xref: /dflybsd-src/sys/dev/netif/dc/if_dc.c (revision e6f30c11b835a7878a0ca02133e6bbb9abfad4ab)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.35 2005/06/20 15:10:40 joerg Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Conexant LANfinity (www.conexant.com)
50  *
51  * Datasheets for the 21143 are available at developer.intel.com.
52  * Datasheets for the clone parts can be found at their respective sites.
53  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54  * The PNIC II is essentially a Macronix 98715A chip; the only difference
55  * worth noting is that its multicast hash table is only 128 bits wide
56  * instead of 512.
57  *
58  * Written by Bill Paul <wpaul@ee.columbia.edu>
59  * Electrical Engineering Department
60  * Columbia University, New York City
61  */
62 
63 /*
64  * The Intel 21143 is the successor to the DEC 21140. It is basically
65  * the same as the 21140 but with a few new features. The 21143 supports
66  * three kinds of media attachments:
67  *
68  * o MII port, for 10Mbps and 100Mbps support and NWAY
69  *   autonegotiation provided by an external PHY.
70  * o SYM port, for symbol mode 100Mbps support.
71  * o 10baseT port.
72  * o AUI/BNC port.
73  *
74  * The 100Mbps SYM port and 10baseT port can be used together in
75  * combination with the internal NWAY support to create a 10/100
76  * autosensing configuration.
77  *
78  * Note that not all tulip workalikes are handled in this driver: we only
79  * deal with those which are relatively well behaved. The Winbond is
80  * handled separately due to its different register offsets and the
81  * special handling needed for its various bugs. The PNIC is handled
82  * here, but I'm not thrilled about it.
83  *
84  * All of the workalike chips use some form of MII transceiver support
85  * with the exception of the Macronix chips, which also have a SYM port.
86  * The ASIX AX88140A is also documented to have a SYM port, but all
87  * the cards I've seen use an MII transceiver, probably because the
88  * AX88140A doesn't support internal NWAY.
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 #include <sys/thread2.h>
100 
101 #include <net/if.h>
102 #include <net/ifq_var.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/vlan/if_vlan_var.h>
109 
110 #include <net/bpf.h>
111 
112 #include <vm/vm.h>              /* for vtophys */
113 #include <vm/pmap.h>            /* for vtophys */
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
123 
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define DC_USEIOSPACE
128 
129 #include "if_dcreg.h"
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 static struct dc_type dc_devs[] = {
138 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
139 		"Intel 21143 10/100BaseTX" },
140 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
141 		"Davicom DM9009 10/100BaseTX" },
142 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
143 		"Davicom DM9100 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
145 		"Davicom DM9102 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 		"Davicom DM9102A 10/100BaseTX" },
148 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
149 		"ADMtek AL981 10/100BaseTX" },
150 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
151 		"ADMtek AN985 10/100BaseTX" },
152 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
153 		"ASIX AX88140A 10/100BaseTX" },
154 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
155 		"ASIX AX88141 10/100BaseTX" },
156 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
157 		"Macronix 98713 10/100BaseTX" },
158 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
159 		"Macronix 98713A 10/100BaseTX" },
160 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
161 		"Compex RL100-TX 10/100BaseTX" },
162 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
163 		"Compex RL100-TX 10/100BaseTX" },
164 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
165 		"Macronix 98715/98715A 10/100BaseTX" },
166 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
167 		"Macronix 98715AEC-C 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
169 		"Macronix 98725 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
171 		"Macronix 98727/98732 10/100BaseTX" },
172 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
173 		"LC82C115 PNIC II 10/100BaseTX" },
174 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
175 		"82c168 PNIC 10/100BaseTX" },
176 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
177 		"82c169 PNIC 10/100BaseTX" },
178 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
179 		"Accton EN1217 10/100BaseTX" },
180 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
181 		"Accton EN2242 MiniPCI 10/100BaseTX" },
182 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
183 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
184 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
185 		"3Com OfficeConnect 10/100B" },
186 	{ 0, 0, NULL }
187 };
188 
189 static int dc_probe		(device_t);
190 static int dc_attach		(device_t);
191 static int dc_detach		(device_t);
192 static int dc_suspend		(device_t);
193 static int dc_resume		(device_t);
194 static void dc_acpi		(device_t);
195 static struct dc_type *dc_devtype	(device_t);
196 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
197 static int dc_encap		(struct dc_softc *, struct mbuf *,
198 					u_int32_t *);
199 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
200 static int dc_rx_resync		(struct dc_softc *);
201 static void dc_rxeof		(struct dc_softc *);
202 static void dc_txeof		(struct dc_softc *);
203 static void dc_tick		(void *);
204 static void dc_tx_underrun	(struct dc_softc *);
205 static void dc_intr		(void *);
206 static void dc_start		(struct ifnet *);
207 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
208 					struct ucred *);
209 #ifdef DEVICE_POLLING
210 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
211 					int count);
212 #endif
213 static void dc_init		(void *);
214 static void dc_stop		(struct dc_softc *);
215 static void dc_watchdog		(struct ifnet *);
216 static void dc_shutdown		(device_t);
217 static int dc_ifmedia_upd	(struct ifnet *);
218 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
219 
220 static void dc_delay		(struct dc_softc *);
221 static void dc_eeprom_idle	(struct dc_softc *);
222 static void dc_eeprom_putbyte	(struct dc_softc *, int);
223 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
224 static void dc_eeprom_getword_pnic
225 				(struct dc_softc *, int, u_int16_t *);
226 static void dc_eeprom_width	(struct dc_softc *);
227 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
228 							int, int);
229 
230 static void dc_mii_writebit	(struct dc_softc *, int);
231 static int dc_mii_readbit	(struct dc_softc *);
232 static void dc_mii_sync		(struct dc_softc *);
233 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
234 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
235 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
236 static int dc_miibus_readreg	(device_t, int, int);
237 static int dc_miibus_writereg	(device_t, int, int, int);
238 static void dc_miibus_statchg	(device_t);
239 static void dc_miibus_mediainit	(device_t);
240 
241 static u_int32_t dc_crc_mask	(struct dc_softc *);
242 static void dc_setcfg		(struct dc_softc *, int);
243 static void dc_setfilt_21143	(struct dc_softc *);
244 static void dc_setfilt_asix	(struct dc_softc *);
245 static void dc_setfilt_admtek	(struct dc_softc *);
246 
247 static void dc_setfilt		(struct dc_softc *);
248 
249 static void dc_reset		(struct dc_softc *);
250 static int dc_list_rx_init	(struct dc_softc *);
251 static int dc_list_tx_init	(struct dc_softc *);
252 
253 static void dc_read_srom	(struct dc_softc *, int);
254 static void dc_parse_21143_srom	(struct dc_softc *);
255 static void dc_decode_leaf_sia	(struct dc_softc *,
256 				    struct dc_eblock_sia *);
257 static void dc_decode_leaf_mii	(struct dc_softc *,
258 				    struct dc_eblock_mii *);
259 static void dc_decode_leaf_sym	(struct dc_softc *,
260 				    struct dc_eblock_sym *);
261 static void dc_apply_fixup	(struct dc_softc *, int);
262 
263 #ifdef DC_USEIOSPACE
264 #define DC_RES			SYS_RES_IOPORT
265 #define DC_RID			DC_PCI_CFBIO
266 #else
267 #define DC_RES			SYS_RES_MEMORY
268 #define DC_RID			DC_PCI_CFBMA
269 #endif
270 
271 static device_method_t dc_methods[] = {
272 	/* Device interface */
273 	DEVMETHOD(device_probe,		dc_probe),
274 	DEVMETHOD(device_attach,	dc_attach),
275 	DEVMETHOD(device_detach,	dc_detach),
276 	DEVMETHOD(device_suspend,	dc_suspend),
277 	DEVMETHOD(device_resume,	dc_resume),
278 	DEVMETHOD(device_shutdown,	dc_shutdown),
279 
280 	/* bus interface */
281 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
282 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
283 
284 	/* MII interface */
285 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
286 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
287 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
288 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
289 
290 	{ 0, 0 }
291 };
292 
293 static driver_t dc_driver = {
294 	"dc",
295 	dc_methods,
296 	sizeof(struct dc_softc)
297 };
298 
299 static devclass_t dc_devclass;
300 
301 #ifdef __i386__
302 static int dc_quick=1;
303 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
304 	&dc_quick,0,"do not mdevget in dc driver");
305 #endif
306 
307 DECLARE_DUMMY_MODULE(if_dc);
308 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
309 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
310 
311 #define DC_SETBIT(sc, reg, x)				\
312 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
313 
314 #define DC_CLRBIT(sc, reg, x)				\
315 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
316 
317 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
318 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
319 
320 static void dc_delay(sc)
321 	struct dc_softc		*sc;
322 {
323 	int			idx;
324 
325 	for (idx = (300 / 33) + 1; idx > 0; idx--)
326 		CSR_READ_4(sc, DC_BUSCTL);
327 }
328 
329 static void dc_eeprom_width(sc)
330 	struct dc_softc		*sc;
331 {
332 	int i;
333 
334 	/* Force EEPROM to idle state. */
335 	dc_eeprom_idle(sc);
336 
337 	/* Enter EEPROM access mode. */
338 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
339 	dc_delay(sc);
340 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
341 	dc_delay(sc);
342 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
343 	dc_delay(sc);
344 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
345 	dc_delay(sc);
346 
347 	for (i = 3; i--;) {
348 		if (6 & (1 << i))
349 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
350 		else
351 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
352 		dc_delay(sc);
353 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
354 		dc_delay(sc);
355 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
356 		dc_delay(sc);
357 	}
358 
359 	for (i = 1; i <= 12; i++) {
360 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
361 		dc_delay(sc);
362 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
363 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
364 			dc_delay(sc);
365 			break;
366 		}
367 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
368 		dc_delay(sc);
369 	}
370 
371 	/* Turn off EEPROM access mode. */
372 	dc_eeprom_idle(sc);
373 
374 	if (i < 4 || i > 12)
375 		sc->dc_romwidth = 6;
376 	else
377 		sc->dc_romwidth = i;
378 
379 	/* Enter EEPROM access mode. */
380 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
381 	dc_delay(sc);
382 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
383 	dc_delay(sc);
384 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
385 	dc_delay(sc);
386 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
387 	dc_delay(sc);
388 
389 	/* Turn off EEPROM access mode. */
390 	dc_eeprom_idle(sc);
391 }
392 
393 static void dc_eeprom_idle(sc)
394 	struct dc_softc		*sc;
395 {
396 	int		i;
397 
398 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
399 	dc_delay(sc);
400 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
401 	dc_delay(sc);
402 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
403 	dc_delay(sc);
404 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
405 	dc_delay(sc);
406 
407 	for (i = 0; i < 25; i++) {
408 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
409 		dc_delay(sc);
410 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411 		dc_delay(sc);
412 	}
413 
414 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 	dc_delay(sc);
416 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
417 	dc_delay(sc);
418 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
419 
420 	return;
421 }
422 
423 /*
424  * Send a read command and address to the EEPROM, check for ACK.
425  */
426 static void dc_eeprom_putbyte(sc, addr)
427 	struct dc_softc		*sc;
428 	int			addr;
429 {
430 	int		d, i;
431 
432 	d = DC_EECMD_READ >> 6;
433 	for (i = 3; i--; ) {
434 		if (d & (1 << i))
435 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
436 		else
437 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
438 		dc_delay(sc);
439 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
440 		dc_delay(sc);
441 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 		dc_delay(sc);
443 	}
444 
445 	/*
446 	 * Feed in each bit and strobe the clock.
447 	 */
448 	for (i = sc->dc_romwidth; i--;) {
449 		if (addr & (1 << i)) {
450 			SIO_SET(DC_SIO_EE_DATAIN);
451 		} else {
452 			SIO_CLR(DC_SIO_EE_DATAIN);
453 		}
454 		dc_delay(sc);
455 		SIO_SET(DC_SIO_EE_CLK);
456 		dc_delay(sc);
457 		SIO_CLR(DC_SIO_EE_CLK);
458 		dc_delay(sc);
459 	}
460 
461 	return;
462 }
463 
464 /*
465  * Read a word of data stored in the EEPROM at address 'addr.'
466  * The PNIC 82c168/82c169 has its own non-standard way to read
467  * the EEPROM.
468  */
469 static void dc_eeprom_getword_pnic(sc, addr, dest)
470 	struct dc_softc		*sc;
471 	int			addr;
472 	u_int16_t		*dest;
473 {
474 	int		i;
475 	u_int32_t		r;
476 
477 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
478 
479 	for (i = 0; i < DC_TIMEOUT; i++) {
480 		DELAY(1);
481 		r = CSR_READ_4(sc, DC_SIO);
482 		if (!(r & DC_PN_SIOCTL_BUSY)) {
483 			*dest = (u_int16_t)(r & 0xFFFF);
484 			return;
485 		}
486 	}
487 
488 	return;
489 }
490 
491 /*
492  * Read a word of data stored in the EEPROM at address 'addr.'
