xref: /dflybsd-src/sys/dev/netif/dc/if_dc.c (revision 78195a764d5e70464a6d4f49bc08332a2a8bb4d0)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.47 2005/11/28 17:13:41 dillon Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Conexant LANfinity (www.conexant.com)
50  *
51  * Datasheets for the 21143 are available at developer.intel.com.
52  * Datasheets for the clone parts can be found at their respective sites.
53  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54  * The PNIC II is essentially a Macronix 98715A chip; the only difference
55  * worth noting is that its multicast hash table is only 128 bits wide
56  * instead of 512.
57  *
58  * Written by Bill Paul <wpaul@ee.columbia.edu>
59  * Electrical Engineering Department
60  * Columbia University, New York City
61  */
62 
63 /*
64  * The Intel 21143 is the successor to the DEC 21140. It is basically
65  * the same as the 21140 but with a few new features. The 21143 supports
66  * three kinds of media attachments:
67  *
68  * o MII port, for 10Mbps and 100Mbps support and NWAY
69  *   autonegotiation provided by an external PHY.
70  * o SYM port, for symbol mode 100Mbps support.
71  * o 10baseT port.
72  * o AUI/BNC port.
73  *
74  * The 100Mbps SYM port and 10baseT port can be used together in
75  * combination with the internal NWAY support to create a 10/100
76  * autosensing configuration.
77  *
78  * Note that not all tulip workalikes are handled in this driver: we only
79  * deal with those which are relatively well behaved. The Winbond is
80  * handled separately due to its different register offsets and the
81  * special handling needed for its various bugs. The PNIC is handled
82  * here, but I'm not thrilled about it.
83  *
84  * All of the workalike chips use some form of MII transceiver support
85  * with the exception of the Macronix chips, which also have a SYM port.
86  * The ASIX AX88140A is also documented to have a SYM port, but all
87  * the cards I've seen use an MII transceiver, probably because the
88  * AX88140A doesn't support internal NWAY.
89  */
90 
91 #include "opt_polling.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/sysctl.h>
101 #include <sys/thread2.h>
102 
103 #include <net/if.h>
104 #include <net/ifq_var.h>
105 #include <net/if_arp.h>
106 #include <net/ethernet.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_types.h>
110 #include <net/vlan/if_vlan_var.h>
111 
112 #include <net/bpf.h>
113 
114 #include <vm/vm.h>              /* for vtophys */
115 #include <vm/pmap.h>            /* for vtophys */
116 #include <machine/bus_pio.h>
117 #include <machine/bus_memio.h>
118 #include <machine/bus.h>
119 #include <machine/resource.h>
120 #include <sys/bus.h>
121 #include <sys/rman.h>
122 
123 #include "../mii_layer/mii.h"
124 #include "../mii_layer/miivar.h"
125 
126 #include <bus/pci/pcireg.h>
127 #include <bus/pci/pcivar.h>
128 
129 #define DC_USEIOSPACE
130 
131 #include "if_dcreg.h"
132 
133 /* "controller miibus0" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 static const struct dc_type dc_devs[] = {
140 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
141 		"Intel 21143 10/100BaseTX" },
142 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
143 		"Davicom DM9009 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
145 		"Davicom DM9100 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 		"Davicom DM9102 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
149 		"Davicom DM9102A 10/100BaseTX" },
150 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
151 		"ADMtek AL981 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
153 		"ADMtek AN985 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
155 		"ADMtek ADM9511 10/100BaseTX" },
156 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
157 		"ADMtek ADM9513 10/100BaseTX" },
158 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
159 		"ASIX AX88140A 10/100BaseTX" },
160 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
161 		"ASIX AX88141 10/100BaseTX" },
162 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
163 		"Macronix 98713 10/100BaseTX" },
164 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
165 		"Macronix 98713A 10/100BaseTX" },
166 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
167 		"Compex RL100-TX 10/100BaseTX" },
168 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
169 		"Compex RL100-TX 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
171 		"Macronix 98715/98715A 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
173 		"Macronix 98715AEC-C 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
175 		"Macronix 98725 10/100BaseTX" },
176 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
177 		"Macronix 98727/98732 10/100BaseTX" },
178 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
179 		"LC82C115 PNIC II 10/100BaseTX" },
180 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
181 		"82c168 PNIC 10/100BaseTX" },
182 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
183 		"82c169 PNIC 10/100BaseTX" },
184 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
185 		"Accton EN1217 10/100BaseTX" },
186 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
187 		"Accton EN2242 MiniPCI 10/100BaseTX" },
188 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
189 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
190 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
191 		"3Com OfficeConnect 10/100B" },
192 	{ 0, 0, NULL }
193 };
194 
195 static int dc_probe		(device_t);
196 static int dc_attach		(device_t);
197 static int dc_detach		(device_t);
198 static int dc_suspend		(device_t);
199 static int dc_resume		(device_t);
200 static void dc_acpi		(device_t);
201 static const struct dc_type *dc_devtype	(device_t);
202 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
203 static int dc_encap		(struct dc_softc *, struct mbuf *,
204 					u_int32_t *);
205 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
206 static int dc_rx_resync		(struct dc_softc *);
207 static void dc_rxeof		(struct dc_softc *);
208 static void dc_txeof		(struct dc_softc *);
209 static void dc_tick		(void *);
210 static void dc_tx_underrun	(struct dc_softc *);
211 static void dc_intr		(void *);
212 static void dc_start		(struct ifnet *);
213 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
214 					struct ucred *);
215 #ifdef DEVICE_POLLING
216 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
217 					int count);
218 #endif
219 static void dc_init		(void *);
220 static void dc_stop		(struct dc_softc *);
221 static void dc_watchdog		(struct ifnet *);
222 static void dc_shutdown		(device_t);
223 static int dc_ifmedia_upd	(struct ifnet *);
224 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
225 
226 static void dc_delay		(struct dc_softc *);
227 static void dc_eeprom_idle	(struct dc_softc *);
228 static void dc_eeprom_putbyte	(struct dc_softc *, int);
229 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
230 static void dc_eeprom_getword_pnic
231 				(struct dc_softc *, int, u_int16_t *);
232 static void dc_eeprom_width	(struct dc_softc *);
233 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
234 							int, int);
235 
236 static void dc_mii_writebit	(struct dc_softc *, int);
237 static int dc_mii_readbit	(struct dc_softc *);
238 static void dc_mii_sync		(struct dc_softc *);
239 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
240 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
241 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
242 static int dc_miibus_readreg	(device_t, int, int);
243 static int dc_miibus_writereg	(device_t, int, int, int);
244 static void dc_miibus_statchg	(device_t);
245 static void dc_miibus_mediainit	(device_t);
246 
247 static u_int32_t dc_crc_mask	(struct dc_softc *);
248 static void dc_setcfg		(struct dc_softc *, int);
249 static void dc_setfilt_21143	(struct dc_softc *);
250 static void dc_setfilt_asix	(struct dc_softc *);
251 static void dc_setfilt_admtek	(struct dc_softc *);
252 
253 static void dc_setfilt		(struct dc_softc *);
254 
255 static void dc_reset		(struct dc_softc *);
256 static int dc_list_rx_init	(struct dc_softc *);
257 static int dc_list_tx_init	(struct dc_softc *);
258 
259 static void dc_read_srom	(struct dc_softc *, int);
260 static void dc_parse_21143_srom	(struct dc_softc *);
261 static void dc_decode_leaf_sia	(struct dc_softc *,
262 				    struct dc_eblock_sia *);
263 static void dc_decode_leaf_mii	(struct dc_softc *,
264 				    struct dc_eblock_mii *);
265 static void dc_decode_leaf_sym	(struct dc_softc *,
266 				    struct dc_eblock_sym *);
267 static void dc_apply_fixup	(struct dc_softc *, int);
268 
269 #ifdef DC_USEIOSPACE
270 #define DC_RES			SYS_RES_IOPORT
271 #define DC_RID			DC_PCI_CFBIO
272 #else
273 #define DC_RES			SYS_RES_MEMORY
274 #define DC_RID			DC_PCI_CFBMA
275 #endif
276 
277 static device_method_t dc_methods[] = {
278 	/* Device interface */
279 	DEVMETHOD(device_probe,		dc_probe),
280 	DEVMETHOD(device_attach,	dc_attach),
281 	DEVMETHOD(device_detach,	dc_detach),
282 	DEVMETHOD(device_suspend,	dc_suspend),
283 	DEVMETHOD(device_resume,	dc_resume),
284 	DEVMETHOD(device_shutdown,	dc_shutdown),
285 
286 	/* bus interface */
287 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
288 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
289 
290 	/* MII interface */
291 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
292 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
293 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
294 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
295 
296 	{ 0, 0 }
297 };
298 
299 static driver_t dc_driver = {
300 	"dc",
301 	dc_methods,
302 	sizeof(struct dc_softc)
303 };
304 
305 static devclass_t dc_devclass;
306 
307 #ifdef __i386__
308 static int dc_quick=1;
309 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
310 	&dc_quick,0,"do not mdevget in dc driver");
311 #endif
312 
313 DECLARE_DUMMY_MODULE(if_dc);
314 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
315 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
316 
317 #define DC_SETBIT(sc, reg, x)				\
318 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
319 
320 #define DC_CLRBIT(sc, reg, x)				\
321 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
322 
323 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
324 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
325 
326 static void
327 dc_delay(struct dc_softc *sc)
328 {
329 	int			idx;
330 
331 	for (idx = (300 / 33) + 1; idx > 0; idx--)
332 		CSR_READ_4(sc, DC_BUSCTL);
333 }
334 
335 static void
336 dc_eeprom_width(struct dc_softc *sc)
337 {
338 	int i;
339 
340 	/* Force EEPROM to idle state. */
341 	dc_eeprom_idle(sc);
342 
343 	/* Enter EEPROM access mode. */
344 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
345 	dc_delay(sc);
346 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
347 	dc_delay(sc);
348 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
349 	dc_delay(sc);
350 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
351 	dc_delay(sc);
352 
353 	for (i = 3; i--;) {
354 		if (6 & (1 << i))
355 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
356 		else
357 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
358 		dc_delay(sc);
359 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
360 		dc_delay(sc);
361 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
362 		dc_delay(sc);
363 	}
364 
365 	for (i = 1; i <= 12; i++) {
366 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
367 		dc_delay(sc);
368 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
369 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 			dc_delay(sc);
371 			break;
372 		}
373 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
374 		dc_delay(sc);
375 	}
376 
377 	/* Turn off EEPROM access mode. */
378 	dc_eeprom_idle(sc);
379 
380 	if (i < 4 || i > 12)
381 		sc->dc_romwidth = 6;
382 	else
383 		sc->dc_romwidth = i;
384 
385 	/* Enter EEPROM access mode. */
386 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
387 	dc_delay(sc);
388 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
389 	dc_delay(sc);
390 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 	dc_delay(sc);
392 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
393 	dc_delay(sc);
394 
395 	/* Turn off EEPROM access mode. */
396 	dc_eeprom_idle(sc);
397 }
398 
399 static void
400 dc_eeprom_idle(struct dc_softc *sc)
401 {
402 	int		i;
403 
404 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
405 	dc_delay(sc);
406 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
407 	dc_delay(sc);
408 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
409 	dc_delay(sc);
410 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
411 	dc_delay(sc);
412 
413 	for (i = 0; i < 25; i++) {
414 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 		dc_delay(sc);
416 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
417 		dc_delay(sc);
418 	}
419 
420 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
421 	dc_delay(sc);
422 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
423 	dc_delay(sc);
424 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
425 
426 	return;
427 }
428 
429 /*
430  * Send a read command and address to the EEPROM, check for ACK.
431  */
432 static void
433 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
434 {
435 	int		d, i;
436 
437 	d = DC_EECMD_READ >> 6;
438 	for (i = 3; i--; ) {
439 		if (d & (1 << i))
440 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
441 		else
442 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
443 		dc_delay(sc);
444 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445 		dc_delay(sc);
446 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
447 		dc_delay(sc);
448 	}
449 
450 	/*
451 	 * Feed in each bit and strobe the clock.
452 	 */
453 	for (i = sc->dc_romwidth; i--;) {
454 		if (addr & (1 << i)) {
455 			SIO_SET(DC_SIO_EE_DATAIN);
456 		} else {
457 			SIO_CLR(DC_SIO_EE_DATAIN);
458 		}
459 		dc_delay(sc);
460 		SIO_SET(DC_SIO_EE_CLK);
461 		dc_delay(sc);
462 		SIO_CLR(DC_SIO_EE_CLK);
463 		dc_delay(sc);
464 	}
465 
466 	return;
467 }
468 
469 /*
470  * Read a word of data stored in the EEPROM at address 'addr.'
