:
1599 		m->dc_media = IFM_10_5;
1600 		break;
1601 	}
1602 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1603 		m->dc_gp_len = 2;
1604 		m->dc_gp_ptr =
1605 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1606 	} else {
1607 	m->dc_gp_len = 2;
1608 	m->dc_gp_ptr =
1609 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1610 	}
1611 
1612 	m->dc_next = sc->dc_mi;
1613 	sc->dc_mi = m;
1614 
1615 	sc->dc_pmode = DC_PMODE_SIA;
1616 
1617 	return;
1618 }
1619 
1620 static void
1621 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1622 {
1623 	struct dc_mediainfo	*m;
1624 
1625 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1626 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1627 		m->dc_media = IFM_100_TX;
1628 
1629 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1630 		m->dc_media = IFM_100_TX|IFM_FDX;
1631 
1632 	m->dc_gp_len = 2;
1633 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1634 
1635 	m->dc_next = sc->dc_mi;
1636 	sc->dc_mi = m;
1637 
1638 	sc->dc_pmode = DC_PMODE_SYM;
1639 
1640 	return;
1641 }
1642 
1643 static void
1644 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1645 {
1646 	u_int8_t		*p;
1647 	struct dc_mediainfo	*m;
1648 
1649 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1650 	/* We abuse IFM_AUTO to represent MII. */
1651 	m->dc_media = IFM_AUTO;
1652 	m->dc_gp_len = l->dc_gpr_len;
1653 
1654 	p = (u_int8_t *)l;
1655 	p += sizeof(struct dc_eblock_mii);
1656 	m->dc_gp_ptr = p;
1657 	p += 2 * l->dc_gpr_len;
1658 	m->dc_reset_len = *p;
1659 	p++;
1660 	m->dc_reset_ptr = p;
1661 
1662 	m->dc_next = sc->dc_mi;
1663 	sc->dc_mi = m;
1664 
1665 	return;
1666 }
1667 
1668 static void
1669 dc_read_srom(struct dc_softc *sc, int bits)
1670 {
1671 	int size;
1672 
1673 	size = 2 << bits;
1674 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1675 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1676 }
1677 
1678 static void
1679 dc_parse_21143_srom(struct dc_softc *sc)
1680 {
1681 	struct dc_leaf_hdr	*lhdr;
1682 	struct dc_eblock_hdr	*hdr;
1683 	int			i, loff;
1684 	char			*ptr;
1685 	int			have_mii;
1686 
1687 	have_mii = 0;
1688 	loff = sc->dc_srom[27];
1689 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1690 
1691 	ptr = (char *)lhdr;
1692 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1693 	/*
1694 	 * Look if we got a MII media block.
1695 	 */
1696 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1697 		hdr = (struct dc_eblock_hdr *)ptr;
1698 		if (hdr->dc_type == DC_EBLOCK_MII)
1699 		    have_mii++;
1700 
1701 		ptr += (hdr->dc_len & 0x7F);
1702 		ptr++;
1703 	}
1704 
1705 	/*
1706 	 * Do the same thing again. Only use SIA and SYM media
1707 	 * blocks if no MII media block is available.
1708 	 */
1709 	ptr = (char *)lhdr;
1710 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1711 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1712 		hdr = (struct dc_eblock_hdr *)ptr;
1713 		switch(hdr->dc_type) {
1714 		case DC_EBLOCK_MII:
1715 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1716 			break;
1717 		case DC_EBLOCK_SIA:
1718 			if (! have_mii)
1719 				dc_decode_leaf_sia(sc,
1720 				    (struct dc_eblock_sia *)hdr);
1721 			break;
1722 		case DC_EBLOCK_SYM:
1723 			if (! have_mii)
1724 				dc_decode_leaf_sym(sc,
1725 				    (struct dc_eblock_sym *)hdr);
1726 			break;
1727 		default:
1728 			/* Don't care. Yet. */
1729 			break;
1730 		}
1731 		ptr += (hdr->dc_len & 0x7F);
1732 		ptr++;
1733 	}
1734 
1735 	return;
1736 }
1737 
1738 /*
1739  * Attach the interface. Allocate softc structures, do ifmedia
1740  * setup and ethernet/BPF attach.
1741  */
1742 static int
1743 dc_attach(device_t dev)
1744 {
1745 	int			tmp = 0;
1746 	u_char			eaddr[ETHER_ADDR_LEN];
1747 	u_int32_t		command;
1748 	struct dc_softc		*sc;
1749 	struct ifnet		*ifp;
1750 	u_int32_t		revision;
1751 	int			error = 0, rid, mac_offset;
1752 
1753 	sc = device_get_softc(dev);
1754 	callout_init(&sc->dc_stat_timer);
1755 
1756 	ifp = &sc->arpcom.ac_if;
1757 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1758 
1759 	/*
1760 	 * Handle power management nonsense.
1761 	 */
1762 	dc_acpi(dev);
1763 
1764 	/*
1765 	 * Map control/status registers.
1766 	 */
1767 	pci_enable_busmaster(dev);
1768 
1769 	rid = DC_RID;
1770 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1771 
1772 	if (sc->dc_res == NULL) {
1773 		device_printf(dev, "couldn't map ports/memory\n");
1774 		error = ENXIO;
1775 		goto fail;
1776 	}
1777 
1778 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1779 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1780 
1781 	/* Allocate interrupt */
1782 	rid = 0;
1783 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1784 	    RF_SHAREABLE | RF_ACTIVE);
1785 
1786 	if (sc->dc_irq == NULL) {
1787 		device_printf(dev, "couldn't map interrupt\n");
1788 		error = ENXIO;
1789 		goto fail;
1790 	}
1791 
1792 	/* Need this info to decide on a chip type. */
1793 	sc->dc_info = dc_devtype(dev);
1794 	revision = pci_get_revid(dev);
1795 
1796 	/* Get the eeprom width, but PNIC has diff eeprom */
1797 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1798 		dc_eeprom_width(sc);
1799 
1800 	switch(sc->dc_info->dc_did) {
1801 	case DC_DEVICEID_21143:
1802 		sc->dc_type = DC_TYPE_21143;
1803 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1804 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1805 		/* Save EEPROM contents so we can parse them later. */
1806 		dc_read_srom(sc, sc->dc_romwidth);
1807 		break;
1808 	case DC_DEVICEID_DM9009:
1809 	case DC_DEVICEID_DM9100:
1810 	case DC_DEVICEID_DM9102:
1811 		sc->dc_type = DC_TYPE_DM9102;
1812 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1813 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1814 		sc->dc_flags |= DC_TX_ALIGN;
1815 		sc->dc_pmode = DC_PMODE_MII;
1816 		/* Increase the latency timer value. */
1817 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1818 		command &= 0xFFFF00FF;
1819 		command |= 0x00008000;
1820 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1821 		break;
1822 	case DC_DEVICEID_AL981:
1823 		sc->dc_type = DC_TYPE_AL981;
1824 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1825 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1826 		sc->dc_pmode = DC_PMODE_MII;
1827 		dc_read_srom(sc, sc->dc_romwidth);
1828 		break;
1829 	case DC_DEVICEID_AN985:
1830 	case DC_DEVICEID_EN2242:
1831 	case DC_DEVICEID_3CSOHOB:
1832 		sc->dc_type = DC_TYPE_AN985;
1833 		sc->dc_flags |= DC_64BIT_HASH;
1834 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1835 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1836 		sc->dc_pmode = DC_PMODE_MII;
1837 
1838 		break;
1839 	case DC_DEVICEID_98713:
1840 	case DC_DEVICEID_98713_CP:
1841 		if (revision < DC_REVISION_98713A) {
1842 			sc->dc_type = DC_TYPE_98713;
1843 		}
1844 		if (revision >= DC_REVISION_98713A) {
1845 			sc->dc_type = DC_TYPE_98713A;
1846 			sc->dc_flags |= DC_21143_NWAY;
1847 		}
1848 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1849 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1850 		break;
1851 	case DC_DEVICEID_987x5:
1852 	case DC_DEVICEID_EN1217:
1853 		/*
1854 		 * Macronix MX98715AEC-C/D/E parts have only a
1855 		 * 128-bit hash table. We need to deal with these
1856 		 * in the same manner as the PNIC II so that we
1857 		 * get the right number of bits out of the
1858 		 * CRC routine.
