xref: /dflybsd-src/sys/dev/netif/dc/if_dc.c (revision bc76a771df54af7e361532b257cecc26227736b4)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.11 2004/04/07 05:45:27 dillon Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
36  */
37 
38 /*
39  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
40  * series chips and several workalikes including the following:
41  *
42  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
43  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
44  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
45  * ASIX Electronics AX88140A (www.asix.com.tw)
46  * ASIX Electronics AX88141 (www.asix.com.tw)
47  * ADMtek AL981 (www.admtek.com.tw)
48  * ADMtek AN985 (www.admtek.com.tw)
49  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
50  * Accton EN1217 (www.accton.com)
51  * Conexant LANfinity (www.conexant.com)
52  *
53  * Datasheets for the 21143 are available at developer.intel.com.
54  * Datasheets for the clone parts can be found at their respective sites.
55  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
56  * The PNIC II is essentially a Macronix 98715A chip; the only difference
57  * worth noting is that its multicast hash table is only 128 bits wide
58  * instead of 512.
59  *
60  * Written by Bill Paul <wpaul@ee.columbia.edu>
61  * Electrical Engineering Department
62  * Columbia University, New York City
63  */
64 
65 /*
66  * The Intel 21143 is the successor to the DEC 21140. It is basically
67  * the same as the 21140 but with a few new features. The 21143 supports
68  * three kinds of media attachments:
69  *
70  * o MII port, for 10Mbps and 100Mbps support and NWAY
71  *   autonegotiation provided by an external PHY.
72  * o SYM port, for symbol mode 100Mbps support.
73  * o 10baseT port.
74  * o AUI/BNC port.
75  *
76  * The 100Mbps SYM port and 10baseT port can be used together in
77  * combination with the internal NWAY support to create a 10/100
78  * autosensing configuration.
79  *
80  * Note that not all tulip workalikes are handled in this driver: we only
81  * deal with those which are relatively well behaved. The Winbond is
82  * handled separately due to its different register offsets and the
83  * special handling needed for its various bugs. The PNIC is handled
84  * here, but I'm not thrilled about it.
85  *
86  * All of the workalike chips use some form of MII transceiver support
87  * with the exception of the Macronix chips, which also have a SYM port.
88  * The ASIX AX88140A is also documented to have a SYM port, but all
89  * the cards I've seen use an MII transceiver, probably because the
90  * AX88140A doesn't support internal NWAY.
91  */
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/sysctl.h>
101 
102 #include <net/if.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/vlan/if_vlan_var.h>
109 
110 #include <net/bpf.h>
111 
112 #include <vm/vm.h>              /* for vtophys */
113 #include <vm/pmap.h>            /* for vtophys */
114 #include <machine/clock.h>      /* for DELAY */
115 #include <machine/bus_pio.h>
116 #include <machine/bus_memio.h>
117 #include <machine/bus.h>
118 #include <machine/resource.h>
119 #include <sys/bus.h>
120 #include <sys/rman.h>
121 
122 #include "../mii_layer/mii.h"
123 #include "../mii_layer/miivar.h"
124 
125 #include <bus/pci/pcireg.h>
126 #include <bus/pci/pcivar.h>
127 
128 #define DC_USEIOSPACE
129 #ifdef __alpha__
130 #define SRM_MEDIA
131 #endif
132 
133 #include "if_dcreg.h"
134 
135 /* "controller miibus0" required.  See GENERIC if you get errors here. */
136 #include "miibus_if.h"
137 
138 /*
139  * Various supported device vendors/types and their names.
140  */
141 static struct dc_type dc_devs[] = {
142 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
143 		"Intel 21143 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
145 		"Davicom DM9009 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
147 		"Davicom DM9100 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
149 		"Davicom DM9102 10/100BaseTX" },
150 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
151 		"Davicom DM9102A 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
153 		"ADMtek AL981 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
155 		"ADMtek AN985 10/100BaseTX" },
156 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
157 		"ASIX AX88140A 10/100BaseTX" },
158 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
159 		"ASIX AX88141 10/100BaseTX" },
160 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
161 		"Macronix 98713 10/100BaseTX" },
162 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
163 		"Macronix 98713A 10/100BaseTX" },
164 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
165 		"Compex RL100-TX 10/100BaseTX" },
166 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
167 		"Compex RL100-TX 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
169 		"Macronix 98715/98715A 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
171 		"Macronix 98715AEC-C 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
173 		"Macronix 98725 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
175 		"Macronix 98727/98732 10/100BaseTX" },
176 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
177 		"LC82C115 PNIC II 10/100BaseTX" },
178 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
179 		"82c168 PNIC 10/100BaseTX" },
180 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
181 		"82c169 PNIC 10/100BaseTX" },
182 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
183 		"Accton EN1217 10/100BaseTX" },
184 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
185 		"Accton EN2242 MiniPCI 10/100BaseTX" },
186 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
187 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
188 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
189 		"3Com OfficeConnect 10/100B" },
190 	{ 0, 0, NULL }
191 };
192 
193 static int dc_probe		(device_t);
194 static int dc_attach		(device_t);
195 static int dc_detach		(device_t);
196 static int dc_suspend		(device_t);
197 static int dc_resume		(device_t);
198 static void dc_acpi		(device_t);
199 static struct dc_type *dc_devtype	(device_t);
200 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
201 static int dc_encap		(struct dc_softc *, struct mbuf *,
202 					u_int32_t *);
203 static int dc_coal		(struct dc_softc *, struct mbuf **);
204 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
205 static int dc_rx_resync		(struct dc_softc *);
206 static void dc_rxeof		(struct dc_softc *);
207 static void dc_txeof		(struct dc_softc *);
208 static void dc_tick		(void *);
209 static void dc_tx_underrun	(struct dc_softc *);
210 static void dc_intr		(void *);
211 static void dc_start		(struct ifnet *);
212 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
213 					struct ucred *);
214 static void dc_init		(void *);
215 static void dc_stop		(struct dc_softc *);
216 static void dc_watchdog		(struct ifnet *);
217 static void dc_shutdown		(device_t);
218 static int dc_ifmedia_upd	(struct ifnet *);
219 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
220 
221 static void dc_delay		(struct dc_softc *);
222 static void dc_eeprom_idle	(struct dc_softc *);
223 static void dc_eeprom_putbyte	(struct dc_softc *, int);
224 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
225 static void dc_eeprom_getword_pnic
226 				(struct dc_softc *, int, u_int16_t *);
227 static void dc_eeprom_width	(struct dc_softc *);
228 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
229 							int, int);
230 
231 static void dc_mii_writebit	(struct dc_softc *, int);
232 static int dc_mii_readbit	(struct dc_softc *);
233 static void dc_mii_sync		(struct dc_softc *);
234 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
235 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
236 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
237 static int dc_miibus_readreg	(device_t, int, int);
238 static int dc_miibus_writereg	(device_t, int, int, int);
239 static void dc_miibus_statchg	(device_t);
240 static void dc_miibus_mediainit	(device_t);
241 
242 static void dc_setcfg		(struct dc_softc *, int);
243 static u_int32_t dc_crc_le	(struct dc_softc *, caddr_t);
244 static u_int32_t dc_crc_be	(caddr_t);
245 static void dc_setfilt_21143	(struct dc_softc *);
246 static void dc_setfilt_asix	(struct dc_softc *);
247 static void dc_setfilt_admtek	(struct dc_softc *);
248 
249 static void dc_setfilt		(struct dc_softc *);
250 
251 static void dc_reset		(struct dc_softc *);
252 static int dc_list_rx_init	(struct dc_softc *);
253 static int dc_list_tx_init	(struct dc_softc *);
254 
255 static void dc_read_srom	(struct dc_softc *, int);
256 static void dc_parse_21143_srom	(struct dc_softc *);
257 static void dc_decode_leaf_sia	(struct dc_softc *,
258 				    struct dc_eblock_sia *);
259 static void dc_decode_leaf_mii	(struct dc_softc *,
260 				    struct dc_eblock_mii *);
261 static void dc_decode_leaf_sym	(struct dc_softc *,
262 				    struct dc_eblock_sym *);
263 static void dc_apply_fixup	(struct dc_softc *, int);
264 
265 #ifdef DC_USEIOSPACE
266 #define DC_RES			SYS_RES_IOPORT
267 #define DC_RID			DC_PCI_CFBIO
268 #else
269 #define DC_RES			SYS_RES_MEMORY
270 #define DC_RID			DC_PCI_CFBMA
271 #endif
272 
273 static device_method_t dc_methods[] = {
274 	/* Device interface */
275 	DEVMETHOD(device_probe,		dc_probe),
276 	DEVMETHOD(device_attach,	dc_attach),
277 	DEVMETHOD(device_detach,	dc_detach),
278 	DEVMETHOD(device_suspend,	dc_suspend),
279 	DEVMETHOD(device_resume,	dc_resume),
280 	DEVMETHOD(device_shutdown,	dc_shutdown),
281 
282 	/* bus interface */
283 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
284 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
285 
286 	/* MII interface */
287 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
288 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
289 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
290 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
291 
292 	{ 0, 0 }
293 };
294 
295 static driver_t dc_driver = {
296 	"dc",
297 	dc_methods,
298 	sizeof(struct dc_softc)
299 };
300 
301 static devclass_t dc_devclass;
302 
303 #ifdef __i386__
304 static int dc_quick=1;
305 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
306 	&dc_quick,0,"do not mdevget in dc driver");
307 #endif
308 
309 DECLARE_DUMMY_MODULE(if_dc);
310 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
311 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
312 
313 #define DC_SETBIT(sc, reg, x)				\
314 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
315 
316 #define DC_CLRBIT(sc, reg, x)				\
317 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
318 
319 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
320 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
321 
322 static void dc_delay(sc)
323 	struct dc_softc		*sc;
324 {
325 	int			idx;
326 
327 	for (idx = (300 / 33) + 1; idx > 0; idx--)
328 		CSR_READ_4(sc, DC_BUSCTL);
329 }
330 
331 static void dc_eeprom_width(sc)
332 	struct dc_softc		*sc;
333 {
334 	int i;
335 
336 	/* Force EEPROM to idle state. */
337 	dc_eeprom_idle(sc);
338 
339 	/* Enter EEPROM access mode. */
340 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
341 	dc_delay(sc);
342 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
343 	dc_delay(sc);
344 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
345 	dc_delay(sc);
346 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
347 	dc_delay(sc);
348 
349 	for (i = 3; i--;) {
350 		if (6 & (1 << i))
351 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
352 		else
353 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
354 		dc_delay(sc);
355 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
356 		dc_delay(sc);
357 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
358 		dc_delay(sc);
359 	}
360 
361 	for (i = 1; i <= 12; i++) {
362 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
363 		dc_delay(sc);
364 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
365 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
366 			dc_delay(sc);
367 			break;
368 		}
369 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 		dc_delay(sc);
371 	}
372 
373 	/* Turn off EEPROM access mode. */
374 	dc_eeprom_idle(sc);
375 
376 	if (i < 4 || i > 12)
377 		sc->dc_romwidth = 6;
378 	else
379 		sc->dc_romwidth = i;
380 
381 	/* Enter EEPROM access mode. */
382 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
383 	dc_delay(sc);
384 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
385 	dc_delay(sc);
386 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
387 	dc_delay(sc);
388 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
389 	dc_delay(sc);
390 
391 	/* Turn off EEPROM access mode. */
392 	dc_eeprom_idle(sc);
393 }
394 
395 static void dc_eeprom_idle(sc)
396 	struct dc_softc		*sc;
397 {
398 	int		i;
399 
400 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
401 	dc_delay(sc);
402 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
403 	dc_delay(sc);
404 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
405 	dc_delay(sc);
406 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
407 	dc_delay(sc);
408 
409 	for (i = 0; i < 25; i++) {
410 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411 		dc_delay(sc);
412 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413 		dc_delay(sc);
414 	}
415 
416 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
417 	dc_delay(sc);
418 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
419 	dc_delay(sc);
420 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
421 
422 	return;
423 }
424 
425 /*
426  * Send a read command and address to the EEPROM, check for ACK.
427  */
428 static void dc_eeprom_putbyte(sc, addr)
429 	struct dc_softc		*sc;
430 	int			addr;
431 {
432 	int		d, i;
433 
434 	d = DC_EECMD_READ >> 6;
435 	for (i = 3; i--; ) {
436 		if (d & (1 << i))
437 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
438 		else
439 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
440 		dc_delay(sc);
441 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 		dc_delay(sc);
443 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
444 		dc_delay(sc);
445 	}
446 
447 	/*
448 	 * Feed in each bit and strobe the clock.
449 	 */
450 	for (i = sc->dc_romwidth; i--;) {
451 		if (addr & (1 << i)) {
452 			SIO_SET(DC_SIO_EE_DATAIN);
453 		} else {
454 			SIO_CLR(DC_SIO_EE_DATAIN);
455 		}
456 		dc_delay(sc);
457 		SIO_SET(DC_SIO_EE_CLK);
458 		dc_delay(sc);
459 		SIO_CLR(DC_SIO_EE_CLK);
460 		dc_delay(sc);
461 	}
462 
463 	return;
464 }
465 
466 /*
467  * Read a word of data stored in the EEPROM at address 'addr.'
468  * The PNIC 82c168/82c169 has its own non-standard way to read
469  * the EEPROM.