471  * The PNIC 82c168/82c169 has its own non-standard way to read
472  * the EEPROM.
473  */
474 static void
475 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
476 {
477 	int		i;
478 	u_int32_t		r;
479 
480 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
481 
482 	for (i = 0; i < DC_TIMEOUT; i++) {
483 		DELAY(1);
484 		r = CSR_READ_4(sc, DC_SIO);
485 		if (!(r & DC_PN_SIOCTL_BUSY)) {
486 			*dest = (u_int16_t)(r & 0xFFFF);
487 			return;
488 		}
489 	}
490 
491 	return;
492 }
493 
494 /*
495  * Read a word of data stored in the EEPROM at address 'addr.'
496  */
497 static void
498 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
499 {
500 	int		i;
501 	u_int16_t		word = 0;
502 
503 	/* Force EEPROM to idle state. */
504 	dc_eeprom_idle(sc);
505 
506 	/* Enter EEPROM access mode. */
507 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
508 	dc_delay(sc);
509 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
510 	dc_delay(sc);
511 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
512 	dc_delay(sc);
513 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
514 	dc_delay(sc);
515 
516 	/*
517 	 * Send address of word we want to read.
518 	 */
519 	dc_eeprom_putbyte(sc, addr);
520 
521 	/*
522 	 * Start reading bits from EEPROM.
523 	 */
524 	for (i = 0x8000; i; i >>= 1) {
525 		SIO_SET(DC_SIO_EE_CLK);
526 		dc_delay(sc);
527 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
528 			word |= i;
529 		dc_delay(sc);
530 		SIO_CLR(DC_SIO_EE_CLK);
531 		dc_delay(sc);
532 	}
533 
534 	/* Turn off EEPROM access mode. */
535 	dc_eeprom_idle(sc);
536 
537 	*dest = word;
538 
539 	return;
540 }
541 
542 /*
543  * Read a sequence of words from the EEPROM.
544  */
545 static void
546 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
547 {
548 	int			i;
549 	u_int16_t		word = 0, *ptr;
550 
551 	for (i = 0; i < cnt; i++) {
552 		if (DC_IS_PNIC(sc))
553 			dc_eeprom_getword_pnic(sc, off + i, &word);
554 		else
555 			dc_eeprom_getword(sc, off + i, &word);
556 		ptr = (u_int16_t *)(dest + (i * 2));
557 		if (swap)
558 			*ptr = ntohs(word);
559 		else
560 			*ptr = word;
561 	}
562 
563 	return;
564 }
565 
566 /*
567  * The following two routines are taken from the Macronix 98713
568  * Application Notes pp.19-21.
569  */
570 /*
571  * Write a bit to the MII bus.
572  */
573 static void
574 dc_mii_writebit(struct dc_softc *sc, int bit)
575 {
576 	if (bit)
577 		CSR_WRITE_4(sc, DC_SIO,
578 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
579 	else
580 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
581 
582 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
583 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
584 
585 	return;
586 }
587 
588 /*
589  * Read a bit from the MII bus.
590  */
591 static int
592 dc_mii_readbit(struct dc_softc *sc)
593 {
594 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
595 	CSR_READ_4(sc, DC_SIO);
596 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
597 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
598 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
599 		return(1);
600 
601 	return(0);
602 }
603 
604 /*
605  * Sync the PHYs by setting data bit and strobing the clock 32 times.
606  */
607 static void
608 dc_mii_sync(struct dc_softc *sc)
609 {
610 	int		i;
611 
612 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
613 
614 	for (i = 0; i < 32; i++)
615 		dc_mii_writebit(sc, 1);
616 
617 	return;
618 }
619 
620 /*
621  * Clock a series of bits through the MII.
622  */
623 static void
624 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
625 {
626 	int			i;
627 
628 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
629 		dc_mii_writebit(sc, bits & i);
630 }
631 
632 /*
633  * Read an PHY register through the MII.
634  */
635 static int
636 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
637 {
638 	int ack, i;
639 
640 	/*
641 	 * Set up frame for RX.
642 	 */
643 	frame->mii_stdelim = DC_MII_STARTDELIM;
644 	frame->mii_opcode = DC_MII_READOP;
645 	frame->mii_turnaround = 0;
646 	frame->mii_data = 0;
647 
648 	/*
649 	 * Sync the PHYs.
650 	 */
651 	dc_mii_sync(sc);
652 
653 	/*
654 	 * Send command/address info.
655 	 */
656 	dc_mii_send(sc, frame->mii_stdelim, 2);
657 	dc_mii_send(sc, frame->mii_opcode, 2);
658 	dc_mii_send(sc, frame->mii_phyaddr, 5);
659 	dc_mii_send(sc, frame->mii_regaddr, 5);
660 
661 #ifdef notdef
662 	/* Idle bit */
663 	dc_mii_writebit(sc, 1);
664 	dc_mii_writebit(sc, 0);
665 #endif
666 
667 	/* Check for ack */
668 	ack = dc_mii_readbit(sc);
669 
670 	/*
671 	 * Now try reading data bits. If the ack failed, we still
672 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
673 	 */
674 	if (ack) {
675 		for(i = 0; i < 16; i++) {
676 			dc_mii_readbit(sc);
677 		}
678 		goto fail;
679 	}
680 
681 	for (i = 0x8000; i; i >>= 1) {
682 		if (!ack) {
683 			if (dc_mii_readbit(sc))
684 				frame->mii_data |= i;
685 		}
686 	}
687 
688 fail:
689 
690 	dc_mii_writebit(sc, 0);
691 	dc_mii_writebit(sc, 0);
692 
693 	if (ack)
694 		return(1);
695 	return(0);
696 }
697 
698 /*
699  * Write to a PHY register through the MII.
700  */
701 static int
702 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
703 {
704 	/*
705 	 * Set up frame for TX.
706 	 */
707 
708 	frame->mii_stdelim = DC_MII_STARTDELIM;
709 	frame->mii_opcode = DC_MII_WRITEOP;
710 	frame->mii_turnaround = DC_MII_TURNAROUND;
711 
712 	/*
713 	 * Sync the PHYs.
714 	 */
715 	dc_mii_sync(sc);
716 
717 	dc_mii_send(sc, frame->mii_stdelim, 2);
718 	dc_mii_send(sc, frame->mii_opcode, 2);
719 	dc_mii_send(sc, frame->mii_phyaddr, 5);
720 	dc_mii_send(sc, frame->mii_regaddr, 5);
721 	dc_mii_send(sc, frame->mii_turnaround, 2);
722 	dc_mii_send(sc, frame->mii_data, 16);
723 
724 	/* Idle bit. */
725 	dc_mii_writebit(sc, 0);
726 	dc_mii_writebit(sc, 0);
727 
728 	return(0);
729 }
730 
731 static int
732 dc_miibus_readreg(device_t dev, int phy, int reg)
733 {
734 	struct dc_mii_frame	frame;
735 	struct dc_softc		*sc;
736 	int			i, rval, phy_reg = 0;
737 
738 	sc = device_get_softc(dev);
739 	bzero((char *)&frame, sizeof(frame));
740 
741 	/*
742 	 * Note: both the AL981 and AN985 have internal PHYs,
743 	 * however the AL981 provides direct access to the PHY
744 	 * registers while the AN985 uses a serial MII interface.
745 	 * The AN985's MII interface is also buggy in that you
746 	 * can read from any MII address (0 to 31), but only address 1
747 	 * behaves normally. To deal with both cases, we pretend
748 	 * that the PHY is at MII address 1.
749 	 */
750 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
751 		return(0);
752 
753 	/*
754 	 * Note: the ukphy probes of the RS7112 report a PHY at
755 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
756 	 * so we only respond to correct one.
757 	 */
758 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
759 		return(0);
760 
761 	if (sc->dc_pmode != DC_PMODE_MII) {
762 		if (phy == (MII_NPHY - 1)) {
763 			switch(reg) {
764 			case MII_BMSR:
765 			/*
766 			 * Fake something to make the probe
767 			 * code think there's a PHY here.
768 			 */
769 				return(BMSR_MEDIAMASK);
770 				break;
771 			case MII_PHYIDR1:
772 				if (DC_IS_PNIC(sc))
773 					return(DC_VENDORID_LO);
774 				return(DC_VENDORID_DEC);
775 				break;
776 			case MII_PHYIDR2:
777 				if (DC_IS_PNIC(sc))
778 					return(DC_DEVICEID_82C168);
779 				return(DC_DEVICEID_21143);
780 				break;
781 			default:
782 				return(0);
783 				break;
784 			}
785 		} else
786 			return(0);
787 	}
788 
789 	if (DC_IS_PNIC(sc)) {
790 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
791 		    (phy << 23) | (reg << 18));
792 		for (i = 0; i < DC_TIMEOUT; i++) {
793 			DELAY(1);
794 			rval = CSR_READ_4(sc, DC_PN_MII);
795 			if (!(rval & DC_PN_MII_BUSY)) {
796 				rval &= 0xFFFF;
797 				return(rval == 0xFFFF ? 0 : rval);
798 			}
799 		}
800 		return(0);
801 	}
802 
803 	if (DC_IS_COMET(sc)) {
804 		switch(reg) {
805 		case MII_BMCR:
806 			phy_reg = DC_AL_BMCR;
807 			break;
808 		case MII_BMSR:
809 			phy_reg = DC_AL_BMSR;
810 			break;
811 		case MII_PHYIDR1:
812 			phy_reg = DC_AL_VENID;
813 			break;
814 		case MII_PHYIDR2:
815 			phy_reg = DC_AL_DEVID;
816 			break;
817 		case MII_ANAR:
818 			phy_reg = DC_AL_ANAR;
819 			break;
820 		case MII_ANLPAR:
821 			phy_reg = DC_AL_LPAR;
822 			break;
823 		case MII_ANER:
824 			phy_reg = DC_AL_ANER;
825 			break;
826 		default:
827 			if_printf(&sc->arpcom.ac_if,
828 				  "phy_read: bad phy register %x\n", reg);
829 			return(0);
830 			break;
831 		}
832 
833 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
834 
835 		if (rval == 0xFFFF)
836 			return(0);
837 		return(rval);
838 	}
839 
840 	frame.mii_phyaddr = phy;
841 	frame.mii_regaddr = reg;
842 	if (sc->dc_type == DC_TYPE_98713) {
843 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
844 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
845 	}
846 	dc_mii_readreg(sc, &frame);
847 	if (sc->dc_type == DC_TYPE_98713)
848 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
849 
850 	return(frame.mii_data);
851 }
852 
853 static int
854 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
855 {
856 	struct dc_softc		*sc;
857 	struct dc_mii_frame	frame;
858 	int			i, phy_reg = 0;
859 
860 	sc = device_get_softc(dev);
861 	bzero((char *)&frame, sizeof(frame));
862 
863 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
864 		return(0);
865 
866 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
867 		return(0);
868 
869 	if (DC_IS_PNIC(sc)) {
870 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
871 		    (phy << 23) | (reg << 10) | data);
872 		for (i = 0; i < DC_TIMEOUT; i++) {
873 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
874 				break;
875 		}
876 		return(0);
877 	}
878 
879 	if (DC_IS_COMET(sc)) {
880 		switch(reg) {
881 		case MII_BMCR:
882 			phy_reg = DC_AL_BMCR;
883 			break;
884 		case MII_BMSR:
885 			phy_reg = DC_AL_BMSR;
886 			break;
887 		case MII_PHYIDR1:
888 			phy_reg = DC_AL_VENID;
889 			break;
890 		case MII_PHYIDR2:
891 			phy_reg = DC_AL_DEVID;
892 			break;
893 		case MII_ANAR:
894 			phy_reg = DC_AL_ANAR;
895 			break;
896 		case MII_ANLPAR:
897 			phy_reg = DC_AL_LPAR;
898 			break;
899 		case MII_ANER:
900 			phy_reg = DC_AL_ANER;
901 			break;
902 		default:
903 			if_printf(&sc->arpcom.ac_if,
904 				  "phy_write: bad phy register %x\n", reg);
905 			return(0);
906 			break;
907 		}
908 
909 		CSR_WRITE_4(sc, phy_reg, data);
910 		return(0);
911 	}
912 
913 	frame.mii_phyaddr = phy;
914 	frame.mii_regaddr = reg;
915 	frame.mii_data = data;
916 
917 	if (sc->dc_type == DC_TYPE_98713) {
918 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
919 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
920 	}
921 	dc_mii_writereg(sc, &frame);
922 	if (sc->dc_type == DC_TYPE_98713)
923 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
924 
925 	return(0);
926 }
927 
928 static void
929 dc_miibus_statchg(device_t dev)
930 {
931 	struct dc_softc		*sc;
932 	struct mii_data		*mii;
933 	struct ifmedia		*ifm;
934 
935 	sc = device_get_softc(dev);
936 	if (DC_IS_ADMTEK(sc))
937 		return;
938 
939 	mii = device_get_softc(sc->dc_miibus);
940 	ifm = &mii->mii_media;
941 	if (DC_IS_DAVICOM(sc) &&
942 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
943 		dc_setcfg(sc, ifm->ifm_media);
944 		sc->dc_if_media = ifm->ifm_media;
945 	} else {
946 		dc_setcfg(sc, mii->mii_media_active);
947 		sc->dc_if_media = mii->mii_media_active;
948 	}
949 
950 	return;
951 }
952 
953 /*
954  * Special support for DM9102A cards with HomePNA PHYs. Note:
955  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
956  * to be impossible to talk to the management interface of the DM9801
957  * PHY (its MDIO pin is not connected to anything). Consequently,
958  * the driver has to just 'know' about the additional mode and deal
959  * with it itself. *sigh*
960  */
961 static void
962 dc_miibus_mediainit(device_t dev)
963 {
964 	struct dc_softc		*sc;
965 	struct mii_data		*mii;
966 	struct ifmedia		*ifm;
967 	int			rev;
968 
969 	rev = pci_get_revid(dev);
970 
971 	sc = device_get_softc(dev);
972 	mii = device_get_softc(sc->dc_miibus);
973 	ifm = &mii->mii_media;
974 
975 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
976 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
977 
978 	return;
979 }
980 
981 #define DC_BITS_512	9
982 #define DC_BITS_128	7
983 #define DC_BITS_64	6
984 
985 static u_int32_t
986 dc_crc_mask(struct dc_softc *sc)
987 {
988 	/*
989 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
990 	 * chips is only 128 bits wide.
