xref: /dflybsd-src/sys/dev/netif/dc/if_dc.c (revision cbebfd39b369a289776677fb72f2eb81722dd172)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.42 2005/09/08 10:26:20 sephe Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Conexant LANfinity (www.conexant.com)
50  *
51  * Datasheets for the 21143 are available at developer.intel.com.
52  * Datasheets for the clone parts can be found at their respective sites.
53  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54  * The PNIC II is essentially a Macronix 98715A chip; the only difference
55  * worth noting is that its multicast hash table is only 128 bits wide
56  * instead of 512.
57  *
58  * Written by Bill Paul <wpaul@ee.columbia.edu>
59  * Electrical Engineering Department
60  * Columbia University, New York City
61  */
62 
63 /*
64  * The Intel 21143 is the successor to the DEC 21140. It is basically
65  * the same as the 21140 but with a few new features. The 21143 supports
66  * three kinds of media attachments:
67  *
68  * o MII port, for 10Mbps and 100Mbps support and NWAY
69  *   autonegotiation provided by an external PHY.
70  * o SYM port, for symbol mode 100Mbps support.
71  * o 10baseT port.
72  * o AUI/BNC port.
73  *
74  * The 100Mbps SYM port and 10baseT port can be used together in
75  * combination with the internal NWAY support to create a 10/100
76  * autosensing configuration.
77  *
78  * Note that not all tulip workalikes are handled in this driver: we only
79  * deal with those which are relatively well behaved. The Winbond is
80  * handled separately due to its different register offsets and the
81  * special handling needed for its various bugs. The PNIC is handled
82  * here, but I'm not thrilled about it.
83  *
84  * All of the workalike chips use some form of MII transceiver support
85  * with the exception of the Macronix chips, which also have a SYM port.
86  * The ASIX AX88140A is also documented to have a SYM port, but all
87  * the cards I've seen use an MII transceiver, probably because the
88  * AX88140A doesn't support internal NWAY.
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 #include <sys/thread2.h>
100 
101 #include <net/if.h>
102 #include <net/ifq_var.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/vlan/if_vlan_var.h>
109 
110 #include <net/bpf.h>
111 
112 #include <vm/vm.h>              /* for vtophys */
113 #include <vm/pmap.h>            /* for vtophys */
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
123 
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define DC_USEIOSPACE
128 
129 #include "if_dcreg.h"
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 static const struct dc_type dc_devs[] = {
138 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
139 		"Intel 21143 10/100BaseTX" },
140 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
141 		"Davicom DM9009 10/100BaseTX" },
142 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
143 		"Davicom DM9100 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
145 		"Davicom DM9102 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 		"Davicom DM9102A 10/100BaseTX" },
148 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
149 		"ADMtek AL981 10/100BaseTX" },
150 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
151 		"ADMtek AN985 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
153 		"ADMtek ADM9511 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
155 		"ADMtek ADM9513 10/100BaseTX" },
156 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
157 		"ASIX AX88140A 10/100BaseTX" },
158 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
159 		"ASIX AX88141 10/100BaseTX" },
160 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
161 		"Macronix 98713 10/100BaseTX" },
162 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
163 		"Macronix 98713A 10/100BaseTX" },
164 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
165 		"Compex RL100-TX 10/100BaseTX" },
166 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
167 		"Compex RL100-TX 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
169 		"Macronix 98715/98715A 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
171 		"Macronix 98715AEC-C 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
173 		"Macronix 98725 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
175 		"Macronix 98727/98732 10/100BaseTX" },
176 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
177 		"LC82C115 PNIC II 10/100BaseTX" },
178 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
179 		"82c168 PNIC 10/100BaseTX" },
180 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
181 		"82c169 PNIC 10/100BaseTX" },
182 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
183 		"Accton EN1217 10/100BaseTX" },
184 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
185 		"Accton EN2242 MiniPCI 10/100BaseTX" },
186 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
187 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
188 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
189 		"3Com OfficeConnect 10/100B" },
190 	{ 0, 0, NULL }
191 };
192 
193 static int dc_probe		(device_t);
194 static int dc_attach		(device_t);
195 static int dc_detach		(device_t);
196 static int dc_suspend		(device_t);
197 static int dc_resume		(device_t);
198 static void dc_acpi		(device_t);
199 static const struct dc_type *dc_devtype	(device_t);
200 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
201 static int dc_encap		(struct dc_softc *, struct mbuf *,
202 					u_int32_t *);
203 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
204 static int dc_rx_resync		(struct dc_softc *);
205 static void dc_rxeof		(struct dc_softc *);
206 static void dc_txeof		(struct dc_softc *);
207 static void dc_tick		(void *);
208 static void dc_tx_underrun	(struct dc_softc *);
209 static void dc_intr		(void *);
210 static void dc_start		(struct ifnet *);
211 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
212 					struct ucred *);
213 #ifdef DEVICE_POLLING
214 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
215 					int count);
216 #endif
217 static void dc_init		(void *);
218 static void dc_stop		(struct dc_softc *);
219 static void dc_watchdog		(struct ifnet *);
220 static void dc_shutdown		(device_t);
221 static int dc_ifmedia_upd	(struct ifnet *);
222 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
223 
224 static void dc_delay		(struct dc_softc *);
225 static void dc_eeprom_idle	(struct dc_softc *);
226 static void dc_eeprom_putbyte	(struct dc_softc *, int);
227 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
228 static void dc_eeprom_getword_pnic
229 				(struct dc_softc *, int, u_int16_t *);
230 static void dc_eeprom_width	(struct dc_softc *);
231 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
232 							int, int);
233 
234 static void dc_mii_writebit	(struct dc_softc *, int);
235 static int dc_mii_readbit	(struct dc_softc *);
236 static void dc_mii_sync		(struct dc_softc *);
237 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
238 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
239 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
240 static int dc_miibus_readreg	(device_t, int, int);
241 static int dc_miibus_writereg	(device_t, int, int, int);
242 static void dc_miibus_statchg	(device_t);
243 static void dc_miibus_mediainit	(device_t);
244 
245 static u_int32_t dc_crc_mask	(struct dc_softc *);
246 static void dc_setcfg		(struct dc_softc *, int);
247 static void dc_setfilt_21143	(struct dc_softc *);
248 static void dc_setfilt_asix	(struct dc_softc *);
249 static void dc_setfilt_admtek	(struct dc_softc *);
250 
251 static void dc_setfilt		(struct dc_softc *);
252 
253 static void dc_reset		(struct dc_softc *);
254 static int dc_list_rx_init	(struct dc_softc *);
255 static int dc_list_tx_init	(struct dc_softc *);
256 
257 static void dc_read_srom	(struct dc_softc *, int);
258 static void dc_parse_21143_srom	(struct dc_softc *);
259 static void dc_decode_leaf_sia	(struct dc_softc *,
260 				    struct dc_eblock_sia *);
261 static void dc_decode_leaf_mii	(struct dc_softc *,
262 				    struct dc_eblock_mii *);
263 static void dc_decode_leaf_sym	(struct dc_softc *,
264 				    struct dc_eblock_sym *);
265 static void dc_apply_fixup	(struct dc_softc *, int);
266 
267 #ifdef DC_USEIOSPACE
268 #define DC_RES			SYS_RES_IOPORT
269 #define DC_RID			DC_PCI_CFBIO
270 #else
271 #define DC_RES			SYS_RES_MEMORY
272 #define DC_RID			DC_PCI_CFBMA
273 #endif
274 
275 static device_method_t dc_methods[] = {
276 	/* Device interface */
277 	DEVMETHOD(device_probe,		dc_probe),
278 	DEVMETHOD(device_attach,	dc_attach),
279 	DEVMETHOD(device_detach,	dc_detach),
280 	DEVMETHOD(device_suspend,	dc_suspend),
281 	DEVMETHOD(device_resume,	dc_resume),
282 	DEVMETHOD(device_shutdown,	dc_shutdown),
283 
284 	/* bus interface */
285 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
286 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
287 
288 	/* MII interface */
289 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
290 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
291 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
292 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
293 
294 	{ 0, 0 }
295 };
296 
297 static driver_t dc_driver = {
298 	"dc",
299 	dc_methods,
300 	sizeof(struct dc_softc)
301 };
302 
303 static devclass_t dc_devclass;
304 
305 #ifdef __i386__
306 static int dc_quick=1;
307 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
308 	&dc_quick,0,"do not mdevget in dc driver");
309 #endif
310 
311 DECLARE_DUMMY_MODULE(if_dc);
312 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
313 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
314 
315 #define DC_SETBIT(sc, reg, x)				\
316 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
317 
318 #define DC_CLRBIT(sc, reg, x)				\
319 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
320 
321 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
322 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
323 
324 static void
325 dc_delay(struct dc_softc *sc)
326 {
327 	int			idx;
328 
329 	for (idx = (300 / 33) + 1; idx > 0; idx--)
330 		CSR_READ_4(sc, DC_BUSCTL);
331 }
332 
333 static void
334 dc_eeprom_width(struct dc_softc *sc)
335 {
336 	int i;
337 
338 	/* Force EEPROM to idle state. */
339 	dc_eeprom_idle(sc);
340 
341 	/* Enter EEPROM access mode. */
342 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
343 	dc_delay(sc);
344 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
345 	dc_delay(sc);
346 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
347 	dc_delay(sc);
348 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
349 	dc_delay(sc);
350 
351 	for (i = 3; i--;) {
352 		if (6 & (1 << i))
353 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
354 		else
355 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
356 		dc_delay(sc);
357 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
358 		dc_delay(sc);
359 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
360 		dc_delay(sc);
361 	}
362 
363 	for (i = 1; i <= 12; i++) {
364 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
365 		dc_delay(sc);
366 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
367 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
368 			dc_delay(sc);
369 			break;
370 		}
371 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
372 		dc_delay(sc);
373 	}
374 
375 	/* Turn off EEPROM access mode. */
376 	dc_eeprom_idle(sc);
377 
378 	if (i < 4 || i > 12)
379 		sc->dc_romwidth = 6;
380 	else
381 		sc->dc_romwidth = i;
382 
383 	/* Enter EEPROM access mode. */
384 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
385 	dc_delay(sc);
386 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
387 	dc_delay(sc);
388 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
389 	dc_delay(sc);
390 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
391 	dc_delay(sc);
392 
393 	/* Turn off EEPROM access mode. */
394 	dc_eeprom_idle(sc);
395 }
396 
397 static void
398 dc_eeprom_idle(struct dc_softc *sc)
399 {
400 	int		i;
401 
402 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
403 	dc_delay(sc);
404 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
405 	dc_delay(sc);
406 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
407 	dc_delay(sc);
408 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
409 	dc_delay(sc);
410 
411 	for (i = 0; i < 25; i++) {
412 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413 		dc_delay(sc);
414 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 		dc_delay(sc);
416 	}
417 
418 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419 	dc_delay(sc);
420 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
421 	dc_delay(sc);
422 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
423 
424 	return;
425 }
426 
427 /*
428  * Send a read command and address to the EEPROM, check for ACK.
429  */
430 static void
431 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
432 {
433 	int		d, i;
434 
435 	d = DC_EECMD_READ >> 6;
436 	for (i = 3; i--; ) {
437 		if (d & (1 << i))
438 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
439 		else
440 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
441 		dc_delay(sc);
442 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
443 		dc_delay(sc);
444 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445 		dc_delay(sc);
446 	}
447 
448 	/*
449 	 * Feed in each bit and strobe the clock.
450 	 */
451 	for (i = sc->dc_romwidth; i--;) {
452 		if (addr & (1 << i)) {
453 			SIO_SET(DC_SIO_EE_DATAIN);
454 		} else {
455 			SIO_CLR(DC_SIO_EE_DATAIN);
456 		}
457 		dc_delay(sc);
458 		SIO_SET(DC_SIO_EE_CLK);
459 		dc_delay(sc);
460 		SIO_CLR(DC_SIO_EE_CLK);
461 		dc_delay(sc);
462 	}
463 
464 	return;
465 }
466 
467 /*
468  * Read a word of data stored in the EEPROM at address 'addr.'
469  * The PNIC 82c168/82c169 has its own non-standard way to read
470  * the EEPROM.
471  */
472 static void
473 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
474 {
475 	int		i;
476 	u_int32_t		r;
477 
478 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
479 
480 	for (i = 0; i < DC_TIMEOUT; i++) {
481 		DELAY(1);
482 		r = CSR_READ_4(sc, DC_SIO);
483 		if (!(r & DC_PN_SIOCTL_BUSY)) {
484 			*dest = (u_int16_t)(r & 0xFFFF);
485 			return;
486 		}
487 	}
488 
489 	return;
490 }
491 
492 /*
493  * Read a word of data stored in the EEPROM at address 'addr.'
