xref: /dflybsd-src/sys/dev/netif/dc/if_dc.c (revision 23e12d009562b00e11c4f7c7dce4d0947fc1d812)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.52 2006/10/10 11:34:55 sephe Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Conexant LANfinity (www.conexant.com)
52  *
53  * Datasheets for the 21143 are available at developer.intel.com.
54  * Datasheets for the clone parts can be found at their respective sites.
55  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
56  * The PNIC II is essentially a Macronix 98715A chip; the only difference
57  * worth noting is that its multicast hash table is only 128 bits wide
58  * instead of 512.
59  *
60  * Written by Bill Paul <wpaul@ee.columbia.edu>
61  * Electrical Engineering Department
62  * Columbia University, New York City
63  */
64 
65 /*
66  * The Intel 21143 is the successor to the DEC 21140. It is basically
67  * the same as the 21140 but with a few new features. The 21143 supports
68  * three kinds of media attachments:
69  *
70  * o MII port, for 10Mbps and 100Mbps support and NWAY
71  *   autonegotiation provided by an external PHY.
72  * o SYM port, for symbol mode 100Mbps support.
73  * o 10baseT port.
74  * o AUI/BNC port.
75  *
76  * The 100Mbps SYM port and 10baseT port can be used together in
77  * combination with the internal NWAY support to create a 10/100
78  * autosensing configuration.
79  *
80  * Note that not all tulip workalikes are handled in this driver: we only
81  * deal with those which are relatively well behaved. The Winbond is
82  * handled separately due to its different register offsets and the
83  * special handling needed for its various bugs. The PNIC is handled
84  * here, but I'm not thrilled about it.
85  *
86  * All of the workalike chips use some form of MII transceiver support
87  * with the exception of the Macronix chips, which also have a SYM port.
88  * The ASIX AX88140A is also documented to have a SYM port, but all
89  * the cards I've seen use an MII transceiver, probably because the
90  * AX88140A doesn't support internal NWAY.
91  */
92 
93 #include "opt_polling.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/socket.h>
102 #include <sys/sysctl.h>
103 #include <sys/thread2.h>
104 
105 #include <net/if.h>
106 #include <net/ifq_var.h>
107 #include <net/if_arp.h>
108 #include <net/ethernet.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 #include <net/if_types.h>
112 #include <net/vlan/if_vlan_var.h>
113 
114 #include <net/bpf.h>
115 
116 #include <vm/vm.h>              /* for vtophys */
117 #include <vm/pmap.h>            /* for vtophys */
118 #include <machine/bus_pio.h>
119 #include <machine/bus_memio.h>
120 #include <machine/bus.h>
121 #include <machine/resource.h>
122 #include <sys/bus.h>
123 #include <sys/rman.h>
124 
125 #include "../mii_layer/mii.h"
126 #include "../mii_layer/miivar.h"
127 
128 #include <bus/pci/pcireg.h>
129 #include <bus/pci/pcivar.h>
130 
131 #define DC_USEIOSPACE
132 
133 #include "if_dcreg.h"
134 
135 /* "controller miibus0" required.  See GENERIC if you get errors here. */
136 #include "miibus_if.h"
137 
138 /*
139  * Various supported device vendors/types and their names.
140  */
141 static const struct dc_type dc_devs[] = {
142 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
143 		"Intel 21143 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
145 		"Davicom DM9009 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
147 		"Davicom DM9100 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
149 		"Davicom DM9102 10/100BaseTX" },
150 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
151 		"Davicom DM9102A 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
153 		"ADMtek AL981 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
155 		"ADMtek AN985 10/100BaseTX" },
156 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
157 		"Netgear FA511 10/100BaseTX" },
158 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
159 		"ADMtek ADM9511 10/100BaseTX" },
160 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
161 		"ADMtek ADM9513 10/100BaseTX" },
162 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
163 		"ASIX AX88140A 10/100BaseTX" },
164 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
165 		"ASIX AX88141 10/100BaseTX" },
166 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
167 		"Macronix 98713 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
169 		"Macronix 98713A 10/100BaseTX" },
170 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
171 		"Compex RL100-TX 10/100BaseTX" },
172 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
173 		"Compex RL100-TX 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
175 		"Macronix 98715/98715A 10/100BaseTX" },
176 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
177 		"Macronix 98715AEC-C 10/100BaseTX" },
178 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
179 		"Macronix 98725 10/100BaseTX" },
180 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
181 		"Macronix 98727/98732 10/100BaseTX" },
182 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
183 		"LC82C115 PNIC II 10/100BaseTX" },
184 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
185 		"82c168 PNIC 10/100BaseTX" },
186 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
187 		"82c169 PNIC 10/100BaseTX" },
188 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
189 		"Accton EN1217 10/100BaseTX" },
190 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
191 		"Accton EN2242 MiniPCI 10/100BaseTX" },
192     	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
193 	  	"Xircom X3201 10/100BaseTX" },
194 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
195 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
196 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
197 		"3Com OfficeConnect 10/100B" },
198 	{ 0, 0, NULL }
199 };
200 
201 static int dc_probe		(device_t);
202 static int dc_attach		(device_t);
203 static int dc_detach		(device_t);
204 static int dc_suspend		(device_t);
205 static int dc_resume		(device_t);
206 static void dc_acpi		(device_t);
207 static const struct dc_type *dc_devtype	(device_t);
208 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
209 static int dc_encap		(struct dc_softc *, struct mbuf *,
210 					u_int32_t *);
211 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
212 static int dc_rx_resync		(struct dc_softc *);
213 static void dc_rxeof		(struct dc_softc *);
214 static void dc_txeof		(struct dc_softc *);
215 static void dc_tick		(void *);
216 static void dc_tx_underrun	(struct dc_softc *);
217 static void dc_intr		(void *);
218 static void dc_start		(struct ifnet *);
219 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
220 					struct ucred *);
221 #ifdef DEVICE_POLLING
222 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
223 					int count);
224 #endif
225 static void dc_init		(void *);
226 static void dc_stop		(struct dc_softc *);
227 static void dc_watchdog		(struct ifnet *);
228 static void dc_shutdown		(device_t);
229 static int dc_ifmedia_upd	(struct ifnet *);
230 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
231 
232 static void dc_delay		(struct dc_softc *);
233 static void dc_eeprom_idle	(struct dc_softc *);
234 static void dc_eeprom_putbyte	(struct dc_softc *, int);
235 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
236 static void dc_eeprom_getword_pnic
237 				(struct dc_softc *, int, u_int16_t *);
238 static void dc_eeprom_getword_xircom
239 				(struct dc_softc *, int, u_int16_t *);
240 static void dc_eeprom_width	(struct dc_softc *);
241 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
242 							int, int);
243 
244 static void dc_mii_writebit	(struct dc_softc *, int);
245 static int dc_mii_readbit	(struct dc_softc *);
246 static void dc_mii_sync		(struct dc_softc *);
247 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
248 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
249 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
250 static int dc_miibus_readreg	(device_t, int, int);
251 static int dc_miibus_writereg	(device_t, int, int, int);
252 static void dc_miibus_statchg	(device_t);
253 static void dc_miibus_mediainit	(device_t);
254 
255 static u_int32_t dc_crc_mask	(struct dc_softc *);
256 static void dc_setcfg		(struct dc_softc *, int);
257 static void dc_setfilt_21143	(struct dc_softc *);
258 static void dc_setfilt_asix	(struct dc_softc *);
259 static void dc_setfilt_admtek	(struct dc_softc *);
260 static void dc_setfilt_xircom	(struct dc_softc *);
261 
262 static void dc_setfilt		(struct dc_softc *);
263 
264 static void dc_reset		(struct dc_softc *);
265 static int dc_list_rx_init	(struct dc_softc *);
266 static int dc_list_tx_init	(struct dc_softc *);
267 
268 static void dc_read_srom	(struct dc_softc *, int);
269 static void dc_parse_21143_srom	(struct dc_softc *);
270 static void dc_decode_leaf_sia	(struct dc_softc *,
271 				    struct dc_eblock_sia *);
272 static void dc_decode_leaf_mii	(struct dc_softc *,
273 				    struct dc_eblock_mii *);
274 static void dc_decode_leaf_sym	(struct dc_softc *,
275 				    struct dc_eblock_sym *);
276 static void dc_apply_fixup	(struct dc_softc *, int);
277 static uint32_t dc_mchash_xircom(struct dc_softc *, const uint8_t *);
278 
279 #ifdef DC_USEIOSPACE
280 #define DC_RES			SYS_RES_IOPORT
281 #define DC_RID			DC_PCI_CFBIO
282 #else
283 #define DC_RES			SYS_RES_MEMORY
284 #define DC_RID			DC_PCI_CFBMA
285 #endif
286 
287 static device_method_t dc_methods[] = {
288 	/* Device interface */
289 	DEVMETHOD(device_probe,		dc_probe),
290 	DEVMETHOD(device_attach,	dc_attach),
291 	DEVMETHOD(device_detach,	dc_detach),
292 	DEVMETHOD(device_suspend,	dc_suspend),
293 	DEVMETHOD(device_resume,	dc_resume),