991 	 */
992 	if (sc->dc_flags & DC_128BIT_HASH)
993 		return ((1 << DC_BITS_128) - 1);
994 
995 	/* The hash table on the MX98715BEC is only 64 bits wide. */
996 	if (sc->dc_flags & DC_64BIT_HASH)
997 		return ((1 << DC_BITS_64) - 1);
998 
999 	return ((1 << DC_BITS_512) - 1);
1000 }
1001 
1002 /*
1003  * 21143-style RX filter setup routine. Filter programming is done by
1004  * downloading a special setup frame into the TX engine. 21143, Macronix,
1005  * PNIC, PNIC II and Davicom chips are programmed this way.
1006  *
1007  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1008  * address (our node address) and a 512-bit hash filter for multicast
1009  * frames. We also sneak the broadcast address into the hash filter since
1010  * we need that too.
1011  */
1012 void
1013 dc_setfilt_21143(struct dc_softc *sc)
1014 {
1015 	struct dc_desc		*sframe;
1016 	u_int32_t		h, crc_mask, *sp;
1017 	struct ifmultiaddr	*ifma;
1018 	struct ifnet		*ifp;
1019 	int			i;
1020 
1021 	ifp = &sc->arpcom.ac_if;
1022 
1023 	i = sc->dc_cdata.dc_tx_prod;
1024 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1025 	sc->dc_cdata.dc_tx_cnt++;
1026 	sframe = &sc->dc_ldata->dc_tx_list[i];
1027 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1028 	bzero((char *)sp, DC_SFRAME_LEN);
1029 
1030 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1031 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1032 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1033 
1034 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1035 
1036 	/* If we want promiscuous mode, set the allframes bit. */
1037 	if (ifp->if_flags & IFF_PROMISC)
1038 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1039 	else
1040 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1041 
1042 	if (ifp->if_flags & IFF_ALLMULTI)
1043 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1044 	else
1045 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1046 
1047 	crc_mask = dc_crc_mask(sc);
1048 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1049 		if (ifma->ifma_addr->sa_family != AF_LINK)
1050 			continue;
1051 		h = ether_crc32_le(
1052 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1053 			ETHER_ADDR_LEN) & crc_mask;
1054 		sp[h >> 4] |= 1 << (h & 0xF);
1055 	}
1056 
1057 	if (ifp->if_flags & IFF_BROADCAST) {
1058 		h = ether_crc32_le(ifp->if_broadcastaddr,
1059 				   ETHER_ADDR_LEN) & crc_mask;
1060 		sp[h >> 4] |= 1 << (h & 0xF);
1061 	}
1062 
1063 	/* Set our MAC address */
1064 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1065 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1066 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1067 
1068 	sframe->dc_status = DC_TXSTAT_OWN;
1069 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1070 
1071 	/*
1072 	 * The PNIC takes an exceedingly long time to process its
1073 	 * setup frame; wait 10ms after posting the setup frame
1074 	 * before proceeding, just so it has time to swallow its
1075 	 * medicine.
1076 	 */
1077 	DELAY(10000);
1078 
1079 	ifp->if_timer = 5;
1080 
1081 	return;
1082 }
1083 
1084 void
1085 dc_setfilt_admtek(struct dc_softc *sc)
1086 {
1087 	struct ifnet		*ifp;
1088 	int			h = 0;
1089 	u_int32_t		crc_mask;
1090 	u_int32_t		hashes[2] = { 0, 0 };
1091 	struct ifmultiaddr	*ifma;
1092 
1093 	ifp = &sc->arpcom.ac_if;
1094 
1095 	/* Init our MAC address */
1096 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1097 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1098 
1099 	/* If we want promiscuous mode, set the allframes bit. */
1100 	if (ifp->if_flags & IFF_PROMISC)
1101 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1102 	else
1103 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1104 
1105 	if (ifp->if_flags & IFF_ALLMULTI)
1106 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1107 	else
1108 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1109 
1110 	/* first, zot all the existing hash bits */
1111 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1112 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1113 
1114 	/*
1115 	 * If we're already in promisc or allmulti mode, we
1116 	 * don't have to bother programming the multicast filter.
1117 	 */
1118 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1119 		return;
1120 
1121 	/* now program new ones */
1122 	if (DC_IS_CENTAUR(sc))
1123 		crc_mask = dc_crc_mask(sc);
1124 	else
1125 		crc_mask = 0x3f;
1126 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1127 		if (ifma->ifma_addr->sa_family != AF_LINK)
1128 			continue;
1129 		if (DC_IS_CENTAUR(sc)) {
1130 			h = ether_crc32_le(
1131 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1132 				ETHER_ADDR_LEN) & crc_mask;
1133 		} else {
1134 			h = ether_crc32_be(
1135 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1136 				ETHER_ADDR_LEN);
1137 			h = (h >> 26) & crc_mask;
1138 		}
1139 		if (h < 32)
1140 			hashes[0] |= (1 << h);
1141 		else
1142 			hashes[1] |= (1 << (h - 32));
1143 	}
1144 
1145 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1146 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1147 
1148 	return;
1149 }
1150 
1151 void
1152 dc_setfilt_asix(struct dc_softc *sc)
1153 {
1154 	struct ifnet		*ifp;
1155 	int			h = 0;
1156 	u_int32_t		hashes[2] = { 0, 0 };
1157 	struct ifmultiaddr	*ifma;
1158 
1159 	ifp = &sc->arpcom.ac_if;
1160 
1161         /* Init our MAC address */
1162         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1163         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1164 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1165         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1166         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1167 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1168 
1169 	/* If we want promiscuous mode, set the allframes bit. */
1170 	if (ifp->if_flags & IFF_PROMISC)
1171 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1172 	else
1173 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1174 
1175 	if (ifp->if_flags & IFF_ALLMULTI)
1176 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1177 	else
1178 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1179 
1180 	/*
1181 	 * The ASIX chip has a special bit to enable reception
1182 	 * of broadcast frames.
1183 	 */
1184 	if (ifp->if_flags & IFF_BROADCAST)
1185 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1186 	else
1187 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1188 
1189 	/* first, zot all the existing hash bits */
1190 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1191 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1192 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1193 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1194 
1195 	/*
1196 	 * If we're already in promisc or allmulti mode, we
1197 	 * don't have to bother programming the multicast filter.
1198 	 */
1199 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1200 		return;
1201 
1202 	/* now program new ones */
1203 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1204 		if (ifma->ifma_addr->sa_family != AF_LINK)
1205 			continue;
1206 		h = ether_crc32_be(
1207 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1208 			ETHER_ADDR_LEN);
1209 		h = (h >> 26) & 0x3f;
1210 		if (h < 32)
1211 			hashes[0] |= (1 << h);
1212 		else
1213 			hashes[1] |= (1 << (h - 32));
1214 	}
1215 
1216 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1217 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1218 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1219 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1220 
1221 	return;
1222 }
1223 
1224 static void
1225 dc_setfilt(struct dc_softc *sc)
1226 {
1227 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1228 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1229 		dc_setfilt_21143(sc);
1230 
1231 	if (DC_IS_ASIX(sc))
1232 		dc_setfilt_asix(sc);
1233 
1234 	if (DC_IS_ADMTEK(sc))
1235 		dc_setfilt_admtek(sc);
1236 
1237 	return;
1238 }
1239 
1240 /*
1241  * In order to fiddle with the
1242  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1243  * first have to put the transmit and/or receive logic in the idle state.
1244  */
1245 static void
1246 dc_setcfg(struct dc_softc *sc, int media)
1247 {
1248 	int			i, restart = 0;
1249 	u_int32_t		isr;
1250 
1251 	if (IFM_SUBTYPE(media) == IFM_NONE)
1252 		return;
1253 
1254 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1255 		restart = 1;
1256 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1257 
1258 		for (i = 0; i < DC_TIMEOUT; i++) {
1259 			isr = CSR_READ_4(sc, DC_ISR);
1260 			if ((isr & DC_ISR_TX_IDLE) &&
1261 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1262 			     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1263 				break;
1264 			DELAY(10);
1265 		}
1266 
1267 		if (i == DC_TIMEOUT) {
1268 			if_printf(&sc->arpcom.ac_if,
1269 			    "failed to force tx and rx to idle state\n");
1270 		}
1271 	}
1272 
1273 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1274 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1275 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1276 		if (sc->dc_pmode == DC_PMODE_MII) {
1277 			int	watchdogreg;
1278 
1279 			if (DC_IS_INTEL(sc)) {
1280 			/* there's a write enable bit here that reads as 1 */
1281 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1282 				watchdogreg &= ~DC_WDOG_CTLWREN;
1283 				watchdogreg |= DC_WDOG_JABBERDIS;
1284 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1285 			} else {
1286 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1287 			}
1288 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1289 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1290 			if (sc->dc_type == DC_TYPE_98713)
1291 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1292 				    DC_NETCFG_SCRAMBLER));
1293 			if (!DC_IS_DAVICOM(sc))
1294 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1295 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1296 			if (DC_IS_INTEL(sc))
1297 				dc_apply_fixup(sc, IFM_AUTO);
1298 		} else {
1299 			if (DC_IS_PNIC(sc)) {
1300 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1301 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1302 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1303 			}
1304 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1305 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1306 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1307 			if (DC_IS_INTEL(sc))
1308 				dc_apply_fixup(sc,
1309 				    (media & IFM_GMASK) == IFM_FDX ?
1310 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1311 		}
1312 	}
1313 
1314 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1315 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1316 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1317 		if (sc->dc_pmode == DC_PMODE_MII) {
1318 			int	watchdogreg;
1319 
1320 			/* there's a write enable bit here that reads as 1 */
1321 			if (DC_IS_INTEL(sc)) {
1322 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1323 				watchdogreg &= ~DC_WDOG_CTLWREN;
1324 				watchdogreg |= DC_WDOG_JABBERDIS;
1325 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1326 			} else {
1327 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1328 			}
1329 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1330 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1331 			if (sc->dc_type == DC_TYPE_98713)
1332 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1333 			if (!DC_IS_DAVICOM(sc))
1334 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1335 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1336 			if (DC_IS_INTEL(sc))
1337 				dc_apply_fixup(sc, IFM_AUTO);
1338 		} else {
1339 			if (DC_IS_PNIC(sc)) {
1340 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1341 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1342 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1343 			}
1344 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1345 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1346 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1347 			if (DC_IS_INTEL(sc)) {
1348 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1349 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1350 				if ((media & IFM_GMASK) == IFM_FDX)
1351 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1352 				else
1353 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1354 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1355 				DC_CLRBIT(sc, DC_10BTCTRL,
1356 				    DC_TCTL_AUTONEGENBL);
1357 				dc_apply_fixup(sc,
1358 				    (media & IFM_GMASK) == IFM_FDX ?
1359 				    IFM_10_T|IFM_FDX : IFM_10_T);
1360 				DELAY(20000);
1361 			}
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1367 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1368 	 * on the external MII port.
