xref: /dflybsd-src/sys/dev/netif/dc/if_dc.c (revision a12ef770ba351628dde7e68bd7b722ae54dd554b)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.22 2005/02/20 04:29:28 joerg Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
36  */
37 
38 /*
39  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
40  * series chips and several workalikes including the following:
41  *
42  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
43  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
44  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
45  * ASIX Electronics AX88140A (www.asix.com.tw)
46  * ASIX Electronics AX88141 (www.asix.com.tw)
47  * ADMtek AL981 (www.admtek.com.tw)
48  * ADMtek AN985 (www.admtek.com.tw)
49  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
50  * Accton EN1217 (www.accton.com)
51  * Conexant LANfinity (www.conexant.com)
52  *
53  * Datasheets for the 21143 are available at developer.intel.com.
54  * Datasheets for the clone parts can be found at their respective sites.
55  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
56  * The PNIC II is essentially a Macronix 98715A chip; the only difference
57  * worth noting is that its multicast hash table is only 128 bits wide
58  * instead of 512.
59  *
60  * Written by Bill Paul <wpaul@ee.columbia.edu>
61  * Electrical Engineering Department
62  * Columbia University, New York City
63  */
64 
65 /*
66  * The Intel 21143 is the successor to the DEC 21140. It is basically
67  * the same as the 21140 but with a few new features. The 21143 supports
68  * three kinds of media attachments:
69  *
70  * o MII port, for 10Mbps and 100Mbps support and NWAY
71  *   autonegotiation provided by an external PHY.
72  * o SYM port, for symbol mode 100Mbps support.
73  * o 10baseT port.
74  * o AUI/BNC port.
75  *
76  * The 100Mbps SYM port and 10baseT port can be used together in
77  * combination with the internal NWAY support to create a 10/100
78  * autosensing configuration.
79  *
80  * Note that not all tulip workalikes are handled in this driver: we only
81  * deal with those which are relatively well behaved. The Winbond is
82  * handled separately due to its different register offsets and the
83  * special handling needed for its various bugs. The PNIC is handled
84  * here, but I'm not thrilled about it.
85  *
86  * All of the workalike chips use some form of MII transceiver support
87  * with the exception of the Macronix chips, which also have a SYM port.
88  * The ASIX AX88140A is also documented to have a SYM port, but all
89  * the cards I've seen use an MII transceiver, probably because the
90  * AX88140A doesn't support internal NWAY.
91  */
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/sysctl.h>
101 
102 #include <net/if.h>
103 #include <net/ifq_var.h>
104 #include <net/if_arp.h>
105 #include <net/ethernet.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_types.h>
109 #include <net/vlan/if_vlan_var.h>
110 
111 #include <net/bpf.h>
112 
113 #include <vm/vm.h>              /* for vtophys */
114 #include <vm/pmap.h>            /* for vtophys */
115 #include <machine/clock.h>      /* for DELAY */
116 #include <machine/bus_pio.h>
117 #include <machine/bus_memio.h>
118 #include <machine/bus.h>
119 #include <machine/resource.h>
120 #include <sys/bus.h>
121 #include <sys/rman.h>
122 
123 #include "../mii_layer/mii.h"
124 #include "../mii_layer/miivar.h"
125 
126 #include <bus/pci/pcireg.h>
127 #include <bus/pci/pcivar.h>
128 
129 #define DC_USEIOSPACE
130 #ifdef __alpha__
131 #define SRM_MEDIA
132 #endif
133 
134 #include "if_dcreg.h"
135 
136 /* "controller miibus0" required.  See GENERIC if you get errors here. */
137 #include "miibus_if.h"
138 
139 /*
140  * Various supported device vendors/types and their names.
141  */
142 static struct dc_type dc_devs[] = {
143 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
144 		"Intel 21143 10/100BaseTX" },
145 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
146 		"Davicom DM9009 10/100BaseTX" },
147 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
148 		"Davicom DM9100 10/100BaseTX" },
149 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
150 		"Davicom DM9102 10/100BaseTX" },
151 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
152 		"Davicom DM9102A 10/100BaseTX" },
153 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
154 		"ADMtek AL981 10/100BaseTX" },
155 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
156 		"ADMtek AN985 10/100BaseTX" },
157 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
158 		"ASIX AX88140A 10/100BaseTX" },
159 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
160 		"ASIX AX88141 10/100BaseTX" },
161 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
162 		"Macronix 98713 10/100BaseTX" },
163 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
164 		"Macronix 98713A 10/100BaseTX" },
165 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
166 		"Compex RL100-TX 10/100BaseTX" },
167 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
168 		"Compex RL100-TX 10/100BaseTX" },
169 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
170 		"Macronix 98715/98715A 10/100BaseTX" },
171 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
172 		"Macronix 98715AEC-C 10/100BaseTX" },
173 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
174 		"Macronix 98725 10/100BaseTX" },
175 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
176 		"Macronix 98727/98732 10/100BaseTX" },
177 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
178 		"LC82C115 PNIC II 10/100BaseTX" },
179 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
180 		"82c168 PNIC 10/100BaseTX" },
181 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
182 		"82c169 PNIC 10/100BaseTX" },
183 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
184 		"Accton EN1217 10/100BaseTX" },
185 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
186 		"Accton EN2242 MiniPCI 10/100BaseTX" },
187 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
188 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
189 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
190 		"3Com OfficeConnect 10/100B" },
191 	{ 0, 0, NULL }
192 };
193 
194 static int dc_probe		(device_t);
195 static int dc_attach		(device_t);
196 static int dc_detach		(device_t);
197 static int dc_suspend		(device_t);
198 static int dc_resume		(device_t);
199 static void dc_acpi		(device_t);
200 static struct dc_type *dc_devtype	(device_t);
201 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
202 static int dc_encap		(struct dc_softc *, struct mbuf *,
203 					u_int32_t *);
204 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
205 static int dc_rx_resync		(struct dc_softc *);
206 static void dc_rxeof		(struct dc_softc *);
207 static void dc_txeof		(struct dc_softc *);
208 static void dc_tick		(void *);
209 static void dc_tx_underrun	(struct dc_softc *);
210 static void dc_intr		(void *);
211 static void dc_start		(struct ifnet *);
212 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
213 					struct ucred *);
214 static void dc_init		(void *);
215 static void dc_stop		(struct dc_softc *);
216 static void dc_watchdog		(struct ifnet *);
217 static void dc_shutdown		(device_t);
218 static int dc_ifmedia_upd	(struct ifnet *);
219 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
220 
221 static void dc_delay		(struct dc_softc *);
222 static void dc_eeprom_idle	(struct dc_softc *);
223 static void dc_eeprom_putbyte	(struct dc_softc *, int);
224 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
225 static void dc_eeprom_getword_pnic
226 				(struct dc_softc *, int, u_int16_t *);
227 static void dc_eeprom_width	(struct dc_softc *);
228 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
229 							int, int);
230 
231 static void dc_mii_writebit	(struct dc_softc *, int);
232 static int dc_mii_readbit	(struct dc_softc *);
233 static void dc_mii_sync		(struct dc_softc *);
234 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
235 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
236 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
237 static int dc_miibus_readreg	(device_t, int, int);
238 static int dc_miibus_writereg	(device_t, int, int, int);
239 static void dc_miibus_statchg	(device_t);
240 static void dc_miibus_mediainit	(device_t);
241 
242 static void dc_setcfg		(struct dc_softc *, int);
243 static u_int32_t dc_crc_le	(struct dc_softc *, c_caddr_t);
244 static u_int32_t dc_crc_be	(caddr_t);
245 static void dc_setfilt_21143	(struct dc_softc *);
246 static void dc_setfilt_asix	(struct dc_softc *);
247 static void dc_setfilt_admtek	(struct dc_softc *);
248 
249 static void dc_setfilt		(struct dc_softc *);
250 
251 static void dc_reset		(struct dc_softc *);
252 static int dc_list_rx_init	(struct dc_softc *);
253 static int dc_list_tx_init	(struct dc_softc *);
254 
255 static void dc_read_srom	(struct dc_softc *, int);
256 static void dc_parse_21143_srom	(struct dc_softc *);
257 static void dc_decode_leaf_sia	(struct dc_softc *,
258 				    struct dc_eblock_sia *);
259 static void dc_decode_leaf_mii	(struct dc_softc *,
260 				    struct dc_eblock_mii *);
261 static void dc_decode_leaf_sym	(struct dc_softc *,
262 				    struct dc_eblock_sym *);
263 static void dc_apply_fixup	(struct dc_softc *, int);
264 
265 #ifdef DC_USEIOSPACE
266 #define DC_RES			SYS_RES_IOPORT
267 #define DC_RID			DC_PCI_CFBIO
268 #else
269 #define DC_RES			SYS_RES_MEMORY
270 #define DC_RID			DC_PCI_CFBMA
271 #endif
272 
273 static device_method_t dc_methods[] = {
274 	/* Device interface */
275 	DEVMETHOD(device_probe,		dc_probe),
276 	DEVMETHOD(device_attach,	dc_attach),
277 	DEVMETHOD(device_detach,	dc_detach),
278 	DEVMETHOD(device_suspend,	dc_suspend),
279 	DEVMETHOD(device_resume,	dc_resume),
280 	DEVMETHOD(device_shutdown,	dc_shutdown),
281 
282 	/* bus interface */
283 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
284 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
285 
286 	/* MII interface */
287 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
288 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
289 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
290 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
291 
292 	{ 0, 0 }
293 };
294 
295 static driver_t dc_driver = {
296 	"dc",
297 	dc_methods,
298 	sizeof(struct dc_softc)
299 };
300 
301 static devclass_t dc_devclass;
302 
303 #ifdef __i386__
304 static int dc_quick=1;
305 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
306 	&dc_quick,0,"do not mdevget in dc driver");
307 #endif
308 
309 DECLARE_DUMMY_MODULE(if_dc);
310 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
311 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
312 
313 #define DC_SETBIT(sc, reg, x)				\
314 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
315 
316 #define DC_CLRBIT(sc, reg, x)				\
317 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
318 
319 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
320 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
321 
322 static void dc_delay(sc)
323 	struct dc_softc		*sc;
324 {
325 	int			idx;
326 
327 	for (idx = (300 / 33) + 1; idx > 0; idx--)
328 		CSR_READ_4(sc, DC_BUSCTL);
329 }
330 
331 static void dc_eeprom_width(sc)
332 	struct dc_softc		*sc;
333 {
334 	int i;
335 
336 	/* Force EEPROM to idle state. */
337 	dc_eeprom_idle(sc);
338 
339 	/* Enter EEPROM access mode. */
340 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
341 	dc_delay(sc);
342 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
343 	dc_delay(sc);
344 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
345 	dc_delay(sc);
346 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
347 	dc_delay(sc);
348 
349 	for (i = 3; i--;) {
350 		if (6 & (1 << i))
351 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
352 		else
353 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
354 		dc_delay(sc);
355 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
356 		dc_delay(sc);
357 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
358 		dc_delay(sc);
359 	}
360 
361 	for (i = 1; i <= 12; i++) {
362 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
363 		dc_delay(sc);
364 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
365 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
366 			dc_delay(sc);
367 			break;
368 		}
369 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 		dc_delay(sc);
371 	}
372 
373 	/* Turn off EEPROM access mode. */
374 	dc_eeprom_idle(sc);
375 
376 	if (i < 4 || i > 12)
377 		sc->dc_romwidth = 6;
378 	else
379 		sc->dc_romwidth = i;
380 
381 	/* Enter EEPROM access mode. */
382 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
383 	dc_delay(sc);
384 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
385 	dc_delay(sc);
386 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
387 	dc_delay(sc);
388 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
389 	dc_delay(sc);
390 
391 	/* Turn off EEPROM access mode. */
392 	dc_eeprom_idle(sc);
393 }
394 
395 static void dc_eeprom_idle(sc)
396 	struct dc_softc		*sc;
397 {
398 	int		i;
399 
400 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
401 	dc_delay(sc);
402 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
403 	dc_delay(sc);
404 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
405 	dc_delay(sc);
406 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
407 	dc_delay(sc);
408 
409 	for (i = 0; i < 25; i++) {
410 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411 		dc_delay(sc);
412 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413 		dc_delay(sc);
414 	}
415 
416 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
417 	dc_delay(sc);
418 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
419 	dc_delay(sc);
420 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
421 
422 	return;
423 }
424 
425 /*
426  * Send a read command and address to the EEPROM, check for ACK.
427  */
428 static void dc_eeprom_putbyte(sc, addr)
429 	struct dc_softc		*sc;
430 	int			addr;
431 {
432 	int		d, i;
433 
434 	d = DC_EECMD_READ >> 6;
435 	for (i = 3; i--; ) {
436 		if (d & (1 << i))
437 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
438 		else
439 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
440 		dc_delay(sc);
441 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 		dc_delay(sc);
443 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
444 		dc_delay(sc);
445 	}
446 
447 	/*
448 	 * Feed in each bit and strobe the clock.
449 	 */
450 	for (i = sc->dc_romwidth; i--;) {
451 		if (addr & (1 << i)) {
452 			SIO_SET(DC_SIO_EE_DATAIN);
453 		} else {
454 			SIO_CLR(DC_SIO_EE_DATAIN);
455 		}
456 		dc_delay(sc);
457 		SIO_SET(DC_SIO_EE_CLK);
458 		dc_delay(sc);
459 		SIO_CLR(DC_SIO_EE_CLK);
460 		dc_delay(sc);
461 	}
462 
463 	return;
464 }
465 
466 /*
467  * Read a word of data stored in the EEPROM at address 'addr.'