294 	DEVMETHOD(device_shutdown,	dc_shutdown),
295 
296 	/* bus interface */
297 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
298 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
299 
300 	/* MII interface */
301 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
302 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
303 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
304 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
305 
306 	{ 0, 0 }
307 };
308 
309 static driver_t dc_driver = {
310 	"dc",
311 	dc_methods,
312 	sizeof(struct dc_softc)
313 };
314 
315 static devclass_t dc_devclass;
316 
317 #ifdef __i386__
318 static int dc_quick=1;
319 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
320 	&dc_quick,0,"do not mdevget in dc driver");
321 #endif
322 
323 DECLARE_DUMMY_MODULE(if_dc);
324 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, 0, 0);
325 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
326 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
327 
328 #define DC_SETBIT(sc, reg, x)				\
329 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
330 
331 #define DC_CLRBIT(sc, reg, x)				\
332 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
333 
334 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
335 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
336 
337 static void
338 dc_delay(struct dc_softc *sc)
339 {
340 	int			idx;
341 
342 	for (idx = (300 / 33) + 1; idx > 0; idx--)
343 		CSR_READ_4(sc, DC_BUSCTL);
344 }
345 
346 static void
347 dc_eeprom_width(struct dc_softc *sc)
348 {
349 	int i;
350 
351 	/* Force EEPROM to idle state. */
352 	dc_eeprom_idle(sc);
353 
354 	/* Enter EEPROM access mode. */
355 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
356 	dc_delay(sc);
357 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
358 	dc_delay(sc);
359 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
360 	dc_delay(sc);
361 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
362 	dc_delay(sc);
363 
364 	for (i = 3; i--;) {
365 		if (6 & (1 << i))
366 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
367 		else
368 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
369 		dc_delay(sc);
370 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
371 		dc_delay(sc);
372 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
373 		dc_delay(sc);
374 	}
375 
376 	for (i = 1; i <= 12; i++) {
377 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
378 		dc_delay(sc);
379 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
380 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
381 			dc_delay(sc);
382 			break;
383 		}
384 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
385 		dc_delay(sc);
386 	}
387 
388 	/* Turn off EEPROM access mode. */
389 	dc_eeprom_idle(sc);
390 
391 	if (i < 4 || i > 12)
392 		sc->dc_romwidth = 6;
393 	else
394 		sc->dc_romwidth = i;
395 
396 	/* Enter EEPROM access mode. */
397 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
398 	dc_delay(sc);
399 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
400 	dc_delay(sc);
401 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
402 	dc_delay(sc);
403 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
404 	dc_delay(sc);
405 
406 	/* Turn off EEPROM access mode. */
407 	dc_eeprom_idle(sc);
408 }
409 
410 static void
411 dc_eeprom_idle(struct dc_softc *sc)
412 {
413 	int		i;
414 
415 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
416 	dc_delay(sc);
417 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
418 	dc_delay(sc);
419 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
420 	dc_delay(sc);
421 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
422 	dc_delay(sc);
423 
424 	for (i = 0; i < 25; i++) {
425 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
426 		dc_delay(sc);
427 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
428 		dc_delay(sc);
429 	}
430 
431 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
432 	dc_delay(sc);
433 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
434 	dc_delay(sc);
435 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
436 
437 	return;
438 }
439 
440 /*
441  * Send a read command and address to the EEPROM, check for ACK.
442  */
443 static void
444 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
445 {
446 	int		d, i;
447 
448 	d = DC_EECMD_READ >> 6;
449 	for (i = 3; i--; ) {
450 		if (d & (1 << i))
451 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
452 		else
453 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
454 		dc_delay(sc);
455 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
456 		dc_delay(sc);
457 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
458 		dc_delay(sc);
459 	}
460 
461 	/*
462 	 * Feed in each bit and strobe the clock.
463 	 */
464 	for (i = sc->dc_romwidth; i--;) {
465 		if (addr & (1 << i)) {
466 			SIO_SET(DC_SIO_EE_DATAIN);
467 		} else {
468 			SIO_CLR(DC_SIO_EE_DATAIN);
469 		}
470 		dc_delay(sc);
471 		SIO_SET(DC_SIO_EE_CLK);
472 		dc_delay(sc);
473 		SIO_CLR(DC_SIO_EE_CLK);
474 		dc_delay(sc);
475 	}
476 
477 	return;
478 }
479 
480 /*
481  * Read a word of data stored in the EEPROM at address 'addr.'
482  * The PNIC 82c168/82c169 has its own non-standard way to read
483  * the EEPROM.
484  */
485 static void
486 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
487 {
488 	int		i;
489 	u_int32_t		r;
490 
491 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
492 
493 	for (i = 0; i < DC_TIMEOUT; i++) {
494 		DELAY(1);
495 		r = CSR_READ_4(sc, DC_SIO);
496 		if (!(r & DC_PN_SIOCTL_BUSY)) {
497 			*dest = (u_int16_t)(r & 0xFFFF);
498 			return;
499 		}
500 	}
501 
502 	return;
503 }
504 
505 /*
506  * Read a word of data stored in the EEPROM at address 'addr.'
507  * The Xircom X3201 has its own non-standard way to read
508  * the EEPROM, too.
509  */
510 static void
511 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
512 {
513 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
514 
515 	addr *= 2;
516 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
517 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff;
518 	addr += 1;
519 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
520 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8;
521 
522 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
523 }
524 
525 /*
526  * Read a word of data stored in the EEPROM at address 'addr.'
527  */
528 static void
529 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
530 {
531 	int		i;
532 	u_int16_t		word = 0;
533 
534 	/* Force EEPROM to idle state. */
535 	dc_eeprom_idle(sc);
536 
537 	/* Enter EEPROM access mode. */
538 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
539 	dc_delay(sc);
540 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
541 	dc_delay(sc);
542 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
543 	dc_delay(sc);
544 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
545 	dc_delay(sc);
546 
547 	/*
548 	 * Send address of word we want to read.
549 	 */
550 	dc_eeprom_putbyte(sc, addr);
551 
552 	/*
553 	 * Start reading bits from EEPROM.
554 	 */
555 	for (i = 0x8000; i; i >>= 1) {
556 		SIO_SET(DC_SIO_EE_CLK);
557 		dc_delay(sc);
558 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
559 			word |= i;
560 		dc_delay(sc);
561 		SIO_CLR(DC_SIO_EE_CLK);
562 		dc_delay(sc);
563 	}
564 
565 	/* Turn off EEPROM access mode. */
566 	dc_eeprom_idle(sc);
567 
568 	*dest = word;
569 
570 	return;
571 }
572 
573 /*
574  * Read a sequence of words from the EEPROM.
575  */
576 static void
577 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
578 {
579 	int			i;
580 	u_int16_t		word = 0, *ptr;
581 
582 	for (i = 0; i < cnt; i++) {
583 		if (DC_IS_PNIC(sc))
584 			dc_eeprom_getword_pnic(sc, off + i, &word);
585 		else if (DC_IS_XIRCOM(sc))
586 			dc_eeprom_getword_xircom(sc, off + i, &word);
587 		else
588 			dc_eeprom_getword(sc, off + i, &word);
589 		ptr = (u_int16_t *)(dest + (i * 2));
590 		if (swap)
591 			*ptr = ntohs(word);
592 		else
593 			*ptr = word;
594 	}
595 
596 	return;
597 }
598 
599 /*
600  * The following two routines are taken from the Macronix 98713
601  * Application Notes pp.19-21.
602  */
603 /*
604  * Write a bit to the MII bus.
605  */
606 static void
607 dc_mii_writebit(struct dc_softc *sc, int bit)
608 {
609 	if (bit)
610 		CSR_WRITE_4(sc, DC_SIO,
611 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
612 	else
613 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
614 
615 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
616 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
617 
618 	return;
619 }
620 
621 /*
622  * Read a bit from the MII bus.
623  */
624 static int
625 dc_mii_readbit(struct dc_softc *sc)
626 {
627 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
628 	CSR_READ_4(sc, DC_SIO);
629 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
630 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
631 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
632 		return(1);
633 
634 	return(0);
635 }
636 
637 /*
638  * Sync the PHYs by setting data bit and strobing the clock 32 times.
639  */
640 static void
641 dc_mii_sync(struct dc_softc *sc)
642 {
643 	int		i;
644 
645 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
646 
647 	for (i = 0; i < 32; i++)
648 		dc_mii_writebit(sc, 1);
649 
650 	return;
651 }
652 
653 /*
654  * Clock a series of bits through the MII.
655  */
656 static void
657 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
658 {
659 	int			i;
660 
661 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
662 		dc_mii_writebit(sc, bits & i);
663 }
664 
665 /*
666  * Read an PHY register through the MII.