470  */
471 static void dc_eeprom_getword_pnic(sc, addr, dest)
472 	struct dc_softc		*sc;
473 	int			addr;
474 	u_int16_t		*dest;
475 {
476 	int		i;
477 	u_int32_t		r;
478 
479 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
480 
481 	for (i = 0; i < DC_TIMEOUT; i++) {
482 		DELAY(1);
483 		r = CSR_READ_4(sc, DC_SIO);
484 		if (!(r & DC_PN_SIOCTL_BUSY)) {
485 			*dest = (u_int16_t)(r & 0xFFFF);
486 			return;
487 		}
488 	}
489 
490 	return;
491 }
492 
493 /*
494  * Read a word of data stored in the EEPROM at address 'addr.'
495  */
496 static void dc_eeprom_getword(sc, addr, dest)
497 	struct dc_softc		*sc;
498 	int			addr;
499 	u_int16_t		*dest;
500 {
501 	int		i;
502 	u_int16_t		word = 0;
503 
504 	/* Force EEPROM to idle state. */
505 	dc_eeprom_idle(sc);
506 
507 	/* Enter EEPROM access mode. */
508 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
509 	dc_delay(sc);
510 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
511 	dc_delay(sc);
512 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
513 	dc_delay(sc);
514 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
515 	dc_delay(sc);
516 
517 	/*
518 	 * Send address of word we want to read.
519 	 */
520 	dc_eeprom_putbyte(sc, addr);
521 
522 	/*
523 	 * Start reading bits from EEPROM.
524 	 */
525 	for (i = 0x8000; i; i >>= 1) {
526 		SIO_SET(DC_SIO_EE_CLK);
527 		dc_delay(sc);
528 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
529 			word |= i;
530 		dc_delay(sc);
531 		SIO_CLR(DC_SIO_EE_CLK);
532 		dc_delay(sc);
533 	}
534 
535 	/* Turn off EEPROM access mode. */
536 	dc_eeprom_idle(sc);
537 
538 	*dest = word;
539 
540 	return;
541 }
542 
543 /*
544  * Read a sequence of words from the EEPROM.
545  */
546 static void dc_read_eeprom(sc, dest, off, cnt, swap)
547 	struct dc_softc		*sc;
548 	caddr_t			dest;
549 	int			off;
550 	int			cnt;
551 	int			swap;
552 {
553 	int			i;
554 	u_int16_t		word = 0, *ptr;
555 
556 	for (i = 0; i < cnt; i++) {
557 		if (DC_IS_PNIC(sc))
558 			dc_eeprom_getword_pnic(sc, off + i, &word);
559 		else
560 			dc_eeprom_getword(sc, off + i, &word);
561 		ptr = (u_int16_t *)(dest + (i * 2));
562 		if (swap)
563 			*ptr = ntohs(word);
564 		else
565 			*ptr = word;
566 	}
567 
568 	return;
569 }
570 
571 /*
572  * The following two routines are taken from the Macronix 98713
573  * Application Notes pp.19-21.
574  */
575 /*
576  * Write a bit to the MII bus.
577  */
578 static void dc_mii_writebit(sc, bit)
579 	struct dc_softc		*sc;
580 	int			bit;
581 {
582 	if (bit)
583 		CSR_WRITE_4(sc, DC_SIO,
584 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
585 	else
586 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
587 
588 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
589 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
590 
591 	return;
592 }
593 
594 /*
595  * Read a bit from the MII bus.
596  */
597 static int dc_mii_readbit(sc)
598 	struct dc_softc		*sc;
599 {
600 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
601 	CSR_READ_4(sc, DC_SIO);
602 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
603 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
604 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
605 		return(1);
606 
607 	return(0);
608 }
609 
610 /*
611  * Sync the PHYs by setting data bit and strobing the clock 32 times.
612  */
613 static void dc_mii_sync(sc)
614 	struct dc_softc		*sc;
615 {
616 	int		i;
617 
618 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
619 
620 	for (i = 0; i < 32; i++)
621 		dc_mii_writebit(sc, 1);
622 
623 	return;
624 }
625 
626 /*
627  * Clock a series of bits through the MII.
628  */
629 static void dc_mii_send(sc, bits, cnt)
630 	struct dc_softc		*sc;
631 	u_int32_t		bits;
632 	int			cnt;
633 {
634 	int			i;
635 
636 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
637 		dc_mii_writebit(sc, bits & i);
638 }
639 
640 /*
641  * Read an PHY register through the MII.
642  */
643 static int dc_mii_readreg(sc, frame)
644 	struct dc_softc		*sc;
645 	struct dc_mii_frame	*frame;
646 
647 {
648 	int			i, ack, s;
649 
650 	s = splimp();
651 
652 	/*
653 	 * Set up frame for RX.
654 	 */
655 	frame->mii_stdelim = DC_MII_STARTDELIM;
656 	frame->mii_opcode = DC_MII_READOP;
657 	frame->mii_turnaround = 0;
658 	frame->mii_data = 0;
659 
660 	/*
661 	 * Sync the PHYs.
662 	 */
663 	dc_mii_sync(sc);
664 
665 	/*
666 	 * Send command/address info.
667 	 */
668 	dc_mii_send(sc, frame->mii_stdelim, 2);
669 	dc_mii_send(sc, frame->mii_opcode, 2);
670 	dc_mii_send(sc, frame->mii_phyaddr, 5);
671 	dc_mii_send(sc, frame->mii_regaddr, 5);
672 
673 #ifdef notdef
674 	/* Idle bit */
675 	dc_mii_writebit(sc, 1);
676 	dc_mii_writebit(sc, 0);
677 #endif
678 
679 	/* Check for ack */
680 	ack = dc_mii_readbit(sc);
681 
682 	/*
683 	 * Now try reading data bits. If the ack failed, we still
684 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
685 	 */
686 	if (ack) {
687 		for(i = 0; i < 16; i++) {
688 			dc_mii_readbit(sc);
689 		}
690 		goto fail;
691 	}
692 
693 	for (i = 0x8000; i; i >>= 1) {
694 		if (!ack) {
695 			if (dc_mii_readbit(sc))
696 				frame->mii_data |= i;
697 		}
698 	}
699 
700 fail:
701 
702 	dc_mii_writebit(sc, 0);
703 	dc_mii_writebit(sc, 0);
704 
705 	splx(s);
706 
707 	if (ack)
708 		return(1);
709 	return(0);
710 }
711 
712 /*
713  * Write to a PHY register through the MII.
714  */
715 static int dc_mii_writereg(sc, frame)
716 	struct dc_softc		*sc;
717 	struct dc_mii_frame	*frame;
718 
719 {
720 	int			s;
721 
722 	s = splimp();
723 	/*
724 	 * Set up frame for TX.
725 	 */
726 
727 	frame->mii_stdelim = DC_MII_STARTDELIM;
728 	frame->mii_opcode = DC_MII_WRITEOP;
729 	frame->mii_turnaround = DC_MII_TURNAROUND;
730 
731 	/*
732 	 * Sync the PHYs.
733 	 */
734 	dc_mii_sync(sc);
735 
736 	dc_mii_send(sc, frame->mii_stdelim, 2);
737 	dc_mii_send(sc, frame->mii_opcode, 2);
738 	dc_mii_send(sc, frame->mii_phyaddr, 5);
739 	dc_mii_send(sc, frame->mii_regaddr, 5);
740 	dc_mii_send(sc, frame->mii_turnaround, 2);
741 	dc_mii_send(sc, frame->mii_data, 16);
742 
743 	/* Idle bit. */
744 	dc_mii_writebit(sc, 0);
745 	dc_mii_writebit(sc, 0);
746 
747 	splx(s);
748 
749 	return(0);
750 }
751 
752 static int dc_miibus_readreg(dev, phy, reg)
753 	device_t		dev;
754 	int			phy, reg;
755 {
756 	struct dc_mii_frame	frame;
757 	struct dc_softc		*sc;
758 	int			i, rval, phy_reg = 0;
759 
760 	sc = device_get_softc(dev);
761 	bzero((char *)&frame, sizeof(frame));
762 
763 	/*
764 	 * Note: both the AL981 and AN985 have internal PHYs,
765 	 * however the AL981 provides direct access to the PHY
766 	 * registers while the AN985 uses a serial MII interface.
767 	 * The AN985's MII interface is also buggy in that you
768 	 * can read from any MII address (0 to 31), but only address 1
769 	 * behaves normally. To deal with both cases, we pretend
770 	 * that the PHY is at MII address 1.
771 	 */
772 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
773 		return(0);
774 
775 	/*
776 	 * Note: the ukphy probes of the RS7112 report a PHY at
777 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
778 	 * so we only respond to correct one.
779 	 */
780 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
781 		return(0);
782 
783 	if (sc->dc_pmode != DC_PMODE_MII) {
784 		if (phy == (MII_NPHY - 1)) {
785 			switch(reg) {
786 			case MII_BMSR:
787 			/*
788 			 * Fake something to make the probe
789 			 * code think there's a PHY here.
790 			 */
791 				return(BMSR_MEDIAMASK);
792 				break;
793 			case MII_PHYIDR1:
794 				if (DC_IS_PNIC(sc))
795 					return(DC_VENDORID_LO);
796 				return(DC_VENDORID_DEC);
797 				break;
798 			case MII_PHYIDR2:
799 				if (DC_IS_PNIC(sc))
800 					return(DC_DEVICEID_82C168);
801 				return(DC_DEVICEID_21143);
802 				break;
803 			default:
804 				return(0);
805 				break;
806 			}
807 		} else
808 			return(0);
809 	}
810 
811 	if (DC_IS_PNIC(sc)) {
812 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
813 		    (phy << 23) | (reg << 18));
814 		for (i = 0; i < DC_TIMEOUT; i++) {
815 			DELAY(1);
816 			rval = CSR_READ_4(sc, DC_PN_MII);
817 			if (!(rval & DC_PN_MII_BUSY)) {
818 				rval &= 0xFFFF;
819 				return(rval == 0xFFFF ? 0 : rval);
820 			}
821 		}
822 		return(0);
823 	}
824 
825 	if (DC_IS_COMET(sc)) {
826 		switch(reg) {
827 		case MII_BMCR:
828 			phy_reg = DC_AL_BMCR;
829 			break;
830 		case MII_BMSR:
831 			phy_reg = DC_AL_BMSR;
832 			break;
833 		case MII_PHYIDR1:
834 			phy_reg = DC_AL_VENID;
835 			break;
836 		case MII_PHYIDR2:
837 			phy_reg = DC_AL_DEVID;
838 			break;
839 		case MII_ANAR:
840 			phy_reg = DC_AL_ANAR;
841 			break;
842 		case MII_ANLPAR:
843 			phy_reg = DC_AL_LPAR;
844 			break;
845 		case MII_ANER:
846 			phy_reg = DC_AL_ANER;
847 			break;
848 		default:
849 			printf("dc%d: phy_read: bad phy register %x\n",
850 			    sc->dc_unit, reg);
851 			return(0);
852 			break;
853 		}
854 
855 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
856 
857 		if (rval == 0xFFFF)
858 			return(0);
859 		return(rval);
860 	}
861 
862 	frame.mii_phyaddr = phy;
863 	frame.mii_regaddr = reg;
864 	if (sc->dc_type == DC_TYPE_98713) {
865 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
866 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
867 	}
868 	dc_mii_readreg(sc, &frame);
869 	if (sc->dc_type == DC_TYPE_98713)
870 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
871 
872 	return(frame.mii_data);
873 }
874 
875 static int dc_miibus_writereg(dev, phy, reg, data)
876 	device_t		dev;
877 	int			phy, reg, data;
878 {
879 	struct dc_softc		*sc;
880 	struct dc_mii_frame	frame;
881 	int			i, phy_reg = 0;
882 
883 	sc = device_get_softc(dev);
884 	bzero((char *)&frame, sizeof(frame));
885 
886 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
887 		return(0);
888 
889 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
890 		return(0);
891 
892 	if (DC_IS_PNIC(sc)) {
893 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
894 		    (phy << 23) | (reg << 10) | data);
895 		for (i = 0; i < DC_TIMEOUT; i++) {
896 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
897 				break;
898 		}
899 		return(0);
900 	}
901 
902 	if (DC_IS_COMET(sc)) {
903 		switch(reg) {
904 		case MII_BMCR:
905 			phy_reg = DC_AL_BMCR;
906 			break;
907 		case MII_BMSR:
908 			phy_reg = DC_AL_BMSR;
909 			break;
910 		case MII_PHYIDR1:
911 			phy_reg = DC_AL_VENID;
912 			break;
913 		case MII_PHYIDR2:
914 			phy_reg = DC_AL_DEVID;
915 			break;
916 		case MII_ANAR:
917 			phy_reg = DC_AL_ANAR;
918 			break;
919 		case MII_ANLPAR:
920 			phy_reg = DC_AL_LPAR;
921 			break;
922 		case MII_ANER:
923 			phy_reg = DC_AL_ANER;
924 			break;
925 		default:
926 			printf("dc%d: phy_write: bad phy register %x\n",
927 			    sc->dc_unit, reg);
928 			return(0);
929 			break;
930 		}
931 
932 		CSR_WRITE_4(sc, phy_reg, data);
933 		return(0);
934 	}
935 
936 	frame.mii_phyaddr = phy;
937 	frame.mii_regaddr = reg;
938 	frame.mii_data = data;
939 
940 	if (sc->dc_type == DC_TYPE_98713) {
941 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
942 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
943 	}
944 	dc_mii_writereg(sc, &frame);
945 	if (sc->dc_type == DC_TYPE_98713)
946 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
947 
948 	return(0);
949 }
950 
951 static void dc_miibus_statchg(dev)
952 	device_t		dev;
953 {
954 	struct dc_softc		*sc;
955 	struct mii_data		*mii;
956 	struct ifmedia		*ifm;
957 
958 	sc = device_get_softc(dev);
959 	if (DC_IS_ADMTEK(sc))
960 		return;
961 
962 	mii = device_get_softc(sc->dc_miibus);
963 	ifm = &mii->mii_media;
964 	if (DC_IS_DAVICOM(sc) &&
965 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
966 		dc_setcfg(sc, ifm->ifm_media);
967 		sc->dc_if_media = ifm->ifm_media;
968 	} else {
969 		dc_setcfg(sc, mii->mii_media_active);
970 		sc->dc_if_media = mii->mii_media_active;
971 	}
972 
973 	return;
974 }
975 
976 /*
977  * Special support for DM9102A cards with HomePNA PHYs. Note:
978  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
979  * to be impossible to talk to the management interface of the DM9801
980  * PHY (its MDIO pin is not connected to anything). Consequently,
981  * the driver has to just 'know' about the additional mode and deal
982  * with it itself. *sigh*
983  */
984 static void dc_miibus_mediainit(dev)
985 	device_t		dev;
986 {
987 	struct dc_softc		*sc;
988 	struct mii_data		*mii;
989 	struct ifmedia		*ifm;
990 	int			rev;
991 
992 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
993 
994 	sc = device_get_softc(dev);
995 	mii = device_get_softc(sc->dc_miibus);
996 	ifm = &mii->mii_media;
997 
998 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
999 		ifmedia_add(ifm, IFM_ETHER|IFM_homePNA, 0, NULL);
1000 
1001 	return;
1002 }
1003 
1004 #define DC_POLY		0xEDB88320
1005 #define DC_BITS_512	9
1006 #define DC_BITS_128	7
1007 #define DC_BITS_64	6
1008 
1009 static u_int32_t dc_crc_le(sc, addr)
1010 	struct dc_softc		*sc;
1011 	caddr_t			addr;
1012 {
1013 	u_int32_t		idx, bit, data, crc;
1014 
1015 	/* Compute CRC for the address value. */
1016 	crc = 0xFFFFFFFF; /* initial value */
1017 
1018 	for (idx = 0; idx < 6; idx++) {
1019 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1020 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1021 	}
1022 
1023 	/*
1024 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1025 	 * chips is only 128 bits wide.