468  * The PNIC 82c168/82c169 has its own non-standard way to read
469  * the EEPROM.
470  */
471 static void dc_eeprom_getword_pnic(sc, addr, dest)
472 	struct dc_softc		*sc;
473 	int			addr;
474 	u_int16_t		*dest;
475 {
476 	int		i;
477 	u_int32_t		r;
478 
479 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
480 
481 	for (i = 0; i < DC_TIMEOUT; i++) {
482 		DELAY(1);
483 		r = CSR_READ_4(sc, DC_SIO);
484 		if (!(r & DC_PN_SIOCTL_BUSY)) {
485 			*dest = (u_int16_t)(r & 0xFFFF);
486 			return;
487 		}
488 	}
489 
490 	return;
491 }
492 
493 /*
494  * Read a word of data stored in the EEPROM at address 'addr.'
495  */
496 static void dc_eeprom_getword(sc, addr, dest)
497 	struct dc_softc		*sc;
498 	int			addr;
499 	u_int16_t		*dest;
500 {
501 	int		i;
502 	u_int16_t		word = 0;
503 
504 	/* Force EEPROM to idle state. */
505 	dc_eeprom_idle(sc);
506 
507 	/* Enter EEPROM access mode. */
508 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
509 	dc_delay(sc);
510 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
511 	dc_delay(sc);
512 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
513 	dc_delay(sc);
514 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
515 	dc_delay(sc);
516 
517 	/*
518 	 * Send address of word we want to read.
519 	 */
520 	dc_eeprom_putbyte(sc, addr);
521 
522 	/*
523 	 * Start reading bits from EEPROM.
524 	 */
525 	for (i = 0x8000; i; i >>= 1) {
526 		SIO_SET(DC_SIO_EE_CLK);
527 		dc_delay(sc);
528 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
529 			word |= i;
530 		dc_delay(sc);
531 		SIO_CLR(DC_SIO_EE_CLK);
532 		dc_delay(sc);
533 	}
534 
535 	/* Turn off EEPROM access mode. */
536 	dc_eeprom_idle(sc);
537 
538 	*dest = word;
539 
540 	return;
541 }
542 
543 /*
544  * Read a sequence of words from the EEPROM.
545  */
546 static void dc_read_eeprom(sc, dest, off, cnt, swap)
547 	struct dc_softc		*sc;
548 	caddr_t			dest;
549 	int			off;
550 	int			cnt;
551 	int			swap;
552 {
553 	int			i;
554 	u_int16_t		word = 0, *ptr;
555 
556 	for (i = 0; i < cnt; i++) {
557 		if (DC_IS_PNIC(sc))
558 			dc_eeprom_getword_pnic(sc, off + i, &word);
559 		else
560 			dc_eeprom_getword(sc, off + i, &word);
561 		ptr = (u_int16_t *)(dest + (i * 2));
562 		if (swap)
563 			*ptr = ntohs(word);
564 		else
565 			*ptr = word;
566 	}
567 
568 	return;
569 }
570 
571 /*
572  * The following two routines are taken from the Macronix 98713
573  * Application Notes pp.19-21.
574  */
575 /*
576  * Write a bit to the MII bus.
577  */
578 static void dc_mii_writebit(sc, bit)
579 	struct dc_softc		*sc;
580 	int			bit;
581 {
582 	if (bit)
583 		CSR_WRITE_4(sc, DC_SIO,
584 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
585 	else
586 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
587 
588 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
589 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
590 
591 	return;
592 }
593 
594 /*
595  * Read a bit from the MII bus.
596  */
597 static int dc_mii_readbit(sc)
598 	struct dc_softc		*sc;
599 {
600 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
601 	CSR_READ_4(sc, DC_SIO);
602 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
603 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
604 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
605 		return(1);
606 
607 	return(0);
608 }
609 
610 /*
611  * Sync the PHYs by setting data bit and strobing the clock 32 times.
612  */
613 static void dc_mii_sync(sc)
614 	struct dc_softc		*sc;
615 {
616 	int		i;
617 
618 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
619 
620 	for (i = 0; i < 32; i++)
621 		dc_mii_writebit(sc, 1);
622 
623 	return;
624 }
625 
626 /*
627  * Clock a series of bits through the MII.
628  */
629 static void dc_mii_send(sc, bits, cnt)
630 	struct dc_softc		*sc;
631 	u_int32_t		bits;
632 	int			cnt;
633 {
634 	int			i;
635 
636 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
637 		dc_mii_writebit(sc, bits & i);
638 }
639 
640 /*
641  * Read an PHY register through the MII.
642  */
643 static int dc_mii_readreg(sc, frame)
644 	struct dc_softc		*sc;
645 	struct dc_mii_frame	*frame;
646 
647 {
648 	int			i, ack, s;
649 
650 	s = splimp();
651 
652 	/*
653 	 * Set up frame for RX.
654 	 */
655 	frame->mii_stdelim = DC_MII_STARTDELIM;
656 	frame->mii_opcode = DC_MII_READOP;
657 	frame->mii_turnaround = 0;
658 	frame->mii_data = 0;
659 
660 	/*
661 	 * Sync the PHYs.
662 	 */
663 	dc_mii_sync(sc);
664 
665 	/*
666 	 * Send command/address info.
667 	 */
668 	dc_mii_send(sc, frame->mii_stdelim, 2);
669 	dc_mii_send(sc, frame->mii_opcode, 2);
670 	dc_mii_send(sc, frame->mii_phyaddr, 5);
671 	dc_mii_send(sc, frame->mii_regaddr, 5);
672 
673 #ifdef notdef
674 	/* Idle bit */
675 	dc_mii_writebit(sc, 1);
676 	dc_mii_writebit(sc, 0);
677 #endif
678 
679 	/* Check for ack */
680 	ack = dc_mii_readbit(sc);
681 
682 	/*
683 	 * Now try reading data bits. If the ack failed, we still
684 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
685 	 */
686 	if (ack) {
687 		for(i = 0; i < 16; i++) {
688 			dc_mii_readbit(sc);
689 		}
690 		goto fail;
691 	}
692 
693 	for (i = 0x8000; i; i >>= 1) {
694 		if (!ack) {
695 			if (dc_mii_readbit(sc))
696 				frame->mii_data |= i;
697 		}
698 	}
699 
700 fail:
701 
702 	dc_mii_writebit(sc, 0);
703 	dc_mii_writebit(sc, 0);
704 
705 	splx(s);
706 
707 	if (ack)
708 		return(1);
709 	return(0);
710 }
711 
712 /*
713  * Write to a PHY register through the MII.
714  */
715 static int dc_mii_writereg(sc, frame)
716 	struct dc_softc		*sc;
717 	struct dc_mii_frame	*frame;
718 
719 {
720 	int			s;
721 
722 	s = splimp();
723 	/*
724 	 * Set up frame for TX.
725 	 */
726 
727 	frame->mii_stdelim = DC_MII_STARTDELIM;
728 	frame->mii_opcode = DC_MII_WRITEOP;
729 	frame->mii_turnaround = DC_MII_TURNAROUND;
730 
731 	/*
732 	 * Sync the PHYs.
733 	 */
734 	dc_mii_sync(sc);
735 
736 	dc_mii_send(sc, frame->mii_stdelim, 2);
737 	dc_mii_send(sc, frame->mii_opcode, 2);
738 	dc_mii_send(sc, frame->mii_phyaddr, 5);
739 	dc_mii_send(sc, frame->mii_regaddr, 5);
740 	dc_mii_send(sc, frame->mii_turnaround, 2);
741 	dc_mii_send(sc, frame->mii_data, 16);
742 
743 	/* Idle bit. */
744 	dc_mii_writebit(sc, 0);
745 	dc_mii_writebit(sc, 0);
746 
747 	splx(s);
748 
749 	return(0);
750 }
751 
752 static int dc_miibus_readreg(dev, phy, reg)
753 	device_t		dev;
754 	int			phy, reg;
755 {
756 	struct dc_mii_frame	frame;
757 	struct dc_softc		*sc;
758 	int			i, rval, phy_reg = 0;
759 
760 	sc = device_get_softc(dev);
761 	bzero((char *)&frame, sizeof(frame));
762 
763 	/*
764 	 * Note: both the AL981 and AN985 have internal PHYs,
765 	 * however the AL981 provides direct access to the PHY
766 	 * registers while the AN985 uses a serial MII interface.
767 	 * The AN985's MII interface is also buggy in that you
768 	 * can read from any MII address (0 to 31), but only address 1
769 	 * behaves normally. To deal with both cases, we pretend
770 	 * that the PHY is at MII address 1.
771 	 */
772 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
773 		return(0);
774 
775 	/*
776 	 * Note: the ukphy probes of the RS7112 report a PHY at
777 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
778 	 * so we only respond to correct one.
779 	 */
780 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
781 		return(0);
782 
783 	if (sc->dc_pmode != DC_PMODE_MII) {
784 		if (phy == (MII_NPHY - 1)) {
785 			switch(reg) {
786 			case MII_BMSR:
787 			/*
788 			 * Fake something to make the probe
789 			 * code think there's a PHY here.
790 			 */
791 				return(BMSR_MEDIAMASK);
792 				break;
793 			case MII_PHYIDR1:
794 				if (DC_IS_PNIC(sc))
795 					return(DC_VENDORID_LO);
796 				return(DC_VENDORID_DEC);
797 				break;
798 			case MII_PHYIDR2:
799 				if (DC_IS_PNIC(sc))
800 					return(DC_DEVICEID_82C168);
801 				return(DC_DEVICEID_21143);
802 				break;
803 			default:
804 				return(0);
805 				break;
806 			}
807 		} else
808 			return(0);
809 	}
810 
811 	if (DC_IS_PNIC(sc)) {
812 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
813 		    (phy << 23) | (reg << 18));
814 		for (i = 0; i < DC_TIMEOUT; i++) {
815 			DELAY(1);
816 			rval = CSR_READ_4(sc, DC_PN_MII);
817 			if (!(rval & DC_PN_MII_BUSY)) {
818 				rval &= 0xFFFF;
819 				return(rval == 0xFFFF ? 0 : rval);
820 			}
821 		}
822 		return(0);
823 	}
824 
825 	if (DC_IS_COMET(sc)) {
826 		switch(reg) {
827 		case MII_BMCR:
828 			phy_reg = DC_AL_BMCR;
829 			break;
830 		case MII_BMSR:
831 			phy_reg = DC_AL_BMSR;
832 			break;
833 		case MII_PHYIDR1:
834 			phy_reg = DC_AL_VENID;
835 			break;
836 		case MII_PHYIDR2:
837 			phy_reg = DC_AL_DEVID;
838 			break;
839 		case MII_ANAR:
840 			phy_reg = DC_AL_ANAR;
841 			break;
842 		case MII_ANLPAR:
843 			phy_reg = DC_AL_LPAR;
844 			break;
845 		case MII_ANER:
846 			phy_reg = DC_AL_ANER;
847 			break;
848 		default:
849 			printf("dc%d: phy_read: bad phy register %x\n",
850 			    sc->dc_unit, reg);
851 			return(0);
852 			break;
853 		}
854 
855 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
856 
857 		if (rval == 0xFFFF)
858 			return(0);
859 		return(rval);
860 	}
861 
862 	frame.mii_phyaddr = phy;
863 	frame.mii_regaddr = reg;
864 	if (sc->dc_type == DC_TYPE_98713) {
865 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
866 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
867 	}
868 	dc_mii_readreg(sc, &frame);
869 	if (sc->dc_type == DC_TYPE_98713)
870 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
871 
872 	return(frame.mii_data);
873 }
874 
875 static int dc_miibus_writereg(dev, phy, reg, data)
876 	device_t		dev;
877 	int			phy, reg, data;
878 {
879 	struct dc_softc		*sc;
880 	struct dc_mii_frame	frame;
881 	int			i, phy_reg = 0;
882 
883 	sc = device_get_softc(dev);
884 	bzero((char *)&frame, sizeof(frame));
885 
886 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
887 		return(0);
888 
889 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
890 		return(0);
891 
892 	if (DC_IS_PNIC(sc)) {
893 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
894 		    (phy << 23) | (reg << 10) | data);
895 		for (i = 0; i < DC_TIMEOUT; i++) {
896 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
897 				break;
898 		}
899 		return(0);
900 	}
901 
902 	if (DC_IS_COMET(sc)) {
903 		switch(reg) {
904 		case MII_BMCR:
905 			phy_reg = DC_AL_BMCR;
906 			break;
907 		case MII_BMSR:
908 			phy_reg = DC_AL_BMSR;
909 			break;
910 		case MII_PHYIDR1:
911 			phy_reg = DC_AL_VENID;
912 			break;
913 		case MII_PHYIDR2:
914 			phy_reg = DC_AL_DEVID;
915 			break;
916 		case MII_ANAR:
917 			phy_reg = DC_AL_ANAR;
918 			break;
919 		case MII_ANLPAR:
920 			phy_reg = DC_AL_LPAR;
921 			break;
922 		case MII_ANER:
923 			phy_reg = DC_AL_ANER;
924 			break;
925 		default:
926 			printf("dc%d: phy_write: bad phy register %x\n",
927 			    sc->dc_unit, reg);
928 			return(0);
929 			break;
930 		}
931 
932 		CSR_WRITE_4(sc, phy_reg, data);
933 		return(0);
934 	}
935 
936 	frame.mii_phyaddr = phy;
937 	frame.mii_regaddr = reg;
938 	frame.mii_data = data;
939 
940 	if (sc->dc_type == DC_TYPE_98713) {
941 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
942 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
943 	}
944 	dc_mii_writereg(sc, &frame);
945 	if (sc->dc_type == DC_TYPE_98713)
946 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
947 
948 	return(0);
949 }
950 
951 static void dc_miibus_statchg(dev)
952 	device_t		dev;
953 {
954 	struct dc_softc		*sc;
955 	struct mii_data		*mii;
956 	struct ifmedia		*ifm;
957 
958 	sc = device_get_softc(dev);
959 	if (DC_IS_ADMTEK(sc))
960 		return;
961 
962 	mii = device_get_softc(sc->dc_miibus);
963 	ifm = &mii->mii_media;
964 	if (DC_IS_DAVICOM(sc) &&
965 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
966 		dc_setcfg(sc, ifm->ifm_media);
967 		sc->dc_if_media = ifm->ifm_media;
968 	} else {
969 		dc_setcfg(sc, mii->mii_media_active);
970 		sc->dc_if_media = mii->mii_media_active;
971 	}
972 
973 	return;
974 }
975 
976 /*
977  * Special support for DM9102A cards with HomePNA PHYs. Note:
978  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
979  * to be impossible to talk to the management interface of the DM9801
980  * PHY (its MDIO pin is not connected to anything). Consequently,
981  * the driver has to just 'know' about the additional mode and deal
982  * with it itself. *sigh*
983  */
984 static void dc_miibus_mediainit(dev)
985 	device_t		dev;
986 {
987 	struct dc_softc		*sc;
988 	struct mii_data		*mii;
989 	struct ifmedia		*ifm;
990 	int			rev;
991 
992 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
993 
994 	sc = device_get_softc(dev);
995 	mii = device_get_softc(sc->dc_miibus);
996 	ifm = &mii->mii_media;
997 
998 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
999 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1000 
1001 	return;
1002 }
1003 
1004 #define DC_POLY		0xEDB88320
1005 #define DC_BITS_512	9
1006 #define DC_BITS_128	7
1007 #define DC_BITS_64	6
1008 
1009 static u_int32_t dc_crc_le(sc, addr)
1010 	struct dc_softc		*sc;
1011 	c_caddr_t		addr;
1012 {
1013 	u_int32_t		idx, bit, data, crc;
1014 
1015 	/* Compute CRC for the address value. */
1016 	crc = 0xFFFFFFFF; /* initial value */
1017 
1018 	for (idx = 0; idx < 6; idx++) {
1019 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1020 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1021 	}
1022 
1023 	/*
1024 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1025 	 * chips is only 128 bits wide.
