xref: /dflybsd-src/sys/dev/netif/dc/if_dc.c (revision b5b0912b1891e95ccc48cad83f09239ccb7ffc16)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.31 2005/05/31 07:52:22 joerg Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Conexant LANfinity (www.conexant.com)
50  *
51  * Datasheets for the 21143 are available at developer.intel.com.
52  * Datasheets for the clone parts can be found at their respective sites.
53  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54  * The PNIC II is essentially a Macronix 98715A chip; the only difference
55  * worth noting is that its multicast hash table is only 128 bits wide
56  * instead of 512.
57  *
58  * Written by Bill Paul <wpaul@ee.columbia.edu>
59  * Electrical Engineering Department
60  * Columbia University, New York City
61  */
62 
63 /*
64  * The Intel 21143 is the successor to the DEC 21140. It is basically
65  * the same as the 21140 but with a few new features. The 21143 supports
66  * three kinds of media attachments:
67  *
68  * o MII port, for 10Mbps and 100Mbps support and NWAY
69  *   autonegotiation provided by an external PHY.
70  * o SYM port, for symbol mode 100Mbps support.
71  * o 10baseT port.
72  * o AUI/BNC port.
73  *
74  * The 100Mbps SYM port and 10baseT port can be used together in
75  * combination with the internal NWAY support to create a 10/100
76  * autosensing configuration.
77  *
78  * Note that not all tulip workalikes are handled in this driver: we only
79  * deal with those which are relatively well behaved. The Winbond is
80  * handled separately due to its different register offsets and the
81  * special handling needed for its various bugs. The PNIC is handled
82  * here, but I'm not thrilled about it.
83  *
84  * All of the workalike chips use some form of MII transceiver support
85  * with the exception of the Macronix chips, which also have a SYM port.
86  * The ASIX AX88140A is also documented to have a SYM port, but all
87  * the cards I've seen use an MII transceiver, probably because the
88  * AX88140A doesn't support internal NWAY.
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 
100 #include <net/if.h>
101 #include <net/ifq_var.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/vlan/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <vm/vm.h>              /* for vtophys */
112 #include <vm/pmap.h>            /* for vtophys */
113 #include <machine/bus_pio.h>
114 #include <machine/bus_memio.h>
115 #include <machine/bus.h>
116 #include <machine/resource.h>
117 #include <sys/bus.h>
118 #include <sys/rman.h>
119 
120 #include "../mii_layer/mii.h"
121 #include "../mii_layer/miivar.h"
122 
123 #include <bus/pci/pcireg.h>
124 #include <bus/pci/pcivar.h>
125 
126 #define DC_USEIOSPACE
127 
128 #include "if_dcreg.h"
129 
130 /* "controller miibus0" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names.
135  */
136 static struct dc_type dc_devs[] = {
137 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
138 		"Intel 21143 10/100BaseTX" },
139 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
140 		"Davicom DM9009 10/100BaseTX" },
141 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
142 		"Davicom DM9100 10/100BaseTX" },
143 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
144 		"Davicom DM9102 10/100BaseTX" },
145 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
146 		"Davicom DM9102A 10/100BaseTX" },
147 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
148 		"ADMtek AL981 10/100BaseTX" },
149 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
150 		"ADMtek AN985 10/100BaseTX" },
151 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
152 		"ASIX AX88140A 10/100BaseTX" },
153 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
154 		"ASIX AX88141 10/100BaseTX" },
155 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
156 		"Macronix 98713 10/100BaseTX" },
157 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
158 		"Macronix 98713A 10/100BaseTX" },
159 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
160 		"Compex RL100-TX 10/100BaseTX" },
161 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
162 		"Compex RL100-TX 10/100BaseTX" },
163 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
164 		"Macronix 98715/98715A 10/100BaseTX" },
165 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
166 		"Macronix 98715AEC-C 10/100BaseTX" },
167 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
168 		"Macronix 98725 10/100BaseTX" },
169 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
170 		"Macronix 98727/98732 10/100BaseTX" },
171 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
172 		"LC82C115 PNIC II 10/100BaseTX" },
173 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
174 		"82c168 PNIC 10/100BaseTX" },
175 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
176 		"82c169 PNIC 10/100BaseTX" },
177 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
178 		"Accton EN1217 10/100BaseTX" },
179 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
180 		"Accton EN2242 MiniPCI 10/100BaseTX" },
181 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
182 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
183 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
184 		"3Com OfficeConnect 10/100B" },
185 	{ 0, 0, NULL }
186 };
187 
188 static int dc_probe		(device_t);
189 static int dc_attach		(device_t);
190 static int dc_detach		(device_t);
191 static int dc_suspend		(device_t);
192 static int dc_resume		(device_t);
193 static void dc_acpi		(device_t);
194 static struct dc_type *dc_devtype	(device_t);
195 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
196 static int dc_encap		(struct dc_softc *, struct mbuf *,
197 					u_int32_t *);
198 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
199 static int dc_rx_resync		(struct dc_softc *);
200 static void dc_rxeof		(struct dc_softc *);
201 static void dc_txeof		(struct dc_softc *);
202 static void dc_tick		(void *);
203 static void dc_tx_underrun	(struct dc_softc *);
204 static void dc_intr		(void *);
205 static void dc_start		(struct ifnet *);
206 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
207 					struct ucred *);
208 #ifdef DEVICE_POLLING
209 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
210 					int count);
211 #endif
212 static void dc_init		(void *);
213 static void dc_stop		(struct dc_softc *);
214 static void dc_watchdog		(struct ifnet *);
215 static void dc_shutdown		(device_t);
216 static int dc_ifmedia_upd	(struct ifnet *);
217 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
218 
219 static void dc_delay		(struct dc_softc *);
220 static void dc_eeprom_idle	(struct dc_softc *);
221 static void dc_eeprom_putbyte	(struct dc_softc *, int);
222 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
223 static void dc_eeprom_getword_pnic
224 				(struct dc_softc *, int, u_int16_t *);
225 static void dc_eeprom_width	(struct dc_softc *);
226 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
227 							int, int);
228 
229 static void dc_mii_writebit	(struct dc_softc *, int);
230 static int dc_mii_readbit	(struct dc_softc *);
231 static void dc_mii_sync		(struct dc_softc *);
232 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
233 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
234 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
235 static int dc_miibus_readreg	(device_t, int, int);
236 static int dc_miibus_writereg	(device_t, int, int, int);
237 static void dc_miibus_statchg	(device_t);
238 static void dc_miibus_mediainit	(device_t);
239 
240 static u_int32_t dc_crc_mask	(struct dc_softc *);
241 static void dc_setcfg		(struct dc_softc *, int);
242 static void dc_setfilt_21143	(struct dc_softc *);
243 static void dc_setfilt_asix	(struct dc_softc *);
244 static void dc_setfilt_admtek	(struct dc_softc *);
245 
246 static void dc_setfilt		(struct dc_softc *);
247 
248 static void dc_reset		(struct dc_softc *);
249 static int dc_list_rx_init	(struct dc_softc *);
250 static int dc_list_tx_init	(struct dc_softc *);
251 
252 static void dc_read_srom	(struct dc_softc *, int);
253 static void dc_parse_21143_srom	(struct dc_softc *);
254 static void dc_decode_leaf_sia	(struct dc_softc *,
255 				    struct dc_eblock_sia *);
256 static void dc_decode_leaf_mii	(struct dc_softc *,
257 				    struct dc_eblock_mii *);
258 static void dc_decode_leaf_sym	(struct dc_softc *,
259 				    struct dc_eblock_sym *);
260 static void dc_apply_fixup	(struct dc_softc *, int);
261 
262 #ifdef DC_USEIOSPACE
263 #define DC_RES			SYS_RES_IOPORT
264 #define DC_RID			DC_PCI_CFBIO
265 #else
266 #define DC_RES			SYS_RES_MEMORY
267 #define DC_RID			DC_PCI_CFBMA
268 #endif
269 
270 static device_method_t dc_methods[] = {
271 	/* Device interface */
272 	DEVMETHOD(device_probe,		dc_probe),
273 	DEVMETHOD(device_attach,	dc_attach),
274 	DEVMETHOD(device_detach,	dc_detach),
275 	DEVMETHOD(device_suspend,	dc_suspend),
276 	DEVMETHOD(device_resume,	dc_resume),
277 	DEVMETHOD(device_shutdown,	dc_shutdown),
278 
279 	/* bus interface */
280 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
281 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
282 
283 	/* MII interface */
284 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
285 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
286 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
287 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
288 
289 	{ 0, 0 }
290 };
291 
292 static driver_t dc_driver = {
293 	"dc",
294 	dc_methods,
295 	sizeof(struct dc_softc)
296 };
297 
298 static devclass_t dc_devclass;
299 
300 #ifdef __i386__
301 static int dc_quick=1;
302 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
303 	&dc_quick,0,"do not mdevget in dc driver");
304 #endif
305 
306 DECLARE_DUMMY_MODULE(if_dc);
307 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
308 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
309 
310 #define DC_SETBIT(sc, reg, x)				\
311 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
312 
313 #define DC_CLRBIT(sc, reg, x)				\
314 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
315 
316 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
317 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
318 
319 static void dc_delay(sc)
320 	struct dc_softc		*sc;
321 {
322 	int			idx;
323 
324 	for (idx = (300 / 33) + 1; idx > 0; idx--)
325 		CSR_READ_4(sc, DC_BUSCTL);
326 }
327 
328 static void dc_eeprom_width(sc)
329 	struct dc_softc		*sc;
330 {
331 	int i;
332 
333 	/* Force EEPROM to idle state. */
334 	dc_eeprom_idle(sc);
335 
336 	/* Enter EEPROM access mode. */
337 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
338 	dc_delay(sc);
339 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
340 	dc_delay(sc);
341 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
342 	dc_delay(sc);
343 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
344 	dc_delay(sc);
345 
346 	for (i = 3; i--;) {
347 		if (6 & (1 << i))
348 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
349 		else
350 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
351 		dc_delay(sc);
352 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
353 		dc_delay(sc);
354 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
355 		dc_delay(sc);
356 	}
357 
358 	for (i = 1; i <= 12; i++) {
359 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
360 		dc_delay(sc);
361 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
362 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
363 			dc_delay(sc);
364 			break;
365 		}
366 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
367 		dc_delay(sc);
368 	}
369 
370 	/* Turn off EEPROM access mode. */
371 	dc_eeprom_idle(sc);
372 
373 	if (i < 4 || i > 12)
374 		sc->dc_romwidth = 6;
375 	else
376 		sc->dc_romwidth = i;
377 
378 	/* Enter EEPROM access mode. */
379 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
380 	dc_delay(sc);
381 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
382 	dc_delay(sc);
383 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384 	dc_delay(sc);
385 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
386 	dc_delay(sc);
387 
388 	/* Turn off EEPROM access mode. */
389 	dc_eeprom_idle(sc);
390 }
391 
392 static void dc_eeprom_idle(sc)
393 	struct dc_softc		*sc;
394 {
395 	int		i;
396 
397 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
398 	dc_delay(sc);
399 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
400 	dc_delay(sc);
401 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
402 	dc_delay(sc);
403 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
404 	dc_delay(sc);
405 
406 	for (i = 0; i < 25; i++) {
407 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
408 		dc_delay(sc);
409 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
410 		dc_delay(sc);
411 	}
412 
413 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
414 	dc_delay(sc);
415 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
416 	dc_delay(sc);
417 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
418 
419 	return;
420 }
421 
422 /*
423  * Send a read command and address to the EEPROM, check for ACK.
424  */
425 static void dc_eeprom_putbyte(sc, addr)
426 	struct dc_softc		*sc;
427 	int			addr;
428 {
429 	int		d, i;
430 
431 	d = DC_EECMD_READ >> 6;
432 	for (i = 3; i--; ) {
433 		if (d & (1 << i))
434 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
435 		else
436 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
437 		dc_delay(sc);
438 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439 		dc_delay(sc);
440 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
441 		dc_delay(sc);
442 	}
443 
444 	/*
445 	 * Feed in each bit and strobe the clock.
446 	 */
447 	for (i = sc->dc_romwidth; i--;) {
448 		if (addr & (1 << i)) {
449 			SIO_SET(DC_SIO_EE_DATAIN);
450 		} else {
451 			SIO_CLR(DC_SIO_EE_DATAIN);
452 		}
453 		dc_delay(sc);
454 		SIO_SET(DC_SIO_EE_CLK);
455 		dc_delay(sc);
456 		SIO_CLR(DC_SIO_EE_CLK);
457 		dc_delay(sc);
458 	}
459 
460 	return;
461 }
462 
463 /*
464  * Read a word of data stored in the EEPROM at address 'addr.'
465  * The PNIC 82c168/82c169 has its own non-standard way to read
466  * the EEPROM.