1369 	 */
1370 	if (DC_IS_DAVICOM(sc)) {
1371 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1372 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1373 			sc->dc_link = 1;
1374 		} else {
1375 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1376 		}
1377 	}
1378 
1379 	if ((media & IFM_GMASK) == IFM_FDX) {
1380 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1381 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1382 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1383 	} else {
1384 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1385 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1386 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1387 	}
1388 
1389 	if (restart)
1390 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1391 
1392 	return;
1393 }
1394 
1395 static void
1396 dc_reset(struct dc_softc *sc)
1397 {
1398 	int		i;
1399 
1400 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1401 
1402 	for (i = 0; i < DC_TIMEOUT; i++) {
1403 		DELAY(10);
1404 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1405 			break;
1406 	}
1407 
1408 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1409 		DELAY(10000);
1410 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1411 		i = 0;
1412 	}
1413 
1414 	if (i == DC_TIMEOUT)
1415 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1416 
1417 	/* Wait a little while for the chip to get its brains in order. */
1418 	DELAY(1000);
1419 
1420 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1421 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1422 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1423 
1424 	/*
1425 	 * Bring the SIA out of reset. In some cases, it looks
1426 	 * like failing to unreset the SIA soon enough gets it
1427 	 * into a state where it will never come out of reset
1428 	 * until we reset the whole chip again.
1429 	 */
1430 	if (DC_IS_INTEL(sc)) {
1431 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1432 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1433 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1434 	}
1435 
1436         return;
1437 }
1438 
1439 static const struct dc_type *
1440 dc_devtype(device_t dev)
1441 {
1442 	const struct dc_type	*t;
1443 	u_int32_t		rev;
1444 
1445 	t = dc_devs;
1446 
1447 	while(t->dc_name != NULL) {
1448 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1449 		    (pci_get_device(dev) == t->dc_did)) {
1450 			/* Check the PCI revision */
1451 			rev = pci_get_revid(dev);
1452 			if (t->dc_did == DC_DEVICEID_98713 &&
1453 			    rev >= DC_REVISION_98713A)
1454 				t++;
1455 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1456 			    rev >= DC_REVISION_98713A)
1457 				t++;
1458 			if (t->dc_did == DC_DEVICEID_987x5 &&
1459 			    rev >= DC_REVISION_98715AEC_C)
1460 				t++;
1461 			if (t->dc_did == DC_DEVICEID_987x5 &&
1462 			    rev >= DC_REVISION_98725)
1463 				t++;
1464 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1465 			    rev >= DC_REVISION_88141)
1466 				t++;
1467 			if (t->dc_did == DC_DEVICEID_82C168 &&
1468 			    rev >= DC_REVISION_82C169)
1469 				t++;
1470 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1471 			    rev >= DC_REVISION_DM9102A)
1472 				t++;
1473 			return(t);
1474 		}
1475 		t++;
1476 	}
1477 
1478 	return(NULL);
1479 }
1480 
1481 /*
1482  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1483  * IDs against our list and return a device name if we find a match.
1484  * We do a little bit of extra work to identify the exact type of
1485  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1486  * but different revision IDs. The same is true for 98715/98715A
1487  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1488  * cases, the exact chip revision affects driver behavior.
1489  */
1490 static int
1491 dc_probe(device_t dev)
1492 {
1493 	const struct dc_type *t;
1494 
1495 	t = dc_devtype(dev);
1496 	if (t != NULL) {
1497 		struct dc_softc *sc = device_get_softc(dev);
1498 
1499 		/* Need this info to decide on a chip type. */
1500 		sc->dc_info = t;
1501 		device_set_desc(dev, t->dc_name);
1502 		return(0);
1503 	}
1504 
1505 	return(ENXIO);
1506 }
1507 
1508 static void
1509 dc_acpi(device_t dev)
1510 {
1511 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1512 		uint32_t iobase, membase, irq;
1513 		struct dc_softc *sc;
1514 
1515 		/* Save important PCI config data. */
1516 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1517 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1518 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1519 
1520 		sc = device_get_softc(dev);
1521 		/* Reset the power state. */
1522 		if_printf(&sc->arpcom.ac_if,
1523 			  "chip is in D%d power mode "
1524 			  "-- setting to D0\n", pci_get_powerstate(dev));
1525 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1526 
1527 		/* Restore PCI config data. */
1528 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1529 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1530 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1531 	}
1532 }
1533 
1534 static void
1535 dc_apply_fixup(struct dc_softc *sc, int media)
1536 {
1537 	struct dc_mediainfo	*m;
1538 	u_int8_t		*p;
1539 	int			i;
1540 	u_int32_t		reg;
1541 
1542 	m = sc->dc_mi;
1543 
1544 	while (m != NULL) {
1545 		if (m->dc_media == media)
1546 			break;
1547 		m = m->dc_next;
1548 	}
1549 
1550 	if (m == NULL)
1551 		return;
1552 
1553 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1554 		reg = (p[0] | (p[1] << 8)) << 16;
1555 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1556 	}
1557 
1558 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1559 		reg = (p[0] | (p[1] << 8)) << 16;
1560 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1561 	}
1562 
1563 	return;
1564 }
1565 
1566 static void
1567 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1568 {
1569 	struct dc_mediainfo	*m;
1570 
1571 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1572 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1573 	case DC_SIA_CODE_10BT:
1574 		m->dc_media = IFM_10_T;
1575 		break;
1576 
1577 	case DC_SIA_CODE_10BT_FDX:
1578 		m->dc_media = IFM_10_T|IFM_FDX;
1579 		break;
1580 
1581 	case DC_SIA_CODE_10B2:
1582 		m->dc_media = IFM_10_2;
1583 		break;
1584 
1585 	case DC_SIA_CODE_10B5:
1586 		m->dc_media = IFM_10_5;
1587 		break;
1588 	}
1589 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1590 		m->dc_gp_len = 2;
1591 		m->dc_gp_ptr =
1592 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1593 	} else {
1594 	m->dc_gp_len = 2;
1595 	m->dc_gp_ptr =
1596 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1597 	}
1598 
1599 	m->dc_next = sc->dc_mi;
1600 	sc->dc_mi = m;
1601 
1602 	sc->dc_pmode = DC_PMODE_SIA;
1603 
1604 	return;
1605 }
1606 
1607 static void
1608 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1609 {
1610 	struct dc_mediainfo	*m;
1611 
1612 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1613 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1614 		m->dc_media = IFM_100_TX;
1615 
1616 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1617 		m->dc_media = IFM_100_TX|IFM_FDX;
1618 
1619 	m->dc_gp_len = 2;
1620 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1621 
1622 	m->dc_next = sc->dc_mi;
1623 	sc->dc_mi = m;
1624 
1625 	sc->dc_pmode = DC_PMODE_SYM;
1626 
1627 	return;
1628 }
1629 
1630 static void
1631 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1632 {
1633 	u_int8_t		*p;
1634 	struct dc_mediainfo	*m;
1635 
1636 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1637 	/* We abuse IFM_AUTO to represent MII. */
1638 	m->dc_media = IFM_AUTO;
1639 	m->dc_gp_len = l->dc_gpr_len;
1640 
1641 	p = (u_int8_t *)l;
1642 	p += sizeof(struct dc_eblock_mii);
1643 	m->dc_gp_ptr = p;
1644 	p += 2 * l->dc_gpr_len;
1645 	m->dc_reset_len = *p;
1646 	p++;
1647 	m->dc_reset_ptr = p;
1648 
1649 	m->dc_next = sc->dc_mi;
1650 	sc->dc_mi = m;
1651 
1652 	return;
1653 }
1654 
1655 static void
1656 dc_read_srom(struct dc_softc *sc, int bits)
1657 {
1658 	int size;
1659 
1660 	size = 2 << bits;
1661 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1662 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1663 }
1664 
1665 static void
1666 dc_parse_21143_srom(struct dc_softc *sc)
1667 {
1668 	struct dc_leaf_hdr	*lhdr;
1669 	struct dc_eblock_hdr	*hdr;
1670 	int			i, loff;
1671 	char			*ptr;
1672 	int			have_mii;
1673 
1674 	have_mii = 0;
1675 	loff = sc->dc_srom[27];
1676 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1677 
1678 	ptr = (char *)lhdr;
1679 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1680 	/*
1681 	 * Look if we got a MII media block.
1682 	 */
1683 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1684 		hdr = (struct dc_eblock_hdr *)ptr;
1685 		if (hdr->dc_type == DC_EBLOCK_MII)
1686 		    have_mii++;
1687 
1688 		ptr += (hdr->dc_len & 0x7F);
1689 		ptr++;
1690 	}
1691 
1692 	/*
1693 	 * Do the same thing again. Only use SIA and SYM media
1694 	 * blocks if no MII media block is available.
1695 	 */
1696 	ptr = (char *)lhdr;
1697 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1698 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1699 		hdr = (struct dc_eblock_hdr *)ptr;
1700 		switch(hdr->dc_type) {
1701 		case DC_EBLOCK_MII:
1702 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1703 			break;
1704 		case DC_EBLOCK_SIA:
1705 			if (! have_mii)
1706 				dc_decode_leaf_sia(sc,
1707 				    (struct dc_eblock_sia *)hdr);
1708 			break;
1709 		case DC_EBLOCK_SYM:
1710 			if (! have_mii)
1711 				dc_decode_leaf_sym(sc,
1712 				    (struct dc_eblock_sym *)hdr);
1713 			break;
1714 		default:
1715 			/* Don't care. Yet. */
1716 			break;
1717 		}
1718 		ptr += (hdr->dc_len & 0x7F);
1719 		ptr++;
1720 	}
1721 
1722 	return;
1723 }
1724 
1725 /*
1726  * Attach the interface. Allocate softc structures, do ifmedia
1727  * setup and ethernet/BPF attach.
1728  */
1729 static int
1730 dc_attach(device_t dev)
1731 {
1732 	int			tmp = 0;
1733 	u_char			eaddr[ETHER_ADDR_LEN];
1734 	u_int32_t		command;
1735 	struct dc_softc		*sc;
1736 	struct ifnet		*ifp;
1737 	u_int32_t		revision;
1738 	int			error = 0, rid, mac_offset;
1739 
1740 	sc = device_get_softc(dev);
1741 	callout_init(&sc->dc_stat_timer);
1742 
1743 	ifp = &sc->arpcom.ac_if;
1744 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1745 
1746 	/*
1747 	 * Handle power management nonsense.
1748 	 */
1749 	dc_acpi(dev);
1750 
1751 	/*
1752 	 * Map control/status registers.
1753 	 */
1754 	pci_enable_busmaster(dev);
1755 
1756 	rid = DC_RID;
1757 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1758 
1759 	if (sc->dc_res == NULL) {
1760 		device_printf(dev, "couldn't map ports/memory\n");
1761 		error = ENXIO;
1762 		goto fail;
1763 	}
1764 
1765 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1766 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1767 
1768 	/* Allocate interrupt */
1769 	rid = 0;
1770 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1771 	    RF_SHAREABLE | RF_ACTIVE);
1772 
1773 	if (sc->dc_irq == NULL) {
1774 		device_printf(dev, "couldn't map interrupt\n");
1775 		error = ENXIO;
1776 		goto fail;
1777 	}
1778 
1779 	revision = pci_get_revid(dev);
1780 
1781 	/* Get the eeprom width, but PNIC has diff eeprom */
1782 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1783 		dc_eeprom_width(sc);
1784 
1785 	switch(sc->dc_info->dc_did) {
1786 	case DC_DEVICEID_21143:
1787 		sc->dc_type = DC_TYPE_21143;
1788 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1789 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1790 		/* Save EEPROM contents so we can parse them later. */
1791 		dc_read_srom(sc, sc->dc_romwidth);
1792 		break;
1793 	case DC_DEVICEID_DM9009:
1794 	case DC_DEVICEID_DM9100:
1795 	case DC_DEVICEID_DM9102:
1796 		sc->dc_type = DC_TYPE_DM9102;
1797 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1798 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1799 		sc->dc_flags |= DC_TX_ALIGN;
1800 		sc->dc_pmode = DC_PMODE_MII;
1801 		/* Increase the latency timer value. */
1802 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1803 		command &= 0xFFFF00FF;
1804 		command |= 0x00008000;
1805 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1806 		break;
1807 	case DC_DEVICEID_AL981:
1808 		sc->dc_type = DC_TYPE_AL981;
1809 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1810 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1811 		sc->dc_pmode = DC_PMODE_MII;
1812 		dc_read_srom(sc, sc->dc_romwidth);
1813 		break;
1814 	case DC_DEVICEID_AN985:
1815 	case DC_DEVICEID_ADM9511:
1816 	case DC_DEVICEID_ADM9513:
1817 	case DC_DEVICEID_EN2242:
1818 	case DC_DEVICEID_3CSOHOB:
1819 		sc->dc_type = DC_TYPE_AN985;
1820 		sc->dc_flags |= DC_64BIT_HASH;
1821 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1822 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1823 		sc->dc_pmode = DC_PMODE_MII;
1824 		break;
1825 	case DC_DEVICEID_98713:
1826 	case DC_DEVICEID_98713_CP:
1827 		if (revision < DC_REVISION_98713A) {
1828 			sc->dc_type = DC_TYPE_98713;
1829 		}
1830 		if (revision >= DC_REVISION_98713A) {
1831 			sc->dc_type = DC_TYPE_98713A;
1832 			sc->dc_flags |= DC_21143_NWAY;
1833 		}
1834 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1835 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1836 		break;
1837 	case DC_DEVICEID_987x5:
1838 	case DC_DEVICEID_EN1217:
1839 		/*
1840 		 * Macronix MX98715AEC-C/D/E parts have only a
1841 		 * 128-bit hash table. We need to deal with these
1842 		 * in the same manner as the PNIC II so that we
1843 		 * get the right number of bits out of the
1844 		 * CRC routine.