1859 		 */
1860 		if (revision >= DC_REVISION_98715AEC_C &&
1861 		    revision < DC_REVISION_98725)
1862 			sc->dc_flags |= DC_128BIT_HASH;
1863 		sc->dc_type = DC_TYPE_987x5;
1864 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1865 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1866 		break;
1867 	case DC_DEVICEID_98727:
1868 		sc->dc_type = DC_TYPE_987x5;
1869 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1870 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1871 		break;
1872 	case DC_DEVICEID_82C115:
1873 		sc->dc_type = DC_TYPE_PNICII;
1874 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1875 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1876 		break;
1877 	case DC_DEVICEID_82C168:
1878 		sc->dc_type = DC_TYPE_PNIC;
1879 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1880 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1881 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1882 		if (revision < DC_REVISION_82C169)
1883 			sc->dc_pmode = DC_PMODE_SYM;
1884 		break;
1885 	case DC_DEVICEID_AX88140A:
1886 		sc->dc_type = DC_TYPE_ASIX;
1887 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1888 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1889 		sc->dc_pmode = DC_PMODE_MII;
1890 		break;
1891 	case DC_DEVICEID_RS7112:
1892 		sc->dc_type = DC_TYPE_CONEXANT;
1893 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1894 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1895 		sc->dc_pmode = DC_PMODE_MII;
1896 		dc_read_srom(sc, sc->dc_romwidth);
1897 		break;
1898 	default:
1899 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
1900 		break;
1901 	}
1902 
1903 	/* Save the cache line size. */
1904 	if (DC_IS_DAVICOM(sc))
1905 		sc->dc_cachesize = 0;
1906 	else
1907 		sc->dc_cachesize = pci_read_config(dev,
1908 		    DC_PCI_CFLT, 4) & 0xFF;
1909 
1910 	/* Reset the adapter. */
1911 	dc_reset(sc);
1912 
1913 	/* Take 21143 out of snooze mode */
1914 	if (DC_IS_INTEL(sc)) {
1915 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1916 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1917 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1918 	}
1919 
1920 	/*
1921 	 * Try to learn something about the supported media.
1922 	 * We know that ASIX and ADMtek and Davicom devices
1923 	 * will *always* be using MII media, so that's a no-brainer.
1924 	 * The tricky ones are the Macronix/PNIC II and the
1925 	 * Intel 21143.
1926 	 */
1927 	if (DC_IS_INTEL(sc))
1928 		dc_parse_21143_srom(sc);
1929 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1930 		if (sc->dc_type == DC_TYPE_98713)
1931 			sc->dc_pmode = DC_PMODE_MII;
1932 		else
1933 			sc->dc_pmode = DC_PMODE_SYM;
1934 	} else if (!sc->dc_pmode)
1935 		sc->dc_pmode = DC_PMODE_MII;
1936 
1937 	/*
1938 	 * Get station address from the EEPROM.
1939 	 */
1940 	switch(sc->dc_type) {
1941 	case DC_TYPE_98713:
1942 	case DC_TYPE_98713A:
1943 	case DC_TYPE_987x5:
1944 	case DC_TYPE_PNICII:
1945 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1946 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1947 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1948 		break;
1949 	case DC_TYPE_PNIC:
1950 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1951 		break;
1952 	case DC_TYPE_DM9102:
1953 	case DC_TYPE_21143:
1954 	case DC_TYPE_ASIX:
1955 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1956 		break;
1957 	case DC_TYPE_AL981:
1958 	case DC_TYPE_AN985:
1959 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
1960 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
1961 		break;
1962 	case DC_TYPE_CONEXANT:
1963 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
1964 		break;
1965 	default:
1966 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1967 		break;
1968 	}
1969 
1970 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1971 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1972 
1973 	if (sc->dc_ldata == NULL) {
1974 		device_printf(dev, "no memory for list buffers!\n");
1975 		error = ENXIO;
1976 		goto fail;
1977 	}
1978 
1979 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
1980 
1981 	ifp->if_softc = sc;
1982 	ifp->if_mtu = ETHERMTU;
1983 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1984 	ifp->if_ioctl = dc_ioctl;
1985 	ifp->if_start = dc_start;
1986 #ifdef DEVICE_POLLING
1987 	ifp->if_poll = dc_poll;
1988 #endif
1989 	ifp->if_watchdog = dc_watchdog;
1990 	ifp->if_init = dc_init;
1991 	ifp->if_baudrate = 10000000;
1992 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
1993 	ifq_set_ready(&ifp->if_snd);
1994 
1995 	/*
1996 	 * Do MII setup. If this is a 21143, check for a PHY on the
1997 	 * MII bus after applying any necessary fixups to twiddle the
1998 	 * GPIO bits. If we don't end up finding a PHY, restore the
1999 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2000 	 * driver instead.
2001 	 */
2002 	if (DC_IS_INTEL(sc)) {
2003 		dc_apply_fixup(sc, IFM_AUTO);
2004 		tmp = sc->dc_pmode;
2005 		sc->dc_pmode = DC_PMODE_MII;
2006 	}
2007 
2008 	error = mii_phy_probe(dev, &sc->dc_miibus,
2009 	    dc_ifmedia_upd, dc_ifmedia_sts);
2010 
2011 	if (error && DC_IS_INTEL(sc)) {
2012 		sc->dc_pmode = tmp;
2013 		if (sc->dc_pmode != DC_PMODE_SIA)
2014 			sc->dc_pmode = DC_PMODE_SYM;
2015 		sc->dc_flags |= DC_21143_NWAY;
2016 		mii_phy_probe(dev, &sc->dc_miibus,
2017 		    dc_ifmedia_upd, dc_ifmedia_sts);
2018 		/*
2019 		 * For non-MII cards, we need to have the 21143
2020 		 * drive the LEDs. Except there are some systems
2021 		 * like the NEC VersaPro NoteBook PC which have no
2022 		 * LEDs, and twiddling these bits has adverse effects
2023 		 * on them. (I.e. you suddenly can't get a link.)