467  */
468 static void dc_eeprom_getword_pnic(sc, addr, dest)
469 	struct dc_softc		*sc;
470 	int			addr;
471 	u_int16_t		*dest;
472 {
473 	int		i;
474 	u_int32_t		r;
475 
476 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
477 
478 	for (i = 0; i < DC_TIMEOUT; i++) {
479 		DELAY(1);
480 		r = CSR_READ_4(sc, DC_SIO);
481 		if (!(r & DC_PN_SIOCTL_BUSY)) {
482 			*dest = (u_int16_t)(r & 0xFFFF);
483 			return;
484 		}
485 	}
486 
487 	return;
488 }
489 
490 /*
491  * Read a word of data stored in the EEPROM at address 'addr.'
492  */
493 static void dc_eeprom_getword(sc, addr, dest)
494 	struct dc_softc		*sc;
495 	int			addr;
496 	u_int16_t		*dest;
497 {
498 	int		i;
499 	u_int16_t		word = 0;
500 
501 	/* Force EEPROM to idle state. */
502 	dc_eeprom_idle(sc);
503 
504 	/* Enter EEPROM access mode. */
505 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
506 	dc_delay(sc);
507 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
508 	dc_delay(sc);
509 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
510 	dc_delay(sc);
511 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
512 	dc_delay(sc);
513 
514 	/*
515 	 * Send address of word we want to read.
516 	 */
517 	dc_eeprom_putbyte(sc, addr);
518 
519 	/*
520 	 * Start reading bits from EEPROM.
521 	 */
522 	for (i = 0x8000; i; i >>= 1) {
523 		SIO_SET(DC_SIO_EE_CLK);
524 		dc_delay(sc);
525 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
526 			word |= i;
527 		dc_delay(sc);
528 		SIO_CLR(DC_SIO_EE_CLK);
529 		dc_delay(sc);
530 	}
531 
532 	/* Turn off EEPROM access mode. */
533 	dc_eeprom_idle(sc);
534 
535 	*dest = word;
536 
537 	return;
538 }
539 
540 /*
541  * Read a sequence of words from the EEPROM.
542  */
543 static void dc_read_eeprom(sc, dest, off, cnt, swap)
544 	struct dc_softc		*sc;
545 	caddr_t			dest;
546 	int			off;
547 	int			cnt;
548 	int			swap;
549 {
550 	int			i;
551 	u_int16_t		word = 0, *ptr;
552 
553 	for (i = 0; i < cnt; i++) {
554 		if (DC_IS_PNIC(sc))
555 			dc_eeprom_getword_pnic(sc, off + i, &word);
556 		else
557 			dc_eeprom_getword(sc, off + i, &word);
558 		ptr = (u_int16_t *)(dest + (i * 2));
559 		if (swap)
560 			*ptr = ntohs(word);
561 		else
562 			*ptr = word;
563 	}
564 
565 	return;
566 }
567 
568 /*
569  * The following two routines are taken from the Macronix 98713
570  * Application Notes pp.19-21.
571  */
572 /*
573  * Write a bit to the MII bus.
574  */
575 static void dc_mii_writebit(sc, bit)
576 	struct dc_softc		*sc;
577 	int			bit;
578 {
579 	if (bit)
580 		CSR_WRITE_4(sc, DC_SIO,
581 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
582 	else
583 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
584 
585 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
586 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
587 
588 	return;
589 }
590 
591 /*
592  * Read a bit from the MII bus.
593  */
594 static int dc_mii_readbit(sc)
595 	struct dc_softc		*sc;
596 {
597 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
598 	CSR_READ_4(sc, DC_SIO);
599 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
600 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
601 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
602 		return(1);
603 
604 	return(0);
605 }
606 
607 /*
608  * Sync the PHYs by setting data bit and strobing the clock 32 times.
609  */
610 static void dc_mii_sync(sc)
611 	struct dc_softc		*sc;
612 {
613 	int		i;
614 
615 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
616 
617 	for (i = 0; i < 32; i++)
618 		dc_mii_writebit(sc, 1);
619 
620 	return;
621 }
622 
623 /*
624  * Clock a series of bits through the MII.
625  */
626 static void dc_mii_send(sc, bits, cnt)
627 	struct dc_softc		*sc;
628 	u_int32_t		bits;
629 	int			cnt;
630 {
631 	int			i;
632 
633 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
634 		dc_mii_writebit(sc, bits & i);
635 }
636 
637 /*
638  * Read an PHY register through the MII.
639  */
640 static int dc_mii_readreg(sc, frame)
641 	struct dc_softc		*sc;
642 	struct dc_mii_frame	*frame;
643 
644 {
645 	int			i, ack, s;
646 
647 	s = splimp();
648 
649 	/*
650 	 * Set up frame for RX.
651 	 */
652 	frame->mii_stdelim = DC_MII_STARTDELIM;
653 	frame->mii_opcode = DC_MII_READOP;
654 	frame->mii_turnaround = 0;
655 	frame->mii_data = 0;
656 
657 	/*
658 	 * Sync the PHYs.
659 	 */
660 	dc_mii_sync(sc);
661 
662 	/*
663 	 * Send command/address info.
664 	 */
665 	dc_mii_send(sc, frame->mii_stdelim, 2);
666 	dc_mii_send(sc, frame->mii_opcode, 2);
667 	dc_mii_send(sc, frame->mii_phyaddr, 5);
668 	dc_mii_send(sc, frame->mii_regaddr, 5);
669 
670 #ifdef notdef
671 	/* Idle bit */
672 	dc_mii_writebit(sc, 1);
673 	dc_mii_writebit(sc, 0);
674 #endif
675 
676 	/* Check for ack */
677 	ack = dc_mii_readbit(sc);
678 
679 	/*
680 	 * Now try reading data bits. If the ack failed, we still
681 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
682 	 */
683 	if (ack) {
684 		for(i = 0; i < 16; i++) {
685 			dc_mii_readbit(sc);
686 		}
687 		goto fail;
688 	}
689 
690 	for (i = 0x8000; i; i >>= 1) {
691 		if (!ack) {
692 			if (dc_mii_readbit(sc))
693 				frame->mii_data |= i;
694 		}
695 	}
696 
697 fail:
698 
699 	dc_mii_writebit(sc, 0);
700 	dc_mii_writebit(sc, 0);
701 
702 	splx(s);
703 
704 	if (ack)
705 		return(1);
706 	return(0);
707 }
708 
709 /*
710  * Write to a PHY register through the MII.
711  */
712 static int dc_mii_writereg(sc, frame)
713 	struct dc_softc		*sc;
714 	struct dc_mii_frame	*frame;
715 
716 {
717 	int			s;
718 
719 	s = splimp();
720 	/*
721 	 * Set up frame for TX.
722 	 */
723 
724 	frame->mii_stdelim = DC_MII_STARTDELIM;
725 	frame->mii_opcode = DC_MII_WRITEOP;
726 	frame->mii_turnaround = DC_MII_TURNAROUND;
727 
728 	/*
729 	 * Sync the PHYs.
730 	 */
731 	dc_mii_sync(sc);
732 
733 	dc_mii_send(sc, frame->mii_stdelim, 2);
734 	dc_mii_send(sc, frame->mii_opcode, 2);
735 	dc_mii_send(sc, frame->mii_phyaddr, 5);
736 	dc_mii_send(sc, frame->mii_regaddr, 5);
737 	dc_mii_send(sc, frame->mii_turnaround, 2);
738 	dc_mii_send(sc, frame->mii_data, 16);
739 
740 	/* Idle bit. */
741 	dc_mii_writebit(sc, 0);
742 	dc_mii_writebit(sc, 0);
743 
744 	splx(s);
745 
746 	return(0);
747 }
748 
749 static int dc_miibus_readreg(dev, phy, reg)
750 	device_t		dev;
751 	int			phy, reg;
752 {
753 	struct dc_mii_frame	frame;
754 	struct dc_softc		*sc;
755 	int			i, rval, phy_reg = 0;
756 
757 	sc = device_get_softc(dev);
758 	bzero((char *)&frame, sizeof(frame));
759 
760 	/*
761 	 * Note: both the AL981 and AN985 have internal PHYs,
762 	 * however the AL981 provides direct access to the PHY
763 	 * registers while the AN985 uses a serial MII interface.
764 	 * The AN985's MII interface is also buggy in that you
765 	 * can read from any MII address (0 to 31), but only address 1
766 	 * behaves normally. To deal with both cases, we pretend
767 	 * that the PHY is at MII address 1.
768 	 */
769 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
770 		return(0);
771 
772 	/*
773 	 * Note: the ukphy probes of the RS7112 report a PHY at
774 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
775 	 * so we only respond to correct one.
776 	 */
777 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
778 		return(0);
779 
780 	if (sc->dc_pmode != DC_PMODE_MII) {
781 		if (phy == (MII_NPHY - 1)) {
782 			switch(reg) {
783 			case MII_BMSR:
784 			/*
785 			 * Fake something to make the probe
786 			 * code think there's a PHY here.
787 			 */
788 				return(BMSR_MEDIAMASK);
789 				break;
790 			case MII_PHYIDR1:
791 				if (DC_IS_PNIC(sc))
792 					return(DC_VENDORID_LO);
793 				return(DC_VENDORID_DEC);
794 				break;
795 			case MII_PHYIDR2:
796 				if (DC_IS_PNIC(sc))
797 					return(DC_DEVICEID_82C168);
798 				return(DC_DEVICEID_21143);
799 				break;
800 			default:
801 				return(0);
802 				break;
803 			}
804 		} else
805 			return(0);
806 	}
807 
808 	if (DC_IS_PNIC(sc)) {
809 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
810 		    (phy << 23) | (reg << 18));
811 		for (i = 0; i < DC_TIMEOUT; i++) {
812 			DELAY(1);
813 			rval = CSR_READ_4(sc, DC_PN_MII);
814 			if (!(rval & DC_PN_MII_BUSY)) {
815 				rval &= 0xFFFF;
816 				return(rval == 0xFFFF ? 0 : rval);
817 			}
818 		}
819 		return(0);
820 	}
821 
822 	if (DC_IS_COMET(sc)) {
823 		switch(reg) {
824 		case MII_BMCR:
825 			phy_reg = DC_AL_BMCR;
826 			break;
827 		case MII_BMSR:
828 			phy_reg = DC_AL_BMSR;
829 			break;
830 		case MII_PHYIDR1:
831 			phy_reg = DC_AL_VENID;
832 			break;
833 		case MII_PHYIDR2:
834 			phy_reg = DC_AL_DEVID;
835 			break;
836 		case MII_ANAR:
837 			phy_reg = DC_AL_ANAR;
838 			break;
839 		case MII_ANLPAR:
840 			phy_reg = DC_AL_LPAR;
841 			break;
842 		case MII_ANER:
843 			phy_reg = DC_AL_ANER;
844 			break;
845 		default:
846 			if_printf(&sc->arpcom.ac_if,
847 				  "phy_read: bad phy register %x\n", reg);
848 			return(0);
849 			break;
850 		}
851 
852 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
853 
854 		if (rval == 0xFFFF)
855 			return(0);
856 		return(rval);
857 	}
858 
859 	frame.mii_phyaddr = phy;
860 	frame.mii_regaddr = reg;
861 	if (sc->dc_type == DC_TYPE_98713) {
862 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
863 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
864 	}
865 	dc_mii_readreg(sc, &frame);
866 	if (sc->dc_type == DC_TYPE_98713)
867 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
868 
869 	return(frame.mii_data);
870 }
871 
872 static int dc_miibus_writereg(dev, phy, reg, data)
873 	device_t		dev;
874 	int			phy, reg, data;
875 {
876 	struct dc_softc		*sc;
877 	struct dc_mii_frame	frame;
878 	int			i, phy_reg = 0;
879 
880 	sc = device_get_softc(dev);
881 	bzero((char *)&frame, sizeof(frame));
882 
883 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
884 		return(0);
885 
886 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
887 		return(0);
888 
889 	if (DC_IS_PNIC(sc)) {
890 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
891 		    (phy << 23) | (reg << 10) | data);
892 		for (i = 0; i < DC_TIMEOUT; i++) {
893 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
894 				break;
895 		}
896 		return(0);
897 	}
898 
899 	if (DC_IS_COMET(sc)) {
900 		switch(reg) {
901 		case MII_BMCR:
902 			phy_reg = DC_AL_BMCR;
903 			break;
904 		case MII_BMSR:
905 			phy_reg = DC_AL_BMSR;
906 			break;
907 		case MII_PHYIDR1:
908 			phy_reg = DC_AL_VENID;
909 			break;
910 		case MII_PHYIDR2:
911 			phy_reg = DC_AL_DEVID;
912 			break;
913 		case MII_ANAR:
914 			phy_reg = DC_AL_ANAR;
915 			break;
916 		case MII_ANLPAR:
917 			phy_reg = DC_AL_LPAR;
918 			break;
919 		case MII_ANER:
920 			phy_reg = DC_AL_ANER;
921 			break;
922 		default:
923 			if_printf(&sc->arpcom.ac_if,
924 				  "phy_write: bad phy register %x\n", reg);
925 			return(0);
926 			break;
927 		}
928 
929 		CSR_WRITE_4(sc, phy_reg, data);
930 		return(0);
931 	}
932 
933 	frame.mii_phyaddr = phy;
934 	frame.mii_regaddr = reg;
935 	frame.mii_data = data;
936 
937 	if (sc->dc_type == DC_TYPE_98713) {
938 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
939 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
940 	}
941 	dc_mii_writereg(sc, &frame);
942 	if (sc->dc_type == DC_TYPE_98713)
943 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
944 
945 	return(0);
946 }
947 
948 static void dc_miibus_statchg(dev)
949 	device_t		dev;
950 {
951 	struct dc_softc		*sc;
952 	struct mii_data		*mii;
953 	struct ifmedia		*ifm;
954 
955 	sc = device_get_softc(dev);
956 	if (DC_IS_ADMTEK(sc))
957 		return;
958 
959 	mii = device_get_softc(sc->dc_miibus);
960 	ifm = &mii->mii_media;
961 	if (DC_IS_DAVICOM(sc) &&
962 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
963 		dc_setcfg(sc, ifm->ifm_media);
964 		sc->dc_if_media = ifm->ifm_media;
965 	} else {
966 		dc_setcfg(sc, mii->mii_media_active);
967 		sc->dc_if_media = mii->mii_media_active;
968 	}
969 
970 	return;
971 }
972 
973 /*
974  * Special support for DM9102A cards with HomePNA PHYs. Note:
975  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
976  * to be impossible to talk to the management interface of the DM9801
977  * PHY (its MDIO pin is not connected to anything). Consequently,
978  * the driver has to just 'know' about the additional mode and deal
979  * with it itself. *sigh*
980  */
981 static void dc_miibus_mediainit(dev)
982 	device_t		dev;
983 {
984 	struct dc_softc		*sc;
985 	struct mii_data		*mii;
986 	struct ifmedia		*ifm;
987 	int			rev;
988 
989 	rev = pci_get_revid(dev);
990 
991 	sc = device_get_softc(dev);
992 	mii = device_get_softc(sc->dc_miibus);
993 	ifm = &mii->mii_media;
994 
995 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
996 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
997 
998 	return;
999 }
1000 
1001 #define DC_BITS_512	9
1002 #define DC_BITS_128	7
1003 #define DC_BITS_64	6
1004 
1005 static u_int32_t
1006 dc_crc_mask(struct dc_softc *sc)
1007 {
1008 	/*
1009 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1010 	 * chips is only 128 bits wide.