667  */
668 static int
669 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
670 {
671 	int ack, i;
672 
673 	/*
674 	 * Set up frame for RX.
675 	 */
676 	frame->mii_stdelim = DC_MII_STARTDELIM;
677 	frame->mii_opcode = DC_MII_READOP;
678 	frame->mii_turnaround = 0;
679 	frame->mii_data = 0;
680 
681 	/*
682 	 * Sync the PHYs.
683 	 */
684 	dc_mii_sync(sc);
685 
686 	/*
687 	 * Send command/address info.
688 	 */
689 	dc_mii_send(sc, frame->mii_stdelim, 2);
690 	dc_mii_send(sc, frame->mii_opcode, 2);
691 	dc_mii_send(sc, frame->mii_phyaddr, 5);
692 	dc_mii_send(sc, frame->mii_regaddr, 5);
693 
694 #ifdef notdef
695 	/* Idle bit */
696 	dc_mii_writebit(sc, 1);
697 	dc_mii_writebit(sc, 0);
698 #endif
699 
700 	/* Check for ack */
701 	ack = dc_mii_readbit(sc);
702 
703 	/*
704 	 * Now try reading data bits. If the ack failed, we still
705 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
706 	 */
707 	if (ack) {
708 		for(i = 0; i < 16; i++) {
709 			dc_mii_readbit(sc);
710 		}
711 		goto fail;
712 	}
713 
714 	for (i = 0x8000; i; i >>= 1) {
715 		if (!ack) {
716 			if (dc_mii_readbit(sc))
717 				frame->mii_data |= i;
718 		}
719 	}
720 
721 fail:
722 
723 	dc_mii_writebit(sc, 0);
724 	dc_mii_writebit(sc, 0);
725 
726 	if (ack)
727 		return(1);
728 	return(0);
729 }
730 
731 /*
732  * Write to a PHY register through the MII.
733  */
734 static int
735 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
736 {
737 	/*
738 	 * Set up frame for TX.
739 	 */
740 
741 	frame->mii_stdelim = DC_MII_STARTDELIM;
742 	frame->mii_opcode = DC_MII_WRITEOP;
743 	frame->mii_turnaround = DC_MII_TURNAROUND;
744 
745 	/*
746 	 * Sync the PHYs.
747 	 */
748 	dc_mii_sync(sc);
749 
750 	dc_mii_send(sc, frame->mii_stdelim, 2);
751 	dc_mii_send(sc, frame->mii_opcode, 2);
752 	dc_mii_send(sc, frame->mii_phyaddr, 5);
753 	dc_mii_send(sc, frame->mii_regaddr, 5);
754 	dc_mii_send(sc, frame->mii_turnaround, 2);
755 	dc_mii_send(sc, frame->mii_data, 16);
756 
757 	/* Idle bit. */
758 	dc_mii_writebit(sc, 0);
759 	dc_mii_writebit(sc, 0);
760 
761 	return(0);
762 }
763 
764 static int
765 dc_miibus_readreg(device_t dev, int phy, int reg)
766 {
767 	struct dc_mii_frame	frame;
768 	struct dc_softc		*sc;
769 	int			i, rval, phy_reg = 0;
770 
771 	sc = device_get_softc(dev);
772 	bzero((char *)&frame, sizeof(frame));
773 
774 	/*
775 	 * Note: both the AL981 and AN985 have internal PHYs,
776 	 * however the AL981 provides direct access to the PHY
777 	 * registers while the AN985 uses a serial MII interface.
778 	 * The AN985's MII interface is also buggy in that you
779 	 * can read from any MII address (0 to 31), but only address 1
780 	 * behaves normally. To deal with both cases, we pretend
781 	 * that the PHY is at MII address 1.
782 	 */
783 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
784 		return(0);
785 
786 	/*
787 	 * Note: the ukphy probes of the RS7112 report a PHY at
788 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
789 	 * so we only respond to correct one.
790 	 */
791 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
792 		return(0);
793 
794 	if (sc->dc_pmode != DC_PMODE_MII) {
795 		if (phy == (MII_NPHY - 1)) {
796 			switch(reg) {
797 			case MII_BMSR:
798 			/*
799 			 * Fake something to make the probe
800 			 * code think there's a PHY here.
801 			 */
802 				return(BMSR_MEDIAMASK);
803 				break;
804 			case MII_PHYIDR1:
805 				if (DC_IS_PNIC(sc))
806 					return(DC_VENDORID_LO);
807 				return(DC_VENDORID_DEC);
808 				break;
809 			case MII_PHYIDR2:
810 				if (DC_IS_PNIC(sc))
811 					return(DC_DEVICEID_82C168);
812 				return(DC_DEVICEID_21143);
813 				break;
814 			default:
815 				return(0);
816 				break;
817 			}
818 		} else
819 			return(0);
820 	}
821 
822 	if (DC_IS_PNIC(sc)) {
823 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
824 		    (phy << 23) | (reg << 18));
825 		for (i = 0; i < DC_TIMEOUT; i++) {
826 			DELAY(1);
827 			rval = CSR_READ_4(sc, DC_PN_MII);
828 			if (!(rval & DC_PN_MII_BUSY)) {
829 				rval &= 0xFFFF;
830 				return(rval == 0xFFFF ? 0 : rval);
831 			}
832 		}
833 		return(0);
834 	}
835 
836 	if (DC_IS_COMET(sc)) {
837 		switch(reg) {
838 		case MII_BMCR:
839 			phy_reg = DC_AL_BMCR;
840 			break;
841 		case MII_BMSR:
842 			phy_reg = DC_AL_BMSR;
843 			break;
844 		case MII_PHYIDR1:
845 			phy_reg = DC_AL_VENID;
846 			break;
847 		case MII_PHYIDR2:
848 			phy_reg = DC_AL_DEVID;
849 			break;
850 		case MII_ANAR:
851 			phy_reg = DC_AL_ANAR;
852 			break;
853 		case MII_ANLPAR:
854 			phy_reg = DC_AL_LPAR;
855 			break;
856 		case MII_ANER:
857 			phy_reg = DC_AL_ANER;
858 			break;
859 		default:
860 			if_printf(&sc->arpcom.ac_if,
861 				  "phy_read: bad phy register %x\n", reg);
862 			return(0);
863 			break;
864 		}
865 
866 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
867 
868 		if (rval == 0xFFFF)
869 			return(0);
870 		return(rval);
871 	}
872 
873 	frame.mii_phyaddr = phy;
874 	frame.mii_regaddr = reg;
875 	if (sc->dc_type == DC_TYPE_98713) {
876 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
877 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
878 	}
879 	dc_mii_readreg(sc, &frame);
880 	if (sc->dc_type == DC_TYPE_98713)
881 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
882 
883 	return(frame.mii_data);
884 }
885 
886 static int
887 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
888 {
889 	struct dc_softc		*sc;
890 	struct dc_mii_frame	frame;
891 	int			i, phy_reg = 0;
892 
893 	sc = device_get_softc(dev);
894 	bzero((char *)&frame, sizeof(frame));
895 
896 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
897 		return(0);
898 
899 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
900 		return(0);
901 
902 	if (DC_IS_PNIC(sc)) {
903 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
904 		    (phy << 23) | (reg << 10) | data);
905 		for (i = 0; i < DC_TIMEOUT; i++) {
906 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
907 				break;
908 		}
909 		return(0);
910 	}
911 
912 	if (DC_IS_COMET(sc)) {
913 		switch(reg) {
914 		case MII_BMCR:
915 			phy_reg = DC_AL_BMCR;
916 			break;
917 		case MII_BMSR:
918 			phy_reg = DC_AL_BMSR;
919 			break;
920 		case MII_PHYIDR1:
921 			phy_reg = DC_AL_VENID;
922 			break;
923 		case MII_PHYIDR2:
924 			phy_reg = DC_AL_DEVID;
925 			break;
926 		case MII_ANAR:
927 			phy_reg = DC_AL_ANAR;
928 			break;
929 		case MII_ANLPAR:
930 			phy_reg = DC_AL_LPAR;
931 			break;
932 		case MII_ANER:
933 			phy_reg = DC_AL_ANER;
934 			break;
935 		default:
936 			if_printf(&sc->arpcom.ac_if,
937 				  "phy_write: bad phy register %x\n", reg);
938 			return(0);
939 			break;
940 		}
941 
942 		CSR_WRITE_4(sc, phy_reg, data);
943 		return(0);
944 	}
945 
946 	frame.mii_phyaddr = phy;
947 	frame.mii_regaddr = reg;
948 	frame.mii_data = data;
949 
950 	if (sc->dc_type == DC_TYPE_98713) {
951 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
952 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
953 	}
954 	dc_mii_writereg(sc, &frame);
955 	if (sc->dc_type == DC_TYPE_98713)
956 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
957 
958 	return(0);
959 }
960 
961 static void
962 dc_miibus_statchg(device_t dev)
963 {
964 	struct dc_softc		*sc;
965 	struct mii_data		*mii;
966 	struct ifmedia		*ifm;
967 
968 	sc = device_get_softc(dev);
969 	if (DC_IS_ADMTEK(sc))
970 		return;
971 
972 	mii = device_get_softc(sc->dc_miibus);
973 	ifm = &mii->mii_media;
974 	if (DC_IS_DAVICOM(sc) &&
975 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
976 		dc_setcfg(sc, ifm->ifm_media);
977 		sc->dc_if_media = ifm->ifm_media;
978 	} else {
979 		dc_setcfg(sc, mii->mii_media_active);
980 		sc->dc_if_media = mii->mii_media_active;
981 	}
982 
983 	return;
984 }
985 
986 /*
987  * Special support for DM9102A cards with HomePNA PHYs. Note:
988  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
989  * to be impossible to talk to the management interface of the DM9801
990  * PHY (its MDIO pin is not connected to anything). Consequently,
991  * the driver has to just 'know' about the additional mode and deal
992  * with it itself. *sigh*
993  */
994 static void
995 dc_miibus_mediainit(device_t dev)
996 {
997 	struct dc_softc		*sc;
998 	struct mii_data		*mii;
999 	struct ifmedia		*ifm;
1000 	int			rev;
1001 
1002 	rev = pci_get_revid(dev);
1003 
1004 	sc = device_get_softc(dev);
1005 	mii = device_get_softc(sc->dc_miibus);
1006 	ifm = &mii->mii_media;
1007 
1008 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1009 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1010 
1011 	return;
1012 }
1013 
1014 #define DC_BITS_512	9
1015 #define DC_BITS_128	7
1016 #define DC_BITS_64	6
1017 
1018 static u_int32_t
1019 dc_crc_mask(struct dc_softc *sc)
1020 {
1021 	/*
1022 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1023 	 * chips is only 128 bits wide.