1845 		 */
1846 		if (revision >= DC_REVISION_98715AEC_C &&
1847 		    revision < DC_REVISION_98725)
1848 			sc->dc_flags |= DC_128BIT_HASH;
1849 		sc->dc_type = DC_TYPE_987x5;
1850 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1851 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1852 		break;
1853 	case DC_DEVICEID_98727:
1854 		sc->dc_type = DC_TYPE_987x5;
1855 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1856 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1857 		break;
1858 	case DC_DEVICEID_82C115:
1859 		sc->dc_type = DC_TYPE_PNICII;
1860 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1861 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1862 		break;
1863 	case DC_DEVICEID_82C168:
1864 		sc->dc_type = DC_TYPE_PNIC;
1865 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1866 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1867 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1868 		if (revision < DC_REVISION_82C169)
1869 			sc->dc_pmode = DC_PMODE_SYM;
1870 		break;
1871 	case DC_DEVICEID_AX88140A:
1872 		sc->dc_type = DC_TYPE_ASIX;
1873 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1874 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1875 		sc->dc_pmode = DC_PMODE_MII;
1876 		break;
1877 	case DC_DEVICEID_RS7112:
1878 		sc->dc_type = DC_TYPE_CONEXANT;
1879 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1880 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1881 		sc->dc_pmode = DC_PMODE_MII;
1882 		dc_read_srom(sc, sc->dc_romwidth);
1883 		break;
1884 	default:
1885 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
1886 		break;
1887 	}
1888 
1889 	/* Save the cache line size. */
1890 	if (DC_IS_DAVICOM(sc))
1891 		sc->dc_cachesize = 0;
1892 	else
1893 		sc->dc_cachesize = pci_read_config(dev,
1894 		    DC_PCI_CFLT, 4) & 0xFF;
1895 
1896 	/* Reset the adapter. */
1897 	dc_reset(sc);
1898 
1899 	/* Take 21143 out of snooze mode */
1900 	if (DC_IS_INTEL(sc)) {
1901 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1902 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1903 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1904 	}
1905 
1906 	/*
1907 	 * Try to learn something about the supported media.
1908 	 * We know that ASIX and ADMtek and Davicom devices
1909 	 * will *always* be using MII media, so that's a no-brainer.
1910 	 * The tricky ones are the Macronix/PNIC II and the
1911 	 * Intel 21143.
1912 	 */
1913 	if (DC_IS_INTEL(sc))
1914 		dc_parse_21143_srom(sc);
1915 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1916 		if (sc->dc_type == DC_TYPE_98713)
1917 			sc->dc_pmode = DC_PMODE_MII;
1918 		else
1919 			sc->dc_pmode = DC_PMODE_SYM;
1920 	} else if (!sc->dc_pmode)
1921 		sc->dc_pmode = DC_PMODE_MII;
1922 
1923 	/*
1924 	 * Get station address from the EEPROM.
1925 	 */
1926 	switch(sc->dc_type) {
1927 	case DC_TYPE_98713:
1928 	case DC_TYPE_98713A:
1929 	case DC_TYPE_987x5:
1930 	case DC_TYPE_PNICII:
1931 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1932 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1933 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1934 		break;
1935 	case DC_TYPE_PNIC:
1936 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1937 		break;
1938 	case DC_TYPE_DM9102:
1939 	case DC_TYPE_21143:
1940 	case DC_TYPE_ASIX:
1941 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1942 		break;
1943 	case DC_TYPE_AL981:
1944 	case DC_TYPE_AN985:
1945 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
1946 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
1947 		break;
1948 	case DC_TYPE_CONEXANT:
1949 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
1950 		break;
1951 	default:
1952 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1953 		break;
1954 	}
1955 
1956 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1957 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1958 
1959 	if (sc->dc_ldata == NULL) {
1960 		device_printf(dev, "no memory for list buffers!\n");
1961 		error = ENXIO;
1962 		goto fail;
1963 	}
1964 
1965 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
1966 
1967 	ifp->if_softc = sc;
1968 	ifp->if_mtu = ETHERMTU;
1969 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1970 	ifp->if_ioctl = dc_ioctl;
1971 	ifp->if_start = dc_start;
1972 #ifdef DEVICE_POLLING
1973 	ifp->if_poll = dc_poll;
1974 #endif
1975 	ifp->if_watchdog = dc_watchdog;
1976 	ifp->if_init = dc_init;
1977 	ifp->if_baudrate = 10000000;
1978 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
1979 	ifq_set_ready(&ifp->if_snd);
1980 
1981 	/*
1982 	 * Do MII setup. If this is a 21143, check for a PHY on the
1983 	 * MII bus after applying any necessary fixups to twiddle the
1984 	 * GPIO bits. If we don't end up finding a PHY, restore the
1985 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
1986 	 * driver instead.
1987 	 */
1988 	if (DC_IS_INTEL(sc)) {
1989 		dc_apply_fixup(sc, IFM_AUTO);
1990 		tmp = sc->dc_pmode;
1991 		sc->dc_pmode = DC_PMODE_MII;
1992 	}
1993 
1994 	error = mii_phy_probe(dev, &sc->dc_miibus,
1995 	    dc_ifmedia_upd, dc_ifmedia_sts);
1996 
1997 	if (error && DC_IS_INTEL(sc)) {
1998 		sc->dc_pmode = tmp;
1999 		if (sc->dc_pmode != DC_PMODE_SIA)
2000 			sc->dc_pmode = DC_PMODE_SYM;
2001 		sc->dc_flags |= DC_21143_NWAY;
2002 		mii_phy_probe(dev, &sc->dc_miibus,
2003 		    dc_ifmedia_upd, dc_ifmedia_sts);
2004 		/*
2005 		 * For non-MII cards, we need to have the 21143
2006 		 * drive the LEDs. Except there are some systems
2007 		 * like the NEC VersaPro NoteBook PC which have no
2008 		 * LEDs, and twiddling these bits has adverse effects
2009 		 * on them. (I.e. you suddenly can't get a link.)
2010 		 */
2011 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2012 			sc->dc_flags |= DC_TULIP_LEDS;
2013 		error = 0;
2014 	}
2015 
2016 	if (error) {
2017 		device_printf(dev, "MII without any PHY!\n");
2018 		error = ENXIO;
2019 		goto fail;
2020 	}
2021 
2022 	/*
2023 	 * Call MI attach routine.
2024 	 */
2025 	ether_ifattach(ifp, eaddr, NULL);
2026 
2027 	if (DC_IS_ADMTEK(sc)) {
2028 		/*
2029 		 * Set automatic TX underrun recovery for the ADMtek chips
2030 		 */
2031 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2032 	}
2033 
2034 	/*
2035 	 * Tell the upper layer(s) we support long frames.
2036 	 */
2037 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2038 
2039 	error = bus_setup_intr(dev, sc->dc_irq, INTR_NETSAFE,
2040 			       dc_intr, sc, &sc->dc_intrhand,
2041 			       ifp->if_serializer);
2042 	if (error) {
2043 		ether_ifdetach(ifp);
2044 		device_printf(dev, "couldn't set up irq\n");
2045 		goto fail;
2046 	}
2047 
2048 	return(0);
2049 
2050 fail:
2051 	dc_detach(dev);
2052 	return(error);
2053 }
2054 
2055 static int
2056 dc_detach(device_t dev)
2057 {
2058 	struct dc_softc *sc = device_get_softc(dev);
2059 	struct ifnet *ifp = &sc->arpcom.ac_if;
2060 	struct dc_mediainfo *m;
2061 
2062 	lwkt_serialize_enter(ifp->if_serializer);
2063 
2064 	if (device_is_attached(dev)) {
2065 		dc_stop(sc);
2066 		ether_ifdetach(ifp);
2067 	}
2068 
2069 	if (sc->dc_miibus)
2070 		device_delete_child(dev, sc->dc_miibus);
2071 	bus_generic_detach(dev);
2072 
2073 	if (sc->dc_intrhand)
2074 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2075 
2076 	if (sc->dc_irq)
2077 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2078 	if (sc->dc_res)
2079 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2080 
2081 	if (sc->dc_ldata)
2082 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2083 	if (sc->dc_pnic_rx_buf != NULL)
2084 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2085 
2086 	while(sc->dc_mi != NULL) {
2087 		m = sc->dc_mi->dc_next;
2088 		free(sc->dc_mi, M_DEVBUF);
2089 		sc->dc_mi = m;
2090 	}
2091 
2092 	if (sc->dc_srom)
2093 		free(sc->dc_srom, M_DEVBUF);
2094 
2095 	lwkt_serialize_exit(ifp->if_serializer);
2096 	return(0);
2097 }
2098 
2099 /*
2100  * Initialize the transmit descriptors.
2101  */
2102 static int
2103 dc_list_tx_init(struct dc_softc *sc)
2104 {
2105 	struct dc_chain_data	*cd;
2106 	struct dc_list_data	*ld;
2107 	int			i;
2108 
2109 	cd = &sc->dc_cdata;
2110 	ld = sc->dc_ldata;
2111 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2112 		if (i == (DC_TX_LIST_CNT - 1)) {
2113 			ld->dc_tx_list[i].dc_next =
2114 			    vtophys(&ld->dc_tx_list[0]);
2115 		} else {
2116 			ld->dc_tx_list[i].dc_next =
2117 			    vtophys(&ld->dc_tx_list[i + 1]);
2118 		}
2119 		cd->dc_tx_chain[i] = NULL;
2120 		ld->dc_tx_list[i].dc_data = 0;
2121 		ld->dc_tx_list[i].dc_ctl = 0;
2122 	}
2123 
2124 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2125 
2126 	return(0);
2127 }
2128 
2129 
2130 /*
2131  * Initialize the RX descriptors and allocate mbufs for them. Note that
2132  * we arrange the descriptors in a closed ring, so that the last descriptor
2133  * points back to the first.
2134  */
2135 static int
2136 dc_list_rx_init(struct dc_softc *sc)
2137 {
2138 	struct dc_chain_data	*cd;
2139 	struct dc_list_data	*ld;
2140 	int			i;
2141 
2142 	cd = &sc->dc_cdata;
2143 	ld = sc->dc_ldata;
2144 
2145 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2146 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2147 			return(ENOBUFS);
2148 		if (i == (DC_RX_LIST_CNT - 1)) {
2149 			ld->dc_rx_list[i].dc_next =
2150 			    vtophys(&ld->dc_rx_list[0]);
2151 		} else {
2152 			ld->dc_rx_list[i].dc_next =
2153 			    vtophys(&ld->dc_rx_list[i + 1]);
2154 		}
2155 	}
2156 
2157 	cd->dc_rx_prod = 0;
2158 
2159 	return(0);
2160 }
2161 
2162 /*
2163  * Initialize an RX descriptor and attach an MBUF cluster.
2164  */
2165 static int
2166 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2167 {
2168 	struct mbuf		*m_new = NULL;
2169 	struct dc_desc		*c;
2170 
2171 	c = &sc->dc_ldata->dc_rx_list[i];
2172 
2173 	if (m == NULL) {
2174 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2175 		if (m_new == NULL)
2176 			return (ENOBUFS);
2177 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2178 	} else {
2179 		m_new = m;
2180 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2181 		m_new->m_data = m_new->m_ext.ext_buf;
2182 	}
2183 
2184 	m_adj(m_new, sizeof(u_int64_t));
2185 
2186 	/*
2187 	 * If this is a PNIC chip, zero the buffer. This is part
2188 	 * of the workaround for the receive bug in the 82c168 and
2189 	 * 82c169 chips.