1011 	 */
1012 	if (sc->dc_flags & DC_128BIT_HASH)
1013 		return ((1 << DC_BITS_128) - 1);
1014 
1015 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1016 	if (sc->dc_flags & DC_64BIT_HASH)
1017 		return ((1 << DC_BITS_64) - 1);
1018 
1019 	return ((1 << DC_BITS_512) - 1);
1020 }
1021 
1022 /*
1023  * 21143-style RX filter setup routine. Filter programming is done by
1024  * downloading a special setup frame into the TX engine. 21143, Macronix,
1025  * PNIC, PNIC II and Davicom chips are programmed this way.
1026  *
1027  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1028  * address (our node address) and a 512-bit hash filter for multicast
1029  * frames. We also sneak the broadcast address into the hash filter since
1030  * we need that too.
1031  */
1032 void dc_setfilt_21143(sc)
1033 	struct dc_softc		*sc;
1034 {
1035 	struct dc_desc		*sframe;
1036 	u_int32_t		h, crc_mask, *sp;
1037 	struct ifmultiaddr	*ifma;
1038 	struct ifnet		*ifp;
1039 	int			i;
1040 
1041 	ifp = &sc->arpcom.ac_if;
1042 
1043 	i = sc->dc_cdata.dc_tx_prod;
1044 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1045 	sc->dc_cdata.dc_tx_cnt++;
1046 	sframe = &sc->dc_ldata->dc_tx_list[i];
1047 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1048 	bzero((char *)sp, DC_SFRAME_LEN);
1049 
1050 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1051 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1052 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1053 
1054 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1055 
1056 	/* If we want promiscuous mode, set the allframes bit. */
1057 	if (ifp->if_flags & IFF_PROMISC)
1058 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1059 	else
1060 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1061 
1062 	if (ifp->if_flags & IFF_ALLMULTI)
1063 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1064 	else
1065 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1066 
1067 	crc_mask = dc_crc_mask(sc);
1068 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1069 	    ifma = ifma->ifma_link.le_next) {
1070 		if (ifma->ifma_addr->sa_family != AF_LINK)
1071 			continue;
1072 		h = ether_crc32_le(
1073 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1074 			ETHER_ADDR_LEN) & crc_mask;
1075 		sp[h >> 4] |= 1 << (h & 0xF);
1076 	}
1077 
1078 	if (ifp->if_flags & IFF_BROADCAST) {
1079 		h = ether_crc32_le(ifp->if_broadcastaddr,
1080 				   ETHER_ADDR_LEN) & crc_mask;
1081 		sp[h >> 4] |= 1 << (h & 0xF);
1082 	}
1083 
1084 	/* Set our MAC address */
1085 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1086 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1087 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1088 
1089 	sframe->dc_status = DC_TXSTAT_OWN;
1090 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1091 
1092 	/*
1093 	 * The PNIC takes an exceedingly long time to process its
1094 	 * setup frame; wait 10ms after posting the setup frame
1095 	 * before proceeding, just so it has time to swallow its
1096 	 * medicine.
1097 	 */
1098 	DELAY(10000);
1099 
1100 	ifp->if_timer = 5;
1101 
1102 	return;
1103 }
1104 
1105 void dc_setfilt_admtek(sc)
1106 	struct dc_softc		*sc;
1107 {
1108 	struct ifnet		*ifp;
1109 	int			h = 0;
1110 	u_int32_t		crc_mask;
1111 	u_int32_t		hashes[2] = { 0, 0 };
1112 	struct ifmultiaddr	*ifma;
1113 
1114 	ifp = &sc->arpcom.ac_if;
1115 
1116 	/* Init our MAC address */
1117 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1118 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1119 
1120 	/* If we want promiscuous mode, set the allframes bit. */
1121 	if (ifp->if_flags & IFF_PROMISC)
1122 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1123 	else
1124 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1125 
1126 	if (ifp->if_flags & IFF_ALLMULTI)
1127 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1128 	else
1129 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1130 
1131 	/* first, zot all the existing hash bits */
1132 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1133 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1134 
1135 	/*
1136 	 * If we're already in promisc or allmulti mode, we
1137 	 * don't have to bother programming the multicast filter.
1138 	 */
1139 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1140 		return;
1141 
1142 	/* now program new ones */
1143 	if (DC_IS_CENTAUR(sc))
1144 		crc_mask = dc_crc_mask(sc);
1145 	else
1146 		crc_mask = 0x3f;
1147 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1148 	    ifma = ifma->ifma_link.le_next) {
1149 		if (ifma->ifma_addr->sa_family != AF_LINK)
1150 			continue;
1151 		if (DC_IS_CENTAUR(sc)) {
1152 			h = ether_crc32_le(
1153 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1154 				ETHER_ADDR_LEN) & crc_mask;
1155 		} else {
1156 			h = ether_crc32_be(
1157 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1158 				ETHER_ADDR_LEN);
1159 			h = (h >> 26) & crc_mask;
1160 		}
1161 		if (h < 32)
1162 			hashes[0] |= (1 << h);
1163 		else
1164 			hashes[1] |= (1 << (h - 32));
1165 	}
1166 
1167 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1168 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1169 
1170 	return;
1171 }
1172 
1173 void dc_setfilt_asix(sc)
1174 	struct dc_softc		*sc;
1175 {
1176 	struct ifnet		*ifp;
1177 	int			h = 0;
1178 	u_int32_t		hashes[2] = { 0, 0 };
1179 	struct ifmultiaddr	*ifma;
1180 
1181 	ifp = &sc->arpcom.ac_if;
1182 
1183         /* Init our MAC address */
1184         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1185         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1186 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1187         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1188         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1189 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1190 
1191 	/* If we want promiscuous mode, set the allframes bit. */
1192 	if (ifp->if_flags & IFF_PROMISC)
1193 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1194 	else
1195 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1196 
1197 	if (ifp->if_flags & IFF_ALLMULTI)
1198 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1199 	else
1200 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1201 
1202 	/*
1203 	 * The ASIX chip has a special bit to enable reception
1204 	 * of broadcast frames.
1205 	 */
1206 	if (ifp->if_flags & IFF_BROADCAST)
1207 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1208 	else
1209 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1210 
1211 	/* first, zot all the existing hash bits */
1212 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1213 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1214 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1215 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1216 
1217 	/*
1218 	 * If we're already in promisc or allmulti mode, we
1219 	 * don't have to bother programming the multicast filter.
1220 	 */
1221 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1222 		return;
1223 
1224 	/* now program new ones */
1225 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1226 	    ifma = ifma->ifma_link.le_next) {
1227 		if (ifma->ifma_addr->sa_family != AF_LINK)
1228 			continue;
1229 		h = ether_crc32_be(
1230 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1231 			ETHER_ADDR_LEN);
1232 		h = (h >> 26) & 0x3f;
1233 		if (h < 32)
1234 			hashes[0] |= (1 << h);
1235 		else
1236 			hashes[1] |= (1 << (h - 32));
1237 	}
1238 
1239 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1240 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1241 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1242 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1243 
1244 	return;
1245 }
1246 
1247 static void dc_setfilt(sc)
1248 	struct dc_softc		*sc;
1249 {
1250 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1251 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1252 		dc_setfilt_21143(sc);
1253 
1254 	if (DC_IS_ASIX(sc))
1255 		dc_setfilt_asix(sc);
1256 
1257 	if (DC_IS_ADMTEK(sc))
1258 		dc_setfilt_admtek(sc);
1259 
1260 	return;
1261 }
1262 
1263 /*
1264  * In order to fiddle with the
1265  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1266  * first have to put the transmit and/or receive logic in the idle state.
1267  */
1268 static void dc_setcfg(sc, media)
1269 	struct dc_softc		*sc;
1270 	int			media;
1271 {
1272 	int			i, restart = 0;
1273 	u_int32_t		isr;
1274 
1275 	if (IFM_SUBTYPE(media) == IFM_NONE)
1276 		return;
1277 
1278 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1279 		restart = 1;
1280 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1281 
1282 		for (i = 0; i < DC_TIMEOUT; i++) {
1283 			isr = CSR_READ_4(sc, DC_ISR);
1284 			if (isr & DC_ISR_TX_IDLE ||
1285 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1286 				break;
1287 			DELAY(10);
1288 		}
1289 
1290 		if (i == DC_TIMEOUT) {
1291 			if_printf(&sc->arpcom.ac_if,
1292 			    "failed to force tx and rx to idle state\n");
1293 		}
1294 	}
1295 
1296 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1297 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1298 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1299 		if (sc->dc_pmode == DC_PMODE_MII) {
1300 			int	watchdogreg;
1301 
1302 			if (DC_IS_INTEL(sc)) {
1303 			/* there's a write enable bit here that reads as 1 */
1304 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1305 				watchdogreg &= ~DC_WDOG_CTLWREN;
1306 				watchdogreg |= DC_WDOG_JABBERDIS;
1307 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1308 			} else {
1309 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1310 			}
1311 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1312 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1313 			if (sc->dc_type == DC_TYPE_98713)
1314 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1315 				    DC_NETCFG_SCRAMBLER));
1316 			if (!DC_IS_DAVICOM(sc))
1317 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1318 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1319 			if (DC_IS_INTEL(sc))
1320 				dc_apply_fixup(sc, IFM_AUTO);
1321 		} else {
1322 			if (DC_IS_PNIC(sc)) {
1323 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1324 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1325 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1326 			}
1327 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1328 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1329 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1330 			if (DC_IS_INTEL(sc))
1331 				dc_apply_fixup(sc,
1332 				    (media & IFM_GMASK) == IFM_FDX ?
1333 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1334 		}
1335 	}
1336 
1337 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1338 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1339 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1340 		if (sc->dc_pmode == DC_PMODE_MII) {
1341 			int	watchdogreg;
1342 
1343 			/* there's a write enable bit here that reads as 1 */
1344 			if (DC_IS_INTEL(sc)) {
1345 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1346 				watchdogreg &= ~DC_WDOG_CTLWREN;
1347 				watchdogreg |= DC_WDOG_JABBERDIS;
1348 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1349 			} else {
1350 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1351 			}
1352 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1353 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1354 			if (sc->dc_type == DC_TYPE_98713)
1355 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1356 			if (!DC_IS_DAVICOM(sc))
1357 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1358 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1359 			if (DC_IS_INTEL(sc))
1360 				dc_apply_fixup(sc, IFM_AUTO);
1361 		} else {
1362 			if (DC_IS_PNIC(sc)) {
1363 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1364 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1365 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1366 			}
1367 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1368 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1369 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1370 			if (DC_IS_INTEL(sc)) {
1371 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1372 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1373 				if ((media & IFM_GMASK) == IFM_FDX)
1374 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1375 				else
1376 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1377 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1378 				DC_CLRBIT(sc, DC_10BTCTRL,
1379 				    DC_TCTL_AUTONEGENBL);
1380 				dc_apply_fixup(sc,
1381 				    (media & IFM_GMASK) == IFM_FDX ?