494  */
495 static void
496 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
497 {
498 	int		i;
499 	u_int16_t		word = 0;
500 
501 	/* Force EEPROM to idle state. */
502 	dc_eeprom_idle(sc);
503 
504 	/* Enter EEPROM access mode. */
505 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
506 	dc_delay(sc);
507 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
508 	dc_delay(sc);
509 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
510 	dc_delay(sc);
511 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
512 	dc_delay(sc);
513 
514 	/*
515 	 * Send address of word we want to read.
516 	 */
517 	dc_eeprom_putbyte(sc, addr);
518 
519 	/*
520 	 * Start reading bits from EEPROM.
521 	 */
522 	for (i = 0x8000; i; i >>= 1) {
523 		SIO_SET(DC_SIO_EE_CLK);
524 		dc_delay(sc);
525 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
526 			word |= i;
527 		dc_delay(sc);
528 		SIO_CLR(DC_SIO_EE_CLK);
529 		dc_delay(sc);
530 	}
531 
532 	/* Turn off EEPROM access mode. */
533 	dc_eeprom_idle(sc);
534 
535 	*dest = word;
536 
537 	return;
538 }
539 
540 /*
541  * Read a sequence of words from the EEPROM.
542  */
543 static void
544 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
545 {
546 	int			i;
547 	u_int16_t		word = 0, *ptr;
548 
549 	for (i = 0; i < cnt; i++) {
550 		if (DC_IS_PNIC(sc))
551 			dc_eeprom_getword_pnic(sc, off + i, &word);
552 		else
553 			dc_eeprom_getword(sc, off + i, &word);
554 		ptr = (u_int16_t *)(dest + (i * 2));
555 		if (swap)
556 			*ptr = ntohs(word);
557 		else
558 			*ptr = word;
559 	}
560 
561 	return;
562 }
563 
564 /*
565  * The following two routines are taken from the Macronix 98713
566  * Application Notes pp.19-21.
567  */
568 /*
569  * Write a bit to the MII bus.
570  */
571 static void
572 dc_mii_writebit(struct dc_softc *sc, int bit)
573 {
574 	if (bit)
575 		CSR_WRITE_4(sc, DC_SIO,
576 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
577 	else
578 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
579 
580 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
581 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
582 
583 	return;
584 }
585 
586 /*
587  * Read a bit from the MII bus.
588  */
589 static int
590 dc_mii_readbit(struct dc_softc *sc)
591 {
592 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
593 	CSR_READ_4(sc, DC_SIO);
594 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
595 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
596 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
597 		return(1);
598 
599 	return(0);
600 }
601 
602 /*
603  * Sync the PHYs by setting data bit and strobing the clock 32 times.
604  */
605 static void
606 dc_mii_sync(struct dc_softc *sc)
607 {
608 	int		i;
609 
610 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
611 
612 	for (i = 0; i < 32; i++)
613 		dc_mii_writebit(sc, 1);
614 
615 	return;
616 }
617 
618 /*
619  * Clock a series of bits through the MII.
620  */
621 static void
622 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
623 {
624 	int			i;
625 
626 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
627 		dc_mii_writebit(sc, bits & i);
628 }
629 
630 /*
631  * Read an PHY register through the MII.
632  */
633 static int
634 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
635 {
636 	int ack, i;
637 
638 	crit_enter();
639 
640 	/*
641 	 * Set up frame for RX.
642 	 */
643 	frame->mii_stdelim = DC_MII_STARTDELIM;
644 	frame->mii_opcode = DC_MII_READOP;
645 	frame->mii_turnaround = 0;
646 	frame->mii_data = 0;
647 
648 	/*
649 	 * Sync the PHYs.
650 	 */
651 	dc_mii_sync(sc);
652 
653 	/*
654 	 * Send command/address info.
655 	 */
656 	dc_mii_send(sc, frame->mii_stdelim, 2);
657 	dc_mii_send(sc, frame->mii_opcode, 2);
658 	dc_mii_send(sc, frame->mii_phyaddr, 5);
659 	dc_mii_send(sc, frame->mii_regaddr, 5);
660 
661 #ifdef notdef
662 	/* Idle bit */
663 	dc_mii_writebit(sc, 1);
664 	dc_mii_writebit(sc, 0);
665 #endif
666 
667 	/* Check for ack */
668 	ack = dc_mii_readbit(sc);
669 
670 	/*
671 	 * Now try reading data bits. If the ack failed, we still
672 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
673 	 */
674 	if (ack) {
675 		for(i = 0; i < 16; i++) {
676 			dc_mii_readbit(sc);
677 		}
678 		goto fail;
679 	}
680 
681 	for (i = 0x8000; i; i >>= 1) {
682 		if (!ack) {
683 			if (dc_mii_readbit(sc))
684 				frame->mii_data |= i;
685 		}
686 	}
687 
688 fail:
689 
690 	dc_mii_writebit(sc, 0);
691 	dc_mii_writebit(sc, 0);
692 
693 	crit_exit();
694 
695 	if (ack)
696 		return(1);
697 	return(0);
698 }
699 
700 /*
701  * Write to a PHY register through the MII.
702  */
703 static int
704 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
705 {
706 	crit_enter();
707 
708 	/*
709 	 * Set up frame for TX.
710 	 */
711 
712 	frame->mii_stdelim = DC_MII_STARTDELIM;
713 	frame->mii_opcode = DC_MII_WRITEOP;
714 	frame->mii_turnaround = DC_MII_TURNAROUND;
715 
716 	/*
717 	 * Sync the PHYs.
718 	 */
719 	dc_mii_sync(sc);
720 
721 	dc_mii_send(sc, frame->mii_stdelim, 2);
722 	dc_mii_send(sc, frame->mii_opcode, 2);
723 	dc_mii_send(sc, frame->mii_phyaddr, 5);
724 	dc_mii_send(sc, frame->mii_regaddr, 5);
725 	dc_mii_send(sc, frame->mii_turnaround, 2);
726 	dc_mii_send(sc, frame->mii_data, 16);
727 
728 	/* Idle bit. */
729 	dc_mii_writebit(sc, 0);
730 	dc_mii_writebit(sc, 0);
731 
732 	crit_exit();
733 
734 	return(0);
735 }
736 
737 static int
738 dc_miibus_readreg(device_t dev, int phy, int reg)
739 {
740 	struct dc_mii_frame	frame;
741 	struct dc_softc		*sc;
742 	int			i, rval, phy_reg = 0;
743 
744 	sc = device_get_softc(dev);
745 	bzero((char *)&frame, sizeof(frame));
746 
747 	/*
748 	 * Note: both the AL981 and AN985 have internal PHYs,
749 	 * however the AL981 provides direct access to the PHY
750 	 * registers while the AN985 uses a serial MII interface.
751 	 * The AN985's MII interface is also buggy in that you
752 	 * can read from any MII address (0 to 31), but only address 1
753 	 * behaves normally. To deal with both cases, we pretend
754 	 * that the PHY is at MII address 1.
755 	 */
756 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
757 		return(0);
758 
759 	/*
760 	 * Note: the ukphy probes of the RS7112 report a PHY at
761 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
762 	 * so we only respond to correct one.
763 	 */
764 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
765 		return(0);
766 
767 	if (sc->dc_pmode != DC_PMODE_MII) {
768 		if (phy == (MII_NPHY - 1)) {
769 			switch(reg) {
770 			case MII_BMSR:
771 			/*
772 			 * Fake something to make the probe
773 			 * code think there's a PHY here.
774 			 */
775 				return(BMSR_MEDIAMASK);
776 				break;
777 			case MII_PHYIDR1:
778 				if (DC_IS_PNIC(sc))
779 					return(DC_VENDORID_LO);
780 				return(DC_VENDORID_DEC);
781 				break;
782 			case MII_PHYIDR2:
783 				if (DC_IS_PNIC(sc))
784 					return(DC_DEVICEID_82C168);
785 				return(DC_DEVICEID_21143);
786 				break;
787 			default:
788 				return(0);
789 				break;
790 			}
791 		} else
792 			return(0);
793 	}
794 
795 	if (DC_IS_PNIC(sc)) {
796 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
797 		    (phy << 23) | (reg << 18));
798 		for (i = 0; i < DC_TIMEOUT; i++) {
799 			DELAY(1);
800 			rval = CSR_READ_4(sc, DC_PN_MII);
801 			if (!(rval & DC_PN_MII_BUSY)) {
802 				rval &= 0xFFFF;
803 				return(rval == 0xFFFF ? 0 : rval);
804 			}
805 		}
806 		return(0);
807 	}
808 
809 	if (DC_IS_COMET(sc)) {
810 		switch(reg) {
811 		case MII_BMCR:
812 			phy_reg = DC_AL_BMCR;
813 			break;
814 		case MII_BMSR:
815 			phy_reg = DC_AL_BMSR;
816 			break;
817 		case MII_PHYIDR1:
818 			phy_reg = DC_AL_VENID;
819 			break;
820 		case MII_PHYIDR2:
821 			phy_reg = DC_AL_DEVID;
822 			break;
823 		case MII_ANAR:
824 			phy_reg = DC_AL_ANAR;
825 			break;
826 		case MII_ANLPAR:
827 			phy_reg = DC_AL_LPAR;
828 			break;
829 		case MII_ANER:
830 			phy_reg = DC_AL_ANER;
831 			break;
832 		default:
833 			if_printf(&sc->arpcom.ac_if,
834 				  "phy_read: bad phy register %x\n", reg);
835 			return(0);
836 			break;
837 		}
838 
839 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
840 
841 		if (rval == 0xFFFF)
842 			return(0);
843 		return(rval);
844 	}
845 
846 	frame.mii_phyaddr = phy;
847 	frame.mii_regaddr = reg;
848 	if (sc->dc_type == DC_TYPE_98713) {
849 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
850 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
851 	}
852 	dc_mii_readreg(sc, &frame);
853 	if (sc->dc_type == DC_TYPE_98713)
854 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
855 
856 	return(frame.mii_data);
857 }
858 
859 static int
860 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
861 {
862 	struct dc_softc		*sc;
863 	struct dc_mii_frame	frame;
864 	int			i, phy_reg = 0;
865 
866 	sc = device_get_softc(dev);
867 	bzero((char *)&frame, sizeof(frame));
868 
869 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
870 		return(0);
871 
872 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
873 		return(0);
874 
875 	if (DC_IS_PNIC(sc)) {
876 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
877 		    (phy << 23) | (reg << 10) | data);
878 		for (i = 0; i < DC_TIMEOUT; i++) {
879 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
880 				break;
881 		}
882 		return(0);
883 	}
884 
885 	if (DC_IS_COMET(sc)) {
886 		switch(reg) {
887 		case MII_BMCR:
888 			phy_reg = DC_AL_BMCR;
889 			break;
890 		case MII_BMSR:
891 			phy_reg = DC_AL_BMSR;
892 			break;
893 		case MII_PHYIDR1:
894 			phy_reg = DC_AL_VENID;
895 			break;
896 		case MII_PHYIDR2:
897 			phy_reg = DC_AL_DEVID;
898 			break;
899 		case MII_ANAR:
900 			phy_reg = DC_AL_ANAR;
901 			break;
902 		case MII_ANLPAR:
903 			phy_reg = DC_AL_LPAR;
904 			break;
905 		case MII_ANER:
906 			phy_reg = DC_AL_ANER;
907 			break;
908 		default:
909 			if_printf(&sc->arpcom.ac_if,
910 				  "phy_write: bad phy register %x\n", reg);
911 			return(0);
912 			break;
913 		}
914 
915 		CSR_WRITE_4(sc, phy_reg, data);
916 		return(0);
917 	}
918 
919 	frame.mii_phyaddr = phy;
920 	frame.mii_regaddr = reg;
921 	frame.mii_data = data;
922 
923 	if (sc->dc_type == DC_TYPE_98713) {
924 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
925 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
926 	}
927 	dc_mii_writereg(sc, &frame);
928 	if (sc->dc_type == DC_TYPE_98713)
929 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
930 
931 	return(0);
932 }
933 
934 static void
935 dc_miibus_statchg(device_t dev)
936 {
937 	struct dc_softc		*sc;
938 	struct mii_data		*mii;
939 	struct ifmedia		*ifm;
940 
941 	sc = device_get_softc(dev);
942 	if (DC_IS_ADMTEK(sc))
943 		return;
944 
945 	mii = device_get_softc(sc->dc_miibus);
946 	ifm = &mii->mii_media;
947 	if (DC_IS_DAVICOM(sc) &&
948 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
949 		dc_setcfg(sc, ifm->ifm_media);
950 		sc->dc_if_media = ifm->ifm_media;
951 	} else {
952 		dc_setcfg(sc, mii->mii_media_active);
953 		sc->dc_if_media = mii->mii_media_active;
954 	}
955 
956 	return;
957 }
958 
959 /*
960  * Special support for DM9102A cards with HomePNA PHYs. Note:
961  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
962  * to be impossible to talk to the management interface of the DM9801
963  * PHY (its MDIO pin is not connected to anything). Consequently,
964  * the driver has to just 'know' about the additional mode and deal
965  * with it itself. *sigh*
966  */
967 static void
968 dc_miibus_mediainit(device_t dev)
969 {
970 	struct dc_softc		*sc;
971 	struct mii_data		*mii;
972 	struct ifmedia		*ifm;
973 	int			rev;
974 
975 	rev = pci_get_revid(dev);
976 
977 	sc = device_get_softc(dev);
978 	mii = device_get_softc(sc->dc_miibus);
979 	ifm = &mii->mii_media;
980 
981 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
982 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
983 
984 	return;
985 }
986 
987 #define DC_BITS_512	9
988 #define DC_BITS_128	7
989 #define DC_BITS_64	6
990 
991 static u_int32_t
992 dc_crc_mask(struct dc_softc *sc)
993 {
994 	/*
995 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
996 	 * chips is only 128 bits wide.