1026 	 */
1027 	if (sc->dc_flags & DC_128BIT_HASH)
1028 		return (crc & ((1 << DC_BITS_128) - 1));
1029 
1030 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1031 	if (sc->dc_flags & DC_64BIT_HASH)
1032 		return (crc & ((1 << DC_BITS_64) - 1));
1033 
1034 	return (crc & ((1 << DC_BITS_512) - 1));
1035 }
1036 
1037 /*
1038  * Calculate CRC of a multicast group address, return the lower 6 bits.
1039  */
1040 static u_int32_t dc_crc_be(addr)
1041 	caddr_t			addr;
1042 {
1043 	u_int32_t		crc, carry;
1044 	int			i, j;
1045 	u_int8_t		c;
1046 
1047 	/* Compute CRC for the address value. */
1048 	crc = 0xFFFFFFFF; /* initial value */
1049 
1050 	for (i = 0; i < 6; i++) {
1051 		c = *(addr + i);
1052 		for (j = 0; j < 8; j++) {
1053 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
1054 			crc <<= 1;
1055 			c >>= 1;
1056 			if (carry)
1057 				crc = (crc ^ 0x04c11db6) | carry;
1058 		}
1059 	}
1060 
1061 	/* return the filter bit position */
1062 	return((crc >> 26) & 0x0000003F);
1063 }
1064 
1065 /*
1066  * 21143-style RX filter setup routine. Filter programming is done by
1067  * downloading a special setup frame into the TX engine. 21143, Macronix,
1068  * PNIC, PNIC II and Davicom chips are programmed this way.
1069  *
1070  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1071  * address (our node address) and a 512-bit hash filter for multicast
1072  * frames. We also sneak the broadcast address into the hash filter since
1073  * we need that too.
1074  */
1075 void dc_setfilt_21143(sc)
1076 	struct dc_softc		*sc;
1077 {
1078 	struct dc_desc		*sframe;
1079 	u_int32_t		h, *sp;
1080 	struct ifmultiaddr	*ifma;
1081 	struct ifnet		*ifp;
1082 	int			i;
1083 
1084 	ifp = &sc->arpcom.ac_if;
1085 
1086 	i = sc->dc_cdata.dc_tx_prod;
1087 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1088 	sc->dc_cdata.dc_tx_cnt++;
1089 	sframe = &sc->dc_ldata->dc_tx_list[i];
1090 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1091 	bzero((char *)sp, DC_SFRAME_LEN);
1092 
1093 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1094 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1095 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1096 
1097 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1098 
1099 	/* If we want promiscuous mode, set the allframes bit. */
1100 	if (ifp->if_flags & IFF_PROMISC)
1101 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1102 	else
1103 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1104 
1105 	if (ifp->if_flags & IFF_ALLMULTI)
1106 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1107 	else
1108 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1109 
1110 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1111 	    ifma = ifma->ifma_link.le_next) {
1112 		if (ifma->ifma_addr->sa_family != AF_LINK)
1113 			continue;
1114 		h = dc_crc_le(sc,
1115 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1116 		sp[h >> 4] |= 1 << (h & 0xF);
1117 	}
1118 
1119 	if (ifp->if_flags & IFF_BROADCAST) {
1120 		h = dc_crc_le(sc, ifp->if_broadcastaddr);
1121 		sp[h >> 4] |= 1 << (h & 0xF);
1122 	}
1123 
1124 	/* Set our MAC address */
1125 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1126 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1127 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1128 
1129 	sframe->dc_status = DC_TXSTAT_OWN;
1130 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1131 
1132 	/*
1133 	 * The PNIC takes an exceedingly long time to process its
1134 	 * setup frame; wait 10ms after posting the setup frame
1135 	 * before proceeding, just so it has time to swallow its
1136 	 * medicine.
1137 	 */
1138 	DELAY(10000);
1139 
1140 	ifp->if_timer = 5;
1141 
1142 	return;
1143 }
1144 
1145 void dc_setfilt_admtek(sc)
1146 	struct dc_softc		*sc;
1147 {
1148 	struct ifnet		*ifp;
1149 	int			h = 0;
1150 	u_int32_t		hashes[2] = { 0, 0 };
1151 	struct ifmultiaddr	*ifma;
1152 
1153 	ifp = &sc->arpcom.ac_if;
1154 
1155 	/* Init our MAC address */
1156 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1157 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1158 
1159 	/* If we want promiscuous mode, set the allframes bit. */
1160 	if (ifp->if_flags & IFF_PROMISC)
1161 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1162 	else
1163 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1164 
1165 	if (ifp->if_flags & IFF_ALLMULTI)
1166 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1167 	else
1168 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1169 
1170 	/* first, zot all the existing hash bits */
1171 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1172 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1173 
1174 	/*
1175 	 * If we're already in promisc or allmulti mode, we
1176 	 * don't have to bother programming the multicast filter.
1177 	 */
1178 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1179 		return;
1180 
1181 	/* now program new ones */
1182 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1183 	    ifma = ifma->ifma_link.le_next) {
1184 		if (ifma->ifma_addr->sa_family != AF_LINK)
1185 			continue;
1186 		if (DC_IS_CENTAUR(sc))
1187 			h = dc_crc_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1188 		else
1189 			h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1190 		if (h < 32)
1191 			hashes[0] |= (1 << h);
1192 		else
1193 			hashes[1] |= (1 << (h - 32));
1194 	}
1195 
1196 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1197 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1198 
1199 	return;
1200 }
1201 
1202 void dc_setfilt_asix(sc)
1203 	struct dc_softc		*sc;
1204 {
1205 	struct ifnet		*ifp;
1206 	int			h = 0;
1207 	u_int32_t		hashes[2] = { 0, 0 };
1208 	struct ifmultiaddr	*ifma;
1209 
1210 	ifp = &sc->arpcom.ac_if;
1211 
1212         /* Init our MAC address */
1213         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1214         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1215 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1216         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1217         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1218 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1219 
1220 	/* If we want promiscuous mode, set the allframes bit. */
1221 	if (ifp->if_flags & IFF_PROMISC)
1222 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1223 	else
1224 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1225 
1226 	if (ifp->if_flags & IFF_ALLMULTI)
1227 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1228 	else
1229 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1230 
1231 	/*
1232 	 * The ASIX chip has a special bit to enable reception
1233 	 * of broadcast frames.
1234 	 */
1235 	if (ifp->if_flags & IFF_BROADCAST)
1236 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1237 	else
1238 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1239 
1240 	/* first, zot all the existing hash bits */
1241 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1242 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1243 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1244 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1245 
1246 	/*
1247 	 * If we're already in promisc or allmulti mode, we
1248 	 * don't have to bother programming the multicast filter.
1249 	 */
1250 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1251 		return;
1252 
1253 	/* now program new ones */
1254 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1255 	    ifma = ifma->ifma_link.le_next) {
1256 		if (ifma->ifma_addr->sa_family != AF_LINK)
1257 			continue;
1258 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1259 		if (h < 32)
1260 			hashes[0] |= (1 << h);
1261 		else
1262 			hashes[1] |= (1 << (h - 32));
1263 	}
1264 
1265 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1266 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1267 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1268 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1269 
1270 	return;
1271 }
1272 
1273 static void dc_setfilt(sc)
1274 	struct dc_softc		*sc;
1275 {
1276 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1277 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1278 		dc_setfilt_21143(sc);
1279 
1280 	if (DC_IS_ASIX(sc))
1281 		dc_setfilt_asix(sc);
1282 
1283 	if (DC_IS_ADMTEK(sc))
1284 		dc_setfilt_admtek(sc);
1285 
1286 	return;
1287 }
1288 
1289 /*
1290  * In order to fiddle with the
1291  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1292  * first have to put the transmit and/or receive logic in the idle state.
1293  */
1294 static void dc_setcfg(sc, media)
1295 	struct dc_softc		*sc;
1296 	int			media;
1297 {
1298 	int			i, restart = 0;
1299 	u_int32_t		isr;
1300 
1301 	if (IFM_SUBTYPE(media) == IFM_NONE)
1302 		return;
1303 
1304 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1305 		restart = 1;
1306 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1307 
1308 		for (i = 0; i < DC_TIMEOUT; i++) {
1309 			isr = CSR_READ_4(sc, DC_ISR);
1310 			if (isr & DC_ISR_TX_IDLE ||
1311 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1312 				break;
1313 			DELAY(10);
1314 		}
1315 
1316 		if (i == DC_TIMEOUT)
1317 			printf("dc%d: failed to force tx and "
1318 				"rx to idle state\n", sc->dc_unit);
1319 	}
1320 
1321 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1322 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1323 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1324 		if (sc->dc_pmode == DC_PMODE_MII) {
1325 			int	watchdogreg;
1326 
1327 			if (DC_IS_INTEL(sc)) {
1328 			/* there's a write enable bit here that reads as 1 */
1329 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1330 				watchdogreg &= ~DC_WDOG_CTLWREN;
1331 				watchdogreg |= DC_WDOG_JABBERDIS;
1332 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1333 			} else {
1334 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1335 			}
1336 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1337 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1338 			if (sc->dc_type == DC_TYPE_98713)
1339 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1340 				    DC_NETCFG_SCRAMBLER));
1341 			if (!DC_IS_DAVICOM(sc))
1342 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1343 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1344 			if (DC_IS_INTEL(sc))
1345 				dc_apply_fixup(sc, IFM_AUTO);
1346 		} else {
1347 			if (DC_IS_PNIC(sc)) {
1348 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1349 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1350 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1351 			}
1352 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1353 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1354 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1355 			if (DC_IS_INTEL(sc))
1356 				dc_apply_fixup(sc,
1357 				    (media & IFM_GMASK) == IFM_FDX ?
1358 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1359 		}
1360 	}
1361 
1362 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1363 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1364 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1365 		if (sc->dc_pmode == DC_PMODE_MII) {
1366 			int	watchdogreg;
1367 
1368 			/* there's a write enable bit here that reads as 1 */
1369 			if (DC_IS_INTEL(sc)) {
1370 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1371 				watchdogreg &= ~DC_WDOG_CTLWREN;
1372 				watchdogreg |= DC_WDOG_JABBERDIS;
1373 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1374 			} else {
1375 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1376 			}
1377 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1378 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1379 			if (sc->dc_type == DC_TYPE_98713)
1380 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1381 			if (!DC_IS_DAVICOM(sc))
1382 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1383 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1384 			if (DC_IS_INTEL(sc))
1385 				dc_apply_fixup(sc, IFM_AUTO);
1386 		} else {
1387 			if (DC_IS_PNIC(sc)) {
1388 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1389 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1390 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1391 			}
1392 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1393 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1394 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1395 			if (DC_IS_INTEL(sc)) {
1396 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1397 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1398 				if ((media & IFM_GMASK) == IFM_FDX)
1399 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1400 				else
1401 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1402 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1403 				DC_CLRBIT(sc, DC_10BTCTRL,
1404 				    DC_TCTL_AUTONEGENBL);
1405 				dc_apply_fixup(sc,
1406 				    (media & IFM_GMASK) == IFM_FDX ?
