xref: /dflybsd-src/sys/dev/netif/dc/if_dc.c (revision c6cf4f8f1ebc9e3fe2a8c566f08adfc86122c7bf)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.23 2005/02/21 18:40:36 joerg Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Conexant LANfinity (www.conexant.com)
50  *
51  * Datasheets for the 21143 are available at developer.intel.com.
52  * Datasheets for the clone parts can be found at their respective sites.
53  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54  * The PNIC II is essentially a Macronix 98715A chip; the only difference
55  * worth noting is that its multicast hash table is only 128 bits wide
56  * instead of 512.
57  *
58  * Written by Bill Paul <wpaul@ee.columbia.edu>
59  * Electrical Engineering Department
60  * Columbia University, New York City
61  */
62 
63 /*
64  * The Intel 21143 is the successor to the DEC 21140. It is basically
65  * the same as the 21140 but with a few new features. The 21143 supports
66  * three kinds of media attachments:
67  *
68  * o MII port, for 10Mbps and 100Mbps support and NWAY
69  *   autonegotiation provided by an external PHY.
70  * o SYM port, for symbol mode 100Mbps support.
71  * o 10baseT port.
72  * o AUI/BNC port.
73  *
74  * The 100Mbps SYM port and 10baseT port can be used together in
75  * combination with the internal NWAY support to create a 10/100
76  * autosensing configuration.
77  *
78  * Note that not all tulip workalikes are handled in this driver: we only
79  * deal with those which are relatively well behaved. The Winbond is
80  * handled separately due to its different register offsets and the
81  * special handling needed for its various bugs. The PNIC is handled
82  * here, but I'm not thrilled about it.
83  *
84  * All of the workalike chips use some form of MII transceiver support
85  * with the exception of the Macronix chips, which also have a SYM port.
86  * The ASIX AX88140A is also documented to have a SYM port, but all
87  * the cards I've seen use an MII transceiver, probably because the
88  * AX88140A doesn't support internal NWAY.
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 
100 #include <net/if.h>
101 #include <net/ifq_var.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/vlan/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <vm/vm.h>              /* for vtophys */
112 #include <vm/pmap.h>            /* for vtophys */
113 #include <machine/clock.h>      /* for DELAY */
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
123 
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define DC_USEIOSPACE
128 #ifdef __alpha__
129 #define SRM_MEDIA
130 #endif
131 
132 #include "if_dcreg.h"
133 
134 /* "controller miibus0" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 static struct dc_type dc_devs[] = {
141 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
142 		"Intel 21143 10/100BaseTX" },
143 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
144 		"Davicom DM9009 10/100BaseTX" },
145 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
146 		"Davicom DM9100 10/100BaseTX" },
147 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
148 		"Davicom DM9102 10/100BaseTX" },
149 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
150 		"Davicom DM9102A 10/100BaseTX" },
151 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
152 		"ADMtek AL981 10/100BaseTX" },
153 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
154 		"ADMtek AN985 10/100BaseTX" },
155 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
156 		"ASIX AX88140A 10/100BaseTX" },
157 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
158 		"ASIX AX88141 10/100BaseTX" },
159 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
160 		"Macronix 98713 10/100BaseTX" },
161 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
162 		"Macronix 98713A 10/100BaseTX" },
163 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
164 		"Compex RL100-TX 10/100BaseTX" },
165 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
166 		"Compex RL100-TX 10/100BaseTX" },
167 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
168 		"Macronix 98715/98715A 10/100BaseTX" },
169 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
170 		"Macronix 98715AEC-C 10/100BaseTX" },
171 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
172 		"Macronix 98725 10/100BaseTX" },
173 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
174 		"Macronix 98727/98732 10/100BaseTX" },
175 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
176 		"LC82C115 PNIC II 10/100BaseTX" },
177 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
178 		"82c168 PNIC 10/100BaseTX" },
179 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
180 		"82c169 PNIC 10/100BaseTX" },
181 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
182 		"Accton EN1217 10/100BaseTX" },
183 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
184 		"Accton EN2242 MiniPCI 10/100BaseTX" },
185 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
186 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
187 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
188 		"3Com OfficeConnect 10/100B" },
189 	{ 0, 0, NULL }
190 };
191 
192 static int dc_probe		(device_t);
193 static int dc_attach		(device_t);
194 static int dc_detach		(device_t);
195 static int dc_suspend		(device_t);
196 static int dc_resume		(device_t);
197 static void dc_acpi		(device_t);
198 static struct dc_type *dc_devtype	(device_t);
199 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
200 static int dc_encap		(struct dc_softc *, struct mbuf *,
201 					u_int32_t *);
202 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
203 static int dc_rx_resync		(struct dc_softc *);
204 static void dc_rxeof		(struct dc_softc *);
205 static void dc_txeof		(struct dc_softc *);
206 static void dc_tick		(void *);
207 static void dc_tx_underrun	(struct dc_softc *);
208 static void dc_intr		(void *);
209 static void dc_start		(struct ifnet *);
210 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
211 					struct ucred *);
212 static void dc_init		(void *);
213 static void dc_stop		(struct dc_softc *);
214 static void dc_watchdog		(struct ifnet *);
215 static void dc_shutdown		(device_t);
216 static int dc_ifmedia_upd	(struct ifnet *);
217 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
218 
219 static void dc_delay		(struct dc_softc *);
220 static void dc_eeprom_idle	(struct dc_softc *);
221 static void dc_eeprom_putbyte	(struct dc_softc *, int);
222 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
223 static void dc_eeprom_getword_pnic
224 				(struct dc_softc *, int, u_int16_t *);
225 static void dc_eeprom_width	(struct dc_softc *);
226 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
227 							int, int);
228 
229 static void dc_mii_writebit	(struct dc_softc *, int);
230 static int dc_mii_readbit	(struct dc_softc *);
231 static void dc_mii_sync		(struct dc_softc *);
232 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
233 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
234 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
235 static int dc_miibus_readreg	(device_t, int, int);
236 static int dc_miibus_writereg	(device_t, int, int, int);
237 static void dc_miibus_statchg	(device_t);
238 static void dc_miibus_mediainit	(device_t);
239 
240 static void dc_setcfg		(struct dc_softc *, int);
241 static u_int32_t dc_crc_le	(struct dc_softc *, c_caddr_t);
242 static u_int32_t dc_crc_be	(caddr_t);
243 static void dc_setfilt_21143	(struct dc_softc *);
244 static void dc_setfilt_asix	(struct dc_softc *);
245 static void dc_setfilt_admtek	(struct dc_softc *);
246 
247 static void dc_setfilt		(struct dc_softc *);
248 
249 static void dc_reset		(struct dc_softc *);
250 static int dc_list_rx_init	(struct dc_softc *);
251 static int dc_list_tx_init	(struct dc_softc *);
252 
253 static void dc_read_srom	(struct dc_softc *, int);
254 static void dc_parse_21143_srom	(struct dc_softc *);
255 static void dc_decode_leaf_sia	(struct dc_softc *,
256 				    struct dc_eblock_sia *);
257 static void dc_decode_leaf_mii	(struct dc_softc *,
258 				    struct dc_eblock_mii *);
259 static void dc_decode_leaf_sym	(struct dc_softc *,
260 				    struct dc_eblock_sym *);
261 static void dc_apply_fixup	(struct dc_softc *, int);
262 
263 #ifdef DC_USEIOSPACE
264 #define DC_RES			SYS_RES_IOPORT
265 #define DC_RID			DC_PCI_CFBIO
266 #else
267 #define DC_RES			SYS_RES_MEMORY
268 #define DC_RID			DC_PCI_CFBMA
269 #endif
270 
271 static device_method_t dc_methods[] = {
272 	/* Device interface */
273 	DEVMETHOD(device_probe,		dc_probe),
274 	DEVMETHOD(device_attach,	dc_attach),
275 	DEVMETHOD(device_detach,	dc_detach),
276 	DEVMETHOD(device_suspend,	dc_suspend),
277 	DEVMETHOD(device_resume,	dc_resume),
278 	DEVMETHOD(device_shutdown,	dc_shutdown),
279 
280 	/* bus interface */
281 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
282 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
283 
284 	/* MII interface */
285 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
286 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
287 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
288 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
289 
290 	{ 0, 0 }
291 };
292 
293 static driver_t dc_driver = {
294 	"dc",
295 	dc_methods,
296 	sizeof(struct dc_softc)
297 };
298 
299 static devclass_t dc_devclass;
300 
301 #ifdef __i386__
302 static int dc_quick=1;
303 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
304 	&dc_quick,0,"do not mdevget in dc driver");
305 #endif
306 
307 DECLARE_DUMMY_MODULE(if_dc);
308 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
309 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
310 
311 #define DC_SETBIT(sc, reg, x)				\
312 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
313 
314 #define DC_CLRBIT(sc, reg, x)				\
315 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
316 
317 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
318 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
319 
320 static void dc_delay(sc)
321 	struct dc_softc		*sc;
322 {
323 	int			idx;
324 
325 	for (idx = (300 / 33) + 1; idx > 0; idx--)
326 		CSR_READ_4(sc, DC_BUSCTL);
327 }
328 
329 static void dc_eeprom_width(sc)
330 	struct dc_softc		*sc;
331 {
332 	int i;
333 
334 	/* Force EEPROM to idle state. */
335 	dc_eeprom_idle(sc);
336 
337 	/* Enter EEPROM access mode. */
338 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
339 	dc_delay(sc);
340 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
341 	dc_delay(sc);
342 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
343 	dc_delay(sc);
344 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
345 	dc_delay(sc);
346 
347 	for (i = 3; i--;) {
348 		if (6 & (1 << i))
349 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
350 		else
351 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
352 		dc_delay(sc);
353 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
354 		dc_delay(sc);
355 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
356 		dc_delay(sc);
357 	}
358 
359 	for (i = 1; i <= 12; i++) {
360 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
361 		dc_delay(sc);
362 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
363 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
364 			dc_delay(sc);
365 			break;
366 		}
367 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
368 		dc_delay(sc);
369 	}
370 
371 	/* Turn off EEPROM access mode. */
372 	dc_eeprom_idle(sc);
373 
374 	if (i < 4 || i > 12)
375 		sc->dc_romwidth = 6;
376 	else
377 		sc->dc_romwidth = i;
378 
379 	/* Enter EEPROM access mode. */
380 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
381 	dc_delay(sc);
382 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
383 	dc_delay(sc);
384 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
385 	dc_delay(sc);
386 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
387 	dc_delay(sc);
388 
389 	/* Turn off EEPROM access mode. */
390 	dc_eeprom_idle(sc);
391 }
392 
393 static void dc_eeprom_idle(sc)
394 	struct dc_softc		*sc;
395 {
396 	int		i;
397 
398 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
399 	dc_delay(sc);
400 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
401 	dc_delay(sc);
402 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
403 	dc_delay(sc);
404 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
405 	dc_delay(sc);
406 
407 	for (i = 0; i < 25; i++) {
408 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
409 		dc_delay(sc);
410 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411 		dc_delay(sc);
412 	}
413 
414 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 	dc_delay(sc);
416 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
417 	dc_delay(sc);
418 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
419 
420 	return;
421 }
422 
423 /*
424  * Send a read command and address to the EEPROM, check for ACK.
425  */
426 static void dc_eeprom_putbyte(sc, addr)
427 	struct dc_softc		*sc;
428 	int			addr;
429 {
430 	int		d, i;
431 
432 	d = DC_EECMD_READ >> 6;
433 	for (i = 3; i--; ) {
434 		if (d & (1 << i))
435 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
436 		else
437 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
438 		dc_delay(sc);
439 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
440 		dc_delay(sc);
441 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 		dc_delay(sc);
443 	}
444 
445 	/*
446 	 * Feed in each bit and strobe the clock.
447 	 */
448 	for (i = sc->dc_romwidth; i--;) {
449 		if (addr & (1 << i)) {
450 			SIO_SET(DC_SIO_EE_DATAIN);
451 		} else {
452 			SIO_CLR(DC_SIO_EE_DATAIN);
453 		}
454 		dc_delay(sc);
455 		SIO_SET(DC_SIO_EE_CLK);
456 		dc_delay(sc);
457 		SIO_CLR(DC_SIO_EE_CLK);
458 		dc_delay(sc);
459 	}
460 
461 	return;
462 }
463 
464 /*
465  * Read a word of data stored in the EEPROM at address 'addr.'
466  * The PNIC 82c168/82c169 has its own non-standard way to read
467  * the EEPROM.
468  */
469 static void dc_eeprom_getword_pnic(sc, addr, dest)
470 	struct dc_softc		*sc;
471 	int			addr;
472 	u_int16_t		*dest;
473 {
474 	int		i;
475 	u_int32_t		r;
476 
477 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
478 
479 	for (i = 0; i < DC_TIMEOUT; i++) {
480 		DELAY(1);
481 		r = CSR_READ_4(sc, DC_SIO);
482 		if (!(r & DC_PN_SIOCTL_BUSY)) {
483 			*dest = (u_int16_t)(r & 0xFFFF);
484 			return;
485 		}
486 	}
487 
488 	return;
489 }
490 
491 /*
492  * Read a word of data stored in the EEPROM at address 'addr.'