997 	 */
998 	if (sc->dc_flags & DC_128BIT_HASH)
999 		return ((1 << DC_BITS_128) - 1);
1000 
1001 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1002 	if (sc->dc_flags & DC_64BIT_HASH)
1003 		return ((1 << DC_BITS_64) - 1);
1004 
1005 	return ((1 << DC_BITS_512) - 1);
1006 }
1007 
1008 /*
1009  * 21143-style RX filter setup routine. Filter programming is done by
1010  * downloading a special setup frame into the TX engine. 21143, Macronix,
1011  * PNIC, PNIC II and Davicom chips are programmed this way.
1012  *
1013  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1014  * address (our node address) and a 512-bit hash filter for multicast
1015  * frames. We also sneak the broadcast address into the hash filter since
1016  * we need that too.
1017  */
1018 void
1019 dc_setfilt_21143(struct dc_softc *sc)
1020 {
1021 	struct dc_desc		*sframe;
1022 	u_int32_t		h, crc_mask, *sp;
1023 	struct ifmultiaddr	*ifma;
1024 	struct ifnet		*ifp;
1025 	int			i;
1026 
1027 	ifp = &sc->arpcom.ac_if;
1028 
1029 	i = sc->dc_cdata.dc_tx_prod;
1030 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1031 	sc->dc_cdata.dc_tx_cnt++;
1032 	sframe = &sc->dc_ldata->dc_tx_list[i];
1033 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1034 	bzero((char *)sp, DC_SFRAME_LEN);
1035 
1036 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1037 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1038 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1039 
1040 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1041 
1042 	/* If we want promiscuous mode, set the allframes bit. */
1043 	if (ifp->if_flags & IFF_PROMISC)
1044 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1045 	else
1046 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1047 
1048 	if (ifp->if_flags & IFF_ALLMULTI)
1049 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1050 	else
1051 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1052 
1053 	crc_mask = dc_crc_mask(sc);
1054 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1055 		if (ifma->ifma_addr->sa_family != AF_LINK)
1056 			continue;
1057 		h = ether_crc32_le(
1058 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1059 			ETHER_ADDR_LEN) & crc_mask;
1060 		sp[h >> 4] |= 1 << (h & 0xF);
1061 	}
1062 
1063 	if (ifp->if_flags & IFF_BROADCAST) {
1064 		h = ether_crc32_le(ifp->if_broadcastaddr,
1065 				   ETHER_ADDR_LEN) & crc_mask;
1066 		sp[h >> 4] |= 1 << (h & 0xF);
1067 	}
1068 
1069 	/* Set our MAC address */
1070 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1071 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1072 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1073 
1074 	sframe->dc_status = DC_TXSTAT_OWN;
1075 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1076 
1077 	/*
1078 	 * The PNIC takes an exceedingly long time to process its
1079 	 * setup frame; wait 10ms after posting the setup frame
1080 	 * before proceeding, just so it has time to swallow its
1081 	 * medicine.
1082 	 */
1083 	DELAY(10000);
1084 
1085 	ifp->if_timer = 5;
1086 
1087 	return;
1088 }
1089 
1090 void
1091 dc_setfilt_admtek(struct dc_softc *sc)
1092 {
1093 	struct ifnet		*ifp;
1094 	int			h = 0;
1095 	u_int32_t		crc_mask;
1096 	u_int32_t		hashes[2] = { 0, 0 };
1097 	struct ifmultiaddr	*ifma;
1098 
1099 	ifp = &sc->arpcom.ac_if;
1100 
1101 	/* Init our MAC address */
1102 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1103 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1104 
1105 	/* If we want promiscuous mode, set the allframes bit. */
1106 	if (ifp->if_flags & IFF_PROMISC)
1107 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1108 	else
1109 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1110 
1111 	if (ifp->if_flags & IFF_ALLMULTI)
1112 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1113 	else
1114 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1115 
1116 	/* first, zot all the existing hash bits */
1117 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1118 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1119 
1120 	/*
1121 	 * If we're already in promisc or allmulti mode, we
1122 	 * don't have to bother programming the multicast filter.
1123 	 */
1124 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1125 		return;
1126 
1127 	/* now program new ones */
1128 	if (DC_IS_CENTAUR(sc))
1129 		crc_mask = dc_crc_mask(sc);
1130 	else
1131 		crc_mask = 0x3f;
1132 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1133 		if (ifma->ifma_addr->sa_family != AF_LINK)
1134 			continue;
1135 		if (DC_IS_CENTAUR(sc)) {
1136 			h = ether_crc32_le(
1137 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1138 				ETHER_ADDR_LEN) & crc_mask;
1139 		} else {
1140 			h = ether_crc32_be(
1141 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1142 				ETHER_ADDR_LEN);
1143 			h = (h >> 26) & crc_mask;
1144 		}
1145 		if (h < 32)
1146 			hashes[0] |= (1 << h);
1147 		else
1148 			hashes[1] |= (1 << (h - 32));
1149 	}
1150 
1151 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1152 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1153 
1154 	return;
1155 }
1156 
1157 void
1158 dc_setfilt_asix(struct dc_softc *sc)
1159 {
1160 	struct ifnet		*ifp;
1161 	int			h = 0;
1162 	u_int32_t		hashes[2] = { 0, 0 };
1163 	struct ifmultiaddr	*ifma;
1164 
1165 	ifp = &sc->arpcom.ac_if;
1166 
1167         /* Init our MAC address */
1168         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1169         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1170 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1171         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1172         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1173 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1174 
1175 	/* If we want promiscuous mode, set the allframes bit. */
1176 	if (ifp->if_flags & IFF_PROMISC)
1177 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1178 	else
1179 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1180 
1181 	if (ifp->if_flags & IFF_ALLMULTI)
1182 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1183 	else
1184 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1185 
1186 	/*
1187 	 * The ASIX chip has a special bit to enable reception
1188 	 * of broadcast frames.
1189 	 */
1190 	if (ifp->if_flags & IFF_BROADCAST)
1191 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1192 	else
1193 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1194 
1195 	/* first, zot all the existing hash bits */
1196 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1197 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1198 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1199 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1200 
1201 	/*
1202 	 * If we're already in promisc or allmulti mode, we
1203 	 * don't have to bother programming the multicast filter.
1204 	 */
1205 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1206 		return;
1207 
1208 	/* now program new ones */
1209 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1210 		if (ifma->ifma_addr->sa_family != AF_LINK)
1211 			continue;
1212 		h = ether_crc32_be(
1213 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1214 			ETHER_ADDR_LEN);
1215 		h = (h >> 26) & 0x3f;
1216 		if (h < 32)
1217 			hashes[0] |= (1 << h);
1218 		else
1219 			hashes[1] |= (1 << (h - 32));
1220 	}
1221 
1222 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1223 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1224 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1225 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1226 
1227 	return;
1228 }
1229 
1230 static void
1231 dc_setfilt(struct dc_softc *sc)
1232 {
1233 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1234 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1235 		dc_setfilt_21143(sc);
1236 
1237 	if (DC_IS_ASIX(sc))
1238 		dc_setfilt_asix(sc);
1239 
1240 	if (DC_IS_ADMTEK(sc))
1241 		dc_setfilt_admtek(sc);
1242 
1243 	return;
1244 }
1245 
1246 /*
1247  * In order to fiddle with the
1248  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1249  * first have to put the transmit and/or receive logic in the idle state.
1250  */
1251 static void
1252 dc_setcfg(struct dc_softc *sc, int media)
1253 {
1254 	int			i, restart = 0;
1255 	u_int32_t		isr;
1256 
1257 	if (IFM_SUBTYPE(media) == IFM_NONE)
1258 		return;
1259 
1260 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1261 		restart = 1;
1262 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1263 
1264 		for (i = 0; i < DC_TIMEOUT; i++) {
1265 			isr = CSR_READ_4(sc, DC_ISR);
1266 			if ((isr & DC_ISR_TX_IDLE) &&
1267 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1268 			     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1269 				break;
1270 			DELAY(10);
1271 		}
1272 
1273 		if (i == DC_TIMEOUT) {
1274 			if_printf(&sc->arpcom.ac_if,
1275 			    "failed to force tx and rx to idle state\n");
1276 		}
1277 	}
1278 
1279 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1280 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1281 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1282 		if (sc->dc_pmode == DC_PMODE_MII) {
1283 			int	watchdogreg;
1284 
1285 			if (DC_IS_INTEL(sc)) {
1286 			/* there's a write enable bit here that reads as 1 */
1287 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1288 				watchdogreg &= ~DC_WDOG_CTLWREN;
1289 				watchdogreg |= DC_WDOG_JABBERDIS;
1290 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1291 			} else {
1292 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1293 			}
1294 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1295 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1296 			if (sc->dc_type == DC_TYPE_98713)
1297 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1298 				    DC_NETCFG_SCRAMBLER));
1299 			if (!DC_IS_DAVICOM(sc))
1300 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1301 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1302 			if (DC_IS_INTEL(sc))
1303 				dc_apply_fixup(sc, IFM_AUTO);
1304 		} else {
1305 			if (DC_IS_PNIC(sc)) {
1306 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1307 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1308 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1309 			}
1310 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1311 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1312 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1313 			if (DC_IS_INTEL(sc))
1314 				dc_apply_fixup(sc,
1315 				    (media & IFM_GMASK) == IFM_FDX ?
1316 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1317 		}
1318 	}
1319 
1320 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1321 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1322 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1323 		if (sc->dc_pmode == DC_PMODE_MII) {
1324 			int	watchdogreg;
1325 
1326 			/* there's a write enable bit here that reads as 1 */
1327 			if (DC_IS_INTEL(sc)) {
1328 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1329 				watchdogreg &= ~DC_WDOG_CTLWREN;
1330 				watchdogreg |= DC_WDOG_JABBERDIS;
1331 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1332 			} else {
1333 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1334 			}
1335 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1336 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1337 			if (sc->dc_type == DC_TYPE_98713)
1338 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1339 			if (!DC_IS_DAVICOM(sc))
1340 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1341 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1342 			if (DC_IS_INTEL(sc))
1343 				dc_apply_fixup(sc, IFM_AUTO);
1344 		} else {
1345 			if (DC_IS_PNIC(sc)) {
1346 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1347 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1348 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1349 			}
1350 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1351 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1352 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1353 			if (DC_IS_INTEL(sc)) {
1354 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1355 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1356 				if ((media & IFM_GMASK) == IFM_FDX)
1357 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1358 				else
1359 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1360 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1361 				DC_CLRBIT(sc, DC_10BTCTRL,
1362 				    DC_TCTL_AUTONEGENBL);
1363 				dc_apply_fixup(sc,
1364 				    (media & IFM_GMASK) == IFM_FDX ?
1365 				    IFM_10_T|IFM_FDX : IFM_10_T);
1366 				DELAY(20000);
1367 			}
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1373 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1374 	 * on the external MII port.