1407 				    IFM_10_T|IFM_FDX : IFM_10_T);
1408 				DELAY(20000);
1409 			}
1410 		}
1411 	}
1412 
1413 	/*
1414 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1415 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1416 	 * on the external MII port.
1417 	 */
1418 	if (DC_IS_DAVICOM(sc)) {
1419 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1420 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1421 			sc->dc_link = 1;
1422 		} else {
1423 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1424 		}
1425 	}
1426 
1427 	if ((media & IFM_GMASK) == IFM_FDX) {
1428 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1429 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1430 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1431 	} else {
1432 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1433 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1434 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1435 	}
1436 
1437 	if (restart)
1438 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1439 
1440 	return;
1441 }
1442 
1443 static void dc_reset(sc)
1444 	struct dc_softc		*sc;
1445 {
1446 	int		i;
1447 
1448 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1449 
1450 	for (i = 0; i < DC_TIMEOUT; i++) {
1451 		DELAY(10);
1452 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1453 			break;
1454 	}
1455 
1456 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1457 		DELAY(10000);
1458 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1459 		i = 0;
1460 	}
1461 
1462 	if (i == DC_TIMEOUT)
1463 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1464 
1465 	/* Wait a little while for the chip to get its brains in order. */
1466 	DELAY(1000);
1467 
1468 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1469 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1470 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1471 
1472 	/*
1473 	 * Bring the SIA out of reset. In some cases, it looks
1474 	 * like failing to unreset the SIA soon enough gets it
1475 	 * into a state where it will never come out of reset
1476 	 * until we reset the whole chip again.
1477 	 */
1478 	if (DC_IS_INTEL(sc)) {
1479 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1480 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1481 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1482 	}
1483 
1484         return;
1485 }
1486 
1487 static struct dc_type *dc_devtype(dev)
1488 	device_t		dev;
1489 {
1490 	struct dc_type		*t;
1491 	u_int32_t		rev;
1492 
1493 	t = dc_devs;
1494 
1495 	while(t->dc_name != NULL) {
1496 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1497 		    (pci_get_device(dev) == t->dc_did)) {
1498 			/* Check the PCI revision */
1499 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1500 			if (t->dc_did == DC_DEVICEID_98713 &&
1501 			    rev >= DC_REVISION_98713A)
1502 				t++;
1503 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1504 			    rev >= DC_REVISION_98713A)
1505 				t++;
1506 			if (t->dc_did == DC_DEVICEID_987x5 &&
1507 			    rev >= DC_REVISION_98715AEC_C)
1508 				t++;
1509 			if (t->dc_did == DC_DEVICEID_987x5 &&
1510 			    rev >= DC_REVISION_98725)
1511 				t++;
1512 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1513 			    rev >= DC_REVISION_88141)
1514 				t++;
1515 			if (t->dc_did == DC_DEVICEID_82C168 &&
1516 			    rev >= DC_REVISION_82C169)
1517 				t++;
1518 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1519 			    rev >= DC_REVISION_DM9102A)
1520 				t++;
1521 			return(t);
1522 		}
1523 		t++;
1524 	}
1525 
1526 	return(NULL);
1527 }
1528 
1529 /*
1530  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1531  * IDs against our list and return a device name if we find a match.
1532  * We do a little bit of extra work to identify the exact type of
1533  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1534  * but different revision IDs. The same is true for 98715/98715A
1535  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1536  * cases, the exact chip revision affects driver behavior.
1537  */
1538 static int dc_probe(dev)
1539 	device_t		dev;
1540 {
1541 	struct dc_type		*t;
1542 
1543 	t = dc_devtype(dev);
1544 
1545 	if (t != NULL) {
1546 		device_set_desc(dev, t->dc_name);
1547 		return(0);
1548 	}
1549 
1550 	return(ENXIO);
1551 }
1552 
1553 static void dc_acpi(dev)
1554 	device_t		dev;
1555 {
1556 	u_int32_t		r, cptr;
1557 	int			unit;
1558 
1559 	unit = device_get_unit(dev);
1560 
1561 	/* Find the location of the capabilities block */
1562 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1563 
1564 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1565 	if (r == 0x01) {
1566 
1567 		r = pci_read_config(dev, cptr + 4, 4);
1568 		if (r & DC_PSTATE_D3) {
1569 			u_int32_t		iobase, membase, irq;
1570 
1571 			/* Save important PCI config data. */
1572 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1573 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1574 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1575 
1576 			/* Reset the power state. */
1577 			printf("dc%d: chip is in D%d power mode "
1578 			    "-- setting to D0\n", unit, r & DC_PSTATE_D3);
1579 			r &= 0xFFFFFFFC;
1580 			pci_write_config(dev, cptr + 4, r, 4);
1581 
1582 			/* Restore PCI config data. */
1583 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1584 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1585 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1586 		}
1587 	}
1588 	return;
1589 }
1590 
1591 static void dc_apply_fixup(sc, media)
1592 	struct dc_softc		*sc;
1593 	int			media;
1594 {
1595 	struct dc_mediainfo	*m;
1596 	u_int8_t		*p;
1597 	int			i;
1598 	u_int32_t		reg;
1599 
1600 	m = sc->dc_mi;
1601 
1602 	while (m != NULL) {
1603 		if (m->dc_media == media)
1604 			break;
1605 		m = m->dc_next;
1606 	}
1607 
1608 	if (m == NULL)
1609 		return;
1610 
1611 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1612 		reg = (p[0] | (p[1] << 8)) << 16;
1613 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1614 	}
1615 
1616 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1617 		reg = (p[0] | (p[1] << 8)) << 16;
1618 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1619 	}
1620 
1621 	return;
1622 }
1623 
1624 static void dc_decode_leaf_sia(sc, l)
1625 	struct dc_softc		*sc;
1626 	struct dc_eblock_sia	*l;
1627 {
1628 	struct dc_mediainfo	*m;
1629 
1630 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1631 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1632 		m->dc_media = IFM_10_T;
1633 
1634 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1635 		m->dc_media = IFM_10_T|IFM_FDX;
1636 
1637 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1638 		m->dc_media = IFM_10_2;
1639 
1640 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1641 		m->dc_media = IFM_10_5;
1642 
1643 	m->dc_gp_len = 2;
1644 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1645 
1646 	m->dc_next = sc->dc_mi;
1647 	sc->dc_mi = m;
1648 
1649 	sc->dc_pmode = DC_PMODE_SIA;
1650 
1651 	return;
1652 }
1653 
1654 static void dc_decode_leaf_sym(sc, l)
1655 	struct dc_softc		*sc;
1656 	struct dc_eblock_sym	*l;
1657 {
1658 	struct dc_mediainfo	*m;
1659 
1660 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1661 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1662 		m->dc_media = IFM_100_TX;
1663 
1664 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1665 		m->dc_media = IFM_100_TX|IFM_FDX;
1666 
1667 	m->dc_gp_len = 2;
1668 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1669 
1670 	m->dc_next = sc->dc_mi;
1671 	sc->dc_mi = m;
1672 
1673 	sc->dc_pmode = DC_PMODE_SYM;
1674 
1675 	return;
1676 }
1677 
1678 static void dc_decode_leaf_mii(sc, l)
1679 	struct dc_softc		*sc;
1680 	struct dc_eblock_mii	*l;
1681 {
1682 	u_int8_t		*p;
1683 	struct dc_mediainfo	*m;
1684 
1685 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1686 	/* We abuse IFM_AUTO to represent MII. */
1687 	m->dc_media = IFM_AUTO;
1688 	m->dc_gp_len = l->dc_gpr_len;
1689 
1690 	p = (u_int8_t *)l;
1691 	p += sizeof(struct dc_eblock_mii);
1692 	m->dc_gp_ptr = p;
1693 	p += 2 * l->dc_gpr_len;
1694 	m->dc_reset_len = *p;
1695 	p++;
1696 	m->dc_reset_ptr = p;
1697 
1698 	m->dc_next = sc->dc_mi;
1699 	sc->dc_mi = m;
1700 
1701 	return;
1702 }
1703 
1704 static void dc_read_srom(sc, bits)
1705 	struct dc_softc		*sc;
1706 	int			bits;
1707 {
1708 	int size;
1709 
1710 	size = 2 << bits;
1711 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1712 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1713 }
1714 
1715 static void dc_parse_21143_srom(sc)
1716 	struct dc_softc		*sc;
1717 {
1718 	struct dc_leaf_hdr	*lhdr;
1719 	struct dc_eblock_hdr	*hdr;
1720 	int			i, loff;
1721 	char			*ptr;
1722 	int			have_mii;
1723 
1724 	have_mii = 0;
1725 	loff = sc->dc_srom[27];
1726 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1727 
1728 	ptr = (char *)lhdr;
1729 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1730 	/*
1731 	 * Look if we got a MII media block.
1732 	 */
1733 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1734 		hdr = (struct dc_eblock_hdr *)ptr;
1735 		if (hdr->dc_type == DC_EBLOCK_MII)
1736 		    have_mii++;
1737 
1738 		ptr += (hdr->dc_len & 0x7F);
1739 		ptr++;
1740 	}
1741 
1742 	/*
1743 	 * Do the same thing again. Only use SIA and SYM media
1744 	 * blocks if no MII media block is available.
1745 	 */
1746 	ptr = (char *)lhdr;
1747 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1748 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1749 		hdr = (struct dc_eblock_hdr *)ptr;
1750 		switch(hdr->dc_type) {
1751 		case DC_EBLOCK_MII:
1752 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1753 			break;
1754 		case DC_EBLOCK_SIA:
1755 			if (! have_mii)
1756 				dc_decode_leaf_sia(sc,
1757 				    (struct dc_eblock_sia *)hdr);
1758 			break;
1759 		case DC_EBLOCK_SYM:
1760 			if (! have_mii)
1761 				dc_decode_leaf_sym(sc,
1762 				    (struct dc_eblock_sym *)hdr);
1763 			break;
1764 		default:
1765 			/* Don't care. Yet. */
1766 			break;
1767 		}
1768 		ptr += (hdr->dc_len & 0x7F);
1769 		ptr++;
1770 	}
1771 
1772 	return;
1773 }
1774 
1775 /*
1776  * Attach the interface. Allocate softc structures, do ifmedia
1777  * setup and ethernet/BPF attach.
1778  */
1779 static int dc_attach(dev)
1780 	device_t		dev;
1781 {
1782 	int			s, tmp = 0;
1783 	u_char			eaddr[ETHER_ADDR_LEN];
1784 	u_int32_t		command;
1785 	struct dc_softc		*sc;
1786 	struct ifnet		*ifp;
1787 	u_int32_t		revision;
1788 	int			unit, error = 0, rid, mac_offset;
1789 
1790 	s = splimp();
1791 
1792 	sc = device_get_softc(dev);
1793 	unit = device_get_unit(dev);
1794 	bzero(sc, sizeof(struct dc_softc));
1795 	callout_init(&sc->dc_stat_timer);
1796 
1797 	/*
1798 	 * Handle power management nonsense.
1799 	 */
1800 	dc_acpi(dev);
1801 
1802 	/*
1803 	 * Map control/status registers.