1382 				    IFM_10_T|IFM_FDX : IFM_10_T);
1383 				DELAY(20000);
1384 			}
1385 		}
1386 	}
1387 
1388 	/*
1389 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1390 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1391 	 * on the external MII port.
1392 	 */
1393 	if (DC_IS_DAVICOM(sc)) {
1394 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1395 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1396 			sc->dc_link = 1;
1397 		} else {
1398 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1399 		}
1400 	}
1401 
1402 	if ((media & IFM_GMASK) == IFM_FDX) {
1403 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1404 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1405 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1406 	} else {
1407 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1408 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1409 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1410 	}
1411 
1412 	if (restart)
1413 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1414 
1415 	return;
1416 }
1417 
1418 static void dc_reset(sc)
1419 	struct dc_softc		*sc;
1420 {
1421 	int		i;
1422 
1423 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1424 
1425 	for (i = 0; i < DC_TIMEOUT; i++) {
1426 		DELAY(10);
1427 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1428 			break;
1429 	}
1430 
1431 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1432 		DELAY(10000);
1433 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1434 		i = 0;
1435 	}
1436 
1437 	if (i == DC_TIMEOUT)
1438 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1439 
1440 	/* Wait a little while for the chip to get its brains in order. */
1441 	DELAY(1000);
1442 
1443 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1444 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1445 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1446 
1447 	/*
1448 	 * Bring the SIA out of reset. In some cases, it looks
1449 	 * like failing to unreset the SIA soon enough gets it
1450 	 * into a state where it will never come out of reset
1451 	 * until we reset the whole chip again.
1452 	 */
1453 	if (DC_IS_INTEL(sc)) {
1454 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1455 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1456 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1457 	}
1458 
1459         return;
1460 }
1461 
1462 static struct dc_type *dc_devtype(dev)
1463 	device_t		dev;
1464 {
1465 	struct dc_type		*t;
1466 	u_int32_t		rev;
1467 
1468 	t = dc_devs;
1469 
1470 	while(t->dc_name != NULL) {
1471 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1472 		    (pci_get_device(dev) == t->dc_did)) {
1473 			/* Check the PCI revision */
1474 			rev = pci_get_revid(dev);
1475 			if (t->dc_did == DC_DEVICEID_98713 &&
1476 			    rev >= DC_REVISION_98713A)
1477 				t++;
1478 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1479 			    rev >= DC_REVISION_98713A)
1480 				t++;
1481 			if (t->dc_did == DC_DEVICEID_987x5 &&
1482 			    rev >= DC_REVISION_98715AEC_C)
1483 				t++;
1484 			if (t->dc_did == DC_DEVICEID_987x5 &&
1485 			    rev >= DC_REVISION_98725)
1486 				t++;
1487 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1488 			    rev >= DC_REVISION_88141)
1489 				t++;
1490 			if (t->dc_did == DC_DEVICEID_82C168 &&
1491 			    rev >= DC_REVISION_82C169)
1492 				t++;
1493 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1494 			    rev >= DC_REVISION_DM9102A)
1495 				t++;
1496 			return(t);
1497 		}
1498 		t++;
1499 	}
1500 
1501 	return(NULL);
1502 }
1503 
1504 /*
1505  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1506  * IDs against our list and return a device name if we find a match.
1507  * We do a little bit of extra work to identify the exact type of
1508  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1509  * but different revision IDs. The same is true for 98715/98715A
1510  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1511  * cases, the exact chip revision affects driver behavior.
1512  */
1513 static int dc_probe(dev)
1514 	device_t		dev;
1515 {
1516 	struct dc_type		*t;
1517 
1518 	t = dc_devtype(dev);
1519 
1520 	if (t != NULL) {
1521 		device_set_desc(dev, t->dc_name);
1522 		return(0);
1523 	}
1524 
1525 	return(ENXIO);
1526 }
1527 
1528 static void dc_acpi(dev)
1529 	device_t		dev;
1530 {
1531 	u_int32_t		r, cptr;
1532 
1533 	/* Find the location of the capabilities block */
1534 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1535 
1536 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1537 	if (r == 0x01) {
1538 
1539 		r = pci_read_config(dev, cptr + 4, 4);
1540 		if (r & DC_PSTATE_D3) {
1541 			u_int32_t		iobase, membase, irq;
1542 			struct dc_softc		*sc;
1543 
1544 			/* Save important PCI config data. */
1545 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1546 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1547 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1548 
1549 			sc = device_get_softc(dev);
1550 			/* Reset the power state. */
1551 			if_printf(&sc->arpcom.ac_if,
1552 				  "chip is in D%d power mode "
1553 				  "-- setting to D0\n", r & DC_PSTATE_D3);
1554 			r &= 0xFFFFFFFC;
1555 			pci_write_config(dev, cptr + 4, r, 4);
1556 
1557 			/* Restore PCI config data. */
1558 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1559 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1560 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1561 		}
1562 	}
1563 }
1564 
1565 static void dc_apply_fixup(sc, media)
1566 	struct dc_softc		*sc;
1567 	int			media;
1568 {
1569 	struct dc_mediainfo	*m;
1570 	u_int8_t		*p;
1571 	int			i;
1572 	u_int32_t		reg;
1573 
1574 	m = sc->dc_mi;
1575 
1576 	while (m != NULL) {
1577 		if (m->dc_media == media)
1578 			break;
1579 		m = m->dc_next;
1580 	}
1581 
1582 	if (m == NULL)
1583 		return;
1584 
1585 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1586 		reg = (p[0] | (p[1] << 8)) << 16;
1587 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1588 	}
1589 
1590 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1591 		reg = (p[0] | (p[1] << 8)) << 16;
1592 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1593 	}
1594 
1595 	return;
1596 }
1597 
1598 static void dc_decode_leaf_sia(sc, l)
1599 	struct dc_softc		*sc;
1600 	struct dc_eblock_sia	*l;
1601 {
1602 	struct dc_mediainfo	*m;
1603 
1604 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1605 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1606 		m->dc_media = IFM_10_T;
1607 
1608 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1609 		m->dc_media = IFM_10_T|IFM_FDX;
1610 
1611 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1612 		m->dc_media = IFM_10_2;
1613 
1614 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1615 		m->dc_media = IFM_10_5;
1616 
1617 	m->dc_gp_len = 2;
1618 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1619 
1620 	m->dc_next = sc->dc_mi;
1621 	sc->dc_mi = m;
1622 
1623 	sc->dc_pmode = DC_PMODE_SIA;
1624 
1625 	return;
1626 }
1627 
1628 static void dc_decode_leaf_sym(sc, l)
1629 	struct dc_softc		*sc;
1630 	struct dc_eblock_sym	*l;
1631 {
1632 	struct dc_mediainfo	*m;
1633 
1634 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1635 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1636 		m->dc_media = IFM_100_TX;
1637 
1638 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1639 		m->dc_media = IFM_100_TX|IFM_FDX;
1640 
1641 	m->dc_gp_len = 2;
1642 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1643 
1644 	m->dc_next = sc->dc_mi;
1645 	sc->dc_mi = m;
1646 
1647 	sc->dc_pmode = DC_PMODE_SYM;
1648 
1649 	return;
1650 }
1651 
1652 static void dc_decode_leaf_mii(sc, l)
1653 	struct dc_softc		*sc;
1654 	struct dc_eblock_mii	*l;
1655 {
1656 	u_int8_t		*p;
1657 	struct dc_mediainfo	*m;
1658 
1659 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1660 	/* We abuse IFM_AUTO to represent MII. */
1661 	m->dc_media = IFM_AUTO;
1662 	m->dc_gp_len = l->dc_gpr_len;
1663 
1664 	p = (u_int8_t *)l;
1665 	p += sizeof(struct dc_eblock_mii);
1666 	m->dc_gp_ptr = p;
1667 	p += 2 * l->dc_gpr_len;
1668 	m->dc_reset_len = *p;
1669 	p++;
1670 	m->dc_reset_ptr = p;
1671 
1672 	m->dc_next = sc->dc_mi;
1673 	sc->dc_mi = m;
1674 
1675 	return;
1676 }
1677 
1678 static void dc_read_srom(sc, bits)
1679 	struct dc_softc		*sc;
1680 	int			bits;
1681 {
1682 	int size;
1683 
1684 	size = 2 << bits;
1685 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1686 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1687 }
1688 
1689 static void dc_parse_21143_srom(sc)
1690 	struct dc_softc		*sc;
1691 {
1692 	struct dc_leaf_hdr	*lhdr;
1693 	struct dc_eblock_hdr	*hdr;
1694 	int			i, loff;
1695 	char			*ptr;
1696 	int			have_mii;
1697 
1698 	have_mii = 0;
1699 	loff = sc->dc_srom[27];
1700 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1701 
1702 	ptr = (char *)lhdr;
1703 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1704 	/*
1705 	 * Look if we got a MII media block.
1706 	 */
1707 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1708 		hdr = (struct dc_eblock_hdr *)ptr;
1709 		if (hdr->dc_type == DC_EBLOCK_MII)
1710 		    have_mii++;
1711 
1712 		ptr += (hdr->dc_len & 0x7F);
1713 		ptr++;
1714 	}
1715 
1716 	/*
1717 	 * Do the same thing again. Only use SIA and SYM media
1718 	 * blocks if no MII media block is available.
1719 	 */
1720 	ptr = (char *)lhdr;
1721 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1722 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1723 		hdr = (struct dc_eblock_hdr *)ptr;
1724 		switch(hdr->dc_type) {
1725 		case DC_EBLOCK_MII:
1726 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1727 			break;
1728 		case DC_EBLOCK_SIA:
1729 			if (! have_mii)
1730 				dc_decode_leaf_sia(sc,
1731 				    (struct dc_eblock_sia *)hdr);
1732 			break;
1733 		case DC_EBLOCK_SYM:
1734 			if (! have_mii)
1735 				dc_decode_leaf_sym(sc,
1736 				    (struct dc_eblock_sym *)hdr);
1737 			break;
1738 		default:
1739 			/* Don't care. Yet. */
1740 			break;
1741 		}
1742 		ptr += (hdr->dc_len & 0x7F);
1743 		ptr++;
1744 	}
1745 
1746 	return;
1747 }
1748 
1749 /*
1750  * Attach the interface. Allocate softc structures, do ifmedia
1751  * setup and ethernet/BPF attach.
1752  */
1753 static int dc_attach(dev)
1754 	device_t		dev;
1755 {
1756 	int			s, tmp = 0;
1757 	u_char			eaddr[ETHER_ADDR_LEN];
1758 	u_int32_t		command;
1759 	struct dc_softc		*sc;
1760 	struct ifnet		*ifp;
1761 	u_int32_t		revision;
1762 	int			error = 0, rid, mac_offset;
1763 
1764 	s = splimp();
1765 
1766 	sc = device_get_softc(dev);
1767 	bzero(sc, sizeof(struct dc_softc));
1768 	callout_init(&sc->dc_stat_timer);
1769 
1770 	ifp = &sc->arpcom.ac_if;
1771 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1772 
1773 	/*
1774 	 * Handle power management nonsense.
1775 	 */
1776 	dc_acpi(dev);
1777 
1778 	/*
1779 	 * Map control/status registers.