1375 	 */
1376 	if (DC_IS_DAVICOM(sc)) {
1377 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1378 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1379 			sc->dc_link = 1;
1380 		} else {
1381 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1382 		}
1383 	}
1384 
1385 	if ((media & IFM_GMASK) == IFM_FDX) {
1386 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1387 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1388 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1389 	} else {
1390 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1391 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1392 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1393 	}
1394 
1395 	if (restart)
1396 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1397 
1398 	return;
1399 }
1400 
1401 static void
1402 dc_reset(struct dc_softc *sc)
1403 {
1404 	int		i;
1405 
1406 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1407 
1408 	for (i = 0; i < DC_TIMEOUT; i++) {
1409 		DELAY(10);
1410 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1411 			break;
1412 	}
1413 
1414 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1415 		DELAY(10000);
1416 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1417 		i = 0;
1418 	}
1419 
1420 	if (i == DC_TIMEOUT)
1421 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1422 
1423 	/* Wait a little while for the chip to get its brains in order. */
1424 	DELAY(1000);
1425 
1426 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1427 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1428 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1429 
1430 	/*
1431 	 * Bring the SIA out of reset. In some cases, it looks
1432 	 * like failing to unreset the SIA soon enough gets it
1433 	 * into a state where it will never come out of reset
1434 	 * until we reset the whole chip again.
1435 	 */
1436 	if (DC_IS_INTEL(sc)) {
1437 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1438 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1439 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1440 	}
1441 
1442         return;
1443 }
1444 
1445 static const struct dc_type *
1446 dc_devtype(device_t dev)
1447 {
1448 	const struct dc_type	*t;
1449 	u_int32_t		rev;
1450 
1451 	t = dc_devs;
1452 
1453 	while(t->dc_name != NULL) {
1454 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1455 		    (pci_get_device(dev) == t->dc_did)) {
1456 			/* Check the PCI revision */
1457 			rev = pci_get_revid(dev);
1458 			if (t->dc_did == DC_DEVICEID_98713 &&
1459 			    rev >= DC_REVISION_98713A)
1460 				t++;
1461 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1462 			    rev >= DC_REVISION_98713A)
1463 				t++;
1464 			if (t->dc_did == DC_DEVICEID_987x5 &&
1465 			    rev >= DC_REVISION_98715AEC_C)
1466 				t++;
1467 			if (t->dc_did == DC_DEVICEID_987x5 &&
1468 			    rev >= DC_REVISION_98725)
1469 				t++;
1470 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1471 			    rev >= DC_REVISION_88141)
1472 				t++;
1473 			if (t->dc_did == DC_DEVICEID_82C168 &&
1474 			    rev >= DC_REVISION_82C169)
1475 				t++;
1476 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1477 			    rev >= DC_REVISION_DM9102A)
1478 				t++;
1479 			return(t);
1480 		}
1481 		t++;
1482 	}
1483 
1484 	return(NULL);
1485 }
1486 
1487 /*
1488  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1489  * IDs against our list and return a device name if we find a match.
1490  * We do a little bit of extra work to identify the exact type of
1491  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1492  * but different revision IDs. The same is true for 98715/98715A
1493  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1494  * cases, the exact chip revision affects driver behavior.
1495  */
1496 static int
1497 dc_probe(device_t dev)
1498 {
1499 	const struct dc_type *t;
1500 
1501 	t = dc_devtype(dev);
1502 	if (t != NULL) {
1503 		struct dc_softc *sc = device_get_softc(dev);
1504 
1505 		/* Need this info to decide on a chip type. */
1506 		sc->dc_info = t;
1507 		device_set_desc(dev, t->dc_name);
1508 		return(0);
1509 	}
1510 
1511 	return(ENXIO);
1512 }
1513 
1514 static void
1515 dc_acpi(device_t dev)
1516 {
1517 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1518 		uint32_t iobase, membase, irq;
1519 		struct dc_softc *sc;
1520 
1521 		/* Save important PCI config data. */
1522 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1523 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1524 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1525 
1526 		sc = device_get_softc(dev);
1527 		/* Reset the power state. */
1528 		if_printf(&sc->arpcom.ac_if,
1529 			  "chip is in D%d power mode "
1530 			  "-- setting to D0\n", pci_get_powerstate(dev));
1531 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1532 
1533 		/* Restore PCI config data. */
1534 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1535 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1536 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1537 	}
1538 }
1539 
1540 static void
1541 dc_apply_fixup(struct dc_softc *sc, int media)
1542 {
1543 	struct dc_mediainfo	*m;
1544 	u_int8_t		*p;
1545 	int			i;
1546 	u_int32_t		reg;
1547 
1548 	m = sc->dc_mi;
1549 
1550 	while (m != NULL) {
1551 		if (m->dc_media == media)
1552 			break;
1553 		m = m->dc_next;
1554 	}
1555 
1556 	if (m == NULL)
1557 		return;
1558 
1559 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1560 		reg = (p[0] | (p[1] << 8)) << 16;
1561 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1562 	}
1563 
1564 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1565 		reg = (p[0] | (p[1] << 8)) << 16;
1566 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1567 	}
1568 
1569 	return;
1570 }
1571 
1572 static void
1573 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1574 {
1575 	struct dc_mediainfo	*m;
1576 
1577 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1578 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1579 	case DC_SIA_CODE_10BT:
1580 		m->dc_media = IFM_10_T;
1581 		break;
1582 
1583 	case DC_SIA_CODE_10BT_FDX:
1584 		m->dc_media = IFM_10_T|IFM_FDX;
1585 		break;
1586 
1587 	case DC_SIA_CODE_10B2:
1588 		m->dc_media = IFM_10_2;
1589 		break;
1590 
1591 	case DC_SIA_CODE_10B5:
1592 		m->dc_media = IFM_10_5;
1593 		break;
1594 	}
1595 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1596 		m->dc_gp_len = 2;
1597 		m->dc_gp_ptr =
1598 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1599 	} else {
1600 	m->dc_gp_len = 2;
1601 	m->dc_gp_ptr =
1602 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1603 	}
1604 
1605 	m->dc_next = sc->dc_mi;
1606 	sc->dc_mi = m;
1607 
1608 	sc->dc_pmode = DC_PMODE_SIA;
1609 
1610 	return;
1611 }
1612 
1613 static void
1614 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1615 {
1616 	struct dc_mediainfo	*m;
1617 
1618 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1619 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1620 		m->dc_media = IFM_100_TX;
1621 
1622 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1623 		m->dc_media = IFM_100_TX|IFM_FDX;
1624 
1625 	m->dc_gp_len = 2;
1626 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1627 
1628 	m->dc_next = sc->dc_mi;
1629 	sc->dc_mi = m;
1630 
1631 	sc->dc_pmode = DC_PMODE_SYM;
1632 
1633 	return;
1634 }
1635 
1636 static void
1637 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1638 {
1639 	u_int8_t		*p;
1640 	struct dc_mediainfo	*m;
1641 
1642 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1643 	/* We abuse IFM_AUTO to represent MII. */
1644 	m->dc_media = IFM_AUTO;
1645 	m->dc_gp_len = l->dc_gpr_len;
1646 
1647 	p = (u_int8_t *)l;
1648 	p += sizeof(struct dc_eblock_mii);
1649 	m->dc_gp_ptr = p;
1650 	p += 2 * l->dc_gpr_len;
1651 	m->dc_reset_len = *p;
1652 	p++;
1653 	m->dc_reset_ptr = p;
1654 
1655 	m->dc_next = sc->dc_mi;
1656 	sc->dc_mi = m;
1657 
1658 	return;
1659 }
1660 
1661 static void
1662 dc_read_srom(struct dc_softc *sc, int bits)
1663 {
1664 	int size;
1665 
1666 	size = 2 << bits;
1667 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1668 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1669 }
1670 
1671 static void
1672 dc_parse_21143_srom(struct dc_softc *sc)
1673 {
1674 	struct dc_leaf_hdr	*lhdr;
1675 	struct dc_eblock_hdr	*hdr;
1676 	int			i, loff;
1677 	char			*ptr;
1678 	int			have_mii;
1679 
1680 	have_mii = 0;
1681 	loff = sc->dc_srom[27];
1682 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1683 
1684 	ptr = (char *)lhdr;
1685 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1686 	/*
1687 	 * Look if we got a MII media block.
1688 	 */
1689 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1690 		hdr = (struct dc_eblock_hdr *)ptr;
1691 		if (hdr->dc_type == DC_EBLOCK_MII)
1692 		    have_mii++;
1693 
1694 		ptr += (hdr->dc_len & 0x7F);
1695 		ptr++;
1696 	}
1697 
1698 	/*
1699 	 * Do the same thing again. Only use SIA and SYM media
1700 	 * blocks if no MII media block is available.
1701 	 */
1702 	ptr = (char *)lhdr;
1703 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1704 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1705 		hdr = (struct dc_eblock_hdr *)ptr;
1706 		switch(hdr->dc_type) {
1707 		case DC_EBLOCK_MII:
1708 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1709 			break;
1710 		case DC_EBLOCK_SIA:
1711 			if (! have_mii)
1712 				dc_decode_leaf_sia(sc,
1713 				    (struct dc_eblock_sia *)hdr);
1714 			break;
1715 		case DC_EBLOCK_SYM:
1716 			if (! have_mii)
1717 				dc_decode_leaf_sym(sc,
1718 				    (struct dc_eblock_sym *)hdr);
1719 			break;
1720 		default:
1721 			/* Don't care. Yet. */
1722 			break;
1723 		}
1724 		ptr += (hdr->dc_len & 0x7F);
1725 		ptr++;
1726 	}
1727 
1728 	return;
1729 }
1730 
1731 /*
1732  * Attach the interface. Allocate softc structures, do ifmedia
1733  * setup and ethernet/BPF attach.
1734  */
1735 static int
1736 dc_attach(device_t dev)
1737 {
1738 	int			tmp = 0;
1739 	u_char			eaddr[ETHER_ADDR_LEN];
1740 	u_int32_t		command;
1741 	struct dc_softc		*sc;
1742 	struct ifnet		*ifp;
1743 	u_int32_t		revision;
1744 	int			error = 0, rid, mac_offset;
1745 
1746 	sc = device_get_softc(dev);
1747 	callout_init(&sc->dc_stat_timer);
1748 
1749 	ifp = &sc->arpcom.ac_if;
1750 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1751 
1752 	/*
1753 	 * Handle power management nonsense.
1754 	 */
1755 	dc_acpi(dev);
1756 
1757 	/*
1758 	 * Map control/status registers.
1759 	 */
1760 	pci_enable_busmaster(dev);
1761 
1762 	rid = DC_RID;
1763 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1764 
1765 	if (sc->dc_res == NULL) {
1766 		device_printf(dev, "couldn't map ports/memory\n");
1767 		error = ENXIO;
1768 		goto fail;
1769 	}
1770 
1771 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1772 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1773 
1774 	/* Allocate interrupt */
1775 	rid = 0;
1776 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1777 	    RF_SHAREABLE | RF_ACTIVE);
1778 
1779 	if (sc->dc_irq == NULL) {
1780 		device_printf(dev, "couldn't map interrupt\n");
1781 		error = ENXIO;
1782 		goto fail;
1783 	}
1784 
1785 	revision = pci_get_revid(dev);
1786 
1787 	/* Get the eeprom width, but PNIC has diff eeprom */
1788 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1789 		dc_eeprom_width(sc);
1790 
1791 	switch(sc->dc_info->dc_did) {
1792 	case DC_DEVICEID_21143:
1793 		sc->dc_type = DC_TYPE_21143;
1794 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1795 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1796 		/* Save EEPROM contents so we can parse them later. */
1797 		dc_read_srom(sc, sc->dc_romwidth);
1798 		break;
1799 	case DC_DEVICEID_DM9009:
1800 	case DC_DEVICEID_DM9100:
1801 	case DC_DEVICEID_DM9102:
1802 		sc->dc_type = DC_TYPE_DM9102;
1803 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1804 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1805 		sc->dc_flags |= DC_TX_ALIGN;
1806 		sc->dc_pmode = DC_PMODE_MII;
1807 		/* Increase the latency timer value. */
1808 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1809 		command &= 0xFFFF00FF;
1810 		command |= 0x00008000;
1811 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1812 		break;
1813 	case DC_DEVICEID_AL981:
1814 		sc->dc_type = DC_TYPE_AL981;
1815 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1816 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1817 		sc->dc_pmode = DC_PMODE_MII;
1818 		dc_read_srom(sc, sc->dc_romwidth);
1819 		break;
1820 	case DC_DEVICEID_AN985:
1821 	case DC_DEVICEID_ADM9511:
1822 	case DC_DEVICEID_ADM9513:
1823 	case DC_DEVICEID_EN2242:
1824 	case DC_DEVICEID_3CSOHOB:
1825 		sc->dc_type = DC_TYPE_AN985;
1826 		sc->dc_flags |= DC_64BIT_HASH;
1827 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1828 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1829 		sc->dc_pmode = DC_PMODE_MII;
1830 		break;
1831 	case DC_DEVICEID_98713:
1832 	case DC_DEVICEID_98713_CP:
1833 		if (revision < DC_REVISION_98713A) {
1834 			sc->dc_type = DC_TYPE_98713;
1835 		}
1836 		if (revision >= DC_REVISION_98713A) {
1837 			sc->dc_type = DC_TYPE_98713A;
1838 			sc->dc_flags |= DC_21143_NWAY;
1839 		}
1840 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1841 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1842 		break;
1843 	case DC_DEVICEID_987x5:
1844 	case DC_DEVICEID_EN1217:
1845 		/*
1846 		 * Macronix MX98715AEC-C/D/E parts have only a
1847 		 * 128-bit hash table. We need to deal with these
1848 		 * in the same manner as the PNIC II so that we
1849 		 * get the right number of bits out of the
1850 		 * CRC routine.