1026 	 */
1027 	if (sc->dc_flags & DC_128BIT_HASH)
1028 		return (crc & ((1 << DC_BITS_128) - 1));
1029 
1030 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1031 	if (sc->dc_flags & DC_64BIT_HASH)
1032 		return (crc & ((1 << DC_BITS_64) - 1));
1033 
1034 	return (crc & ((1 << DC_BITS_512) - 1));
1035 }
1036 
1037 /*
1038  * Calculate CRC of a multicast group address, return the lower 6 bits.
1039  */
1040 static u_int32_t dc_crc_be(addr)
1041 	caddr_t			addr;
1042 {
1043 	u_int32_t		crc, carry;
1044 	int			i, j;
1045 	u_int8_t		c;
1046 
1047 	/* Compute CRC for the address value. */
1048 	crc = 0xFFFFFFFF; /* initial value */
1049 
1050 	for (i = 0; i < 6; i++) {
1051 		c = *(addr + i);
1052 		for (j = 0; j < 8; j++) {
1053 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
1054 			crc <<= 1;
1055 			c >>= 1;
1056 			if (carry)
1057 				crc = (crc ^ 0x04c11db6) | carry;
1058 		}
1059 	}
1060 
1061 	/* return the filter bit position */
1062 	return((crc >> 26) & 0x0000003F);
1063 }
1064 
1065 /*
1066  * 21143-style RX filter setup routine. Filter programming is done by
1067  * downloading a special setup frame into the TX engine. 21143, Macronix,
1068  * PNIC, PNIC II and Davicom chips are programmed this way.
1069  *
1070  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1071  * address (our node address) and a 512-bit hash filter for multicast
1072  * frames. We also sneak the broadcast address into the hash filter since
1073  * we need that too.
1074  */
1075 void dc_setfilt_21143(sc)
1076 	struct dc_softc		*sc;
1077 {
1078 	struct dc_desc		*sframe;
1079 	u_int32_t		h, *sp;
1080 	struct ifmultiaddr	*ifma;
1081 	struct ifnet		*ifp;
1082 	int			i;
1083 
1084 	ifp = &sc->arpcom.ac_if;
1085 
1086 	i = sc->dc_cdata.dc_tx_prod;
1087 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1088 	sc->dc_cdata.dc_tx_cnt++;
1089 	sframe = &sc->dc_ldata->dc_tx_list[i];
1090 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1091 	bzero((char *)sp, DC_SFRAME_LEN);
1092 
1093 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1094 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1095 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1096 
1097 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1098 
1099 	/* If we want promiscuous mode, set the allframes bit. */
1100 	if (ifp->if_flags & IFF_PROMISC)
1101 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1102 	else
1103 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1104 
1105 	if (ifp->if_flags & IFF_ALLMULTI)
1106 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1107 	else
1108 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1109 
1110 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1111 	    ifma = ifma->ifma_link.le_next) {
1112 		if (ifma->ifma_addr->sa_family != AF_LINK)
1113 			continue;
1114 		h = dc_crc_le(sc,
1115 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1116 		sp[h >> 4] |= 1 << (h & 0xF);
1117 	}
1118 
1119 	if (ifp->if_flags & IFF_BROADCAST) {
1120 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1121 		sp[h >> 4] |= 1 << (h & 0xF);
1122 	}
1123 
1124 	/* Set our MAC address */
1125 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1126 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1127 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1128 
1129 	sframe->dc_status = DC_TXSTAT_OWN;
1130 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1131 
1132 	/*
1133 	 * The PNIC takes an exceedingly long time to process its
1134 	 * setup frame; wait 10ms after posting the setup frame
1135 	 * before proceeding, just so it has time to swallow its
1136 	 * medicine.
1137 	 */
1138 	DELAY(10000);
1139 
1140 	ifp->if_timer = 5;
1141 
1142 	return;
1143 }
1144 
1145 void dc_setfilt_admtek(sc)
1146 	struct dc_softc		*sc;
1147 {
1148 	struct ifnet		*ifp;
1149 	int			h = 0;
1150 	u_int32_t		hashes[2] = { 0, 0 };
1151 	struct ifmultiaddr	*ifma;
1152 
1153 	ifp = &sc->arpcom.ac_if;
1154 
1155 	/* Init our MAC address */
1156 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1157 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1158 
1159 	/* If we want promiscuous mode, set the allframes bit. */
1160 	if (ifp->if_flags & IFF_PROMISC)
1161 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1162 	else
1163 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1164 
1165 	if (ifp->if_flags & IFF_ALLMULTI)
1166 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1167 	else
1168 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1169 
1170 	/* first, zot all the existing hash bits */
1171 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1172 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1173 
1174 	/*
1175 	 * If we're already in promisc or allmulti mode, we
1176 	 * don't have to bother programming the multicast filter.
1177 	 */
1178 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1179 		return;
1180 
1181 	/* now program new ones */
1182 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1183 	    ifma = ifma->ifma_link.le_next) {
1184 		if (ifma->ifma_addr->sa_family != AF_LINK)
1185 			continue;
1186 		if (DC_IS_CENTAUR(sc))
1187 			h = dc_crc_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1188 		else
1189 			h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1190 		if (h < 32)
1191 			hashes[0] |= (1 << h);
1192 		else
1193 			hashes[1] |= (1 << (h - 32));
1194 	}
1195 
1196 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1197 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1198 
1199 	return;
1200 }
1201 
1202 void dc_setfilt_asix(sc)
1203 	struct dc_softc		*sc;
1204 {
1205 	struct ifnet		*ifp;
1206 	int			h = 0;
1207 	u_int32_t		hashes[2] = { 0, 0 };
1208 	struct ifmultiaddr	*ifma;
1209 
1210 	ifp = &sc->arpcom.ac_if;
1211 
1212         /* Init our MAC address */
1213         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1214         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1215 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1216         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1217         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1218 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1219 
1220 	/* If we want promiscuous mode, set the allframes bit. */
1221 	if (ifp->if_flags & IFF_PROMISC)
1222 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1223 	else
1224 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1225 
1226 	if (ifp->if_flags & IFF_ALLMULTI)
1227 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1228 	else
1229 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1230 
1231 	/*
1232 	 * The ASIX chip has a special bit to enable reception
1233 	 * of broadcast frames.
1234 	 */
1235 	if (ifp->if_flags & IFF_BROADCAST)
1236 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1237 	else
1238 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1239 
1240 	/* first, zot all the existing hash bits */
1241 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1242 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1243 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1244 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1245 
1246 	/*
1247 	 * If we're already in promisc or allmulti mode, we
1248 	 * don't have to bother programming the multicast filter.
1249 	 */
1250 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1251 		return;
1252 
1253 	/* now program new ones */
1254 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1255 	    ifma = ifma->ifma_link.le_next) {
1256 		if (ifma->ifma_addr->sa_family != AF_LINK)
1257 			continue;
1258 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1259 		if (h < 32)
1260 			hashes[0] |= (1 << h);
1261 		else
1262 			hashes[1] |= (1 << (h - 32));
1263 	}
1264 
1265 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1266 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1267 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1268 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1269 
1270 	return;
1271 }
1272 
1273 static void dc_setfilt(sc)
1274 	struct dc_softc		*sc;
1275 {
1276 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1277 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1278 		dc_setfilt_21143(sc);
1279 
1280 	if (DC_IS_ASIX(sc))
1281 		dc_setfilt_asix(sc);
1282 
1283 	if (DC_IS_ADMTEK(sc))
1284 		dc_setfilt_admtek(sc);
1285 
1286 	return;
1287 }
1288 
1289 /*
1290  * In order to fiddle with the
1291  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1292  * first have to put the transmit and/or receive logic in the idle state.
1293  */
1294 static void dc_setcfg(sc, media)
1295 	struct dc_softc		*sc;
1296 	int			media;
1297 {
1298 	int			i, restart = 0;
1299 	u_int32_t		isr;
1300 
1301 	if (IFM_SUBTYPE(media) == IFM_NONE)
1302 		return;
1303 
1304 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1305 		restart = 1;
1306 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1307 
1308 		for (i = 0; i < DC_TIMEOUT; i++) {
1309 			isr = CSR_READ_4(sc, DC_ISR);
1310 			if (isr & DC_ISR_TX_IDLE ||
1311 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1312 				break;
1313 			DELAY(10);
1314 		}
1315 
1316 		if (i == DC_TIMEOUT)
1317 			printf("dc%d: failed to force tx and "
1318 				"rx to idle state\n", sc->dc_unit);
1319 	}
1320 
1321 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1322 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1323 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1324 		if (sc->dc_pmode == DC_PMODE_MII) {
1325 			int	watchdogreg;
1326 
1327 			if (DC_IS_INTEL(sc)) {
1328 			/* there's a write enable bit here that reads as 1 */
1329 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1330 				watchdogreg &= ~DC_WDOG_CTLWREN;
1331 				watchdogreg |= DC_WDOG_JABBERDIS;
1332 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1333 			} else {
1334 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1335 			}
1336 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1337 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1338 			if (sc->dc_type == DC_TYPE_98713)
1339 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1340 				    DC_NETCFG_SCRAMBLER));
1341 			if (!DC_IS_DAVICOM(sc))
1342 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1343 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1344 			if (DC_IS_INTEL(sc))
1345 				dc_apply_fixup(sc, IFM_AUTO);
1346 		} else {
1347 			if (DC_IS_PNIC(sc)) {
1348 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1349 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1350 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1351 			}
1352 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1353 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1354 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1355 			if (DC_IS_INTEL(sc))
1356 				dc_apply_fixup(sc,
1357 				    (media & IFM_GMASK) == IFM_FDX ?
1358 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1359 		}
1360 	}
1361 
1362 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1363 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1364 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1365 		if (sc->dc_pmode == DC_PMODE_MII) {
1366 			int	watchdogreg;
1367 
1368 			/* there's a write enable bit here that reads as 1 */
1369 			if (DC_IS_INTEL(sc)) {
1370 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1371 				watchdogreg &= ~DC_WDOG_CTLWREN;
1372 				watchdogreg |= DC_WDOG_JABBERDIS;
1373 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1374 			} else {
1375 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1376 			}
1377 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1378 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1379 			if (sc->dc_type == DC_TYPE_98713)
1380 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1381 			if (!DC_IS_DAVICOM(sc))
1382 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1383 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1384 			if (DC_IS_INTEL(sc))
1385 				dc_apply_fixup(sc, IFM_AUTO);
1386 		} else {
1387 			if (DC_IS_PNIC(sc)) {
1388 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1389 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1390 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1391 			}
1392 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1393 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1394 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1395 			if (DC_IS_INTEL(sc)) {
1396 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1397 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1398 				if ((media & IFM_GMASK) == IFM_FDX)
1399 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1400 				else
1401 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1402 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1403 				DC_CLRBIT(sc, DC_10BTCTRL,
1404 				    DC_TCTL_AUTONEGENBL);
1405 				dc_apply_fixup(sc,
1406 				    (media & IFM_GMASK) == IFM_FDX ?