1804 	 */
1805 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1806 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1807 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1808 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1809 
1810 #ifdef DC_USEIOSPACE
1811 	if (!(command & PCIM_CMD_PORTEN)) {
1812 		printf("dc%d: failed to enable I/O ports!\n", unit);
1813 		error = ENXIO;
1814 		goto fail;
1815 	}
1816 #else
1817 	if (!(command & PCIM_CMD_MEMEN)) {
1818 		printf("dc%d: failed to enable memory mapping!\n", unit);
1819 		error = ENXIO;
1820 		goto fail;
1821 	}
1822 #endif
1823 
1824 	rid = DC_RID;
1825 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1826 	    0, ~0, 1, RF_ACTIVE);
1827 
1828 	if (sc->dc_res == NULL) {
1829 		printf("dc%d: couldn't map ports/memory\n", unit);
1830 		error = ENXIO;
1831 		goto fail;
1832 	}
1833 
1834 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1835 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1836 
1837 	/* Allocate interrupt */
1838 	rid = 0;
1839 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1840 	    RF_SHAREABLE | RF_ACTIVE);
1841 
1842 	if (sc->dc_irq == NULL) {
1843 		printf("dc%d: couldn't map interrupt\n", unit);
1844 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1845 		error = ENXIO;
1846 		goto fail;
1847 	}
1848 
1849 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1850 	    dc_intr, sc, &sc->dc_intrhand);
1851 
1852 	if (error) {
1853 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1854 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1855 		printf("dc%d: couldn't set up irq\n", unit);
1856 		goto fail;
1857 	}
1858 
1859 	/* Need this info to decide on a chip type. */
1860 	sc->dc_info = dc_devtype(dev);
1861 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1862 
1863 	/* Get the eeprom width, but PNIC has diff eeprom */
1864 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1865 		dc_eeprom_width(sc);
1866 
1867 	switch(sc->dc_info->dc_did) {
1868 	case DC_DEVICEID_21143:
1869 		sc->dc_type = DC_TYPE_21143;
1870 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1871 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1872 		/* Save EEPROM contents so we can parse them later. */
1873 		dc_read_srom(sc, sc->dc_romwidth);
1874 		break;
1875 	case DC_DEVICEID_DM9009:
1876 	case DC_DEVICEID_DM9100:
1877 	case DC_DEVICEID_DM9102:
1878 		sc->dc_type = DC_TYPE_DM9102;
1879 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1880 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1881 		sc->dc_pmode = DC_PMODE_MII;
1882 		/* Increase the latency timer value. */
1883 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1884 		command &= 0xFFFF00FF;
1885 		command |= 0x00008000;
1886 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1887 		break;
1888 	case DC_DEVICEID_AL981:
1889 		sc->dc_type = DC_TYPE_AL981;
1890 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1891 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1892 		sc->dc_pmode = DC_PMODE_MII;
1893 		dc_read_srom(sc, sc->dc_romwidth);
1894 		break;
1895 	case DC_DEVICEID_AN985:
1896 	case DC_DEVICEID_EN2242:
1897 	case DC_DEVICEID_3CSOHOB:
1898 		sc->dc_type = DC_TYPE_AN985;
1899 		sc->dc_flags |= DC_64BIT_HASH;
1900 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1901 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1902 		sc->dc_pmode = DC_PMODE_MII;
1903 		dc_read_srom(sc, sc->dc_romwidth);
1904 		break;
1905 	case DC_DEVICEID_98713:
1906 	case DC_DEVICEID_98713_CP:
1907 		if (revision < DC_REVISION_98713A) {
1908 			sc->dc_type = DC_TYPE_98713;
1909 		}
1910 		if (revision >= DC_REVISION_98713A) {
1911 			sc->dc_type = DC_TYPE_98713A;
1912 			sc->dc_flags |= DC_21143_NWAY;
1913 		}
1914 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1915 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1916 		break;
1917 	case DC_DEVICEID_987x5:
1918 	case DC_DEVICEID_EN1217:
1919 		/*
1920 		 * Macronix MX98715AEC-C/D/E parts have only a
1921 		 * 128-bit hash table. We need to deal with these
1922 		 * in the same manner as the PNIC II so that we
1923 		 * get the right number of bits out of the
1924 		 * CRC routine.
1925 		 */
1926 		if (revision >= DC_REVISION_98715AEC_C &&
1927 		    revision < DC_REVISION_98725)
1928 			sc->dc_flags |= DC_128BIT_HASH;
1929 		sc->dc_type = DC_TYPE_987x5;
1930 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1931 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1932 		break;
1933 	case DC_DEVICEID_98727:
1934 		sc->dc_type = DC_TYPE_987x5;
1935 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1936 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1937 		break;
1938 	case DC_DEVICEID_82C115:
1939 		sc->dc_type = DC_TYPE_PNICII;
1940 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1941 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1942 		break;
1943 	case DC_DEVICEID_82C168:
1944 		sc->dc_type = DC_TYPE_PNIC;
1945 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1946 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1947 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1948 		if (revision < DC_REVISION_82C169)
1949 			sc->dc_pmode = DC_PMODE_SYM;
1950 		break;
1951 	case DC_DEVICEID_AX88140A:
1952 		sc->dc_type = DC_TYPE_ASIX;
1953 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1954 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1955 		sc->dc_pmode = DC_PMODE_MII;
1956 		break;
1957 	case DC_DEVICEID_RS7112:
1958 		sc->dc_type = DC_TYPE_CONEXANT;
1959 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1960 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1961 		sc->dc_pmode = DC_PMODE_MII;
1962 		dc_read_srom(sc, sc->dc_romwidth);
1963 		break;
1964 	default:
1965 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1966 		    sc->dc_info->dc_did);
1967 		break;
1968 	}
1969 
1970 	/* Save the cache line size. */
1971 	if (DC_IS_DAVICOM(sc))
1972 		sc->dc_cachesize = 0;
1973 	else
1974 		sc->dc_cachesize = pci_read_config(dev,
1975 		    DC_PCI_CFLT, 4) & 0xFF;
1976 
1977 	/* Reset the adapter. */
1978 	dc_reset(sc);
1979 
1980 	/* Take 21143 out of snooze mode */
1981 	if (DC_IS_INTEL(sc)) {
1982 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1983 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1984 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1985 	}
1986 
1987 	/*
1988 	 * Try to learn something about the supported media.
1989 	 * We know that ASIX and ADMtek and Davicom devices
1990 	 * will *always* be using MII media, so that's a no-brainer.
1991 	 * The tricky ones are the Macronix/PNIC II and the
1992 	 * Intel 21143.
1993 	 */
1994 	if (DC_IS_INTEL(sc))
1995 		dc_parse_21143_srom(sc);
1996 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1997 		if (sc->dc_type == DC_TYPE_98713)
1998 			sc->dc_pmode = DC_PMODE_MII;
1999 		else
2000 			sc->dc_pmode = DC_PMODE_SYM;
2001 	} else if (!sc->dc_pmode)
2002 		sc->dc_pmode = DC_PMODE_MII;
2003 
2004 	/*
2005 	 * Get station address from the EEPROM.
2006 	 */
2007 	switch(sc->dc_type) {
2008 	case DC_TYPE_98713:
2009 	case DC_TYPE_98713A:
2010 	case DC_TYPE_987x5:
2011 	case DC_TYPE_PNICII:
2012 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2013 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2014 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2015 		break;
2016 	case DC_TYPE_PNIC:
2017 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2018 		break;
2019 	case DC_TYPE_DM9102:
2020 	case DC_TYPE_21143:
2021 	case DC_TYPE_ASIX:
2022 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2023 		break;
2024 	case DC_TYPE_AL981:
2025 	case DC_TYPE_AN985:
2026 		bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr,
2027 		    ETHER_ADDR_LEN);
2028 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
2029 		break;
2030 	case DC_TYPE_CONEXANT:
2031 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2032 		break;
2033 	default:
2034 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2035 		break;
2036 	}
2037 
2038 	sc->dc_unit = unit;
2039 
2040 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2041 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2042 
2043 	if (sc->dc_ldata == NULL) {
2044 		printf("dc%d: no memory for list buffers!\n", unit);
2045 		if (sc->dc_pnic_rx_buf != NULL)
2046 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2047 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2048 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2049 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2050 		error = ENXIO;
2051 		goto fail;
2052 	}
2053 
2054 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2055 
2056 	ifp = &sc->arpcom.ac_if;
2057 	ifp->if_softc = sc;
2058 	if_initname(ifp, "dc", unit);
2059 	ifp->if_mtu = ETHERMTU;
2060 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2061 	ifp->if_ioctl = dc_ioctl;
2062 	ifp->if_start = dc_start;
2063 	ifp->if_watchdog = dc_watchdog;
2064 	ifp->if_init = dc_init;
2065 	ifp->if_baudrate = 10000000;
2066 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2067 	ifq_set_ready(&ifp->if_snd);
2068 
2069 	/*
2070 	 * Do MII setup. If this is a 21143, check for a PHY on the
2071 	 * MII bus after applying any necessary fixups to twiddle the
2072 	 * GPIO bits. If we don't end up finding a PHY, restore the
2073 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2074 	 * driver instead.
2075 	 */
2076 	if (DC_IS_INTEL(sc)) {
2077 		dc_apply_fixup(sc, IFM_AUTO);
2078 		tmp = sc->dc_pmode;
2079 		sc->dc_pmode = DC_PMODE_MII;
2080 	}
2081 
2082 	error = mii_phy_probe(dev, &sc->dc_miibus,
2083 	    dc_ifmedia_upd, dc_ifmedia_sts);
2084 
2085 	if (error && DC_IS_INTEL(sc)) {
2086 		sc->dc_pmode = tmp;
2087 		if (sc->dc_pmode != DC_PMODE_SIA)
2088 			sc->dc_pmode = DC_PMODE_SYM;
2089 		sc->dc_flags |= DC_21143_NWAY;
2090 		mii_phy_probe(dev, &sc->dc_miibus,
2091 		    dc_ifmedia_upd, dc_ifmedia_sts);
2092 		/*
2093 		 * For non-MII cards, we need to have the 21143
2094 		 * drive the LEDs. Except there are some systems
2095 		 * like the NEC VersaPro NoteBook PC which have no
2096 		 * LEDs, and twiddling these bits has adverse effects
2097 		 * on them. (I.e. you suddenly can't get a link.)
2098 		 */
2099 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2100 			sc->dc_flags |= DC_TULIP_LEDS;
2101 		error = 0;
2102 	}
2103 
2104 	if (error) {
2105 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2106 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data),
2107 		    M_DEVBUF);
2108 		if (sc->dc_pnic_rx_buf != NULL)
2109 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2110 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2111 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2112 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2113 		error = ENXIO;
2114 		goto fail;
2115 	}
2116 
2117 	/*
2118 	 * Call MI attach routine.
2119 	 */
2120 	ether_ifattach(ifp, eaddr);
2121 
2122 	if (DC_IS_ADMTEK(sc)) {
2123 		/*
2124 		 * Set automatic TX underrun recovery for the ADMtek chips
2125 		 */
2126 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2127 	}
2128 
2129 	/*
2130 	 * Tell the upper layer(s) we support long frames.
2131 	 */
2132 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2133 
2134 #ifdef SRM_MEDIA
2135         sc->dc_srm_media = 0;
2136 
2137 	/* Remember the SRM console media setting */
2138 	if (DC_IS_INTEL(sc)) {
2139 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2140 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2141 		switch ((command >> 8) & 0xff) {
2142 		case 3:
2143 			sc->dc_srm_media = IFM_10_T;
2144 			break;
2145 		case 4:
2146 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2147 			break;
2148 		case 5:
2149 			sc->dc_srm_media = IFM_100_TX;
2150 			break;
2151 		case 6:
2152 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2153 			break;
2154 		}
2155 		if (sc->dc_srm_media)
2156 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2157 	}
2158 #endif
2159 
2160 
2161 fail:
2162 	splx(s);
2163 
2164 	return(error);
2165 }
2166 
2167 static int dc_detach(dev)
2168 	device_t		dev;
2169 {
2170 	struct dc_softc		*sc;
2171 	struct ifnet		*ifp;
2172 	int			s;
2173 	struct dc_mediainfo	*m;
2174 
2175 	s = splimp();
2176 
2177 	sc = device_get_softc(dev);
2178 	ifp = &sc->arpcom.ac_if;
2179 
2180 	dc_stop(sc);
2181 	ether_ifdetach(ifp);
2182 
2183 	bus_generic_detach(dev);
2184 	device_delete_child(dev, sc->dc_miibus);
2185 
2186 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2187 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2188 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2189 
2190 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2191 	if (sc->dc_pnic_rx_buf != NULL)
2192 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2193 
2194 	while(sc->dc_mi != NULL) {
2195 		m = sc->dc_mi->dc_next;
2196 		free(sc->dc_mi, M_DEVBUF);
2197 		sc->dc_mi = m;
2198 	}
2199 	free(sc->dc_srom, M_DEVBUF);
2200 
2201 	splx(s);
2202 
2203 	return(0);
2204 }
2205 
2206 /*
2207  * Initialize the transmit descriptors.
2208  */
2209 static int dc_list_tx_init(sc)
2210 	struct dc_softc		*sc;
2211 {
2212 	struct dc_chain_data	*cd;
2213 	struct dc_list_data	*ld;
2214 	int			i;
2215 
2216 	cd = &sc->dc_cdata;
2217 	ld = sc->dc_ldata;
2218 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2219 		if (i == (DC_TX_LIST_CNT - 1)) {
2220 			ld->dc_tx_list[i].dc_next =
2221 			    vtophys(&ld->dc_tx_list[0]);
2222 		} else {
2223 			ld->dc_tx_list[i].dc_next =
2224 			    vtophys(&ld->dc_tx_list[i + 1]);
2225 		}
2226 		cd->dc_tx_chain[i] = NULL;
2227 		ld->dc_tx_list[i].dc_data = 0;
2228 		ld->dc_tx_list[i].dc_ctl = 0;
2229 	}
2230 
2231 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2232 
2233 	return(0);
2234 }
2235 
2236 
2237 /*
2238  * Initialize the RX descriptors and allocate mbufs for them. Note that
2239  * we arrange the descriptors in a closed ring, so that the last descriptor
2240  * points back to the first.
2241  */
2242 static int dc_list_rx_init(sc)
2243 	struct dc_softc		*sc;
2244 {
2245 	struct dc_chain_data	*cd;
2246 	struct dc_list_data	*ld;
2247 	int			i;
2248 
2249 	cd = &sc->dc_cdata;
2250 	ld = sc->dc_ldata;
2251 
2252 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2253 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2254 			return(ENOBUFS);
2255 		if (i == (DC_RX_LIST_CNT - 1)) {
2256 			ld->dc_rx_list[i].dc_next =
2257 			    vtophys(&ld->dc_rx_list[0]);
2258 		} else {
2259 			ld->dc_rx_list[i].dc_next =
2260 			    vtophys(&ld->dc_rx_list[i + 1]);
2261 		}
2262 	}
2263 
2264 	cd->dc_rx_prod = 0;
2265 
2266 	return(0);
2267 }
2268 
2269 /*
2270  * Initialize an RX descriptor and attach an MBUF cluster.