1780 	 */
1781 	pci_enable_busmaster(dev);
1782 	pci_enable_io(dev, SYS_RES_IOPORT);
1783 	pci_enable_io(dev, SYS_RES_MEMORY);
1784 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1785 
1786 #ifdef DC_USEIOSPACE
1787 	if (!(command & PCIM_CMD_PORTEN)) {
1788 		device_printf(dev, "failed to enable I/O ports!\n");
1789 		error = ENXIO;
1790 		goto fail;
1791 	}
1792 #else
1793 	if (!(command & PCIM_CMD_MEMEN)) {
1794 		device_printf(dev, "failed to enable memory mapping!\n");
1795 		error = ENXIO;
1796 		goto fail;
1797 	}
1798 #endif
1799 
1800 	rid = DC_RID;
1801 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1802 
1803 	if (sc->dc_res == NULL) {
1804 		device_printf(dev, "couldn't map ports/memory\n");
1805 		error = ENXIO;
1806 		goto fail;
1807 	}
1808 
1809 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1810 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1811 
1812 	/* Allocate interrupt */
1813 	rid = 0;
1814 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1815 	    RF_SHAREABLE | RF_ACTIVE);
1816 
1817 	if (sc->dc_irq == NULL) {
1818 		device_printf(dev, "couldn't map interrupt\n");
1819 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1820 		error = ENXIO;
1821 		goto fail;
1822 	}
1823 
1824 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1825 			       dc_intr, sc, &sc->dc_intrhand, NULL);
1826 
1827 	if (error) {
1828 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1829 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1830 		device_printf(dev, "couldn't set up irq\n");
1831 		goto fail;
1832 	}
1833 
1834 	/* Need this info to decide on a chip type. */
1835 	sc->dc_info = dc_devtype(dev);
1836 	revision = pci_get_revid(dev);
1837 
1838 	/* Get the eeprom width, but PNIC has diff eeprom */
1839 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1840 		dc_eeprom_width(sc);
1841 
1842 	switch(sc->dc_info->dc_did) {
1843 	case DC_DEVICEID_21143:
1844 		sc->dc_type = DC_TYPE_21143;
1845 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1846 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1847 		/* Save EEPROM contents so we can parse them later. */
1848 		dc_read_srom(sc, sc->dc_romwidth);
1849 		break;
1850 	case DC_DEVICEID_DM9009:
1851 	case DC_DEVICEID_DM9100:
1852 	case DC_DEVICEID_DM9102:
1853 		sc->dc_type = DC_TYPE_DM9102;
1854 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1855 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1856 		sc->dc_pmode = DC_PMODE_MII;
1857 		/* Increase the latency timer value. */
1858 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1859 		command &= 0xFFFF00FF;
1860 		command |= 0x00008000;
1861 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1862 		break;
1863 	case DC_DEVICEID_AL981:
1864 		sc->dc_type = DC_TYPE_AL981;
1865 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1866 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1867 		sc->dc_pmode = DC_PMODE_MII;
1868 		dc_read_srom(sc, sc->dc_romwidth);
1869 		break;
1870 	case DC_DEVICEID_AN985:
1871 	case DC_DEVICEID_EN2242:
1872 	case DC_DEVICEID_3CSOHOB:
1873 		sc->dc_type = DC_TYPE_AN985;
1874 		sc->dc_flags |= DC_64BIT_HASH;
1875 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1876 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1877 		sc->dc_pmode = DC_PMODE_MII;
1878 		dc_read_srom(sc, sc->dc_romwidth);
1879 		break;
1880 	case DC_DEVICEID_98713:
1881 	case DC_DEVICEID_98713_CP:
1882 		if (revision < DC_REVISION_98713A) {
1883 			sc->dc_type = DC_TYPE_98713;
1884 		}
1885 		if (revision >= DC_REVISION_98713A) {
1886 			sc->dc_type = DC_TYPE_98713A;
1887 			sc->dc_flags |= DC_21143_NWAY;
1888 		}
1889 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1890 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1891 		break;
1892 	case DC_DEVICEID_987x5:
1893 	case DC_DEVICEID_EN1217:
1894 		/*
1895 		 * Macronix MX98715AEC-C/D/E parts have only a
1896 		 * 128-bit hash table. We need to deal with these
1897 		 * in the same manner as the PNIC II so that we
1898 		 * get the right number of bits out of the
1899 		 * CRC routine.
1900 		 */
1901 		if (revision >= DC_REVISION_98715AEC_C &&
1902 		    revision < DC_REVISION_98725)
1903 			sc->dc_flags |= DC_128BIT_HASH;
1904 		sc->dc_type = DC_TYPE_987x5;
1905 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1906 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1907 		break;
1908 	case DC_DEVICEID_98727:
1909 		sc->dc_type = DC_TYPE_987x5;
1910 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1911 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1912 		break;
1913 	case DC_DEVICEID_82C115:
1914 		sc->dc_type = DC_TYPE_PNICII;
1915 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1916 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1917 		break;
1918 	case DC_DEVICEID_82C168:
1919 		sc->dc_type = DC_TYPE_PNIC;
1920 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1921 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1922 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1923 		if (revision < DC_REVISION_82C169)
1924 			sc->dc_pmode = DC_PMODE_SYM;
1925 		break;
1926 	case DC_DEVICEID_AX88140A:
1927 		sc->dc_type = DC_TYPE_ASIX;
1928 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1929 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1930 		sc->dc_pmode = DC_PMODE_MII;
1931 		break;
1932 	case DC_DEVICEID_RS7112:
1933 		sc->dc_type = DC_TYPE_CONEXANT;
1934 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1935 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1936 		sc->dc_pmode = DC_PMODE_MII;
1937 		dc_read_srom(sc, sc->dc_romwidth);
1938 		break;
1939 	default:
1940 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
1941 		break;
1942 	}
1943 
1944 	/* Save the cache line size. */
1945 	if (DC_IS_DAVICOM(sc))
1946 		sc->dc_cachesize = 0;
1947 	else
1948 		sc->dc_cachesize = pci_read_config(dev,
1949 		    DC_PCI_CFLT, 4) & 0xFF;
1950 
1951 	/* Reset the adapter. */
1952 	dc_reset(sc);
1953 
1954 	/* Take 21143 out of snooze mode */
1955 	if (DC_IS_INTEL(sc)) {
1956 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1957 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1958 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1959 	}
1960 
1961 	/*
1962 	 * Try to learn something about the supported media.
1963 	 * We know that ASIX and ADMtek and Davicom devices
1964 	 * will *always* be using MII media, so that's a no-brainer.
1965 	 * The tricky ones are the Macronix/PNIC II and the
1966 	 * Intel 21143.
1967 	 */
1968 	if (DC_IS_INTEL(sc))
1969 		dc_parse_21143_srom(sc);
1970 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1971 		if (sc->dc_type == DC_TYPE_98713)
1972 			sc->dc_pmode = DC_PMODE_MII;
1973 		else
1974 			sc->dc_pmode = DC_PMODE_SYM;
1975 	} else if (!sc->dc_pmode)
1976 		sc->dc_pmode = DC_PMODE_MII;
1977 
1978 	/*
1979 	 * Get station address from the EEPROM.
1980 	 */
1981 	switch(sc->dc_type) {
1982 	case DC_TYPE_98713:
1983 	case DC_TYPE_98713A:
1984 	case DC_TYPE_987x5:
1985 	case DC_TYPE_PNICII:
1986 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1987 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1988 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1989 		break;
1990 	case DC_TYPE_PNIC:
1991 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1992 		break;
1993 	case DC_TYPE_DM9102:
1994 	case DC_TYPE_21143:
1995 	case DC_TYPE_ASIX:
1996 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1997 		break;
1998 	case DC_TYPE_AL981:
1999 	case DC_TYPE_AN985:
2000 		bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr,
2001 		    ETHER_ADDR_LEN);
2002 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
2003 		break;
2004 	case DC_TYPE_CONEXANT:
2005 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2006 		break;
2007 	default:
2008 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2009 		break;
2010 	}
2011 
2012 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2013 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2014 
2015 	if (sc->dc_ldata == NULL) {
2016 		device_printf(dev, "no memory for list buffers!\n");
2017 		if (sc->dc_pnic_rx_buf != NULL)
2018 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2019 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2020 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2021 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2022 		error = ENXIO;
2023 		goto fail;
2024 	}
2025 
2026 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2027 
2028 	ifp->if_softc = sc;
2029 	ifp->if_mtu = ETHERMTU;
2030 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2031 	ifp->if_ioctl = dc_ioctl;
2032 	ifp->if_start = dc_start;
2033 #ifdef DEVICE_POLLING
2034 	ifp->if_poll = dc_poll;
2035 #endif
2036 	ifp->if_watchdog = dc_watchdog;
2037 	ifp->if_init = dc_init;
2038 	ifp->if_baudrate = 10000000;
2039 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2040 	ifq_set_ready(&ifp->if_snd);
2041 
2042 	/*
2043 	 * Do MII setup. If this is a 21143, check for a PHY on the
2044 	 * MII bus after applying any necessary fixups to twiddle the
2045 	 * GPIO bits. If we don't end up finding a PHY, restore the
2046 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2047 	 * driver instead.
2048 	 */
2049 	if (DC_IS_INTEL(sc)) {
2050 		dc_apply_fixup(sc, IFM_AUTO);
2051 		tmp = sc->dc_pmode;
2052 		sc->dc_pmode = DC_PMODE_MII;
2053 	}
2054 
2055 	error = mii_phy_probe(dev, &sc->dc_miibus,
2056 	    dc_ifmedia_upd, dc_ifmedia_sts);
2057 
2058 	if (error && DC_IS_INTEL(sc)) {
2059 		sc->dc_pmode = tmp;
2060 		if (sc->dc_pmode != DC_PMODE_SIA)
2061 			sc->dc_pmode = DC_PMODE_SYM;
2062 		sc->dc_flags |= DC_21143_NWAY;
2063 		mii_phy_probe(dev, &sc->dc_miibus,
2064 		    dc_ifmedia_upd, dc_ifmedia_sts);
2065 		/*
2066 		 * For non-MII cards, we need to have the 21143
2067 		 * drive the LEDs. Except there are some systems
2068 		 * like the NEC VersaPro NoteBook PC which have no
2069 		 * LEDs, and twiddling these bits has adverse effects
2070 		 * on them. (I.e. you suddenly can't get a link.)
2071 		 */
2072 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2073 			sc->dc_flags |= DC_TULIP_LEDS;
2074 		error = 0;
2075 	}
2076 
2077 	if (error) {
2078 		device_printf(dev, "MII without any PHY!\n");
2079 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data),
2080 		    M_DEVBUF);
2081 		if (sc->dc_pnic_rx_buf != NULL)
2082 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2083 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2084 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2085 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2086 		error = ENXIO;
2087 		goto fail;
2088 	}
2089 
2090 	/*
2091 	 * Call MI attach routine.
2092 	 */
2093 	ether_ifattach(ifp, eaddr);
2094 
2095 	if (DC_IS_ADMTEK(sc)) {
2096 		/*
2097 		 * Set automatic TX underrun recovery for the ADMtek chips
2098 		 */
2099 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2100 	}
2101 
2102 	/*
2103 	 * Tell the upper layer(s) we support long frames.
2104 	 */
2105 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2106 
2107 fail:
2108 	splx(s);
2109 
2110 	return(error);
2111 }
2112 
2113 static int dc_detach(dev)
2114 	device_t		dev;
2115 {
2116 	struct dc_softc		*sc;
2117 	struct ifnet		*ifp;
2118 	int			s;
2119 	struct dc_mediainfo	*m;
2120 
2121 	s = splimp();
2122 
2123 	sc = device_get_softc(dev);
2124 	ifp = &sc->arpcom.ac_if;
2125 
2126 	dc_stop(sc);
2127 	ether_ifdetach(ifp);
2128 
2129 	bus_generic_detach(dev);
2130 	device_delete_child(dev, sc->dc_miibus);
2131 
2132 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2133 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2134 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2135 
2136 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2137 	if (sc->dc_pnic_rx_buf != NULL)
2138 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2139 
2140 	while(sc->dc_mi != NULL) {
2141 		m = sc->dc_mi->dc_next;
2142 		free(sc->dc_mi, M_DEVBUF);
2143 		sc->dc_mi = m;
2144 	}
2145 	free(sc->dc_srom, M_DEVBUF);
2146 
2147 	splx(s);
2148 
2149 	return(0);
2150 }
2151 
2152 /*
2153  * Initialize the transmit descriptors.
2154  */
2155 static int dc_list_tx_init(sc)
2156 	struct dc_softc		*sc;
2157 {
2158 	struct dc_chain_data	*cd;
2159 	struct dc_list_data	*ld;
2160 	int			i;
2161 
2162 	cd = &sc->dc_cdata;
2163 	ld = sc->dc_ldata;
2164 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2165 		if (i == (DC_TX_LIST_CNT - 1)) {
2166 			ld->dc_tx_list[i].dc_next =
2167 			    vtophys(&ld->dc_tx_list[0]);
2168 		} else {
2169 			ld->dc_tx_list[i].dc_next =
2170 			    vtophys(&ld->dc_tx_list[i + 1]);
2171 		}
2172 		cd->dc_tx_chain[i] = NULL;
2173 		ld->dc_tx_list[i].dc_data = 0;
2174 		ld->dc_tx_list[i].dc_ctl = 0;
2175 	}
2176 
2177 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2178 
2179 	return(0);
2180 }
2181 
2182 
2183 /*
2184  * Initialize the RX descriptors and allocate mbufs for them. Note that
2185  * we arrange the descriptors in a closed ring, so that the last descriptor
2186  * points back to the first.
2187  */
2188 static int dc_list_rx_init(sc)
2189 	struct dc_softc		*sc;
2190 {
2191 	struct dc_chain_data	*cd;
2192 	struct dc_list_data	*ld;
2193 	int			i;
2194 
2195 	cd = &sc->dc_cdata;
2196 	ld = sc->dc_ldata;
2197 
2198 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2199 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2200 			return(ENOBUFS);
2201 		if (i == (DC_RX_LIST_CNT - 1)) {
2202 			ld->dc_rx_list[i].dc_next =
2203 			    vtophys(&ld->dc_rx_list[0]);
2204 		} else {
2205 			ld->dc_rx_list[i].dc_next =
2206 			    vtophys(&ld->dc_rx_list[i + 1]);
2207 		}
2208 	}
2209 
2210 	cd->dc_rx_prod = 0;
2211 
2212 	return(0);
2213 }
2214 
2215 /*
2216  * Initialize an RX descriptor and attach an MBUF cluster.