493  */
494 static void dc_eeprom_getword(sc, addr, dest)
495 	struct dc_softc		*sc;
496 	int			addr;
497 	u_int16_t		*dest;
498 {
499 	int		i;
500 	u_int16_t		word = 0;
501 
502 	/* Force EEPROM to idle state. */
503 	dc_eeprom_idle(sc);
504 
505 	/* Enter EEPROM access mode. */
506 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
507 	dc_delay(sc);
508 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
509 	dc_delay(sc);
510 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
511 	dc_delay(sc);
512 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
513 	dc_delay(sc);
514 
515 	/*
516 	 * Send address of word we want to read.
517 	 */
518 	dc_eeprom_putbyte(sc, addr);
519 
520 	/*
521 	 * Start reading bits from EEPROM.
522 	 */
523 	for (i = 0x8000; i; i >>= 1) {
524 		SIO_SET(DC_SIO_EE_CLK);
525 		dc_delay(sc);
526 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
527 			word |= i;
528 		dc_delay(sc);
529 		SIO_CLR(DC_SIO_EE_CLK);
530 		dc_delay(sc);
531 	}
532 
533 	/* Turn off EEPROM access mode. */
534 	dc_eeprom_idle(sc);
535 
536 	*dest = word;
537 
538 	return;
539 }
540 
541 /*
542  * Read a sequence of words from the EEPROM.
543  */
544 static void dc_read_eeprom(sc, dest, off, cnt, swap)
545 	struct dc_softc		*sc;
546 	caddr_t			dest;
547 	int			off;
548 	int			cnt;
549 	int			swap;
550 {
551 	int			i;
552 	u_int16_t		word = 0, *ptr;
553 
554 	for (i = 0; i < cnt; i++) {
555 		if (DC_IS_PNIC(sc))
556 			dc_eeprom_getword_pnic(sc, off + i, &word);
557 		else
558 			dc_eeprom_getword(sc, off + i, &word);
559 		ptr = (u_int16_t *)(dest + (i * 2));
560 		if (swap)
561 			*ptr = ntohs(word);
562 		else
563 			*ptr = word;
564 	}
565 
566 	return;
567 }
568 
569 /*
570  * The following two routines are taken from the Macronix 98713
571  * Application Notes pp.19-21.
572  */
573 /*
574  * Write a bit to the MII bus.
575  */
576 static void dc_mii_writebit(sc, bit)
577 	struct dc_softc		*sc;
578 	int			bit;
579 {
580 	if (bit)
581 		CSR_WRITE_4(sc, DC_SIO,
582 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
583 	else
584 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
585 
586 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
587 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
588 
589 	return;
590 }
591 
592 /*
593  * Read a bit from the MII bus.
594  */
595 static int dc_mii_readbit(sc)
596 	struct dc_softc		*sc;
597 {
598 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
599 	CSR_READ_4(sc, DC_SIO);
600 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
601 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
602 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
603 		return(1);
604 
605 	return(0);
606 }
607 
608 /*
609  * Sync the PHYs by setting data bit and strobing the clock 32 times.
610  */
611 static void dc_mii_sync(sc)
612 	struct dc_softc		*sc;
613 {
614 	int		i;
615 
616 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
617 
618 	for (i = 0; i < 32; i++)
619 		dc_mii_writebit(sc, 1);
620 
621 	return;
622 }
623 
624 /*
625  * Clock a series of bits through the MII.
626  */
627 static void dc_mii_send(sc, bits, cnt)
628 	struct dc_softc		*sc;
629 	u_int32_t		bits;
630 	int			cnt;
631 {
632 	int			i;
633 
634 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
635 		dc_mii_writebit(sc, bits & i);
636 }
637 
638 /*
639  * Read an PHY register through the MII.
640  */
641 static int dc_mii_readreg(sc, frame)
642 	struct dc_softc		*sc;
643 	struct dc_mii_frame	*frame;
644 
645 {
646 	int			i, ack, s;
647 
648 	s = splimp();
649 
650 	/*
651 	 * Set up frame for RX.
652 	 */
653 	frame->mii_stdelim = DC_MII_STARTDELIM;
654 	frame->mii_opcode = DC_MII_READOP;
655 	frame->mii_turnaround = 0;
656 	frame->mii_data = 0;
657 
658 	/*
659 	 * Sync the PHYs.
660 	 */
661 	dc_mii_sync(sc);
662 
663 	/*
664 	 * Send command/address info.
665 	 */
666 	dc_mii_send(sc, frame->mii_stdelim, 2);
667 	dc_mii_send(sc, frame->mii_opcode, 2);
668 	dc_mii_send(sc, frame->mii_phyaddr, 5);
669 	dc_mii_send(sc, frame->mii_regaddr, 5);
670 
671 #ifdef notdef
672 	/* Idle bit */
673 	dc_mii_writebit(sc, 1);
674 	dc_mii_writebit(sc, 0);
675 #endif
676 
677 	/* Check for ack */
678 	ack = dc_mii_readbit(sc);
679 
680 	/*
681 	 * Now try reading data bits. If the ack failed, we still
682 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
683 	 */
684 	if (ack) {
685 		for(i = 0; i < 16; i++) {
686 			dc_mii_readbit(sc);
687 		}
688 		goto fail;
689 	}
690 
691 	for (i = 0x8000; i; i >>= 1) {
692 		if (!ack) {
693 			if (dc_mii_readbit(sc))
694 				frame->mii_data |= i;
695 		}
696 	}
697 
698 fail:
699 
700 	dc_mii_writebit(sc, 0);
701 	dc_mii_writebit(sc, 0);
702 
703 	splx(s);
704 
705 	if (ack)
706 		return(1);
707 	return(0);
708 }
709 
710 /*
711  * Write to a PHY register through the MII.
712  */
713 static int dc_mii_writereg(sc, frame)
714 	struct dc_softc		*sc;
715 	struct dc_mii_frame	*frame;
716 
717 {
718 	int			s;
719 
720 	s = splimp();
721 	/*
722 	 * Set up frame for TX.
723 	 */
724 
725 	frame->mii_stdelim = DC_MII_STARTDELIM;
726 	frame->mii_opcode = DC_MII_WRITEOP;
727 	frame->mii_turnaround = DC_MII_TURNAROUND;
728 
729 	/*
730 	 * Sync the PHYs.
731 	 */
732 	dc_mii_sync(sc);
733 
734 	dc_mii_send(sc, frame->mii_stdelim, 2);
735 	dc_mii_send(sc, frame->mii_opcode, 2);
736 	dc_mii_send(sc, frame->mii_phyaddr, 5);
737 	dc_mii_send(sc, frame->mii_regaddr, 5);
738 	dc_mii_send(sc, frame->mii_turnaround, 2);
739 	dc_mii_send(sc, frame->mii_data, 16);
740 
741 	/* Idle bit. */
742 	dc_mii_writebit(sc, 0);
743 	dc_mii_writebit(sc, 0);
744 
745 	splx(s);
746 
747 	return(0);
748 }
749 
750 static int dc_miibus_readreg(dev, phy, reg)
751 	device_t		dev;
752 	int			phy, reg;
753 {
754 	struct dc_mii_frame	frame;
755 	struct dc_softc		*sc;
756 	int			i, rval, phy_reg = 0;
757 
758 	sc = device_get_softc(dev);
759 	bzero((char *)&frame, sizeof(frame));
760 
761 	/*
762 	 * Note: both the AL981 and AN985 have internal PHYs,
763 	 * however the AL981 provides direct access to the PHY
764 	 * registers while the AN985 uses a serial MII interface.
765 	 * The AN985's MII interface is also buggy in that you
766 	 * can read from any MII address (0 to 31), but only address 1
767 	 * behaves normally. To deal with both cases, we pretend
768 	 * that the PHY is at MII address 1.
769 	 */
770 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
771 		return(0);
772 
773 	/*
774 	 * Note: the ukphy probes of the RS7112 report a PHY at
775 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
776 	 * so we only respond to correct one.
777 	 */
778 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
779 		return(0);
780 
781 	if (sc->dc_pmode != DC_PMODE_MII) {
782 		if (phy == (MII_NPHY - 1)) {
783 			switch(reg) {
784 			case MII_BMSR:
785 			/*
786 			 * Fake something to make the probe
787 			 * code think there's a PHY here.
788 			 */
789 				return(BMSR_MEDIAMASK);
790 				break;
791 			case MII_PHYIDR1:
792 				if (DC_IS_PNIC(sc))
793 					return(DC_VENDORID_LO);
794 				return(DC_VENDORID_DEC);
795 				break;
796 			case MII_PHYIDR2:
797 				if (DC_IS_PNIC(sc))
798 					return(DC_DEVICEID_82C168);
799 				return(DC_DEVICEID_21143);
800 				break;
801 			default:
802 				return(0);
803 				break;
804 			}
805 		} else
806 			return(0);
807 	}
808 
809 	if (DC_IS_PNIC(sc)) {
810 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
811 		    (phy << 23) | (reg << 18));
812 		for (i = 0; i < DC_TIMEOUT; i++) {
813 			DELAY(1);
814 			rval = CSR_READ_4(sc, DC_PN_MII);
815 			if (!(rval & DC_PN_MII_BUSY)) {
816 				rval &= 0xFFFF;
817 				return(rval == 0xFFFF ? 0 : rval);
818 			}
819 		}
820 		return(0);
821 	}
822 
823 	if (DC_IS_COMET(sc)) {
824 		switch(reg) {
825 		case MII_BMCR:
826 			phy_reg = DC_AL_BMCR;
827 			break;
828 		case MII_BMSR:
829 			phy_reg = DC_AL_BMSR;
830 			break;
831 		case MII_PHYIDR1:
832 			phy_reg = DC_AL_VENID;
833 			break;
834 		case MII_PHYIDR2:
835 			phy_reg = DC_AL_DEVID;
836 			break;
837 		case MII_ANAR:
838 			phy_reg = DC_AL_ANAR;
839 			break;
840 		case MII_ANLPAR:
841 			phy_reg = DC_AL_LPAR;
842 			break;
843 		case MII_ANER:
844 			phy_reg = DC_AL_ANER;
845 			break;
846 		default:
847 			printf("dc%d: phy_read: bad phy register %x\n",
848 			    sc->dc_unit, reg);
849 			return(0);
850 			break;
851 		}
852 
853 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
854 
855 		if (rval == 0xFFFF)
856 			return(0);
857 		return(rval);
858 	}
859 
860 	frame.mii_phyaddr = phy;
861 	frame.mii_regaddr = reg;
862 	if (sc->dc_type == DC_TYPE_98713) {
863 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
864 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
865 	}
866 	dc_mii_readreg(sc, &frame);
867 	if (sc->dc_type == DC_TYPE_98713)
868 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
869 
870 	return(frame.mii_data);
871 }
872 
873 static int dc_miibus_writereg(dev, phy, reg, data)
874 	device_t		dev;
875 	int			phy, reg, data;
876 {
877 	struct dc_softc		*sc;
878 	struct dc_mii_frame	frame;
879 	int			i, phy_reg = 0;
880 
881 	sc = device_get_softc(dev);
882 	bzero((char *)&frame, sizeof(frame));
883 
884 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
885 		return(0);
886 
887 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
888 		return(0);
889 
890 	if (DC_IS_PNIC(sc)) {
891 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
892 		    (phy << 23) | (reg << 10) | data);
893 		for (i = 0; i < DC_TIMEOUT; i++) {
894 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
895 				break;
896 		}
897 		return(0);
898 	}
899 
900 	if (DC_IS_COMET(sc)) {
901 		switch(reg) {
902 		case MII_BMCR:
903 			phy_reg = DC_AL_BMCR;
904 			break;
905 		case MII_BMSR:
906 			phy_reg = DC_AL_BMSR;
907 			break;
908 		case MII_PHYIDR1:
909 			phy_reg = DC_AL_VENID;
910 			break;
911 		case MII_PHYIDR2:
912 			phy_reg = DC_AL_DEVID;
913 			break;
914 		case MII_ANAR:
915 			phy_reg = DC_AL_ANAR;
916 			break;
917 		case MII_ANLPAR:
918 			phy_reg = DC_AL_LPAR;
919 			break;
920 		case MII_ANER:
921 			phy_reg = DC_AL_ANER;
922 			break;
923 		default:
924 			printf("dc%d: phy_write: bad phy register %x\n",
925 			    sc->dc_unit, reg);
926 			return(0);
927 			break;
928 		}
929 
930 		CSR_WRITE_4(sc, phy_reg, data);
931 		return(0);
932 	}
933 
934 	frame.mii_phyaddr = phy;
935 	frame.mii_regaddr = reg;
936 	frame.mii_data = data;
937 
938 	if (sc->dc_type == DC_TYPE_98713) {
939 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
940 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
941 	}
942 	dc_mii_writereg(sc, &frame);
943 	if (sc->dc_type == DC_TYPE_98713)
944 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
945 
946 	return(0);
947 }
948 
949 static void dc_miibus_statchg(dev)
950 	device_t		dev;
951 {
952 	struct dc_softc		*sc;
953 	struct mii_data		*mii;
954 	struct ifmedia		*ifm;
955 
956 	sc = device_get_softc(dev);
957 	if (DC_IS_ADMTEK(sc))
958 		return;
959 
960 	mii = device_get_softc(sc->dc_miibus);
961 	ifm = &mii->mii_media;
962 	if (DC_IS_DAVICOM(sc) &&
963 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
964 		dc_setcfg(sc, ifm->ifm_media);
965 		sc->dc_if_media = ifm->ifm_media;
966 	} else {
967 		dc_setcfg(sc, mii->mii_media_active);
968 		sc->dc_if_media = mii->mii_media_active;
969 	}
970 
971 	return;
972 }
973 
974 /*
975  * Special support for DM9102A cards with HomePNA PHYs. Note:
976  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
977  * to be impossible to talk to the management interface of the DM9801
978  * PHY (its MDIO pin is not connected to anything). Consequently,
979  * the driver has to just 'know' about the additional mode and deal
980  * with it itself. *sigh*
981  */
982 static void dc_miibus_mediainit(dev)
983 	device_t		dev;
984 {
985 	struct dc_softc		*sc;
986 	struct mii_data		*mii;
987 	struct ifmedia		*ifm;
988 	int			rev;
989 
990 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
991 
992 	sc = device_get_softc(dev);
993 	mii = device_get_softc(sc->dc_miibus);
994 	ifm = &mii->mii_media;
995 
996 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
997 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
998 
999 	return;
1000 }
1001 
1002 #define DC_POLY		0xEDB88320
1003 #define DC_BITS_512	9
1004 #define DC_BITS_128	7
1005 #define DC_BITS_64	6
1006 
1007 static u_int32_t dc_crc_le(sc, addr)
1008 	struct dc_softc		*sc;
1009 	c_caddr_t		addr;
1010 {
1011 	u_int32_t		idx, bit, data, crc;
1012 
1013 	/* Compute CRC for the address value. */
1014 	crc = 0xFFFFFFFF; /* initial value */
1015 
1016 	for (idx = 0; idx < 6; idx++) {
1017 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1018 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1019 	}
1020 
1021 	/*
1022 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1023 	 * chips is only 128 bits wide.