493  */
494 static void dc_eeprom_getword(sc, addr, dest)
495 	struct dc_softc		*sc;
496 	int			addr;
497 	u_int16_t		*dest;
498 {
499 	int		i;
500 	u_int16_t		word = 0;
501 
502 	/* Force EEPROM to idle state. */
503 	dc_eeprom_idle(sc);
504 
505 	/* Enter EEPROM access mode. */
506 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
507 	dc_delay(sc);
508 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
509 	dc_delay(sc);
510 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
511 	dc_delay(sc);
512 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
513 	dc_delay(sc);
514 
515 	/*
516 	 * Send address of word we want to read.
517 	 */
518 	dc_eeprom_putbyte(sc, addr);
519 
520 	/*
521 	 * Start reading bits from EEPROM.
522 	 */
523 	for (i = 0x8000; i; i >>= 1) {
524 		SIO_SET(DC_SIO_EE_CLK);
525 		dc_delay(sc);
526 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
527 			word |= i;
528 		dc_delay(sc);
529 		SIO_CLR(DC_SIO_EE_CLK);
530 		dc_delay(sc);
531 	}
532 
533 	/* Turn off EEPROM access mode. */
534 	dc_eeprom_idle(sc);
535 
536 	*dest = word;
537 
538 	return;
539 }
540 
541 /*
542  * Read a sequence of words from the EEPROM.
543  */
544 static void dc_read_eeprom(sc, dest, off, cnt, swap)
545 	struct dc_softc		*sc;
546 	caddr_t			dest;
547 	int			off;
548 	int			cnt;
549 	int			swap;
550 {
551 	int			i;
552 	u_int16_t		word = 0, *ptr;
553 
554 	for (i = 0; i < cnt; i++) {
555 		if (DC_IS_PNIC(sc))
556 			dc_eeprom_getword_pnic(sc, off + i, &word);
557 		else
558 			dc_eeprom_getword(sc, off + i, &word);
559 		ptr = (u_int16_t *)(dest + (i * 2));
560 		if (swap)
561 			*ptr = ntohs(word);
562 		else
563 			*ptr = word;
564 	}
565 
566 	return;
567 }
568 
569 /*
570  * The following two routines are taken from the Macronix 98713
571  * Application Notes pp.19-21.
572  */
573 /*
574  * Write a bit to the MII bus.
575  */
576 static void dc_mii_writebit(sc, bit)
577 	struct dc_softc		*sc;
578 	int			bit;
579 {
580 	if (bit)
581 		CSR_WRITE_4(sc, DC_SIO,
582 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
583 	else
584 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
585 
586 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
587 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
588 
589 	return;
590 }
591 
592 /*
593  * Read a bit from the MII bus.
594  */
595 static int dc_mii_readbit(sc)
596 	struct dc_softc		*sc;
597 {
598 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
599 	CSR_READ_4(sc, DC_SIO);
600 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
601 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
602 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
603 		return(1);
604 
605 	return(0);
606 }
607 
608 /*
609  * Sync the PHYs by setting data bit and strobing the clock 32 times.
610  */
611 static void dc_mii_sync(sc)
612 	struct dc_softc		*sc;
613 {
614 	int		i;
615 
616 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
617 
618 	for (i = 0; i < 32; i++)
619 		dc_mii_writebit(sc, 1);
620 
621 	return;
622 }
623 
624 /*
625  * Clock a series of bits through the MII.
626  */
627 static void dc_mii_send(sc, bits, cnt)
628 	struct dc_softc		*sc;
629 	u_int32_t		bits;
630 	int			cnt;
631 {
632 	int			i;
633 
634 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
635 		dc_mii_writebit(sc, bits & i);
636 }
637 
638 /*
639  * Read an PHY register through the MII.
640  */
641 static int dc_mii_readreg(sc, frame)
642 	struct dc_softc		*sc;
643 	struct dc_mii_frame	*frame;
644 
645 {
646 	int ack, i;
647 
648 	crit_enter();
649 
650 	/*
651 	 * Set up frame for RX.
652 	 */
653 	frame->mii_stdelim = DC_MII_STARTDELIM;
654 	frame->mii_opcode = DC_MII_READOP;
655 	frame->mii_turnaround = 0;
656 	frame->mii_data = 0;
657 
658 	/*
659 	 * Sync the PHYs.
660 	 */
661 	dc_mii_sync(sc);
662 
663 	/*
664 	 * Send command/address info.
665 	 */
666 	dc_mii_send(sc, frame->mii_stdelim, 2);
667 	dc_mii_send(sc, frame->mii_opcode, 2);
668 	dc_mii_send(sc, frame->mii_phyaddr, 5);
669 	dc_mii_send(sc, frame->mii_regaddr, 5);
670 
671 #ifdef notdef
672 	/* Idle bit */
673 	dc_mii_writebit(sc, 1);
674 	dc_mii_writebit(sc, 0);
675 #endif
676 
677 	/* Check for ack */
678 	ack = dc_mii_readbit(sc);
679 
680 	/*
681 	 * Now try reading data bits. If the ack failed, we still
682 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
683 	 */
684 	if (ack) {
685 		for(i = 0; i < 16; i++) {
686 			dc_mii_readbit(sc);
687 		}
688 		goto fail;
689 	}
690 
691 	for (i = 0x8000; i; i >>= 1) {
692 		if (!ack) {
693 			if (dc_mii_readbit(sc))
694 				frame->mii_data |= i;
695 		}
696 	}
697 
698 fail:
699 
700 	dc_mii_writebit(sc, 0);
701 	dc_mii_writebit(sc, 0);
702 
703 	crit_exit();
704 
705 	if (ack)
706 		return(1);
707 	return(0);
708 }
709 
710 /*
711  * Write to a PHY register through the MII.
712  */
713 static int dc_mii_writereg(sc, frame)
714 	struct dc_softc		*sc;
715 	struct dc_mii_frame	*frame;
716 
717 {
718 	crit_enter();
719 
720 	/*
721 	 * Set up frame for TX.
722 	 */
723 
724 	frame->mii_stdelim = DC_MII_STARTDELIM;
725 	frame->mii_opcode = DC_MII_WRITEOP;
726 	frame->mii_turnaround = DC_MII_TURNAROUND;
727 
728 	/*
729 	 * Sync the PHYs.
730 	 */
731 	dc_mii_sync(sc);
732 
733 	dc_mii_send(sc, frame->mii_stdelim, 2);
734 	dc_mii_send(sc, frame->mii_opcode, 2);
735 	dc_mii_send(sc, frame->mii_phyaddr, 5);
736 	dc_mii_send(sc, frame->mii_regaddr, 5);
737 	dc_mii_send(sc, frame->mii_turnaround, 2);
738 	dc_mii_send(sc, frame->mii_data, 16);
739 
740 	/* Idle bit. */
741 	dc_mii_writebit(sc, 0);
742 	dc_mii_writebit(sc, 0);
743 
744 	crit_exit();
745 
746 	return(0);
747 }
748 
749 static int dc_miibus_readreg(dev, phy, reg)
750 	device_t		dev;
751 	int			phy, reg;
752 {
753 	struct dc_mii_frame	frame;
754 	struct dc_softc		*sc;
755 	int			i, rval, phy_reg = 0;
756 
757 	sc = device_get_softc(dev);
758 	bzero((char *)&frame, sizeof(frame));
759 
760 	/*
761 	 * Note: both the AL981 and AN985 have internal PHYs,
762 	 * however the AL981 provides direct access to the PHY
763 	 * registers while the AN985 uses a serial MII interface.
764 	 * The AN985's MII interface is also buggy in that you
765 	 * can read from any MII address (0 to 31), but only address 1
766 	 * behaves normally. To deal with both cases, we pretend
767 	 * that the PHY is at MII address 1.
768 	 */
769 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
770 		return(0);
771 
772 	/*
773 	 * Note: the ukphy probes of the RS7112 report a PHY at
774 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
775 	 * so we only respond to correct one.
776 	 */
777 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
778 		return(0);
779 
780 	if (sc->dc_pmode != DC_PMODE_MII) {
781 		if (phy == (MII_NPHY - 1)) {
782 			switch(reg) {
783 			case MII_BMSR:
784 			/*
785 			 * Fake something to make the probe
786 			 * code think there's a PHY here.
787 			 */
788 				return(BMSR_MEDIAMASK);
789 				break;
790 			case MII_PHYIDR1:
791 				if (DC_IS_PNIC(sc))
792 					return(DC_VENDORID_LO);
793 				return(DC_VENDORID_DEC);
794 				break;
795 			case MII_PHYIDR2:
796 				if (DC_IS_PNIC(sc))
797 					return(DC_DEVICEID_82C168);
798 				return(DC_DEVICEID_21143);
799 				break;
800 			default:
801 				return(0);
802 				break;
803 			}
804 		} else
805 			return(0);
806 	}
807 
808 	if (DC_IS_PNIC(sc)) {
809 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
810 		    (phy << 23) | (reg << 18));
811 		for (i = 0; i < DC_TIMEOUT; i++) {
812 			DELAY(1);
813 			rval = CSR_READ_4(sc, DC_PN_MII);
814 			if (!(rval & DC_PN_MII_BUSY)) {
815 				rval &= 0xFFFF;
816 				return(rval == 0xFFFF ? 0 : rval);
817 			}
818 		}
819 		return(0);
820 	}
821 
822 	if (DC_IS_COMET(sc)) {
823 		switch(reg) {
824 		case MII_BMCR:
825 			phy_reg = DC_AL_BMCR;
826 			break;
827 		case MII_BMSR:
828 			phy_reg = DC_AL_BMSR;
829 			break;
830 		case MII_PHYIDR1:
831 			phy_reg = DC_AL_VENID;
832 			break;
833 		case MII_PHYIDR2:
834 			phy_reg = DC_AL_DEVID;
835 			break;
836 		case MII_ANAR:
837 			phy_reg = DC_AL_ANAR;
838 			break;
839 		case MII_ANLPAR:
840 			phy_reg = DC_AL_LPAR;
841 			break;
842 		case MII_ANER:
843 			phy_reg = DC_AL_ANER;
844 			break;
845 		default:
846 			if_printf(&sc->arpcom.ac_if,
847 				  "phy_read: bad phy register %x\n", reg);
848 			return(0);
849 			break;
850 		}
851 
852 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
853 
854 		if (rval == 0xFFFF)
855 			return(0);
856 		return(rval);
857 	}
858 
859 	frame.mii_phyaddr = phy;
860 	frame.mii_regaddr = reg;
861 	if (sc->dc_type == DC_TYPE_98713) {
862 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
863 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
864 	}
865 	dc_mii_readreg(sc, &frame);
866 	if (sc->dc_type == DC_TYPE_98713)
867 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
868 
869 	return(frame.mii_data);
870 }
871 
872 static int dc_miibus_writereg(dev, phy, reg, data)
873 	device_t		dev;
874 	int			phy, reg, data;
875 {
876 	struct dc_softc		*sc;
877 	struct dc_mii_frame	frame;
878 	int			i, phy_reg = 0;
879 
880 	sc = device_get_softc(dev);
881 	bzero((char *)&frame, sizeof(frame));
882 
883 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
884 		return(0);
885 
886 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
887 		return(0);
888 
889 	if (DC_IS_PNIC(sc)) {
890 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
891 		    (phy << 23) | (reg << 10) | data);
892 		for (i = 0; i < DC_TIMEOUT; i++) {
893 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
894 				break;
895 		}
896 		return(0);
897 	}
898 
899 	if (DC_IS_COMET(sc)) {
900 		switch(reg) {
901 		case MII_BMCR:
902 			phy_reg = DC_AL_BMCR;
903 			break;
904 		case MII_BMSR:
905 			phy_reg = DC_AL_BMSR;
906 			break;
907 		case MII_PHYIDR1:
908 			phy_reg = DC_AL_VENID;
909 			break;
910 		case MII_PHYIDR2:
911 			phy_reg = DC_AL_DEVID;
912 			break;
913 		case MII_ANAR:
914 			phy_reg = DC_AL_ANAR;
915 			break;
916 		case MII_ANLPAR:
917 			phy_reg = DC_AL_LPAR;
918 			break;
919 		case MII_ANER:
920 			phy_reg = DC_AL_ANER;
921 			break;
922 		default:
923 			if_printf(&sc->arpcom.ac_if,
924 				  "phy_write: bad phy register %x\n", reg);
925 			return(0);
926 			break;
927 		}
928 
929 		CSR_WRITE_4(sc, phy_reg, data);
930 		return(0);
931 	}
932 
933 	frame.mii_phyaddr = phy;
934 	frame.mii_regaddr = reg;
935 	frame.mii_data = data;
936 
937 	if (sc->dc_type == DC_TYPE_98713) {
938 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
939 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
940 	}
941 	dc_mii_writereg(sc, &frame);
942 	if (sc->dc_type == DC_TYPE_98713)
943 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
944 
945 	return(0);
946 }
947 
948 static void dc_miibus_statchg(dev)
949 	device_t		dev;
950 {
951 	struct dc_softc		*sc;
952 	struct mii_data		*mii;
953 	struct ifmedia		*ifm;
954 
955 	sc = device_get_softc(dev);
956 	if (DC_IS_ADMTEK(sc))
957 		return;
958 
959 	mii = device_get_softc(sc->dc_miibus);
960 	ifm = &mii->mii_media;
961 	if (DC_IS_DAVICOM(sc) &&
962 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
963 		dc_setcfg(sc, ifm->ifm_media);
964 		sc->dc_if_media = ifm->ifm_media;
965 	} else {
966 		dc_setcfg(sc, mii->mii_media_active);
967 		sc->dc_if_media = mii->mii_media_active;
968 	}
969 
970 	return;
971 }
972 
973 /*
974  * Special support for DM9102A cards with HomePNA PHYs. Note:
975  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
976  * to be impossible to talk to the management interface of the DM9801
977  * PHY (its MDIO pin is not connected to anything). Consequently,
978  * the driver has to just 'know' about the additional mode and deal
979  * with it itself. *sigh*
980  */
981 static void dc_miibus_mediainit(dev)
982 	device_t		dev;
983 {
984 	struct dc_softc		*sc;
985 	struct mii_data		*mii;
986 	struct ifmedia		*ifm;
987 	int			rev;
988 
989 	rev = pci_get_revid(dev);
990 
991 	sc = device_get_softc(dev);
992 	mii = device_get_softc(sc->dc_miibus);
993 	ifm = &mii->mii_media;
994 
995 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
996 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
997 
998 	return;
999 }
1000 
1001 #define DC_BITS_512	9
1002 #define DC_BITS_128	7
1003 #define DC_BITS_64	6
1004 
1005 static u_int32_t
1006 dc_crc_mask(struct dc_softc *sc)
1007 {
1008 	/*
1009 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1010 	 * chips is only 128 bits wide.