2190 	 */
2191 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2192 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2193 
2194 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2195 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2196 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2197 	c->dc_status = DC_RXSTAT_OWN;
2198 
2199 	return(0);
2200 }
2201 
2202 /*
2203  * Grrrrr.
2204  * The PNIC chip has a terrible bug in it that manifests itself during
2205  * periods of heavy activity. The exact mode of failure if difficult to
2206  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2207  * will happen on slow machines. The bug is that sometimes instead of
2208  * uploading one complete frame during reception, it uploads what looks
2209  * like the entire contents of its FIFO memory. The frame we want is at
2210  * the end of the whole mess, but we never know exactly how much data has
2211  * been uploaded, so salvaging the frame is hard.
2212  *
2213  * There is only one way to do it reliably, and it's disgusting.
2214  * Here's what we know:
2215  *
2216  * - We know there will always be somewhere between one and three extra
2217  *   descriptors uploaded.
2218  *
2219  * - We know the desired received frame will always be at the end of the
2220  *   total data upload.
2221  *
2222  * - We know the size of the desired received frame because it will be
2223  *   provided in the length field of the status word in the last descriptor.
2224  *
2225  * Here's what we do:
2226  *
2227  * - When we allocate buffers for the receive ring, we bzero() them.
2228  *   This means that we know that the buffer contents should be all
2229  *   zeros, except for data uploaded by the chip.
2230  *
2231  * - We also force the PNIC chip to upload frames that include the
2232  *   ethernet CRC at the end.
2233  *
2234  * - We gather all of the bogus frame data into a single buffer.
2235  *
2236  * - We then position a pointer at the end of this buffer and scan
2237  *   backwards until we encounter the first non-zero byte of data.
2238  *   This is the end of the received frame. We know we will encounter
2239  *   some data at the end of the frame because the CRC will always be
2240  *   there, so even if the sender transmits a packet of all zeros,
2241  *   we won't be fooled.
2242  *
2243  * - We know the size of the actual received frame, so we subtract
2244  *   that value from the current pointer location. This brings us
2245  *   to the start of the actual received packet.
2246  *
2247  * - We copy this into an mbuf and pass it on, along with the actual
2248  *   frame length.
2249  *
2250  * The performance hit is tremendous, but it beats dropping frames all
2251  * the time.
2252  */
2253 
2254 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2255 static void
2256 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2257 {
2258 	struct dc_desc		*cur_rx;
2259 	struct dc_desc		*c = NULL;
2260 	struct mbuf		*m = NULL;
2261 	unsigned char		*ptr;
2262 	int			i, total_len;
2263 	u_int32_t		rxstat = 0;
2264 
2265 	i = sc->dc_pnic_rx_bug_save;
2266 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2267 	ptr = sc->dc_pnic_rx_buf;
2268 	bzero(ptr, DC_RXLEN * 5);
2269 
2270 	/* Copy all the bytes from the bogus buffers. */
2271 	while (1) {
2272 		c = &sc->dc_ldata->dc_rx_list[i];
2273 		rxstat = c->dc_status;
2274 		m = sc->dc_cdata.dc_rx_chain[i];
2275 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2276 		ptr += DC_RXLEN;
2277 		/* If this is the last buffer, break out. */
2278 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2279 			break;
2280 		dc_newbuf(sc, i, m);
2281 		DC_INC(i, DC_RX_LIST_CNT);
2282 	}
2283 
2284 	/* Find the length of the actual receive frame. */
2285 	total_len = DC_RXBYTES(rxstat);
2286 
2287 	/* Scan backwards until we hit a non-zero byte. */
2288 	while(*ptr == 0x00)
2289 		ptr--;
2290 
2291 	/* Round off. */
2292 	if ((uintptr_t)(ptr) & 0x3)
2293 		ptr -= 1;
2294 
2295 	/* Now find the start of the frame. */
2296 	ptr -= total_len;
2297 	if (ptr < sc->dc_pnic_rx_buf)
2298 		ptr = sc->dc_pnic_rx_buf;
2299 
2300 	/*
2301 	 * Now copy the salvaged frame to the last mbuf and fake up
2302 	 * the status word to make it look like a successful
2303  	 * frame reception.
2304 	 */
2305 	dc_newbuf(sc, i, m);
2306 	bcopy(ptr, mtod(m, char *), total_len);
2307 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2308 
2309 	return;
2310 }
2311 
2312 /*
2313  * This routine searches the RX ring for dirty descriptors in the
2314  * event that the rxeof routine falls out of sync with the chip's
2315  * current descriptor pointer. This may happen sometimes as a result
2316  * of a "no RX buffer available" condition that happens when the chip
2317  * consumes all of the RX buffers before the driver has a chance to
2318  * process the RX ring. This routine may need to be called more than
2319  * once to bring the driver back in sync with the chip, however we
2320  * should still be getting RX DONE interrupts to drive the search
2321  * for new packets in the RX ring, so we should catch up eventually.
2322  */
2323 static int
2324 dc_rx_resync(struct dc_softc *sc)
2325 {
2326 	int			i, pos;
2327 	struct dc_desc		*cur_rx;
2328 
2329 	pos = sc->dc_cdata.dc_rx_prod;
2330 
2331 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2332 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2333 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2334 			break;
2335 		DC_INC(pos, DC_RX_LIST_CNT);
2336 	}
2337 
2338 	/* If the ring really is empty, then just return. */
2339 	if (i == DC_RX_LIST_CNT)
2340 		return(0);
2341 
2342 	/* We've fallen behing the chip: catch it. */
2343 	sc->dc_cdata.dc_rx_prod = pos;
2344 
2345 	return(EAGAIN);
2346 }
2347 
2348 /*
2349  * A frame has been uploaded: pass the resulting mbuf chain up to
2350  * the higher level protocols.
2351  */
2352 static void
2353 dc_rxeof(struct dc_softc *sc)
2354 {
2355         struct mbuf		*m;
2356         struct ifnet		*ifp;
2357 	struct dc_desc		*cur_rx;
2358 	int			i, total_len = 0;
2359 	u_int32_t		rxstat;
2360 
2361 	ifp = &sc->arpcom.ac_if;
2362 	i = sc->dc_cdata.dc_rx_prod;
2363 
2364 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2365 
2366 #ifdef DEVICE_POLLING
2367 		if (ifp->if_flags & IFF_POLLING) {
2368 			if (sc->rxcycles <= 0)
2369 				break;
2370 			sc->rxcycles--;
2371 		}
2372 #endif /* DEVICE_POLLING */
2373 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2374 		rxstat = cur_rx->dc_status;
2375 		m = sc->dc_cdata.dc_rx_chain[i];
2376 		total_len = DC_RXBYTES(rxstat);
2377 
2378 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2379 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2380 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2381 					sc->dc_pnic_rx_bug_save = i;
2382 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2383 					DC_INC(i, DC_RX_LIST_CNT);
2384 					continue;
2385 				}
2386 				dc_pnic_rx_bug_war(sc, i);
2387 				rxstat = cur_rx->dc_status;
2388 				total_len = DC_RXBYTES(rxstat);
2389 			}
2390 		}
2391 
2392 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2393 
2394 		/*
2395 		 * If an error occurs, update stats, clear the
2396 		 * status word and leave the mbuf cluster in place:
2397 		 * it should simply get re-used next time this descriptor
2398 		 * comes up in the ring.  However, don't report long
2399 		 * frames as errors since they could be vlans
2400 		 */
2401 		if ((rxstat & DC_RXSTAT_RXERR)){
2402 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2403 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2404 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2405 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2406 				ifp->if_ierrors++;
2407 				if (rxstat & DC_RXSTAT_COLLSEEN)
2408 					ifp->if_collisions++;
2409 				dc_newbuf(sc, i, m);
2410 				if (rxstat & DC_RXSTAT_CRCERR) {
2411 					DC_INC(i, DC_RX_LIST_CNT);
2412 					continue;
2413 				} else {
2414 					dc_init(sc);
2415 					return;
2416 				}
2417 			}
2418 		}
2419 
2420 		/* No errors; receive the packet. */
2421 		total_len -= ETHER_CRC_LEN;
2422 
2423 #ifdef __i386__
2424 		/*
2425 		 * On the x86 we do not have alignment problems, so try to
2426 		 * allocate a new buffer for the receive ring, and pass up
2427 		 * the one where the packet is already, saving the expensive
2428 		 * copy done in m_devget().
2429 		 * If we are on an architecture with alignment problems, or
2430 		 * if the allocation fails, then use m_devget and leave the
2431 		 * existing buffer in the receive ring.
2432 		 */
2433 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2434 			m->m_pkthdr.rcvif = ifp;
2435 			m->m_pkthdr.len = m->m_len = total_len;
2436 			DC_INC(i, DC_RX_LIST_CNT);
2437 		} else
2438 #endif
2439 		{
2440 			struct mbuf *m0;
2441 
2442 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2443 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2444 			dc_newbuf(sc, i, m);
2445 			DC_INC(i, DC_RX_LIST_CNT);
2446 			if (m0 == NULL) {
2447 				ifp->if_ierrors++;
2448 				continue;
2449 			}
2450 			m_adj(m0, ETHER_ALIGN);
2451 			m = m0;
2452 		}
2453 
2454 		ifp->if_ipackets++;
2455 		ifp->if_input(ifp, m);
2456 	}
2457 
2458 	sc->dc_cdata.dc_rx_prod = i;
2459 }
2460 
2461 /*
2462  * A frame was downloaded to the chip. It's safe for us to clean up
2463  * the list buffers.
2464  */
2465 
2466 static void
2467 dc_txeof(struct dc_softc *sc)
2468 {
2469 	struct dc_desc		*cur_tx = NULL;
2470 	struct ifnet		*ifp;
2471 	int			idx;
2472 
2473 	ifp = &sc->arpcom.ac_if;
2474 
2475 	/*
2476 	 * Go through our tx list and free mbufs for those
2477 	 * frames that have been transmitted.
2478 	 */
2479 	idx = sc->dc_cdata.dc_tx_cons;
2480 	while(idx != sc->dc_cdata.dc_tx_prod) {
2481 		u_int32_t		txstat;
2482 
2483 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2484 		txstat = cur_tx->dc_status;
2485 
2486 		if (txstat & DC_TXSTAT_OWN)
2487 			break;
2488 
2489 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2490 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2491 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2492 				/*
2493 				 * Yes, the PNIC is so brain damaged
2494 				 * that it will sometimes generate a TX
2495 				 * underrun error while DMAing the RX
2496 				 * filter setup frame. If we detect this,
2497 				 * we have to send the setup frame again,
2498 				 * or else the filter won't be programmed
2499 				 * correctly.
2500 				 */
2501 				if (DC_IS_PNIC(sc)) {
2502 					if (txstat & DC_TXSTAT_ERRSUM)
2503 						dc_setfilt(sc);
2504 				}
2505 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2506 			}
2507 			sc->dc_cdata.dc_tx_cnt--;
2508 			DC_INC(idx, DC_TX_LIST_CNT);
2509 			continue;
2510 		}
2511 
2512 		if (DC_IS_CONEXANT(sc)) {
2513 			/*
2514 			 * For some reason Conexant chips like
2515 			 * setting the CARRLOST flag even when
2516 			 * the carrier is there. In CURRENT we
2517 			 * have the same problem for Xircom
2518 			 * cards !