1851 		 */
1852 		if (revision >= DC_REVISION_98715AEC_C &&
1853 		    revision < DC_REVISION_98725)
1854 			sc->dc_flags |= DC_128BIT_HASH;
1855 		sc->dc_type = DC_TYPE_987x5;
1856 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1857 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1858 		break;
1859 	case DC_DEVICEID_98727:
1860 		sc->dc_type = DC_TYPE_987x5;
1861 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1862 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1863 		break;
1864 	case DC_DEVICEID_82C115:
1865 		sc->dc_type = DC_TYPE_PNICII;
1866 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1867 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1868 		break;
1869 	case DC_DEVICEID_82C168:
1870 		sc->dc_type = DC_TYPE_PNIC;
1871 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1872 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1873 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1874 		if (revision < DC_REVISION_82C169)
1875 			sc->dc_pmode = DC_PMODE_SYM;
1876 		break;
1877 	case DC_DEVICEID_AX88140A:
1878 		sc->dc_type = DC_TYPE_ASIX;
1879 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1880 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1881 		sc->dc_pmode = DC_PMODE_MII;
1882 		break;
1883 	case DC_DEVICEID_RS7112:
1884 		sc->dc_type = DC_TYPE_CONEXANT;
1885 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1886 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1887 		sc->dc_pmode = DC_PMODE_MII;
1888 		dc_read_srom(sc, sc->dc_romwidth);
1889 		break;
1890 	default:
1891 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
1892 		break;
1893 	}
1894 
1895 	/* Save the cache line size. */
1896 	if (DC_IS_DAVICOM(sc))
1897 		sc->dc_cachesize = 0;
1898 	else
1899 		sc->dc_cachesize = pci_read_config(dev,
1900 		    DC_PCI_CFLT, 4) & 0xFF;
1901 
1902 	/* Reset the adapter. */
1903 	dc_reset(sc);
1904 
1905 	/* Take 21143 out of snooze mode */
1906 	if (DC_IS_INTEL(sc)) {
1907 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1908 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1909 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1910 	}
1911 
1912 	/*
1913 	 * Try to learn something about the supported media.
1914 	 * We know that ASIX and ADMtek and Davicom devices
1915 	 * will *always* be using MII media, so that's a no-brainer.
1916 	 * The tricky ones are the Macronix/PNIC II and the
1917 	 * Intel 21143.
1918 	 */
1919 	if (DC_IS_INTEL(sc))
1920 		dc_parse_21143_srom(sc);
1921 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1922 		if (sc->dc_type == DC_TYPE_98713)
1923 			sc->dc_pmode = DC_PMODE_MII;
1924 		else
1925 			sc->dc_pmode = DC_PMODE_SYM;
1926 	} else if (!sc->dc_pmode)
1927 		sc->dc_pmode = DC_PMODE_MII;
1928 
1929 	/*
1930 	 * Get station address from the EEPROM.
1931 	 */
1932 	switch(sc->dc_type) {
1933 	case DC_TYPE_98713:
1934 	case DC_TYPE_98713A:
1935 	case DC_TYPE_987x5:
1936 	case DC_TYPE_PNICII:
1937 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1938 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1939 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1940 		break;
1941 	case DC_TYPE_PNIC:
1942 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1943 		break;
1944 	case DC_TYPE_DM9102:
1945 	case DC_TYPE_21143:
1946 	case DC_TYPE_ASIX:
1947 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1948 		break;
1949 	case DC_TYPE_AL981:
1950 	case DC_TYPE_AN985:
1951 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
1952 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
1953 		break;
1954 	case DC_TYPE_CONEXANT:
1955 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
1956 		break;
1957 	default:
1958 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1959 		break;
1960 	}
1961 
1962 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1963 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1964 
1965 	if (sc->dc_ldata == NULL) {
1966 		device_printf(dev, "no memory for list buffers!\n");
1967 		error = ENXIO;
1968 		goto fail;
1969 	}
1970 
1971 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
1972 
1973 	ifp->if_softc = sc;
1974 	ifp->if_mtu = ETHERMTU;
1975 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1976 	ifp->if_ioctl = dc_ioctl;
1977 	ifp->if_start = dc_start;
1978 #ifdef DEVICE_POLLING
1979 	ifp->if_poll = dc_poll;
1980 #endif
1981 	ifp->if_watchdog = dc_watchdog;
1982 	ifp->if_init = dc_init;
1983 	ifp->if_baudrate = 10000000;
1984 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
1985 	ifq_set_ready(&ifp->if_snd);
1986 
1987 	/*
1988 	 * Do MII setup. If this is a 21143, check for a PHY on the
1989 	 * MII bus after applying any necessary fixups to twiddle the
1990 	 * GPIO bits. If we don't end up finding a PHY, restore the
1991 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
1992 	 * driver instead.
1993 	 */
1994 	if (DC_IS_INTEL(sc)) {
1995 		dc_apply_fixup(sc, IFM_AUTO);
1996 		tmp = sc->dc_pmode;
1997 		sc->dc_pmode = DC_PMODE_MII;
1998 	}
1999 
2000 	error = mii_phy_probe(dev, &sc->dc_miibus,
2001 	    dc_ifmedia_upd, dc_ifmedia_sts);
2002 
2003 	if (error && DC_IS_INTEL(sc)) {
2004 		sc->dc_pmode = tmp;
2005 		if (sc->dc_pmode != DC_PMODE_SIA)
2006 			sc->dc_pmode = DC_PMODE_SYM;
2007 		sc->dc_flags |= DC_21143_NWAY;
2008 		mii_phy_probe(dev, &sc->dc_miibus,
2009 		    dc_ifmedia_upd, dc_ifmedia_sts);
2010 		/*
2011 		 * For non-MII cards, we need to have the 21143
2012 		 * drive the LEDs. Except there are some systems
2013 		 * like the NEC VersaPro NoteBook PC which have no
2014 		 * LEDs, and twiddling these bits has adverse effects
2015 		 * on them. (I.e. you suddenly can't get a link.)
2016 		 */
2017 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2018 			sc->dc_flags |= DC_TULIP_LEDS;
2019 		error = 0;
2020 	}
2021 
2022 	if (error) {
2023 		device_printf(dev, "MII without any PHY!\n");
2024 		error = ENXIO;
2025 		goto fail;
2026 	}
2027 
2028 	/*
2029 	 * Call MI attach routine.
2030 	 */
2031 	ether_ifattach(ifp, eaddr);
2032 
2033 	if (DC_IS_ADMTEK(sc)) {
2034 		/*
2035 		 * Set automatic TX underrun recovery for the ADMtek chips
2036 		 */
2037 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2038 	}
2039 
2040 	/*
2041 	 * Tell the upper layer(s) we support long frames.
2042 	 */
2043 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2044 
2045 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
2046 			       dc_intr, sc, &sc->dc_intrhand, NULL);
2047 	if (error) {
2048 		ether_ifdetach(ifp);
2049 		device_printf(dev, "couldn't set up irq\n");
2050 		goto fail;
2051 	}
2052 
2053 	return(0);
2054 
2055 fail:
2056 	dc_detach(dev);
2057 	return(error);
2058 }
2059 
2060 static int
2061 dc_detach(device_t dev)
2062 {
2063 	struct dc_softc *sc = device_get_softc(dev);
2064 	struct ifnet *ifp = &sc->arpcom.ac_if;
2065 	struct dc_mediainfo *m;
2066 
2067 	crit_enter();
2068 
2069 	if (device_is_attached(dev)) {
2070 		dc_stop(sc);
2071 		ether_ifdetach(ifp);
2072 	}
2073 
2074 	if (sc->dc_miibus)
2075 		device_delete_child(dev, sc->dc_miibus);
2076 	bus_generic_detach(dev);
2077 
2078 	if (sc->dc_intrhand)
2079 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2080 
2081 	crit_exit();
2082 
2083 	if (sc->dc_irq)
2084 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2085 	if (sc->dc_res)
2086 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2087 
2088 	if (sc->dc_ldata)
2089 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2090 	if (sc->dc_pnic_rx_buf != NULL)
2091 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2092 
2093 	while(sc->dc_mi != NULL) {
2094 		m = sc->dc_mi->dc_next;
2095 		free(sc->dc_mi, M_DEVBUF);
2096 		sc->dc_mi = m;
2097 	}
2098 
2099 	if (sc->dc_srom)
2100 		free(sc->dc_srom, M_DEVBUF);
2101 
2102 	return(0);
2103 }
2104 
2105 /*
2106  * Initialize the transmit descriptors.
2107  */
2108 static int
2109 dc_list_tx_init(struct dc_softc *sc)
2110 {
2111 	struct dc_chain_data	*cd;
2112 	struct dc_list_data	*ld;
2113 	int			i;
2114 
2115 	cd = &sc->dc_cdata;
2116 	ld = sc->dc_ldata;
2117 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2118 		if (i == (DC_TX_LIST_CNT - 1)) {
2119 			ld->dc_tx_list[i].dc_next =
2120 			    vtophys(&ld->dc_tx_list[0]);
2121 		} else {
2122 			ld->dc_tx_list[i].dc_next =
2123 			    vtophys(&ld->dc_tx_list[i + 1]);
2124 		}
2125 		cd->dc_tx_chain[i] = NULL;
2126 		ld->dc_tx_list[i].dc_data = 0;
2127 		ld->dc_tx_list[i].dc_ctl = 0;
2128 	}
2129 
2130 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2131 
2132 	return(0);
2133 }
2134 
2135 
2136 /*
2137  * Initialize the RX descriptors and allocate mbufs for them. Note that
2138  * we arrange the descriptors in a closed ring, so that the last descriptor
2139  * points back to the first.
2140  */
2141 static int
2142 dc_list_rx_init(struct dc_softc *sc)
2143 {
2144 	struct dc_chain_data	*cd;
2145 	struct dc_list_data	*ld;
2146 	int			i;
2147 
2148 	cd = &sc->dc_cdata;
2149 	ld = sc->dc_ldata;
2150 
2151 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2152 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2153 			return(ENOBUFS);
2154 		if (i == (DC_RX_LIST_CNT - 1)) {
2155 			ld->dc_rx_list[i].dc_next =
2156 			    vtophys(&ld->dc_rx_list[0]);
2157 		} else {
2158 			ld->dc_rx_list[i].dc_next =
2159 			    vtophys(&ld->dc_rx_list[i + 1]);
2160 		}
2161 	}
2162 
2163 	cd->dc_rx_prod = 0;
2164 
2165 	return(0);
2166 }
2167 
2168 /*
2169  * Initialize an RX descriptor and attach an MBUF cluster.
2170  */
2171 static int
2172 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2173 {
2174 	struct mbuf		*m_new = NULL;
2175 	struct dc_desc		*c;
2176 
2177 	c = &sc->dc_ldata->dc_rx_list[i];
2178 
2179 	if (m == NULL) {
2180 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2181 		if (m_new == NULL)
2182 			return (ENOBUFS);
2183 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2184 	} else {
2185 		m_new = m;
2186 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2187 		m_new->m_data = m_new->m_ext.ext_buf;
2188 	}
2189 
2190 	m_adj(m_new, sizeof(u_int64_t));
2191 
2192 	/*
2193 	 * If this is a PNIC chip, zero the buffer. This is part
2194 	 * of the workaround for the receive bug in the 82c168 and
2195 	 * 82c169 chips.