1011 	 */
1012 	if (sc->dc_flags & DC_128BIT_HASH)
1013 		return ((1 << DC_BITS_128) - 1);
1014 
1015 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1016 	if (sc->dc_flags & DC_64BIT_HASH)
1017 		return ((1 << DC_BITS_64) - 1);
1018 
1019 	return ((1 << DC_BITS_512) - 1);
1020 }
1021 
1022 /*
1023  * 21143-style RX filter setup routine. Filter programming is done by
1024  * downloading a special setup frame into the TX engine. 21143, Macronix,
1025  * PNIC, PNIC II and Davicom chips are programmed this way.
1026  *
1027  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1028  * address (our node address) and a 512-bit hash filter for multicast
1029  * frames. We also sneak the broadcast address into the hash filter since
1030  * we need that too.
1031  */
1032 void dc_setfilt_21143(sc)
1033 	struct dc_softc		*sc;
1034 {
1035 	struct dc_desc		*sframe;
1036 	u_int32_t		h, crc_mask, *sp;
1037 	struct ifmultiaddr	*ifma;
1038 	struct ifnet		*ifp;
1039 	int			i;
1040 
1041 	ifp = &sc->arpcom.ac_if;
1042 
1043 	i = sc->dc_cdata.dc_tx_prod;
1044 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1045 	sc->dc_cdata.dc_tx_cnt++;
1046 	sframe = &sc->dc_ldata->dc_tx_list[i];
1047 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1048 	bzero((char *)sp, DC_SFRAME_LEN);
1049 
1050 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1051 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1052 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1053 
1054 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1055 
1056 	/* If we want promiscuous mode, set the allframes bit. */
1057 	if (ifp->if_flags & IFF_PROMISC)
1058 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1059 	else
1060 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1061 
1062 	if (ifp->if_flags & IFF_ALLMULTI)
1063 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1064 	else
1065 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1066 
1067 	crc_mask = dc_crc_mask(sc);
1068 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1069 		if (ifma->ifma_addr->sa_family != AF_LINK)
1070 			continue;
1071 		h = ether_crc32_le(
1072 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1073 			ETHER_ADDR_LEN) & crc_mask;
1074 		sp[h >> 4] |= 1 << (h & 0xF);
1075 	}
1076 
1077 	if (ifp->if_flags & IFF_BROADCAST) {
1078 		h = ether_crc32_le(ifp->if_broadcastaddr,
1079 				   ETHER_ADDR_LEN) & crc_mask;
1080 		sp[h >> 4] |= 1 << (h & 0xF);
1081 	}
1082 
1083 	/* Set our MAC address */
1084 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1085 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1086 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1087 
1088 	sframe->dc_status = DC_TXSTAT_OWN;
1089 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1090 
1091 	/*
1092 	 * The PNIC takes an exceedingly long time to process its
1093 	 * setup frame; wait 10ms after posting the setup frame
1094 	 * before proceeding, just so it has time to swallow its
1095 	 * medicine.
1096 	 */
1097 	DELAY(10000);
1098 
1099 	ifp->if_timer = 5;
1100 
1101 	return;
1102 }
1103 
1104 void dc_setfilt_admtek(sc)
1105 	struct dc_softc		*sc;
1106 {
1107 	struct ifnet		*ifp;
1108 	int			h = 0;
1109 	u_int32_t		crc_mask;
1110 	u_int32_t		hashes[2] = { 0, 0 };
1111 	struct ifmultiaddr	*ifma;
1112 
1113 	ifp = &sc->arpcom.ac_if;
1114 
1115 	/* Init our MAC address */
1116 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1117 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1118 
1119 	/* If we want promiscuous mode, set the allframes bit. */
1120 	if (ifp->if_flags & IFF_PROMISC)
1121 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1122 	else
1123 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1124 
1125 	if (ifp->if_flags & IFF_ALLMULTI)
1126 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1127 	else
1128 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1129 
1130 	/* first, zot all the existing hash bits */
1131 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1132 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1133 
1134 	/*
1135 	 * If we're already in promisc or allmulti mode, we
1136 	 * don't have to bother programming the multicast filter.
1137 	 */
1138 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1139 		return;
1140 
1141 	/* now program new ones */
1142 	if (DC_IS_CENTAUR(sc))
1143 		crc_mask = dc_crc_mask(sc);
1144 	else
1145 		crc_mask = 0x3f;
1146 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1147 		if (ifma->ifma_addr->sa_family != AF_LINK)
1148 			continue;
1149 		if (DC_IS_CENTAUR(sc)) {
1150 			h = ether_crc32_le(
1151 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1152 				ETHER_ADDR_LEN) & crc_mask;
1153 		} else {
1154 			h = ether_crc32_be(
1155 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1156 				ETHER_ADDR_LEN);
1157 			h = (h >> 26) & crc_mask;
1158 		}
1159 		if (h < 32)
1160 			hashes[0] |= (1 << h);
1161 		else
1162 			hashes[1] |= (1 << (h - 32));
1163 	}
1164 
1165 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1166 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1167 
1168 	return;
1169 }
1170 
1171 void dc_setfilt_asix(sc)
1172 	struct dc_softc		*sc;
1173 {
1174 	struct ifnet		*ifp;
1175 	int			h = 0;
1176 	u_int32_t		hashes[2] = { 0, 0 };
1177 	struct ifmultiaddr	*ifma;
1178 
1179 	ifp = &sc->arpcom.ac_if;
1180 
1181         /* Init our MAC address */
1182         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1183         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1184 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1185         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1186         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1187 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1188 
1189 	/* If we want promiscuous mode, set the allframes bit. */
1190 	if (ifp->if_flags & IFF_PROMISC)
1191 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1192 	else
1193 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1194 
1195 	if (ifp->if_flags & IFF_ALLMULTI)
1196 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1197 	else
1198 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1199 
1200 	/*
1201 	 * The ASIX chip has a special bit to enable reception
1202 	 * of broadcast frames.
1203 	 */
1204 	if (ifp->if_flags & IFF_BROADCAST)
1205 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1206 	else
1207 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1208 
1209 	/* first, zot all the existing hash bits */
1210 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1211 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1212 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1213 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1214 
1215 	/*
1216 	 * If we're already in promisc or allmulti mode, we
1217 	 * don't have to bother programming the multicast filter.
1218 	 */
1219 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1220 		return;
1221 
1222 	/* now program new ones */
1223 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1224 		if (ifma->ifma_addr->sa_family != AF_LINK)
1225 			continue;
1226 		h = ether_crc32_be(
1227 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1228 			ETHER_ADDR_LEN);
1229 		h = (h >> 26) & 0x3f;
1230 		if (h < 32)
1231 			hashes[0] |= (1 << h);
1232 		else
1233 			hashes[1] |= (1 << (h - 32));
1234 	}
1235 
1236 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1237 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1238 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1239 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1240 
1241 	return;
1242 }
1243 
1244 static void dc_setfilt(sc)
1245 	struct dc_softc		*sc;
1246 {
1247 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1248 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1249 		dc_setfilt_21143(sc);
1250 
1251 	if (DC_IS_ASIX(sc))
1252 		dc_setfilt_asix(sc);
1253 
1254 	if (DC_IS_ADMTEK(sc))
1255 		dc_setfilt_admtek(sc);
1256 
1257 	return;
1258 }
1259 
1260 /*
1261  * In order to fiddle with the
1262  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1263  * first have to put the transmit and/or receive logic in the idle state.
1264  */
1265 static void dc_setcfg(sc, media)
1266 	struct dc_softc		*sc;
1267 	int			media;
1268 {
1269 	int			i, restart = 0;
1270 	u_int32_t		isr;
1271 
1272 	if (IFM_SUBTYPE(media) == IFM_NONE)
1273 		return;
1274 
1275 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1276 		restart = 1;
1277 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1278 
1279 		for (i = 0; i < DC_TIMEOUT; i++) {
1280 			isr = CSR_READ_4(sc, DC_ISR);
1281 			if (isr & DC_ISR_TX_IDLE ||
1282 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1283 				break;
1284 			DELAY(10);
1285 		}
1286 
1287 		if (i == DC_TIMEOUT) {
1288 			if_printf(&sc->arpcom.ac_if,
1289 			    "failed to force tx and rx to idle state\n");
1290 		}
1291 	}
1292 
1293 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1294 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1295 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1296 		if (sc->dc_pmode == DC_PMODE_MII) {
1297 			int	watchdogreg;
1298 
1299 			if (DC_IS_INTEL(sc)) {
1300 			/* there's a write enable bit here that reads as 1 */
1301 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1302 				watchdogreg &= ~DC_WDOG_CTLWREN;
1303 				watchdogreg |= DC_WDOG_JABBERDIS;
1304 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1305 			} else {
1306 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1307 			}
1308 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1309 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1310 			if (sc->dc_type == DC_TYPE_98713)
1311 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1312 				    DC_NETCFG_SCRAMBLER));
1313 			if (!DC_IS_DAVICOM(sc))
1314 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1315 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1316 			if (DC_IS_INTEL(sc))
1317 				dc_apply_fixup(sc, IFM_AUTO);
1318 		} else {
1319 			if (DC_IS_PNIC(sc)) {
1320 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1321 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1322 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1323 			}
1324 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1325 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1326 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1327 			if (DC_IS_INTEL(sc))
1328 				dc_apply_fixup(sc,
1329 				    (media & IFM_GMASK) == IFM_FDX ?
1330 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1331 		}
1332 	}
1333 
1334 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1335 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1336 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1337 		if (sc->dc_pmode == DC_PMODE_MII) {
1338 			int	watchdogreg;
1339 
1340 			/* there's a write enable bit here that reads as 1 */
1341 			if (DC_IS_INTEL(sc)) {
1342 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1343 				watchdogreg &= ~DC_WDOG_CTLWREN;
1344 				watchdogreg |= DC_WDOG_JABBERDIS;
1345 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1346 			} else {
1347 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1348 			}
1349 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1350 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1351 			if (sc->dc_type == DC_TYPE_98713)
1352 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1353 			if (!DC_IS_DAVICOM(sc))
1354 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1355 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1356 			if (DC_IS_INTEL(sc))
1357 				dc_apply_fixup(sc, IFM_AUTO);
1358 		} else {
1359 			if (DC_IS_PNIC(sc)) {
1360 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1361 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1362 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1363 			}
1364 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1365 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1366 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1367 			if (DC_IS_INTEL(sc)) {
1368 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1369 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1370 				if ((media & IFM_GMASK) == IFM_FDX)
1371 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1372 				else
1373 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1374 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1375 				DC_CLRBIT(sc, DC_10BTCTRL,
1376 				    DC_TCTL_AUTONEGENBL);
1377 				dc_apply_fixup(sc,
1378 				    (media & IFM_GMASK) == IFM_FDX ?