2217  */
2218 static int dc_newbuf(sc, i, m)
2219 	struct dc_softc		*sc;
2220 	int			i;
2221 	struct mbuf		*m;
2222 {
2223 	struct mbuf		*m_new = NULL;
2224 	struct dc_desc		*c;
2225 
2226 	c = &sc->dc_ldata->dc_rx_list[i];
2227 
2228 	if (m == NULL) {
2229 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
2230 		if (m_new == NULL)
2231 			return(ENOBUFS);
2232 
2233 		MCLGET(m_new, MB_DONTWAIT);
2234 		if (!(m_new->m_flags & M_EXT)) {
2235 			m_freem(m_new);
2236 			return(ENOBUFS);
2237 		}
2238 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2239 	} else {
2240 		m_new = m;
2241 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2242 		m_new->m_data = m_new->m_ext.ext_buf;
2243 	}
2244 
2245 	m_adj(m_new, sizeof(u_int64_t));
2246 
2247 	/*
2248 	 * If this is a PNIC chip, zero the buffer. This is part
2249 	 * of the workaround for the receive bug in the 82c168 and
2250 	 * 82c169 chips.
2251 	 */
2252 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2253 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2254 
2255 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2256 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2257 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2258 	c->dc_status = DC_RXSTAT_OWN;
2259 
2260 	return(0);
2261 }
2262 
2263 /*
2264  * Grrrrr.
2265  * The PNIC chip has a terrible bug in it that manifests itself during
2266  * periods of heavy activity. The exact mode of failure if difficult to
2267  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2268  * will happen on slow machines. The bug is that sometimes instead of
2269  * uploading one complete frame during reception, it uploads what looks
2270  * like the entire contents of its FIFO memory. The frame we want is at
2271  * the end of the whole mess, but we never know exactly how much data has
2272  * been uploaded, so salvaging the frame is hard.
2273  *
2274  * There is only one way to do it reliably, and it's disgusting.
2275  * Here's what we know:
2276  *
2277  * - We know there will always be somewhere between one and three extra
2278  *   descriptors uploaded.
2279  *
2280  * - We know the desired received frame will always be at the end of the
2281  *   total data upload.
2282  *
2283  * - We know the size of the desired received frame because it will be
2284  *   provided in the length field of the status word in the last descriptor.
2285  *
2286  * Here's what we do:
2287  *
2288  * - When we allocate buffers for the receive ring, we bzero() them.
2289  *   This means that we know that the buffer contents should be all
2290  *   zeros, except for data uploaded by the chip.
2291  *
2292  * - We also force the PNIC chip to upload frames that include the
2293  *   ethernet CRC at the end.
2294  *
2295  * - We gather all of the bogus frame data into a single buffer.
2296  *
2297  * - We then position a pointer at the end of this buffer and scan
2298  *   backwards until we encounter the first non-zero byte of data.
2299  *   This is the end of the received frame. We know we will encounter
2300  *   some data at the end of the frame because the CRC will always be
2301  *   there, so even if the sender transmits a packet of all zeros,
2302  *   we won't be fooled.
2303  *
2304  * - We know the size of the actual received frame, so we subtract
2305  *   that value from the current pointer location. This brings us
2306  *   to the start of the actual received packet.
2307  *
2308  * - We copy this into an mbuf and pass it on, along with the actual
2309  *   frame length.
2310  *
2311  * The performance hit is tremendous, but it beats dropping frames all
2312  * the time.
2313  */
2314 
2315 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2316 static void dc_pnic_rx_bug_war(sc, idx)
2317 	struct dc_softc		*sc;
2318 	int			idx;
2319 {
2320 	struct dc_desc		*cur_rx;
2321 	struct dc_desc		*c = NULL;
2322 	struct mbuf		*m = NULL;
2323 	unsigned char		*ptr;
2324 	int			i, total_len;
2325 	u_int32_t		rxstat = 0;
2326 
2327 	i = sc->dc_pnic_rx_bug_save;
2328 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2329 	ptr = sc->dc_pnic_rx_buf;
2330 	bzero(ptr, DC_RXLEN * 5);
2331 
2332 	/* Copy all the bytes from the bogus buffers. */
2333 	while (1) {
2334 		c = &sc->dc_ldata->dc_rx_list[i];
2335 		rxstat = c->dc_status;
2336 		m = sc->dc_cdata.dc_rx_chain[i];
2337 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2338 		ptr += DC_RXLEN;
2339 		/* If this is the last buffer, break out. */
2340 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2341 			break;
2342 		dc_newbuf(sc, i, m);
2343 		DC_INC(i, DC_RX_LIST_CNT);
2344 	}
2345 
2346 	/* Find the length of the actual receive frame. */
2347 	total_len = DC_RXBYTES(rxstat);
2348 
2349 	/* Scan backwards until we hit a non-zero byte. */
2350 	while(*ptr == 0x00)
2351 		ptr--;
2352 
2353 	/* Round off. */
2354 	if ((uintptr_t)(ptr) & 0x3)
2355 		ptr -= 1;
2356 
2357 	/* Now find the start of the frame. */
2358 	ptr -= total_len;
2359 	if (ptr < sc->dc_pnic_rx_buf)
2360 		ptr = sc->dc_pnic_rx_buf;
2361 
2362 	/*
2363 	 * Now copy the salvaged frame to the last mbuf and fake up
2364 	 * the status word to make it look like a successful
2365  	 * frame reception.
2366 	 */
2367 	dc_newbuf(sc, i, m);
2368 	bcopy(ptr, mtod(m, char *), total_len);
2369 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2370 
2371 	return;
2372 }
2373 
2374 /*
2375  * This routine searches the RX ring for dirty descriptors in the
2376  * event that the rxeof routine falls out of sync with the chip's
2377  * current descriptor pointer. This may happen sometimes as a result
2378  * of a "no RX buffer available" condition that happens when the chip
2379  * consumes all of the RX buffers before the driver has a chance to
2380  * process the RX ring. This routine may need to be called more than
2381  * once to bring the driver back in sync with the chip, however we
2382  * should still be getting RX DONE interrupts to drive the search
2383  * for new packets in the RX ring, so we should catch up eventually.
2384  */
2385 static int dc_rx_resync(sc)
2386 	struct dc_softc		*sc;
2387 {
2388 	int			i, pos;
2389 	struct dc_desc		*cur_rx;
2390 
2391 	pos = sc->dc_cdata.dc_rx_prod;
2392 
2393 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2394 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2395 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2396 			break;
2397 		DC_INC(pos, DC_RX_LIST_CNT);
2398 	}
2399 
2400 	/* If the ring really is empty, then just return. */
2401 	if (i == DC_RX_LIST_CNT)
2402 		return(0);
2403 
2404 	/* We've fallen behing the chip: catch it. */
2405 	sc->dc_cdata.dc_rx_prod = pos;
2406 
2407 	return(EAGAIN);
2408 }
2409 
2410 /*
2411  * A frame has been uploaded: pass the resulting mbuf chain up to
2412  * the higher level protocols.
2413  */
2414 static void dc_rxeof(sc)
2415 	struct dc_softc		*sc;
2416 {
2417         struct mbuf		*m;
2418         struct ifnet		*ifp;
2419 	struct dc_desc		*cur_rx;
2420 	int			i, total_len = 0;
2421 	u_int32_t		rxstat;
2422 
2423 	ifp = &sc->arpcom.ac_if;
2424 	i = sc->dc_cdata.dc_rx_prod;
2425 
2426 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2427 
2428 #ifdef DEVICE_POLLING
2429 		if (ifp->if_flags & IFF_POLLING) {
2430 			if (sc->rxcycles <= 0)
2431 				break;
2432 			sc->rxcycles--;
2433 		}
2434 #endif /* DEVICE_POLLING */
2435 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2436 		rxstat = cur_rx->dc_status;
2437 		m = sc->dc_cdata.dc_rx_chain[i];
2438 		total_len = DC_RXBYTES(rxstat);
2439 
2440 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2441 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2442 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2443 					sc->dc_pnic_rx_bug_save = i;
2444 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2445 					DC_INC(i, DC_RX_LIST_CNT);
2446 					continue;
2447 				}
2448 				dc_pnic_rx_bug_war(sc, i);
2449 				rxstat = cur_rx->dc_status;
2450 				total_len = DC_RXBYTES(rxstat);
2451 			}
2452 		}
2453 
2454 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2455 
2456 		/*
2457 		 * If an error occurs, update stats, clear the
2458 		 * status word and leave the mbuf cluster in place:
2459 		 * it should simply get re-used next time this descriptor
2460 		 * comes up in the ring.  However, don't report long
2461 		 * frames as errors since they could be vlans
2462 		 */
2463 		if ((rxstat & DC_RXSTAT_RXERR)){
2464 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2465 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2466 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2467 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2468 				ifp->if_ierrors++;
2469 				if (rxstat & DC_RXSTAT_COLLSEEN)
2470 					ifp->if_collisions++;
2471 				dc_newbuf(sc, i, m);
2472 				if (rxstat & DC_RXSTAT_CRCERR) {
2473 					DC_INC(i, DC_RX_LIST_CNT);
2474 					continue;
2475 				} else {
2476 					dc_init(sc);
2477 					return;
2478 				}
2479 			}
2480 		}
2481 
2482 		/* No errors; receive the packet. */
2483 		total_len -= ETHER_CRC_LEN;
2484 
2485 #ifdef __i386__
2486 		/*
2487 		 * On the x86 we do not have alignment problems, so try to
2488 		 * allocate a new buffer for the receive ring, and pass up
2489 		 * the one where the packet is already, saving the expensive
2490 		 * copy done in m_devget().
2491 		 * If we are on an architecture with alignment problems, or
2492 		 * if the allocation fails, then use m_devget and leave the
2493 		 * existing buffer in the receive ring.
2494 		 */
2495 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2496 			m->m_pkthdr.rcvif = ifp;
2497 			m->m_pkthdr.len = m->m_len = total_len;
2498 			DC_INC(i, DC_RX_LIST_CNT);
2499 		} else
2500 #endif
2501 		{
2502 			struct mbuf *m0;
2503 
2504 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2505 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2506 			dc_newbuf(sc, i, m);
2507 			DC_INC(i, DC_RX_LIST_CNT);
2508 			if (m0 == NULL) {
2509 				ifp->if_ierrors++;
2510 				continue;
2511 			}
2512 			m_adj(m0, ETHER_ALIGN);
2513 			m = m0;
2514 		}
2515 
2516 		ifp->if_ipackets++;
2517 		(*ifp->if_input)(ifp, m);
2518 	}
2519 
2520 	sc->dc_cdata.dc_rx_prod = i;
2521 }
2522 
2523 /*
2524  * A frame was downloaded to the chip. It's safe for us to clean up
2525  * the list buffers.
2526  */
2527 
2528 static void
2529 dc_txeof(sc)
2530 	struct dc_softc		*sc;
2531 {
2532 	struct dc_desc		*cur_tx = NULL;
2533 	struct ifnet		*ifp;
2534 	int			idx;
2535 
2536 	ifp = &sc->arpcom.ac_if;
2537 
2538 	/*
2539 	 * Go through our tx list and free mbufs for those
2540 	 * frames that have been transmitted.
2541 	 */
2542 	idx = sc->dc_cdata.dc_tx_cons;
2543 	while(idx != sc->dc_cdata.dc_tx_prod) {
2544 		u_int32_t		txstat;
2545 
2546 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2547 		txstat = cur_tx->dc_status;
2548 
2549 		if (txstat & DC_TXSTAT_OWN)
2550 			break;
2551 
2552 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2553 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2554 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2555 				/*
2556 				 * Yes, the PNIC is so brain damaged
2557 				 * that it will sometimes generate a TX
2558 				 * underrun error while DMAing the RX
2559 				 * filter setup frame. If we detect this,
2560 				 * we have to send the setup frame again,
2561 				 * or else the filter won't be programmed
2562 				 * correctly.
2563 				 */
2564 				if (DC_IS_PNIC(sc)) {
2565 					if (txstat & DC_TXSTAT_ERRSUM)
2566 						dc_setfilt(sc);
2567 				}
2568 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2569 			}
2570 			sc->dc_cdata.dc_tx_cnt--;
2571 			DC_INC(idx, DC_TX_LIST_CNT);
2572 			continue;
2573 		}
2574 
2575 		if (DC_IS_CONEXANT(sc)) {
2576 			/*
2577 			 * For some reason Conexant chips like
2578 			 * setting the CARRLOST flag even when
2579 			 * the carrier is there. In CURRENT we
2580 			 * have the same problem for Xircom
2581 			 * cards !