1024 	 */
1025 	if (sc->dc_flags & DC_128BIT_HASH)
1026 		return ((1 << DC_BITS_128) - 1);
1027 
1028 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1029 	if (sc->dc_flags & DC_64BIT_HASH)
1030 		return ((1 << DC_BITS_64) - 1);
1031 
1032 	return ((1 << DC_BITS_512) - 1);
1033 }
1034 
1035 /*
1036  * 21143-style RX filter setup routine. Filter programming is done by
1037  * downloading a special setup frame into the TX engine. 21143, Macronix,
1038  * PNIC, PNIC II and Davicom chips are programmed this way.
1039  *
1040  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1041  * address (our node address) and a 512-bit hash filter for multicast
1042  * frames. We also sneak the broadcast address into the hash filter since
1043  * we need that too.
1044  */
1045 void
1046 dc_setfilt_21143(struct dc_softc *sc)
1047 {
1048 	struct dc_desc		*sframe;
1049 	u_int32_t		h, crc_mask, *sp;
1050 	struct ifmultiaddr	*ifma;
1051 	struct ifnet		*ifp;
1052 	int			i;
1053 
1054 	ifp = &sc->arpcom.ac_if;
1055 
1056 	i = sc->dc_cdata.dc_tx_prod;
1057 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1058 	sc->dc_cdata.dc_tx_cnt++;
1059 	sframe = &sc->dc_ldata->dc_tx_list[i];
1060 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1061 	bzero((char *)sp, DC_SFRAME_LEN);
1062 
1063 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1064 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1065 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1066 
1067 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1068 
1069 	/* If we want promiscuous mode, set the allframes bit. */
1070 	if (ifp->if_flags & IFF_PROMISC)
1071 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1072 	else
1073 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1074 
1075 	if (ifp->if_flags & IFF_ALLMULTI)
1076 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1077 	else
1078 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1079 
1080 	crc_mask = dc_crc_mask(sc);
1081 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1082 		if (ifma->ifma_addr->sa_family != AF_LINK)
1083 			continue;
1084 		h = ether_crc32_le(
1085 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1086 			ETHER_ADDR_LEN) & crc_mask;
1087 		sp[h >> 4] |= 1 << (h & 0xF);
1088 	}
1089 
1090 	if (ifp->if_flags & IFF_BROADCAST) {
1091 		h = ether_crc32_le(ifp->if_broadcastaddr,
1092 				   ETHER_ADDR_LEN) & crc_mask;
1093 		sp[h >> 4] |= 1 << (h & 0xF);
1094 	}
1095 
1096 	/* Set our MAC address */
1097 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1098 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1099 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1100 
1101 	sframe->dc_status = DC_TXSTAT_OWN;
1102 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1103 
1104 	/*
1105 	 * The PNIC takes an exceedingly long time to process its
1106 	 * setup frame; wait 10ms after posting the setup frame
1107 	 * before proceeding, just so it has time to swallow its
1108 	 * medicine.
1109 	 */
1110 	DELAY(10000);
1111 
1112 	ifp->if_timer = 5;
1113 
1114 	return;
1115 }
1116 
1117 void
1118 dc_setfilt_admtek(struct dc_softc *sc)
1119 {
1120 	struct ifnet		*ifp;
1121 	int			h = 0;
1122 	u_int32_t		crc_mask;
1123 	u_int32_t		hashes[2] = { 0, 0 };
1124 	struct ifmultiaddr	*ifma;
1125 
1126 	ifp = &sc->arpcom.ac_if;
1127 
1128 	/* Init our MAC address */
1129 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1130 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1131 
1132 	/* If we want promiscuous mode, set the allframes bit. */
1133 	if (ifp->if_flags & IFF_PROMISC)
1134 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1135 	else
1136 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1137 
1138 	if (ifp->if_flags & IFF_ALLMULTI)
1139 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1140 	else
1141 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1142 
1143 	/* first, zot all the existing hash bits */
1144 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1145 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1146 
1147 	/*
1148 	 * If we're already in promisc or allmulti mode, we
1149 	 * don't have to bother programming the multicast filter.
1150 	 */
1151 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1152 		return;
1153 
1154 	/* now program new ones */
1155 	if (DC_IS_CENTAUR(sc))
1156 		crc_mask = dc_crc_mask(sc);
1157 	else
1158 		crc_mask = 0x3f;
1159 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1160 		if (ifma->ifma_addr->sa_family != AF_LINK)
1161 			continue;
1162 		if (DC_IS_CENTAUR(sc)) {
1163 			h = ether_crc32_le(
1164 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1165 				ETHER_ADDR_LEN) & crc_mask;
1166 		} else {
1167 			h = ether_crc32_be(
1168 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1169 				ETHER_ADDR_LEN);
1170 			h = (h >> 26) & crc_mask;
1171 		}
1172 		if (h < 32)
1173 			hashes[0] |= (1 << h);
1174 		else
1175 			hashes[1] |= (1 << (h - 32));
1176 	}
1177 
1178 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1179 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1180 
1181 	return;
1182 }
1183 
1184 void
1185 dc_setfilt_asix(struct dc_softc *sc)
1186 {
1187 	struct ifnet		*ifp;
1188 	int			h = 0;
1189 	u_int32_t		hashes[2] = { 0, 0 };
1190 	struct ifmultiaddr	*ifma;
1191 
1192 	ifp = &sc->arpcom.ac_if;
1193 
1194         /* Init our MAC address */
1195         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1196         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1197 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1198         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1199         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1200 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1201 
1202 	/* If we want promiscuous mode, set the allframes bit. */
1203 	if (ifp->if_flags & IFF_PROMISC)
1204 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1205 	else
1206 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1207 
1208 	if (ifp->if_flags & IFF_ALLMULTI)
1209 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1210 	else
1211 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1212 
1213 	/*
1214 	 * The ASIX chip has a special bit to enable reception
1215 	 * of broadcast frames.
1216 	 */
1217 	if (ifp->if_flags & IFF_BROADCAST)
1218 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1219 	else
1220 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1221 
1222 	/* first, zot all the existing hash bits */
1223 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1224 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1225 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1226 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1227 
1228 	/*
1229 	 * If we're already in promisc or allmulti mode, we
1230 	 * don't have to bother programming the multicast filter.