2024 		 */
2025 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2026 			sc->dc_flags |= DC_TULIP_LEDS;
2027 		error = 0;
2028 	}
2029 
2030 	if (error) {
2031 		device_printf(dev, "MII without any PHY!\n");
2032 		error = ENXIO;
2033 		goto fail;
2034 	}
2035 
2036 	/*
2037 	 * Call MI attach routine.
2038 	 */
2039 	ether_ifattach(ifp, eaddr);
2040 
2041 	if (DC_IS_ADMTEK(sc)) {
2042 		/*
2043 		 * Set automatic TX underrun recovery for the ADMtek chips
2044 		 */
2045 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2046 	}
2047 
2048 	/*
2049 	 * Tell the upper layer(s) we support long frames.
2050 	 */
2051 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2052 
2053 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
2054 			       dc_intr, sc, &sc->dc_intrhand, NULL);
2055 	if (error) {
2056 		ether_ifdetach(ifp);
2057 		device_printf(dev, "couldn't set up irq\n");
2058 		goto fail;
2059 	}
2060 
2061 	return(0);
2062 
2063 fail:
2064 	dc_detach(dev);
2065 	return(error);
2066 }
2067 
2068 static int
2069 dc_detach(device_t dev)
2070 {
2071 	struct dc_softc *sc = device_get_softc(dev);
2072 	struct ifnet *ifp = &sc->arpcom.ac_if;
2073 	struct dc_mediainfo *m;
2074 
2075 	crit_enter();
2076 
2077 	if (device_is_attached(dev)) {
2078 		dc_stop(sc);
2079 		ether_ifdetach(ifp);
2080 	}
2081 
2082 	if (sc->dc_miibus)
2083 		device_delete_child(dev, sc->dc_miibus);
2084 	bus_generic_detach(dev);
2085 
2086 	if (sc->dc_intrhand)
2087 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2088 
2089 	crit_exit();
2090 
2091 	if (sc->dc_irq)
2092 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2093 	if (sc->dc_res)
2094 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2095 
2096 	if (sc->dc_ldata)
2097 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2098 	if (sc->dc_pnic_rx_buf != NULL)
2099 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2100 
2101 	while(sc->dc_mi != NULL) {
2102 		m = sc->dc_mi->dc_next;
2103 		free(sc->dc_mi, M_DEVBUF);
2104 		sc->dc_mi = m;
2105 	}
2106 
2107 	if (sc->dc_srom)
2108 		free(sc->dc_srom, M_DEVBUF);
2109 
2110 	return(0);
2111 }
2112 
2113 /*
2114  * Initialize the transmit descriptors.
2115  */
2116 static int
2117 dc_list_tx_init(struct dc_softc *sc)
2118 {
2119 	struct dc_chain_data	*cd;
2120 	struct dc_list_data	*ld;
2121 	int			i;
2122 
2123 	cd = &sc->dc_cdata;
2124 	ld = sc->dc_ldata;
2125 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2126 		if (i == (DC_TX_LIST_CNT - 1)) {
2127 			ld->dc_tx_list[i].dc_next =
2128 			    vtophys(&ld->dc_tx_list[0]);
2129 		} else {
2130 			ld->dc_tx_list[i].dc_next =
2131 			    vtophys(&ld->dc_tx_list[i + 1]);
2132 		}
2133 		cd->dc_tx_chain[i] = NULL;
2134 		ld->dc_tx_list[i].dc_data = 0;
2135 		ld->dc_tx_list[i].dc_ctl = 0;
2136 	}
2137 
2138 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2139 
2140 	return(0);
2141 }
2142 
2143 
2144 /*
2145  * Initialize the RX descriptors and allocate mbufs for them. Note that
2146  * we arrange the descriptors in a closed ring, so that the last descriptor
2147  * points back to the first.
2148  */
2149 static int
2150 dc_list_rx_init(struct dc_softc *sc)
2151 {
2152 	struct dc_chain_data	*cd;
2153 	struct dc_list_data	*ld;
2154 	int			i;
2155 
2156 	cd = &sc->dc_cdata;
2157 	ld = sc->dc_ldata;
2158 
2159 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2160 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2161 			return(ENOBUFS);
2162 		if (i == (DC_RX_LIST_CNT - 1)) {
2163 			ld->dc_rx_list[i].dc_next =
2164 			    vtophys(&ld->dc_rx_list[0]);
2165 		} else {
2166 			ld->dc_rx_list[i].dc_next =
2167 			    vtophys(&ld->dc_rx_list[i + 1]);
2168 		}
2169 	}
2170 
2171 	cd->dc_rx_prod = 0;
2172 
2173 	return(0);
2174 }
2175 
2176 /*
2177  * Initialize an RX descriptor and attach an MBUF cluster.
2178  */
2179 static int
2180 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2181 {
2182 	struct mbuf		*m_new = NULL;
2183 	struct dc_desc		*c;
2184 
2185 	c = &sc->dc_ldata->dc_rx_list[i];
2186 
2187 	if (m == NULL) {
2188 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2189 		if (m_new == NULL)
2190 			return (ENOBUFS);
2191 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2192 	} else {
2193 		m_new = m;
2194 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2195 		m_new->m_data = m_new->m_ext.ext_buf;
2196 	}
2197 
2198 	m_adj(m_new, sizeof(u_int64_t));
2199 
2200 	/*
2201 	 * If this is a PNIC chip, zero the buffer. This is part
2202 	 * of the workaround for the receive bug in the 82c168 and
2203 	 * 82c169 chips.
2204 	 */
2205 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2206 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2207 
2208 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2209 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2210 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2211 	c->dc_status = DC_RXSTAT_OWN;
2212 
2213 	return(0);
2214 }
2215 
2216 /*
2217  * Grrrrr.
2218  * The PNIC chip has a terrible bug in it that manifests itself during
2219  * periods of heavy activity. The exact mode of failure if difficult to
2220  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2221  * will happen on slow machines. The bug is that sometimes instead of
2222  * uploading one complete frame during reception, it uploads what looks
2223  * like the entire contents of its FIFO memory. The frame we want is at
2224  * the end of the whole mess, but we never know exactly how much data has
2225  * been uploaded, so salvaging the frame is hard.
2226  *
2227  * There is only one way to do it reliably, and it's disgusting.
2228  * Here's what we know:
2229  *
2230  * - We know there will always be somewhere between one and three extra
2231  *   descriptors uploaded.
2232  *
2233  * - We know the desired received frame will always be at the end of the
2234  *   total data upload.
2235  *
2236  * - We know the size of the desired received frame because it will be
2237  *   provided in the length field of the status word in the last descriptor.
2238  *
2239  * Here's what we do:
2240  *
2241  * - When we allocate buffers for the receive ring, we bzero() them.
2242  *   This means that we know that the buffer contents should be all
2243  *   zeros, except for data uploaded by the chip.
2244  *
2245  * - We also force the PNIC chip to upload frames that include the
2246  *   ethernet CRC at the end.
2247  *
2248  * - We gather all of the bogus frame data into a single buffer.
2249  *
2250  * - We then position a pointer at the end of this buffer and scan
2251  *   backwards until we encounter the first non-zero byte of data.