1379 				    IFM_10_T|IFM_FDX : IFM_10_T);
1380 				DELAY(20000);
1381 			}
1382 		}
1383 	}
1384 
1385 	/*
1386 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1387 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1388 	 * on the external MII port.
1389 	 */
1390 	if (DC_IS_DAVICOM(sc)) {
1391 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1392 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1393 			sc->dc_link = 1;
1394 		} else {
1395 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1396 		}
1397 	}
1398 
1399 	if ((media & IFM_GMASK) == IFM_FDX) {
1400 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1401 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1402 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1403 	} else {
1404 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1405 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1406 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1407 	}
1408 
1409 	if (restart)
1410 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1411 
1412 	return;
1413 }
1414 
1415 static void dc_reset(sc)
1416 	struct dc_softc		*sc;
1417 {
1418 	int		i;
1419 
1420 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1421 
1422 	for (i = 0; i < DC_TIMEOUT; i++) {
1423 		DELAY(10);
1424 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1425 			break;
1426 	}
1427 
1428 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1429 		DELAY(10000);
1430 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1431 		i = 0;
1432 	}
1433 
1434 	if (i == DC_TIMEOUT)
1435 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1436 
1437 	/* Wait a little while for the chip to get its brains in order. */
1438 	DELAY(1000);
1439 
1440 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1441 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1442 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1443 
1444 	/*
1445 	 * Bring the SIA out of reset. In some cases, it looks
1446 	 * like failing to unreset the SIA soon enough gets it
1447 	 * into a state where it will never come out of reset
1448 	 * until we reset the whole chip again.
1449 	 */
1450 	if (DC_IS_INTEL(sc)) {
1451 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1452 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1453 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1454 	}
1455 
1456         return;
1457 }
1458 
1459 static struct dc_type *dc_devtype(dev)
1460 	device_t		dev;
1461 {
1462 	struct dc_type		*t;
1463 	u_int32_t		rev;
1464 
1465 	t = dc_devs;
1466 
1467 	while(t->dc_name != NULL) {
1468 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1469 		    (pci_get_device(dev) == t->dc_did)) {
1470 			/* Check the PCI revision */
1471 			rev = pci_get_revid(dev);
1472 			if (t->dc_did == DC_DEVICEID_98713 &&
1473 			    rev >= DC_REVISION_98713A)
1474 				t++;
1475 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1476 			    rev >= DC_REVISION_98713A)
1477 				t++;
1478 			if (t->dc_did == DC_DEVICEID_987x5 &&
1479 			    rev >= DC_REVISION_98715AEC_C)
1480 				t++;
1481 			if (t->dc_did == DC_DEVICEID_987x5 &&
1482 			    rev >= DC_REVISION_98725)
1483 				t++;
1484 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1485 			    rev >= DC_REVISION_88141)
1486 				t++;
1487 			if (t->dc_did == DC_DEVICEID_82C168 &&
1488 			    rev >= DC_REVISION_82C169)
1489 				t++;
1490 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1491 			    rev >= DC_REVISION_DM9102A)
1492 				t++;
1493 			return(t);
1494 		}
1495 		t++;
1496 	}
1497 
1498 	return(NULL);
1499 }
1500 
1501 /*
1502  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1503  * IDs against our list and return a device name if we find a match.
1504  * We do a little bit of extra work to identify the exact type of
1505  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1506  * but different revision IDs. The same is true for 98715/98715A
1507  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1508  * cases, the exact chip revision affects driver behavior.
1509  */
1510 static int dc_probe(dev)
1511 	device_t		dev;
1512 {
1513 	struct dc_type		*t;
1514 
1515 	t = dc_devtype(dev);
1516 
1517 	if (t != NULL) {
1518 		device_set_desc(dev, t->dc_name);
1519 		return(0);
1520 	}
1521 
1522 	return(ENXIO);
1523 }
1524 
1525 static void dc_acpi(dev)
1526 	device_t		dev;
1527 {
1528 	u_int32_t		r, cptr;
1529 
1530 	/* Find the location of the capabilities block */
1531 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1532 
1533 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1534 	if (r == 0x01) {
1535 
1536 		r = pci_read_config(dev, cptr + 4, 4);
1537 		if (r & DC_PSTATE_D3) {
1538 			u_int32_t		iobase, membase, irq;
1539 			struct dc_softc		*sc;
1540 
1541 			/* Save important PCI config data. */
1542 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1543 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1544 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1545 
1546 			sc = device_get_softc(dev);
1547 			/* Reset the power state. */
1548 			if_printf(&sc->arpcom.ac_if,
1549 				  "chip is in D%d power mode "
1550 				  "-- setting to D0\n", r & DC_PSTATE_D3);
1551 			r &= 0xFFFFFFFC;
1552 			pci_write_config(dev, cptr + 4, r, 4);
1553 
1554 			/* Restore PCI config data. */
1555 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1556 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1557 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1558 		}
1559 	}
1560 }
1561 
1562 static void dc_apply_fixup(sc, media)
1563 	struct dc_softc		*sc;
1564 	int			media;
1565 {
1566 	struct dc_mediainfo	*m;
1567 	u_int8_t		*p;
1568 	int			i;
1569 	u_int32_t		reg;
1570 
1571 	m = sc->dc_mi;
1572 
1573 	while (m != NULL) {
1574 		if (m->dc_media == media)
1575 			break;
1576 		m = m->dc_next;
1577 	}
1578 
1579 	if (m == NULL)
1580 		return;
1581 
1582 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1583 		reg = (p[0] | (p[1] << 8)) << 16;
1584 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1585 	}
1586 
1587 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1588 		reg = (p[0] | (p[1] << 8)) << 16;
1589 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1590 	}
1591 
1592 	return;
1593 }
1594 
1595 static void dc_decode_leaf_sia(sc, l)
1596 	struct dc_softc		*sc;
1597 	struct dc_eblock_sia	*l;
1598 {
1599 	struct dc_mediainfo	*m;
1600 
1601 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1602 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1603 		m->dc_media = IFM_10_T;
1604 
1605 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1606 		m->dc_media = IFM_10_T|IFM_FDX;
1607 
1608 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1609 		m->dc_media = IFM_10_2;
1610 
1611 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1612 		m->dc_media = IFM_10_5;
1613 
1614 	m->dc_gp_len = 2;
1615 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1616 
1617 	m->dc_next = sc->dc_mi;
1618 	sc->dc_mi = m;
1619 
1620 	sc->dc_pmode = DC_PMODE_SIA;
1621 
1622 	return;
1623 }
1624 
1625 static void dc_decode_leaf_sym(sc, l)
1626 	struct dc_softc		*sc;
1627 	struct dc_eblock_sym	*l;
1628 {
1629 	struct dc_mediainfo	*m;
1630 
1631 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1632 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1633 		m->dc_media = IFM_100_TX;
1634 
1635 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1636 		m->dc_media = IFM_100_TX|IFM_FDX;
1637 
1638 	m->dc_gp_len = 2;
1639 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1640 
1641 	m->dc_next = sc->dc_mi;
1642 	sc->dc_mi = m;
1643 
1644 	sc->dc_pmode = DC_PMODE_SYM;
1645 
1646 	return;
1647 }
1648 
1649 static void dc_decode_leaf_mii(sc, l)
1650 	struct dc_softc		*sc;
1651 	struct dc_eblock_mii	*l;
1652 {
1653 	u_int8_t		*p;
1654 	struct dc_mediainfo	*m;
1655 
1656 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1657 	/* We abuse IFM_AUTO to represent MII. */
1658 	m->dc_media = IFM_AUTO;
1659 	m->dc_gp_len = l->dc_gpr_len;
1660 
1661 	p = (u_int8_t *)l;
1662 	p += sizeof(struct dc_eblock_mii);
1663 	m->dc_gp_ptr = p;
1664 	p += 2 * l->dc_gpr_len;
1665 	m->dc_reset_len = *p;
1666 	p++;
1667 	m->dc_reset_ptr = p;
1668 
1669 	m->dc_next = sc->dc_mi;
1670 	sc->dc_mi = m;
1671 
1672 	return;
1673 }
1674 
1675 static void dc_read_srom(sc, bits)
1676 	struct dc_softc		*sc;
1677 	int			bits;
1678 {
1679 	int size;
1680 
1681 	size = 2 << bits;
1682 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1683 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1684 }
1685 
1686 static void dc_parse_21143_srom(sc)
1687 	struct dc_softc		*sc;
1688 {
1689 	struct dc_leaf_hdr	*lhdr;
1690 	struct dc_eblock_hdr	*hdr;
1691 	int			i, loff;
1692 	char			*ptr;
1693 	int			have_mii;
1694 
1695 	have_mii = 0;
1696 	loff = sc->dc_srom[27];
1697 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1698 
1699 	ptr = (char *)lhdr;
1700 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1701 	/*
1702 	 * Look if we got a MII media block.
1703 	 */
1704 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1705 		hdr = (struct dc_eblock_hdr *)ptr;
1706 		if (hdr->dc_type == DC_EBLOCK_MII)
1707 		    have_mii++;
1708 
1709 		ptr += (hdr->dc_len & 0x7F);
1710 		ptr++;
1711 	}
1712 
1713 	/*
1714 	 * Do the same thing again. Only use SIA and SYM media
1715 	 * blocks if no MII media block is available.
1716 	 */
1717 	ptr = (char *)lhdr;
1718 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1719 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1720 		hdr = (struct dc_eblock_hdr *)ptr;
1721 		switch(hdr->dc_type) {
1722 		case DC_EBLOCK_MII:
1723 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1724 			break;
1725 		case DC_EBLOCK_SIA:
1726 			if (! have_mii)
1727 				dc_decode_leaf_sia(sc,
1728 				    (struct dc_eblock_sia *)hdr);
1729 			break;
1730 		case DC_EBLOCK_SYM:
1731 			if (! have_mii)
1732 				dc_decode_leaf_sym(sc,
1733 				    (struct dc_eblock_sym *)hdr);
1734 			break;
1735 		default:
1736 			/* Don't care. Yet. */
1737 			break;
1738 		}
1739 		ptr += (hdr->dc_len & 0x7F);
1740 		ptr++;
1741 	}
1742 
1743 	return;
1744 }
1745 
1746 /*
1747  * Attach the interface. Allocate softc structures, do ifmedia
1748  * setup and ethernet/BPF attach.
1749  */
1750 static int dc_attach(dev)
1751 	device_t		dev;
1752 {
1753 	int			tmp = 0;
1754 	u_char			eaddr[ETHER_ADDR_LEN];
1755 	u_int32_t		command;
1756 	struct dc_softc		*sc;
1757 	struct ifnet		*ifp;
1758 	u_int32_t		revision;
1759 	int			error = 0, rid, mac_offset;
1760 
1761 	sc = device_get_softc(dev);
1762 	callout_init(&sc->dc_stat_timer);
1763 
1764 	ifp = &sc->arpcom.ac_if;
1765 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1766 
1767 	/*
1768 	 * Handle power management nonsense.
1769 	 */
1770 	dc_acpi(dev);
1771 
1772 	/*
1773 	 * Map control/status registers.