1407 				    IFM_10_T|IFM_FDX : IFM_10_T);
1408 				DELAY(20000);
1409 			}
1410 		}
1411 	}
1412 
1413 	/*
1414 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1415 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1416 	 * on the external MII port.
1417 	 */
1418 	if (DC_IS_DAVICOM(sc)) {
1419 		if (IFM_SUBTYPE(media) == IFM_homePNA) {
1420 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1421 			sc->dc_link = 1;
1422 		} else {
1423 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1424 		}
1425 	}
1426 
1427 	if ((media & IFM_GMASK) == IFM_FDX) {
1428 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1429 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1430 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1431 	} else {
1432 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1433 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1434 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1435 	}
1436 
1437 	if (restart)
1438 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1439 
1440 	return;
1441 }
1442 
1443 static void dc_reset(sc)
1444 	struct dc_softc		*sc;
1445 {
1446 	int		i;
1447 
1448 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1449 
1450 	for (i = 0; i < DC_TIMEOUT; i++) {
1451 		DELAY(10);
1452 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1453 			break;
1454 	}
1455 
1456 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1457 		DELAY(10000);
1458 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1459 		i = 0;
1460 	}
1461 
1462 	if (i == DC_TIMEOUT)
1463 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1464 
1465 	/* Wait a little while for the chip to get its brains in order. */
1466 	DELAY(1000);
1467 
1468 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1469 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1470 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1471 
1472 	/*
1473 	 * Bring the SIA out of reset. In some cases, it looks
1474 	 * like failing to unreset the SIA soon enough gets it
1475 	 * into a state where it will never come out of reset
1476 	 * until we reset the whole chip again.
1477 	 */
1478 	if (DC_IS_INTEL(sc)) {
1479 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1480 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1481 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1482 	}
1483 
1484         return;
1485 }
1486 
1487 static struct dc_type *dc_devtype(dev)
1488 	device_t		dev;
1489 {
1490 	struct dc_type		*t;
1491 	u_int32_t		rev;
1492 
1493 	t = dc_devs;
1494 
1495 	while(t->dc_name != NULL) {
1496 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1497 		    (pci_get_device(dev) == t->dc_did)) {
1498 			/* Check the PCI revision */
1499 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1500 			if (t->dc_did == DC_DEVICEID_98713 &&
1501 			    rev >= DC_REVISION_98713A)
1502 				t++;
1503 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1504 			    rev >= DC_REVISION_98713A)
1505 				t++;
1506 			if (t->dc_did == DC_DEVICEID_987x5 &&
1507 			    rev >= DC_REVISION_98715AEC_C)
1508 				t++;
1509 			if (t->dc_did == DC_DEVICEID_987x5 &&
1510 			    rev >= DC_REVISION_98725)
1511 				t++;
1512 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1513 			    rev >= DC_REVISION_88141)
1514 				t++;
1515 			if (t->dc_did == DC_DEVICEID_82C168 &&
1516 			    rev >= DC_REVISION_82C169)
1517 				t++;
1518 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1519 			    rev >= DC_REVISION_DM9102A)
1520 				t++;
1521 			return(t);
1522 		}
1523 		t++;
1524 	}
1525 
1526 	return(NULL);
1527 }
1528 
1529 /*
1530  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1531  * IDs against our list and return a device name if we find a match.
1532  * We do a little bit of extra work to identify the exact type of
1533  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1534  * but different revision IDs. The same is true for 98715/98715A
1535  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1536  * cases, the exact chip revision affects driver behavior.
1537  */
1538 static int dc_probe(dev)
1539 	device_t		dev;
1540 {
1541 	struct dc_type		*t;
1542 
1543 	t = dc_devtype(dev);
1544 
1545 	if (t != NULL) {
1546 		device_set_desc(dev, t->dc_name);
1547 		return(0);
1548 	}
1549 
1550 	return(ENXIO);
1551 }
1552 
1553 static void dc_acpi(dev)
1554 	device_t		dev;
1555 {
1556 	u_int32_t		r, cptr;
1557 	int			unit;
1558 
1559 	unit = device_get_unit(dev);
1560 
1561 	/* Find the location of the capabilities block */
1562 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1563 
1564 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1565 	if (r == 0x01) {
1566 
1567 		r = pci_read_config(dev, cptr + 4, 4);
1568 		if (r & DC_PSTATE_D3) {
1569 			u_int32_t		iobase, membase, irq;
1570 
1571 			/* Save important PCI config data. */
1572 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1573 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1574 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1575 
1576 			/* Reset the power state. */
1577 			printf("dc%d: chip is in D%d power mode "
1578 			    "-- setting to D0\n", unit, r & DC_PSTATE_D3);
1579 			r &= 0xFFFFFFFC;
1580 			pci_write_config(dev, cptr + 4, r, 4);
1581 
1582 			/* Restore PCI config data. */
1583 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1584 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1585 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1586 		}
1587 	}
1588 	return;
1589 }
1590 
1591 static void dc_apply_fixup(sc, media)
1592 	struct dc_softc		*sc;
1593 	int			media;
1594 {
1595 	struct dc_mediainfo	*m;
1596 	u_int8_t		*p;
1597 	int			i;
1598 	u_int32_t		reg;
1599 
1600 	m = sc->dc_mi;
1601 
1602 	while (m != NULL) {
1603 		if (m->dc_media == media)
1604 			break;
1605 		m = m->dc_next;
1606 	}
1607 
1608 	if (m == NULL)
1609 		return;
1610 
1611 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1612 		reg = (p[0] | (p[1] << 8)) << 16;
1613 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1614 	}
1615 
1616 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1617 		reg = (p[0] | (p[1] << 8)) << 16;
1618 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1619 	}
1620 
1621 	return;
1622 }
1623 
1624 static void dc_decode_leaf_sia(sc, l)
1625 	struct dc_softc		*sc;
1626 	struct dc_eblock_sia	*l;
1627 {
1628 	struct dc_mediainfo	*m;
1629 
1630 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1631 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1632 		m->dc_media = IFM_10_T;
1633 
1634 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1635 		m->dc_media = IFM_10_T|IFM_FDX;
1636 
1637 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1638 		m->dc_media = IFM_10_2;
1639 
1640 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1641 		m->dc_media = IFM_10_5;
1642 
1643 	m->dc_gp_len = 2;
1644 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1645 
1646 	m->dc_next = sc->dc_mi;
1647 	sc->dc_mi = m;
1648 
1649 	sc->dc_pmode = DC_PMODE_SIA;
1650 
1651 	return;
1652 }
1653 
1654 static void dc_decode_leaf_sym(sc, l)
1655 	struct dc_softc		*sc;
1656 	struct dc_eblock_sym	*l;
1657 {
1658 	struct dc_mediainfo	*m;
1659 
1660 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1661 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1662 		m->dc_media = IFM_100_TX;
1663 
1664 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1665 		m->dc_media = IFM_100_TX|IFM_FDX;
1666 
1667 	m->dc_gp_len = 2;
1668 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1669 
1670 	m->dc_next = sc->dc_mi;
1671 	sc->dc_mi = m;
1672 
1673 	sc->dc_pmode = DC_PMODE_SYM;
1674 
1675 	return;
1676 }
1677 
1678 static void dc_decode_leaf_mii(sc, l)
1679 	struct dc_softc		*sc;
1680 	struct dc_eblock_mii	*l;
1681 {
1682 	u_int8_t		*p;
1683 	struct dc_mediainfo	*m;
1684 
1685 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1686 	/* We abuse IFM_AUTO to represent MII. */
1687 	m->dc_media = IFM_AUTO;
1688 	m->dc_gp_len = l->dc_gpr_len;
1689 
1690 	p = (u_int8_t *)l;
1691 	p += sizeof(struct dc_eblock_mii);
1692 	m->dc_gp_ptr = p;
1693 	p += 2 * l->dc_gpr_len;
1694 	m->dc_reset_len = *p;
1695 	p++;
1696 	m->dc_reset_ptr = p;
1697 
1698 	m->dc_next = sc->dc_mi;
1699 	sc->dc_mi = m;
1700 
1701 	return;
1702 }
1703 
1704 static void dc_read_srom(sc, bits)
1705 	struct dc_softc		*sc;
1706 	int			bits;
1707 {
1708 	int size;
1709 
1710 	size = 2 << bits;
1711 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1712 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1713 }
1714 
1715 static void dc_parse_21143_srom(sc)
1716 	struct dc_softc		*sc;
1717 {
1718 	struct dc_leaf_hdr	*lhdr;
1719 	struct dc_eblock_hdr	*hdr;
1720 	int			i, loff;
1721 	char			*ptr;
1722 	int			have_mii;
1723 
1724 	have_mii = 0;
1725 	loff = sc->dc_srom[27];
1726 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1727 
1728 	ptr = (char *)lhdr;
1729 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1730 	/*
1731 	 * Look if we got a MII media block.
1732 	 */
1733 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1734 		hdr = (struct dc_eblock_hdr *)ptr;
1735 		if (hdr->dc_type == DC_EBLOCK_MII)
1736 		    have_mii++;
1737 
1738 		ptr += (hdr->dc_len & 0x7F);
1739 		ptr++;
1740 	}
1741 
1742 	/*
1743 	 * Do the same thing again. Only use SIA and SYM media
1744 	 * blocks if no MII media block is available.
1745 	 */
1746 	ptr = (char *)lhdr;
1747 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1748 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1749 		hdr = (struct dc_eblock_hdr *)ptr;
1750 		switch(hdr->dc_type) {
1751 		case DC_EBLOCK_MII:
1752 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1753 			break;
1754 		case DC_EBLOCK_SIA:
1755 			if (! have_mii)
1756 				dc_decode_leaf_sia(sc,
1757 				    (struct dc_eblock_sia *)hdr);
1758 			break;
1759 		case DC_EBLOCK_SYM:
1760 			if (! have_mii)
1761 				dc_decode_leaf_sym(sc,
1762 				    (struct dc_eblock_sym *)hdr);
1763 			break;
1764 		default:
1765 			/* Don't care. Yet. */
1766 			break;
1767 		}
1768 		ptr += (hdr->dc_len & 0x7F);
1769 		ptr++;
1770 	}
1771 
1772 	return;
1773 }
1774 
1775 /*
1776  * Attach the interface. Allocate softc structures, do ifmedia
1777  * setup and ethernet/BPF attach.
1778  */
1779 static int dc_attach(dev)
1780 	device_t		dev;
1781 {
1782 	int			s, tmp = 0;
1783 	u_char			eaddr[ETHER_ADDR_LEN];
1784 	u_int32_t		command;
1785 	struct dc_softc		*sc;
1786 	struct ifnet		*ifp;
1787 	u_int32_t		revision;
1788 	int			unit, error = 0, rid, mac_offset;
1789 
1790 	s = splimp();
1791 
1792 	sc = device_get_softc(dev);
1793 	unit = device_get_unit(dev);
1794 	bzero(sc, sizeof(struct dc_softc));
1795 
1796 	/*
1797 	 * Handle power management nonsense.
1798 	 */
1799 	dc_acpi(dev);
1800 
1801 	/*
1802 	 * Map control/status registers.
1803 	 */
1804 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1805 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1806 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1807 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1808 
1809 #ifdef DC_USEIOSPACE
1810 	if (!(command & PCIM_CMD_PORTEN)) {
1811 		printf("dc%d: failed to enable I/O ports!\n", unit);
1812 		error = ENXIO;
1813 		goto fail;
1814 	}
1815 #else
1816 	if (!(command & PCIM_CMD_MEMEN)) {
1817 		printf("dc%d: failed to enable memory mapping!\n", unit);
1818 		error = ENXIO;
1819 		goto fail;
1820 	}
1821 #endif
1822 
1823 	rid = DC_RID;
1824 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1825 	    0, ~0, 1, RF_ACTIVE);
1826 
1827 	if (sc->dc_res == NULL) {
1828 		printf("dc%d: couldn't map ports/memory\n", unit);
1829 		error = ENXIO;
1830 		goto fail;
1831 	}
1832 
1833 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1834 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1835 
1836 	/* Allocate interrupt */
1837 	rid = 0;
1838 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1839 	    RF_SHAREABLE | RF_ACTIVE);
1840 
1841 	if (sc->dc_irq == NULL) {
1842 		printf("dc%d: couldn't map interrupt\n", unit);
1843 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1844 		error = ENXIO;
1845 		goto fail;
1846 	}
1847 
1848 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1849 	    dc_intr, sc, &sc->dc_intrhand);
1850 
1851 	if (error) {
1852 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1853 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1854 		printf("dc%d: couldn't set up irq\n", unit);
1855 		goto fail;
1856 	}
1857 
1858 	/* Need this info to decide on a chip type. */
1859 	sc->dc_info = dc_devtype(dev);
1860 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1861 
1862 	/* Get the eeprom width, but PNIC has diff eeprom */
1863 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1864 		dc_eeprom_width(sc);
1865 
1866 	switch(sc->dc_info->dc_did) {
1867 	case DC_DEVICEID_21143:
1868 		sc->dc_type = DC_TYPE_21143;
1869 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1870 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1871 		/* Save EEPROM contents so we can parse them later. */
1872 		dc_read_srom(sc, sc->dc_romwidth);
1873 		break;
1874 	case DC_DEVICEID_DM9009:
1875 	case DC_DEVICEID_DM9100:
1876 	case DC_DEVICEID_DM9102:
1877 		sc->dc_type = DC_TYPE_DM9102;
1878 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1879 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1880 		sc->dc_pmode = DC_PMODE_MII;
1881 		/* Increase the latency timer value. */
1882 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1883 		command &= 0xFFFF00FF;
1884 		command |= 0x00008000;
1885 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1886 		break;
1887 	case DC_DEVICEID_AL981:
1888 		sc->dc_type = DC_TYPE_AL981;
1889 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1890 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1891 		sc->dc_pmode = DC_PMODE_MII;
1892 		dc_read_srom(sc, sc->dc_romwidth);
1893 		break;
1894 	case DC_DEVICEID_AN985:
1895 	case DC_DEVICEID_EN2242:
1896 	case DC_DEVICEID_3CSOHOB:
1897 		sc->dc_type = DC_TYPE_AN985;
1898 		sc->dc_flags |= DC_64BIT_HASH;
1899 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1900 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1901 		sc->dc_pmode = DC_PMODE_MII;
1902 		dc_read_srom(sc, sc->dc_romwidth);
1903 		break;
1904 	case DC_DEVICEID_98713:
1905 	case DC_DEVICEID_98713_CP:
1906 		if (revision < DC_REVISION_98713A) {
1907 			sc->dc_type = DC_TYPE_98713;
1908 		}
1909 		if (revision >= DC_REVISION_98713A) {
1910 			sc->dc_type = DC_TYPE_98713A;
1911 			sc->dc_flags |= DC_21143_NWAY;
1912 		}
1913 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1914 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1915 		break;
1916 	case DC_DEVICEID_987x5:
1917 	case DC_DEVICEID_EN1217:
1918 		/*
1919 		 * Macronix MX98715AEC-C/D/E parts have only a
1920 		 * 128-bit hash table. We need to deal with these
1921 		 * in the same manner as the PNIC II so that we
1922 		 * get the right number of bits out of the
1923 		 * CRC routine.