2252  *   This is the end of the received frame. We know we will encounter
2253  *   some data at the end of the frame because the CRC will always be
2254  *   there, so even if the sender transmits a packet of all zeros,
2255  *   we won't be fooled.
2256  *
2257  * - We know the size of the actual received frame, so we subtract
2258  *   that value from the current pointer location. This brings us
2259  *   to the start of the actual received packet.
2260  *
2261  * - We copy this into an mbuf and pass it on, along with the actual
2262  *   frame length.
2263  *
2264  * The performance hit is tremendous, but it beats dropping frames all
2265  * the time.
2266  */
2267 
2268 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2269 static void
2270 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2271 {
2272 	struct dc_desc		*cur_rx;
2273 	struct dc_desc		*c = NULL;
2274 	struct mbuf		*m = NULL;
2275 	unsigned char		*ptr;
2276 	int			i, total_len;
2277 	u_int32_t		rxstat = 0;
2278 
2279 	i = sc->dc_pnic_rx_bug_save;
2280 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2281 	ptr = sc->dc_pnic_rx_buf;
2282 	bzero(ptr, DC_RXLEN * 5);
2283 
2284 	/* Copy all the bytes from the bogus buffers. */
2285 	while (1) {
2286 		c = &sc->dc_ldata->dc_rx_list[i];
2287 		rxstat = c->dc_status;
2288 		m = sc->dc_cdata.dc_rx_chain[i];
2289 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2290 		ptr += DC_RXLEN;
2291 		/* If this is the last buffer, break out. */
2292 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2293 			break;
2294 		dc_newbuf(sc, i, m);
2295 		DC_INC(i, DC_RX_LIST_CNT);
2296 	}
2297 
2298 	/* Find the length of the actual receive frame. */
2299 	total_len = DC_RXBYTES(rxstat);
2300 
2301 	/* Scan backwards until we hit a non-zero byte. */
2302 	while(*ptr == 0x00)
2303 		ptr--;
2304 
2305 	/* Round off. */
2306 	if ((uintptr_t)(ptr) & 0x3)
2307 		ptr -= 1;
2308 
2309 	/* Now find the start of the frame. */
2310 	ptr -= total_len;
2311 	if (ptr < sc->dc_pnic_rx_buf)
2312 		ptr = sc->dc_pnic_rx_buf;
2313 
2314 	/*
2315 	 * Now copy the salvaged frame to the last mbuf and fake up
2316 	 * the status word to make it look like a successful
2317  	 * frame reception.
2318 	 */
2319 	dc_newbuf(sc, i, m);
2320 	bcopy(ptr, mtod(m, char *), total_len);
2321 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2322 
2323 	return;
2324 }
2325 
2326 /*
2327  * This routine searches the RX ring for dirty descriptors in the
2328  * event that the rxeof routine falls out of sync with the chip's
2329  * current descriptor pointer. This may happen sometimes as a result
2330  * of a "no RX buffer available" condition that happens when the chip
2331  * consumes all of the RX buffers before the driver has a chance to
2332  * process the RX ring. This routine may need to be called more than
2333  * once to bring the driver back in sync with the chip, however we
2334  * should still be getting RX DONE interrupts to drive the search
2335  * for new packets in the RX ring, so we should catch up eventually.
2336  */
2337 static int
2338 dc_rx_resync(struct dc_softc *sc)
2339 {
2340 	int			i, pos;
2341 	struct dc_desc		*cur_rx;
2342 
2343 	pos = sc->dc_cdata.dc_rx_prod;
2344 
2345 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2346 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2347 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2348 			break;
2349 		DC_INC(pos, DC_RX_LIST_CNT);
2350 	}
2351 
2352 	/* If the ring really is empty, then just return. */
2353 	if (i == DC_RX_LIST_CNT)
2354 		return(0);
2355 
2356 	/* We've fallen behing the chip: catch it. */
2357 	sc->dc_cdata.dc_rx_prod = pos;
2358 
2359 	return(EAGAIN);
2360 }
2361 
2362 /*
2363  * A frame has been uploaded: pass the resulting mbuf chain up to
2364  * the higher level protocols.
2365  */
2366 static void
2367 dc_rxeof(struct dc_softc *sc)
2368 {
2369         struct mbuf		*m;
2370         struct ifnet		*ifp;
2371 	struct dc_desc		*cur_rx;
2372 	int			i, total_len = 0;
2373 	u_int32_t		rxstat;
2374 
2375 	ifp = &sc->arpcom.ac_if;
2376 	i = sc->dc_cdata.dc_rx_prod;
2377 
2378 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2379 
2380 #ifdef DEVICE_POLLING
2381 		if (ifp->if_flags & IFF_POLLING) {
2382 			if (sc->rxcycles <= 0)
2383 				break;
2384 			sc->rxcycles--;
2385 		}
2386 #endif /* DEVICE_POLLING */
2387 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2388 		rxstat = cur_rx->dc_status;
2389 		m = sc->dc_cdata.dc_rx_chain[i];
2390 		total_len = DC_RXBYTES(rxstat);
2391 
2392 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2393 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2394 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2395 					sc->dc_pnic_rx_bug_save = i;
2396 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2397 					DC_INC(i, DC_RX_LIST_CNT);
2398 					continue;
2399 				}
2400 				dc_pnic_rx_bug_war(sc, i);
2401 				rxstat = cur_rx->dc_status;
2402 				total_len = DC_RXBYTES(rxstat);
2403 			}
2404 		}
2405 
2406 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2407 
2408 		/*
2409 		 * If an error occurs, update stats, clear the
2410 		 * status word and leave the mbuf cluster in place:
2411 		 * it should simply get re-used next time this descriptor
2412 		 * comes up in the ring.  However, don't report long
2413 		 * frames as errors since they could be vlans
2414 		 */
2415 		if ((rxstat & DC_RXSTAT_RXERR)){
2416 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2417 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2418 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2419 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2420 				ifp->if_ierrors++;
2421 				if (rxstat & DC_RXSTAT_COLLSEEN)
2422 					ifp->if_collisions++;
2423 				dc_newbuf(sc, i, m);
2424 				if (rxstat & DC_RXSTAT_CRCERR) {
2425 					DC_INC(i, DC_RX_LIST_CNT);
2426 					continue;
2427 				} else {
2428 					dc_init(sc);
2429 					return;
2430 				}
2431 			}
2432 		}
2433 
2434 		/* No errors; receive the packet. */
2435 		total_len -= ETHER_CRC_LEN;
2436 
2437 #ifdef __i386__
2438 		/*
2439 		 * On the x86 we do not have alignment problems, so try to
2440 		 * allocate a new buffer for the receive ring, and pass up
2441 		 * the one where the packet is already, saving the expensive
2442 		 * copy done in m_devget().
2443 		 * If we are on an architecture with alignment problems, or
2444 		 * if the allocation fails, then use m_devget and leave the
2445 		 * existing buffer in the receive ring.