2519 			 */
2520 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2521 			    sc->dc_pmode == DC_PMODE_MII &&
2522 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2523 			    DC_TXSTAT_NOCARRIER)))
2524 				txstat &= ~DC_TXSTAT_ERRSUM;
2525 		} else {
2526 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2527 			    sc->dc_pmode == DC_PMODE_MII &&
2528 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2529 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2530 				txstat &= ~DC_TXSTAT_ERRSUM;
2531 		}
2532 
2533 		if (txstat & DC_TXSTAT_ERRSUM) {
2534 			ifp->if_oerrors++;
2535 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2536 				ifp->if_collisions++;
2537 			if (txstat & DC_TXSTAT_LATECOLL)
2538 				ifp->if_collisions++;
2539 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2540 				dc_init(sc);
2541 				return;
2542 			}
2543 		}
2544 
2545 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2546 
2547 		ifp->if_opackets++;
2548 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2549 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2550 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2551 		}
2552 
2553 		sc->dc_cdata.dc_tx_cnt--;
2554 		DC_INC(idx, DC_TX_LIST_CNT);
2555 	}
2556 
2557 	if (idx != sc->dc_cdata.dc_tx_cons) {
2558 	    	/* some buffers have been freed */
2559 		sc->dc_cdata.dc_tx_cons = idx;
2560 		ifp->if_flags &= ~IFF_OACTIVE;
2561 	}
2562 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2563 
2564 	return;
2565 }
2566 
2567 static void
2568 dc_tick(void *xsc)
2569 {
2570 	struct dc_softc *sc = xsc;
2571 	struct ifnet *ifp = &sc->arpcom.ac_if;
2572 	struct mii_data *mii;
2573 	u_int32_t r;
2574 
2575 	lwkt_serialize_enter(ifp->if_serializer);
2576 
2577 	mii = device_get_softc(sc->dc_miibus);
2578 
2579 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2580 		if (sc->dc_flags & DC_21143_NWAY) {
2581 			r = CSR_READ_4(sc, DC_10BTSTAT);
2582 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2583 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2584 				sc->dc_link = 0;
2585 				mii_mediachg(mii);
2586 			}
2587 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2588 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2589 				sc->dc_link = 0;
2590 				mii_mediachg(mii);
2591 			}
2592 			if (sc->dc_link == 0)
2593 				mii_tick(mii);
2594 		} else {
2595 			r = CSR_READ_4(sc, DC_ISR);
2596 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2597 			    sc->dc_cdata.dc_tx_cnt == 0) {
2598 				mii_tick(mii);
2599 				if (!(mii->mii_media_status & IFM_ACTIVE))
2600 					sc->dc_link = 0;
2601 			}
2602 		}
2603 	} else {
2604 		mii_tick(mii);
2605 	}
2606 
2607 	/*
2608 	 * When the init routine completes, we expect to be able to send
2609 	 * packets right away, and in fact the network code will send a
2610 	 * gratuitous ARP the moment the init routine marks the interface
2611 	 * as running. However, even though the MAC may have been initialized,
2612 	 * there may be a delay of a few seconds before the PHY completes
2613 	 * autonegotiation and the link is brought up. Any transmissions
2614 	 * made during that delay will be lost. Dealing with this is tricky:
2615 	 * we can't just pause in the init routine while waiting for the
2616 	 * PHY to come ready since that would bring the whole system to
2617 	 * a screeching halt for several seconds.
2618 	 *
2619 	 * What we do here is prevent the TX start routine from sending
2620 	 * any packets until a link has been established. After the
2621 	 * interface has been initialized, the tick routine will poll
2622 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2623 	 * that time, packets will stay in the send queue, and once the
2624 	 * link comes up, they will be flushed out to the wire.
2625 	 */
2626 	if (!sc->dc_link) {
2627 		mii_pollstat(mii);
2628 		if (mii->mii_media_status & IFM_ACTIVE &&
2629 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2630 			sc->dc_link++;
2631 			if (!ifq_is_empty(&ifp->if_snd))
2632 				dc_start(ifp);
2633 		}
2634 	}
2635 
2636 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2637 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2638 	else
2639 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2640 
2641 	lwkt_serialize_exit(ifp->if_serializer);
2642 }
2643 
2644 /*
2645  * A transmit underrun has occurred.  Back off the transmit threshold,
2646  * or switch to store and forward mode if we have to.
2647  */
2648 static void
2649 dc_tx_underrun(struct dc_softc *sc)
2650 {
2651 	u_int32_t		isr;
2652 	int			i;
2653 
2654 	if (DC_IS_DAVICOM(sc))
2655 		dc_init(sc);
2656 
2657 	if (DC_IS_INTEL(sc)) {
2658 		/*
2659 		 * The real 21143 requires that the transmitter be idle
2660 		 * in order to change the transmit threshold or store
2661 		 * and forward state.
2662 		 */
2663 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2664 
2665 		for (i = 0; i < DC_TIMEOUT; i++) {
2666 			isr = CSR_READ_4(sc, DC_ISR);
2667 			if (isr & DC_ISR_TX_IDLE)
2668 				break;
2669 			DELAY(10);
2670 		}
2671 		if (i == DC_TIMEOUT) {
2672 			if_printf(&sc->arpcom.ac_if,
2673 				  "failed to force tx to idle state\n");
2674 			dc_init(sc);
2675 		}
2676 	}
2677 
2678 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2679 	sc->dc_txthresh += DC_TXTHRESH_INC;
2680 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2681 		printf("using store and forward mode\n");
2682 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2683 	} else {
2684 		printf("increasing TX threshold\n");
2685 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2686 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2687 	}
2688 
2689 	if (DC_IS_INTEL(sc))
2690 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2691 
2692 	return;
2693 }
2694 
2695 #ifdef DEVICE_POLLING
2696 
2697 static void
2698 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2699 {
2700 	struct	dc_softc *sc = ifp->if_softc;
2701 	u_int32_t status;
2702 
2703 	switch(cmd) {
2704 	case POLL_REGISTER:
2705 		/* Disable interrupts */
2706 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2707 		break;
2708 	case POLL_DEREGISTER:
2709 		/* Re-enable interrupts. */
2710 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2711 		break;
2712 	case POLL_ONLY:
2713 		sc->rxcycles = count;
2714 		dc_rxeof(sc);
2715 		dc_txeof(sc);
2716 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2717 			dc_start(ifp);
2718 		break;
2719 	case POLL_AND_CHECK_STATUS:
2720 		sc->rxcycles = count;
2721 		dc_rxeof(sc);
2722 		dc_txeof(sc);
2723 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2724 			dc_start(ifp);
2725 		status = CSR_READ_4(sc, DC_ISR);
2726 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2727 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2728 			DC_ISR_BUS_ERR);
2729 		if (!status)
2730 			break;
2731 		/* ack what we have */
2732 		CSR_WRITE_4(sc, DC_ISR, status);
2733 
2734 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2735 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2736 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2737 
2738 			if (dc_rx_resync(sc))
2739 				dc_rxeof(sc);
2740 		}
2741 		/* restart transmit unit if necessary */
2742 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2743 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2744 
2745 		if (status & DC_ISR_TX_UNDERRUN)
2746 			dc_tx_underrun(sc);
2747 
2748 		if (status & DC_ISR_BUS_ERR) {
2749 			if_printf(ifp, "dc_poll: bus error\n");
2750 			dc_reset(sc);
2751 			dc_init(sc);
2752 		}
2753 		break;
2754 	}
2755 }
2756 #endif /* DEVICE_POLLING */
2757 
2758 static void
2759 dc_intr(void *arg)
2760 {
2761 	struct dc_softc		*sc;
2762 	struct ifnet		*ifp;
2763 	u_int32_t		status;
2764 
2765 	sc = arg;
2766 
2767 	if (sc->suspended) {
2768 		return;
2769 	}
2770 
2771 	ifp = &sc->arpcom.ac_if;
2772 
2773 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2774 		return ;
2775 
2776 	/* Suppress unwanted interrupts */
2777 	if (!(ifp->if_flags & IFF_UP)) {
2778 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2779 			dc_stop(sc);
2780 		return;
2781 	}
2782 
2783 	/* Disable interrupts. */
2784 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2785 
2786 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2787 
2788 		CSR_WRITE_4(sc, DC_ISR, status);
2789 
2790 		if (status & DC_ISR_RX_OK) {
2791 			int		curpkts;
2792 			curpkts = ifp->if_ipackets;
2793 			dc_rxeof(sc);
2794 			if (curpkts == ifp->if_ipackets) {
2795 				while(dc_rx_resync(sc))
2796 					dc_rxeof(sc);
2797 			}
2798 		}
2799 
2800 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2801 			dc_txeof(sc);
2802 
2803 		if (status & DC_ISR_TX_IDLE) {
2804 			dc_txeof(sc);
2805 			if (sc->dc_cdata.dc_tx_cnt) {
2806 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2807 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2808 			}
2809 		}
2810 
2811 		if (status & DC_ISR_TX_UNDERRUN)
2812 			dc_tx_underrun(sc);
2813 
2814 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2815 		    || (status & DC_ISR_RX_NOBUF)) {
2816 			int		curpkts;
2817 			curpkts = ifp->if_ipackets;
2818 			dc_rxeof(sc);
2819 			if (curpkts == ifp->if_ipackets) {
2820 				while(dc_rx_resync(sc))
2821 					dc_rxeof(sc);
2822 			}
2823 		}
2824 
2825 		if (status & DC_ISR_BUS_ERR) {
2826 			dc_reset(sc);
2827 			dc_init(sc);
2828 		}
2829 	}
2830 
2831 	/* Re-enable interrupts. */
2832 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2833 
2834 	if (!ifq_is_empty(&ifp->if_snd))
2835 		dc_start(ifp);
2836 
2837 	return;
2838 }
2839 
2840 /*
2841  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2842  * pointers to the fragment pointers.
2843  */
2844 static int
2845 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2846 {
2847 	struct dc_desc		*f = NULL;
2848 	struct mbuf		*m;
2849 	int			frag, cur, cnt = 0;
2850 
2851 	/*
2852  	 * Start packing the mbufs in this chain into
2853 	 * the fragment pointers. Stop when we run out
2854  	 * of fragments or hit the end of the mbuf chain.
2855 	 */
2856 	m = m_head;
2857 	cur = frag = *txidx;
2858 
2859 	for (m = m_head; m != NULL; m = m->m_next) {
2860 		if (m->m_len != 0) {
2861 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2862 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2863 				    frag == (DC_TX_LIST_CNT - 1))
2864 					return(ENOBUFS);
2865 			}
2866 			if ((DC_TX_LIST_CNT -
2867 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2868 				return(ENOBUFS);
2869 
2870 			f = &sc->dc_ldata->dc_tx_list[frag];
2871 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2872 			if (cnt == 0) {
2873 				f->dc_status = 0;
2874 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2875 			} else
2876 				f->dc_status = DC_TXSTAT_OWN;
2877 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2878 			cur = frag;
2879 			DC_INC(frag, DC_TX_LIST_CNT);
2880 			cnt++;
2881 		}
2882 	}
2883 
2884 	if (m != NULL)
2885 		return(ENOBUFS);
2886 
2887 	sc->dc_cdata.dc_tx_cnt += cnt;
2888 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2889 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2890 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2891 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2892 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2893 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2894 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2895 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2896 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2897 	*txidx = frag;
2898 
2899 	return(0);
2900 }
2901 
2902 /*
2903  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2904  * to the mbuf data regions directly in the transmit lists. We also save a
2905  * copy of the pointers since the transmit list fragment pointers are
2906  * physical addresses.
2907  */
2908 
2909 static void
2910 dc_start(struct ifnet *ifp)
2911 {
2912 	struct dc_softc	*sc;
2913 	struct mbuf *m_head;
2914 	struct mbuf *m_defragged;
2915 	int idx, need_trans;
2916 
2917 	sc = ifp->if_softc;
2918 
2919 	if (!sc->dc_link)
2920 		return;
2921 
2922 	if (ifp->if_flags & IFF_OACTIVE)
2923 		return;
2924 
2925 	idx = sc->dc_cdata.dc_tx_prod;
2926 
2927 	need_trans = 0;
2928 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2929 		m_defragged = NULL;
2930 		m_head = ifq_poll(&ifp->if_snd);
2931 		if (m_head == NULL)
2932 			break;
2933 
2934 		if (sc->dc_flags & DC_TX_COALESCE &&
2935 		    (m_head->m_next != NULL ||
2936 			sc->dc_flags & DC_TX_ALIGN)){
2937 			/*
2938 			 * Check first if coalescing allows us to queue
2939 			 * the packet. We don't want to loose it if
2940 			 * the TX queue is full.
2941 			 */
2942 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
2943 			    idx != sc->dc_cdata.dc_tx_prod &&
2944 			    idx == (DC_TX_LIST_CNT - 1)) {
2945 				ifp->if_flags |= IFF_OACTIVE;
2946 				break;
2947 			}
2948 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
2949 				ifp->if_flags |= IFF_OACTIVE;
2950 				break;
2951 			}
2952 
2953 			/* only coalesce if have >1 mbufs */
2954 			m_defragged = m_defrag_nofree(m_head, MB_DONTWAIT);
2955 			if (m_defragged == NULL) {
2956 				ifp->if_flags |= IFF_OACTIVE;
2957 				break;
2958 			}
2959 		}
2960 
2961 		if (dc_encap(sc, (m_defragged ? m_defragged : m_head), &idx)) {
2962 			if (m_defragged) {
2963 				/*
2964 				 * Throw away the original packet if the
2965 				 * defragged packet could not be encapsulated,
2966 				 * as well as the defragged packet.
2967 				 */
2968 				ifq_dequeue(&ifp->if_snd, m_head);
2969 				m_freem(m_head);
2970 				m_freem(m_defragged);
2971 			}
2972 			ifp->if_flags |= IFF_OACTIVE;
2973 			break;
2974 		}
2975 
2976 		ifq_dequeue(&ifp->if_snd, m_head);
2977 
2978 		need_trans = 1;
2979 
2980 		/*
2981 		 * If there's a BPF listener, bounce a copy of this frame
2982 		 * to him.