2196 	 */
2197 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2198 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2199 
2200 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2201 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2202 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2203 	c->dc_status = DC_RXSTAT_OWN;
2204 
2205 	return(0);
2206 }
2207 
2208 /*
2209  * Grrrrr.
2210  * The PNIC chip has a terrible bug in it that manifests itself during
2211  * periods of heavy activity. The exact mode of failure if difficult to
2212  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2213  * will happen on slow machines. The bug is that sometimes instead of
2214  * uploading one complete frame during reception, it uploads what looks
2215  * like the entire contents of its FIFO memory. The frame we want is at
2216  * the end of the whole mess, but we never know exactly how much data has
2217  * been uploaded, so salvaging the frame is hard.
2218  *
2219  * There is only one way to do it reliably, and it's disgusting.
2220  * Here's what we know:
2221  *
2222  * - We know there will always be somewhere between one and three extra
2223  *   descriptors uploaded.
2224  *
2225  * - We know the desired received frame will always be at the end of the
2226  *   total data upload.
2227  *
2228  * - We know the size of the desired received frame because it will be
2229  *   provided in the length field of the status word in the last descriptor.
2230  *
2231  * Here's what we do:
2232  *
2233  * - When we allocate buffers for the receive ring, we bzero() them.
2234  *   This means that we know that the buffer contents should be all
2235  *   zeros, except for data uploaded by the chip.
2236  *
2237  * - We also force the PNIC chip to upload frames that include the
2238  *   ethernet CRC at the end.
2239  *
2240  * - We gather all of the bogus frame data into a single buffer.
2241  *
2242  * - We then position a pointer at the end of this buffer and scan
2243  *   backwards until we encounter the first non-zero byte of data.
2244  *   This is the end of the received frame. We know we will encounter
2245  *   some data at the end of the frame because the CRC will always be
2246  *   there, so even if the sender transmits a packet of all zeros,
2247  *   we won't be fooled.
2248  *
2249  * - We know the size of the actual received frame, so we subtract
2250  *   that value from the current pointer location. This brings us
2251  *   to the start of the actual received packet.
2252  *
2253  * - We copy this into an mbuf and pass it on, along with the actual
2254  *   frame length.
2255  *
2256  * The performance hit is tremendous, but it beats dropping frames all
2257  * the time.
2258  */
2259 
2260 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2261 static void
2262 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2263 {
2264 	struct dc_desc		*cur_rx;
2265 	struct dc_desc		*c = NULL;
2266 	struct mbuf		*m = NULL;
2267 	unsigned char		*ptr;
2268 	int			i, total_len;
2269 	u_int32_t		rxstat = 0;
2270 
2271 	i = sc->dc_pnic_rx_bug_save;
2272 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2273 	ptr = sc->dc_pnic_rx_buf;
2274 	bzero(ptr, DC_RXLEN * 5);
2275 
2276 	/* Copy all the bytes from the bogus buffers. */
2277 	while (1) {
2278 		c = &sc->dc_ldata->dc_rx_list[i];
2279 		rxstat = c->dc_status;
2280 		m = sc->dc_cdata.dc_rx_chain[i];
2281 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2282 		ptr += DC_RXLEN;
2283 		/* If this is the last buffer, break out. */
2284 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2285 			break;
2286 		dc_newbuf(sc, i, m);
2287 		DC_INC(i, DC_RX_LIST_CNT);
2288 	}
2289 
2290 	/* Find the length of the actual receive frame. */
2291 	total_len = DC_RXBYTES(rxstat);
2292 
2293 	/* Scan backwards until we hit a non-zero byte. */
2294 	while(*ptr == 0x00)
2295 		ptr--;
2296 
2297 	/* Round off. */
2298 	if ((uintptr_t)(ptr) & 0x3)
2299 		ptr -= 1;
2300 
2301 	/* Now find the start of the frame. */
2302 	ptr -= total_len;
2303 	if (ptr < sc->dc_pnic_rx_buf)
2304 		ptr = sc->dc_pnic_rx_buf;
2305 
2306 	/*
2307 	 * Now copy the salvaged frame to the last mbuf and fake up
2308 	 * the status word to make it look like a successful
2309  	 * frame reception.
2310 	 */
2311 	dc_newbuf(sc, i, m);
2312 	bcopy(ptr, mtod(m, char *), total_len);
2313 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2314 
2315 	return;
2316 }
2317 
2318 /*
2319  * This routine searches the RX ring for dirty descriptors in the
2320  * event that the rxeof routine falls out of sync with the chip's
2321  * current descriptor pointer. This may happen sometimes as a result
2322  * of a "no RX buffer available" condition that happens when the chip
2323  * consumes all of the RX buffers before the driver has a chance to
2324  * process the RX ring. This routine may need to be called more than
2325  * once to bring the driver back in sync with the chip, however we
2326  * should still be getting RX DONE interrupts to drive the search
2327  * for new packets in the RX ring, so we should catch up eventually.
2328  */
2329 static int
2330 dc_rx_resync(struct dc_softc *sc)
2331 {
2332 	int			i, pos;
2333 	struct dc_desc		*cur_rx;
2334 
2335 	pos = sc->dc_cdata.dc_rx_prod;
2336 
2337 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2338 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2339 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2340 			break;
2341 		DC_INC(pos, DC_RX_LIST_CNT);
2342 	}
2343 
2344 	/* If the ring really is empty, then just return. */
2345 	if (i == DC_RX_LIST_CNT)
2346 		return(0);
2347 
2348 	/* We've fallen behing the chip: catch it. */
2349 	sc->dc_cdata.dc_rx_prod = pos;
2350 
2351 	return(EAGAIN);
2352 }
2353 
2354 /*
2355  * A frame has been uploaded: pass the resulting mbuf chain up to
2356  * the higher level protocols.
2357  */
2358 static void
2359 dc_rxeof(struct dc_softc *sc)
2360 {
2361         struct mbuf		*m;
2362         struct ifnet		*ifp;
2363 	struct dc_desc		*cur_rx;
2364 	int			i, total_len = 0;
2365 	u_int32_t		rxstat;
2366 
2367 	ifp = &sc->arpcom.ac_if;
2368 	i = sc->dc_cdata.dc_rx_prod;
2369 
2370 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2371 
2372 #ifdef DEVICE_POLLING
2373 		if (ifp->if_flags & IFF_POLLING) {
2374 			if (sc->rxcycles <= 0)
2375 				break;
2376 			sc->rxcycles--;
2377 		}
2378 #endif /* DEVICE_POLLING */
2379 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2380 		rxstat = cur_rx->dc_status;
2381 		m = sc->dc_cdata.dc_rx_chain[i];
2382 		total_len = DC_RXBYTES(rxstat);
2383 
2384 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2385 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2386 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2387 					sc->dc_pnic_rx_bug_save = i;
2388 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2389 					DC_INC(i, DC_RX_LIST_CNT);
2390 					continue;
2391 				}
2392 				dc_pnic_rx_bug_war(sc, i);
2393 				rxstat = cur_rx->dc_status;
2394 				total_len = DC_RXBYTES(rxstat);
2395 			}
2396 		}
2397 
2398 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2399 
2400 		/*
2401 		 * If an error occurs, update stats, clear the
2402 		 * status word and leave the mbuf cluster in place:
2403 		 * it should simply get re-used next time this descriptor
2404 		 * comes up in the ring.  However, don't report long
2405 		 * frames as errors since they could be vlans
2406 		 */
2407 		if ((rxstat & DC_RXSTAT_RXERR)){
2408 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2409 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2410 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2411 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2412 				ifp->if_ierrors++;
2413 				if (rxstat & DC_RXSTAT_COLLSEEN)
2414 					ifp->if_collisions++;
2415 				dc_newbuf(sc, i, m);
2416 				if (rxstat & DC_RXSTAT_CRCERR) {
2417 					DC_INC(i, DC_RX_LIST_CNT);
2418 					continue;
2419 				} else {
2420 					dc_init(sc);
2421 					return;
2422 				}
2423 			}
2424 		}
2425 
2426 		/* No errors; receive the packet. */
2427 		total_len -= ETHER_CRC_LEN;
2428 
2429 #ifdef __i386__
2430 		/*
2431 		 * On the x86 we do not have alignment problems, so try to
2432 		 * allocate a new buffer for the receive ring, and pass up
2433 		 * the one where the packet is already, saving the expensive
2434 		 * copy done in m_devget().
2435 		 * If we are on an architecture with alignment problems, or
2436 		 * if the allocation fails, then use m_devget and leave the
2437 		 * existing buffer in the receive ring.
2438 		 */
2439 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2440 			m->m_pkthdr.rcvif = ifp;
2441 			m->m_pkthdr.len = m->m_len = total_len;
2442 			DC_INC(i, DC_RX_LIST_CNT);
2443 		} else
2444 #endif
2445 		{
2446 			struct mbuf *m0;
2447 
2448 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2449 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2450 			dc_newbuf(sc, i, m);
2451 			DC_INC(i, DC_RX_LIST_CNT);
2452 			if (m0 == NULL) {
2453 				ifp->if_ierrors++;
2454 				continue;
2455 			}
2456 			m_adj(m0, ETHER_ALIGN);
2457 			m = m0;
2458 		}
2459 
2460 		ifp->if_ipackets++;
2461 		(*ifp->if_input)(ifp, m);
2462 	}
2463 
2464 	sc->dc_cdata.dc_rx_prod = i;
2465 }
2466 
2467 /*
2468  * A frame was downloaded to the chip. It's safe for us to clean up
2469  * the list buffers.
2470  */
2471 
2472 static void
2473 dc_txeof(struct dc_softc *sc)
2474 {
2475 	struct dc_desc		*cur_tx = NULL;
2476 	struct ifnet		*ifp;
2477 	int			idx;
2478 
2479 	ifp = &sc->arpcom.ac_if;
2480 
2481 	/*
2482 	 * Go through our tx list and free mbufs for those
2483 	 * frames that have been transmitted.
2484 	 */
2485 	idx = sc->dc_cdata.dc_tx_cons;
2486 	while(idx != sc->dc_cdata.dc_tx_prod) {
2487 		u_int32_t		txstat;
2488 
2489 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2490 		txstat = cur_tx->dc_status;
2491 
2492 		if (txstat & DC_TXSTAT_OWN)
2493 			break;
2494 
2495 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2496 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2497 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2498 				/*
2499 				 * Yes, the PNIC is so brain damaged
2500 				 * that it will sometimes generate a TX
2501 				 * underrun error while DMAing the RX
2502 				 * filter setup frame. If we detect this,
2503 				 * we have to send the setup frame again,
2504 				 * or else the filter won't be programmed
2505 				 * correctly.
2506 				 */
2507 				if (DC_IS_PNIC(sc)) {
2508 					if (txstat & DC_TXSTAT_ERRSUM)
2509 						dc_setfilt(sc);
2510 				}
2511 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2512 			}
2513 			sc->dc_cdata.dc_tx_cnt--;
2514 			DC_INC(idx, DC_TX_LIST_CNT);
2515 			continue;
2516 		}
2517 
2518 		if (DC_IS_CONEXANT(sc)) {
2519 			/*
2520 			 * For some reason Conexant chips like
2521 			 * setting the CARRLOST flag even when
2522 			 * the carrier is there. In CURRENT we
2523 			 * have the same problem for Xircom
2524 			 * cards !