1231 	 */
1232 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1233 		return;
1234 
1235 	/* now program new ones */
1236 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1237 		if (ifma->ifma_addr->sa_family != AF_LINK)
1238 			continue;
1239 		h = ether_crc32_be(
1240 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1241 			ETHER_ADDR_LEN);
1242 		h = (h >> 26) & 0x3f;
1243 		if (h < 32)
1244 			hashes[0] |= (1 << h);
1245 		else
1246 			hashes[1] |= (1 << (h - 32));
1247 	}
1248 
1249 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1250 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1251 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1252 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1253 
1254 	return;
1255 }
1256 
1257 void
1258 dc_setfilt_xircom(struct dc_softc *sc)
1259 {
1260 	struct dc_desc		*sframe;
1261 	u_int32_t		h, *sp;
1262 	struct ifmultiaddr	*ifma;
1263 	struct ifnet		*ifp;
1264 	int			i;
1265 
1266 	ifp = &sc->arpcom.ac_if;
1267 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1268 
1269 	i = sc->dc_cdata.dc_tx_prod;
1270 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1271 	sc->dc_cdata.dc_tx_cnt++;
1272 	sframe = &sc->dc_ldata->dc_tx_list[i];
1273 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1274 	bzero(sp, DC_SFRAME_LEN);
1275 
1276 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1277 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1278 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1279 
1280 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1281 
1282 	/* If we want promiscuous mode, set the allframes bit. */
1283 	if (ifp->if_flags & IFF_PROMISC)
1284 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1285 	else
1286 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1287 
1288 	if (ifp->if_flags & IFF_ALLMULTI)
1289  		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1290 	else
1291 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1292 
1293 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1294 		if (ifma->ifma_addr->sa_family != AF_LINK)
1295 			continue;
1296 		h = dc_mchash_xircom(sc,
1297 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1298 		sp[h >> 4] |= 1 << (h & 0xF);
1299 	}
1300 
1301 	if (ifp->if_flags & IFF_BROADCAST) {
1302 		h = dc_mchash_xircom(sc, (caddr_t)&etherbroadcastaddr);
1303 		sp[h >> 4] |= 1 << (h & 0xF);
1304 	}
1305 
1306 	/* Set our MAC address */
1307 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1308 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1309 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1310 
1311 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1312 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1313 	ifp->if_flags |= IFF_RUNNING;
1314 	sframe->dc_status = DC_TXSTAT_OWN;
1315 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1316 
1317 	/*
1318 	 * wait some time...
1319 	 */
1320 	DELAY(1000);
1321 
1322 	ifp->if_timer = 5;
1323 }
1324 
1325 static void
1326 dc_setfilt(struct dc_softc *sc)
1327 {
1328 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1329 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1330 		dc_setfilt_21143(sc);
1331 
1332 	if (DC_IS_ASIX(sc))
1333 		dc_setfilt_asix(sc);
1334 
1335 	if (DC_IS_ADMTEK(sc))
1336 		dc_setfilt_admtek(sc);
1337 
1338 	if (DC_IS_XIRCOM(sc))
1339 		dc_setfilt_xircom(sc);
1340 }
1341 
1342 /*
1343  * In order to fiddle with the
1344  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1345  * first have to put the transmit and/or receive logic in the idle state.
1346  */
1347 static void
1348 dc_setcfg(struct dc_softc *sc, int media)
1349 {
1350 	int			i, restart = 0;
1351 	u_int32_t		isr;
1352 
1353 	if (IFM_SUBTYPE(media) == IFM_NONE)
1354 		return;
1355 
1356 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1357 		restart = 1;
1358 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1359 
1360 		for (i = 0; i < DC_TIMEOUT; i++) {
1361 			isr = CSR_READ_4(sc, DC_ISR);
1362 			if ((isr & DC_ISR_TX_IDLE) &&
1363 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1364 			     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1365 				break;
1366 			DELAY(10);
1367 		}
1368 
1369 		if (i == DC_TIMEOUT) {
1370 			if_printf(&sc->arpcom.ac_if,
1371 			    "failed to force tx and rx to idle state\n");
1372 		}
1373 	}
1374 
1375 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1376 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1377 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1378 		if (sc->dc_pmode == DC_PMODE_MII) {
1379 			int	watchdogreg;
1380 
1381 			if (DC_IS_INTEL(sc)) {
1382 			/* there's a write enable bit here that reads as 1 */
1383 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1384 				watchdogreg &= ~DC_WDOG_CTLWREN;
1385 				watchdogreg |= DC_WDOG_JABBERDIS;
1386 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1387 			} else {
1388 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1389 			}
1390 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1391 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1392 			if (sc->dc_type == DC_TYPE_98713)
1393 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1394 				    DC_NETCFG_SCRAMBLER));
1395 			if (!DC_IS_DAVICOM(sc))
1396 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1397 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1398 			if (DC_IS_INTEL(sc))
1399 				dc_apply_fixup(sc, IFM_AUTO);
1400 		} else {
1401 			if (DC_IS_PNIC(sc)) {
1402 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1403 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1404 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1405 			}
1406 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1407 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1408 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1409 			if (DC_IS_INTEL(sc))
1410 				dc_apply_fixup(sc,
1411 				    (media & IFM_GMASK) == IFM_FDX ?
1412 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1413 		}
1414 	}
1415 
1416 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1417 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1418 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1419 		if (sc->dc_pmode == DC_PMODE_MII) {
1420 			int	watchdogreg;
1421 
1422 			/* there's a write enable bit here that reads as 1 */
1423 			if (DC_IS_INTEL(sc)) {
1424 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1425 				watchdogreg &= ~DC_WDOG_CTLWREN;
1426 				watchdogreg |= DC_WDOG_JABBERDIS;
1427 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1428 			} else {
1429 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1430 			}
1431 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1432 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1433 			if (sc->dc_type == DC_TYPE_98713)
1434 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1435 			if (!DC_IS_DAVICOM(sc))
1436 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1437 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1438 			if (DC_IS_INTEL(sc))
1439 				dc_apply_fixup(sc, IFM_AUTO);
1440 		} else {
1441 			if (DC_IS_PNIC(sc)) {
1442 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1443 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1444 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1445 			}
1446 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1447 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1448 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1449 			if (DC_IS_INTEL(sc)) {
1450 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1451 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1452 				if ((media & IFM_GMASK) == IFM_FDX)
1453 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1454 				else
1455 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1456 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1457 				DC_CLRBIT(sc, DC_10BTCTRL,
1458 				    DC_TCTL_AUTONEGENBL);
1459 				dc_apply_fixup(sc,
1460 				    (media & IFM_GMASK) == IFM_FDX ?
1461 				    IFM_10_T|IFM_FDX : IFM_10_T);
1462 				DELAY(20000);
1463 			}
1464 		}
1465 	}
1466 
1467 	/*
1468 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1469 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1470 	 * on the external MII port.
1471 	 */
1472 	if (DC_IS_DAVICOM(sc)) {
1473 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1474 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1475 			sc->dc_link = 1;
1476 		} else {
1477 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1478 		}
1479 	}
1480 
1481 	if ((media & IFM_GMASK) == IFM_FDX) {
1482 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1483 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1484 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1485 	} else {
1486 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1487 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1488 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1489 	}
1490 
1491 	if (restart)
1492 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1493 
1494 	return;
1495 }
1496 
1497 static void
1498 dc_reset(struct dc_softc *sc)
1499 {
1500 	int		i;
1501 
1502 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1503 
1504 	for (i = 0; i < DC_TIMEOUT; i++) {
1505 		DELAY(10);
1506 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1507 			break;
1508 	}
1509 
1510 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) ||
1511 	    DC_IS_CONEXANT(sc)) {
1512 		DELAY(10000);
1513 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1514 		i = 0;
1515 	}
1516 
1517 	if (i == DC_TIMEOUT)
1518 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1519 
1520 	/* Wait a little while for the chip to get its brains in order. */
1521 	DELAY(1000);
1522 
1523 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1524 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1525 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1526 
1527 	/*
1528 	 * Bring the SIA out of reset. In some cases, it looks
1529 	 * like failing to unreset the SIA soon enough gets it
1530 	 * into a state where it will never come out of reset
1531 	 * until we reset the whole chip again.
1532 	 */
1533 	if (DC_IS_INTEL(sc)) {
1534 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1535 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1536 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1537 	}
1538 
1539         return;
1540 }
1541 
1542 static const struct dc_type *
1543 dc_devtype(device_t dev)
1544 {
1545 	const struct dc_type	*t;
1546 	u_int32_t		rev;
1547 
1548 	t = dc_devs;
1549 
1550 	while(t->dc_name != NULL) {
1551 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1552 		    (pci_get_device(dev) == t->dc_did)) {
1553 			/* Check the PCI revision */
1554 			rev = pci_get_revid(dev);
1555 			if (t->dc_did == DC_DEVICEID_98713 &&
1556 			    rev >= DC_REVISION_98713A)
1557 				t++;
1558 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1559 			    rev >= DC_REVISION_98713A)
1560 				t++;
1561 			if (t->dc_did == DC_DEVICEID_987x5 &&
1562 			    rev >= DC_REVISION_98715AEC_C)
1563 				t++;
1564 			if (t->dc_did == DC_DEVICEID_987x5 &&
1565 			    rev >= DC_REVISION_98725)
1566 				t++;
1567 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1568 			    rev >= DC_REVISION_88141)
1569 				t++;
1570 			if (t->dc_did == DC_DEVICEID_82C168 &&
1571 			    rev >= DC_REVISION_82C169)
1572 				t++;
1573 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1574 			    rev >= DC_REVISION_DM9102A)
1575 				t++;
1576 			return(t);
1577 		}
1578 		t++;
1579 	}
1580 
1581 	return(NULL);
1582 }
1583 
1584 /*
1585  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1586  * IDs against our list and return a device name if we find a match.