1924 		 */
1925 		if (revision >= DC_REVISION_98715AEC_C &&
1926 		    revision < DC_REVISION_98725)
1927 			sc->dc_flags |= DC_128BIT_HASH;
1928 		sc->dc_type = DC_TYPE_987x5;
1929 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1930 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1931 		break;
1932 	case DC_DEVICEID_98727:
1933 		sc->dc_type = DC_TYPE_987x5;
1934 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1935 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1936 		break;
1937 	case DC_DEVICEID_82C115:
1938 		sc->dc_type = DC_TYPE_PNICII;
1939 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1940 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1941 		break;
1942 	case DC_DEVICEID_82C168:
1943 		sc->dc_type = DC_TYPE_PNIC;
1944 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1945 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1946 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1947 		if (revision < DC_REVISION_82C169)
1948 			sc->dc_pmode = DC_PMODE_SYM;
1949 		break;
1950 	case DC_DEVICEID_AX88140A:
1951 		sc->dc_type = DC_TYPE_ASIX;
1952 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1953 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1954 		sc->dc_pmode = DC_PMODE_MII;
1955 		break;
1956 	case DC_DEVICEID_RS7112:
1957 		sc->dc_type = DC_TYPE_CONEXANT;
1958 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1959 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1960 		sc->dc_pmode = DC_PMODE_MII;
1961 		dc_read_srom(sc, sc->dc_romwidth);
1962 		break;
1963 	default:
1964 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1965 		    sc->dc_info->dc_did);
1966 		break;
1967 	}
1968 
1969 	/* Save the cache line size. */
1970 	if (DC_IS_DAVICOM(sc))
1971 		sc->dc_cachesize = 0;
1972 	else
1973 		sc->dc_cachesize = pci_read_config(dev,
1974 		    DC_PCI_CFLT, 4) & 0xFF;
1975 
1976 	/* Reset the adapter. */
1977 	dc_reset(sc);
1978 
1979 	/* Take 21143 out of snooze mode */
1980 	if (DC_IS_INTEL(sc)) {
1981 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1982 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1983 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1984 	}
1985 
1986 	/*
1987 	 * Try to learn something about the supported media.
1988 	 * We know that ASIX and ADMtek and Davicom devices
1989 	 * will *always* be using MII media, so that's a no-brainer.
1990 	 * The tricky ones are the Macronix/PNIC II and the
1991 	 * Intel 21143.
1992 	 */
1993 	if (DC_IS_INTEL(sc))
1994 		dc_parse_21143_srom(sc);
1995 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1996 		if (sc->dc_type == DC_TYPE_98713)
1997 			sc->dc_pmode = DC_PMODE_MII;
1998 		else
1999 			sc->dc_pmode = DC_PMODE_SYM;
2000 	} else if (!sc->dc_pmode)
2001 		sc->dc_pmode = DC_PMODE_MII;
2002 
2003 	/*
2004 	 * Get station address from the EEPROM.
2005 	 */
2006 	switch(sc->dc_type) {
2007 	case DC_TYPE_98713:
2008 	case DC_TYPE_98713A:
2009 	case DC_TYPE_987x5:
2010 	case DC_TYPE_PNICII:
2011 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2012 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2013 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2014 		break;
2015 	case DC_TYPE_PNIC:
2016 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2017 		break;
2018 	case DC_TYPE_DM9102:
2019 	case DC_TYPE_21143:
2020 	case DC_TYPE_ASIX:
2021 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2022 		break;
2023 	case DC_TYPE_AL981:
2024 	case DC_TYPE_AN985:
2025 		bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr,
2026 		    ETHER_ADDR_LEN);
2027 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
2028 		break;
2029 	case DC_TYPE_CONEXANT:
2030 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2031 		break;
2032 	default:
2033 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2034 		break;
2035 	}
2036 
2037 	/*
2038 	 * A 21143 or clone chip was detected. Inform the world.
2039 	 */
2040 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
2041 
2042 	sc->dc_unit = unit;
2043 
2044 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2045 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2046 
2047 	if (sc->dc_ldata == NULL) {
2048 		printf("dc%d: no memory for list buffers!\n", unit);
2049 		if (sc->dc_pnic_rx_buf != NULL)
2050 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2051 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2052 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2053 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2054 		error = ENXIO;
2055 		goto fail;
2056 	}
2057 
2058 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2059 
2060 	ifp = &sc->arpcom.ac_if;
2061 	ifp->if_softc = sc;
2062 	if_initname(ifp, "dc", unit);
2063 	ifp->if_mtu = ETHERMTU;
2064 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2065 	ifp->if_ioctl = dc_ioctl;
2066 	ifp->if_output = ether_output;
2067 	ifp->if_start = dc_start;
2068 	ifp->if_watchdog = dc_watchdog;
2069 	ifp->if_init = dc_init;
2070 	ifp->if_baudrate = 10000000;
2071 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2072 
2073 	/*
2074 	 * Do MII setup. If this is a 21143, check for a PHY on the
2075 	 * MII bus after applying any necessary fixups to twiddle the
2076 	 * GPIO bits. If we don't end up finding a PHY, restore the
2077 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2078 	 * driver instead.
2079 	 */
2080 	if (DC_IS_INTEL(sc)) {
2081 		dc_apply_fixup(sc, IFM_AUTO);
2082 		tmp = sc->dc_pmode;
2083 		sc->dc_pmode = DC_PMODE_MII;
2084 	}
2085 
2086 	error = mii_phy_probe(dev, &sc->dc_miibus,
2087 	    dc_ifmedia_upd, dc_ifmedia_sts);
2088 
2089 	if (error && DC_IS_INTEL(sc)) {
2090 		sc->dc_pmode = tmp;
2091 		if (sc->dc_pmode != DC_PMODE_SIA)
2092 			sc->dc_pmode = DC_PMODE_SYM;
2093 		sc->dc_flags |= DC_21143_NWAY;
2094 		mii_phy_probe(dev, &sc->dc_miibus,
2095 		    dc_ifmedia_upd, dc_ifmedia_sts);
2096 		/*
2097 		 * For non-MII cards, we need to have the 21143
2098 		 * drive the LEDs. Except there are some systems
2099 		 * like the NEC VersaPro NoteBook PC which have no
2100 		 * LEDs, and twiddling these bits has adverse effects
2101 		 * on them. (I.e. you suddenly can't get a link.)
2102 		 */
2103 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2104 			sc->dc_flags |= DC_TULIP_LEDS;
2105 		error = 0;
2106 	}
2107 
2108 	if (error) {
2109 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2110 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data),
2111 		    M_DEVBUF);
2112 		if (sc->dc_pnic_rx_buf != NULL)
2113 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2114 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2115 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2116 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2117 		error = ENXIO;
2118 		goto fail;
2119 	}
2120 
2121 	/*
2122 	 * Call MI attach routine.
2123 	 */
2124 	ether_ifattach(ifp, eaddr);
2125 	callout_handle_init(&sc->dc_stat_ch);
2126 
2127 	if (DC_IS_ADMTEK(sc)) {
2128 		/*
2129 		 * Set automatic TX underrun recovery for the ADMtek chips
2130 		 */
2131 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2132 	}
2133 
2134 	/*
2135 	 * Tell the upper layer(s) we support long frames.
2136 	 */
2137 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2138 
2139 #ifdef SRM_MEDIA
2140         sc->dc_srm_media = 0;
2141 
2142 	/* Remember the SRM console media setting */
2143 	if (DC_IS_INTEL(sc)) {
2144 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2145 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2146 		switch ((command >> 8) & 0xff) {
2147 		case 3:
2148 			sc->dc_srm_media = IFM_10_T;
2149 			break;
2150 		case 4:
2151 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2152 			break;
2153 		case 5:
2154 			sc->dc_srm_media = IFM_100_TX;
2155 			break;
2156 		case 6:
2157 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2158 			break;
2159 		}
2160 		if (sc->dc_srm_media)
2161 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2162 	}
2163 #endif
2164 
2165 
2166 fail:
2167 	splx(s);
2168 
2169 	return(error);
2170 }
2171 
2172 static int dc_detach(dev)
2173 	device_t		dev;
2174 {
2175 	struct dc_softc		*sc;
2176 	struct ifnet		*ifp;
2177 	int			s;
2178 	struct dc_mediainfo	*m;
2179 
2180 	s = splimp();
2181 
2182 	sc = device_get_softc(dev);
2183 	ifp = &sc->arpcom.ac_if;
2184 
2185 	dc_stop(sc);
2186 	ether_ifdetach(ifp);
2187 
2188 	bus_generic_detach(dev);
2189 	device_delete_child(dev, sc->dc_miibus);
2190 
2191 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2192 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2193 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2194 
2195 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2196 	if (sc->dc_pnic_rx_buf != NULL)
2197 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2198 
2199 	while(sc->dc_mi != NULL) {
2200 		m = sc->dc_mi->dc_next;
2201 		free(sc->dc_mi, M_DEVBUF);
2202 		sc->dc_mi = m;
2203 	}
2204 	free(sc->dc_srom, M_DEVBUF);
2205 
2206 	splx(s);
2207 
2208 	return(0);
2209 }
2210 
2211 /*
2212  * Initialize the transmit descriptors.
2213  */
2214 static int dc_list_tx_init(sc)
2215 	struct dc_softc		*sc;
2216 {
2217 	struct dc_chain_data	*cd;
2218 	struct dc_list_data	*ld;
2219 	int			i;
2220 
2221 	cd = &sc->dc_cdata;
2222 	ld = sc->dc_ldata;
2223 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2224 		if (i == (DC_TX_LIST_CNT - 1)) {
2225 			ld->dc_tx_list[i].dc_next =
2226 			    vtophys(&ld->dc_tx_list[0]);
2227 		} else {
2228 			ld->dc_tx_list[i].dc_next =
2229 			    vtophys(&ld->dc_tx_list[i + 1]);
2230 		}
2231 		cd->dc_tx_chain[i] = NULL;
2232 		ld->dc_tx_list[i].dc_data = 0;
2233 		ld->dc_tx_list[i].dc_ctl = 0;
2234 	}
2235 
2236 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2237 
2238 	return(0);
2239 }
2240 
2241 
2242 /*
2243  * Initialize the RX descriptors and allocate mbufs for them. Note that
2244  * we arrange the descriptors in a closed ring, so that the last descriptor
2245  * points back to the first.
2246  */
2247 static int dc_list_rx_init(sc)
2248 	struct dc_softc		*sc;
2249 {
2250 	struct dc_chain_data	*cd;
2251 	struct dc_list_data	*ld;
2252 	int			i;
2253 
2254 	cd = &sc->dc_cdata;
2255 	ld = sc->dc_ldata;
2256 
2257 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2258 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2259 			return(ENOBUFS);
2260 		if (i == (DC_RX_LIST_CNT - 1)) {
2261 			ld->dc_rx_list[i].dc_next =
2262 			    vtophys(&ld->dc_rx_list[0]);
2263 		} else {
2264 			ld->dc_rx_list[i].dc_next =
2265 			    vtophys(&ld->dc_rx_list[i + 1]);
2266 		}
2267 	}
2268 
2269 	cd->dc_rx_prod = 0;
2270 
2271 	return(0);
2272 }
2273 
2274 /*
2275  * Initialize an RX descriptor and attach an MBUF cluster.