2525 			 */
2526 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2527 			    sc->dc_pmode == DC_PMODE_MII &&
2528 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2529 			    DC_TXSTAT_NOCARRIER)))
2530 				txstat &= ~DC_TXSTAT_ERRSUM;
2531 		} else {
2532 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2533 			    sc->dc_pmode == DC_PMODE_MII &&
2534 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2535 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2536 				txstat &= ~DC_TXSTAT_ERRSUM;
2537 		}
2538 
2539 		if (txstat & DC_TXSTAT_ERRSUM) {
2540 			ifp->if_oerrors++;
2541 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2542 				ifp->if_collisions++;
2543 			if (txstat & DC_TXSTAT_LATECOLL)
2544 				ifp->if_collisions++;
2545 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2546 				dc_init(sc);
2547 				return;
2548 			}
2549 		}
2550 
2551 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2552 
2553 		ifp->if_opackets++;
2554 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2555 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2556 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2557 		}
2558 
2559 		sc->dc_cdata.dc_tx_cnt--;
2560 		DC_INC(idx, DC_TX_LIST_CNT);
2561 	}
2562 
2563 	if (idx != sc->dc_cdata.dc_tx_cons) {
2564 	    	/* some buffers have been freed */
2565 		sc->dc_cdata.dc_tx_cons = idx;
2566 		ifp->if_flags &= ~IFF_OACTIVE;
2567 	}
2568 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2569 
2570 	return;
2571 }
2572 
2573 static void
2574 dc_tick(void *xsc)
2575 {
2576 	struct dc_softc *sc = xsc;
2577 	struct ifnet *ifp = &sc->arpcom.ac_if;
2578 	struct mii_data *mii;
2579 	u_int32_t r;
2580 
2581 	crit_enter();
2582 
2583 	mii = device_get_softc(sc->dc_miibus);
2584 
2585 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2586 		if (sc->dc_flags & DC_21143_NWAY) {
2587 			r = CSR_READ_4(sc, DC_10BTSTAT);
2588 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2589 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2590 				sc->dc_link = 0;
2591 				mii_mediachg(mii);
2592 			}
2593 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2594 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2595 				sc->dc_link = 0;
2596 				mii_mediachg(mii);
2597 			}
2598 			if (sc->dc_link == 0)
2599 				mii_tick(mii);
2600 		} else {
2601 			r = CSR_READ_4(sc, DC_ISR);
2602 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2603 			    sc->dc_cdata.dc_tx_cnt == 0) {
2604 				mii_tick(mii);
2605 				if (!(mii->mii_media_status & IFM_ACTIVE))
2606 					sc->dc_link = 0;
2607 			}
2608 		}
2609 	} else
2610 		mii_tick(mii);
2611 
2612 	/*
2613 	 * When the init routine completes, we expect to be able to send
2614 	 * packets right away, and in fact the network code will send a
2615 	 * gratuitous ARP the moment the init routine marks the interface
2616 	 * as running. However, even though the MAC may have been initialized,
2617 	 * there may be a delay of a few seconds before the PHY completes
2618 	 * autonegotiation and the link is brought up. Any transmissions
2619 	 * made during that delay will be lost. Dealing with this is tricky:
2620 	 * we can't just pause in the init routine while waiting for the
2621 	 * PHY to come ready since that would bring the whole system to
2622 	 * a screeching halt for several seconds.
2623 	 *
2624 	 * What we do here is prevent the TX start routine from sending
2625 	 * any packets until a link has been established. After the
2626 	 * interface has been initialized, the tick routine will poll
2627 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2628 	 * that time, packets will stay in the send queue, and once the
2629 	 * link comes up, they will be flushed out to the wire.
2630 	 */
2631 	if (!sc->dc_link) {
2632 		mii_pollstat(mii);
2633 		if (mii->mii_media_status & IFM_ACTIVE &&
2634 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2635 			sc->dc_link++;
2636 			if (!ifq_is_empty(&ifp->if_snd))
2637 				dc_start(ifp);
2638 		}
2639 	}
2640 
2641 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2642 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2643 	else
2644 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2645 
2646 	crit_exit();
2647 }
2648 
2649 /*
2650  * A transmit underrun has occurred.  Back off the transmit threshold,
2651  * or switch to store and forward mode if we have to.
2652  */
2653 static void
2654 dc_tx_underrun(struct dc_softc *sc)
2655 {
2656 	u_int32_t		isr;
2657 	int			i;
2658 
2659 	if (DC_IS_DAVICOM(sc))
2660 		dc_init(sc);
2661 
2662 	if (DC_IS_INTEL(sc)) {
2663 		/*
2664 		 * The real 21143 requires that the transmitter be idle
2665 		 * in order to change the transmit threshold or store
2666 		 * and forward state.
2667 		 */
2668 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2669 
2670 		for (i = 0; i < DC_TIMEOUT; i++) {
2671 			isr = CSR_READ_4(sc, DC_ISR);
2672 			if (isr & DC_ISR_TX_IDLE)
2673 				break;
2674 			DELAY(10);
2675 		}
2676 		if (i == DC_TIMEOUT) {
2677 			if_printf(&sc->arpcom.ac_if,
2678 				  "failed to force tx to idle state\n");
2679 			dc_init(sc);
2680 		}
2681 	}
2682 
2683 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2684 	sc->dc_txthresh += DC_TXTHRESH_INC;
2685 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2686 		printf("using store and forward mode\n");
2687 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2688 	} else {
2689 		printf("increasing TX threshold\n");
2690 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2691 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2692 	}
2693 
2694 	if (DC_IS_INTEL(sc))
2695 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2696 
2697 	return;
2698 }
2699 
2700 #ifdef DEVICE_POLLING
2701 
2702 static void
2703 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2704 {
2705 	struct	dc_softc *sc = ifp->if_softc;
2706 	u_int32_t status;
2707 
2708 	switch(cmd) {
2709 	case POLL_REGISTER:
2710 		/* Disable interrupts */
2711 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2712 		break;
2713 	case POLL_DEREGISTER:
2714 		/* Re-enable interrupts. */
2715 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2716 		break;
2717 	case POLL_ONLY:
2718 		sc->rxcycles = count;
2719 		dc_rxeof(sc);
2720 		dc_txeof(sc);
2721 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2722 			dc_start(ifp);
2723 		break;
2724 	case POLL_AND_CHECK_STATUS:
2725 		sc->rxcycles = count;
2726 		dc_rxeof(sc);
2727 		dc_txeof(sc);
2728 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2729 			dc_start(ifp);
2730 		status = CSR_READ_4(sc, DC_ISR);
2731 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2732 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2733 			DC_ISR_BUS_ERR);
2734 		if (!status)
2735 			break;
2736 		/* ack what we have */
2737 		CSR_WRITE_4(sc, DC_ISR, status);
2738 
2739 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2740 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2741 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2742 
2743 			if (dc_rx_resync(sc))
2744 				dc_rxeof(sc);
2745 		}
2746 		/* restart transmit unit if necessary */
2747 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2748 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2749 
2750 		if (status & DC_ISR_TX_UNDERRUN)
2751 			dc_tx_underrun(sc);
2752 
2753 		if (status & DC_ISR_BUS_ERR) {
2754 			if_printf(ifp, "dc_poll: bus error\n");
2755 			dc_reset(sc);
2756 			dc_init(sc);
2757 		}
2758 		break;
2759 	}
2760 }
2761 #endif /* DEVICE_POLLING */
2762 
2763 static void
2764 dc_intr(void *arg)
2765 {
2766 	struct dc_softc		*sc;
2767 	struct ifnet		*ifp;
2768 	u_int32_t		status;
2769 
2770 	sc = arg;
2771 
2772 	if (sc->suspended) {
2773 		return;
2774 	}
2775 
2776 	ifp = &sc->arpcom.ac_if;
2777 
2778 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2779 		return ;
2780 
2781 	/* Suppress unwanted interrupts */
2782 	if (!(ifp->if_flags & IFF_UP)) {
2783 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2784 			dc_stop(sc);
2785 		return;
2786 	}
2787 
2788 	/* Disable interrupts. */
2789 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2790 
2791 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2792 
2793 		CSR_WRITE_4(sc, DC_ISR, status);
2794 
2795 		if (status & DC_ISR_RX_OK) {
2796 			int		curpkts;
2797 			curpkts = ifp->if_ipackets;
2798 			dc_rxeof(sc);
2799 			if (curpkts == ifp->if_ipackets) {
2800 				while(dc_rx_resync(sc))
2801 					dc_rxeof(sc);
2802 			}
2803 		}
2804 
2805 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2806 			dc_txeof(sc);
2807 
2808 		if (status & DC_ISR_TX_IDLE) {
2809 			dc_txeof(sc);
2810 			if (sc->dc_cdata.dc_tx_cnt) {
2811 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2812 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2813 			}
2814 		}
2815 
2816 		if (status & DC_ISR_TX_UNDERRUN)
2817 			dc_tx_underrun(sc);
2818 
2819 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2820 		    || (status & DC_ISR_RX_NOBUF)) {
2821 			int		curpkts;
2822 			curpkts = ifp->if_ipackets;
2823 			dc_rxeof(sc);
2824 			if (curpkts == ifp->if_ipackets) {
2825 				while(dc_rx_resync(sc))
2826 					dc_rxeof(sc);
2827 			}
2828 		}
2829 
2830 		if (status & DC_ISR_BUS_ERR) {
2831 			dc_reset(sc);
2832 			dc_init(sc);
2833 		}
2834 	}
2835 
2836 	/* Re-enable interrupts. */
2837 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2838 
2839 	if (!ifq_is_empty(&ifp->if_snd))
2840 		dc_start(ifp);
2841 
2842 	return;
2843 }
2844 
2845 /*
2846  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2847  * pointers to the fragment pointers.
2848  */
2849 static int
2850 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2851 {
2852 	struct dc_desc		*f = NULL;
2853 	struct mbuf		*m;
2854 	int			frag, cur, cnt = 0;
2855 
2856 	/*
2857  	 * Start packing the mbufs in this chain into
2858 	 * the fragment pointers. Stop when we run out
2859  	 * of fragments or hit the end of the mbuf chain.
2860 	 */
2861 	m = m_head;
2862 	cur = frag = *txidx;
2863 
2864 	for (m = m_head; m != NULL; m = m->m_next) {
2865 		if (m->m_len != 0) {
2866 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2867 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2868 				    frag == (DC_TX_LIST_CNT - 1))
2869 					return(ENOBUFS);
2870 			}
2871 			if ((DC_TX_LIST_CNT -
2872 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2873 				return(ENOBUFS);
2874 
2875 			f = &sc->dc_ldata->dc_tx_list[frag];
2876 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2877 			if (cnt == 0) {
2878 				f->dc_status = 0;
2879 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2880 			} else
2881 				f->dc_status = DC_TXSTAT_OWN;
2882 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2883 			cur = frag;
2884 			DC_INC(frag, DC_TX_LIST_CNT);
2885 			cnt++;
2886 		}
2887 	}
2888 
2889 	if (m != NULL)
2890 		return(ENOBUFS);
2891 
2892 	sc->dc_cdata.dc_tx_cnt += cnt;
2893 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2894 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2895 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2896 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2897 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2898 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2899 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2900 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2901 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2902 	*txidx = frag;
2903 
2904 	return(0);
2905 }
2906 
2907 /*
2908  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2909  * to the mbuf data regions directly in the transmit lists. We also save a
2910  * copy of the pointers since the transmit list fragment pointers are
2911  * physical addresses.
2912  */
2913 
2914 static void
2915 dc_start(struct ifnet *ifp)
2916 {
2917 	struct dc_softc		*sc;
2918 	struct mbuf *m_head = NULL, *m_new;
2919 	int did_defrag, idx;
2920 
2921 	sc = ifp->if_softc;
2922 
2923 	if (!sc->dc_link)
2924 		return;
2925 
2926 	if (ifp->if_flags & IFF_OACTIVE)
2927 		return;
2928 
2929 	idx = sc->dc_cdata.dc_tx_prod;
2930 
2931 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2932 		did_defrag = 0;
2933 		m_head = ifq_poll(&ifp->if_snd);
2934 		if (m_head == NULL)
2935 			break;
2936 
2937 		if (sc->dc_flags & DC_TX_COALESCE &&
2938 		    (m_head->m_next != NULL ||
2939 			sc->dc_flags & DC_TX_ALIGN)){
2940 			/*
2941 			 * Check first if coalescing allows us to queue
2942 			 * the packet. We don't want to loose it if
2943 			 * the TX queue is full.
2944 			 */
2945 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
2946 			    idx != sc->dc_cdata.dc_tx_prod &&
2947 			    idx == (DC_TX_LIST_CNT - 1)) {
2948 				ifp->if_flags |= IFF_OACTIVE;
2949 				break;
2950 			}
2951 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
2952 				ifp->if_flags |= IFF_OACTIVE;
2953 				break;
2954 			}
2955 
2956 			/* only coalesce if have >1 mbufs */
2957 			m_new = m_defrag_nofree(m_head, MB_DONTWAIT);
2958 			if (m_new == NULL) {
2959 				ifp->if_flags |= IFF_OACTIVE;
2960 				break;
2961 			}
2962 			m_freem(m_head);
2963 			m_head = m_new;
2964 			did_defrag = 1;
2965 		}
2966 
2967 		if (dc_encap(sc, m_head, &idx)) {
2968 			if (did_defrag) {
2969 				m_freem(m_head);
2970 				m_new = ifq_dequeue(&ifp->if_snd);
2971 				m_freem(m_new);
2972 			}
2973 			ifp->if_flags |= IFF_OACTIVE;
2974 			break;
2975 		}
2976 
2977 		m_new = ifq_dequeue(&ifp->if_snd);
2978 		if (did_defrag)
2979 			m_freem(m_new);
2980 
2981 		/*
2982 		 * If there's a BPF listener, bounce a copy of this frame
2983 		 * to him.