1024 	 */
1025 	if (sc->dc_flags & DC_128BIT_HASH)
1026 		return (crc & ((1 << DC_BITS_128) - 1));
1027 
1028 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1029 	if (sc->dc_flags & DC_64BIT_HASH)
1030 		return (crc & ((1 << DC_BITS_64) - 1));
1031 
1032 	return (crc & ((1 << DC_BITS_512) - 1));
1033 }
1034 
1035 /*
1036  * Calculate CRC of a multicast group address, return the lower 6 bits.
1037  */
1038 static u_int32_t dc_crc_be(addr)
1039 	caddr_t			addr;
1040 {
1041 	u_int32_t		crc, carry;
1042 	int			i, j;
1043 	u_int8_t		c;
1044 
1045 	/* Compute CRC for the address value. */
1046 	crc = 0xFFFFFFFF; /* initial value */
1047 
1048 	for (i = 0; i < 6; i++) {
1049 		c = *(addr + i);
1050 		for (j = 0; j < 8; j++) {
1051 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
1052 			crc <<= 1;
1053 			c >>= 1;
1054 			if (carry)
1055 				crc = (crc ^ 0x04c11db6) | carry;
1056 		}
1057 	}
1058 
1059 	/* return the filter bit position */
1060 	return((crc >> 26) & 0x0000003F);
1061 }
1062 
1063 /*
1064  * 21143-style RX filter setup routine. Filter programming is done by
1065  * downloading a special setup frame into the TX engine. 21143, Macronix,
1066  * PNIC, PNIC II and Davicom chips are programmed this way.
1067  *
1068  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1069  * address (our node address) and a 512-bit hash filter for multicast
1070  * frames. We also sneak the broadcast address into the hash filter since
1071  * we need that too.
1072  */
1073 void dc_setfilt_21143(sc)
1074 	struct dc_softc		*sc;
1075 {
1076 	struct dc_desc		*sframe;
1077 	u_int32_t		h, *sp;
1078 	struct ifmultiaddr	*ifma;
1079 	struct ifnet		*ifp;
1080 	int			i;
1081 
1082 	ifp = &sc->arpcom.ac_if;
1083 
1084 	i = sc->dc_cdata.dc_tx_prod;
1085 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1086 	sc->dc_cdata.dc_tx_cnt++;
1087 	sframe = &sc->dc_ldata->dc_tx_list[i];
1088 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1089 	bzero((char *)sp, DC_SFRAME_LEN);
1090 
1091 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1092 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1093 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1094 
1095 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1096 
1097 	/* If we want promiscuous mode, set the allframes bit. */
1098 	if (ifp->if_flags & IFF_PROMISC)
1099 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1100 	else
1101 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1102 
1103 	if (ifp->if_flags & IFF_ALLMULTI)
1104 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1105 	else
1106 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1107 
1108 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1109 	    ifma = ifma->ifma_link.le_next) {
1110 		if (ifma->ifma_addr->sa_family != AF_LINK)
1111 			continue;
1112 		h = dc_crc_le(sc,
1113 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1114 		sp[h >> 4] |= 1 << (h & 0xF);
1115 	}
1116 
1117 	if (ifp->if_flags & IFF_BROADCAST) {
1118 		h = dc_crc_le(sc, ifp->if_broadcastaddr);
1119 		sp[h >> 4] |= 1 << (h & 0xF);
1120 	}
1121 
1122 	/* Set our MAC address */
1123 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1124 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1125 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1126 
1127 	sframe->dc_status = DC_TXSTAT_OWN;
1128 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1129 
1130 	/*
1131 	 * The PNIC takes an exceedingly long time to process its
1132 	 * setup frame; wait 10ms after posting the setup frame
1133 	 * before proceeding, just so it has time to swallow its
1134 	 * medicine.
1135 	 */
1136 	DELAY(10000);
1137 
1138 	ifp->if_timer = 5;
1139 
1140 	return;
1141 }
1142 
1143 void dc_setfilt_admtek(sc)
1144 	struct dc_softc		*sc;
1145 {
1146 	struct ifnet		*ifp;
1147 	int			h = 0;
1148 	u_int32_t		hashes[2] = { 0, 0 };
1149 	struct ifmultiaddr	*ifma;
1150 
1151 	ifp = &sc->arpcom.ac_if;
1152 
1153 	/* Init our MAC address */
1154 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1155 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1156 
1157 	/* If we want promiscuous mode, set the allframes bit. */
1158 	if (ifp->if_flags & IFF_PROMISC)
1159 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1160 	else
1161 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1162 
1163 	if (ifp->if_flags & IFF_ALLMULTI)
1164 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1165 	else
1166 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1167 
1168 	/* first, zot all the existing hash bits */
1169 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1170 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1171 
1172 	/*
1173 	 * If we're already in promisc or allmulti mode, we
1174 	 * don't have to bother programming the multicast filter.
1175 	 */
1176 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1177 		return;
1178 
1179 	/* now program new ones */
1180 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1181 	    ifma = ifma->ifma_link.le_next) {
1182 		if (ifma->ifma_addr->sa_family != AF_LINK)
1183 			continue;
1184 		if (DC_IS_CENTAUR(sc))
1185 			h = dc_crc_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1186 		else
1187 			h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1188 		if (h < 32)
1189 			hashes[0] |= (1 << h);
1190 		else
1191 			hashes[1] |= (1 << (h - 32));
1192 	}
1193 
1194 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1195 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1196 
1197 	return;
1198 }
1199 
1200 void dc_setfilt_asix(sc)
1201 	struct dc_softc		*sc;
1202 {
1203 	struct ifnet		*ifp;
1204 	int			h = 0;
1205 	u_int32_t		hashes[2] = { 0, 0 };
1206 	struct ifmultiaddr	*ifma;
1207 
1208 	ifp = &sc->arpcom.ac_if;
1209 
1210         /* Init our MAC address */
1211         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1212         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1213 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1214         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1215         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1216 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1217 
1218 	/* If we want promiscuous mode, set the allframes bit. */
1219 	if (ifp->if_flags & IFF_PROMISC)
1220 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1221 	else
1222 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1223 
1224 	if (ifp->if_flags & IFF_ALLMULTI)
1225 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1226 	else
1227 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1228 
1229 	/*
1230 	 * The ASIX chip has a special bit to enable reception
1231 	 * of broadcast frames.
1232 	 */
1233 	if (ifp->if_flags & IFF_BROADCAST)
1234 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1235 	else
1236 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1237 
1238 	/* first, zot all the existing hash bits */
1239 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1240 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1241 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1242 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1243 
1244 	/*
1245 	 * If we're already in promisc or allmulti mode, we
1246 	 * don't have to bother programming the multicast filter.
1247 	 */
1248 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1249 		return;
1250 
1251 	/* now program new ones */
1252 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1253 	    ifma = ifma->ifma_link.le_next) {
1254 		if (ifma->ifma_addr->sa_family != AF_LINK)
1255 			continue;
1256 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1257 		if (h < 32)
1258 			hashes[0] |= (1 << h);
1259 		else
1260 			hashes[1] |= (1 << (h - 32));
1261 	}
1262 
1263 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1264 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1265 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1266 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1267 
1268 	return;
1269 }
1270 
1271 static void dc_setfilt(sc)
1272 	struct dc_softc		*sc;
1273 {
1274 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1275 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1276 		dc_setfilt_21143(sc);
1277 
1278 	if (DC_IS_ASIX(sc))
1279 		dc_setfilt_asix(sc);
1280 
1281 	if (DC_IS_ADMTEK(sc))
1282 		dc_setfilt_admtek(sc);
1283 
1284 	return;
1285 }
1286 
1287 /*
1288  * In order to fiddle with the
1289  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1290  * first have to put the transmit and/or receive logic in the idle state.
1291  */
1292 static void dc_setcfg(sc, media)
1293 	struct dc_softc		*sc;
1294 	int			media;
1295 {
1296 	int			i, restart = 0;
1297 	u_int32_t		isr;
1298 
1299 	if (IFM_SUBTYPE(media) == IFM_NONE)
1300 		return;
1301 
1302 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1303 		restart = 1;
1304 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1305 
1306 		for (i = 0; i < DC_TIMEOUT; i++) {
1307 			isr = CSR_READ_4(sc, DC_ISR);
1308 			if (isr & DC_ISR_TX_IDLE ||
1309 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1310 				break;
1311 			DELAY(10);
1312 		}
1313 
1314 		if (i == DC_TIMEOUT)
1315 			printf("dc%d: failed to force tx and "
1316 				"rx to idle state\n", sc->dc_unit);
1317 	}
1318 
1319 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1320 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1321 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1322 		if (sc->dc_pmode == DC_PMODE_MII) {
1323 			int	watchdogreg;
1324 
1325 			if (DC_IS_INTEL(sc)) {
1326 			/* there's a write enable bit here that reads as 1 */
1327 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1328 				watchdogreg &= ~DC_WDOG_CTLWREN;
1329 				watchdogreg |= DC_WDOG_JABBERDIS;
1330 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1331 			} else {
1332 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1333 			}
1334 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1335 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1336 			if (sc->dc_type == DC_TYPE_98713)
1337 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1338 				    DC_NETCFG_SCRAMBLER));
1339 			if (!DC_IS_DAVICOM(sc))
1340 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1341 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1342 			if (DC_IS_INTEL(sc))
1343 				dc_apply_fixup(sc, IFM_AUTO);
1344 		} else {
1345 			if (DC_IS_PNIC(sc)) {
1346 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1347 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1348 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1349 			}
1350 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1351 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1352 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1353 			if (DC_IS_INTEL(sc))
1354 				dc_apply_fixup(sc,
1355 				    (media & IFM_GMASK) == IFM_FDX ?
1356 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1357 		}
1358 	}
1359 
1360 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1361 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1362 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1363 		if (sc->dc_pmode == DC_PMODE_MII) {
1364 			int	watchdogreg;
1365 
1366 			/* there's a write enable bit here that reads as 1 */
1367 			if (DC_IS_INTEL(sc)) {
1368 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1369 				watchdogreg &= ~DC_WDOG_CTLWREN;
1370 				watchdogreg |= DC_WDOG_JABBERDIS;
1371 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1372 			} else {
1373 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1374 			}
1375 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1376 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1377 			if (sc->dc_type == DC_TYPE_98713)
1378 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1379 			if (!DC_IS_DAVICOM(sc))
1380 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1381 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1382 			if (DC_IS_INTEL(sc))
1383 				dc_apply_fixup(sc, IFM_AUTO);
1384 		} else {
1385 			if (DC_IS_PNIC(sc)) {
1386 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1387 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1388 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1389 			}
1390 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1391 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1392 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1393 			if (DC_IS_INTEL(sc)) {
1394 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1395 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1396 				if ((media & IFM_GMASK) == IFM_FDX)
1397 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1398 				else
1399 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1400 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1401 				DC_CLRBIT(sc, DC_10BTCTRL,
1402 				    DC_TCTL_AUTONEGENBL);
1403 				dc_apply_fixup(sc,
1404 				    (media & IFM_GMASK) == IFM_FDX ?
1405 				    IFM_10_T|IFM_FDX : IFM_10_T);
1406 				DELAY(20000);
1407 			}
1408 		}
1409 	}
1410 
1411 	/*
1412 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1413 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1414 	 * on the external MII port.