2271  */
2272 static int dc_newbuf(sc, i, m)
2273 	struct dc_softc		*sc;
2274 	int			i;
2275 	struct mbuf		*m;
2276 {
2277 	struct mbuf		*m_new = NULL;
2278 	struct dc_desc		*c;
2279 
2280 	c = &sc->dc_ldata->dc_rx_list[i];
2281 
2282 	if (m == NULL) {
2283 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
2284 		if (m_new == NULL)
2285 			return(ENOBUFS);
2286 
2287 		MCLGET(m_new, MB_DONTWAIT);
2288 		if (!(m_new->m_flags & M_EXT)) {
2289 			m_freem(m_new);
2290 			return(ENOBUFS);
2291 		}
2292 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2293 	} else {
2294 		m_new = m;
2295 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2296 		m_new->m_data = m_new->m_ext.ext_buf;
2297 	}
2298 
2299 	m_adj(m_new, sizeof(u_int64_t));
2300 
2301 	/*
2302 	 * If this is a PNIC chip, zero the buffer. This is part
2303 	 * of the workaround for the receive bug in the 82c168 and
2304 	 * 82c169 chips.
2305 	 */
2306 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2307 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2308 
2309 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2310 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2311 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2312 	c->dc_status = DC_RXSTAT_OWN;
2313 
2314 	return(0);
2315 }
2316 
2317 /*
2318  * Grrrrr.
2319  * The PNIC chip has a terrible bug in it that manifests itself during
2320  * periods of heavy activity. The exact mode of failure if difficult to
2321  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2322  * will happen on slow machines. The bug is that sometimes instead of
2323  * uploading one complete frame during reception, it uploads what looks
2324  * like the entire contents of its FIFO memory. The frame we want is at
2325  * the end of the whole mess, but we never know exactly how much data has
2326  * been uploaded, so salvaging the frame is hard.
2327  *
2328  * There is only one way to do it reliably, and it's disgusting.
2329  * Here's what we know:
2330  *
2331  * - We know there will always be somewhere between one and three extra
2332  *   descriptors uploaded.
2333  *
2334  * - We know the desired received frame will always be at the end of the
2335  *   total data upload.
2336  *
2337  * - We know the size of the desired received frame because it will be
2338  *   provided in the length field of the status word in the last descriptor.
2339  *
2340  * Here's what we do:
2341  *
2342  * - When we allocate buffers for the receive ring, we bzero() them.
2343  *   This means that we know that the buffer contents should be all
2344  *   zeros, except for data uploaded by the chip.
2345  *
2346  * - We also force the PNIC chip to upload frames that include the
2347  *   ethernet CRC at the end.
2348  *
2349  * - We gather all of the bogus frame data into a single buffer.
2350  *
2351  * - We then position a pointer at the end of this buffer and scan
2352  *   backwards until we encounter the first non-zero byte of data.
2353  *   This is the end of the received frame. We know we will encounter
2354  *   some data at the end of the frame because the CRC will always be
2355  *   there, so even if the sender transmits a packet of all zeros,
2356  *   we won't be fooled.
2357  *
2358  * - We know the size of the actual received frame, so we subtract
2359  *   that value from the current pointer location. This brings us
2360  *   to the start of the actual received packet.
2361  *
2362  * - We copy this into an mbuf and pass it on, along with the actual
2363  *   frame length.
2364  *
2365  * The performance hit is tremendous, but it beats dropping frames all
2366  * the time.
2367  */
2368 
2369 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2370 static void dc_pnic_rx_bug_war(sc, idx)
2371 	struct dc_softc		*sc;
2372 	int			idx;
2373 {
2374 	struct dc_desc		*cur_rx;
2375 	struct dc_desc		*c = NULL;
2376 	struct mbuf		*m = NULL;
2377 	unsigned char		*ptr;
2378 	int			i, total_len;
2379 	u_int32_t		rxstat = 0;
2380 
2381 	i = sc->dc_pnic_rx_bug_save;
2382 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2383 	ptr = sc->dc_pnic_rx_buf;
2384 	bzero(ptr, DC_RXLEN * 5);
2385 
2386 	/* Copy all the bytes from the bogus buffers. */
2387 	while (1) {
2388 		c = &sc->dc_ldata->dc_rx_list[i];
2389 		rxstat = c->dc_status;
2390 		m = sc->dc_cdata.dc_rx_chain[i];
2391 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2392 		ptr += DC_RXLEN;
2393 		/* If this is the last buffer, break out. */
2394 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2395 			break;
2396 		dc_newbuf(sc, i, m);
2397 		DC_INC(i, DC_RX_LIST_CNT);
2398 	}
2399 
2400 	/* Find the length of the actual receive frame. */
2401 	total_len = DC_RXBYTES(rxstat);
2402 
2403 	/* Scan backwards until we hit a non-zero byte. */
2404 	while(*ptr == 0x00)
2405 		ptr--;
2406 
2407 	/* Round off. */
2408 	if ((uintptr_t)(ptr) & 0x3)
2409 		ptr -= 1;
2410 
2411 	/* Now find the start of the frame. */
2412 	ptr -= total_len;
2413 	if (ptr < sc->dc_pnic_rx_buf)
2414 		ptr = sc->dc_pnic_rx_buf;
2415 
2416 	/*
2417 	 * Now copy the salvaged frame to the last mbuf and fake up
2418 	 * the status word to make it look like a successful
2419  	 * frame reception.
2420 	 */
2421 	dc_newbuf(sc, i, m);
2422 	bcopy(ptr, mtod(m, char *), total_len);
2423 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2424 
2425 	return;
2426 }
2427 
2428 /*
2429  * This routine searches the RX ring for dirty descriptors in the
2430  * event that the rxeof routine falls out of sync with the chip's
2431  * current descriptor pointer. This may happen sometimes as a result
2432  * of a "no RX buffer available" condition that happens when the chip
2433  * consumes all of the RX buffers before the driver has a chance to
2434  * process the RX ring. This routine may need to be called more than
2435  * once to bring the driver back in sync with the chip, however we
2436  * should still be getting RX DONE interrupts to drive the search
2437  * for new packets in the RX ring, so we should catch up eventually.
2438  */
2439 static int dc_rx_resync(sc)
2440 	struct dc_softc		*sc;
2441 {
2442 	int			i, pos;
2443 	struct dc_desc		*cur_rx;
2444 
2445 	pos = sc->dc_cdata.dc_rx_prod;
2446 
2447 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2448 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2449 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2450 			break;
2451 		DC_INC(pos, DC_RX_LIST_CNT);
2452 	}
2453 
2454 	/* If the ring really is empty, then just return. */
2455 	if (i == DC_RX_LIST_CNT)
2456 		return(0);
2457 
2458 	/* We've fallen behing the chip: catch it. */
2459 	sc->dc_cdata.dc_rx_prod = pos;
2460 
2461 	return(EAGAIN);
2462 }
2463 
2464 /*
2465  * A frame has been uploaded: pass the resulting mbuf chain up to
2466  * the higher level protocols.
2467  */
2468 static void dc_rxeof(sc)
2469 	struct dc_softc		*sc;
2470 {
2471         struct mbuf		*m;
2472         struct ifnet		*ifp;
2473 	struct dc_desc		*cur_rx;
2474 	int			i, total_len = 0;
2475 	u_int32_t		rxstat;
2476 
2477 	ifp = &sc->arpcom.ac_if;
2478 	i = sc->dc_cdata.dc_rx_prod;
2479 
2480 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2481 
2482 #ifdef DEVICE_POLLING
2483 		if (ifp->if_flags & IFF_POLLING) {
2484 			if (sc->rxcycles <= 0)
2485 				break;
2486 			sc->rxcycles--;
2487 		}
2488 #endif /* DEVICE_POLLING */
2489 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2490 		rxstat = cur_rx->dc_status;
2491 		m = sc->dc_cdata.dc_rx_chain[i];
2492 		total_len = DC_RXBYTES(rxstat);
2493 
2494 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2495 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2496 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2497 					sc->dc_pnic_rx_bug_save = i;
2498 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2499 					DC_INC(i, DC_RX_LIST_CNT);
2500 					continue;
2501 				}
2502 				dc_pnic_rx_bug_war(sc, i);
2503 				rxstat = cur_rx->dc_status;
2504 				total_len = DC_RXBYTES(rxstat);
2505 			}
2506 		}
2507 
2508 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2509 
2510 		/*
2511 		 * If an error occurs, update stats, clear the
2512 		 * status word and leave the mbuf cluster in place:
2513 		 * it should simply get re-used next time this descriptor
2514 		 * comes up in the ring.  However, don't report long
2515 		 * frames as errors since they could be vlans
2516 		 */
2517 		if ((rxstat & DC_RXSTAT_RXERR)){
2518 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2519 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2520 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2521 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2522 				ifp->if_ierrors++;
2523 				if (rxstat & DC_RXSTAT_COLLSEEN)
2524 					ifp->if_collisions++;
2525 				dc_newbuf(sc, i, m);
2526 				if (rxstat & DC_RXSTAT_CRCERR) {
2527 					DC_INC(i, DC_RX_LIST_CNT);
2528 					continue;
2529 				} else {
2530 					dc_init(sc);
2531 					return;
2532 				}
2533 			}
2534 		}
2535 
2536 		/* No errors; receive the packet. */
2537 		total_len -= ETHER_CRC_LEN;
2538 
2539 #ifdef __i386__
2540 		/*
2541 		 * On the x86 we do not have alignment problems, so try to
2542 		 * allocate a new buffer for the receive ring, and pass up
2543 		 * the one where the packet is already, saving the expensive
2544 		 * copy done in m_devget().
2545 		 * If we are on an architecture with alignment problems, or
2546 		 * if the allocation fails, then use m_devget and leave the
2547 		 * existing buffer in the receive ring.
2548 		 */
2549 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2550 			m->m_pkthdr.rcvif = ifp;
2551 			m->m_pkthdr.len = m->m_len = total_len;
2552 			DC_INC(i, DC_RX_LIST_CNT);
2553 		} else
2554 #endif
2555 		{
2556 			struct mbuf *m0;
2557 
2558 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2559 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2560 			dc_newbuf(sc, i, m);
2561 			DC_INC(i, DC_RX_LIST_CNT);
2562 			if (m0 == NULL) {
2563 				ifp->if_ierrors++;
2564 				continue;
2565 			}
2566 			m_adj(m0, ETHER_ALIGN);
2567 			m = m0;
2568 		}
2569 
2570 		ifp->if_ipackets++;
2571 		(*ifp->if_input)(ifp, m);
2572 	}
2573 
2574 	sc->dc_cdata.dc_rx_prod = i;
2575 }
2576 
2577 /*
2578  * A frame was downloaded to the chip. It's safe for us to clean up
2579  * the list buffers.
2580  */
2581 
2582 static void
2583 dc_txeof(sc)
2584 	struct dc_softc		*sc;
2585 {
2586 	struct dc_desc		*cur_tx = NULL;
2587 	struct ifnet		*ifp;
2588 	int			idx;
2589 
2590 	ifp = &sc->arpcom.ac_if;
2591 
2592 	/*
2593 	 * Go through our tx list and free mbufs for those
2594 	 * frames that have been transmitted.
2595 	 */
2596 	idx = sc->dc_cdata.dc_tx_cons;
2597 	while(idx != sc->dc_cdata.dc_tx_prod) {
2598 		u_int32_t		txstat;
2599 
2600 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2601 		txstat = cur_tx->dc_status;
2602 
2603 		if (txstat & DC_TXSTAT_OWN)
2604 			break;
2605 
2606 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2607 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2608 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2609 				/*
2610 				 * Yes, the PNIC is so brain damaged
2611 				 * that it will sometimes generate a TX
2612 				 * underrun error while DMAing the RX
2613 				 * filter setup frame. If we detect this,
2614 				 * we have to send the setup frame again,
2615 				 * or else the filter won't be programmed
2616 				 * correctly.
2617 				 */
2618 				if (DC_IS_PNIC(sc)) {
2619 					if (txstat & DC_TXSTAT_ERRSUM)
2620 						dc_setfilt(sc);
2621 				}
2622 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2623 			}
2624 			sc->dc_cdata.dc_tx_cnt--;
2625 			DC_INC(idx, DC_TX_LIST_CNT);
2626 			continue;
2627 		}
2628 
2629 		if (DC_IS_CONEXANT(sc)) {
2630 			/*
2631 			 * For some reason Conexant chips like
2632 			 * setting the CARRLOST flag even when
2633 			 * the carrier is there. In CURRENT we
2634 			 * have the same problem for Xircom
2635 			 * cards !