2446 		 */
2447 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2448 			m->m_pkthdr.rcvif = ifp;
2449 			m->m_pkthdr.len = m->m_len = total_len;
2450 			DC_INC(i, DC_RX_LIST_CNT);
2451 		} else
2452 #endif
2453 		{
2454 			struct mbuf *m0;
2455 
2456 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2457 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2458 			dc_newbuf(sc, i, m);
2459 			DC_INC(i, DC_RX_LIST_CNT);
2460 			if (m0 == NULL) {
2461 				ifp->if_ierrors++;
2462 				continue;
2463 			}
2464 			m_adj(m0, ETHER_ALIGN);
2465 			m = m0;
2466 		}
2467 
2468 		ifp->if_ipackets++;
2469 		(*ifp->if_input)(ifp, m);
2470 	}
2471 
2472 	sc->dc_cdata.dc_rx_prod = i;
2473 }
2474 
2475 /*
2476  * A frame was downloaded to the chip. It's safe for us to clean up
2477  * the list buffers.
2478  */
2479 
2480 static void
2481 dc_txeof(struct dc_softc *sc)
2482 {
2483 	struct dc_desc		*cur_tx = NULL;
2484 	struct ifnet		*ifp;
2485 	int			idx;
2486 
2487 	ifp = &sc->arpcom.ac_if;
2488 
2489 	/*
2490 	 * Go through our tx list and free mbufs for those
2491 	 * frames that have been transmitted.
2492 	 */
2493 	idx = sc->dc_cdata.dc_tx_cons;
2494 	while(idx != sc->dc_cdata.dc_tx_prod) {
2495 		u_int32_t		txstat;
2496 
2497 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2498 		txstat = cur_tx->dc_status;
2499 
2500 		if (txstat & DC_TXSTAT_OWN)
2501 			break;
2502 
2503 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2504 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2505 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2506 				/*
2507 				 * Yes, the PNIC is so brain damaged
2508 				 * that it will sometimes generate a TX
2509 				 * underrun error while DMAing the RX
2510 				 * filter setup frame. If we detect this,
2511 				 * we have to send the setup frame again,
2512 				 * or else the filter won't be programmed
2513 				 * correctly.
2514 				 */
2515 				if (DC_IS_PNIC(sc)) {
2516 					if (txstat & DC_TXSTAT_ERRSUM)
2517 						dc_setfilt(sc);
2518 				}
2519 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2520 			}
2521 			sc->dc_cdata.dc_tx_cnt--;
2522 			DC_INC(idx, DC_TX_LIST_CNT);
2523 			continue;
2524 		}
2525 
2526 		if (DC_IS_CONEXANT(sc)) {
2527 			/*
2528 			 * For some reason Conexant chips like
2529 			 * setting the CARRLOST flag even when
2530 			 * the carrier is there. In CURRENT we
2531 			 * have the same problem for Xircom
2532 			 * cards !
2533 			 */
2534 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2535 			    sc->dc_pmode == DC_PMODE_MII &&
2536 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2537 			    DC_TXSTAT_NOCARRIER)))
2538 				txstat &= ~DC_TXSTAT_ERRSUM;
2539 		} else {
2540 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2541 			    sc->dc_pmode == DC_PMODE_MII &&
2542 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2543 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2544 				txstat &= ~DC_TXSTAT_ERRSUM;
2545 		}
2546 
2547 		if (txstat & DC_TXSTAT_ERRSUM) {
2548 			ifp->if_oerrors++;
2549 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2550 				ifp->if_collisions++;
2551 			if (txstat & DC_TXSTAT_LATECOLL)
2552 				ifp->if_collisions++;
2553 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2554 				dc_init(sc);
2555 				return;
2556 			}
2557 		}
2558 
2559 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2560 
2561 		ifp->if_opackets++;
2562 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2563 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2564 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2565 		}
2566 
2567 		sc->dc_cdata.dc_tx_cnt--;
2568 		DC_INC(idx, DC_TX_LIST_CNT);
2569 	}
2570 
2571 	if (idx != sc->dc_cdata.dc_tx_cons) {
2572 	    	/* some buffers have been freed */
2573 		sc->dc_cdata.dc_tx_cons = idx;
2574 		ifp->if_flags &= ~IFF_OACTIVE;
2575 	}
2576 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2577 
2578 	return;
2579 }
2580 
2581 static void
2582 dc_tick(void *xsc)
2583 {
2584 	struct dc_softc *sc = xsc;
2585 	struct ifnet *ifp = &sc->arpcom.ac_if;
2586 	struct mii_data *mii;
2587 	u_int32_t r;
2588 
2589 	crit_enter();
2590 
2591 	mii = device_get_softc(sc->dc_miibus);
2592 
2593 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2594 		if (sc->dc_flags & DC_21143_NWAY) {
2595 			r = CSR_READ_4(sc, DC_10BTSTAT);
2596 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2597 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2598 				sc->dc_link = 0;
2599 				mii_mediachg(mii);
2600 			}
2601 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2602 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2603 				sc->dc_link = 0;
2604 				mii_mediachg(mii);
2605 			}
2606 			if (sc->dc_link == 0)
2607 				mii_tick(mii);
2608 		} else {
2609 			r = CSR_READ_4(sc, DC_ISR);
2610 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2611 			    sc->dc_cdata.dc_tx_cnt == 0)
2612 				mii_tick(mii);
2613 				if (!(mii->mii_media_status & IFM_ACTIVE))
2614 					sc->dc_link = 0;
2615 		}
2616 	} else
2617 		mii_tick(mii);
2618 
2619 	/*
2620 	 * When the init routine completes, we expect to be able to send
2621 	 * packets right away, and in fact the network code will send a
2622 	 * gratuitous ARP the moment the init routine marks the interface
2623 	 * as running. However, even though the MAC may have been initialized,
2624 	 * there may be a delay of a few seconds before the PHY completes
2625 	 * autonegotiation and the link is brought up. Any transmissions
2626 	 * made during that delay will be lost. Dealing with this is tricky:
2627 	 * we can't just pause in the init routine while waiting for the
2628 	 * PHY to come ready since that would bring the whole system to
2629 	 * a screeching halt for several seconds.
2630 	 *
2631 	 * What we do here is prevent the TX start routine from sending
2632 	 * any packets until a link has been established. After the
2633 	 * interface has been initialized, the tick routine will poll
2634 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2635 	 * that time, packets will stay in the send queue, and once the
2636 	 * link comes up, they will be flushed out to the wire.
2637 	 */
2638 	if (!sc->dc_link) {
2639 		mii_pollstat(mii);
2640 		if (mii->mii_media_status & IFM_ACTIVE &&
2641 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2642 			sc->dc_link++;
2643 			if (!ifq_is_empty(&ifp->if_snd))
2644 				dc_start(ifp);
2645 		}
2646 	}
2647 
2648 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2649 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2650 	else
2651 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2652 
2653 	crit_exit();
2654 }
2655 
2656 /*
2657  * A transmit underrun has occurred.  Back off the transmit threshold,
2658  * or switch to store and forward mode if we have to.
2659  */
2660 static void
2661 dc_tx_underrun(struct dc_softc *sc)
2662 {
2663 	u_int32_t		isr;
2664 	int			i;
2665 
2666 	if (DC_IS_DAVICOM(sc))
2667 		dc_init(sc);
2668 
2669 	if (DC_IS_INTEL(sc)) {
2670 		/*
2671 		 * The real 21143 requires that the transmitter be idle
2672 		 * in order to change the transmit threshold or store
2673 		 * and forward state.