1587  * We do a little bit of extra work to identify the exact type of
1588  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1589  * but different revision IDs. The same is true for 98715/98715A
1590  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1591  * cases, the exact chip revision affects driver behavior.
1592  */
1593 static int
1594 dc_probe(device_t dev)
1595 {
1596 	const struct dc_type *t;
1597 
1598 	t = dc_devtype(dev);
1599 	if (t != NULL) {
1600 		struct dc_softc *sc = device_get_softc(dev);
1601 
1602 		/* Need this info to decide on a chip type. */
1603 		sc->dc_info = t;
1604 		device_set_desc(dev, t->dc_name);
1605 		return(0);
1606 	}
1607 
1608 	return(ENXIO);
1609 }
1610 
1611 static void
1612 dc_acpi(device_t dev)
1613 {
1614 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1615 		uint32_t iobase, membase, irq;
1616 		struct dc_softc *sc;
1617 
1618 		/* Save important PCI config data. */
1619 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1620 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1621 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1622 
1623 		sc = device_get_softc(dev);
1624 		/* Reset the power state. */
1625 		if_printf(&sc->arpcom.ac_if,
1626 			  "chip is in D%d power mode "
1627 			  "-- setting to D0\n", pci_get_powerstate(dev));
1628 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1629 
1630 		/* Restore PCI config data. */
1631 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1632 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1633 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1634 	}
1635 }
1636 
1637 static void
1638 dc_apply_fixup(struct dc_softc *sc, int media)
1639 {
1640 	struct dc_mediainfo	*m;
1641 	u_int8_t		*p;
1642 	int			i;
1643 	u_int32_t		reg;
1644 
1645 	m = sc->dc_mi;
1646 
1647 	while (m != NULL) {
1648 		if (m->dc_media == media)
1649 			break;
1650 		m = m->dc_next;
1651 	}
1652 
1653 	if (m == NULL)
1654 		return;
1655 
1656 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1657 		reg = (p[0] | (p[1] << 8)) << 16;
1658 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1659 	}
1660 
1661 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1662 		reg = (p[0] | (p[1] << 8)) << 16;
1663 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1664 	}
1665 
1666 	return;
1667 }
1668 
1669 static void
1670 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1671 {
1672 	struct dc_mediainfo	*m;
1673 
1674 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1675 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1676 	case DC_SIA_CODE_10BT:
1677 		m->dc_media = IFM_10_T;
1678 		break;
1679 
1680 	case DC_SIA_CODE_10BT_FDX:
1681 		m->dc_media = IFM_10_T|IFM_FDX;
1682 		break;
1683 
1684 	case DC_SIA_CODE_10B2:
1685 		m->dc_media = IFM_10_2;
1686 		break;
1687 
1688 	case DC_SIA_CODE_10B5:
1689 		m->dc_media = IFM_10_5;
1690 		break;
1691 	}
1692 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1693 		m->dc_gp_len = 2;
1694 		m->dc_gp_ptr =
1695 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1696 	} else {
1697 	m->dc_gp_len = 2;
1698 	m->dc_gp_ptr =
1699 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1700 	}
1701 
1702 	m->dc_next = sc->dc_mi;
1703 	sc->dc_mi = m;
1704 
1705 	sc->dc_pmode = DC_PMODE_SIA;
1706 
1707 	return;
1708 }
1709 
1710 static void
1711 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1712 {
1713 	struct dc_mediainfo	*m;
1714 
1715 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1716 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1717 		m->dc_media = IFM_100_TX;
1718 
1719 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1720 		m->dc_media = IFM_100_TX|IFM_FDX;
1721 
1722 	m->dc_gp_len = 2;
1723 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1724 
1725 	m->dc_next = sc->dc_mi;
1726 	sc->dc_mi = m;
1727 
1728 	sc->dc_pmode = DC_PMODE_SYM;
1729 
1730 	return;
1731 }
1732 
1733 static void
1734 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1735 {
1736 	u_int8_t		*p;
1737 	struct dc_mediainfo	*m;
1738 
1739 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1740 	/* We abuse IFM_AUTO to represent MII. */
1741 	m->dc_media = IFM_AUTO;
1742 	m->dc_gp_len = l->dc_gpr_len;
1743 
1744 	p = (u_int8_t *)l;
1745 	p += sizeof(struct dc_eblock_mii);
1746 	m->dc_gp_ptr = p;
1747 	p += 2 * l->dc_gpr_len;
1748 	m->dc_reset_len = *p;
1749 	p++;
1750 	m->dc_reset_ptr = p;
1751 
1752 	m->dc_next = sc->dc_mi;
1753 	sc->dc_mi = m;
1754 
1755 	return;
1756 }
1757 
1758 static void
1759 dc_read_srom(struct dc_softc *sc, int bits)
1760 {
1761 	int size;
1762 
1763 	size = 2 << bits;
1764 	sc->dc_srom = kmalloc(size, M_DEVBUF, M_INTWAIT);
1765 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1766 }
1767 
1768 static void
1769 dc_parse_21143_srom(struct dc_softc *sc)
1770 {
1771 	struct dc_leaf_hdr	*lhdr;
1772 	struct dc_eblock_hdr	*hdr;
1773 	int			i, loff;
1774 	char			*ptr;
1775 	int			have_mii;
1776 
1777 	have_mii = 0;
1778 	loff = sc->dc_srom[27];
1779 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1780 
1781 	ptr = (char *)lhdr;
1782 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1783 	/*
1784 	 * Look if we got a MII media block.
1785 	 */
1786 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1787 		hdr = (struct dc_eblock_hdr *)ptr;
1788 		if (hdr->dc_type == DC_EBLOCK_MII)
1789 		    have_mii++;
1790 
1791 		ptr += (hdr->dc_len & 0x7F);
1792 		ptr++;
1793 	}
1794 
1795 	/*
1796 	 * Do the same thing again. Only use SIA and SYM media
1797 	 * blocks if no MII media block is available.
1798 	 */
1799 	ptr = (char *)lhdr;
1800 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1801 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1802 		hdr = (struct dc_eblock_hdr *)ptr;
1803 		switch(hdr->dc_type) {
1804 		case DC_EBLOCK_MII:
1805 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1806 			break;
1807 		case DC_EBLOCK_SIA:
1808 			if (! have_mii)
1809 				dc_decode_leaf_sia(sc,
1810 				    (struct dc_eblock_sia *)hdr);
1811 			break;
1812 		case DC_EBLOCK_SYM:
1813 			if (! have_mii)
1814 				dc_decode_leaf_sym(sc,
1815 				    (struct dc_eblock_sym *)hdr);
1816 			break;
1817 		default:
1818 			/* Don't care. Yet. */
1819 			break;
1820 		}
1821 		ptr += (hdr->dc_len & 0x7F);
1822 		ptr++;
1823 	}
1824 
1825 	return;
1826 }
1827 
1828 /*
1829  * Attach the interface. Allocate softc structures, do ifmedia
1830  * setup and ethernet/BPF attach.
1831  */
1832 static int
1833 dc_attach(device_t dev)
1834 {
1835 	int			tmp = 0;
1836 	u_char			eaddr[ETHER_ADDR_LEN];
1837 	u_int32_t		command;
1838 	struct dc_softc		*sc;
1839 	struct ifnet		*ifp;
1840 	u_int32_t		revision;
1841 	int			error = 0, rid, mac_offset;
1842 	uint8_t			*mac;
1843 
1844 	sc = device_get_softc(dev);
1845 	callout_init(&sc->dc_stat_timer);
1846 
1847 	ifp = &sc->arpcom.ac_if;
1848 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1849 
1850 	/*
1851 	 * Handle power management nonsense.
1852 	 */
1853 	dc_acpi(dev);
1854 
1855 	/*
1856 	 * Map control/status registers.