2636 			 */
2637 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2638 			    sc->dc_pmode == DC_PMODE_MII &&
2639 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2640 			    DC_TXSTAT_NOCARRIER)))
2641 				txstat &= ~DC_TXSTAT_ERRSUM;
2642 		} else {
2643 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2644 			    sc->dc_pmode == DC_PMODE_MII &&
2645 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2646 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2647 				txstat &= ~DC_TXSTAT_ERRSUM;
2648 		}
2649 
2650 		if (txstat & DC_TXSTAT_ERRSUM) {
2651 			ifp->if_oerrors++;
2652 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2653 				ifp->if_collisions++;
2654 			if (txstat & DC_TXSTAT_LATECOLL)
2655 				ifp->if_collisions++;
2656 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2657 				dc_init(sc);
2658 				return;
2659 			}
2660 		}
2661 
2662 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2663 
2664 		ifp->if_opackets++;
2665 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2666 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2667 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2668 		}
2669 
2670 		sc->dc_cdata.dc_tx_cnt--;
2671 		DC_INC(idx, DC_TX_LIST_CNT);
2672 	}
2673 
2674 	if (idx != sc->dc_cdata.dc_tx_cons) {
2675 	    	/* some buffers have been freed */
2676 		sc->dc_cdata.dc_tx_cons = idx;
2677 		ifp->if_flags &= ~IFF_OACTIVE;
2678 	}
2679 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2680 
2681 	return;
2682 }
2683 
2684 static void dc_tick(xsc)
2685 	void			*xsc;
2686 {
2687 	struct dc_softc		*sc;
2688 	struct mii_data		*mii;
2689 	struct ifnet		*ifp;
2690 	int			s;
2691 	u_int32_t		r;
2692 
2693 	s = splimp();
2694 
2695 	sc = xsc;
2696 	ifp = &sc->arpcom.ac_if;
2697 	mii = device_get_softc(sc->dc_miibus);
2698 
2699 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2700 		if (sc->dc_flags & DC_21143_NWAY) {
2701 			r = CSR_READ_4(sc, DC_10BTSTAT);
2702 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2703 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2704 				sc->dc_link = 0;
2705 				mii_mediachg(mii);
2706 			}
2707 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2708 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2709 				sc->dc_link = 0;
2710 				mii_mediachg(mii);
2711 			}
2712 			if (sc->dc_link == 0)
2713 				mii_tick(mii);
2714 		} else {
2715 			r = CSR_READ_4(sc, DC_ISR);
2716 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2717 			    sc->dc_cdata.dc_tx_cnt == 0)
2718 				mii_tick(mii);
2719 				if (!(mii->mii_media_status & IFM_ACTIVE))
2720 					sc->dc_link = 0;
2721 		}
2722 	} else
2723 		mii_tick(mii);
2724 
2725 	/*
2726 	 * When the init routine completes, we expect to be able to send
2727 	 * packets right away, and in fact the network code will send a
2728 	 * gratuitous ARP the moment the init routine marks the interface
2729 	 * as running. However, even though the MAC may have been initialized,
2730 	 * there may be a delay of a few seconds before the PHY completes
2731 	 * autonegotiation and the link is brought up. Any transmissions
2732 	 * made during that delay will be lost. Dealing with this is tricky:
2733 	 * we can't just pause in the init routine while waiting for the
2734 	 * PHY to come ready since that would bring the whole system to
2735 	 * a screeching halt for several seconds.
2736 	 *
2737 	 * What we do here is prevent the TX start routine from sending
2738 	 * any packets until a link has been established. After the
2739 	 * interface has been initialized, the tick routine will poll
2740 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2741 	 * that time, packets will stay in the send queue, and once the
2742 	 * link comes up, they will be flushed out to the wire.
2743 	 */
2744 	if (!sc->dc_link) {
2745 		mii_pollstat(mii);
2746 		if (mii->mii_media_status & IFM_ACTIVE &&
2747 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2748 			sc->dc_link++;
2749 			if (!ifq_is_empty(&ifp->if_snd))
2750 				dc_start(ifp);
2751 		}
2752 	}
2753 
2754 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2755 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2756 	else
2757 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2758 
2759 	splx(s);
2760 
2761 	return;
2762 }
2763 
2764 /*
2765  * A transmit underrun has occurred.  Back off the transmit threshold,
2766  * or switch to store and forward mode if we have to.
2767  */
2768 static void dc_tx_underrun(sc)
2769 	struct dc_softc		*sc;
2770 {
2771 	u_int32_t		isr;
2772 	int			i;
2773 
2774 	if (DC_IS_DAVICOM(sc))
2775 		dc_init(sc);
2776 
2777 	if (DC_IS_INTEL(sc)) {
2778 		/*
2779 		 * The real 21143 requires that the transmitter be idle
2780 		 * in order to change the transmit threshold or store
2781 		 * and forward state.
2782 		 */
2783 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2784 
2785 		for (i = 0; i < DC_TIMEOUT; i++) {
2786 			isr = CSR_READ_4(sc, DC_ISR);
2787 			if (isr & DC_ISR_TX_IDLE)
2788 				break;
2789 			DELAY(10);
2790 		}
2791 		if (i == DC_TIMEOUT) {
2792 			printf("dc%d: failed to force tx to idle state\n",
2793 			    sc->dc_unit);
2794 			dc_init(sc);
2795 		}
2796 	}
2797 
2798 	printf("dc%d: TX underrun -- ", sc->dc_unit);
2799 	sc->dc_txthresh += DC_TXTHRESH_INC;
2800 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2801 		printf("using store and forward mode\n");
2802 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2803 	} else {
2804 		printf("increasing TX threshold\n");
2805 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2806 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2807 	}
2808 
2809 	if (DC_IS_INTEL(sc))
2810 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2811 
2812 	return;
2813 }
2814 
2815 #ifdef DEVICE_POLLING
2816 static poll_handler_t dc_poll;
2817 
2818 static void
2819 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2820 {
2821 	struct	dc_softc *sc = ifp->if_softc;
2822 
2823 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
2824 		/* Re-enable interrupts. */
2825 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2826 		return;
2827 	}
2828 	sc->rxcycles = count;
2829 	dc_rxeof(sc);
2830 	dc_txeof(sc);
2831 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2832 		dc_start(ifp);
2833 
2834 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2835 		u_int32_t          status;
2836 
2837 		status = CSR_READ_4(sc, DC_ISR);
2838 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2839 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2840 			DC_ISR_BUS_ERR);
2841 		if (!status)
2842 			return ;
2843 		/* ack what we have */
2844 		CSR_WRITE_4(sc, DC_ISR, status);
2845 
2846 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2847 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2848 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2849 
2850 			if (dc_rx_resync(sc))
2851 				dc_rxeof(sc);
2852 		}
2853 		/* restart transmit unit if necessary */
2854 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2855 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2856 
2857 		if (status & DC_ISR_TX_UNDERRUN)
2858 			dc_tx_underrun(sc);
2859 
2860 		if (status & DC_ISR_BUS_ERR) {
2861 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
2862 			dc_reset(sc);
2863 			dc_init(sc);
2864 		}
2865 	}
2866 }
2867 #endif /* DEVICE_POLLING */
2868 
2869 static void dc_intr(arg)
2870 	void			*arg;
2871 {
2872 	struct dc_softc		*sc;
2873 	struct ifnet		*ifp;
2874 	u_int32_t		status;
2875 
2876 	sc = arg;
2877 
2878 	if (sc->suspended) {
2879 		return;
2880 	}
2881 
2882 	ifp = &sc->arpcom.ac_if;
2883 
2884 #ifdef DEVICE_POLLING
2885 	if (ifp->if_flags & IFF_POLLING)
2886 		return;
2887 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
2888 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2889 		return;
2890 	}
2891 #endif /* DEVICE_POLLING */
2892 
2893 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2894 		return ;
2895 
2896 	/* Suppress unwanted interrupts */
2897 	if (!(ifp->if_flags & IFF_UP)) {
2898 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2899 			dc_stop(sc);
2900 		return;
2901 	}
2902 
2903 	/* Disable interrupts. */
2904 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2905 
2906 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2907 
2908 		CSR_WRITE_4(sc, DC_ISR, status);
2909 
2910 		if (status & DC_ISR_RX_OK) {
2911 			int		curpkts;
2912 			curpkts = ifp->if_ipackets;
2913 			dc_rxeof(sc);
2914 			if (curpkts == ifp->if_ipackets) {
2915 				while(dc_rx_resync(sc))
2916 					dc_rxeof(sc);
2917 			}
2918 		}
2919 
2920 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2921 			dc_txeof(sc);
2922 
2923 		if (status & DC_ISR_TX_IDLE) {
2924 			dc_txeof(sc);
2925 			if (sc->dc_cdata.dc_tx_cnt) {
2926 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2927 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2928 			}
2929 		}
2930 
2931 		if (status & DC_ISR_TX_UNDERRUN)
2932 			dc_tx_underrun(sc);
2933 
2934 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2935 		    || (status & DC_ISR_RX_NOBUF)) {
2936 			int		curpkts;
2937 			curpkts = ifp->if_ipackets;
2938 			dc_rxeof(sc);
2939 			if (curpkts == ifp->if_ipackets) {
2940 				while(dc_rx_resync(sc))
2941 					dc_rxeof(sc);
2942 			}
2943 		}
2944 
2945 		if (status & DC_ISR_BUS_ERR) {
2946 			dc_reset(sc);
2947 			dc_init(sc);
2948 		}
2949 	}
2950 
2951 	/* Re-enable interrupts. */
2952 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2953 
2954 	if (!ifq_is_empty(&ifp->if_snd))
2955 		dc_start(ifp);
2956 
2957 	return;
2958 }
2959 
2960 /*
2961  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2962  * pointers to the fragment pointers.
2963  */
2964 static int dc_encap(sc, m_head, txidx)
2965 	struct dc_softc		*sc;
2966 	struct mbuf		*m_head;
2967 	u_int32_t		*txidx;
2968 {
2969 	struct dc_desc		*f = NULL;
2970 	struct mbuf		*m;
2971 	int			frag, cur, cnt = 0;
2972 
2973 	/*
2974  	 * Start packing the mbufs in this chain into
2975 	 * the fragment pointers. Stop when we run out
2976  	 * of fragments or hit the end of the mbuf chain.
2977 	 */
2978 	m = m_head;
2979 	cur = frag = *txidx;
2980 
2981 	for (m = m_head; m != NULL; m = m->m_next) {
2982 		if (m->m_len != 0) {
2983 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2984 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2985 				    frag == (DC_TX_LIST_CNT - 1))
2986 					return(ENOBUFS);
2987 			}
2988 			if ((DC_TX_LIST_CNT -
2989 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2990 				return(ENOBUFS);
2991 
2992 			f = &sc->dc_ldata->dc_tx_list[frag];
2993 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2994 			if (cnt == 0) {
2995 				f->dc_status = 0;
2996 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2997 			} else
2998 				f->dc_status = DC_TXSTAT_OWN;
2999 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3000 			cur = frag;
3001 			DC_INC(frag, DC_TX_LIST_CNT);
3002 			cnt++;
3003 		}
3004 	}
3005 
3006 	if (m != NULL)
3007 		return(ENOBUFS);
3008 
3009 	sc->dc_cdata.dc_tx_cnt += cnt;
3010 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3011 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3012 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3013 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3014 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3015 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3016 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3017 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3018 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3019 	*txidx = frag;
3020 
3021 	return(0);
3022 }
3023 
3024 /*
3025  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3026  * to the mbuf data regions directly in the transmit lists. We also save a
3027  * copy of the pointers since the transmit list fragment pointers are
3028  * physical addresses.
3029  */
3030 
3031 static void dc_start(ifp)
3032 	struct ifnet		*ifp;
3033 {
3034 	struct dc_softc		*sc;
3035 	struct mbuf *m_head = NULL, *m_new;
3036 	int did_defrag, idx;
3037 
3038 	sc = ifp->if_softc;
3039 
3040 	if (!sc->dc_link)
3041 		return;
3042 
3043 	if (ifp->if_flags & IFF_OACTIVE)
3044 		return;
3045 
3046 	idx = sc->dc_cdata.dc_tx_prod;
3047 
3048 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3049 		did_defrag = 0;
3050 		m_head = ifq_poll(&ifp->if_snd);
3051 		if (m_head == NULL)
3052 			break;
3053 
3054 		if (sc->dc_flags & DC_TX_COALESCE &&
3055 		    m_head->m_next != NULL) {
3056 			/*
3057 			 * Check first if coalescing allows us to queue
3058 			 * the packet. We don't want to loose it if
3059 			 * the TX queue is full.
3060 			 */
3061 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3062 			    idx != sc->dc_cdata.dc_tx_prod &&
3063 			    idx == (DC_TX_LIST_CNT - 1)) {
3064 				ifp->if_flags |= IFF_OACTIVE;
3065 				break;
3066 			}
3067 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3068 				ifp->if_flags |= IFF_OACTIVE;
3069 				break;
3070 			}
3071 
3072 			/* only coalesce if have >1 mbufs */
3073 			m_new = m_defrag_nofree(m_head, MB_DONTWAIT);
3074 			if (m_new == NULL) {
3075 				ifp->if_flags |= IFF_OACTIVE;
3076 				break;
3077 			}
3078 			m_freem(m_head);
3079 			m_head = m_new;
3080 			did_defrag = 1;
3081 		}
3082 
3083 		if (dc_encap(sc, m_head, &idx)) {
3084 			if (did_defrag) {
3085 				m_freem(m_head);
3086 				m_new = ifq_dequeue(&ifp->if_snd);
3087 				m_freem(m_new);
3088 			}
3089 			ifp->if_flags |= IFF_OACTIVE;
3090 			break;
3091 		}
3092 
3093 		m_new = ifq_dequeue(&ifp->if_snd);
3094 		if (did_defrag)
3095 			m_freem(m_new);
3096 
3097 		/*
3098 		 * If there's a BPF listener, bounce a copy of this frame
3099 		 * to him.