2276  */
2277 static int dc_newbuf(sc, i, m)
2278 	struct dc_softc		*sc;
2279 	int			i;
2280 	struct mbuf		*m;
2281 {
2282 	struct mbuf		*m_new = NULL;
2283 	struct dc_desc		*c;
2284 
2285 	c = &sc->dc_ldata->dc_rx_list[i];
2286 
2287 	if (m == NULL) {
2288 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
2289 		if (m_new == NULL)
2290 			return(ENOBUFS);
2291 
2292 		MCLGET(m_new, M_DONTWAIT);
2293 		if (!(m_new->m_flags & M_EXT)) {
2294 			m_freem(m_new);
2295 			return(ENOBUFS);
2296 		}
2297 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2298 	} else {
2299 		m_new = m;
2300 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2301 		m_new->m_data = m_new->m_ext.ext_buf;
2302 	}
2303 
2304 	m_adj(m_new, sizeof(u_int64_t));
2305 
2306 	/*
2307 	 * If this is a PNIC chip, zero the buffer. This is part
2308 	 * of the workaround for the receive bug in the 82c168 and
2309 	 * 82c169 chips.
2310 	 */
2311 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2312 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2313 
2314 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2315 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2316 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2317 	c->dc_status = DC_RXSTAT_OWN;
2318 
2319 	return(0);
2320 }
2321 
2322 /*
2323  * Grrrrr.
2324  * The PNIC chip has a terrible bug in it that manifests itself during
2325  * periods of heavy activity. The exact mode of failure if difficult to
2326  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2327  * will happen on slow machines. The bug is that sometimes instead of
2328  * uploading one complete frame during reception, it uploads what looks
2329  * like the entire contents of its FIFO memory. The frame we want is at
2330  * the end of the whole mess, but we never know exactly how much data has
2331  * been uploaded, so salvaging the frame is hard.
2332  *
2333  * There is only one way to do it reliably, and it's disgusting.
2334  * Here's what we know:
2335  *
2336  * - We know there will always be somewhere between one and three extra
2337  *   descriptors uploaded.
2338  *
2339  * - We know the desired received frame will always be at the end of the
2340  *   total data upload.
2341  *
2342  * - We know the size of the desired received frame because it will be
2343  *   provided in the length field of the status word in the last descriptor.
2344  *
2345  * Here's what we do:
2346  *
2347  * - When we allocate buffers for the receive ring, we bzero() them.
2348  *   This means that we know that the buffer contents should be all
2349  *   zeros, except for data uploaded by the chip.
2350  *
2351  * - We also force the PNIC chip to upload frames that include the
2352  *   ethernet CRC at the end.
2353  *
2354  * - We gather all of the bogus frame data into a single buffer.
2355  *
2356  * - We then position a pointer at the end of this buffer and scan
2357  *   backwards until we encounter the first non-zero byte of data.
2358  *   This is the end of the received frame. We know we will encounter
2359  *   some data at the end of the frame because the CRC will always be
2360  *   there, so even if the sender transmits a packet of all zeros,
2361  *   we won't be fooled.
2362  *
2363  * - We know the size of the actual received frame, so we subtract
2364  *   that value from the current pointer location. This brings us
2365  *   to the start of the actual received packet.
2366  *
2367  * - We copy this into an mbuf and pass it on, along with the actual
2368  *   frame length.
2369  *
2370  * The performance hit is tremendous, but it beats dropping frames all
2371  * the time.
2372  */
2373 
2374 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2375 static void dc_pnic_rx_bug_war(sc, idx)
2376 	struct dc_softc		*sc;
2377 	int			idx;
2378 {
2379 	struct dc_desc		*cur_rx;
2380 	struct dc_desc		*c = NULL;
2381 	struct mbuf		*m = NULL;
2382 	unsigned char		*ptr;
2383 	int			i, total_len;
2384 	u_int32_t		rxstat = 0;
2385 
2386 	i = sc->dc_pnic_rx_bug_save;
2387 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2388 	ptr = sc->dc_pnic_rx_buf;
2389 	bzero(ptr, DC_RXLEN * 5);
2390 
2391 	/* Copy all the bytes from the bogus buffers. */
2392 	while (1) {
2393 		c = &sc->dc_ldata->dc_rx_list[i];
2394 		rxstat = c->dc_status;
2395 		m = sc->dc_cdata.dc_rx_chain[i];
2396 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2397 		ptr += DC_RXLEN;
2398 		/* If this is the last buffer, break out. */
2399 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2400 			break;
2401 		dc_newbuf(sc, i, m);
2402 		DC_INC(i, DC_RX_LIST_CNT);
2403 	}
2404 
2405 	/* Find the length of the actual receive frame. */
2406 	total_len = DC_RXBYTES(rxstat);
2407 
2408 	/* Scan backwards until we hit a non-zero byte. */
2409 	while(*ptr == 0x00)
2410 		ptr--;
2411 
2412 	/* Round off. */
2413 	if ((uintptr_t)(ptr) & 0x3)
2414 		ptr -= 1;
2415 
2416 	/* Now find the start of the frame. */
2417 	ptr -= total_len;
2418 	if (ptr < sc->dc_pnic_rx_buf)
2419 		ptr = sc->dc_pnic_rx_buf;
2420 
2421 	/*
2422 	 * Now copy the salvaged frame to the last mbuf and fake up
2423 	 * the status word to make it look like a successful
2424  	 * frame reception.
2425 	 */
2426 	dc_newbuf(sc, i, m);
2427 	bcopy(ptr, mtod(m, char *), total_len);
2428 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2429 
2430 	return;
2431 }
2432 
2433 /*
2434  * This routine searches the RX ring for dirty descriptors in the
2435  * event that the rxeof routine falls out of sync with the chip's
2436  * current descriptor pointer. This may happen sometimes as a result
2437  * of a "no RX buffer available" condition that happens when the chip
2438  * consumes all of the RX buffers before the driver has a chance to
2439  * process the RX ring. This routine may need to be called more than
2440  * once to bring the driver back in sync with the chip, however we
2441  * should still be getting RX DONE interrupts to drive the search
2442  * for new packets in the RX ring, so we should catch up eventually.
2443  */
2444 static int dc_rx_resync(sc)
2445 	struct dc_softc		*sc;
2446 {
2447 	int			i, pos;
2448 	struct dc_desc		*cur_rx;
2449 
2450 	pos = sc->dc_cdata.dc_rx_prod;
2451 
2452 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2453 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2454 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2455 			break;
2456 		DC_INC(pos, DC_RX_LIST_CNT);
2457 	}
2458 
2459 	/* If the ring really is empty, then just return. */
2460 	if (i == DC_RX_LIST_CNT)
2461 		return(0);
2462 
2463 	/* We've fallen behing the chip: catch it. */
2464 	sc->dc_cdata.dc_rx_prod = pos;
2465 
2466 	return(EAGAIN);
2467 }
2468 
2469 /*
2470  * A frame has been uploaded: pass the resulting mbuf chain up to
2471  * the higher level protocols.
2472  */
2473 static void dc_rxeof(sc)
2474 	struct dc_softc		*sc;
2475 {
2476         struct ether_header	*eh;
2477         struct mbuf		*m;
2478         struct ifnet		*ifp;
2479 	struct dc_desc		*cur_rx;
2480 	int			i, total_len = 0;
2481 	u_int32_t		rxstat;
2482 
2483 	ifp = &sc->arpcom.ac_if;
2484 	i = sc->dc_cdata.dc_rx_prod;
2485 
2486 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2487 
2488 #ifdef DEVICE_POLLING
2489 		if (ifp->if_ipending & IFF_POLLING) {
2490 			if (sc->rxcycles <= 0)
2491 				break;
2492 			sc->rxcycles--;
2493 		}
2494 #endif /* DEVICE_POLLING */
2495 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2496 		rxstat = cur_rx->dc_status;
2497 		m = sc->dc_cdata.dc_rx_chain[i];
2498 		total_len = DC_RXBYTES(rxstat);
2499 
2500 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2501 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2502 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2503 					sc->dc_pnic_rx_bug_save = i;
2504 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2505 					DC_INC(i, DC_RX_LIST_CNT);
2506 					continue;
2507 				}
2508 				dc_pnic_rx_bug_war(sc, i);
2509 				rxstat = cur_rx->dc_status;
2510 				total_len = DC_RXBYTES(rxstat);
2511 			}
2512 		}
2513 
2514 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2515 
2516 		/*
2517 		 * If an error occurs, update stats, clear the
2518 		 * status word and leave the mbuf cluster in place:
2519 		 * it should simply get re-used next time this descriptor
2520 		 * comes up in the ring.  However, don't report long
2521 		 * frames as errors since they could be vlans
2522 		 */
2523 		if ((rxstat & DC_RXSTAT_RXERR)){
2524 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2525 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2526 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2527 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2528 				ifp->if_ierrors++;
2529 				if (rxstat & DC_RXSTAT_COLLSEEN)
2530 					ifp->if_collisions++;
2531 				dc_newbuf(sc, i, m);
2532 				if (rxstat & DC_RXSTAT_CRCERR) {
2533 					DC_INC(i, DC_RX_LIST_CNT);
2534 					continue;
2535 				} else {
2536 					dc_init(sc);
2537 					return;
2538 				}
2539 			}
2540 		}
2541 
2542 		/* No errors; receive the packet. */
2543 		total_len -= ETHER_CRC_LEN;
2544 
2545 #ifdef __i386__
2546 		/*
2547 		 * On the x86 we do not have alignment problems, so try to
2548 		 * allocate a new buffer for the receive ring, and pass up
2549 		 * the one where the packet is already, saving the expensive
2550 		 * copy done in m_devget().
2551 		 * If we are on an architecture with alignment problems, or
2552 		 * if the allocation fails, then use m_devget and leave the
2553 		 * existing buffer in the receive ring.
2554 		 */
2555 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2556 			m->m_pkthdr.rcvif = ifp;
2557 			m->m_pkthdr.len = m->m_len = total_len;
2558 			DC_INC(i, DC_RX_LIST_CNT);
2559 		} else
2560 #endif
2561 		{
2562 			struct mbuf *m0;
2563 
2564 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2565 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2566 			dc_newbuf(sc, i, m);
2567 			DC_INC(i, DC_RX_LIST_CNT);
2568 			if (m0 == NULL) {
2569 				ifp->if_ierrors++;
2570 				continue;
2571 			}
2572 			m_adj(m0, ETHER_ALIGN);
2573 			m = m0;
2574 		}
2575 
2576 		ifp->if_ipackets++;
2577 		eh = mtod(m, struct ether_header *);
2578 
2579 		/* Remove header from mbuf and pass it on. */
2580 		m_adj(m, sizeof(struct ether_header));
2581 		ether_input(ifp, eh, m);
2582 	}
2583 
2584 	sc->dc_cdata.dc_rx_prod = i;
2585 }
2586 
2587 /*
2588  * A frame was downloaded to the chip. It's safe for us to clean up
2589  * the list buffers.
2590  */
2591 
2592 static void
2593 dc_txeof(sc)
2594 	struct dc_softc		*sc;
2595 {
2596 	struct dc_desc		*cur_tx = NULL;
2597 	struct ifnet		*ifp;
2598 	int			idx;
2599 
2600 	ifp = &sc->arpcom.ac_if;
2601 
2602 	/*
2603 	 * Go through our tx list and free mbufs for those
2604 	 * frames that have been transmitted.
2605 	 */
2606 	idx = sc->dc_cdata.dc_tx_cons;
2607 	while(idx != sc->dc_cdata.dc_tx_prod) {
2608 		u_int32_t		txstat;
2609 
2610 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2611 		txstat = cur_tx->dc_status;
2612 
2613 		if (txstat & DC_TXSTAT_OWN)
2614 			break;
2615 
2616 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2617 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2618 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2619 				/*
2620 				 * Yes, the PNIC is so brain damaged
2621 				 * that it will sometimes generate a TX
2622 				 * underrun error while DMAing the RX
2623 				 * filter setup frame. If we detect this,
2624 				 * we have to send the setup frame again,
2625 				 * or else the filter won't be programmed
2626 				 * correctly.
2627 				 */
2628 				if (DC_IS_PNIC(sc)) {
2629 					if (txstat & DC_TXSTAT_ERRSUM)
2630 						dc_setfilt(sc);
2631 				}
2632 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2633 			}
2634 			sc->dc_cdata.dc_tx_cnt--;
2635 			DC_INC(idx, DC_TX_LIST_CNT);
2636 			continue;
2637 		}
2638 
2639 		if (DC_IS_CONEXANT(sc)) {
2640 			/*
2641 			 * For some reason Conexant chips like
2642 			 * setting the CARRLOST flag even when
2643 			 * the carrier is there. In CURRENT we
2644 			 * have the same problem for Xircom
2645 			 * cards !