1415 	 */
1416 	if (DC_IS_DAVICOM(sc)) {
1417 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1418 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1419 			sc->dc_link = 1;
1420 		} else {
1421 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1422 		}
1423 	}
1424 
1425 	if ((media & IFM_GMASK) == IFM_FDX) {
1426 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1427 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1428 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1429 	} else {
1430 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1431 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1432 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1433 	}
1434 
1435 	if (restart)
1436 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1437 
1438 	return;
1439 }
1440 
1441 static void dc_reset(sc)
1442 	struct dc_softc		*sc;
1443 {
1444 	int		i;
1445 
1446 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1447 
1448 	for (i = 0; i < DC_TIMEOUT; i++) {
1449 		DELAY(10);
1450 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1451 			break;
1452 	}
1453 
1454 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1455 		DELAY(10000);
1456 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1457 		i = 0;
1458 	}
1459 
1460 	if (i == DC_TIMEOUT)
1461 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1462 
1463 	/* Wait a little while for the chip to get its brains in order. */
1464 	DELAY(1000);
1465 
1466 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1467 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1468 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1469 
1470 	/*
1471 	 * Bring the SIA out of reset. In some cases, it looks
1472 	 * like failing to unreset the SIA soon enough gets it
1473 	 * into a state where it will never come out of reset
1474 	 * until we reset the whole chip again.
1475 	 */
1476 	if (DC_IS_INTEL(sc)) {
1477 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1478 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1479 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1480 	}
1481 
1482         return;
1483 }
1484 
1485 static struct dc_type *dc_devtype(dev)
1486 	device_t		dev;
1487 {
1488 	struct dc_type		*t;
1489 	u_int32_t		rev;
1490 
1491 	t = dc_devs;
1492 
1493 	while(t->dc_name != NULL) {
1494 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1495 		    (pci_get_device(dev) == t->dc_did)) {
1496 			/* Check the PCI revision */
1497 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1498 			if (t->dc_did == DC_DEVICEID_98713 &&
1499 			    rev >= DC_REVISION_98713A)
1500 				t++;
1501 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1502 			    rev >= DC_REVISION_98713A)
1503 				t++;
1504 			if (t->dc_did == DC_DEVICEID_987x5 &&
1505 			    rev >= DC_REVISION_98715AEC_C)
1506 				t++;
1507 			if (t->dc_did == DC_DEVICEID_987x5 &&
1508 			    rev >= DC_REVISION_98725)
1509 				t++;
1510 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1511 			    rev >= DC_REVISION_88141)
1512 				t++;
1513 			if (t->dc_did == DC_DEVICEID_82C168 &&
1514 			    rev >= DC_REVISION_82C169)
1515 				t++;
1516 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1517 			    rev >= DC_REVISION_DM9102A)
1518 				t++;
1519 			return(t);
1520 		}
1521 		t++;
1522 	}
1523 
1524 	return(NULL);
1525 }
1526 
1527 /*
1528  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1529  * IDs against our list and return a device name if we find a match.
1530  * We do a little bit of extra work to identify the exact type of
1531  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1532  * but different revision IDs. The same is true for 98715/98715A
1533  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1534  * cases, the exact chip revision affects driver behavior.
1535  */
1536 static int dc_probe(dev)
1537 	device_t		dev;
1538 {
1539 	struct dc_type		*t;
1540 
1541 	t = dc_devtype(dev);
1542 
1543 	if (t != NULL) {
1544 		device_set_desc(dev, t->dc_name);
1545 		return(0);
1546 	}
1547 
1548 	return(ENXIO);
1549 }
1550 
1551 static void dc_acpi(dev)
1552 	device_t		dev;
1553 {
1554 	u_int32_t		r, cptr;
1555 	int			unit;
1556 
1557 	unit = device_get_unit(dev);
1558 
1559 	/* Find the location of the capabilities block */
1560 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1561 
1562 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1563 	if (r == 0x01) {
1564 
1565 		r = pci_read_config(dev, cptr + 4, 4);
1566 		if (r & DC_PSTATE_D3) {
1567 			u_int32_t		iobase, membase, irq;
1568 
1569 			/* Save important PCI config data. */
1570 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1571 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1572 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1573 
1574 			/* Reset the power state. */
1575 			printf("dc%d: chip is in D%d power mode "
1576 			    "-- setting to D0\n", unit, r & DC_PSTATE_D3);
1577 			r &= 0xFFFFFFFC;
1578 			pci_write_config(dev, cptr + 4, r, 4);
1579 
1580 			/* Restore PCI config data. */
1581 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1582 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1583 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1584 		}
1585 	}
1586 	return;
1587 }
1588 
1589 static void dc_apply_fixup(sc, media)
1590 	struct dc_softc		*sc;
1591 	int			media;
1592 {
1593 	struct dc_mediainfo	*m;
1594 	u_int8_t		*p;
1595 	int			i;
1596 	u_int32_t		reg;
1597 
1598 	m = sc->dc_mi;
1599 
1600 	while (m != NULL) {
1601 		if (m->dc_media == media)
1602 			break;
1603 		m = m->dc_next;
1604 	}
1605 
1606 	if (m == NULL)
1607 		return;
1608 
1609 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1610 		reg = (p[0] | (p[1] << 8)) << 16;
1611 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1612 	}
1613 
1614 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1615 		reg = (p[0] | (p[1] << 8)) << 16;
1616 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1617 	}
1618 
1619 	return;
1620 }
1621 
1622 static void dc_decode_leaf_sia(sc, l)
1623 	struct dc_softc		*sc;
1624 	struct dc_eblock_sia	*l;
1625 {
1626 	struct dc_mediainfo	*m;
1627 
1628 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1629 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1630 		m->dc_media = IFM_10_T;
1631 
1632 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1633 		m->dc_media = IFM_10_T|IFM_FDX;
1634 
1635 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1636 		m->dc_media = IFM_10_2;
1637 
1638 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1639 		m->dc_media = IFM_10_5;
1640 
1641 	m->dc_gp_len = 2;
1642 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1643 
1644 	m->dc_next = sc->dc_mi;
1645 	sc->dc_mi = m;
1646 
1647 	sc->dc_pmode = DC_PMODE_SIA;
1648 
1649 	return;
1650 }
1651 
1652 static void dc_decode_leaf_sym(sc, l)
1653 	struct dc_softc		*sc;
1654 	struct dc_eblock_sym	*l;
1655 {
1656 	struct dc_mediainfo	*m;
1657 
1658 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1659 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1660 		m->dc_media = IFM_100_TX;
1661 
1662 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1663 		m->dc_media = IFM_100_TX|IFM_FDX;
1664 
1665 	m->dc_gp_len = 2;
1666 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1667 
1668 	m->dc_next = sc->dc_mi;
1669 	sc->dc_mi = m;
1670 
1671 	sc->dc_pmode = DC_PMODE_SYM;
1672 
1673 	return;
1674 }
1675 
1676 static void dc_decode_leaf_mii(sc, l)
1677 	struct dc_softc		*sc;
1678 	struct dc_eblock_mii	*l;
1679 {
1680 	u_int8_t		*p;
1681 	struct dc_mediainfo	*m;
1682 
1683 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1684 	/* We abuse IFM_AUTO to represent MII. */
1685 	m->dc_media = IFM_AUTO;
1686 	m->dc_gp_len = l->dc_gpr_len;
1687 
1688 	p = (u_int8_t *)l;
1689 	p += sizeof(struct dc_eblock_mii);
1690 	m->dc_gp_ptr = p;
1691 	p += 2 * l->dc_gpr_len;
1692 	m->dc_reset_len = *p;
1693 	p++;
1694 	m->dc_reset_ptr = p;
1695 
1696 	m->dc_next = sc->dc_mi;
1697 	sc->dc_mi = m;
1698 
1699 	return;
1700 }
1701 
1702 static void dc_read_srom(sc, bits)
1703 	struct dc_softc		*sc;
1704 	int			bits;
1705 {
1706 	int size;
1707 
1708 	size = 2 << bits;
1709 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1710 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1711 }
1712 
1713 static void dc_parse_21143_srom(sc)
1714 	struct dc_softc		*sc;
1715 {
1716 	struct dc_leaf_hdr	*lhdr;
1717 	struct dc_eblock_hdr	*hdr;
1718 	int			i, loff;
1719 	char			*ptr;
1720 	int			have_mii;
1721 
1722 	have_mii = 0;
1723 	loff = sc->dc_srom[27];
1724 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1725 
1726 	ptr = (char *)lhdr;
1727 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1728 	/*
1729 	 * Look if we got a MII media block.
1730 	 */
1731 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1732 		hdr = (struct dc_eblock_hdr *)ptr;
1733 		if (hdr->dc_type == DC_EBLOCK_MII)
1734 		    have_mii++;
1735 
1736 		ptr += (hdr->dc_len & 0x7F);
1737 		ptr++;
1738 	}
1739 
1740 	/*
1741 	 * Do the same thing again. Only use SIA and SYM media
1742 	 * blocks if no MII media block is available.
1743 	 */
1744 	ptr = (char *)lhdr;
1745 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1746 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1747 		hdr = (struct dc_eblock_hdr *)ptr;
1748 		switch(hdr->dc_type) {
1749 		case DC_EBLOCK_MII:
1750 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1751 			break;
1752 		case DC_EBLOCK_SIA:
1753 			if (! have_mii)
1754 				dc_decode_leaf_sia(sc,
1755 				    (struct dc_eblock_sia *)hdr);
1756 			break;
1757 		case DC_EBLOCK_SYM:
1758 			if (! have_mii)
1759 				dc_decode_leaf_sym(sc,
1760 				    (struct dc_eblock_sym *)hdr);
1761 			break;
1762 		default:
1763 			/* Don't care. Yet. */
1764 			break;
1765 		}
1766 		ptr += (hdr->dc_len & 0x7F);
1767 		ptr++;
1768 	}
1769 
1770 	return;
1771 }
1772 
1773 /*
1774  * Attach the interface. Allocate softc structures, do ifmedia
1775  * setup and ethernet/BPF attach.
1776  */
1777 static int dc_attach(dev)
1778 	device_t		dev;
1779 {
1780 	int			s, tmp = 0;
1781 	u_char			eaddr[ETHER_ADDR_LEN];
1782 	u_int32_t		command;
1783 	struct dc_softc		*sc;
1784 	struct ifnet		*ifp;
1785 	u_int32_t		revision;
1786 	int			unit, error = 0, rid, mac_offset;
1787 
1788 	s = splimp();
1789 
1790 	sc = device_get_softc(dev);
1791 	unit = device_get_unit(dev);
1792 	bzero(sc, sizeof(struct dc_softc));
1793 	callout_init(&sc->dc_stat_timer);
1794 
1795 	/*
1796 	 * Handle power management nonsense.
1797 	 */
1798 	dc_acpi(dev);
1799 
1800 	/*
1801 	 * Map control/status registers.
1802 	 */
1803 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1804 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1805 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1806 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1807 
1808 #ifdef DC_USEIOSPACE
1809 	if (!(command & PCIM_CMD_PORTEN)) {
1810 		printf("dc%d: failed to enable I/O ports!\n", unit);
1811 		error = ENXIO;
1812 		goto fail;
1813 	}
1814 #else
1815 	if (!(command & PCIM_CMD_MEMEN)) {
1816 		printf("dc%d: failed to enable memory mapping!\n", unit);
1817 		error = ENXIO;
1818 		goto fail;
1819 	}
1820 #endif
1821 
1822 	rid = DC_RID;
1823 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1824 	    0, ~0, 1, RF_ACTIVE);
1825 
1826 	if (sc->dc_res == NULL) {
1827 		printf("dc%d: couldn't map ports/memory\n", unit);
1828 		error = ENXIO;
1829 		goto fail;
1830 	}
1831 
1832 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1833 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1834 
1835 	/* Allocate interrupt */
1836 	rid = 0;
1837 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1838 	    RF_SHAREABLE | RF_ACTIVE);
1839 
1840 	if (sc->dc_irq == NULL) {
1841 		printf("dc%d: couldn't map interrupt\n", unit);
1842 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1843 		error = ENXIO;
1844 		goto fail;
1845 	}
1846 
1847 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1848 	    dc_intr, sc, &sc->dc_intrhand);
1849 
1850 	if (error) {
1851 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1852 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1853 		printf("dc%d: couldn't set up irq\n", unit);
1854 		goto fail;
1855 	}
1856 
1857 	/* Need this info to decide on a chip type. */
1858 	sc->dc_info = dc_devtype(dev);
1859 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1860 
1861 	/* Get the eeprom width, but PNIC has diff eeprom */
1862 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1863 		dc_eeprom_width(sc);
1864 
1865 	switch(sc->dc_info->dc_did) {
1866 	case DC_DEVICEID_21143:
1867 		sc->dc_type = DC_TYPE_21143;
1868 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1869 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1870 		/* Save EEPROM contents so we can parse them later. */
1871 		dc_read_srom(sc, sc->dc_romwidth);
1872 		break;
1873 	case DC_DEVICEID_DM9009:
1874 	case DC_DEVICEID_DM9100:
1875 	case DC_DEVICEID_DM9102:
1876 		sc->dc_type = DC_TYPE_DM9102;
1877 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1878 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1879 		sc->dc_pmode = DC_PMODE_MII;
1880 		/* Increase the latency timer value. */
1881 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1882 		command &= 0xFFFF00FF;
1883 		command |= 0x00008000;
1884 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1885 		break;
1886 	case DC_DEVICEID_AL981:
1887 		sc->dc_type = DC_TYPE_AL981;
1888 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1889 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1890 		sc->dc_pmode = DC_PMODE_MII;
1891 		dc_read_srom(sc, sc->dc_romwidth);
1892 		break;
1893 	case DC_DEVICEID_AN985:
1894 	case DC_DEVICEID_EN2242:
1895 	case DC_DEVICEID_3CSOHOB:
1896 		sc->dc_type = DC_TYPE_AN985;
1897 		sc->dc_flags |= DC_64BIT_HASH;
1898 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1899 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1900 		sc->dc_pmode = DC_PMODE_MII;
1901 		dc_read_srom(sc, sc->dc_romwidth);
1902 		break;
1903 	case DC_DEVICEID_98713:
1904 	case DC_DEVICEID_98713_CP:
1905 		if (revision < DC_REVISION_98713A) {
1906 			sc->dc_type = DC_TYPE_98713;
1907 		}
1908 		if (revision >= DC_REVISION_98713A) {
1909 			sc->dc_type = DC_TYPE_98713A;
1910 			sc->dc_flags |= DC_21143_NWAY;
1911 		}
1912 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1913 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1914 		break;
1915 	case DC_DEVICEID_987x5:
1916 	case DC_DEVICEID_EN1217:
1917 		/*
1918 		 * Macronix MX98715AEC-C/D/E parts have only a
1919 		 * 128-bit hash table. We need to deal with these
1920 		 * in the same manner as the PNIC II so that we
1921 		 * get the right number of bits out of the
1922 		 * CRC routine.