3100 		 */
3101 		BPF_MTAP(ifp, m_head);
3102 
3103 		if (sc->dc_flags & DC_TX_ONE) {
3104 			ifp->if_flags |= IFF_OACTIVE;
3105 			break;
3106 		}
3107 	}
3108 
3109 	/* Transmit */
3110 	sc->dc_cdata.dc_tx_prod = idx;
3111 	if (!(sc->dc_flags & DC_TX_POLL))
3112 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3113 
3114 	/*
3115 	 * Set a timeout in case the chip goes out to lunch.
3116 	 */
3117 	ifp->if_timer = 5;
3118 
3119 	return;
3120 }
3121 
3122 static void dc_init(xsc)
3123 	void			*xsc;
3124 {
3125 	struct dc_softc		*sc = xsc;
3126 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3127 	struct mii_data		*mii;
3128 	int			s;
3129 
3130 	s = splimp();
3131 
3132 	mii = device_get_softc(sc->dc_miibus);
3133 
3134 	/*
3135 	 * Cancel pending I/O and free all RX/TX buffers.
3136 	 */
3137 	dc_stop(sc);
3138 	dc_reset(sc);
3139 
3140 	/*
3141 	 * Set cache alignment and burst length.
3142 	 */
3143 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3144 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3145 	else
3146 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3147 	/*
3148 	 * Evenly share the bus between receive and transmit process.
3149 	 */
3150 	if (DC_IS_INTEL(sc))
3151 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3152 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3153 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3154 	} else {
3155 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3156 	}
3157 	if (sc->dc_flags & DC_TX_POLL)
3158 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3159 	switch(sc->dc_cachesize) {
3160 	case 32:
3161 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3162 		break;
3163 	case 16:
3164 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3165 		break;
3166 	case 8:
3167 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3168 		break;
3169 	case 0:
3170 	default:
3171 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3172 		break;
3173 	}
3174 
3175 	if (sc->dc_flags & DC_TX_STORENFWD)
3176 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3177 	else {
3178 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3179 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3180 		} else {
3181 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3182 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3183 		}
3184 	}
3185 
3186 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3187 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3188 
3189 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3190 		/*
3191 		 * The app notes for the 98713 and 98715A say that
3192 		 * in order to have the chips operate properly, a magic
3193 		 * number must be written to CSR16. Macronix does not
3194 		 * document the meaning of these bits so there's no way
3195 		 * to know exactly what they do. The 98713 has a magic
3196 		 * number all its own; the rest all use a different one.
3197 		 */
3198 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3199 		if (sc->dc_type == DC_TYPE_98713)
3200 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3201 		else
3202 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3203 	}
3204 
3205 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3206 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3207 
3208 	/* Init circular RX list. */
3209 	if (dc_list_rx_init(sc) == ENOBUFS) {
3210 		printf("dc%d: initialization failed: no "
3211 		    "memory for rx buffers\n", sc->dc_unit);
3212 		dc_stop(sc);
3213 		(void)splx(s);
3214 		return;
3215 	}
3216 
3217 	/*
3218 	 * Init tx descriptors.
3219 	 */
3220 	dc_list_tx_init(sc);
3221 
3222 	/*
3223 	 * Load the address of the RX list.
3224 	 */
3225 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3226 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3227 
3228 	/*
3229 	 * Enable interrupts.
3230 	 */
3231 #ifdef DEVICE_POLLING
3232 	/*
3233 	 * ... but only if we are not polling, and make sure they are off in
3234 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3235 	 * after a reset.
3236 	 */
3237 	if (ifp->if_flags & IFF_POLLING)
3238 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3239 	else
3240 #endif
3241 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3242 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3243 
3244 	/* Enable transmitter. */
3245 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3246 
3247 	/*
3248 	 * If this is an Intel 21143 and we're not using the
3249 	 * MII port, program the LED control pins so we get
3250 	 * link and activity indications.
3251 	 */
3252 	if (sc->dc_flags & DC_TULIP_LEDS) {
3253 		CSR_WRITE_4(sc, DC_WATCHDOG,
3254 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3255 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3256 	}
3257 
3258 	/*
3259 	 * Load the RX/multicast filter. We do this sort of late
3260 	 * because the filter programming scheme on the 21143 and
3261 	 * some clones requires DMAing a setup frame via the TX
3262 	 * engine, and we need the transmitter enabled for that.
3263 	 */
3264 	dc_setfilt(sc);
3265 
3266 	/* Enable receiver. */
3267 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3268 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3269 
3270 	mii_mediachg(mii);
3271 	dc_setcfg(sc, sc->dc_if_media);
3272 
3273 	ifp->if_flags |= IFF_RUNNING;
3274 	ifp->if_flags &= ~IFF_OACTIVE;
3275 
3276 	(void)splx(s);
3277 
3278 	/* Don't start the ticker if this is a homePNA link. */
3279 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3280 		sc->dc_link = 1;
3281 	else {
3282 		if (sc->dc_flags & DC_21143_NWAY)
3283 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3284 		else
3285 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3286 	}
3287 
3288 #ifdef SRM_MEDIA
3289         if(sc->dc_srm_media) {
3290 		struct ifreq ifr;
3291 
3292 		ifr.ifr_media = sc->dc_srm_media;
3293 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3294 		sc->dc_srm_media = 0;
3295 	}
3296 #endif
3297 	return;
3298 }
3299 
3300 /*
3301  * Set media options.
3302  */
3303 static int dc_ifmedia_upd(ifp)
3304 	struct ifnet		*ifp;
3305 {
3306 	struct dc_softc		*sc;
3307 	struct mii_data		*mii;
3308 	struct ifmedia		*ifm;
3309 
3310 	sc = ifp->if_softc;
3311 	mii = device_get_softc(sc->dc_miibus);
3312 	mii_mediachg(mii);
3313 	ifm = &mii->mii_media;
3314 
3315 	if (DC_IS_DAVICOM(sc) &&
3316 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3317 		dc_setcfg(sc, ifm->ifm_media);
3318 	else
3319 		sc->dc_link = 0;
3320 
3321 	return(0);
3322 }
3323 
3324 /*
3325  * Report current media status.
3326  */
3327 static void dc_ifmedia_sts(ifp, ifmr)
3328 	struct ifnet		*ifp;
3329 	struct ifmediareq	*ifmr;
3330 {
3331 	struct dc_softc		*sc;
3332 	struct mii_data		*mii;
3333 	struct ifmedia		*ifm;
3334 
3335 	sc = ifp->if_softc;
3336 	mii = device_get_softc(sc->dc_miibus);
3337 	mii_pollstat(mii);
3338 	ifm = &mii->mii_media;
3339 	if (DC_IS_DAVICOM(sc)) {
3340 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3341 			ifmr->ifm_active = ifm->ifm_media;
3342 			ifmr->ifm_status = 0;
3343 			return;
3344 		}
3345 	}
3346 	ifmr->ifm_active = mii->mii_media_active;
3347 	ifmr->ifm_status = mii->mii_media_status;
3348 
3349 	return;
3350 }
3351 
3352 static int dc_ioctl(ifp, command, data, cr)
3353 	struct ifnet		*ifp;
3354 	u_long			command;
3355 	caddr_t			data;
3356 	struct ucred		*cr;
3357 {
3358 	struct dc_softc		*sc = ifp->if_softc;
3359 	struct ifreq		*ifr = (struct ifreq *) data;
3360 	struct mii_data		*mii;
3361 	int			s, error = 0;
3362 
3363 	s = splimp();
3364 
3365 	switch(command) {
3366 	case SIOCSIFADDR:
3367 	case SIOCGIFADDR:
3368 	case SIOCSIFMTU:
3369 		error = ether_ioctl(ifp, command, data);
3370 		break;
3371 	case SIOCSIFFLAGS:
3372 		if (ifp->if_flags & IFF_UP) {
3373 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3374 				(IFF_PROMISC | IFF_ALLMULTI);
3375 			if (ifp->if_flags & IFF_RUNNING) {
3376 				if (need_setfilt)
3377 					dc_setfilt(sc);
3378 			} else {
3379 				sc->dc_txthresh = 0;
3380 				dc_init(sc);
3381 			}
3382 		} else {
3383 			if (ifp->if_flags & IFF_RUNNING)
3384 				dc_stop(sc);
3385 		}
3386 		sc->dc_if_flags = ifp->if_flags;
3387 		error = 0;
3388 		break;
3389 	case SIOCADDMULTI:
3390 	case SIOCDELMULTI:
3391 		dc_setfilt(sc);
3392 		error = 0;
3393 		break;
3394 	case SIOCGIFMEDIA:
3395 	case SIOCSIFMEDIA:
3396 		mii = device_get_softc(sc->dc_miibus);
3397 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3398 #ifdef SRM_MEDIA
3399 		if (sc->dc_srm_media)
3400 			sc->dc_srm_media = 0;
3401 #endif
3402 		break;
3403 	default:
3404 		error = EINVAL;
3405 		break;
3406 	}
3407 
3408 	(void)splx(s);
3409 
3410 	return(error);
3411 }
3412 
3413 static void dc_watchdog(ifp)
3414 	struct ifnet		*ifp;
3415 {
3416 	struct dc_softc		*sc;
3417 
3418 	sc = ifp->if_softc;
3419 
3420 	ifp->if_oerrors++;
3421 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3422 
3423 	dc_stop(sc);
3424 	dc_reset(sc);
3425 	dc_init(sc);
3426 
3427 	if (!ifq_is_empty(&ifp->if_snd))
3428 		dc_start(ifp);
3429 
3430 	return;
3431 }
3432 
3433 /*
3434  * Stop the adapter and free any mbufs allocated to the
3435  * RX and TX lists.
3436  */
3437 static void dc_stop(sc)
3438 	struct dc_softc		*sc;
3439 {
3440 	int		i;
3441 	struct ifnet		*ifp;
3442 
3443 	ifp = &sc->arpcom.ac_if;
3444 	ifp->if_timer = 0;
3445 
3446 	callout_stop(&sc->dc_stat_timer);
3447 
3448 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3449 #ifdef DEVICE_POLLING
3450 	ether_poll_deregister(ifp);
3451 #endif
3452 
3453 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3454 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3455 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3456 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3457 	sc->dc_link = 0;
3458 
3459 	/*
3460 	 * Free data in the RX lists.
3461 	 */
3462 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3463 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3464 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3465 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3466 		}
3467 	}
3468 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3469 		sizeof(sc->dc_ldata->dc_rx_list));
3470 
3471 	/*
3472 	 * Free the TX list buffers.
3473 	 */
3474 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3475 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3476 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3477 			    DC_TXCTL_SETUP) ||
3478 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3479 			    DC_TXCTL_LASTFRAG)) {
3480 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3481 				continue;
3482 			}
3483 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3484 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3485 		}
3486 	}
3487 
3488 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3489 		sizeof(sc->dc_ldata->dc_tx_list));
3490 
3491 	return;
3492 }
3493 
3494 /*
3495  * Stop all chip I/O so that the kernel's probe routines don't
3496  * get confused by errant DMAs when rebooting.
3497  */
3498 static void dc_shutdown(dev)
3499 	device_t		dev;
3500 {
3501 	struct dc_softc		*sc;
3502 
3503 	sc = device_get_softc(dev);
3504 
3505 	dc_stop(sc);
3506 
3507 	return;
3508 }
3509 
3510 /*
3511  * Device suspend routine.  Stop the interface and save some PCI
3512  * settings in case the BIOS doesn't restore them properly on
3513  * resume.
3514  */
3515 static int dc_suspend(dev)
3516 	device_t		dev;
3517 {
3518 	int		i;
3519 	int			s;
3520 	struct dc_softc		*sc;
3521 
3522 	s = splimp();
3523 
3524 	sc = device_get_softc(dev);
3525 
3526 	dc_stop(sc);
3527 
3528 	for (i = 0; i < 5; i++)
3529 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3530 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3531 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3532 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3533 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3534 
3535 	sc->suspended = 1;
3536 
3537 	splx(s);
3538 	return (0);
3539 }
3540 
3541 /*
3542  * Device resume routine.  Restore some PCI settings in case the BIOS
3543  * doesn't, re-enable busmastering, and restart the interface if
3544  * appropriate.
3545  */
3546 static int dc_resume(dev)
3547 	device_t		dev;
3548 {
3549 	int		i;
3550 	int			s;
3551 	struct dc_softc		*sc;
3552 	struct ifnet		*ifp;
3553 
3554 	s = splimp();
3555 
3556 	sc = device_get_softc(dev);
3557 	ifp = &sc->arpcom.ac_if;
3558 
3559 	dc_acpi(dev);
3560 
3561 	/* better way to do this? */
3562 	for (i = 0; i < 5; i++)
3563 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3564 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3565 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3566 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3567 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3568 
3569 	/* reenable busmastering */
3570 	pci_enable_busmaster(dev);
3571 	pci_enable_io(dev, DC_RES);
3572 
3573         /* reinitialize interface if necessary */
3574         if (ifp->if_flags & IFF_UP)
3575                 dc_init(sc);
3576 
3577 	sc->suspended = 0;
3578 
3579 	splx(s);
3580 	return (0);
3581 }
3582