2646 			 */
2647 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2648 			    sc->dc_pmode == DC_PMODE_MII &&
2649 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2650 			    DC_TXSTAT_NOCARRIER)))
2651 				txstat &= ~DC_TXSTAT_ERRSUM;
2652 		} else {
2653 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2654 			    sc->dc_pmode == DC_PMODE_MII &&
2655 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2656 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2657 				txstat &= ~DC_TXSTAT_ERRSUM;
2658 		}
2659 
2660 		if (txstat & DC_TXSTAT_ERRSUM) {
2661 			ifp->if_oerrors++;
2662 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2663 				ifp->if_collisions++;
2664 			if (txstat & DC_TXSTAT_LATECOLL)
2665 				ifp->if_collisions++;
2666 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2667 				dc_init(sc);
2668 				return;
2669 			}
2670 		}
2671 
2672 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2673 
2674 		ifp->if_opackets++;
2675 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2676 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2677 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2678 		}
2679 
2680 		sc->dc_cdata.dc_tx_cnt--;
2681 		DC_INC(idx, DC_TX_LIST_CNT);
2682 	}
2683 
2684 	if (idx != sc->dc_cdata.dc_tx_cons) {
2685 	    	/* some buffers have been freed */
2686 		sc->dc_cdata.dc_tx_cons = idx;
2687 		ifp->if_flags &= ~IFF_OACTIVE;
2688 	}
2689 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2690 
2691 	return;
2692 }
2693 
2694 static void dc_tick(xsc)
2695 	void			*xsc;
2696 {
2697 	struct dc_softc		*sc;
2698 	struct mii_data		*mii;
2699 	struct ifnet		*ifp;
2700 	int			s;
2701 	u_int32_t		r;
2702 
2703 	s = splimp();
2704 
2705 	sc = xsc;
2706 	ifp = &sc->arpcom.ac_if;
2707 	mii = device_get_softc(sc->dc_miibus);
2708 
2709 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2710 		if (sc->dc_flags & DC_21143_NWAY) {
2711 			r = CSR_READ_4(sc, DC_10BTSTAT);
2712 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2713 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2714 				sc->dc_link = 0;
2715 				mii_mediachg(mii);
2716 			}
2717 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2718 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2719 				sc->dc_link = 0;
2720 				mii_mediachg(mii);
2721 			}
2722 			if (sc->dc_link == 0)
2723 				mii_tick(mii);
2724 		} else {
2725 			r = CSR_READ_4(sc, DC_ISR);
2726 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2727 			    sc->dc_cdata.dc_tx_cnt == 0)
2728 				mii_tick(mii);
2729 				if (!(mii->mii_media_status & IFM_ACTIVE))
2730 					sc->dc_link = 0;
2731 		}
2732 	} else
2733 		mii_tick(mii);
2734 
2735 	/*
2736 	 * When the init routine completes, we expect to be able to send
2737 	 * packets right away, and in fact the network code will send a
2738 	 * gratuitous ARP the moment the init routine marks the interface
2739 	 * as running. However, even though the MAC may have been initialized,
2740 	 * there may be a delay of a few seconds before the PHY completes
2741 	 * autonegotiation and the link is brought up. Any transmissions
2742 	 * made during that delay will be lost. Dealing with this is tricky:
2743 	 * we can't just pause in the init routine while waiting for the
2744 	 * PHY to come ready since that would bring the whole system to
2745 	 * a screeching halt for several seconds.
2746 	 *
2747 	 * What we do here is prevent the TX start routine from sending
2748 	 * any packets until a link has been established. After the
2749 	 * interface has been initialized, the tick routine will poll
2750 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2751 	 * that time, packets will stay in the send queue, and once the
2752 	 * link comes up, they will be flushed out to the wire.
2753 	 */
2754 	if (!sc->dc_link) {
2755 		mii_pollstat(mii);
2756 		if (mii->mii_media_status & IFM_ACTIVE &&
2757 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2758 			sc->dc_link++;
2759 			if (ifp->if_snd.ifq_head != NULL)
2760 				dc_start(ifp);
2761 		}
2762 	}
2763 
2764 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2765 		sc->dc_stat_ch = timeout(dc_tick, sc, hz/10);
2766 	else
2767 		sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2768 
2769 	splx(s);
2770 
2771 	return;
2772 }
2773 
2774 /*
2775  * A transmit underrun has occurred.  Back off the transmit threshold,
2776  * or switch to store and forward mode if we have to.
2777  */
2778 static void dc_tx_underrun(sc)
2779 	struct dc_softc		*sc;
2780 {
2781 	u_int32_t		isr;
2782 	int			i;
2783 
2784 	if (DC_IS_DAVICOM(sc))
2785 		dc_init(sc);
2786 
2787 	if (DC_IS_INTEL(sc)) {
2788 		/*
2789 		 * The real 21143 requires that the transmitter be idle
2790 		 * in order to change the transmit threshold or store
2791 		 * and forward state.
2792 		 */
2793 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2794 
2795 		for (i = 0; i < DC_TIMEOUT; i++) {
2796 			isr = CSR_READ_4(sc, DC_ISR);
2797 			if (isr & DC_ISR_TX_IDLE)
2798 				break;
2799 			DELAY(10);
2800 		}
2801 		if (i == DC_TIMEOUT) {
2802 			printf("dc%d: failed to force tx to idle state\n",
2803 			    sc->dc_unit);
2804 			dc_init(sc);
2805 		}
2806 	}
2807 
2808 	printf("dc%d: TX underrun -- ", sc->dc_unit);
2809 	sc->dc_txthresh += DC_TXTHRESH_INC;
2810 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2811 		printf("using store and forward mode\n");
2812 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2813 	} else {
2814 		printf("increasing TX threshold\n");
2815 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2816 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2817 	}
2818 
2819 	if (DC_IS_INTEL(sc))
2820 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2821 
2822 	return;
2823 }
2824 
2825 #ifdef DEVICE_POLLING
2826 static poll_handler_t dc_poll;
2827 
2828 static void
2829 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2830 {
2831 	struct	dc_softc *sc = ifp->if_softc;
2832 
2833 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
2834 		/* Re-enable interrupts. */
2835 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2836 		return;
2837 	}
2838 	sc->rxcycles = count;
2839 	dc_rxeof(sc);
2840 	dc_txeof(sc);
2841 	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
2842 		dc_start(ifp);
2843 
2844 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2845 		u_int32_t          status;
2846 
2847 		status = CSR_READ_4(sc, DC_ISR);
2848 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2849 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2850 			DC_ISR_BUS_ERR);
2851 		if (!status)
2852 			return ;
2853 		/* ack what we have */
2854 		CSR_WRITE_4(sc, DC_ISR, status);
2855 
2856 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2857 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2858 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2859 
2860 			if (dc_rx_resync(sc))
2861 				dc_rxeof(sc);
2862 		}
2863 		/* restart transmit unit if necessary */
2864 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2865 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2866 
2867 		if (status & DC_ISR_TX_UNDERRUN)
2868 			dc_tx_underrun(sc);
2869 
2870 		if (status & DC_ISR_BUS_ERR) {
2871 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
2872 			dc_reset(sc);
2873 			dc_init(sc);
2874 		}
2875 	}
2876 }
2877 #endif /* DEVICE_POLLING */
2878 
2879 static void dc_intr(arg)
2880 	void			*arg;
2881 {
2882 	struct dc_softc		*sc;
2883 	struct ifnet		*ifp;
2884 	u_int32_t		status;
2885 
2886 	sc = arg;
2887 
2888 	if (sc->suspended) {
2889 		return;
2890 	}
2891 
2892 	ifp = &sc->arpcom.ac_if;
2893 
2894 #ifdef DEVICE_POLLING
2895 	if (ifp->if_ipending & IFF_POLLING)
2896 		return;
2897 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
2898 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2899 		return;
2900 	}
2901 #endif /* DEVICE_POLLING */
2902 
2903 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2904 		return ;
2905 
2906 	/* Suppress unwanted interrupts */
2907 	if (!(ifp->if_flags & IFF_UP)) {
2908 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2909 			dc_stop(sc);
2910 		return;
2911 	}
2912 
2913 	/* Disable interrupts. */
2914 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2915 
2916 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2917 
2918 		CSR_WRITE_4(sc, DC_ISR, status);
2919 
2920 		if (status & DC_ISR_RX_OK) {
2921 			int		curpkts;
2922 			curpkts = ifp->if_ipackets;
2923 			dc_rxeof(sc);
2924 			if (curpkts == ifp->if_ipackets) {
2925 				while(dc_rx_resync(sc))
2926 					dc_rxeof(sc);
2927 			}
2928 		}
2929 
2930 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2931 			dc_txeof(sc);
2932 
2933 		if (status & DC_ISR_TX_IDLE) {
2934 			dc_txeof(sc);
2935 			if (sc->dc_cdata.dc_tx_cnt) {
2936 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2937 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2938 			}
2939 		}
2940 
2941 		if (status & DC_ISR_TX_UNDERRUN)
2942 			dc_tx_underrun(sc);
2943 
2944 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2945 		    || (status & DC_ISR_RX_NOBUF)) {
2946 			int		curpkts;
2947 			curpkts = ifp->if_ipackets;
2948 			dc_rxeof(sc);
2949 			if (curpkts == ifp->if_ipackets) {
2950 				while(dc_rx_resync(sc))
2951 					dc_rxeof(sc);
2952 			}
2953 		}
2954 
2955 		if (status & DC_ISR_BUS_ERR) {
2956 			dc_reset(sc);
2957 			dc_init(sc);
2958 		}
2959 	}
2960 
2961 	/* Re-enable interrupts. */
2962 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2963 
2964 	if (ifp->if_snd.ifq_head != NULL)
2965 		dc_start(ifp);
2966 
2967 	return;
2968 }
2969 
2970 /*
2971  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2972  * pointers to the fragment pointers.
2973  */
2974 static int dc_encap(sc, m_head, txidx)
2975 	struct dc_softc		*sc;
2976 	struct mbuf		*m_head;
2977 	u_int32_t		*txidx;
2978 {
2979 	struct dc_desc		*f = NULL;
2980 	struct mbuf		*m;
2981 	int			frag, cur, cnt = 0;
2982 
2983 	/*
2984  	 * Start packing the mbufs in this chain into
2985 	 * the fragment pointers. Stop when we run out
2986  	 * of fragments or hit the end of the mbuf chain.
2987 	 */
2988 	m = m_head;
2989 	cur = frag = *txidx;
2990 
2991 	for (m = m_head; m != NULL; m = m->m_next) {
2992 		if (m->m_len != 0) {
2993 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2994 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2995 				    frag == (DC_TX_LIST_CNT - 1))
2996 					return(ENOBUFS);
2997 			}
2998 			if ((DC_TX_LIST_CNT -
2999 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
3000 				return(ENOBUFS);
3001 
3002 			f = &sc->dc_ldata->dc_tx_list[frag];
3003 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
3004 			if (cnt == 0) {
3005 				f->dc_status = 0;
3006 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3007 			} else
3008 				f->dc_status = DC_TXSTAT_OWN;
3009 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3010 			cur = frag;
3011 			DC_INC(frag, DC_TX_LIST_CNT);
3012 			cnt++;
3013 		}
3014 	}
3015 
3016 	if (m != NULL)
3017 		return(ENOBUFS);
3018 
3019 	sc->dc_cdata.dc_tx_cnt += cnt;
3020 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3021 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3022 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3023 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3024 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3025 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3026 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3027 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3028 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3029 	*txidx = frag;
3030 
3031 	return(0);
3032 }
3033 
3034 /*
3035  * Coalesce an mbuf chain into a single mbuf cluster buffer.
3036  * Needed for some really badly behaved chips that just can't
3037  * do scatter/gather correctly.
3038  */
3039 static int dc_coal(sc, m_head)
3040 	struct dc_softc		*sc;
3041 	struct mbuf		**m_head;
3042 {
3043         struct mbuf		*m_new, *m;
3044 
3045 	m = *m_head;
3046 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3047 	if (m_new == NULL)
3048 		return(ENOBUFS);
3049 	if (m->m_pkthdr.len > MHLEN) {
3050 		MCLGET(m_new, M_DONTWAIT);
3051 		if (!(m_new->m_flags & M_EXT)) {
3052 			m_freem(m_new);
3053 			return(ENOBUFS);
3054 		}
3055 	}
3056 	m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
3057 	m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
3058 	m_freem(m);
3059 	*m_head = m_new;
3060 
3061 	return(0);
3062 }
3063 
3064 /*
3065  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3066  * to the mbuf data regions directly in the transmit lists. We also save a
3067  * copy of the pointers since the transmit list fragment pointers are
3068  * physical addresses.
3069  */
3070 
3071 static void dc_start(ifp)
3072 	struct ifnet		*ifp;
3073 {
3074 	struct dc_softc		*sc;
3075 	struct mbuf		*m_head = NULL;
3076 	int			idx;
3077 
3078 	sc = ifp->if_softc;
3079 
3080 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3081 		return;
3082 
3083 	if (ifp->if_flags & IFF_OACTIVE)
3084 		return;
3085 
3086 	idx = sc->dc_cdata.dc_tx_prod;
3087 
3088 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3089 		IF_DEQUEUE(&ifp->if_snd, m_head);
3090 		if (m_head == NULL)
3091 			break;
3092 
3093 		if (sc->dc_flags & DC_TX_COALESCE &&
3094 		    m_head->m_next != NULL) {
3095 			/* only coalesce if have >1 mbufs */
3096 			if (dc_coal(sc, &m_head)) {
3097 				IF_PREPEND(&ifp->if_snd, m_head);
3098 				ifp->if_flags |= IFF_OACTIVE;
3099 				break;
3100 			}
3101 		}
3102 
3103 		if (dc_encap(sc, m_head, &idx)) {
3104 			IF_PREPEND(&ifp->if_snd, m_head);
3105 			ifp->if_flags |= IFF_OACTIVE;
3106 			break;
3107 		}
3108 
3109 		/*
3110 		 * If there's a BPF listener, bounce a copy of this frame
3111 		 * to him.