1923 		 */
1924 		if (revision >= DC_REVISION_98715AEC_C &&
1925 		    revision < DC_REVISION_98725)
1926 			sc->dc_flags |= DC_128BIT_HASH;
1927 		sc->dc_type = DC_TYPE_987x5;
1928 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1929 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1930 		break;
1931 	case DC_DEVICEID_98727:
1932 		sc->dc_type = DC_TYPE_987x5;
1933 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1934 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1935 		break;
1936 	case DC_DEVICEID_82C115:
1937 		sc->dc_type = DC_TYPE_PNICII;
1938 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1939 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1940 		break;
1941 	case DC_DEVICEID_82C168:
1942 		sc->dc_type = DC_TYPE_PNIC;
1943 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1944 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1945 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1946 		if (revision < DC_REVISION_82C169)
1947 			sc->dc_pmode = DC_PMODE_SYM;
1948 		break;
1949 	case DC_DEVICEID_AX88140A:
1950 		sc->dc_type = DC_TYPE_ASIX;
1951 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1952 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1953 		sc->dc_pmode = DC_PMODE_MII;
1954 		break;
1955 	case DC_DEVICEID_RS7112:
1956 		sc->dc_type = DC_TYPE_CONEXANT;
1957 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1958 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1959 		sc->dc_pmode = DC_PMODE_MII;
1960 		dc_read_srom(sc, sc->dc_romwidth);
1961 		break;
1962 	default:
1963 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1964 		    sc->dc_info->dc_did);
1965 		break;
1966 	}
1967 
1968 	/* Save the cache line size. */
1969 	if (DC_IS_DAVICOM(sc))
1970 		sc->dc_cachesize = 0;
1971 	else
1972 		sc->dc_cachesize = pci_read_config(dev,
1973 		    DC_PCI_CFLT, 4) & 0xFF;
1974 
1975 	/* Reset the adapter. */
1976 	dc_reset(sc);
1977 
1978 	/* Take 21143 out of snooze mode */
1979 	if (DC_IS_INTEL(sc)) {
1980 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1981 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1982 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1983 	}
1984 
1985 	/*
1986 	 * Try to learn something about the supported media.
1987 	 * We know that ASIX and ADMtek and Davicom devices
1988 	 * will *always* be using MII media, so that's a no-brainer.
1989 	 * The tricky ones are the Macronix/PNIC II and the
1990 	 * Intel 21143.
1991 	 */
1992 	if (DC_IS_INTEL(sc))
1993 		dc_parse_21143_srom(sc);
1994 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1995 		if (sc->dc_type == DC_TYPE_98713)
1996 			sc->dc_pmode = DC_PMODE_MII;
1997 		else
1998 			sc->dc_pmode = DC_PMODE_SYM;
1999 	} else if (!sc->dc_pmode)
2000 		sc->dc_pmode = DC_PMODE_MII;
2001 
2002 	/*
2003 	 * Get station address from the EEPROM.
2004 	 */
2005 	switch(sc->dc_type) {
2006 	case DC_TYPE_98713:
2007 	case DC_TYPE_98713A:
2008 	case DC_TYPE_987x5:
2009 	case DC_TYPE_PNICII:
2010 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2011 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2012 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2013 		break;
2014 	case DC_TYPE_PNIC:
2015 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2016 		break;
2017 	case DC_TYPE_DM9102:
2018 	case DC_TYPE_21143:
2019 	case DC_TYPE_ASIX:
2020 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2021 		break;
2022 	case DC_TYPE_AL981:
2023 	case DC_TYPE_AN985:
2024 		bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr,
2025 		    ETHER_ADDR_LEN);
2026 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
2027 		break;
2028 	case DC_TYPE_CONEXANT:
2029 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2030 		break;
2031 	default:
2032 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2033 		break;
2034 	}
2035 
2036 	sc->dc_unit = unit;
2037 
2038 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2039 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2040 
2041 	if (sc->dc_ldata == NULL) {
2042 		printf("dc%d: no memory for list buffers!\n", unit);
2043 		if (sc->dc_pnic_rx_buf != NULL)
2044 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2045 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2046 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2047 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2048 		error = ENXIO;
2049 		goto fail;
2050 	}
2051 
2052 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2053 
2054 	ifp = &sc->arpcom.ac_if;
2055 	ifp->if_softc = sc;
2056 	if_initname(ifp, "dc", unit);
2057 	ifp->if_mtu = ETHERMTU;
2058 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2059 	ifp->if_ioctl = dc_ioctl;
2060 	ifp->if_start = dc_start;
2061 	ifp->if_watchdog = dc_watchdog;
2062 	ifp->if_init = dc_init;
2063 	ifp->if_baudrate = 10000000;
2064 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2065 	ifq_set_ready(&ifp->if_snd);
2066 
2067 	/*
2068 	 * Do MII setup. If this is a 21143, check for a PHY on the
2069 	 * MII bus after applying any necessary fixups to twiddle the
2070 	 * GPIO bits. If we don't end up finding a PHY, restore the
2071 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2072 	 * driver instead.
2073 	 */
2074 	if (DC_IS_INTEL(sc)) {
2075 		dc_apply_fixup(sc, IFM_AUTO);
2076 		tmp = sc->dc_pmode;
2077 		sc->dc_pmode = DC_PMODE_MII;
2078 	}
2079 
2080 	error = mii_phy_probe(dev, &sc->dc_miibus,
2081 	    dc_ifmedia_upd, dc_ifmedia_sts);
2082 
2083 	if (error && DC_IS_INTEL(sc)) {
2084 		sc->dc_pmode = tmp;
2085 		if (sc->dc_pmode != DC_PMODE_SIA)
2086 			sc->dc_pmode = DC_PMODE_SYM;
2087 		sc->dc_flags |= DC_21143_NWAY;
2088 		mii_phy_probe(dev, &sc->dc_miibus,
2089 		    dc_ifmedia_upd, dc_ifmedia_sts);
2090 		/*
2091 		 * For non-MII cards, we need to have the 21143
2092 		 * drive the LEDs. Except there are some systems
2093 		 * like the NEC VersaPro NoteBook PC which have no
2094 		 * LEDs, and twiddling these bits has adverse effects
2095 		 * on them. (I.e. you suddenly can't get a link.)
2096 		 */
2097 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2098 			sc->dc_flags |= DC_TULIP_LEDS;
2099 		error = 0;
2100 	}
2101 
2102 	if (error) {
2103 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2104 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data),
2105 		    M_DEVBUF);
2106 		if (sc->dc_pnic_rx_buf != NULL)
2107 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2108 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2109 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2110 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2111 		error = ENXIO;
2112 		goto fail;
2113 	}
2114 
2115 	/*
2116 	 * Call MI attach routine.
2117 	 */
2118 	ether_ifattach(ifp, eaddr);
2119 
2120 	if (DC_IS_ADMTEK(sc)) {
2121 		/*
2122 		 * Set automatic TX underrun recovery for the ADMtek chips
2123 		 */
2124 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2125 	}
2126 
2127 	/*
2128 	 * Tell the upper layer(s) we support long frames.
2129 	 */
2130 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2131 
2132 #ifdef SRM_MEDIA
2133         sc->dc_srm_media = 0;
2134 
2135 	/* Remember the SRM console media setting */
2136 	if (DC_IS_INTEL(sc)) {
2137 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2138 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2139 		switch ((command >> 8) & 0xff) {
2140 		case 3:
2141 			sc->dc_srm_media = IFM_10_T;
2142 			break;
2143 		case 4:
2144 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2145 			break;
2146 		case 5:
2147 			sc->dc_srm_media = IFM_100_TX;
2148 			break;
2149 		case 6:
2150 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2151 			break;
2152 		}
2153 		if (sc->dc_srm_media)
2154 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2155 	}
2156 #endif
2157 
2158 
2159 fail:
2160 	splx(s);
2161 
2162 	return(error);
2163 }
2164 
2165 static int dc_detach(dev)
2166 	device_t		dev;
2167 {
2168 	struct dc_softc		*sc;
2169 	struct ifnet		*ifp;
2170 	int			s;
2171 	struct dc_mediainfo	*m;
2172 
2173 	s = splimp();
2174 
2175 	sc = device_get_softc(dev);
2176 	ifp = &sc->arpcom.ac_if;
2177 
2178 	dc_stop(sc);
2179 	ether_ifdetach(ifp);
2180 
2181 	bus_generic_detach(dev);
2182 	device_delete_child(dev, sc->dc_miibus);
2183 
2184 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2185 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2186 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2187 
2188 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2189 	if (sc->dc_pnic_rx_buf != NULL)
2190 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2191 
2192 	while(sc->dc_mi != NULL) {
2193 		m = sc->dc_mi->dc_next;
2194 		free(sc->dc_mi, M_DEVBUF);
2195 		sc->dc_mi = m;
2196 	}
2197 	free(sc->dc_srom, M_DEVBUF);
2198 
2199 	splx(s);
2200 
2201 	return(0);
2202 }
2203 
2204 /*
2205  * Initialize the transmit descriptors.
2206  */
2207 static int dc_list_tx_init(sc)
2208 	struct dc_softc		*sc;
2209 {
2210 	struct dc_chain_data	*cd;
2211 	struct dc_list_data	*ld;
2212 	int			i;
2213 
2214 	cd = &sc->dc_cdata;
2215 	ld = sc->dc_ldata;
2216 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2217 		if (i == (DC_TX_LIST_CNT - 1)) {
2218 			ld->dc_tx_list[i].dc_next =
2219 			    vtophys(&ld->dc_tx_list[0]);
2220 		} else {
2221 			ld->dc_tx_list[i].dc_next =
2222 			    vtophys(&ld->dc_tx_list[i + 1]);
2223 		}
2224 		cd->dc_tx_chain[i] = NULL;
2225 		ld->dc_tx_list[i].dc_data = 0;
2226 		ld->dc_tx_list[i].dc_ctl = 0;
2227 	}
2228 
2229 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2230 
2231 	return(0);
2232 }
2233 
2234 
2235 /*
2236  * Initialize the RX descriptors and allocate mbufs for them. Note that
2237  * we arrange the descriptors in a closed ring, so that the last descriptor
2238  * points back to the first.
2239  */
2240 static int dc_list_rx_init(sc)
2241 	struct dc_softc		*sc;
2242 {
2243 	struct dc_chain_data	*cd;
2244 	struct dc_list_data	*ld;
2245 	int			i;
2246 
2247 	cd = &sc->dc_cdata;
2248 	ld = sc->dc_ldata;
2249 
2250 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2251 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2252 			return(ENOBUFS);
2253 		if (i == (DC_RX_LIST_CNT - 1)) {
2254 			ld->dc_rx_list[i].dc_next =
2255 			    vtophys(&ld->dc_rx_list[0]);
2256 		} else {
2257 			ld->dc_rx_list[i].dc_next =
2258 			    vtophys(&ld->dc_rx_list[i + 1]);
2259 		}
2260 	}
2261 
2262 	cd->dc_rx_prod = 0;
2263 
2264 	return(0);
2265 }
2266 
2267 /*
2268  * Initialize an RX descriptor and attach an MBUF cluster.