1857 	 */
1858 	pci_enable_busmaster(dev);
1859 
1860 	rid = DC_RID;
1861 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1862 
1863 	if (sc->dc_res == NULL) {
1864 		device_printf(dev, "couldn't map ports/memory\n");
1865 		error = ENXIO;
1866 		goto fail;
1867 	}
1868 
1869 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1870 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1871 
1872 	/* Allocate interrupt */
1873 	rid = 0;
1874 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1875 	    RF_SHAREABLE | RF_ACTIVE);
1876 
1877 	if (sc->dc_irq == NULL) {
1878 		device_printf(dev, "couldn't map interrupt\n");
1879 		error = ENXIO;
1880 		goto fail;
1881 	}
1882 
1883 	revision = pci_get_revid(dev);
1884 
1885 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1886 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1887 	    sc->dc_info->dc_did != DC_DEVICEID_X3201)
1888 		dc_eeprom_width(sc);
1889 
1890 	switch(sc->dc_info->dc_did) {
1891 	case DC_DEVICEID_21143:
1892 		sc->dc_type = DC_TYPE_21143;
1893 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1894 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1895 		/* Save EEPROM contents so we can parse them later. */
1896 		dc_read_srom(sc, sc->dc_romwidth);
1897 		break;
1898 	case DC_DEVICEID_DM9009:
1899 	case DC_DEVICEID_DM9100:
1900 	case DC_DEVICEID_DM9102:
1901 		sc->dc_type = DC_TYPE_DM9102;
1902 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1903 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1904 		sc->dc_flags |= DC_TX_ALIGN;
1905 		sc->dc_pmode = DC_PMODE_MII;
1906 		/* Increase the latency timer value. */
1907 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1908 		command &= 0xFFFF00FF;
1909 		command |= 0x00008000;
1910 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1911 		break;
1912 	case DC_DEVICEID_AL981:
1913 		sc->dc_type = DC_TYPE_AL981;
1914 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1915 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1916 		sc->dc_pmode = DC_PMODE_MII;
1917 		dc_read_srom(sc, sc->dc_romwidth);
1918 		break;
1919 	case DC_DEVICEID_AN985:
1920 	case DC_DEVICEID_ADM9511:
1921 	case DC_DEVICEID_ADM9513:
1922 	case DC_DEVICEID_FA511:
1923 	case DC_DEVICEID_EN2242:
1924 	case DC_DEVICEID_3CSOHOB:
1925 		sc->dc_type = DC_TYPE_AN985;
1926 		sc->dc_flags |= DC_64BIT_HASH;
1927 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1928 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1929 		sc->dc_pmode = DC_PMODE_MII;
1930 		break;
1931 	case DC_DEVICEID_98713:
1932 	case DC_DEVICEID_98713_CP:
1933 		if (revision < DC_REVISION_98713A) {
1934 			sc->dc_type = DC_TYPE_98713;
1935 		}
1936 		if (revision >= DC_REVISION_98713A) {
1937 			sc->dc_type = DC_TYPE_98713A;
1938 			sc->dc_flags |= DC_21143_NWAY;
1939 		}
1940 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1941 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1942 		break;
1943 	case DC_DEVICEID_987x5:
1944 	case DC_DEVICEID_EN1217:
1945 		/*
1946 		 * Macronix MX98715AEC-C/D/E parts have only a
1947 		 * 128-bit hash table. We need to deal with these
1948 		 * in the same manner as the PNIC II so that we
1949 		 * get the right number of bits out of the
1950 		 * CRC routine.
1951 		 */
1952 		if (revision >= DC_REVISION_98715AEC_C &&
1953 		    revision < DC_REVISION_98725)
1954 			sc->dc_flags |= DC_128BIT_HASH;
1955 		sc->dc_type = DC_TYPE_987x5;
1956 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1957 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1958 		break;
1959 	case DC_DEVICEID_98727:
1960 		sc->dc_type = DC_TYPE_987x5;
1961 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1962 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1963 		break;
1964 	case DC_DEVICEID_82C115:
1965 		sc->dc_type = DC_TYPE_PNICII;
1966 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1967 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1968 		break;
1969 	case DC_DEVICEID_82C168:
1970 		sc->dc_type = DC_TYPE_PNIC;
1971 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1972 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1973 		sc->dc_pnic_rx_buf = kmalloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1974 		if (revision < DC_REVISION_82C169)
1975 			sc->dc_pmode = DC_PMODE_SYM;
1976 		break;
1977 	case DC_DEVICEID_AX88140A:
1978 		sc->dc_type = DC_TYPE_ASIX;
1979 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1980 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1981 		sc->dc_pmode = DC_PMODE_MII;
1982 		break;
1983 	case DC_DEVICEID_RS7112:
1984 		sc->dc_type = DC_TYPE_CONEXANT;
1985 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1986 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1987 		sc->dc_pmode = DC_PMODE_MII;
1988 		dc_read_srom(sc, sc->dc_romwidth);
1989 		break;
1990 	case DC_DEVICEID_X3201:
1991 		sc->dc_type = DC_TYPE_XIRCOM;
1992 		sc->dc_flags |= (DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1993 				 DC_TX_ALIGN);
1994 		/*
1995 		 * We don't actually need to coalesce, but we're doing
1996 		 * it to obtain a double word aligned buffer.
1997 		 * The DC_TX_COALESCE flag is required.
1998 		 */
1999 		sc->dc_pmode = DC_PMODE_MII;
2000 		break;
2001 	default:
2002 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
2003 		break;
2004 	}
2005 
2006 	/* Save the cache line size. */
2007 	if (DC_IS_DAVICOM(sc))
2008 		sc->dc_cachesize = 0;
2009 	else
2010 		sc->dc_cachesize = pci_read_config(dev,
2011 		    DC_PCI_CFLT, 4) & 0xFF;
2012 
2013 	/* Reset the adapter. */
2014 	dc_reset(sc);
2015 
2016 	/* Take 21143 out of snooze mode */
2017 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2018 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2019 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2020 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2021 	}
2022 
2023 	/*
2024 	 * Try to learn something about the supported media.
2025 	 * We know that ASIX and ADMtek and Davicom devices
2026 	 * will *always* be using MII media, so that's a no-brainer.
2027 	 * The tricky ones are the Macronix/PNIC II and the
2028 	 * Intel 21143.
2029 	 */
2030 	if (DC_IS_INTEL(sc))
2031 		dc_parse_21143_srom(sc);
2032 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2033 		if (sc->dc_type == DC_TYPE_98713)
2034 			sc->dc_pmode = DC_PMODE_MII;
2035 		else
2036 			sc->dc_pmode = DC_PMODE_SYM;
2037 	} else if (!sc->dc_pmode)
2038 		sc->dc_pmode = DC_PMODE_MII;
2039 
2040 	/*
2041 	 * Get station address from the EEPROM.
2042 	 */
2043 	switch(sc->dc_type) {
2044 	case DC_TYPE_98713:
2045 	case DC_TYPE_98713A:
2046 	case DC_TYPE_987x5:
2047 	case DC_TYPE_PNICII:
2048 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2049 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2050 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2051 		break;
2052 	case DC_TYPE_PNIC:
2053 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2054 		break;
2055 	case DC_TYPE_DM9102:
2056 	case DC_TYPE_21143:
2057 	case DC_TYPE_ASIX:
2058 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2059 		break;
2060 	case DC_TYPE_AL981:
2061 	case DC_TYPE_AN985:
2062 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
2063 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
2064 		break;
2065 	case DC_TYPE_CONEXANT:
2066 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2067 		break;
2068 	case DC_TYPE_XIRCOM:
2069 		/* The MAC comes from the CIS */
2070 		mac = pci_get_ether(dev);
2071 		if (!mac) {
2072 			device_printf(dev, "No station address in CIS!\n");
2073 			error = ENXIO;
2074 			goto fail;
2075 		}
2076 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2077 	 	break;
2078 	default:
2079 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2080 		break;
2081 	}
2082 
2083 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2084 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
2085 
2086 	if (sc->dc_ldata == NULL) {
2087 		device_printf(dev, "no memory for list buffers!\n");
2088 		error = ENXIO;
2089 		goto fail;
2090 	}
2091 
2092 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2093 
2094 	ifp->if_softc = sc;
2095 	ifp->if_mtu = ETHERMTU;
2096 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2097 	ifp->if_ioctl = dc_ioctl;
2098 	ifp->if_start = dc_start;
2099 #ifdef DEVICE_POLLING
2100 	ifp->if_poll = dc_poll;
2101 #endif
2102 	ifp->if_watchdog = dc_watchdog;
2103 	ifp->if_init = dc_init;
2104 	ifp->if_baudrate = 10000000;
2105 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2106 	ifq_set_ready(&ifp->if_snd);
2107 
2108 	/*
2109 	 * Do MII setup. If this is a 21143, check for a PHY on the
2110 	 * MII bus after applying any necessary fixups to twiddle the
2111 	 * GPIO bits. If we don't end up finding a PHY, restore the
2112 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2113 	 * driver instead.
2114 	 */
2115 	if (DC_IS_INTEL(sc)) {
2116 		dc_apply_fixup(sc, IFM_AUTO);
2117 		tmp = sc->dc_pmode;
2118 		sc->dc_pmode = DC_PMODE_MII;
2119 	}
2120 
2121 	/*
2122 	 * Setup General Purpose port mode and data so the tulip can talk
2123 	 * to the MII.  This needs to be done before mii_phy_probe so that
2124 	 * we can actually see them.