3112 		 */
3113 		if (ifp->if_bpf)
3114 			bpf_mtap(ifp, m_head);
3115 
3116 		if (sc->dc_flags & DC_TX_ONE) {
3117 			ifp->if_flags |= IFF_OACTIVE;
3118 			break;
3119 		}
3120 	}
3121 
3122 	/* Transmit */
3123 	sc->dc_cdata.dc_tx_prod = idx;
3124 	if (!(sc->dc_flags & DC_TX_POLL))
3125 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3126 
3127 	/*
3128 	 * Set a timeout in case the chip goes out to lunch.
3129 	 */
3130 	ifp->if_timer = 5;
3131 
3132 	return;
3133 }
3134 
3135 static void dc_init(xsc)
3136 	void			*xsc;
3137 {
3138 	struct dc_softc		*sc = xsc;
3139 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3140 	struct mii_data		*mii;
3141 	int			s;
3142 
3143 	s = splimp();
3144 
3145 	mii = device_get_softc(sc->dc_miibus);
3146 
3147 	/*
3148 	 * Cancel pending I/O and free all RX/TX buffers.
3149 	 */
3150 	dc_stop(sc);
3151 	dc_reset(sc);
3152 
3153 	/*
3154 	 * Set cache alignment and burst length.
3155 	 */
3156 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3157 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3158 	else
3159 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3160 	/*
3161 	 * Evenly share the bus between receive and transmit process.
3162 	 */
3163 	if (DC_IS_INTEL(sc))
3164 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3165 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3166 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3167 	} else {
3168 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3169 	}
3170 	if (sc->dc_flags & DC_TX_POLL)
3171 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3172 	switch(sc->dc_cachesize) {
3173 	case 32:
3174 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3175 		break;
3176 	case 16:
3177 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3178 		break;
3179 	case 8:
3180 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3181 		break;
3182 	case 0:
3183 	default:
3184 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3185 		break;
3186 	}
3187 
3188 	if (sc->dc_flags & DC_TX_STORENFWD)
3189 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3190 	else {
3191 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3192 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3193 		} else {
3194 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3195 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3196 		}
3197 	}
3198 
3199 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3200 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3201 
3202 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3203 		/*
3204 		 * The app notes for the 98713 and 98715A say that
3205 		 * in order to have the chips operate properly, a magic
3206 		 * number must be written to CSR16. Macronix does not
3207 		 * document the meaning of these bits so there's no way
3208 		 * to know exactly what they do. The 98713 has a magic
3209 		 * number all its own; the rest all use a different one.
3210 		 */
3211 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3212 		if (sc->dc_type == DC_TYPE_98713)
3213 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3214 		else
3215 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3216 	}
3217 
3218 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3219 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3220 
3221 	/* Init circular RX list. */
3222 	if (dc_list_rx_init(sc) == ENOBUFS) {
3223 		printf("dc%d: initialization failed: no "
3224 		    "memory for rx buffers\n", sc->dc_unit);
3225 		dc_stop(sc);
3226 		(void)splx(s);
3227 		return;
3228 	}
3229 
3230 	/*
3231 	 * Init tx descriptors.
3232 	 */
3233 	dc_list_tx_init(sc);
3234 
3235 	/*
3236 	 * Load the address of the RX list.
3237 	 */
3238 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3239 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3240 
3241 	/*
3242 	 * Enable interrupts.
3243 	 */
3244 #ifdef DEVICE_POLLING
3245 	/*
3246 	 * ... but only if we are not polling, and make sure they are off in
3247 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3248 	 * after a reset.
3249 	 */
3250 	if (ifp->if_ipending & IFF_POLLING)
3251 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3252 	else
3253 #endif
3254 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3255 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3256 
3257 	/* Enable transmitter. */
3258 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3259 
3260 	/*
3261 	 * If this is an Intel 21143 and we're not using the
3262 	 * MII port, program the LED control pins so we get
3263 	 * link and activity indications.
3264 	 */
3265 	if (sc->dc_flags & DC_TULIP_LEDS) {
3266 		CSR_WRITE_4(sc, DC_WATCHDOG,
3267 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3268 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3269 	}
3270 
3271 	/*
3272 	 * Load the RX/multicast filter. We do this sort of late
3273 	 * because the filter programming scheme on the 21143 and
3274 	 * some clones requires DMAing a setup frame via the TX
3275 	 * engine, and we need the transmitter enabled for that.
3276 	 */
3277 	dc_setfilt(sc);
3278 
3279 	/* Enable receiver. */
3280 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3281 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3282 
3283 	mii_mediachg(mii);
3284 	dc_setcfg(sc, sc->dc_if_media);
3285 
3286 	ifp->if_flags |= IFF_RUNNING;
3287 	ifp->if_flags &= ~IFF_OACTIVE;
3288 
3289 	(void)splx(s);
3290 
3291 	/* Don't start the ticker if this is a homePNA link. */
3292 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_homePNA)
3293 		sc->dc_link = 1;
3294 	else {
3295 		if (sc->dc_flags & DC_21143_NWAY)
3296 			sc->dc_stat_ch = timeout(dc_tick, sc, hz/10);
3297 		else
3298 			sc->dc_stat_ch = timeout(dc_tick, sc, hz);
3299 	}
3300 
3301 #ifdef SRM_MEDIA
3302         if(sc->dc_srm_media) {
3303 		struct ifreq ifr;
3304 
3305 		ifr.ifr_media = sc->dc_srm_media;
3306 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3307 		sc->dc_srm_media = 0;
3308 	}
3309 #endif
3310 	return;
3311 }
3312 
3313 /*
3314  * Set media options.
3315  */
3316 static int dc_ifmedia_upd(ifp)
3317 	struct ifnet		*ifp;
3318 {
3319 	struct dc_softc		*sc;
3320 	struct mii_data		*mii;
3321 	struct ifmedia		*ifm;
3322 
3323 	sc = ifp->if_softc;
3324 	mii = device_get_softc(sc->dc_miibus);
3325 	mii_mediachg(mii);
3326 	ifm = &mii->mii_media;
3327 
3328 	if (DC_IS_DAVICOM(sc) &&
3329 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA)
3330 		dc_setcfg(sc, ifm->ifm_media);
3331 	else
3332 		sc->dc_link = 0;
3333 
3334 	return(0);
3335 }
3336 
3337 /*
3338  * Report current media status.
3339  */
3340 static void dc_ifmedia_sts(ifp, ifmr)
3341 	struct ifnet		*ifp;
3342 	struct ifmediareq	*ifmr;
3343 {
3344 	struct dc_softc		*sc;
3345 	struct mii_data		*mii;
3346 	struct ifmedia		*ifm;
3347 
3348 	sc = ifp->if_softc;
3349 	mii = device_get_softc(sc->dc_miibus);
3350 	mii_pollstat(mii);
3351 	ifm = &mii->mii_media;
3352 	if (DC_IS_DAVICOM(sc)) {
3353 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
3354 			ifmr->ifm_active = ifm->ifm_media;
3355 			ifmr->ifm_status = 0;
3356 			return;
3357 		}
3358 	}
3359 	ifmr->ifm_active = mii->mii_media_active;
3360 	ifmr->ifm_status = mii->mii_media_status;
3361 
3362 	return;
3363 }
3364 
3365 static int dc_ioctl(ifp, command, data, cr)
3366 	struct ifnet		*ifp;
3367 	u_long			command;
3368 	caddr_t			data;
3369 	struct ucred		*cr;
3370 {
3371 	struct dc_softc		*sc = ifp->if_softc;
3372 	struct ifreq		*ifr = (struct ifreq *) data;
3373 	struct mii_data		*mii;
3374 	int			s, error = 0;
3375 
3376 	s = splimp();
3377 
3378 	switch(command) {
3379 	case SIOCSIFADDR:
3380 	case SIOCGIFADDR:
3381 	case SIOCSIFMTU:
3382 		error = ether_ioctl(ifp, command, data);
3383 		break;
3384 	case SIOCSIFFLAGS:
3385 		if (ifp->if_flags & IFF_UP) {
3386 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3387 				(IFF_PROMISC | IFF_ALLMULTI);
3388 			if (ifp->if_flags & IFF_RUNNING) {
3389 				if (need_setfilt)
3390 					dc_setfilt(sc);
3391 			} else {
3392 				sc->dc_txthresh = 0;
3393 				dc_init(sc);
3394 			}
3395 		} else {
3396 			if (ifp->if_flags & IFF_RUNNING)
3397 				dc_stop(sc);
3398 		}
3399 		sc->dc_if_flags = ifp->if_flags;
3400 		error = 0;
3401 		break;
3402 	case SIOCADDMULTI:
3403 	case SIOCDELMULTI:
3404 		dc_setfilt(sc);
3405 		error = 0;
3406 		break;
3407 	case SIOCGIFMEDIA:
3408 	case SIOCSIFMEDIA:
3409 		mii = device_get_softc(sc->dc_miibus);
3410 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3411 #ifdef SRM_MEDIA
3412 		if (sc->dc_srm_media)
3413 			sc->dc_srm_media = 0;
3414 #endif
3415 		break;
3416 	default:
3417 		error = EINVAL;
3418 		break;
3419 	}
3420 
3421 	(void)splx(s);
3422 
3423 	return(error);
3424 }
3425 
3426 static void dc_watchdog(ifp)
3427 	struct ifnet		*ifp;
3428 {
3429 	struct dc_softc		*sc;
3430 
3431 	sc = ifp->if_softc;
3432 
3433 	ifp->if_oerrors++;
3434 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3435 
3436 	dc_stop(sc);
3437 	dc_reset(sc);
3438 	dc_init(sc);
3439 
3440 	if (ifp->if_snd.ifq_head != NULL)
3441 		dc_start(ifp);
3442 
3443 	return;
3444 }
3445 
3446 /*
3447  * Stop the adapter and free any mbufs allocated to the
3448  * RX and TX lists.
3449  */
3450 static void dc_stop(sc)
3451 	struct dc_softc		*sc;
3452 {
3453 	int		i;
3454 	struct ifnet		*ifp;
3455 
3456 	ifp = &sc->arpcom.ac_if;
3457 	ifp->if_timer = 0;
3458 
3459 	untimeout(dc_tick, sc, sc->dc_stat_ch);
3460 
3461 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3462 #ifdef DEVICE_POLLING
3463 	ether_poll_deregister(ifp);
3464 #endif
3465 
3466 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3467 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3468 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3469 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3470 	sc->dc_link = 0;
3471 
3472 	/*
3473 	 * Free data in the RX lists.
3474 	 */
3475 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3476 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3477 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3478 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3479 		}
3480 	}
3481 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3482 		sizeof(sc->dc_ldata->dc_rx_list));
3483 
3484 	/*
3485 	 * Free the TX list buffers.
3486 	 */
3487 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3488 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3489 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3490 			    DC_TXCTL_SETUP) ||
3491 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3492 			    DC_TXCTL_LASTFRAG)) {
3493 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3494 				continue;
3495 			}
3496 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3497 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3498 		}
3499 	}
3500 
3501 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3502 		sizeof(sc->dc_ldata->dc_tx_list));
3503 
3504 	return;
3505 }
3506 
3507 /*
3508  * Stop all chip I/O so that the kernel's probe routines don't
3509  * get confused by errant DMAs when rebooting.
3510  */
3511 static void dc_shutdown(dev)
3512 	device_t		dev;
3513 {
3514 	struct dc_softc		*sc;
3515 
3516 	sc = device_get_softc(dev);
3517 
3518 	dc_stop(sc);
3519 
3520 	return;
3521 }
3522 
3523 /*
3524  * Device suspend routine.  Stop the interface and save some PCI
3525  * settings in case the BIOS doesn't restore them properly on
3526  * resume.
3527  */
3528 static int dc_suspend(dev)
3529 	device_t		dev;
3530 {
3531 	int		i;
3532 	int			s;
3533 	struct dc_softc		*sc;
3534 
3535 	s = splimp();
3536 
3537 	sc = device_get_softc(dev);
3538 
3539 	dc_stop(sc);
3540 
3541 	for (i = 0; i < 5; i++)
3542 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3543 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3544 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3545 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3546 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3547 
3548 	sc->suspended = 1;
3549 
3550 	splx(s);
3551 	return (0);
3552 }
3553 
3554 /*
3555  * Device resume routine.  Restore some PCI settings in case the BIOS
3556  * doesn't, re-enable busmastering, and restart the interface if
3557  * appropriate.
3558  */
3559 static int dc_resume(dev)
3560 	device_t		dev;
3561 {
3562 	int		i;
3563 	int			s;
3564 	struct dc_softc		*sc;
3565 	struct ifnet		*ifp;
3566 
3567 	s = splimp();
3568 
3569 	sc = device_get_softc(dev);
3570 	ifp = &sc->arpcom.ac_if;
3571 
3572 	dc_acpi(dev);
3573 
3574 	/* better way to do this? */
3575 	for (i = 0; i < 5; i++)
3576 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3577 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3578 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3579 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3580 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3581 
3582 	/* reenable busmastering */
3583 	pci_enable_busmaster(dev);
3584 	pci_enable_io(dev, DC_RES);
3585 
3586         /* reinitialize interface if necessary */
3587         if (ifp->if_flags & IFF_UP)
3588                 dc_init(sc);
3589 
3590 	sc->suspended = 0;
3591 
3592 	splx(s);
3593 	return (0);
3594 }
3595