2269  */
2270 static int dc_newbuf(sc, i, m)
2271 	struct dc_softc		*sc;
2272 	int			i;
2273 	struct mbuf		*m;
2274 {
2275 	struct mbuf		*m_new = NULL;
2276 	struct dc_desc		*c;
2277 
2278 	c = &sc->dc_ldata->dc_rx_list[i];
2279 
2280 	if (m == NULL) {
2281 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
2282 		if (m_new == NULL)
2283 			return(ENOBUFS);
2284 
2285 		MCLGET(m_new, MB_DONTWAIT);
2286 		if (!(m_new->m_flags & M_EXT)) {
2287 			m_freem(m_new);
2288 			return(ENOBUFS);
2289 		}
2290 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2291 	} else {
2292 		m_new = m;
2293 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2294 		m_new->m_data = m_new->m_ext.ext_buf;
2295 	}
2296 
2297 	m_adj(m_new, sizeof(u_int64_t));
2298 
2299 	/*
2300 	 * If this is a PNIC chip, zero the buffer. This is part
2301 	 * of the workaround for the receive bug in the 82c168 and
2302 	 * 82c169 chips.
2303 	 */
2304 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2305 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2306 
2307 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2308 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2309 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2310 	c->dc_status = DC_RXSTAT_OWN;
2311 
2312 	return(0);
2313 }
2314 
2315 /*
2316  * Grrrrr.
2317  * The PNIC chip has a terrible bug in it that manifests itself during
2318  * periods of heavy activity. The exact mode of failure if difficult to
2319  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2320  * will happen on slow machines. The bug is that sometimes instead of
2321  * uploading one complete frame during reception, it uploads what looks
2322  * like the entire contents of its FIFO memory. The frame we want is at
2323  * the end of the whole mess, but we never know exactly how much data has
2324  * been uploaded, so salvaging the frame is hard.
2325  *
2326  * There is only one way to do it reliably, and it's disgusting.
2327  * Here's what we know:
2328  *
2329  * - We know there will always be somewhere between one and three extra
2330  *   descriptors uploaded.
2331  *
2332  * - We know the desired received frame will always be at the end of the
2333  *   total data upload.
2334  *
2335  * - We know the size of the desired received frame because it will be
2336  *   provided in the length field of the status word in the last descriptor.
2337  *
2338  * Here's what we do:
2339  *
2340  * - When we allocate buffers for the receive ring, we bzero() them.
2341  *   This means that we know that the buffer contents should be all
2342  *   zeros, except for data uploaded by the chip.
2343  *
2344  * - We also force the PNIC chip to upload frames that include the
2345  *   ethernet CRC at the end.
2346  *
2347  * - We gather all of the bogus frame data into a single buffer.
2348  *
2349  * - We then position a pointer at the end of this buffer and scan
2350  *   backwards until we encounter the first non-zero byte of data.
2351  *   This is the end of the received frame. We know we will encounter
2352  *   some data at the end of the frame because the CRC will always be
2353  *   there, so even if the sender transmits a packet of all zeros,
2354  *   we won't be fooled.
2355  *
2356  * - We know the size of the actual received frame, so we subtract
2357  *   that value from the current pointer location. This brings us
2358  *   to the start of the actual received packet.
2359  *
2360  * - We copy this into an mbuf and pass it on, along with the actual
2361  *   frame length.
2362  *
2363  * The performance hit is tremendous, but it beats dropping frames all
2364  * the time.
2365  */
2366 
2367 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2368 static void dc_pnic_rx_bug_war(sc, idx)
2369 	struct dc_softc		*sc;
2370 	int			idx;
2371 {
2372 	struct dc_desc		*cur_rx;
2373 	struct dc_desc		*c = NULL;
2374 	struct mbuf		*m = NULL;
2375 	unsigned char		*ptr;
2376 	int			i, total_len;
2377 	u_int32_t		rxstat = 0;
2378 
2379 	i = sc->dc_pnic_rx_bug_save;
2380 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2381 	ptr = sc->dc_pnic_rx_buf;
2382 	bzero(ptr, DC_RXLEN * 5);
2383 
2384 	/* Copy all the bytes from the bogus buffers. */
2385 	while (1) {
2386 		c = &sc->dc_ldata->dc_rx_list[i];
2387 		rxstat = c->dc_status;
2388 		m = sc->dc_cdata.dc_rx_chain[i];
2389 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2390 		ptr += DC_RXLEN;
2391 		/* If this is the last buffer, break out. */
2392 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2393 			break;
2394 		dc_newbuf(sc, i, m);
2395 		DC_INC(i, DC_RX_LIST_CNT);
2396 	}
2397 
2398 	/* Find the length of the actual receive frame. */
2399 	total_len = DC_RXBYTES(rxstat);
2400 
2401 	/* Scan backwards until we hit a non-zero byte. */
2402 	while(*ptr == 0x00)
2403 		ptr--;
2404 
2405 	/* Round off. */
2406 	if ((uintptr_t)(ptr) & 0x3)
2407 		ptr -= 1;
2408 
2409 	/* Now find the start of the frame. */
2410 	ptr -= total_len;
2411 	if (ptr < sc->dc_pnic_rx_buf)
2412 		ptr = sc->dc_pnic_rx_buf;
2413 
2414 	/*
2415 	 * Now copy the salvaged frame to the last mbuf and fake up
2416 	 * the status word to make it look like a successful
2417  	 * frame reception.
2418 	 */
2419 	dc_newbuf(sc, i, m);
2420 	bcopy(ptr, mtod(m, char *), total_len);
2421 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2422 
2423 	return;
2424 }
2425 
2426 /*
2427  * This routine searches the RX ring for dirty descriptors in the
2428  * event that the rxeof routine falls out of sync with the chip's
2429  * current descriptor pointer. This may happen sometimes as a result
2430  * of a "no RX buffer available" condition that happens when the chip
2431  * consumes all of the RX buffers before the driver has a chance to
2432  * process the RX ring. This routine may need to be called more than
2433  * once to bring the driver back in sync with the chip, however we
2434  * should still be getting RX DONE interrupts to drive the search
2435  * for new packets in the RX ring, so we should catch up eventually.
2436  */
2437 static int dc_rx_resync(sc)
2438 	struct dc_softc		*sc;
2439 {
2440 	int			i, pos;
2441 	struct dc_desc		*cur_rx;
2442 
2443 	pos = sc->dc_cdata.dc_rx_prod;
2444 
2445 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2446 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2447 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2448 			break;
2449 		DC_INC(pos, DC_RX_LIST_CNT);
2450 	}
2451 
2452 	/* If the ring really is empty, then just return. */
2453 	if (i == DC_RX_LIST_CNT)
2454 		return(0);
2455 
2456 	/* We've fallen behing the chip: catch it. */
2457 	sc->dc_cdata.dc_rx_prod = pos;
2458 
2459 	return(EAGAIN);
2460 }
2461 
2462 /*
2463  * A frame has been uploaded: pass the resulting mbuf chain up to
2464  * the higher level protocols.
2465  */
2466 static void dc_rxeof(sc)
2467 	struct dc_softc		*sc;
2468 {
2469         struct mbuf		*m;
2470         struct ifnet		*ifp;
2471 	struct dc_desc		*cur_rx;
2472 	int			i, total_len = 0;
2473 	u_int32_t		rxstat;
2474 
2475 	ifp = &sc->arpcom.ac_if;
2476 	i = sc->dc_cdata.dc_rx_prod;
2477 
2478 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2479 
2480 #ifdef DEVICE_POLLING
2481 		if (ifp->if_flags & IFF_POLLING) {
2482 			if (sc->rxcycles <= 0)
2483 				break;
2484 			sc->rxcycles--;
2485 		}
2486 #endif /* DEVICE_POLLING */
2487 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2488 		rxstat = cur_rx->dc_status;
2489 		m = sc->dc_cdata.dc_rx_chain[i];
2490 		total_len = DC_RXBYTES(rxstat);
2491 
2492 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2493 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2494 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2495 					sc->dc_pnic_rx_bug_save = i;
2496 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2497 					DC_INC(i, DC_RX_LIST_CNT);
2498 					continue;
2499 				}
2500 				dc_pnic_rx_bug_war(sc, i);
2501 				rxstat = cur_rx->dc_status;
2502 				total_len = DC_RXBYTES(rxstat);
2503 			}
2504 		}
2505 
2506 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2507 
2508 		/*
2509 		 * If an error occurs, update stats, clear the
2510 		 * status word and leave the mbuf cluster in place:
2511 		 * it should simply get re-used next time this descriptor
2512 		 * comes up in the ring.  However, don't report long
2513 		 * frames as errors since they could be vlans
2514 		 */
2515 		if ((rxstat & DC_RXSTAT_RXERR)){
2516 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2517 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2518 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2519 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2520 				ifp->if_ierrors++;
2521 				if (rxstat & DC_RXSTAT_COLLSEEN)
2522 					ifp->if_collisions++;
2523 				dc_newbuf(sc, i, m);
2524 				if (rxstat & DC_RXSTAT_CRCERR) {
2525 					DC_INC(i, DC_RX_LIST_CNT);
2526 					continue;
2527 				} else {
2528 					dc_init(sc);
2529 					return;
2530 				}
2531 			}
2532 		}
2533 
2534 		/* No errors; receive the packet. */
2535 		total_len -= ETHER_CRC_LEN;
2536 
2537 #ifdef __i386__
2538 		/*
2539 		 * On the x86 we do not have alignment problems, so try to
2540 		 * allocate a new buffer for the receive ring, and pass up
2541 		 * the one where the packet is already, saving the expensive
2542 		 * copy done in m_devget().
2543 		 * If we are on an architecture with alignment problems, or
2544 		 * if the allocation fails, then use m_devget and leave the
2545 		 * existing buffer in the receive ring.
2546 		 */
2547 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2548 			m->m_pkthdr.rcvif = ifp;
2549 			m->m_pkthdr.len = m->m_len = total_len;
2550 			DC_INC(i, DC_RX_LIST_CNT);
2551 		} else
2552 #endif
2553 		{
2554 			struct mbuf *m0;
2555 
2556 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2557 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2558 			dc_newbuf(sc, i, m);
2559 			DC_INC(i, DC_RX_LIST_CNT);
2560 			if (m0 == NULL) {
2561 				ifp->if_ierrors++;
2562 				continue;
2563 			}
2564 			m_adj(m0, ETHER_ALIGN);
2565 			m = m0;
2566 		}
2567 
2568 		ifp->if_ipackets++;
2569 		(*ifp->if_input)(ifp, m);
2570 	}
2571 
2572 	sc->dc_cdata.dc_rx_prod = i;
2573 }
2574 
2575 /*
2576  * A frame was downloaded to the chip. It's safe for us to clean up
2577  * the list buffers.
2578  */
2579 
2580 static void
2581 dc_txeof(sc)
2582 	struct dc_softc		*sc;
2583 {
2584 	struct dc_desc		*cur_tx = NULL;
2585 	struct ifnet		*ifp;
2586 	int			idx;
2587 
2588 	ifp = &sc->arpcom.ac_if;
2589 
2590 	/*
2591 	 * Go through our tx list and free mbufs for those
2592 	 * frames that have been transmitted.
2593 	 */
2594 	idx = sc->dc_cdata.dc_tx_cons;
2595 	while(idx != sc->dc_cdata.dc_tx_prod) {
2596 		u_int32_t		txstat;
2597 
2598 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2599 		txstat = cur_tx->dc_status;
2600 
2601 		if (txstat & DC_TXSTAT_OWN)
2602 			break;
2603 
2604 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2605 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2606 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2607 				/*
2608 				 * Yes, the PNIC is so brain damaged
2609 				 * that it will sometimes generate a TX
2610 				 * underrun error while DMAing the RX
2611 				 * filter setup frame. If we detect this,
2612 				 * we have to send the setup frame again,
2613 				 * or else the filter won't be programmed
2614 				 * correctly.
2615 				 */
2616 				if (DC_IS_PNIC(sc)) {
2617 					if (txstat & DC_TXSTAT_ERRSUM)
2618 						dc_setfilt(sc);
2619 				}
2620 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2621 			}
2622 			sc->dc_cdata.dc_tx_cnt--;
2623 			DC_INC(idx, DC_TX_LIST_CNT);
2624 			continue;
2625 		}
2626 
2627 		if (DC_IS_CONEXANT(sc)) {
2628 			/*
2629 			 * For some reason Conexant chips like
2630 			 * setting the CARRLOST flag even when
2631 			 * the carrier is there. In CURRENT we
2632 			 * have the same problem for Xircom
2633 			 * cards !