2984 		 */
2985 		BPF_MTAP(ifp, m_head);
2986 
2987 		if (sc->dc_flags & DC_TX_ONE) {
2988 			ifp->if_flags |= IFF_OACTIVE;
2989 			break;
2990 		}
2991 	}
2992 
2993 	/* Transmit */
2994 	sc->dc_cdata.dc_tx_prod = idx;
2995 	if (!(sc->dc_flags & DC_TX_POLL))
2996 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2997 
2998 	/*
2999 	 * Set a timeout in case the chip goes out to lunch.
3000 	 */
3001 	ifp->if_timer = 5;
3002 
3003 	return;
3004 }
3005 
3006 static void
3007 dc_init(void *xsc)
3008 {
3009 	struct dc_softc		*sc = xsc;
3010 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3011 	struct mii_data		*mii;
3012 
3013 	crit_enter();
3014 
3015 	mii = device_get_softc(sc->dc_miibus);
3016 
3017 	/*
3018 	 * Cancel pending I/O and free all RX/TX buffers.
3019 	 */
3020 	dc_stop(sc);
3021 	dc_reset(sc);
3022 
3023 	/*
3024 	 * Set cache alignment and burst length.
3025 	 */
3026 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3027 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3028 	else
3029 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3030 	/*
3031 	 * Evenly share the bus between receive and transmit process.
3032 	 */
3033 	if (DC_IS_INTEL(sc))
3034 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3035 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3036 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3037 	} else {
3038 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3039 	}
3040 	if (sc->dc_flags & DC_TX_POLL)
3041 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3042 	switch(sc->dc_cachesize) {
3043 	case 32:
3044 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3045 		break;
3046 	case 16:
3047 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3048 		break;
3049 	case 8:
3050 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3051 		break;
3052 	case 0:
3053 	default:
3054 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3055 		break;
3056 	}
3057 
3058 	if (sc->dc_flags & DC_TX_STORENFWD)
3059 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3060 	else {
3061 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3062 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3063 		} else {
3064 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3065 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3066 		}
3067 	}
3068 
3069 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3070 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3071 
3072 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3073 		/*
3074 		 * The app notes for the 98713 and 98715A say that
3075 		 * in order to have the chips operate properly, a magic
3076 		 * number must be written to CSR16. Macronix does not
3077 		 * document the meaning of these bits so there's no way
3078 		 * to know exactly what they do. The 98713 has a magic
3079 		 * number all its own; the rest all use a different one.
3080 		 */
3081 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3082 		if (sc->dc_type == DC_TYPE_98713)
3083 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3084 		else
3085 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3086 	}
3087 
3088 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3089 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3090 
3091 	/* Init circular RX list. */
3092 	if (dc_list_rx_init(sc) == ENOBUFS) {
3093 		if_printf(ifp, "initialization failed: no "
3094 			  "memory for rx buffers\n");
3095 		dc_stop(sc);
3096 		crit_exit();
3097 		return;
3098 	}
3099 
3100 	/*
3101 	 * Init tx descriptors.
3102 	 */
3103 	dc_list_tx_init(sc);
3104 
3105 	/*
3106 	 * Load the address of the RX list.
3107 	 */
3108 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3109 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3110 
3111 	/*
3112 	 * Enable interrupts.
3113 	 */
3114 #ifdef DEVICE_POLLING
3115 	/*
3116 	 * ... but only if we are not polling, and make sure they are off in
3117 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3118 	 * after a reset.
3119 	 */
3120 	if (ifp->if_flags & IFF_POLLING)
3121 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3122 	else
3123 #endif
3124 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3125 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3126 
3127 	/* Enable transmitter. */
3128 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3129 
3130 	/*
3131 	 * If this is an Intel 21143 and we're not using the
3132 	 * MII port, program the LED control pins so we get
3133 	 * link and activity indications.
3134 	 */
3135 	if (sc->dc_flags & DC_TULIP_LEDS) {
3136 		CSR_WRITE_4(sc, DC_WATCHDOG,
3137 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3138 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3139 	}
3140 
3141 	/*
3142 	 * Load the RX/multicast filter. We do this sort of late
3143 	 * because the filter programming scheme on the 21143 and
3144 	 * some clones requires DMAing a setup frame via the TX
3145 	 * engine, and we need the transmitter enabled for that.
3146 	 */
3147 	dc_setfilt(sc);
3148 
3149 	/* Enable receiver. */
3150 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3151 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3152 
3153 	mii_mediachg(mii);
3154 	dc_setcfg(sc, sc->dc_if_media);
3155 
3156 	ifp->if_flags |= IFF_RUNNING;
3157 	ifp->if_flags &= ~IFF_OACTIVE;
3158 
3159 	crit_exit();
3160 
3161 	/* Don't start the ticker if this is a homePNA link. */
3162 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3163 		sc->dc_link = 1;
3164 	else {
3165 		if (sc->dc_flags & DC_21143_NWAY)
3166 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3167 		else
3168 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3169 	}
3170 
3171 	return;
3172 }
3173 
3174 /*
3175  * Set media options.
3176  */
3177 static int
3178 dc_ifmedia_upd(struct ifnet *ifp)
3179 {
3180 	struct dc_softc		*sc;
3181 	struct mii_data		*mii;
3182 	struct ifmedia		*ifm;
3183 
3184 	sc = ifp->if_softc;
3185 	mii = device_get_softc(sc->dc_miibus);
3186 	mii_mediachg(mii);
3187 	ifm = &mii->mii_media;
3188 
3189 	if (DC_IS_DAVICOM(sc) &&
3190 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3191 		dc_setcfg(sc, ifm->ifm_media);
3192 	else
3193 		sc->dc_link = 0;
3194 
3195 	return(0);
3196 }
3197 
3198 /*
3199  * Report current media status.
3200  */
3201 static void
3202 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3203 {
3204 	struct dc_softc		*sc;
3205 	struct mii_data		*mii;
3206 	struct ifmedia		*ifm;
3207 
3208 	sc = ifp->if_softc;
3209 	mii = device_get_softc(sc->dc_miibus);
3210 	mii_pollstat(mii);
3211 	ifm = &mii->mii_media;
3212 	if (DC_IS_DAVICOM(sc)) {
3213 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3214 			ifmr->ifm_active = ifm->ifm_media;
3215 			ifmr->ifm_status = 0;
3216 			return;
3217 		}
3218 	}
3219 	ifmr->ifm_active = mii->mii_media_active;
3220 	ifmr->ifm_status = mii->mii_media_status;
3221 
3222 	return;
3223 }
3224 
3225 static int
3226 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3227 {
3228 	struct dc_softc		*sc = ifp->if_softc;
3229 	struct ifreq		*ifr = (struct ifreq *) data;
3230 	struct mii_data		*mii;
3231 	int			error = 0;
3232 
3233 	crit_enter();
3234 
3235 	switch(command) {
3236 	case SIOCSIFFLAGS:
3237 		if (ifp->if_flags & IFF_UP) {
3238 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3239 				(IFF_PROMISC | IFF_ALLMULTI);
3240 			if (ifp->if_flags & IFF_RUNNING) {
3241 				if (need_setfilt)
3242 					dc_setfilt(sc);
3243 			} else {
3244 				sc->dc_txthresh = 0;
3245 				dc_init(sc);
3246 			}
3247 		} else {
3248 			if (ifp->if_flags & IFF_RUNNING)
3249 				dc_stop(sc);
3250 		}
3251 		sc->dc_if_flags = ifp->if_flags;
3252 		error = 0;
3253 		break;
3254 	case SIOCADDMULTI:
3255 	case SIOCDELMULTI:
3256 		dc_setfilt(sc);
3257 		error = 0;
3258 		break;
3259 	case SIOCGIFMEDIA:
3260 	case SIOCSIFMEDIA:
3261 		mii = device_get_softc(sc->dc_miibus);
3262 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3263 		break;
3264 	default:
3265 		error = ether_ioctl(ifp, command, data);
3266 		break;
3267 	}
3268 
3269 	crit_exit();
3270 
3271 	return(error);
3272 }
3273 
3274 static void
3275 dc_watchdog(struct ifnet *ifp)
3276 {
3277 	struct dc_softc		*sc;
3278 
3279 	sc = ifp->if_softc;
3280 
3281 	ifp->if_oerrors++;
3282 	if_printf(ifp, "watchdog timeout\n");
3283 
3284 	dc_stop(sc);
3285 	dc_reset(sc);
3286 	dc_init(sc);
3287 
3288 	if (!ifq_is_empty(&ifp->if_snd))
3289 		dc_start(ifp);
3290 
3291 	return;
3292 }
3293 
3294 /*
3295  * Stop the adapter and free any mbufs allocated to the
3296  * RX and TX lists.
3297  */
3298 static void
3299 dc_stop(struct dc_softc *sc)
3300 {
3301 	int		i;
3302 	struct ifnet		*ifp;
3303 
3304 	ifp = &sc->arpcom.ac_if;
3305 	ifp->if_timer = 0;
3306 
3307 	callout_stop(&sc->dc_stat_timer);
3308 
3309 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3310 
3311 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3312 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3313 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3314 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3315 	sc->dc_link = 0;
3316 
3317 	/*
3318 	 * Free data in the RX lists.
3319 	 */
3320 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3321 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3322 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3323 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3324 		}
3325 	}
3326 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3327 		sizeof(sc->dc_ldata->dc_rx_list));
3328 
3329 	/*
3330 	 * Free the TX list buffers.
3331 	 */
3332 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3333 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3334 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3335 			    DC_TXCTL_SETUP) ||
3336 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3337 			    DC_TXCTL_LASTFRAG)) {
3338 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3339 				continue;
3340 			}
3341 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3342 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3343 		}
3344 	}
3345 
3346 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3347 		sizeof(sc->dc_ldata->dc_tx_list));
3348 
3349 	return;
3350 }
3351 
3352 /*
3353  * Stop all chip I/O so that the kernel's probe routines don't
3354  * get confused by errant DMAs when rebooting.
3355  */
3356 static void
3357 dc_shutdown(device_t dev)
3358 {
3359 	struct dc_softc		*sc;
3360 
3361 	sc = device_get_softc(dev);
3362 
3363 	dc_stop(sc);
3364 
3365 	return;
3366 }
3367 
3368 /*
3369  * Device suspend routine.  Stop the interface and save some PCI
3370  * settings in case the BIOS doesn't restore them properly on
3371  * resume.
3372  */
3373 static int
3374 dc_suspend(device_t dev)
3375 {
3376 	struct dc_softc	*sc = device_get_softc(dev);
3377 	int i;
3378 
3379 	crit_enter();
3380 
3381 	dc_stop(sc);
3382 
3383 	for (i = 0; i < 5; i++)
3384 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3385 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3386 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3387 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3388 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3389 
3390 	sc->suspended = 1;
3391 
3392 	crit_exit();
3393 	return (0);
3394 }
3395 
3396 /*
3397  * Device resume routine.  Restore some PCI settings in case the BIOS
3398  * doesn't, re-enable busmastering, and restart the interface if
3399  * appropriate.
3400  */
3401 static int
3402 dc_resume(device_t dev)
3403 {
3404 	struct dc_softc *sc = device_get_softc(dev);
3405 	struct ifnet *ifp = &sc->arpcom.ac_if;
3406 	int i;
3407 
3408 	crit_enter();
3409 
3410 	dc_acpi(dev);
3411 
3412 	/* better way to do this? */
3413 	for (i = 0; i < 5; i++)
3414 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3415 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3416 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3417 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3418 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3419 
3420 	/* reenable busmastering */
3421 	pci_enable_busmaster(dev);
3422 	pci_enable_io(dev, DC_RES);
3423 
3424         /* reinitialize interface if necessary */
3425         if (ifp->if_flags & IFF_UP)
3426                 dc_init(sc);
3427 
3428 	sc->suspended = 0;
3429 
3430 	crit_exit();
3431 	return (0);
3432 }
3433