2983 		 */
2984 		BPF_MTAP(ifp, (m_defragged ? m_defragged : m_head));
2985 
2986 		/*
2987 		 * If we defragged the packet, m_head is not the one we
2988 		 * encapsulated so we can throw it away.
2989 		 */
2990 		if (m_defragged)
2991 			m_freem(m_head);
2992 
2993 		if (sc->dc_flags & DC_TX_ONE) {
2994 			ifp->if_flags |= IFF_OACTIVE;
2995 			break;
2996 		}
2997 	}
2998 
2999 	if (!need_trans)
3000 		return;
3001 
3002 	/* Transmit */
3003 	sc->dc_cdata.dc_tx_prod = idx;
3004 	if (!(sc->dc_flags & DC_TX_POLL))
3005 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3006 
3007 	/*
3008 	 * Set a timeout in case the chip goes out to lunch.
3009 	 */
3010 	ifp->if_timer = 5;
3011 }
3012 
3013 static void
3014 dc_init(void *xsc)
3015 {
3016 	struct dc_softc		*sc = xsc;
3017 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3018 	struct mii_data		*mii;
3019 
3020 	mii = device_get_softc(sc->dc_miibus);
3021 
3022 	/*
3023 	 * Cancel pending I/O and free all RX/TX buffers.
3024 	 */
3025 	dc_stop(sc);
3026 	dc_reset(sc);
3027 
3028 	/*
3029 	 * Set cache alignment and burst length.
3030 	 */
3031 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3032 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3033 	else
3034 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3035 	/*
3036 	 * Evenly share the bus between receive and transmit process.
3037 	 */
3038 	if (DC_IS_INTEL(sc))
3039 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3040 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3041 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3042 	} else {
3043 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3044 	}
3045 	if (sc->dc_flags & DC_TX_POLL)
3046 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3047 	switch(sc->dc_cachesize) {
3048 	case 32:
3049 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3050 		break;
3051 	case 16:
3052 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3053 		break;
3054 	case 8:
3055 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3056 		break;
3057 	case 0:
3058 	default:
3059 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3060 		break;
3061 	}
3062 
3063 	if (sc->dc_flags & DC_TX_STORENFWD)
3064 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3065 	else {
3066 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3067 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3068 		} else {
3069 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3070 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3071 		}
3072 	}
3073 
3074 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3075 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3076 
3077 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3078 		/*
3079 		 * The app notes for the 98713 and 98715A say that
3080 		 * in order to have the chips operate properly, a magic
3081 		 * number must be written to CSR16. Macronix does not
3082 		 * document the meaning of these bits so there's no way
3083 		 * to know exactly what they do. The 98713 has a magic
3084 		 * number all its own; the rest all use a different one.
3085 		 */
3086 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3087 		if (sc->dc_type == DC_TYPE_98713)
3088 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3089 		else
3090 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3091 	}
3092 
3093 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3094 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3095 
3096 	/* Init circular RX list. */
3097 	if (dc_list_rx_init(sc) == ENOBUFS) {
3098 		if_printf(ifp, "initialization failed: no "
3099 			  "memory for rx buffers\n");
3100 		dc_stop(sc);
3101 		return;
3102 	}
3103 
3104 	/*
3105 	 * Init tx descriptors.
3106 	 */
3107 	dc_list_tx_init(sc);
3108 
3109 	/*
3110 	 * Load the address of the RX list.
3111 	 */
3112 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3113 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3114 
3115 	/*
3116 	 * Enable interrupts.
3117 	 */
3118 #ifdef DEVICE_POLLING
3119 	/*
3120 	 * ... but only if we are not polling, and make sure they are off in
3121 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3122 	 * after a reset.
3123 	 */
3124 	if (ifp->if_flags & IFF_POLLING)
3125 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3126 	else
3127 #endif
3128 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3129 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3130 
3131 	/* Enable transmitter. */
3132 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3133 
3134 	/*
3135 	 * If this is an Intel 21143 and we're not using the
3136 	 * MII port, program the LED control pins so we get
3137 	 * link and activity indications.
3138 	 */
3139 	if (sc->dc_flags & DC_TULIP_LEDS) {
3140 		CSR_WRITE_4(sc, DC_WATCHDOG,
3141 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3142 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3143 	}
3144 
3145 	/*
3146 	 * Load the RX/multicast filter. We do this sort of late
3147 	 * because the filter programming scheme on the 21143 and
3148 	 * some clones requires DMAing a setup frame via the TX
3149 	 * engine, and we need the transmitter enabled for that.
3150 	 */
3151 	dc_setfilt(sc);
3152 
3153 	/* Enable receiver. */
3154 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3155 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3156 
3157 	mii_mediachg(mii);
3158 	dc_setcfg(sc, sc->dc_if_media);
3159 
3160 	ifp->if_flags |= IFF_RUNNING;
3161 	ifp->if_flags &= ~IFF_OACTIVE;
3162 
3163 	/* Don't start the ticker if this is a homePNA link. */
3164 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3165 		sc->dc_link = 1;
3166 	else {
3167 		if (sc->dc_flags & DC_21143_NWAY)
3168 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3169 		else
3170 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3171 	}
3172 
3173 	return;
3174 }
3175 
3176 /*
3177  * Set media options.
3178  */
3179 static int
3180 dc_ifmedia_upd(struct ifnet *ifp)
3181 {
3182 	struct dc_softc		*sc;
3183 	struct mii_data		*mii;
3184 	struct ifmedia		*ifm;
3185 
3186 	sc = ifp->if_softc;
3187 	mii = device_get_softc(sc->dc_miibus);
3188 	mii_mediachg(mii);
3189 	ifm = &mii->mii_media;
3190 
3191 	if (DC_IS_DAVICOM(sc) &&
3192 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3193 		dc_setcfg(sc, ifm->ifm_media);
3194 	else
3195 		sc->dc_link = 0;
3196 
3197 	return(0);
3198 }
3199 
3200 /*
3201  * Report current media status.
3202  */
3203 static void
3204 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3205 {
3206 	struct dc_softc		*sc;
3207 	struct mii_data		*mii;
3208 	struct ifmedia		*ifm;
3209 
3210 	sc = ifp->if_softc;
3211 	mii = device_get_softc(sc->dc_miibus);
3212 	mii_pollstat(mii);
3213 	ifm = &mii->mii_media;
3214 	if (DC_IS_DAVICOM(sc)) {
3215 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3216 			ifmr->ifm_active = ifm->ifm_media;
3217 			ifmr->ifm_status = 0;
3218 			return;
3219 		}
3220 	}
3221 	ifmr->ifm_active = mii->mii_media_active;
3222 	ifmr->ifm_status = mii->mii_media_status;
3223 
3224 	return;
3225 }
3226 
3227 static int
3228 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3229 {
3230 	struct dc_softc		*sc = ifp->if_softc;
3231 	struct ifreq		*ifr = (struct ifreq *) data;
3232 	struct mii_data		*mii;
3233 	int			error = 0;
3234 
3235 	switch(command) {
3236 	case SIOCSIFFLAGS:
3237 		if (ifp->if_flags & IFF_UP) {
3238 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3239 				(IFF_PROMISC | IFF_ALLMULTI);
3240 			if (ifp->if_flags & IFF_RUNNING) {
3241 				if (need_setfilt)
3242 					dc_setfilt(sc);
3243 			} else {
3244 				sc->dc_txthresh = 0;
3245 				dc_init(sc);
3246 			}
3247 		} else {
3248 			if (ifp->if_flags & IFF_RUNNING)
3249 				dc_stop(sc);
3250 		}
3251 		sc->dc_if_flags = ifp->if_flags;
3252 		error = 0;
3253 		break;
3254 	case SIOCADDMULTI:
3255 	case SIOCDELMULTI:
3256 		dc_setfilt(sc);
3257 		error = 0;
3258 		break;
3259 	case SIOCGIFMEDIA:
3260 	case SIOCSIFMEDIA:
3261 		mii = device_get_softc(sc->dc_miibus);
3262 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3263 		break;
3264 	default:
3265 		error = ether_ioctl(ifp, command, data);
3266 		break;
3267 	}
3268 
3269 	return(error);
3270 }
3271 
3272 static void
3273 dc_watchdog(struct ifnet *ifp)
3274 {
3275 	struct dc_softc		*sc;
3276 
3277 	sc = ifp->if_softc;
3278 
3279 	ifp->if_oerrors++;
3280 	if_printf(ifp, "watchdog timeout\n");
3281 
3282 	dc_stop(sc);
3283 	dc_reset(sc);
3284 	dc_init(sc);
3285 
3286 	if (!ifq_is_empty(&ifp->if_snd))
3287 		dc_start(ifp);
3288 
3289 	return;
3290 }
3291 
3292 /*
3293  * Stop the adapter and free any mbufs allocated to the
3294  * RX and TX lists.
3295  */
3296 static void
3297 dc_stop(struct dc_softc *sc)
3298 {
3299 	int		i;
3300 	struct ifnet		*ifp;
3301 
3302 	ifp = &sc->arpcom.ac_if;
3303 	ifp->if_timer = 0;
3304 
3305 	callout_stop(&sc->dc_stat_timer);
3306 
3307 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3308 
3309 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3310 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3311 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3312 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3313 	sc->dc_link = 0;
3314 
3315 	/*
3316 	 * Free data in the RX lists.
3317 	 */
3318 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3319 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3320 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3321 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3322 		}
3323 	}
3324 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3325 		sizeof(sc->dc_ldata->dc_rx_list));
3326 
3327 	/*
3328 	 * Free the TX list buffers.
3329 	 */
3330 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3331 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3332 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3333 			    DC_TXCTL_SETUP) ||
3334 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3335 			    DC_TXCTL_LASTFRAG)) {
3336 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3337 				continue;
3338 			}
3339 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3340 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3341 		}
3342 	}
3343 
3344 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3345 		sizeof(sc->dc_ldata->dc_tx_list));
3346 
3347 	return;
3348 }
3349 
3350 /*
3351  * Stop all chip I/O so that the kernel's probe routines don't
3352  * get confused by errant DMAs when rebooting.
3353  */
3354 static void
3355 dc_shutdown(device_t dev)
3356 {
3357 	struct dc_softc	*sc;
3358 	struct ifnet *ifp;
3359 
3360 	sc = device_get_softc(dev);
3361 	ifp = &sc->arpcom.ac_if;
3362 	lwkt_serialize_enter(ifp->if_serializer);
3363 
3364 	dc_stop(sc);
3365 
3366 	lwkt_serialize_exit(ifp->if_serializer);
3367 }
3368 
3369 /*
3370  * Device suspend routine.  Stop the interface and save some PCI
3371  * settings in case the BIOS doesn't restore them properly on
3372  * resume.
3373  */
3374 static int
3375 dc_suspend(device_t dev)
3376 {
3377 	struct dc_softc	*sc = device_get_softc(dev);
3378 	struct ifnet *ifp = &sc->arpcom.ac_if;
3379 	int i;
3380 	lwkt_serialize_enter(ifp->if_serializer);
3381 
3382 	dc_stop(sc);
3383 	for (i = 0; i < 5; i++)
3384 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3385 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3386 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3387 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3388 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3389 
3390 	sc->suspended = 1;
3391 
3392 	lwkt_serialize_exit(ifp->if_serializer);
3393 	return (0);
3394 }
3395 
3396 /*
3397  * Device resume routine.  Restore some PCI settings in case the BIOS
3398  * doesn't, re-enable busmastering, and restart the interface if
3399  * appropriate.
3400  */
3401 static int
3402 dc_resume(device_t dev)
3403 {
3404 	struct dc_softc *sc = device_get_softc(dev);
3405 	struct ifnet *ifp = &sc->arpcom.ac_if;
3406 	int i;
3407 
3408 	lwkt_serialize_enter(ifp->if_serializer);
3409 	dc_acpi(dev);
3410 
3411 	/* better way to do this? */
3412 	for (i = 0; i < 5; i++)
3413 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3414 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3415 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3416 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3417 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3418 
3419 	/* reenable busmastering */
3420 	pci_enable_busmaster(dev);
3421 	pci_enable_io(dev, DC_RES);
3422 
3423         /* reinitialize interface if necessary */
3424         if (ifp->if_flags & IFF_UP)
3425                 dc_init(sc);
3426 
3427 	sc->suspended = 0;
3428 	lwkt_serialize_exit(ifp->if_serializer);
3429 
3430 	return (0);
3431 }
3432