2634 			 */
2635 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2636 			    sc->dc_pmode == DC_PMODE_MII &&
2637 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2638 			    DC_TXSTAT_NOCARRIER)))
2639 				txstat &= ~DC_TXSTAT_ERRSUM;
2640 		} else {
2641 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2642 			    sc->dc_pmode == DC_PMODE_MII &&
2643 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2644 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2645 				txstat &= ~DC_TXSTAT_ERRSUM;
2646 		}
2647 
2648 		if (txstat & DC_TXSTAT_ERRSUM) {
2649 			ifp->if_oerrors++;
2650 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2651 				ifp->if_collisions++;
2652 			if (txstat & DC_TXSTAT_LATECOLL)
2653 				ifp->if_collisions++;
2654 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2655 				dc_init(sc);
2656 				return;
2657 			}
2658 		}
2659 
2660 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2661 
2662 		ifp->if_opackets++;
2663 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2664 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2665 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2666 		}
2667 
2668 		sc->dc_cdata.dc_tx_cnt--;
2669 		DC_INC(idx, DC_TX_LIST_CNT);
2670 	}
2671 
2672 	if (idx != sc->dc_cdata.dc_tx_cons) {
2673 	    	/* some buffers have been freed */
2674 		sc->dc_cdata.dc_tx_cons = idx;
2675 		ifp->if_flags &= ~IFF_OACTIVE;
2676 	}
2677 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2678 
2679 	return;
2680 }
2681 
2682 static void dc_tick(xsc)
2683 	void			*xsc;
2684 {
2685 	struct dc_softc		*sc;
2686 	struct mii_data		*mii;
2687 	struct ifnet		*ifp;
2688 	int			s;
2689 	u_int32_t		r;
2690 
2691 	s = splimp();
2692 
2693 	sc = xsc;
2694 	ifp = &sc->arpcom.ac_if;
2695 	mii = device_get_softc(sc->dc_miibus);
2696 
2697 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2698 		if (sc->dc_flags & DC_21143_NWAY) {
2699 			r = CSR_READ_4(sc, DC_10BTSTAT);
2700 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2701 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2702 				sc->dc_link = 0;
2703 				mii_mediachg(mii);
2704 			}
2705 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2706 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2707 				sc->dc_link = 0;
2708 				mii_mediachg(mii);
2709 			}
2710 			if (sc->dc_link == 0)
2711 				mii_tick(mii);
2712 		} else {
2713 			r = CSR_READ_4(sc, DC_ISR);
2714 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2715 			    sc->dc_cdata.dc_tx_cnt == 0)
2716 				mii_tick(mii);
2717 				if (!(mii->mii_media_status & IFM_ACTIVE))
2718 					sc->dc_link = 0;
2719 		}
2720 	} else
2721 		mii_tick(mii);
2722 
2723 	/*
2724 	 * When the init routine completes, we expect to be able to send
2725 	 * packets right away, and in fact the network code will send a
2726 	 * gratuitous ARP the moment the init routine marks the interface
2727 	 * as running. However, even though the MAC may have been initialized,
2728 	 * there may be a delay of a few seconds before the PHY completes
2729 	 * autonegotiation and the link is brought up. Any transmissions
2730 	 * made during that delay will be lost. Dealing with this is tricky:
2731 	 * we can't just pause in the init routine while waiting for the
2732 	 * PHY to come ready since that would bring the whole system to
2733 	 * a screeching halt for several seconds.
2734 	 *
2735 	 * What we do here is prevent the TX start routine from sending
2736 	 * any packets until a link has been established. After the
2737 	 * interface has been initialized, the tick routine will poll
2738 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2739 	 * that time, packets will stay in the send queue, and once the
2740 	 * link comes up, they will be flushed out to the wire.
2741 	 */
2742 	if (!sc->dc_link) {
2743 		mii_pollstat(mii);
2744 		if (mii->mii_media_status & IFM_ACTIVE &&
2745 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2746 			sc->dc_link++;
2747 			if (!ifq_is_empty(&ifp->if_snd))
2748 				dc_start(ifp);
2749 		}
2750 	}
2751 
2752 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2753 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2754 	else
2755 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2756 
2757 	splx(s);
2758 
2759 	return;
2760 }
2761 
2762 /*
2763  * A transmit underrun has occurred.  Back off the transmit threshold,
2764  * or switch to store and forward mode if we have to.
2765  */
2766 static void dc_tx_underrun(sc)
2767 	struct dc_softc		*sc;
2768 {
2769 	u_int32_t		isr;
2770 	int			i;
2771 
2772 	if (DC_IS_DAVICOM(sc))
2773 		dc_init(sc);
2774 
2775 	if (DC_IS_INTEL(sc)) {
2776 		/*
2777 		 * The real 21143 requires that the transmitter be idle
2778 		 * in order to change the transmit threshold or store
2779 		 * and forward state.
2780 		 */
2781 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2782 
2783 		for (i = 0; i < DC_TIMEOUT; i++) {
2784 			isr = CSR_READ_4(sc, DC_ISR);
2785 			if (isr & DC_ISR_TX_IDLE)
2786 				break;
2787 			DELAY(10);
2788 		}
2789 		if (i == DC_TIMEOUT) {
2790 			printf("dc%d: failed to force tx to idle state\n",
2791 			    sc->dc_unit);
2792 			dc_init(sc);
2793 		}
2794 	}
2795 
2796 	printf("dc%d: TX underrun -- ", sc->dc_unit);
2797 	sc->dc_txthresh += DC_TXTHRESH_INC;
2798 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2799 		printf("using store and forward mode\n");
2800 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2801 	} else {
2802 		printf("increasing TX threshold\n");
2803 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2804 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2805 	}
2806 
2807 	if (DC_IS_INTEL(sc))
2808 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2809 
2810 	return;
2811 }
2812 
2813 #ifdef DEVICE_POLLING
2814 static poll_handler_t dc_poll;
2815 
2816 static void
2817 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2818 {
2819 	struct	dc_softc *sc = ifp->if_softc;
2820 
2821 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
2822 		/* Re-enable interrupts. */
2823 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2824 		return;
2825 	}
2826 	sc->rxcycles = count;
2827 	dc_rxeof(sc);
2828 	dc_txeof(sc);
2829 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2830 		dc_start(ifp);
2831 
2832 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2833 		u_int32_t          status;
2834 
2835 		status = CSR_READ_4(sc, DC_ISR);
2836 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2837 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2838 			DC_ISR_BUS_ERR);
2839 		if (!status)
2840 			return ;
2841 		/* ack what we have */
2842 		CSR_WRITE_4(sc, DC_ISR, status);
2843 
2844 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2845 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2846 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2847 
2848 			if (dc_rx_resync(sc))
2849 				dc_rxeof(sc);
2850 		}
2851 		/* restart transmit unit if necessary */
2852 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2853 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2854 
2855 		if (status & DC_ISR_TX_UNDERRUN)
2856 			dc_tx_underrun(sc);
2857 
2858 		if (status & DC_ISR_BUS_ERR) {
2859 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
2860 			dc_reset(sc);
2861 			dc_init(sc);
2862 		}
2863 	}
2864 }
2865 #endif /* DEVICE_POLLING */
2866 
2867 static void dc_intr(arg)
2868 	void			*arg;
2869 {
2870 	struct dc_softc		*sc;
2871 	struct ifnet		*ifp;
2872 	u_int32_t		status;
2873 
2874 	sc = arg;
2875 
2876 	if (sc->suspended) {
2877 		return;
2878 	}
2879 
2880 	ifp = &sc->arpcom.ac_if;
2881 
2882 #ifdef DEVICE_POLLING
2883 	if (ifp->if_flags & IFF_POLLING)
2884 		return;
2885 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
2886 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2887 		return;
2888 	}
2889 #endif /* DEVICE_POLLING */
2890 
2891 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2892 		return ;
2893 
2894 	/* Suppress unwanted interrupts */
2895 	if (!(ifp->if_flags & IFF_UP)) {
2896 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2897 			dc_stop(sc);
2898 		return;
2899 	}
2900 
2901 	/* Disable interrupts. */
2902 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2903 
2904 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2905 
2906 		CSR_WRITE_4(sc, DC_ISR, status);
2907 
2908 		if (status & DC_ISR_RX_OK) {
2909 			int		curpkts;
2910 			curpkts = ifp->if_ipackets;
2911 			dc_rxeof(sc);
2912 			if (curpkts == ifp->if_ipackets) {
2913 				while(dc_rx_resync(sc))
2914 					dc_rxeof(sc);
2915 			}
2916 		}
2917 
2918 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2919 			dc_txeof(sc);
2920 
2921 		if (status & DC_ISR_TX_IDLE) {
2922 			dc_txeof(sc);
2923 			if (sc->dc_cdata.dc_tx_cnt) {
2924 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2925 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2926 			}
2927 		}
2928 
2929 		if (status & DC_ISR_TX_UNDERRUN)
2930 			dc_tx_underrun(sc);
2931 
2932 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2933 		    || (status & DC_ISR_RX_NOBUF)) {
2934 			int		curpkts;
2935 			curpkts = ifp->if_ipackets;
2936 			dc_rxeof(sc);
2937 			if (curpkts == ifp->if_ipackets) {
2938 				while(dc_rx_resync(sc))
2939 					dc_rxeof(sc);
2940 			}
2941 		}
2942 
2943 		if (status & DC_ISR_BUS_ERR) {
2944 			dc_reset(sc);
2945 			dc_init(sc);
2946 		}
2947 	}
2948 
2949 	/* Re-enable interrupts. */
2950 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2951 
2952 	if (!ifq_is_empty(&ifp->if_snd))
2953 		dc_start(ifp);
2954 
2955 	return;
2956 }
2957 
2958 /*
2959  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2960  * pointers to the fragment pointers.
2961  */
2962 static int dc_encap(sc, m_head, txidx)
2963 	struct dc_softc		*sc;
2964 	struct mbuf		*m_head;
2965 	u_int32_t		*txidx;
2966 {
2967 	struct dc_desc		*f = NULL;
2968 	struct mbuf		*m;
2969 	int			frag, cur, cnt = 0;
2970 
2971 	/*
2972  	 * Start packing the mbufs in this chain into
2973 	 * the fragment pointers. Stop when we run out
2974  	 * of fragments or hit the end of the mbuf chain.
2975 	 */
2976 	m = m_head;
2977 	cur = frag = *txidx;
2978 
2979 	for (m = m_head; m != NULL; m = m->m_next) {
2980 		if (m->m_len != 0) {
2981 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2982 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2983 				    frag == (DC_TX_LIST_CNT - 1))
2984 					return(ENOBUFS);
2985 			}
2986 			if ((DC_TX_LIST_CNT -
2987 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2988 				return(ENOBUFS);
2989 
2990 			f = &sc->dc_ldata->dc_tx_list[frag];
2991 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2992 			if (cnt == 0) {
2993 				f->dc_status = 0;
2994 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2995 			} else
2996 				f->dc_status = DC_TXSTAT_OWN;
2997 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2998 			cur = frag;
2999 			DC_INC(frag, DC_TX_LIST_CNT);
3000 			cnt++;
3001 		}
3002 	}
3003 
3004 	if (m != NULL)
3005 		return(ENOBUFS);
3006 
3007 	sc->dc_cdata.dc_tx_cnt += cnt;
3008 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3009 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3010 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3011 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3012 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3013 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3014 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3015 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3016 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3017 	*txidx = frag;
3018 
3019 	return(0);
3020 }
3021 
3022 /*
3023  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3024  * to the mbuf data regions directly in the transmit lists. We also save a
3025  * copy of the pointers since the transmit list fragment pointers are
3026  * physical addresses.
3027  */
3028 
3029 static void dc_start(ifp)
3030 	struct ifnet		*ifp;
3031 {
3032 	struct dc_softc		*sc;
3033 	struct mbuf *m_head = NULL, *m_new;
3034 	int did_defrag, idx;
3035 
3036 	sc = ifp->if_softc;
3037 
3038 	if (!sc->dc_link)
3039 		return;
3040 
3041 	if (ifp->if_flags & IFF_OACTIVE)
3042 		return;
3043 
3044 	idx = sc->dc_cdata.dc_tx_prod;
3045 
3046 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3047 		did_defrag = 0;
3048 		m_head = ifq_poll(&ifp->if_snd);
3049 		if (m_head == NULL)
3050 			break;
3051 
3052 		if (sc->dc_flags & DC_TX_COALESCE &&
3053 		    m_head->m_next != NULL) {
3054 			/*
3055 			 * Check first if coalescing allows us to queue
3056 			 * the packet. We don't want to loose it if
3057 			 * the TX queue is full.
3058 			 */
3059 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3060 			    idx != sc->dc_cdata.dc_tx_prod &&
3061 			    idx == (DC_TX_LIST_CNT - 1)) {
3062 				ifp->if_flags |= IFF_OACTIVE;
3063 				break;
3064 			}
3065 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3066 				ifp->if_flags |= IFF_OACTIVE;
3067 				break;
3068 			}
3069 
3070 			/* only coalesce if have >1 mbufs */
3071 			m_new = m_defrag_nofree(m_head, MB_DONTWAIT);
3072 			if (m_new == NULL) {
3073 				ifp->if_flags |= IFF_OACTIVE;
3074 				break;
3075 			}
3076 			m_freem(m_head);
3077 			m_head = m_new;
3078 			did_defrag = 1;
3079 		}
3080 
3081 		if (dc_encap(sc, m_head, &idx)) {
3082 			if (did_defrag) {
3083 				m_freem(m_head);
3084 				m_new = ifq_dequeue(&ifp->if_snd);
3085 				m_freem(m_new);
3086 			}
3087 			ifp->if_flags |= IFF_OACTIVE;
3088 			break;
3089 		}
3090 
3091 		m_new = ifq_dequeue(&ifp->if_snd);
3092 		if (did_defrag)
3093 			m_freem(m_new);
3094 
3095 		/*
3096 		 * If there's a BPF listener, bounce a copy of this frame
3097 		 * to him.