1774 	 */
1775 	pci_enable_busmaster(dev);
1776 
1777 	rid = DC_RID;
1778 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1779 
1780 	if (sc->dc_res == NULL) {
1781 		device_printf(dev, "couldn't map ports/memory\n");
1782 		error = ENXIO;
1783 		goto fail;
1784 	}
1785 
1786 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1787 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1788 
1789 	/* Allocate interrupt */
1790 	rid = 0;
1791 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1792 	    RF_SHAREABLE | RF_ACTIVE);
1793 
1794 	if (sc->dc_irq == NULL) {
1795 		device_printf(dev, "couldn't map interrupt\n");
1796 		error = ENXIO;
1797 		goto fail;
1798 	}
1799 
1800 	/* Need this info to decide on a chip type. */
1801 	sc->dc_info = dc_devtype(dev);
1802 	revision = pci_get_revid(dev);
1803 
1804 	/* Get the eeprom width, but PNIC has diff eeprom */
1805 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1806 		dc_eeprom_width(sc);
1807 
1808 	switch(sc->dc_info->dc_did) {
1809 	case DC_DEVICEID_21143:
1810 		sc->dc_type = DC_TYPE_21143;
1811 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1812 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1813 		/* Save EEPROM contents so we can parse them later. */
1814 		dc_read_srom(sc, sc->dc_romwidth);
1815 		break;
1816 	case DC_DEVICEID_DM9009:
1817 	case DC_DEVICEID_DM9100:
1818 	case DC_DEVICEID_DM9102:
1819 		sc->dc_type = DC_TYPE_DM9102;
1820 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1821 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1822 		sc->dc_pmode = DC_PMODE_MII;
1823 		/* Increase the latency timer value. */
1824 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1825 		command &= 0xFFFF00FF;
1826 		command |= 0x00008000;
1827 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1828 		break;
1829 	case DC_DEVICEID_AL981:
1830 		sc->dc_type = DC_TYPE_AL981;
1831 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1832 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1833 		sc->dc_pmode = DC_PMODE_MII;
1834 		dc_read_srom(sc, sc->dc_romwidth);
1835 		break;
1836 	case DC_DEVICEID_AN985:
1837 	case DC_DEVICEID_EN2242:
1838 	case DC_DEVICEID_3CSOHOB:
1839 		sc->dc_type = DC_TYPE_AN985;
1840 		sc->dc_flags |= DC_64BIT_HASH;
1841 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1842 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1843 		sc->dc_pmode = DC_PMODE_MII;
1844 		dc_read_srom(sc, sc->dc_romwidth);
1845 		break;
1846 	case DC_DEVICEID_98713:
1847 	case DC_DEVICEID_98713_CP:
1848 		if (revision < DC_REVISION_98713A) {
1849 			sc->dc_type = DC_TYPE_98713;
1850 		}
1851 		if (revision >= DC_REVISION_98713A) {
1852 			sc->dc_type = DC_TYPE_98713A;
1853 			sc->dc_flags |= DC_21143_NWAY;
1854 		}
1855 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1856 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1857 		break;
1858 	case DC_DEVICEID_987x5:
1859 	case DC_DEVICEID_EN1217:
1860 		/*
1861 		 * Macronix MX98715AEC-C/D/E parts have only a
1862 		 * 128-bit hash table. We need to deal with these
1863 		 * in the same manner as the PNIC II so that we
1864 		 * get the right number of bits out of the
1865 		 * CRC routine.
1866 		 */
1867 		if (revision >= DC_REVISION_98715AEC_C &&
1868 		    revision < DC_REVISION_98725)
1869 			sc->dc_flags |= DC_128BIT_HASH;
1870 		sc->dc_type = DC_TYPE_987x5;
1871 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1872 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1873 		break;
1874 	case DC_DEVICEID_98727:
1875 		sc->dc_type = DC_TYPE_987x5;
1876 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1877 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1878 		break;
1879 	case DC_DEVICEID_82C115:
1880 		sc->dc_type = DC_TYPE_PNICII;
1881 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1882 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1883 		break;
1884 	case DC_DEVICEID_82C168:
1885 		sc->dc_type = DC_TYPE_PNIC;
1886 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1887 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1888 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1889 		if (revision < DC_REVISION_82C169)
1890 			sc->dc_pmode = DC_PMODE_SYM;
1891 		break;
1892 	case DC_DEVICEID_AX88140A:
1893 		sc->dc_type = DC_TYPE_ASIX;
1894 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1895 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1896 		sc->dc_pmode = DC_PMODE_MII;
1897 		break;
1898 	case DC_DEVICEID_RS7112:
1899 		sc->dc_type = DC_TYPE_CONEXANT;
1900 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1901 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1902 		sc->dc_pmode = DC_PMODE_MII;
1903 		dc_read_srom(sc, sc->dc_romwidth);
1904 		break;
1905 	default:
1906 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
1907 		break;
1908 	}
1909 
1910 	/* Save the cache line size. */
1911 	if (DC_IS_DAVICOM(sc))
1912 		sc->dc_cachesize = 0;
1913 	else
1914 		sc->dc_cachesize = pci_read_config(dev,
1915 		    DC_PCI_CFLT, 4) & 0xFF;
1916 
1917 	/* Reset the adapter. */
1918 	dc_reset(sc);
1919 
1920 	/* Take 21143 out of snooze mode */
1921 	if (DC_IS_INTEL(sc)) {
1922 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1923 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1924 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1925 	}
1926 
1927 	/*
1928 	 * Try to learn something about the supported media.
1929 	 * We know that ASIX and ADMtek and Davicom devices
1930 	 * will *always* be using MII media, so that's a no-brainer.
1931 	 * The tricky ones are the Macronix/PNIC II and the
1932 	 * Intel 21143.
1933 	 */
1934 	if (DC_IS_INTEL(sc))
1935 		dc_parse_21143_srom(sc);
1936 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1937 		if (sc->dc_type == DC_TYPE_98713)
1938 			sc->dc_pmode = DC_PMODE_MII;
1939 		else
1940 			sc->dc_pmode = DC_PMODE_SYM;
1941 	} else if (!sc->dc_pmode)
1942 		sc->dc_pmode = DC_PMODE_MII;
1943 
1944 	/*
1945 	 * Get station address from the EEPROM.
1946 	 */
1947 	switch(sc->dc_type) {
1948 	case DC_TYPE_98713:
1949 	case DC_TYPE_98713A:
1950 	case DC_TYPE_987x5:
1951 	case DC_TYPE_PNICII:
1952 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1953 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1954 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1955 		break;
1956 	case DC_TYPE_PNIC:
1957 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1958 		break;
1959 	case DC_TYPE_DM9102:
1960 	case DC_TYPE_21143:
1961 	case DC_TYPE_ASIX:
1962 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1963 		break;
1964 	case DC_TYPE_AL981:
1965 	case DC_TYPE_AN985:
1966 		bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr,
1967 		    ETHER_ADDR_LEN);
1968 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
1969 		break;
1970 	case DC_TYPE_CONEXANT:
1971 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
1972 		break;
1973 	default:
1974 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1975 		break;
1976 	}
1977 
1978 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1979 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1980 
1981 	if (sc->dc_ldata == NULL) {
1982 		device_printf(dev, "no memory for list buffers!\n");
1983 		error = ENXIO;
1984 		goto fail;
1985 	}
1986 
1987 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
1988 
1989 	ifp->if_softc = sc;
1990 	ifp->if_mtu = ETHERMTU;
1991 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1992 	ifp->if_ioctl = dc_ioctl;
1993 	ifp->if_start = dc_start;
1994 #ifdef DEVICE_POLLING
1995 	ifp->if_poll = dc_poll;
1996 #endif
1997 	ifp->if_watchdog = dc_watchdog;
1998 	ifp->if_init = dc_init;
1999 	ifp->if_baudrate = 10000000;
2000 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2001 	ifq_set_ready(&ifp->if_snd);
2002 
2003 	/*
2004 	 * Do MII setup. If this is a 21143, check for a PHY on the
2005 	 * MII bus after applying any necessary fixups to twiddle the
2006 	 * GPIO bits. If we don't end up finding a PHY, restore the
2007 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2008 	 * driver instead.
2009 	 */
2010 	if (DC_IS_INTEL(sc)) {
2011 		dc_apply_fixup(sc, IFM_AUTO);
2012 		tmp = sc->dc_pmode;
2013 		sc->dc_pmode = DC_PMODE_MII;
2014 	}
2015 
2016 	error = mii_phy_probe(dev, &sc->dc_miibus,
2017 	    dc_ifmedia_upd, dc_ifmedia_sts);
2018 
2019 	if (error && DC_IS_INTEL(sc)) {
2020 		sc->dc_pmode = tmp;
2021 		if (sc->dc_pmode != DC_PMODE_SIA)
2022 			sc->dc_pmode = DC_PMODE_SYM;
2023 		sc->dc_flags |= DC_21143_NWAY;
2024 		mii_phy_probe(dev, &sc->dc_miibus,
2025 		    dc_ifmedia_upd, dc_ifmedia_sts);
2026 		/*
2027 		 * For non-MII cards, we need to have the 21143
2028 		 * drive the LEDs. Except there are some systems
2029 		 * like the NEC VersaPro NoteBook PC which have no
2030 		 * LEDs, and twiddling these bits has adverse effects
2031 		 * on them. (I.e. you suddenly can't get a link.)
2032 		 */
2033 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2034 			sc->dc_flags |= DC_TULIP_LEDS;
2035 		error = 0;
2036 	}
2037 
2038 	if (error) {
2039 		device_printf(dev, "MII without any PHY!\n");
2040 		error = ENXIO;
2041 		goto fail;
2042 	}
2043 
2044 	/*
2045 	 * Call MI attach routine.
2046 	 */
2047 	ether_ifattach(ifp, eaddr);
2048 
2049 	if (DC_IS_ADMTEK(sc)) {
2050 		/*
2051 		 * Set automatic TX underrun recovery for the ADMtek chips
2052 		 */
2053 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2054 	}
2055 
2056 	/*
2057 	 * Tell the upper layer(s) we support long frames.
2058 	 */
2059 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2060 
2061 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
2062 			       dc_intr, sc, &sc->dc_intrhand, NULL);
2063 	if (error) {
2064 		ether_ifdetach(ifp);
2065 		device_printf(dev, "couldn't set up irq\n");
2066 		goto fail;
2067 	}
2068 
2069 	return(0);
2070 
2071 fail:
2072 	dc_detach(dev);
2073 	return(error);
2074 }
2075 
2076 static int dc_detach(dev)
2077 	device_t		dev;
2078 {
2079 	struct dc_softc *sc = device_get_softc(dev);
2080 	struct ifnet *ifp = &sc->arpcom.ac_if;
2081 	struct dc_mediainfo *m;
2082 
2083 	crit_enter();
2084 
2085 	if (device_is_attached(dev)) {
2086 		dc_stop(sc);
2087 		ether_ifdetach(ifp);
2088 	}
2089 
2090 	if (sc->dc_miibus)
2091 		device_delete_child(dev, sc->dc_miibus);
2092 	bus_generic_detach(dev);
2093 
2094 	if (sc->dc_intrhand)
2095 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2096 
2097 	crit_exit();
2098 
2099 	if (sc->dc_irq)
2100 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2101 	if (sc->dc_res)
2102 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2103 
2104 	if (sc->dc_ldata)
2105 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2106 	if (sc->dc_pnic_rx_buf != NULL)
2107 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2108 
2109 	while(sc->dc_mi != NULL) {
2110 		m = sc->dc_mi->dc_next;
2111 		free(sc->dc_mi, M_DEVBUF);
2112 		sc->dc_mi = m;
2113 	}
2114 
2115 	if (sc->dc_srom)
2116 		free(sc->dc_srom, M_DEVBUF);
2117 
2118 	return(0);
2119 }
2120 
2121 /*
2122  * Initialize the transmit descriptors.
2123  */
2124 static int dc_list_tx_init(sc)
2125 	struct dc_softc		*sc;
2126 {
2127 	struct dc_chain_data	*cd;
2128 	struct dc_list_data	*ld;
2129 	int			i;
2130 
2131 	cd = &sc->dc_cdata;
2132 	ld = sc->dc_ldata;
2133 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2134 		if (i == (DC_TX_LIST_CNT - 1)) {
2135 			ld->dc_tx_list[i].dc_next =
2136 			    vtophys(&ld->dc_tx_list[0]);
2137 		} else {
2138 			ld->dc_tx_list[i].dc_next =
2139 			    vtophys(&ld->dc_tx_list[i + 1]);
2140 		}
2141 		cd->dc_tx_chain[i] = NULL;
2142 		ld->dc_tx_list[i].dc_data = 0;
2143 		ld->dc_tx_list[i].dc_ctl = 0;
2144 	}
2145 
2146 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2147 
2148 	return(0);
2149 }
2150 
2151 
2152 /*
2153  * Initialize the RX descriptors and allocate mbufs for them. Note that
2154  * we arrange the descriptors in a closed ring, so that the last descriptor
2155  * points back to the first.
2156  */
2157 static int dc_list_rx_init(sc)
2158 	struct dc_softc		*sc;
2159 {
2160 	struct dc_chain_data	*cd;
2161 	struct dc_list_data	*ld;
2162 	int			i;
2163 
2164 	cd = &sc->dc_cdata;
2165 	ld = sc->dc_ldata;
2166 
2167 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2168 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2169 			return(ENOBUFS);
2170 		if (i == (DC_RX_LIST_CNT - 1)) {
2171 			ld->dc_rx_list[i].dc_next =
2172 			    vtophys(&ld->dc_rx_list[0]);
2173 		} else {
2174 			ld->dc_rx_list[i].dc_next =
2175 			    vtophys(&ld->dc_rx_list[i + 1]);
2176 		}
2177 	}
2178 
2179 	cd->dc_rx_prod = 0;
2180 
2181 	return(0);
2182 }
2183 
2184 /*
2185  * Initialize an RX descriptor and attach an MBUF cluster.