2674 		 */
2675 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2676 
2677 		for (i = 0; i < DC_TIMEOUT; i++) {
2678 			isr = CSR_READ_4(sc, DC_ISR);
2679 			if (isr & DC_ISR_TX_IDLE)
2680 				break;
2681 			DELAY(10);
2682 		}
2683 		if (i == DC_TIMEOUT) {
2684 			if_printf(&sc->arpcom.ac_if,
2685 				  "failed to force tx to idle state\n");
2686 			dc_init(sc);
2687 		}
2688 	}
2689 
2690 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2691 	sc->dc_txthresh += DC_TXTHRESH_INC;
2692 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2693 		printf("using store and forward mode\n");
2694 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2695 	} else {
2696 		printf("increasing TX threshold\n");
2697 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2698 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2699 	}
2700 
2701 	if (DC_IS_INTEL(sc))
2702 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2703 
2704 	return;
2705 }
2706 
2707 #ifdef DEVICE_POLLING
2708 
2709 static void
2710 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2711 {
2712 	struct	dc_softc *sc = ifp->if_softc;
2713 	u_int32_t status;
2714 
2715 	switch(cmd) {
2716 	case POLL_REGISTER:
2717 		/* Disable interrupts */
2718 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2719 		break;
2720 	case POLL_DEREGISTER:
2721 		/* Re-enable interrupts. */
2722 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2723 		break;
2724 	case POLL_ONLY:
2725 		sc->rxcycles = count;
2726 		dc_rxeof(sc);
2727 		dc_txeof(sc);
2728 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2729 			dc_start(ifp);
2730 		break;
2731 	case POLL_AND_CHECK_STATUS:
2732 		sc->rxcycles = count;
2733 		dc_rxeof(sc);
2734 		dc_txeof(sc);
2735 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2736 			dc_start(ifp);
2737 		status = CSR_READ_4(sc, DC_ISR);
2738 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2739 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2740 			DC_ISR_BUS_ERR);
2741 		if (!status)
2742 			break;
2743 		/* ack what we have */
2744 		CSR_WRITE_4(sc, DC_ISR, status);
2745 
2746 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2747 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2748 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2749 
2750 			if (dc_rx_resync(sc))
2751 				dc_rxeof(sc);
2752 		}
2753 		/* restart transmit unit if necessary */
2754 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2755 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2756 
2757 		if (status & DC_ISR_TX_UNDERRUN)
2758 			dc_tx_underrun(sc);
2759 
2760 		if (status & DC_ISR_BUS_ERR) {
2761 			if_printf(ifp, "dc_poll: bus error\n");
2762 			dc_reset(sc);
2763 			dc_init(sc);
2764 		}
2765 		break;
2766 	}
2767 }
2768 #endif /* DEVICE_POLLING */
2769 
2770 static void
2771 dc_intr(void *arg)
2772 {
2773 	struct dc_softc		*sc;
2774 	struct ifnet		*ifp;
2775 	u_int32_t		status;
2776 
2777 	sc = arg;
2778 
2779 	if (sc->suspended) {
2780 		return;
2781 	}
2782 
2783 	ifp = &sc->arpcom.ac_if;
2784 
2785 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2786 		return ;
2787 
2788 	/* Suppress unwanted interrupts */
2789 	if (!(ifp->if_flags & IFF_UP)) {
2790 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2791 			dc_stop(sc);
2792 		return;
2793 	}
2794 
2795 	/* Disable interrupts. */
2796 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2797 
2798 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2799 
2800 		CSR_WRITE_4(sc, DC_ISR, status);
2801 
2802 		if (status & DC_ISR_RX_OK) {
2803 			int		curpkts;
2804 			curpkts = ifp->if_ipackets;
2805 			dc_rxeof(sc);
2806 			if (curpkts == ifp->if_ipackets) {
2807 				while(dc_rx_resync(sc))
2808 					dc_rxeof(sc);
2809 			}
2810 		}
2811 
2812 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2813 			dc_txeof(sc);
2814 
2815 		if (status & DC_ISR_TX_IDLE) {
2816 			dc_txeof(sc);
2817 			if (sc->dc_cdata.dc_tx_cnt) {
2818 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2819 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2820 			}
2821 		}
2822 
2823 		if (status & DC_ISR_TX_UNDERRUN)
2824 			dc_tx_underrun(sc);
2825 
2826 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2827 		    || (status & DC_ISR_RX_NOBUF)) {
2828 			int		curpkts;
2829 			curpkts = ifp->if_ipackets;
2830 			dc_rxeof(sc);
2831 			if (curpkts == ifp->if_ipackets) {
2832 				while(dc_rx_resync(sc))
2833 					dc_rxeof(sc);
2834 			}
2835 		}
2836 
2837 		if (status & DC_ISR_BUS_ERR) {
2838 			dc_reset(sc);
2839 			dc_init(sc);
2840 		}
2841 	}
2842 
2843 	/* Re-enable interrupts. */
2844 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2845 
2846 	if (!ifq_is_empty(&ifp->if_snd))
2847 		dc_start(ifp);
2848 
2849 	return;
2850 }
2851 
2852 /*
2853  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2854  * pointers to the fragment pointers.
2855  */
2856 static int
2857 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2858 {
2859 	struct dc_desc		*f = NULL;
2860 	struct mbuf		*m;
2861 	int			frag, cur, cnt = 0;
2862 
2863 	/*
2864  	 * Start packing the mbufs in this chain into
2865 	 * the fragment pointers. Stop when we run out
2866  	 * of fragments or hit the end of the mbuf chain.
2867 	 */
2868 	m = m_head;
2869 	cur = frag = *txidx;
2870 
2871 	for (m = m_head; m != NULL; m = m->m_next) {
2872 		if (m->m_len != 0) {
2873 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2874 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2875 				    frag == (DC_TX_LIST_CNT - 1))
2876 					return(ENOBUFS);
2877 			}
2878 			if ((DC_TX_LIST_CNT -
2879 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2880 				return(ENOBUFS);
2881 
2882 			f = &sc->dc_ldata->dc_tx_list[frag];
2883 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2884 			if (cnt == 0) {
2885 				f->dc_status = 0;
2886 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2887 			} else
2888 				f->dc_status = DC_TXSTAT_OWN;
2889 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2890 			cur = frag;
2891 			DC_INC(frag, DC_TX_LIST_CNT);
2892 			cnt++;
2893 		}
2894 	}
2895 
2896 	if (m != NULL)
2897 		return(ENOBUFS);
2898 
2899 	sc->dc_cdata.dc_tx_cnt += cnt;
2900 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2901 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2902 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2903 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2904 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2905 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2906 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2907 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2908 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2909 	*txidx = frag;
2910 
2911 	return(0);
2912 }
2913 
2914 /*
2915  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2916  * to the mbuf data regions directly in the transmit lists. We also save a
2917  * copy of the pointers since the transmit list fragment pointers are
2918  * physical addresses.