3098 		 */
3099 		BPF_MTAP(ifp, m_head);
3100 
3101 		if (sc->dc_flags & DC_TX_ONE) {
3102 			ifp->if_flags |= IFF_OACTIVE;
3103 			break;
3104 		}
3105 	}
3106 
3107 	/* Transmit */
3108 	sc->dc_cdata.dc_tx_prod = idx;
3109 	if (!(sc->dc_flags & DC_TX_POLL))
3110 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3111 
3112 	/*
3113 	 * Set a timeout in case the chip goes out to lunch.
3114 	 */
3115 	ifp->if_timer = 5;
3116 
3117 	return;
3118 }
3119 
3120 static void dc_init(xsc)
3121 	void			*xsc;
3122 {
3123 	struct dc_softc		*sc = xsc;
3124 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3125 	struct mii_data		*mii;
3126 	int			s;
3127 
3128 	s = splimp();
3129 
3130 	mii = device_get_softc(sc->dc_miibus);
3131 
3132 	/*
3133 	 * Cancel pending I/O and free all RX/TX buffers.
3134 	 */
3135 	dc_stop(sc);
3136 	dc_reset(sc);
3137 
3138 	/*
3139 	 * Set cache alignment and burst length.
3140 	 */
3141 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3142 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3143 	else
3144 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3145 	/*
3146 	 * Evenly share the bus between receive and transmit process.
3147 	 */
3148 	if (DC_IS_INTEL(sc))
3149 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3150 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3151 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3152 	} else {
3153 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3154 	}
3155 	if (sc->dc_flags & DC_TX_POLL)
3156 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3157 	switch(sc->dc_cachesize) {
3158 	case 32:
3159 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3160 		break;
3161 	case 16:
3162 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3163 		break;
3164 	case 8:
3165 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3166 		break;
3167 	case 0:
3168 	default:
3169 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3170 		break;
3171 	}
3172 
3173 	if (sc->dc_flags & DC_TX_STORENFWD)
3174 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3175 	else {
3176 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3177 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3178 		} else {
3179 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3180 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3181 		}
3182 	}
3183 
3184 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3185 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3186 
3187 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3188 		/*
3189 		 * The app notes for the 98713 and 98715A say that
3190 		 * in order to have the chips operate properly, a magic
3191 		 * number must be written to CSR16. Macronix does not
3192 		 * document the meaning of these bits so there's no way
3193 		 * to know exactly what they do. The 98713 has a magic
3194 		 * number all its own; the rest all use a different one.
3195 		 */
3196 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3197 		if (sc->dc_type == DC_TYPE_98713)
3198 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3199 		else
3200 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3201 	}
3202 
3203 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3204 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3205 
3206 	/* Init circular RX list. */
3207 	if (dc_list_rx_init(sc) == ENOBUFS) {
3208 		printf("dc%d: initialization failed: no "
3209 		    "memory for rx buffers\n", sc->dc_unit);
3210 		dc_stop(sc);
3211 		(void)splx(s);
3212 		return;
3213 	}
3214 
3215 	/*
3216 	 * Init tx descriptors.
3217 	 */
3218 	dc_list_tx_init(sc);
3219 
3220 	/*
3221 	 * Load the address of the RX list.
3222 	 */
3223 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3224 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3225 
3226 	/*
3227 	 * Enable interrupts.
3228 	 */
3229 #ifdef DEVICE_POLLING
3230 	/*
3231 	 * ... but only if we are not polling, and make sure they are off in
3232 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3233 	 * after a reset.
3234 	 */
3235 	if (ifp->if_flags & IFF_POLLING)
3236 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3237 	else
3238 #endif
3239 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3240 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3241 
3242 	/* Enable transmitter. */
3243 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3244 
3245 	/*
3246 	 * If this is an Intel 21143 and we're not using the
3247 	 * MII port, program the LED control pins so we get
3248 	 * link and activity indications.
3249 	 */
3250 	if (sc->dc_flags & DC_TULIP_LEDS) {
3251 		CSR_WRITE_4(sc, DC_WATCHDOG,
3252 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3253 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3254 	}
3255 
3256 	/*
3257 	 * Load the RX/multicast filter. We do this sort of late
3258 	 * because the filter programming scheme on the 21143 and
3259 	 * some clones requires DMAing a setup frame via the TX
3260 	 * engine, and we need the transmitter enabled for that.
3261 	 */
3262 	dc_setfilt(sc);
3263 
3264 	/* Enable receiver. */
3265 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3266 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3267 
3268 	mii_mediachg(mii);
3269 	dc_setcfg(sc, sc->dc_if_media);
3270 
3271 	ifp->if_flags |= IFF_RUNNING;
3272 	ifp->if_flags &= ~IFF_OACTIVE;
3273 
3274 	(void)splx(s);
3275 
3276 	/* Don't start the ticker if this is a homePNA link. */
3277 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3278 		sc->dc_link = 1;
3279 	else {
3280 		if (sc->dc_flags & DC_21143_NWAY)
3281 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3282 		else
3283 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3284 	}
3285 
3286 #ifdef SRM_MEDIA
3287         if(sc->dc_srm_media) {
3288 		struct ifreq ifr;
3289 
3290 		ifr.ifr_media = sc->dc_srm_media;
3291 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3292 		sc->dc_srm_media = 0;
3293 	}
3294 #endif
3295 	return;
3296 }
3297 
3298 /*
3299  * Set media options.
3300  */
3301 static int dc_ifmedia_upd(ifp)
3302 	struct ifnet		*ifp;
3303 {
3304 	struct dc_softc		*sc;
3305 	struct mii_data		*mii;
3306 	struct ifmedia		*ifm;
3307 
3308 	sc = ifp->if_softc;
3309 	mii = device_get_softc(sc->dc_miibus);
3310 	mii_mediachg(mii);
3311 	ifm = &mii->mii_media;
3312 
3313 	if (DC_IS_DAVICOM(sc) &&
3314 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3315 		dc_setcfg(sc, ifm->ifm_media);
3316 	else
3317 		sc->dc_link = 0;
3318 
3319 	return(0);
3320 }
3321 
3322 /*
3323  * Report current media status.
3324  */
3325 static void dc_ifmedia_sts(ifp, ifmr)
3326 	struct ifnet		*ifp;
3327 	struct ifmediareq	*ifmr;
3328 {
3329 	struct dc_softc		*sc;
3330 	struct mii_data		*mii;
3331 	struct ifmedia		*ifm;
3332 
3333 	sc = ifp->if_softc;
3334 	mii = device_get_softc(sc->dc_miibus);
3335 	mii_pollstat(mii);
3336 	ifm = &mii->mii_media;
3337 	if (DC_IS_DAVICOM(sc)) {
3338 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3339 			ifmr->ifm_active = ifm->ifm_media;
3340 			ifmr->ifm_status = 0;
3341 			return;
3342 		}
3343 	}
3344 	ifmr->ifm_active = mii->mii_media_active;
3345 	ifmr->ifm_status = mii->mii_media_status;
3346 
3347 	return;
3348 }
3349 
3350 static int dc_ioctl(ifp, command, data, cr)
3351 	struct ifnet		*ifp;
3352 	u_long			command;
3353 	caddr_t			data;
3354 	struct ucred		*cr;
3355 {
3356 	struct dc_softc		*sc = ifp->if_softc;
3357 	struct ifreq		*ifr = (struct ifreq *) data;
3358 	struct mii_data		*mii;
3359 	int			s, error = 0;
3360 
3361 	s = splimp();
3362 
3363 	switch(command) {
3364 	case SIOCSIFADDR:
3365 	case SIOCGIFADDR:
3366 	case SIOCSIFMTU:
3367 		error = ether_ioctl(ifp, command, data);
3368 		break;
3369 	case SIOCSIFFLAGS:
3370 		if (ifp->if_flags & IFF_UP) {
3371 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3372 				(IFF_PROMISC | IFF_ALLMULTI);
3373 			if (ifp->if_flags & IFF_RUNNING) {
3374 				if (need_setfilt)
3375 					dc_setfilt(sc);
3376 			} else {
3377 				sc->dc_txthresh = 0;
3378 				dc_init(sc);
3379 			}
3380 		} else {
3381 			if (ifp->if_flags & IFF_RUNNING)
3382 				dc_stop(sc);
3383 		}
3384 		sc->dc_if_flags = ifp->if_flags;
3385 		error = 0;
3386 		break;
3387 	case SIOCADDMULTI:
3388 	case SIOCDELMULTI:
3389 		dc_setfilt(sc);
3390 		error = 0;
3391 		break;
3392 	case SIOCGIFMEDIA:
3393 	case SIOCSIFMEDIA:
3394 		mii = device_get_softc(sc->dc_miibus);
3395 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3396 #ifdef SRM_MEDIA
3397 		if (sc->dc_srm_media)
3398 			sc->dc_srm_media = 0;
3399 #endif
3400 		break;
3401 	default:
3402 		error = EINVAL;
3403 		break;
3404 	}
3405 
3406 	(void)splx(s);
3407 
3408 	return(error);
3409 }
3410 
3411 static void dc_watchdog(ifp)
3412 	struct ifnet		*ifp;
3413 {
3414 	struct dc_softc		*sc;
3415 
3416 	sc = ifp->if_softc;
3417 
3418 	ifp->if_oerrors++;
3419 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3420 
3421 	dc_stop(sc);
3422 	dc_reset(sc);
3423 	dc_init(sc);
3424 
3425 	if (!ifq_is_empty(&ifp->if_snd))
3426 		dc_start(ifp);
3427 
3428 	return;
3429 }
3430 
3431 /*
3432  * Stop the adapter and free any mbufs allocated to the
3433  * RX and TX lists.
3434  */
3435 static void dc_stop(sc)
3436 	struct dc_softc		*sc;
3437 {
3438 	int		i;
3439 	struct ifnet		*ifp;
3440 
3441 	ifp = &sc->arpcom.ac_if;
3442 	ifp->if_timer = 0;
3443 
3444 	callout_stop(&sc->dc_stat_timer);
3445 
3446 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3447 #ifdef DEVICE_POLLING
3448 	ether_poll_deregister(ifp);
3449 #endif
3450 
3451 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3452 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3453 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3454 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3455 	sc->dc_link = 0;
3456 
3457 	/*
3458 	 * Free data in the RX lists.
3459 	 */
3460 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3461 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3462 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3463 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3464 		}
3465 	}
3466 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3467 		sizeof(sc->dc_ldata->dc_rx_list));
3468 
3469 	/*
3470 	 * Free the TX list buffers.
3471 	 */
3472 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3473 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3474 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3475 			    DC_TXCTL_SETUP) ||
3476 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3477 			    DC_TXCTL_LASTFRAG)) {
3478 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3479 				continue;
3480 			}
3481 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3482 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3483 		}
3484 	}
3485 
3486 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3487 		sizeof(sc->dc_ldata->dc_tx_list));
3488 
3489 	return;
3490 }
3491 
3492 /*
3493  * Stop all chip I/O so that the kernel's probe routines don't
3494  * get confused by errant DMAs when rebooting.
3495  */
3496 static void dc_shutdown(dev)
3497 	device_t		dev;
3498 {
3499 	struct dc_softc		*sc;
3500 
3501 	sc = device_get_softc(dev);
3502 
3503 	dc_stop(sc);
3504 
3505 	return;
3506 }
3507 
3508 /*
3509  * Device suspend routine.  Stop the interface and save some PCI
3510  * settings in case the BIOS doesn't restore them properly on
3511  * resume.
3512  */
3513 static int dc_suspend(dev)
3514 	device_t		dev;
3515 {
3516 	int		i;
3517 	int			s;
3518 	struct dc_softc		*sc;
3519 
3520 	s = splimp();
3521 
3522 	sc = device_get_softc(dev);
3523 
3524 	dc_stop(sc);
3525 
3526 	for (i = 0; i < 5; i++)
3527 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3528 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3529 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3530 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3531 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3532 
3533 	sc->suspended = 1;
3534 
3535 	splx(s);
3536 	return (0);
3537 }
3538 
3539 /*
3540  * Device resume routine.  Restore some PCI settings in case the BIOS
3541  * doesn't, re-enable busmastering, and restart the interface if
3542  * appropriate.
3543  */
3544 static int dc_resume(dev)
3545 	device_t		dev;
3546 {
3547 	int		i;
3548 	int			s;
3549 	struct dc_softc		*sc;
3550 	struct ifnet		*ifp;
3551 
3552 	s = splimp();
3553 
3554 	sc = device_get_softc(dev);
3555 	ifp = &sc->arpcom.ac_if;
3556 
3557 	dc_acpi(dev);
3558 
3559 	/* better way to do this? */
3560 	for (i = 0; i < 5; i++)
3561 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3562 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3563 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3564 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3565 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3566 
3567 	/* reenable busmastering */
3568 	pci_enable_busmaster(dev);
3569 	pci_enable_io(dev, DC_RES);
3570 
3571         /* reinitialize interface if necessary */
3572         if (ifp->if_flags & IFF_UP)
3573                 dc_init(sc);
3574 
3575 	sc->suspended = 0;
3576 
3577 	splx(s);
3578 	return (0);
3579 }
3580