2186  */
2187 static int dc_newbuf(sc, i, m)
2188 	struct dc_softc		*sc;
2189 	int			i;
2190 	struct mbuf		*m;
2191 {
2192 	struct mbuf		*m_new = NULL;
2193 	struct dc_desc		*c;
2194 
2195 	c = &sc->dc_ldata->dc_rx_list[i];
2196 
2197 	if (m == NULL) {
2198 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2199 		if (m_new == NULL)
2200 			return (ENOBUFS);
2201 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2202 	} else {
2203 		m_new = m;
2204 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2205 		m_new->m_data = m_new->m_ext.ext_buf;
2206 	}
2207 
2208 	m_adj(m_new, sizeof(u_int64_t));
2209 
2210 	/*
2211 	 * If this is a PNIC chip, zero the buffer. This is part
2212 	 * of the workaround for the receive bug in the 82c168 and
2213 	 * 82c169 chips.
2214 	 */
2215 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2216 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2217 
2218 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2219 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2220 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2221 	c->dc_status = DC_RXSTAT_OWN;
2222 
2223 	return(0);
2224 }
2225 
2226 /*
2227  * Grrrrr.
2228  * The PNIC chip has a terrible bug in it that manifests itself during
2229  * periods of heavy activity. The exact mode of failure if difficult to
2230  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2231  * will happen on slow machines. The bug is that sometimes instead of
2232  * uploading one complete frame during reception, it uploads what looks
2233  * like the entire contents of its FIFO memory. The frame we want is at
2234  * the end of the whole mess, but we never know exactly how much data has
2235  * been uploaded, so salvaging the frame is hard.
2236  *
2237  * There is only one way to do it reliably, and it's disgusting.
2238  * Here's what we know:
2239  *
2240  * - We know there will always be somewhere between one and three extra
2241  *   descriptors uploaded.
2242  *
2243  * - We know the desired received frame will always be at the end of the
2244  *   total data upload.
2245  *
2246  * - We know the size of the desired received frame because it will be
2247  *   provided in the length field of the status word in the last descriptor.
2248  *
2249  * Here's what we do:
2250  *
2251  * - When we allocate buffers for the receive ring, we bzero() them.
2252  *   This means that we know that the buffer contents should be all
2253  *   zeros, except for data uploaded by the chip.
2254  *
2255  * - We also force the PNIC chip to upload frames that include the
2256  *   ethernet CRC at the end.
2257  *
2258  * - We gather all of the bogus frame data into a single buffer.
2259  *
2260  * - We then position a pointer at the end of this buffer and scan
2261  *   backwards until we encounter the first non-zero byte of data.
2262  *   This is the end of the received frame. We know we will encounter
2263  *   some data at the end of the frame because the CRC will always be
2264  *   there, so even if the sender transmits a packet of all zeros,
2265  *   we won't be fooled.
2266  *
2267  * - We know the size of the actual received frame, so we subtract
2268  *   that value from the current pointer location. This brings us
2269  *   to the start of the actual received packet.
2270  *
2271  * - We copy this into an mbuf and pass it on, along with the actual
2272  *   frame length.
2273  *
2274  * The performance hit is tremendous, but it beats dropping frames all
2275  * the time.
2276  */
2277 
2278 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2279 static void dc_pnic_rx_bug_war(sc, idx)
2280 	struct dc_softc		*sc;
2281 	int			idx;
2282 {
2283 	struct dc_desc		*cur_rx;
2284 	struct dc_desc		*c = NULL;
2285 	struct mbuf		*m = NULL;
2286 	unsigned char		*ptr;
2287 	int			i, total_len;
2288 	u_int32_t		rxstat = 0;
2289 
2290 	i = sc->dc_pnic_rx_bug_save;
2291 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2292 	ptr = sc->dc_pnic_rx_buf;
2293 	bzero(ptr, DC_RXLEN * 5);
2294 
2295 	/* Copy all the bytes from the bogus buffers. */
2296 	while (1) {
2297 		c = &sc->dc_ldata->dc_rx_list[i];
2298 		rxstat = c->dc_status;
2299 		m = sc->dc_cdata.dc_rx_chain[i];
2300 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2301 		ptr += DC_RXLEN;
2302 		/* If this is the last buffer, break out. */
2303 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2304 			break;
2305 		dc_newbuf(sc, i, m);
2306 		DC_INC(i, DC_RX_LIST_CNT);
2307 	}
2308 
2309 	/* Find the length of the actual receive frame. */
2310 	total_len = DC_RXBYTES(rxstat);
2311 
2312 	/* Scan backwards until we hit a non-zero byte. */
2313 	while(*ptr == 0x00)
2314 		ptr--;
2315 
2316 	/* Round off. */
2317 	if ((uintptr_t)(ptr) & 0x3)
2318 		ptr -= 1;
2319 
2320 	/* Now find the start of the frame. */
2321 	ptr -= total_len;
2322 	if (ptr < sc->dc_pnic_rx_buf)
2323 		ptr = sc->dc_pnic_rx_buf;
2324 
2325 	/*
2326 	 * Now copy the salvaged frame to the last mbuf and fake up
2327 	 * the status word to make it look like a successful
2328  	 * frame reception.
2329 	 */
2330 	dc_newbuf(sc, i, m);
2331 	bcopy(ptr, mtod(m, char *), total_len);
2332 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2333 
2334 	return;
2335 }
2336 
2337 /*
2338  * This routine searches the RX ring for dirty descriptors in the
2339  * event that the rxeof routine falls out of sync with the chip's
2340  * current descriptor pointer. This may happen sometimes as a result
2341  * of a "no RX buffer available" condition that happens when the chip
2342  * consumes all of the RX buffers before the driver has a chance to
2343  * process the RX ring. This routine may need to be called more than
2344  * once to bring the driver back in sync with the chip, however we
2345  * should still be getting RX DONE interrupts to drive the search
2346  * for new packets in the RX ring, so we should catch up eventually.
2347  */
2348 static int dc_rx_resync(sc)
2349 	struct dc_softc		*sc;
2350 {
2351 	int			i, pos;
2352 	struct dc_desc		*cur_rx;
2353 
2354 	pos = sc->dc_cdata.dc_rx_prod;
2355 
2356 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2357 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2358 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2359 			break;
2360 		DC_INC(pos, DC_RX_LIST_CNT);
2361 	}
2362 
2363 	/* If the ring really is empty, then just return. */
2364 	if (i == DC_RX_LIST_CNT)
2365 		return(0);
2366 
2367 	/* We've fallen behing the chip: catch it. */
2368 	sc->dc_cdata.dc_rx_prod = pos;
2369 
2370 	return(EAGAIN);
2371 }
2372 
2373 /*
2374  * A frame has been uploaded: pass the resulting mbuf chain up to
2375  * the higher level protocols.
2376  */
2377 static void dc_rxeof(sc)
2378 	struct dc_softc		*sc;
2379 {
2380         struct mbuf		*m;
2381         struct ifnet		*ifp;
2382 	struct dc_desc		*cur_rx;
2383 	int			i, total_len = 0;
2384 	u_int32_t		rxstat;
2385 
2386 	ifp = &sc->arpcom.ac_if;
2387 	i = sc->dc_cdata.dc_rx_prod;
2388 
2389 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2390 
2391 #ifdef DEVICE_POLLING
2392 		if (ifp->if_flags & IFF_POLLING) {
2393 			if (sc->rxcycles <= 0)
2394 				break;
2395 			sc->rxcycles--;
2396 		}
2397 #endif /* DEVICE_POLLING */
2398 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2399 		rxstat = cur_rx->dc_status;
2400 		m = sc->dc_cdata.dc_rx_chain[i];
2401 		total_len = DC_RXBYTES(rxstat);
2402 
2403 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2404 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2405 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2406 					sc->dc_pnic_rx_bug_save = i;
2407 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2408 					DC_INC(i, DC_RX_LIST_CNT);
2409 					continue;
2410 				}
2411 				dc_pnic_rx_bug_war(sc, i);
2412 				rxstat = cur_rx->dc_status;
2413 				total_len = DC_RXBYTES(rxstat);
2414 			}
2415 		}
2416 
2417 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2418 
2419 		/*
2420 		 * If an error occurs, update stats, clear the
2421 		 * status word and leave the mbuf cluster in place:
2422 		 * it should simply get re-used next time this descriptor
2423 		 * comes up in the ring.  However, don't report long
2424 		 * frames as errors since they could be vlans
2425 		 */
2426 		if ((rxstat & DC_RXSTAT_RXERR)){
2427 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2428 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2429 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2430 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2431 				ifp->if_ierrors++;
2432 				if (rxstat & DC_RXSTAT_COLLSEEN)
2433 					ifp->if_collisions++;
2434 				dc_newbuf(sc, i, m);
2435 				if (rxstat & DC_RXSTAT_CRCERR) {
2436 					DC_INC(i, DC_RX_LIST_CNT);
2437 					continue;
2438 				} else {
2439 					dc_init(sc);
2440 					return;
2441 				}
2442 			}
2443 		}
2444 
2445 		/* No errors; receive the packet. */
2446 		total_len -= ETHER_CRC_LEN;
2447 
2448 #ifdef __i386__
2449 		/*
2450 		 * On the x86 we do not have alignment problems, so try to
2451 		 * allocate a new buffer for the receive ring, and pass up
2452 		 * the one where the packet is already, saving the expensive
2453 		 * copy done in m_devget().
2454 		 * If we are on an architecture with alignment problems, or
2455 		 * if the allocation fails, then use m_devget and leave the
2456 		 * existing buffer in the receive ring.
2457 		 */
2458 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2459 			m->m_pkthdr.rcvif = ifp;
2460 			m->m_pkthdr.len = m->m_len = total_len;
2461 			DC_INC(i, DC_RX_LIST_CNT);
2462 		} else
2463 #endif
2464 		{
2465 			struct mbuf *m0;
2466 
2467 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2468 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2469 			dc_newbuf(sc, i, m);
2470 			DC_INC(i, DC_RX_LIST_CNT);
2471 			if (m0 == NULL) {
2472 				ifp->if_ierrors++;
2473 				continue;
2474 			}
2475 			m_adj(m0, ETHER_ALIGN);
2476 			m = m0;
2477 		}
2478 
2479 		ifp->if_ipackets++;
2480 		(*ifp->if_input)(ifp, m);
2481 	}
2482 
2483 	sc->dc_cdata.dc_rx_prod = i;
2484 }
2485 
2486 /*
2487  * A frame was downloaded to the chip. It's safe for us to clean up
2488  * the list buffers.
2489  */
2490 
2491 static void
2492 dc_txeof(sc)
2493 	struct dc_softc		*sc;
2494 {
2495 	struct dc_desc		*cur_tx = NULL;
2496 	struct ifnet		*ifp;
2497 	int			idx;
2498 
2499 	ifp = &sc->arpcom.ac_if;
2500 
2501 	/*
2502 	 * Go through our tx list and free mbufs for those
2503 	 * frames that have been transmitted.
2504 	 */
2505 	idx = sc->dc_cdata.dc_tx_cons;
2506 	while(idx != sc->dc_cdata.dc_tx_prod) {
2507 		u_int32_t		txstat;
2508 
2509 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2510 		txstat = cur_tx->dc_status;
2511 
2512 		if (txstat & DC_TXSTAT_OWN)
2513 			break;
2514 
2515 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2516 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2517 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2518 				/*
2519 				 * Yes, the PNIC is so brain damaged
2520 				 * that it will sometimes generate a TX
2521 				 * underrun error while DMAing the RX
2522 				 * filter setup frame. If we detect this,
2523 				 * we have to send the setup frame again,
2524 				 * or else the filter won't be programmed
2525 				 * correctly.
2526 				 */
2527 				if (DC_IS_PNIC(sc)) {
2528 					if (txstat & DC_TXSTAT_ERRSUM)
2529 						dc_setfilt(sc);
2530 				}
2531 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2532 			}
2533 			sc->dc_cdata.dc_tx_cnt--;
2534 			DC_INC(idx, DC_TX_LIST_CNT);
2535 			continue;
2536 		}
2537 
2538 		if (DC_IS_CONEXANT(sc)) {
2539 			/*
2540 			 * For some reason Conexant chips like
2541 			 * setting the CARRLOST flag even when
2542 			 * the carrier is there. In CURRENT we
2543 			 * have the same problem for Xircom
2544 			 * cards !