2582 			 */
2583 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2584 			    sc->dc_pmode == DC_PMODE_MII &&
2585 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2586 			    DC_TXSTAT_NOCARRIER)))
2587 				txstat &= ~DC_TXSTAT_ERRSUM;
2588 		} else {
2589 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2590 			    sc->dc_pmode == DC_PMODE_MII &&
2591 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2592 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2593 				txstat &= ~DC_TXSTAT_ERRSUM;
2594 		}
2595 
2596 		if (txstat & DC_TXSTAT_ERRSUM) {
2597 			ifp->if_oerrors++;
2598 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2599 				ifp->if_collisions++;
2600 			if (txstat & DC_TXSTAT_LATECOLL)
2601 				ifp->if_collisions++;
2602 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2603 				dc_init(sc);
2604 				return;
2605 			}
2606 		}
2607 
2608 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2609 
2610 		ifp->if_opackets++;
2611 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2612 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2613 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2614 		}
2615 
2616 		sc->dc_cdata.dc_tx_cnt--;
2617 		DC_INC(idx, DC_TX_LIST_CNT);
2618 	}
2619 
2620 	if (idx != sc->dc_cdata.dc_tx_cons) {
2621 	    	/* some buffers have been freed */
2622 		sc->dc_cdata.dc_tx_cons = idx;
2623 		ifp->if_flags &= ~IFF_OACTIVE;
2624 	}
2625 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2626 
2627 	return;
2628 }
2629 
2630 static void dc_tick(xsc)
2631 	void			*xsc;
2632 {
2633 	struct dc_softc		*sc;
2634 	struct mii_data		*mii;
2635 	struct ifnet		*ifp;
2636 	int			s;
2637 	u_int32_t		r;
2638 
2639 	s = splimp();
2640 
2641 	sc = xsc;
2642 	ifp = &sc->arpcom.ac_if;
2643 	mii = device_get_softc(sc->dc_miibus);
2644 
2645 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2646 		if (sc->dc_flags & DC_21143_NWAY) {
2647 			r = CSR_READ_4(sc, DC_10BTSTAT);
2648 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2649 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2650 				sc->dc_link = 0;
2651 				mii_mediachg(mii);
2652 			}
2653 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2654 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2655 				sc->dc_link = 0;
2656 				mii_mediachg(mii);
2657 			}
2658 			if (sc->dc_link == 0)
2659 				mii_tick(mii);
2660 		} else {
2661 			r = CSR_READ_4(sc, DC_ISR);
2662 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2663 			    sc->dc_cdata.dc_tx_cnt == 0)
2664 				mii_tick(mii);
2665 				if (!(mii->mii_media_status & IFM_ACTIVE))
2666 					sc->dc_link = 0;
2667 		}
2668 	} else
2669 		mii_tick(mii);
2670 
2671 	/*
2672 	 * When the init routine completes, we expect to be able to send
2673 	 * packets right away, and in fact the network code will send a
2674 	 * gratuitous ARP the moment the init routine marks the interface
2675 	 * as running. However, even though the MAC may have been initialized,
2676 	 * there may be a delay of a few seconds before the PHY completes
2677 	 * autonegotiation and the link is brought up. Any transmissions
2678 	 * made during that delay will be lost. Dealing with this is tricky:
2679 	 * we can't just pause in the init routine while waiting for the
2680 	 * PHY to come ready since that would bring the whole system to
2681 	 * a screeching halt for several seconds.
2682 	 *
2683 	 * What we do here is prevent the TX start routine from sending
2684 	 * any packets until a link has been established. After the
2685 	 * interface has been initialized, the tick routine will poll
2686 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2687 	 * that time, packets will stay in the send queue, and once the
2688 	 * link comes up, they will be flushed out to the wire.
2689 	 */
2690 	if (!sc->dc_link) {
2691 		mii_pollstat(mii);
2692 		if (mii->mii_media_status & IFM_ACTIVE &&
2693 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2694 			sc->dc_link++;
2695 			if (!ifq_is_empty(&ifp->if_snd))
2696 				dc_start(ifp);
2697 		}
2698 	}
2699 
2700 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2701 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2702 	else
2703 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2704 
2705 	splx(s);
2706 
2707 	return;
2708 }
2709 
2710 /*
2711  * A transmit underrun has occurred.  Back off the transmit threshold,
2712  * or switch to store and forward mode if we have to.
2713  */
2714 static void dc_tx_underrun(sc)
2715 	struct dc_softc		*sc;
2716 {
2717 	u_int32_t		isr;
2718 	int			i;
2719 
2720 	if (DC_IS_DAVICOM(sc))
2721 		dc_init(sc);
2722 
2723 	if (DC_IS_INTEL(sc)) {
2724 		/*
2725 		 * The real 21143 requires that the transmitter be idle
2726 		 * in order to change the transmit threshold or store
2727 		 * and forward state.
2728 		 */
2729 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2730 
2731 		for (i = 0; i < DC_TIMEOUT; i++) {
2732 			isr = CSR_READ_4(sc, DC_ISR);
2733 			if (isr & DC_ISR_TX_IDLE)
2734 				break;
2735 			DELAY(10);
2736 		}
2737 		if (i == DC_TIMEOUT) {
2738 			if_printf(&sc->arpcom.ac_if,
2739 				  "failed to force tx to idle state\n");
2740 			dc_init(sc);
2741 		}
2742 	}
2743 
2744 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2745 	sc->dc_txthresh += DC_TXTHRESH_INC;
2746 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2747 		printf("using store and forward mode\n");
2748 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2749 	} else {
2750 		printf("increasing TX threshold\n");
2751 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2752 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2753 	}
2754 
2755 	if (DC_IS_INTEL(sc))
2756 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2757 
2758 	return;
2759 }
2760 
2761 #ifdef DEVICE_POLLING
2762 
2763 static void
2764 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2765 {
2766 	struct	dc_softc *sc = ifp->if_softc;
2767 	u_int32_t status;
2768 
2769 	switch(cmd) {
2770 	case POLL_REGISTER:
2771 		/* Disable interrupts */
2772 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2773 		break;
2774 	case POLL_DEREGISTER:
2775 		/* Re-enable interrupts. */
2776 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2777 		break;
2778 	case POLL_ONLY:
2779 		sc->rxcycles = count;
2780 		dc_rxeof(sc);
2781 		dc_txeof(sc);
2782 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2783 			dc_start(ifp);
2784 		break;
2785 	case POLL_AND_CHECK_STATUS:
2786 		sc->rxcycles = count;
2787 		dc_rxeof(sc);
2788 		dc_txeof(sc);
2789 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2790 			dc_start(ifp);
2791 		status = CSR_READ_4(sc, DC_ISR);
2792 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2793 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2794 			DC_ISR_BUS_ERR);
2795 		if (!status)
2796 			break;
2797 		/* ack what we have */
2798 		CSR_WRITE_4(sc, DC_ISR, status);
2799 
2800 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2801 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2802 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2803 
2804 			if (dc_rx_resync(sc))
2805 				dc_rxeof(sc);
2806 		}
2807 		/* restart transmit unit if necessary */
2808 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2809 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2810 
2811 		if (status & DC_ISR_TX_UNDERRUN)
2812 			dc_tx_underrun(sc);
2813 
2814 		if (status & DC_ISR_BUS_ERR) {
2815 			if_printf(ifp, "dc_poll: bus error\n");
2816 			dc_reset(sc);
2817 			dc_init(sc);
2818 		}
2819 		break;
2820 	}
2821 }
2822 #endif /* DEVICE_POLLING */
2823 
2824 static void dc_intr(arg)
2825 	void			*arg;
2826 {
2827 	struct dc_softc		*sc;
2828 	struct ifnet		*ifp;
2829 	u_int32_t		status;
2830 
2831 	sc = arg;
2832 
2833 	if (sc->suspended) {
2834 		return;
2835 	}
2836 
2837 	ifp = &sc->arpcom.ac_if;
2838 
2839 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2840 		return ;
2841 
2842 	/* Suppress unwanted interrupts */
2843 	if (!(ifp->if_flags & IFF_UP)) {
2844 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2845 			dc_stop(sc);
2846 		return;
2847 	}
2848 
2849 	/* Disable interrupts. */
2850 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2851 
2852 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2853 
2854 		CSR_WRITE_4(sc, DC_ISR, status);
2855 
2856 		if (status & DC_ISR_RX_OK) {
2857 			int		curpkts;
2858 			curpkts = ifp->if_ipackets;
2859 			dc_rxeof(sc);
2860 			if (curpkts == ifp->if_ipackets) {
2861 				while(dc_rx_resync(sc))
2862 					dc_rxeof(sc);
2863 			}
2864 		}
2865 
2866 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2867 			dc_txeof(sc);
2868 
2869 		if (status & DC_ISR_TX_IDLE) {
2870 			dc_txeof(sc);
2871 			if (sc->dc_cdata.dc_tx_cnt) {
2872 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2873 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2874 			}
2875 		}
2876 
2877 		if (status & DC_ISR_TX_UNDERRUN)
2878 			dc_tx_underrun(sc);
2879 
2880 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2881 		    || (status & DC_ISR_RX_NOBUF)) {
2882 			int		curpkts;
2883 			curpkts = ifp->if_ipackets;
2884 			dc_rxeof(sc);
2885 			if (curpkts == ifp->if_ipackets) {
2886 				while(dc_rx_resync(sc))
2887 					dc_rxeof(sc);
2888 			}
2889 		}
2890 
2891 		if (status & DC_ISR_BUS_ERR) {
2892 			dc_reset(sc);
2893 			dc_init(sc);
2894 		}
2895 	}
2896 
2897 	/* Re-enable interrupts. */
2898 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2899 
2900 	if (!ifq_is_empty(&ifp->if_snd))
2901 		dc_start(ifp);
2902 
2903 	return;
2904 }
2905 
2906 /*
2907  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2908  * pointers to the fragment pointers.
2909  */
2910 static int dc_encap(sc, m_head, txidx)
2911 	struct dc_softc		*sc;
2912 	struct mbuf		*m_head;
2913 	u_int32_t		*txidx;
2914 {
2915 	struct dc_desc		*f = NULL;
2916 	struct mbuf		*m;
2917 	int			frag, cur, cnt = 0;
2918 
2919 	/*
2920  	 * Start packing the mbufs in this chain into
2921 	 * the fragment pointers. Stop when we run out
2922  	 * of fragments or hit the end of the mbuf chain.
2923 	 */
2924 	m = m_head;
2925 	cur = frag = *txidx;
2926 
2927 	for (m = m_head; m != NULL; m = m->m_next) {
2928 		if (m->m_len != 0) {
2929 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2930 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2931 				    frag == (DC_TX_LIST_CNT - 1))
2932 					return(ENOBUFS);
2933 			}
2934 			if ((DC_TX_LIST_CNT -
2935 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2936 				return(ENOBUFS);
2937 
2938 			f = &sc->dc_ldata->dc_tx_list[frag];
2939 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2940 			if (cnt == 0) {
2941 				f->dc_status = 0;
2942 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2943 			} else
2944 				f->dc_status = DC_TXSTAT_OWN;
2945 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2946 			cur = frag;
2947 			DC_INC(frag, DC_TX_LIST_CNT);
2948 			cnt++;
2949 		}
2950 	}
2951 
2952 	if (m != NULL)
2953 		return(ENOBUFS);
2954 
2955 	sc->dc_cdata.dc_tx_cnt += cnt;
2956 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2957 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2958 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2959 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2960 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2961 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2962 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2963 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2964 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2965 	*txidx = frag;
2966 
2967 	return(0);
2968 }
2969 
2970 /*
2971  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2972  * to the mbuf data regions directly in the transmit lists. We also save a
2973  * copy of the pointers since the transmit list fragment pointers are
2974  * physical addresses.
2975  */
2976 
2977 static void dc_start(ifp)
2978 	struct ifnet		*ifp;
2979 {
2980 	struct dc_softc		*sc;
2981 	struct mbuf *m_head = NULL, *m_new;
2982 	int did_defrag, idx;
2983 
2984 	sc = ifp->if_softc;
2985 
2986 	if (!sc->dc_link)
2987 		return;
2988 
2989 	if (ifp->if_flags & IFF_OACTIVE)
2990 		return;
2991 
2992 	idx = sc->dc_cdata.dc_tx_prod;
2993 
2994 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2995 		did_defrag = 0;
2996 		m_head = ifq_poll(&ifp->if_snd);
2997 		if (m_head == NULL)
2998 			break;
2999 
3000 		if (sc->dc_flags & DC_TX_COALESCE &&
3001 		    m_head->m_next != NULL) {
3002 			/*
3003 			 * Check first if coalescing allows us to queue
3004 			 * the packet. We don't want to loose it if
3005 			 * the TX queue is full.
3006 			 */
3007 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3008 			    idx != sc->dc_cdata.dc_tx_prod &&
3009 			    idx == (DC_TX_LIST_CNT - 1)) {
3010 				ifp->if_flags |= IFF_OACTIVE;
3011 				break;
3012 			}
3013 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3014 				ifp->if_flags |= IFF_OACTIVE;
3015 				break;
3016 			}
3017 
3018 			/* only coalesce if have >1 mbufs */
3019 			m_new = m_defrag_nofree(m_head, MB_DONTWAIT);
3020 			if (m_new == NULL) {
3021 				ifp->if_flags |= IFF_OACTIVE;
3022 				break;
3023 			}
3024 			m_freem(m_head);
3025 			m_head = m_new;
3026 			did_defrag = 1;
3027 		}
3028 
3029 		if (dc_encap(sc, m_head, &idx)) {
3030 			if (did_defrag) {
3031 				m_freem(m_head);
3032 				m_new = ifq_dequeue(&ifp->if_snd);
3033 				m_freem(m_new);
3034 			}
3035 			ifp->if_flags |= IFF_OACTIVE;
3036 			break;
3037 		}
3038 
3039 		m_new = ifq_dequeue(&ifp->if_snd);
3040 		if (did_defrag)
3041 			m_freem(m_new);
3042 
3043 		/*
3044 		 * If there's a BPF listener, bounce a copy of this frame
3045 		 * to him.