2919  */
2920 
2921 static void
2922 dc_start(struct ifnet *ifp)
2923 {
2924 	struct dc_softc		*sc;
2925 	struct mbuf *m_head = NULL, *m_new;
2926 	int did_defrag, idx;
2927 
2928 	sc = ifp->if_softc;
2929 
2930 	if (!sc->dc_link)
2931 		return;
2932 
2933 	if (ifp->if_flags & IFF_OACTIVE)
2934 		return;
2935 
2936 	idx = sc->dc_cdata.dc_tx_prod;
2937 
2938 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2939 		did_defrag = 0;
2940 		m_head = ifq_poll(&ifp->if_snd);
2941 		if (m_head == NULL)
2942 			break;
2943 
2944 		if (sc->dc_flags & DC_TX_COALESCE &&
2945 		    (m_head->m_next != NULL ||
2946 			sc->dc_flags & DC_TX_ALIGN)){
2947 			/*
2948 			 * Check first if coalescing allows us to queue
2949 			 * the packet. We don't want to loose it if
2950 			 * the TX queue is full.
2951 			 */
2952 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
2953 			    idx != sc->dc_cdata.dc_tx_prod &&
2954 			    idx == (DC_TX_LIST_CNT - 1)) {
2955 				ifp->if_flags |= IFF_OACTIVE;
2956 				break;
2957 			}
2958 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
2959 				ifp->if_flags |= IFF_OACTIVE;
2960 				break;
2961 			}
2962 
2963 			/* only coalesce if have >1 mbufs */
2964 			m_new = m_defrag_nofree(m_head, MB_DONTWAIT);
2965 			if (m_new == NULL) {
2966 				ifp->if_flags |= IFF_OACTIVE;
2967 				break;
2968 			}
2969 			m_freem(m_head);
2970 			m_head = m_new;
2971 			did_defrag = 1;
2972 		}
2973 
2974 		if (dc_encap(sc, m_head, &idx)) {
2975 			if (did_defrag) {
2976 				m_freem(m_head);
2977 				m_new = ifq_dequeue(&ifp->if_snd);
2978 				m_freem(m_new);
2979 			}
2980 			ifp->if_flags |= IFF_OACTIVE;
2981 			break;
2982 		}
2983 
2984 		m_new = ifq_dequeue(&ifp->if_snd);
2985 		if (did_defrag)
2986 			m_freem(m_new);
2987 
2988 		/*
2989 		 * If there's a BPF listener, bounce a copy of this frame
2990 		 * to him.
2991 		 */
2992 		BPF_MTAP(ifp, m_head);
2993 
2994 		if (sc->dc_flags & DC_TX_ONE) {
2995 			ifp->if_flags |= IFF_OACTIVE;
2996 			break;
2997 		}
2998 	}
2999 
3000 	/* Transmit */
3001 	sc->dc_cdata.dc_tx_prod = idx;
3002 	if (!(sc->dc_flags & DC_TX_POLL))
3003 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3004 
3005 	/*
3006 	 * Set a timeout in case the chip goes out to lunch.
3007 	 */
3008 	ifp->if_timer = 5;
3009 
3010 	return;
3011 }
3012 
3013 static void
3014 dc_init(void *xsc)
3015 {
3016 	struct dc_softc		*sc = xsc;
3017 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3018 	struct mii_data		*mii;
3019 
3020 	crit_enter();
3021 
3022 	mii = device_get_softc(sc->dc_miibus);
3023 
3024 	/*
3025 	 * Cancel pending I/O and free all RX/TX buffers.
3026 	 */
3027 	dc_stop(sc);
3028 	dc_reset(sc);
3029 
3030 	/*
3031 	 * Set cache alignment and burst length.
3032 	 */
3033 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3034 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3035 	else
3036 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3037 	/*
3038 	 * Evenly share the bus between receive and transmit process.
3039 	 */
3040 	if (DC_IS_INTEL(sc))
3041 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3042 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3043 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3044 	} else {
3045 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3046 	}
3047 	if (sc->dc_flags & DC_TX_POLL)
3048 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3049 	switch(sc->dc_cachesize) {
3050 	case 32:
3051 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3052 		break;
3053 	case 16:
3054 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3055 		break;
3056 	case 8:
3057 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3058 		break;
3059 	case 0:
3060 	default:
3061 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3062 		break;
3063 	}
3064 
3065 	if (sc->dc_flags & DC_TX_STORENFWD)
3066 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3067 	else {
3068 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3069 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3070 		} else {
3071 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3072 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3073 		}
3074 	}
3075 
3076 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3077 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3078 
3079 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3080 		/*
3081 		 * The app notes for the 98713 and 98715A say that
3082 		 * in order to have the chips operate properly, a magic
3083 		 * number must be written to CSR16. Macronix does not
3084 		 * document the meaning of these bits so there's no way
3085 		 * to know exactly what they do. The 98713 has a magic
3086 		 * number all its own; the rest all use a different one.
3087 		 */
3088 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3089 		if (sc->dc_type == DC_TYPE_98713)
3090 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3091 		else
3092 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3093 	}
3094 
3095 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3096 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3097 
3098 	/* Init circular RX list. */
3099 	if (dc_list_rx_init(sc) == ENOBUFS) {
3100 		if_printf(ifp, "initialization failed: no "
3101 			  "memory for rx buffers\n");
3102 		dc_stop(sc);
3103 		crit_exit();
3104 		return;
3105 	}
3106 
3107 	/*
3108 	 * Init tx descriptors.
3109 	 */
3110 	dc_list_tx_init(sc);
3111 
3112 	/*
3113 	 * Load the address of the RX list.
3114 	 */
3115 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3116 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3117 
3118 	/*
3119 	 * Enable interrupts.
3120 	 */
3121 #ifdef DEVICE_POLLING
3122 	/*
3123 	 * ... but only if we are not polling, and make sure they are off in
3124 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3125 	 * after a reset.
3126 	 */
3127 	if (ifp->if_flags & IFF_POLLING)
3128 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3129 	else
3130 #endif
3131 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3132 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3133 
3134 	/* Enable transmitter. */
3135 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3136 
3137 	/*
3138 	 * If this is an Intel 21143 and we're not using the
3139 	 * MII port, program the LED control pins so we get
3140 	 * link and activity indications.
3141 	 */
3142 	if (sc->dc_flags & DC_TULIP_LEDS) {
3143 		CSR_WRITE_4(sc, DC_WATCHDOG,
3144 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3145 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3146 	}
3147 
3148 	/*
3149 	 * Load the RX/multicast filter. We do this sort of late
3150 	 * because the filter programming scheme on the 21143 and
3151 	 * some clones requires DMAing a setup frame via the TX
3152 	 * engine, and we need the transmitter enabled for that.
3153 	 */
3154 	dc_setfilt(sc);
3155 
3156 	/* Enable receiver. */
3157 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3158 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3159 
3160 	mii_mediachg(mii);
3161 	dc_setcfg(sc, sc->dc_if_media);
3162 
3163 	ifp->if_flags |= IFF_RUNNING;
3164 	ifp->if_flags &= ~IFF_OACTIVE;
3165 
3166 	crit_exit();
3167 
3168 	/* Don't start the ticker if this is a homePNA link. */
3169 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3170 		sc->dc_link = 1;
3171 	else {
3172 		if (sc->dc_flags & DC_21143_NWAY)
3173 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3174 		else
3175 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3176 	}
3177 
3178 	return;
3179 }
3180 
3181 /*
3182  * Set media options.