2545 			 */
2546 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2547 			    sc->dc_pmode == DC_PMODE_MII &&
2548 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2549 			    DC_TXSTAT_NOCARRIER)))
2550 				txstat &= ~DC_TXSTAT_ERRSUM;
2551 		} else {
2552 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2553 			    sc->dc_pmode == DC_PMODE_MII &&
2554 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2555 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2556 				txstat &= ~DC_TXSTAT_ERRSUM;
2557 		}
2558 
2559 		if (txstat & DC_TXSTAT_ERRSUM) {
2560 			ifp->if_oerrors++;
2561 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2562 				ifp->if_collisions++;
2563 			if (txstat & DC_TXSTAT_LATECOLL)
2564 				ifp->if_collisions++;
2565 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2566 				dc_init(sc);
2567 				return;
2568 			}
2569 		}
2570 
2571 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2572 
2573 		ifp->if_opackets++;
2574 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2575 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2576 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2577 		}
2578 
2579 		sc->dc_cdata.dc_tx_cnt--;
2580 		DC_INC(idx, DC_TX_LIST_CNT);
2581 	}
2582 
2583 	if (idx != sc->dc_cdata.dc_tx_cons) {
2584 	    	/* some buffers have been freed */
2585 		sc->dc_cdata.dc_tx_cons = idx;
2586 		ifp->if_flags &= ~IFF_OACTIVE;
2587 	}
2588 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2589 
2590 	return;
2591 }
2592 
2593 static void dc_tick(xsc)
2594 	void			*xsc;
2595 {
2596 	struct dc_softc *sc = xsc;
2597 	struct ifnet *ifp = &sc->arpcom.ac_if;
2598 	struct mii_data *mii;
2599 	u_int32_t r;
2600 
2601 	crit_enter();
2602 
2603 	mii = device_get_softc(sc->dc_miibus);
2604 
2605 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2606 		if (sc->dc_flags & DC_21143_NWAY) {
2607 			r = CSR_READ_4(sc, DC_10BTSTAT);
2608 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2609 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2610 				sc->dc_link = 0;
2611 				mii_mediachg(mii);
2612 			}
2613 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2614 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2615 				sc->dc_link = 0;
2616 				mii_mediachg(mii);
2617 			}
2618 			if (sc->dc_link == 0)
2619 				mii_tick(mii);
2620 		} else {
2621 			r = CSR_READ_4(sc, DC_ISR);
2622 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2623 			    sc->dc_cdata.dc_tx_cnt == 0)
2624 				mii_tick(mii);
2625 				if (!(mii->mii_media_status & IFM_ACTIVE))
2626 					sc->dc_link = 0;
2627 		}
2628 	} else
2629 		mii_tick(mii);
2630 
2631 	/*
2632 	 * When the init routine completes, we expect to be able to send
2633 	 * packets right away, and in fact the network code will send a
2634 	 * gratuitous ARP the moment the init routine marks the interface
2635 	 * as running. However, even though the MAC may have been initialized,
2636 	 * there may be a delay of a few seconds before the PHY completes
2637 	 * autonegotiation and the link is brought up. Any transmissions
2638 	 * made during that delay will be lost. Dealing with this is tricky:
2639 	 * we can't just pause in the init routine while waiting for the
2640 	 * PHY to come ready since that would bring the whole system to
2641 	 * a screeching halt for several seconds.
2642 	 *
2643 	 * What we do here is prevent the TX start routine from sending
2644 	 * any packets until a link has been established. After the
2645 	 * interface has been initialized, the tick routine will poll
2646 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2647 	 * that time, packets will stay in the send queue, and once the
2648 	 * link comes up, they will be flushed out to the wire.
2649 	 */
2650 	if (!sc->dc_link) {
2651 		mii_pollstat(mii);
2652 		if (mii->mii_media_status & IFM_ACTIVE &&
2653 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2654 			sc->dc_link++;
2655 			if (!ifq_is_empty(&ifp->if_snd))
2656 				dc_start(ifp);
2657 		}
2658 	}
2659 
2660 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2661 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2662 	else
2663 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2664 
2665 	crit_exit();
2666 }
2667 
2668 /*
2669  * A transmit underrun has occurred.  Back off the transmit threshold,
2670  * or switch to store and forward mode if we have to.
2671  */
2672 static void dc_tx_underrun(sc)
2673 	struct dc_softc		*sc;
2674 {
2675 	u_int32_t		isr;
2676 	int			i;
2677 
2678 	if (DC_IS_DAVICOM(sc))
2679 		dc_init(sc);
2680 
2681 	if (DC_IS_INTEL(sc)) {
2682 		/*
2683 		 * The real 21143 requires that the transmitter be idle
2684 		 * in order to change the transmit threshold or store
2685 		 * and forward state.
2686 		 */
2687 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2688 
2689 		for (i = 0; i < DC_TIMEOUT; i++) {
2690 			isr = CSR_READ_4(sc, DC_ISR);
2691 			if (isr & DC_ISR_TX_IDLE)
2692 				break;
2693 			DELAY(10);
2694 		}
2695 		if (i == DC_TIMEOUT) {
2696 			if_printf(&sc->arpcom.ac_if,
2697 				  "failed to force tx to idle state\n");
2698 			dc_init(sc);
2699 		}
2700 	}
2701 
2702 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2703 	sc->dc_txthresh += DC_TXTHRESH_INC;
2704 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2705 		printf("using store and forward mode\n");
2706 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2707 	} else {
2708 		printf("increasing TX threshold\n");
2709 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2710 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2711 	}
2712 
2713 	if (DC_IS_INTEL(sc))
2714 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2715 
2716 	return;
2717 }
2718 
2719 #ifdef DEVICE_POLLING
2720 
2721 static void
2722 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2723 {
2724 	struct	dc_softc *sc = ifp->if_softc;
2725 	u_int32_t status;
2726 
2727 	switch(cmd) {
2728 	case POLL_REGISTER:
2729 		/* Disable interrupts */
2730 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2731 		break;
2732 	case POLL_DEREGISTER:
2733 		/* Re-enable interrupts. */
2734 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2735 		break;
2736 	case POLL_ONLY:
2737 		sc->rxcycles = count;
2738 		dc_rxeof(sc);
2739 		dc_txeof(sc);
2740 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2741 			dc_start(ifp);
2742 		break;
2743 	case POLL_AND_CHECK_STATUS:
2744 		sc->rxcycles = count;
2745 		dc_rxeof(sc);
2746 		dc_txeof(sc);
2747 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2748 			dc_start(ifp);
2749 		status = CSR_READ_4(sc, DC_ISR);
2750 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2751 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2752 			DC_ISR_BUS_ERR);
2753 		if (!status)
2754 			break;
2755 		/* ack what we have */
2756 		CSR_WRITE_4(sc, DC_ISR, status);
2757 
2758 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2759 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2760 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2761 
2762 			if (dc_rx_resync(sc))
2763 				dc_rxeof(sc);
2764 		}
2765 		/* restart transmit unit if necessary */
2766 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2767 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2768 
2769 		if (status & DC_ISR_TX_UNDERRUN)
2770 			dc_tx_underrun(sc);
2771 
2772 		if (status & DC_ISR_BUS_ERR) {
2773 			if_printf(ifp, "dc_poll: bus error\n");
2774 			dc_reset(sc);
2775 			dc_init(sc);
2776 		}
2777 		break;
2778 	}
2779 }
2780 #endif /* DEVICE_POLLING */
2781 
2782 static void dc_intr(arg)
2783 	void			*arg;
2784 {
2785 	struct dc_softc		*sc;
2786 	struct ifnet		*ifp;
2787 	u_int32_t		status;
2788 
2789 	sc = arg;
2790 
2791 	if (sc->suspended) {
2792 		return;
2793 	}
2794 
2795 	ifp = &sc->arpcom.ac_if;
2796 
2797 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2798 		return ;
2799 
2800 	/* Suppress unwanted interrupts */
2801 	if (!(ifp->if_flags & IFF_UP)) {
2802 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2803 			dc_stop(sc);
2804 		return;
2805 	}
2806 
2807 	/* Disable interrupts. */
2808 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2809 
2810 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2811 
2812 		CSR_WRITE_4(sc, DC_ISR, status);
2813 
2814 		if (status & DC_ISR_RX_OK) {
2815 			int		curpkts;
2816 			curpkts = ifp->if_ipackets;
2817 			dc_rxeof(sc);
2818 			if (curpkts == ifp->if_ipackets) {
2819 				while(dc_rx_resync(sc))
2820 					dc_rxeof(sc);
2821 			}
2822 		}
2823 
2824 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2825 			dc_txeof(sc);
2826 
2827 		if (status & DC_ISR_TX_IDLE) {
2828 			dc_txeof(sc);
2829 			if (sc->dc_cdata.dc_tx_cnt) {
2830 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2831 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2832 			}
2833 		}
2834 
2835 		if (status & DC_ISR_TX_UNDERRUN)
2836 			dc_tx_underrun(sc);
2837 
2838 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2839 		    || (status & DC_ISR_RX_NOBUF)) {
2840 			int		curpkts;
2841 			curpkts = ifp->if_ipackets;
2842 			dc_rxeof(sc);
2843 			if (curpkts == ifp->if_ipackets) {
2844 				while(dc_rx_resync(sc))
2845 					dc_rxeof(sc);
2846 			}
2847 		}
2848 
2849 		if (status & DC_ISR_BUS_ERR) {
2850 			dc_reset(sc);
2851 			dc_init(sc);
2852 		}
2853 	}
2854 
2855 	/* Re-enable interrupts. */
2856 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2857 
2858 	if (!ifq_is_empty(&ifp->if_snd))
2859 		dc_start(ifp);
2860 
2861 	return;
2862 }
2863 
2864 /*
2865  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2866  * pointers to the fragment pointers.
2867  */
2868 static int dc_encap(sc, m_head, txidx)
2869 	struct dc_softc		*sc;
2870 	struct mbuf		*m_head;
2871 	u_int32_t		*txidx;
2872 {
2873 	struct dc_desc		*f = NULL;
2874 	struct mbuf		*m;
2875 	int			frag, cur, cnt = 0;
2876 
2877 	/*
2878  	 * Start packing the mbufs in this chain into
2879 	 * the fragment pointers. Stop when we run out
2880  	 * of fragments or hit the end of the mbuf chain.
2881 	 */
2882 	m = m_head;
2883 	cur = frag = *txidx;
2884 
2885 	for (m = m_head; m != NULL; m = m->m_next) {
2886 		if (m->m_len != 0) {
2887 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2888 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2889 				    frag == (DC_TX_LIST_CNT - 1))
2890 					return(ENOBUFS);
2891 			}
2892 			if ((DC_TX_LIST_CNT -
2893 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2894 				return(ENOBUFS);
2895 
2896 			f = &sc->dc_ldata->dc_tx_list[frag];
2897 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2898 			if (cnt == 0) {
2899 				f->dc_status = 0;
2900 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2901 			} else
2902 				f->dc_status = DC_TXSTAT_OWN;
2903 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2904 			cur = frag;
2905 			DC_INC(frag, DC_TX_LIST_CNT);
2906 			cnt++;
2907 		}
2908 	}
2909 
2910 	if (m != NULL)
2911 		return(ENOBUFS);
2912 
2913 	sc->dc_cdata.dc_tx_cnt += cnt;
2914 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2915 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2916 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2917 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2918 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2919 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2920 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2921 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2922 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2923 	*txidx = frag;
2924 
2925 	return(0);
2926 }
2927 
2928 /*
2929  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2930  * to the mbuf data regions directly in the transmit lists. We also save a
2931  * copy of the pointers since the transmit list fragment pointers are
2932  * physical addresses.
2933  */
2934 
2935 static void dc_start(ifp)
2936 	struct ifnet		*ifp;
2937 {
2938 	struct dc_softc		*sc;
2939 	struct mbuf *m_head = NULL, *m_new;
2940 	int did_defrag, idx;
2941 
2942 	sc = ifp->if_softc;
2943 
2944 	if (!sc->dc_link)
2945 		return;
2946 
2947 	if (ifp->if_flags & IFF_OACTIVE)
2948 		return;
2949 
2950 	idx = sc->dc_cdata.dc_tx_prod;
2951 
2952 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2953 		did_defrag = 0;
2954 		m_head = ifq_poll(&ifp->if_snd);
2955 		if (m_head == NULL)
2956 			break;
2957 
2958 		if (sc->dc_flags & DC_TX_COALESCE &&
2959 		    m_head->m_next != NULL) {
2960 			/*
2961 			 * Check first if coalescing allows us to queue
2962 			 * the packet. We don't want to loose it if
2963 			 * the TX queue is full.
2964 			 */
2965 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
2966 			    idx != sc->dc_cdata.dc_tx_prod &&
2967 			    idx == (DC_TX_LIST_CNT - 1)) {
2968 				ifp->if_flags |= IFF_OACTIVE;
2969 				break;
2970 			}
2971 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
2972 				ifp->if_flags |= IFF_OACTIVE;
2973 				break;
2974 			}
2975 
2976 			/* only coalesce if have >1 mbufs */
2977 			m_new = m_defrag_nofree(m_head, MB_DONTWAIT);
2978 			if (m_new == NULL) {
2979 				ifp->if_flags |= IFF_OACTIVE;
2980 				break;
2981 			}
2982 			m_freem(m_head);
2983 			m_head = m_new;
2984 			did_defrag = 1;
2985 		}
2986 
2987 		if (dc_encap(sc, m_head, &idx)) {
2988 			if (did_defrag) {
2989 				m_freem(m_head);
2990 				m_new = ifq_dequeue(&ifp->if_snd);
2991 				m_freem(m_new);
2992 			}
2993 			ifp->if_flags |= IFF_OACTIVE;
2994 			break;
2995 		}
2996 
2997 		m_new = ifq_dequeue(&ifp->if_snd);
2998 		if (did_defrag)
2999 			m_freem(m_new);
3000 
3001 		/*
3002 		 * If there's a BPF listener, bounce a copy of this frame
3003 		 * to him.