3046 		 */
3047 		BPF_MTAP(ifp, m_head);
3048 
3049 		if (sc->dc_flags & DC_TX_ONE) {
3050 			ifp->if_flags |= IFF_OACTIVE;
3051 			break;
3052 		}
3053 	}
3054 
3055 	/* Transmit */
3056 	sc->dc_cdata.dc_tx_prod = idx;
3057 	if (!(sc->dc_flags & DC_TX_POLL))
3058 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3059 
3060 	/*
3061 	 * Set a timeout in case the chip goes out to lunch.
3062 	 */
3063 	ifp->if_timer = 5;
3064 
3065 	return;
3066 }
3067 
3068 static void dc_init(xsc)
3069 	void			*xsc;
3070 {
3071 	struct dc_softc		*sc = xsc;
3072 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3073 	struct mii_data		*mii;
3074 	int			s;
3075 
3076 	s = splimp();
3077 
3078 	mii = device_get_softc(sc->dc_miibus);
3079 
3080 	/*
3081 	 * Cancel pending I/O and free all RX/TX buffers.
3082 	 */
3083 	dc_stop(sc);
3084 	dc_reset(sc);
3085 
3086 	/*
3087 	 * Set cache alignment and burst length.
3088 	 */
3089 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3090 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3091 	else
3092 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3093 	/*
3094 	 * Evenly share the bus between receive and transmit process.
3095 	 */
3096 	if (DC_IS_INTEL(sc))
3097 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3098 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3099 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3100 	} else {
3101 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3102 	}
3103 	if (sc->dc_flags & DC_TX_POLL)
3104 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3105 	switch(sc->dc_cachesize) {
3106 	case 32:
3107 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3108 		break;
3109 	case 16:
3110 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3111 		break;
3112 	case 8:
3113 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3114 		break;
3115 	case 0:
3116 	default:
3117 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3118 		break;
3119 	}
3120 
3121 	if (sc->dc_flags & DC_TX_STORENFWD)
3122 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3123 	else {
3124 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3125 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3126 		} else {
3127 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3128 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3129 		}
3130 	}
3131 
3132 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3133 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3134 
3135 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3136 		/*
3137 		 * The app notes for the 98713 and 98715A say that
3138 		 * in order to have the chips operate properly, a magic
3139 		 * number must be written to CSR16. Macronix does not
3140 		 * document the meaning of these bits so there's no way
3141 		 * to know exactly what they do. The 98713 has a magic
3142 		 * number all its own; the rest all use a different one.
3143 		 */
3144 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3145 		if (sc->dc_type == DC_TYPE_98713)
3146 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3147 		else
3148 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3149 	}
3150 
3151 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3152 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3153 
3154 	/* Init circular RX list. */
3155 	if (dc_list_rx_init(sc) == ENOBUFS) {
3156 		if_printf(ifp, "initialization failed: no "
3157 			  "memory for rx buffers\n");
3158 		dc_stop(sc);
3159 		(void)splx(s);
3160 		return;
3161 	}
3162 
3163 	/*
3164 	 * Init tx descriptors.
3165 	 */
3166 	dc_list_tx_init(sc);
3167 
3168 	/*
3169 	 * Load the address of the RX list.
3170 	 */
3171 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3172 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3173 
3174 	/*
3175 	 * Enable interrupts.
3176 	 */
3177 #ifdef DEVICE_POLLING
3178 	/*
3179 	 * ... but only if we are not polling, and make sure they are off in
3180 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3181 	 * after a reset.
3182 	 */
3183 	if (ifp->if_flags & IFF_POLLING)
3184 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3185 	else
3186 #endif
3187 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3188 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3189 
3190 	/* Enable transmitter. */
3191 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3192 
3193 	/*
3194 	 * If this is an Intel 21143 and we're not using the
3195 	 * MII port, program the LED control pins so we get
3196 	 * link and activity indications.
3197 	 */
3198 	if (sc->dc_flags & DC_TULIP_LEDS) {
3199 		CSR_WRITE_4(sc, DC_WATCHDOG,
3200 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3201 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3202 	}
3203 
3204 	/*
3205 	 * Load the RX/multicast filter. We do this sort of late
3206 	 * because the filter programming scheme on the 21143 and
3207 	 * some clones requires DMAing a setup frame via the TX
3208 	 * engine, and we need the transmitter enabled for that.
3209 	 */
3210 	dc_setfilt(sc);
3211 
3212 	/* Enable receiver. */
3213 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3214 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3215 
3216 	mii_mediachg(mii);
3217 	dc_setcfg(sc, sc->dc_if_media);
3218 
3219 	ifp->if_flags |= IFF_RUNNING;
3220 	ifp->if_flags &= ~IFF_OACTIVE;
3221 
3222 	(void)splx(s);
3223 
3224 	/* Don't start the ticker if this is a homePNA link. */
3225 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3226 		sc->dc_link = 1;
3227 	else {
3228 		if (sc->dc_flags & DC_21143_NWAY)
3229 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3230 		else
3231 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3232 	}
3233 
3234 	return;
3235 }
3236 
3237 /*
3238  * Set media options.
3239  */
3240 static int dc_ifmedia_upd(ifp)
3241 	struct ifnet		*ifp;
3242 {
3243 	struct dc_softc		*sc;
3244 	struct mii_data		*mii;
3245 	struct ifmedia		*ifm;
3246 
3247 	sc = ifp->if_softc;
3248 	mii = device_get_softc(sc->dc_miibus);
3249 	mii_mediachg(mii);
3250 	ifm = &mii->mii_media;
3251 
3252 	if (DC_IS_DAVICOM(sc) &&
3253 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3254 		dc_setcfg(sc, ifm->ifm_media);
3255 	else
3256 		sc->dc_link = 0;
3257 
3258 	return(0);
3259 }
3260 
3261 /*
3262  * Report current media status.
3263  */
3264 static void dc_ifmedia_sts(ifp, ifmr)
3265 	struct ifnet		*ifp;
3266 	struct ifmediareq	*ifmr;
3267 {
3268 	struct dc_softc		*sc;
3269 	struct mii_data		*mii;
3270 	struct ifmedia		*ifm;
3271 
3272 	sc = ifp->if_softc;
3273 	mii = device_get_softc(sc->dc_miibus);
3274 	mii_pollstat(mii);
3275 	ifm = &mii->mii_media;
3276 	if (DC_IS_DAVICOM(sc)) {
3277 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3278 			ifmr->ifm_active = ifm->ifm_media;
3279 			ifmr->ifm_status = 0;
3280 			return;
3281 		}
3282 	}
3283 	ifmr->ifm_active = mii->mii_media_active;
3284 	ifmr->ifm_status = mii->mii_media_status;
3285 
3286 	return;
3287 }
3288 
3289 static int dc_ioctl(ifp, command, data, cr)
3290 	struct ifnet		*ifp;
3291 	u_long			command;
3292 	caddr_t			data;
3293 	struct ucred		*cr;
3294 {
3295 	struct dc_softc		*sc = ifp->if_softc;
3296 	struct ifreq		*ifr = (struct ifreq *) data;
3297 	struct mii_data		*mii;
3298 	int			s, error = 0;
3299 
3300 	s = splimp();
3301 
3302 	switch(command) {
3303 	case SIOCSIFFLAGS:
3304 		if (ifp->if_flags & IFF_UP) {
3305 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3306 				(IFF_PROMISC | IFF_ALLMULTI);
3307 			if (ifp->if_flags & IFF_RUNNING) {
3308 				if (need_setfilt)
3309 					dc_setfilt(sc);
3310 			} else {
3311 				sc->dc_txthresh = 0;
3312 				dc_init(sc);
3313 			}
3314 		} else {
3315 			if (ifp->if_flags & IFF_RUNNING)
3316 				dc_stop(sc);
3317 		}
3318 		sc->dc_if_flags = ifp->if_flags;
3319 		error = 0;
3320 		break;
3321 	case SIOCADDMULTI:
3322 	case SIOCDELMULTI:
3323 		dc_setfilt(sc);
3324 		error = 0;
3325 		break;
3326 	case SIOCGIFMEDIA:
3327 	case SIOCSIFMEDIA:
3328 		mii = device_get_softc(sc->dc_miibus);
3329 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3330 		break;
3331 	default:
3332 		error = ether_ioctl(ifp, command, data);
3333 		break;
3334 	}
3335 
3336 	(void)splx(s);
3337 
3338 	return(error);
3339 }
3340 
3341 static void dc_watchdog(ifp)
3342 	struct ifnet		*ifp;
3343 {
3344 	struct dc_softc		*sc;
3345 
3346 	sc = ifp->if_softc;
3347 
3348 	ifp->if_oerrors++;
3349 	if_printf(ifp, "watchdog timeout\n");
3350 
3351 	dc_stop(sc);
3352 	dc_reset(sc);
3353 	dc_init(sc);
3354 
3355 	if (!ifq_is_empty(&ifp->if_snd))
3356 		dc_start(ifp);
3357 
3358 	return;
3359 }
3360 
3361 /*
3362  * Stop the adapter and free any mbufs allocated to the
3363  * RX and TX lists.
3364  */
3365 static void dc_stop(sc)
3366 	struct dc_softc		*sc;
3367 {
3368 	int		i;
3369 	struct ifnet		*ifp;
3370 
3371 	ifp = &sc->arpcom.ac_if;
3372 	ifp->if_timer = 0;
3373 
3374 	callout_stop(&sc->dc_stat_timer);
3375 
3376 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3377 
3378 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3379 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3380 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3381 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3382 	sc->dc_link = 0;
3383 
3384 	/*
3385 	 * Free data in the RX lists.
3386 	 */
3387 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3388 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3389 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3390 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3391 		}
3392 	}
3393 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3394 		sizeof(sc->dc_ldata->dc_rx_list));
3395 
3396 	/*
3397 	 * Free the TX list buffers.
3398 	 */
3399 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3400 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3401 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3402 			    DC_TXCTL_SETUP) ||
3403 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3404 			    DC_TXCTL_LASTFRAG)) {
3405 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3406 				continue;
3407 			}
3408 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3409 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3410 		}
3411 	}
3412 
3413 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3414 		sizeof(sc->dc_ldata->dc_tx_list));
3415 
3416 	return;
3417 }
3418 
3419 /*
3420  * Stop all chip I/O so that the kernel's probe routines don't
3421  * get confused by errant DMAs when rebooting.
3422  */
3423 static void dc_shutdown(dev)
3424 	device_t		dev;
3425 {
3426 	struct dc_softc		*sc;
3427 
3428 	sc = device_get_softc(dev);
3429 
3430 	dc_stop(sc);
3431 
3432 	return;
3433 }
3434 
3435 /*
3436  * Device suspend routine.  Stop the interface and save some PCI
3437  * settings in case the BIOS doesn't restore them properly on
3438  * resume.
3439  */
3440 static int dc_suspend(dev)
3441 	device_t		dev;
3442 {
3443 	int		i;
3444 	int			s;
3445 	struct dc_softc		*sc;
3446 
3447 	s = splimp();
3448 
3449 	sc = device_get_softc(dev);
3450 
3451 	dc_stop(sc);
3452 
3453 	for (i = 0; i < 5; i++)
3454 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3455 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3456 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3457 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3458 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3459 
3460 	sc->suspended = 1;
3461 
3462 	splx(s);
3463 	return (0);
3464 }
3465 
3466 /*
3467  * Device resume routine.  Restore some PCI settings in case the BIOS
3468  * doesn't, re-enable busmastering, and restart the interface if
3469  * appropriate.
3470  */
3471 static int dc_resume(dev)
3472 	device_t		dev;
3473 {
3474 	int		i;
3475 	int			s;
3476 	struct dc_softc		*sc;
3477 	struct ifnet		*ifp;
3478 
3479 	s = splimp();
3480 
3481 	sc = device_get_softc(dev);
3482 	ifp = &sc->arpcom.ac_if;
3483 
3484 	dc_acpi(dev);
3485 
3486 	/* better way to do this? */
3487 	for (i = 0; i < 5; i++)
3488 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3489 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3490 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3491 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3492 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3493 
3494 	/* reenable busmastering */
3495 	pci_enable_busmaster(dev);
3496 	pci_enable_io(dev, DC_RES);
3497 
3498         /* reinitialize interface if necessary */
3499         if (ifp->if_flags & IFF_UP)
3500                 dc_init(sc);
3501 
3502 	sc->suspended = 0;
3503 
3504 	splx(s);
3505 	return (0);
3506 }
3507