3183  */
3184 static int
3185 dc_ifmedia_upd(struct ifnet *ifp)
3186 {
3187 	struct dc_softc		*sc;
3188 	struct mii_data		*mii;
3189 	struct ifmedia		*ifm;
3190 
3191 	sc = ifp->if_softc;
3192 	mii = device_get_softc(sc->dc_miibus);
3193 	mii_mediachg(mii);
3194 	ifm = &mii->mii_media;
3195 
3196 	if (DC_IS_DAVICOM(sc) &&
3197 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3198 		dc_setcfg(sc, ifm->ifm_media);
3199 	else
3200 		sc->dc_link = 0;
3201 
3202 	return(0);
3203 }
3204 
3205 /*
3206  * Report current media status.
3207  */
3208 static void
3209 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3210 {
3211 	struct dc_softc		*sc;
3212 	struct mii_data		*mii;
3213 	struct ifmedia		*ifm;
3214 
3215 	sc = ifp->if_softc;
3216 	mii = device_get_softc(sc->dc_miibus);
3217 	mii_pollstat(mii);
3218 	ifm = &mii->mii_media;
3219 	if (DC_IS_DAVICOM(sc)) {
3220 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3221 			ifmr->ifm_active = ifm->ifm_media;
3222 			ifmr->ifm_status = 0;
3223 			return;
3224 		}
3225 	}
3226 	ifmr->ifm_active = mii->mii_media_active;
3227 	ifmr->ifm_status = mii->mii_media_status;
3228 
3229 	return;
3230 }
3231 
3232 static int
3233 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3234 {
3235 	struct dc_softc		*sc = ifp->if_softc;
3236 	struct ifreq		*ifr = (struct ifreq *) data;
3237 	struct mii_data		*mii;
3238 	int			error = 0;
3239 
3240 	crit_enter();
3241 
3242 	switch(command) {
3243 	case SIOCSIFFLAGS:
3244 		if (ifp->if_flags & IFF_UP) {
3245 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3246 				(IFF_PROMISC | IFF_ALLMULTI);
3247 			if (ifp->if_flags & IFF_RUNNING) {
3248 				if (need_setfilt)
3249 					dc_setfilt(sc);
3250 			} else {
3251 				sc->dc_txthresh = 0;
3252 				dc_init(sc);
3253 			}
3254 		} else {
3255 			if (ifp->if_flags & IFF_RUNNING)
3256 				dc_stop(sc);
3257 		}
3258 		sc->dc_if_flags = ifp->if_flags;
3259 		error = 0;
3260 		break;
3261 	case SIOCADDMULTI:
3262 	case SIOCDELMULTI:
3263 		dc_setfilt(sc);
3264 		error = 0;
3265 		break;
3266 	case SIOCGIFMEDIA:
3267 	case SIOCSIFMEDIA:
3268 		mii = device_get_softc(sc->dc_miibus);
3269 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3270 		break;
3271 	default:
3272 		error = ether_ioctl(ifp, command, data);
3273 		break;
3274 	}
3275 
3276 	crit_exit();
3277 
3278 	return(error);
3279 }
3280 
3281 static void
3282 dc_watchdog(struct ifnet *ifp)
3283 {
3284 	struct dc_softc		*sc;
3285 
3286 	sc = ifp->if_softc;
3287 
3288 	ifp->if_oerrors++;
3289 	if_printf(ifp, "watchdog timeout\n");
3290 
3291 	dc_stop(sc);
3292 	dc_reset(sc);
3293 	dc_init(sc);
3294 
3295 	if (!ifq_is_empty(&ifp->if_snd))
3296 		dc_start(ifp);
3297 
3298 	return;
3299 }
3300 
3301 /*
3302  * Stop the adapter and free any mbufs allocated to the
3303  * RX and TX lists.
3304  */
3305 static void
3306 dc_stop(struct dc_softc *sc)
3307 {
3308 	int		i;
3309 	struct ifnet		*ifp;
3310 
3311 	ifp = &sc->arpcom.ac_if;
3312 	ifp->if_timer = 0;
3313 
3314 	callout_stop(&sc->dc_stat_timer);
3315 
3316 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3317 
3318 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3319 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3320 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3321 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3322 	sc->dc_link = 0;
3323 
3324 	/*
3325 	 * Free data in the RX lists.
3326 	 */
3327 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3328 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3329 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3330 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3331 		}
3332 	}
3333 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3334 		sizeof(sc->dc_ldata->dc_rx_list));
3335 
3336 	/*
3337 	 * Free the TX list buffers.
3338 	 */
3339 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3340 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3341 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3342 			    DC_TXCTL_SETUP) ||
3343 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3344 			    DC_TXCTL_LASTFRAG)) {
3345 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3346 				continue;
3347 			}
3348 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3349 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3350 		}
3351 	}
3352 
3353 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3354 		sizeof(sc->dc_ldata->dc_tx_list));
3355 
3356 	return;
3357 }
3358 
3359 /*
3360  * Stop all chip I/O so that the kernel's probe routines don't
3361  * get confused by errant DMAs when rebooting.
3362  */
3363 static void
3364 dc_shutdown(device_t dev)
3365 {
3366 	struct dc_softc		*sc;
3367 
3368 	sc = device_get_softc(dev);
3369 
3370 	dc_stop(sc);
3371 
3372 	return;
3373 }
3374 
3375 /*
3376  * Device suspend routine.  Stop the interface and save some PCI
3377  * settings in case the BIOS doesn't restore them properly on
3378  * resume.
3379  */
3380 static int
3381 dc_suspend(device_t dev)
3382 {
3383 	struct dc_softc	*sc = device_get_softc(dev);
3384 	int i;
3385 
3386 	crit_enter();
3387 
3388 	dc_stop(sc);
3389 
3390 	for (i = 0; i < 5; i++)
3391 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3392 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3393 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3394 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3395 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3396 
3397 	sc->suspended = 1;
3398 
3399 	crit_exit();
3400 	return (0);
3401 }
3402 
3403 /*
3404  * Device resume routine.  Restore some PCI settings in case the BIOS
3405  * doesn't, re-enable busmastering, and restart the interface if
3406  * appropriate.
3407  */
3408 static int
3409 dc_resume(device_t dev)
3410 {
3411 	struct dc_softc *sc = device_get_softc(dev);
3412 	struct ifnet *ifp = &sc->arpcom.ac_if;
3413 	int i;
3414 
3415 	crit_enter();
3416 
3417 	dc_acpi(dev);
3418 
3419 	/* better way to do this? */
3420 	for (i = 0; i < 5; i++)
3421 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3422 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3423 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3424 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3425 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3426 
3427 	/* reenable busmastering */
3428 	pci_enable_busmaster(dev);
3429 	pci_enable_io(dev, DC_RES);
3430 
3431         /* reinitialize interface if necessary */
3432         if (ifp->if_flags & IFF_UP)
3433                 dc_init(sc);
3434 
3435 	sc->suspended = 0;
3436 
3437 	crit_exit();
3438 	return (0);
3439 }
3440