3004 		 */
3005 		BPF_MTAP(ifp, m_head);
3006 
3007 		if (sc->dc_flags & DC_TX_ONE) {
3008 			ifp->if_flags |= IFF_OACTIVE;
3009 			break;
3010 		}
3011 	}
3012 
3013 	/* Transmit */
3014 	sc->dc_cdata.dc_tx_prod = idx;
3015 	if (!(sc->dc_flags & DC_TX_POLL))
3016 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3017 
3018 	/*
3019 	 * Set a timeout in case the chip goes out to lunch.
3020 	 */
3021 	ifp->if_timer = 5;
3022 
3023 	return;
3024 }
3025 
3026 static void dc_init(xsc)
3027 	void			*xsc;
3028 {
3029 	struct dc_softc		*sc = xsc;
3030 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3031 	struct mii_data		*mii;
3032 
3033 	crit_enter();
3034 
3035 	mii = device_get_softc(sc->dc_miibus);
3036 
3037 	/*
3038 	 * Cancel pending I/O and free all RX/TX buffers.
3039 	 */
3040 	dc_stop(sc);
3041 	dc_reset(sc);
3042 
3043 	/*
3044 	 * Set cache alignment and burst length.
3045 	 */
3046 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3047 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3048 	else
3049 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3050 	/*
3051 	 * Evenly share the bus between receive and transmit process.
3052 	 */
3053 	if (DC_IS_INTEL(sc))
3054 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3055 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3056 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3057 	} else {
3058 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3059 	}
3060 	if (sc->dc_flags & DC_TX_POLL)
3061 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3062 	switch(sc->dc_cachesize) {
3063 	case 32:
3064 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3065 		break;
3066 	case 16:
3067 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3068 		break;
3069 	case 8:
3070 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3071 		break;
3072 	case 0:
3073 	default:
3074 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3075 		break;
3076 	}
3077 
3078 	if (sc->dc_flags & DC_TX_STORENFWD)
3079 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3080 	else {
3081 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3082 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3083 		} else {
3084 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3085 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3086 		}
3087 	}
3088 
3089 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3090 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3091 
3092 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3093 		/*
3094 		 * The app notes for the 98713 and 98715A say that
3095 		 * in order to have the chips operate properly, a magic
3096 		 * number must be written to CSR16. Macronix does not
3097 		 * document the meaning of these bits so there's no way
3098 		 * to know exactly what they do. The 98713 has a magic
3099 		 * number all its own; the rest all use a different one.
3100 		 */
3101 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3102 		if (sc->dc_type == DC_TYPE_98713)
3103 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3104 		else
3105 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3106 	}
3107 
3108 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3109 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3110 
3111 	/* Init circular RX list. */
3112 	if (dc_list_rx_init(sc) == ENOBUFS) {
3113 		if_printf(ifp, "initialization failed: no "
3114 			  "memory for rx buffers\n");
3115 		dc_stop(sc);
3116 		crit_exit();
3117 		return;
3118 	}
3119 
3120 	/*
3121 	 * Init tx descriptors.
3122 	 */
3123 	dc_list_tx_init(sc);
3124 
3125 	/*
3126 	 * Load the address of the RX list.
3127 	 */
3128 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3129 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3130 
3131 	/*
3132 	 * Enable interrupts.
3133 	 */
3134 #ifdef DEVICE_POLLING
3135 	/*
3136 	 * ... but only if we are not polling, and make sure they are off in
3137 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3138 	 * after a reset.
3139 	 */
3140 	if (ifp->if_flags & IFF_POLLING)
3141 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3142 	else
3143 #endif
3144 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3145 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3146 
3147 	/* Enable transmitter. */
3148 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3149 
3150 	/*
3151 	 * If this is an Intel 21143 and we're not using the
3152 	 * MII port, program the LED control pins so we get
3153 	 * link and activity indications.
3154 	 */
3155 	if (sc->dc_flags & DC_TULIP_LEDS) {
3156 		CSR_WRITE_4(sc, DC_WATCHDOG,
3157 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3158 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3159 	}
3160 
3161 	/*
3162 	 * Load the RX/multicast filter. We do this sort of late
3163 	 * because the filter programming scheme on the 21143 and
3164 	 * some clones requires DMAing a setup frame via the TX
3165 	 * engine, and we need the transmitter enabled for that.
3166 	 */
3167 	dc_setfilt(sc);
3168 
3169 	/* Enable receiver. */
3170 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3171 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3172 
3173 	mii_mediachg(mii);
3174 	dc_setcfg(sc, sc->dc_if_media);
3175 
3176 	ifp->if_flags |= IFF_RUNNING;
3177 	ifp->if_flags &= ~IFF_OACTIVE;
3178 
3179 	crit_exit();
3180 
3181 	/* Don't start the ticker if this is a homePNA link. */
3182 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3183 		sc->dc_link = 1;
3184 	else {
3185 		if (sc->dc_flags & DC_21143_NWAY)
3186 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3187 		else
3188 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3189 	}
3190 
3191 	return;
3192 }
3193 
3194 /*
3195  * Set media options.
3196  */
3197 static int dc_ifmedia_upd(ifp)
3198 	struct ifnet		*ifp;
3199 {
3200 	struct dc_softc		*sc;
3201 	struct mii_data		*mii;
3202 	struct ifmedia		*ifm;
3203 
3204 	sc = ifp->if_softc;
3205 	mii = device_get_softc(sc->dc_miibus);
3206 	mii_mediachg(mii);
3207 	ifm = &mii->mii_media;
3208 
3209 	if (DC_IS_DAVICOM(sc) &&
3210 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3211 		dc_setcfg(sc, ifm->ifm_media);
3212 	else
3213 		sc->dc_link = 0;
3214 
3215 	return(0);
3216 }
3217 
3218 /*
3219  * Report current media status.
3220  */
3221 static void dc_ifmedia_sts(ifp, ifmr)
3222 	struct ifnet		*ifp;
3223 	struct ifmediareq	*ifmr;
3224 {
3225 	struct dc_softc		*sc;
3226 	struct mii_data		*mii;
3227 	struct ifmedia		*ifm;
3228 
3229 	sc = ifp->if_softc;
3230 	mii = device_get_softc(sc->dc_miibus);
3231 	mii_pollstat(mii);
3232 	ifm = &mii->mii_media;
3233 	if (DC_IS_DAVICOM(sc)) {
3234 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3235 			ifmr->ifm_active = ifm->ifm_media;
3236 			ifmr->ifm_status = 0;
3237 			return;
3238 		}
3239 	}
3240 	ifmr->ifm_active = mii->mii_media_active;
3241 	ifmr->ifm_status = mii->mii_media_status;
3242 
3243 	return;
3244 }
3245 
3246 static int dc_ioctl(ifp, command, data, cr)
3247 	struct ifnet		*ifp;
3248 	u_long			command;
3249 	caddr_t			data;
3250 	struct ucred		*cr;
3251 {
3252 	struct dc_softc		*sc = ifp->if_softc;
3253 	struct ifreq		*ifr = (struct ifreq *) data;
3254 	struct mii_data		*mii;
3255 	int			error = 0;
3256 
3257 	crit_enter();
3258 
3259 	switch(command) {
3260 	case SIOCSIFFLAGS:
3261 		if (ifp->if_flags & IFF_UP) {
3262 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3263 				(IFF_PROMISC | IFF_ALLMULTI);
3264 			if (ifp->if_flags & IFF_RUNNING) {
3265 				if (need_setfilt)
3266 					dc_setfilt(sc);
3267 			} else {
3268 				sc->dc_txthresh = 0;
3269 				dc_init(sc);
3270 			}
3271 		} else {
3272 			if (ifp->if_flags & IFF_RUNNING)
3273 				dc_stop(sc);
3274 		}
3275 		sc->dc_if_flags = ifp->if_flags;
3276 		error = 0;
3277 		break;
3278 	case SIOCADDMULTI:
3279 	case SIOCDELMULTI:
3280 		dc_setfilt(sc);
3281 		error = 0;
3282 		break;
3283 	case SIOCGIFMEDIA:
3284 	case SIOCSIFMEDIA:
3285 		mii = device_get_softc(sc->dc_miibus);
3286 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3287 		break;
3288 	default:
3289 		error = ether_ioctl(ifp, command, data);
3290 		break;
3291 	}
3292 
3293 	crit_exit();
3294 
3295 	return(error);
3296 }
3297 
3298 static void dc_watchdog(ifp)
3299 	struct ifnet		*ifp;
3300 {
3301 	struct dc_softc		*sc;
3302 
3303 	sc = ifp->if_softc;
3304 
3305 	ifp->if_oerrors++;
3306 	if_printf(ifp, "watchdog timeout\n");
3307 
3308 	dc_stop(sc);
3309 	dc_reset(sc);
3310 	dc_init(sc);
3311 
3312 	if (!ifq_is_empty(&ifp->if_snd))
3313 		dc_start(ifp);
3314 
3315 	return;
3316 }
3317 
3318 /*
3319  * Stop the adapter and free any mbufs allocated to the
3320  * RX and TX lists.
3321  */
3322 static void dc_stop(sc)
3323 	struct dc_softc		*sc;
3324 {
3325 	int		i;
3326 	struct ifnet		*ifp;
3327 
3328 	ifp = &sc->arpcom.ac_if;
3329 	ifp->if_timer = 0;
3330 
3331 	callout_stop(&sc->dc_stat_timer);
3332 
3333 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3334 
3335 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3336 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3337 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3338 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3339 	sc->dc_link = 0;
3340 
3341 	/*
3342 	 * Free data in the RX lists.
3343 	 */
3344 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3345 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3346 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3347 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3348 		}
3349 	}
3350 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3351 		sizeof(sc->dc_ldata->dc_rx_list));
3352 
3353 	/*
3354 	 * Free the TX list buffers.
3355 	 */
3356 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3357 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3358 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3359 			    DC_TXCTL_SETUP) ||
3360 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3361 			    DC_TXCTL_LASTFRAG)) {
3362 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3363 				continue;
3364 			}
3365 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3366 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3367 		}
3368 	}
3369 
3370 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3371 		sizeof(sc->dc_ldata->dc_tx_list));
3372 
3373 	return;
3374 }
3375 
3376 /*
3377  * Stop all chip I/O so that the kernel's probe routines don't
3378  * get confused by errant DMAs when rebooting.
3379  */
3380 static void dc_shutdown(dev)
3381 	device_t		dev;
3382 {
3383 	struct dc_softc		*sc;
3384 
3385 	sc = device_get_softc(dev);
3386 
3387 	dc_stop(sc);
3388 
3389 	return;
3390 }
3391 
3392 /*
3393  * Device suspend routine.  Stop the interface and save some PCI
3394  * settings in case the BIOS doesn't restore them properly on
3395  * resume.
3396  */
3397 static int dc_suspend(dev)
3398 	device_t		dev;
3399 {
3400 	struct dc_softc	*sc = device_get_softc(dev);
3401 	int i;
3402 
3403 	crit_enter();
3404 
3405 	dc_stop(sc);
3406 
3407 	for (i = 0; i < 5; i++)
3408 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3409 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3410 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3411 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3412 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3413 
3414 	sc->suspended = 1;
3415 
3416 	crit_exit();
3417 	return (0);
3418 }
3419 
3420 /*
3421  * Device resume routine.  Restore some PCI settings in case the BIOS
3422  * doesn't, re-enable busmastering, and restart the interface if
3423  * appropriate.
3424  */
3425 static int dc_resume(dev)
3426 	device_t		dev;
3427 {
3428 	struct dc_softc *sc = device_get_softc(dev);
3429 	struct ifnet *ifp = &sc->arpcom.ac_if;
3430 	int i;
3431 
3432 	crit_enter();
3433 
3434 	dc_acpi(dev);
3435 
3436 	/* better way to do this? */
3437 	for (i = 0; i < 5; i++)
3438 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3439 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3440 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3441 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3442 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3443 
3444 	/* reenable busmastering */
3445 	pci_enable_busmaster(dev);
3446 	pci_enable_io(dev, DC_RES);
3447 
3448         /* reinitialize interface if necessary */
3449         if (ifp->if_flags & IFF_UP)
3450                 dc_init(sc);
3451 
3452 	sc->suspended = 0;
3453 
3454 	crit_exit();
3455 	return (0);
3456 }
3457