2125 	 */
2126 	if (DC_IS_XIRCOM(sc)) {
2127 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2128 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2129 		DELAY(10);
2130 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2131 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2132 		DELAY(10);
2133 	}
2134 
2135 	error = mii_phy_probe(dev, &sc->dc_miibus,
2136 	    dc_ifmedia_upd, dc_ifmedia_sts);
2137 
2138 	if (error && DC_IS_INTEL(sc)) {
2139 		sc->dc_pmode = tmp;
2140 		if (sc->dc_pmode != DC_PMODE_SIA)
2141 			sc->dc_pmode = DC_PMODE_SYM;
2142 		sc->dc_flags |= DC_21143_NWAY;
2143 		mii_phy_probe(dev, &sc->dc_miibus,
2144 		    dc_ifmedia_upd, dc_ifmedia_sts);
2145 		/*
2146 		 * For non-MII cards, we need to have the 21143
2147 		 * drive the LEDs. Except there are some systems
2148 		 * like the NEC VersaPro NoteBook PC which have no
2149 		 * LEDs, and twiddling these bits has adverse effects
2150 		 * on them. (I.e. you suddenly can't get a link.)
2151 		 */
2152 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2153 			sc->dc_flags |= DC_TULIP_LEDS;
2154 		error = 0;
2155 	}
2156 
2157 	if (error) {
2158 		device_printf(dev, "MII without any PHY!\n");
2159 		error = ENXIO;
2160 		goto fail;
2161 	}
2162 
2163 	/*
2164 	 * Call MI attach routine.
2165 	 */
2166 	ether_ifattach(ifp, eaddr, NULL);
2167 
2168 	if (DC_IS_ADMTEK(sc)) {
2169 		/*
2170 		 * Set automatic TX underrun recovery for the ADMtek chips
2171 		 */
2172 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2173 	}
2174 
2175 	/*
2176 	 * Tell the upper layer(s) we support long frames.
2177 	 */
2178 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2179 
2180 	error = bus_setup_intr(dev, sc->dc_irq, INTR_NETSAFE,
2181 			       dc_intr, sc, &sc->dc_intrhand,
2182 			       ifp->if_serializer);
2183 	if (error) {
2184 		ether_ifdetach(ifp);
2185 		device_printf(dev, "couldn't set up irq\n");
2186 		goto fail;
2187 	}
2188 
2189 	return(0);
2190 
2191 fail:
2192 	dc_detach(dev);
2193 	return(error);
2194 }
2195 
2196 static int
2197 dc_detach(device_t dev)
2198 {
2199 	struct dc_softc *sc = device_get_softc(dev);
2200 	struct ifnet *ifp = &sc->arpcom.ac_if;
2201 	struct dc_mediainfo *m;
2202 
2203 	if (device_is_attached(dev)) {
2204 		lwkt_serialize_enter(ifp->if_serializer);
2205 		dc_stop(sc);
2206 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2207 		lwkt_serialize_exit(ifp->if_serializer);
2208 
2209 		ether_ifdetach(ifp);
2210 	}
2211 
2212 	if (sc->dc_miibus)
2213 		device_delete_child(dev, sc->dc_miibus);
2214 	bus_generic_detach(dev);
2215 
2216 	if (sc->dc_irq)
2217 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2218 	if (sc->dc_res)
2219 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2220 
2221 	if (sc->dc_ldata)
2222 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2223 	if (sc->dc_pnic_rx_buf != NULL)
2224 		kfree(sc->dc_pnic_rx_buf, M_DEVBUF);
2225 
2226 	while (sc->dc_mi != NULL) {
2227 		m = sc->dc_mi->dc_next;
2228 		kfree(sc->dc_mi, M_DEVBUF);
2229 		sc->dc_mi = m;
2230 	}
2231 
2232 	if (sc->dc_srom)
2233 		kfree(sc->dc_srom, M_DEVBUF);
2234 
2235 	return(0);
2236 }
2237 
2238 /*
2239  * Initialize the transmit descriptors.
2240  */
2241 static int
2242 dc_list_tx_init(struct dc_softc *sc)
2243 {
2244 	struct dc_chain_data	*cd;
2245 	struct dc_list_data	*ld;
2246 	int			i;
2247 
2248 	cd = &sc->dc_cdata;
2249 	ld = sc->dc_ldata;
2250 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2251 		if (i == (DC_TX_LIST_CNT - 1)) {
2252 			ld->dc_tx_list[i].dc_next =
2253 			    vtophys(&ld->dc_tx_list[0]);
2254 		} else {
2255 			ld->dc_tx_list[i].dc_next =
2256 			    vtophys(&ld->dc_tx_list[i + 1]);
2257 		}
2258 		cd->dc_tx_chain[i] = NULL;
2259 		ld->dc_tx_list[i].dc_data = 0;
2260 		ld->dc_tx_list[i].dc_ctl = 0;
2261 	}
2262 
2263 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2264 
2265 	return(0);
2266 }
2267 
2268 
2269 /*
2270  * Initialize the RX descriptors and allocate mbufs for them. Note that
2271  * we arrange the descriptors in a closed ring, so that the last descriptor
2272  * points back to the first.
2273  */
2274 static int
2275 dc_list_rx_init(struct dc_softc *sc)
2276 {
2277 	struct dc_chain_data	*cd;
2278 	struct dc_list_data	*ld;
2279 	int			i;
2280 
2281 	cd = &sc->dc_cdata;
2282 	ld = sc->dc_ldata;
2283 
2284 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2285 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2286 			return(ENOBUFS);
2287 		if (i == (DC_RX_LIST_CNT - 1)) {
2288 			ld->dc_rx_list[i].dc_next =
2289 			    vtophys(&ld->dc_rx_list[0]);
2290 		} else {
2291 			ld->dc_rx_list[i].dc_next =
2292 			    vtophys(&ld->dc_rx_list[i + 1]);
2293 		}
2294 	}
2295 
2296 	cd->dc_rx_prod = 0;
2297 
2298 	return(0);
2299 }
2300 
2301 /*
2302  * Initialize an RX descriptor and attach an MBUF cluster.
2303  */
2304 static int
2305 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2306 {
2307 	struct mbuf		*m_new = NULL;
2308 	struct dc_desc		*c;
2309 
2310 	c = &sc->dc_ldata->dc_rx_list[i];
2311 
2312 	if (m == NULL) {
2313 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2314 		if (m_new == NULL)
2315 			return (ENOBUFS);
2316 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2317 	} else {
2318 		m_new = m;
2319 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2320 		m_new->m_data = m_new->m_ext.ext_buf;
2321 	}
2322 
2323 	m_adj(m_new, sizeof(u_int64_t));
2324 
2325 	/*
2326 	 * If this is a PNIC chip, zero the buffer. This is part
2327 	 * of the workaround for the receive bug in the 82c168 and
2328 	 * 82c169 chips.
2329 	 */
2330 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2331 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2332 
2333 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2334 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2335 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2336 	c->dc_status = DC_RXSTAT_OWN;
2337 
2338 	return(0);
2339 }
2340 
2341 /*
2342  * Grrrrr.
2343  * The PNIC chip has a terrible bug in it that manifests itself during
2344  * periods of heavy activity. The exact mode of failure if difficult to
2345  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2346  * will happen on slow machines. The bug is that sometimes instead of
2347  * uploading one complete frame during reception, it uploads what looks
2348  * like the entire contents of its FIFO memory. The frame we want is at
2349  * the end of the whole mess, but we never know exactly how much data has
2350  * been uploaded, so salvaging the frame is hard.
2351  *
2352  * There is only one way to do it reliably, and it's disgusting.
2353  * Here's what we know:
2354  *
2355  * - We know there will always be somewhere between one and three extra
2356  *   descriptors uploaded.
2357  *
2358  * - We know the desired received frame will always be at the end of the
2359  *   total data upload.
2360  *
2361  * - We know the size of the desired received frame because it will be
2362  *   provided in the length field of the status word in the last descriptor.
2363  *
2364  * Here's what we do:
2365  *
2366  * - When we allocate buffers for the receive ring, we bzero() them.
2367  *   This means that we know that the buffer contents should be all
2368  *   zeros, except for data uploaded by the chip.
2369  *
2370  * - We also force the PNIC chip to upload frames that include the
2371  *   ethernet CRC at the end.
2372  *
2373  * - We gather all of the bogus frame data into a single buffer.
2374  *
2375  * - We then position a pointer at the end of this buffer and scan
2376  *   backwards until we encounter the first non-zero byte of data.
2377  *   This is the end of the received frame. We know we will encounter
2378  *   some data at the end of the frame because the CRC will always be
2379  *   there, so even if the sender transmits a packet of all zeros,
2380  *   we won't be fooled.
2381  *
2382  * - We know the size of the actual received frame, so we subtract
2383  *   that value from the current pointer location. This brings us
2384  *   to the start of the actual received packet.
2385  *
2386  * - We copy this into an mbuf and pass it on, along with the actual
2387  *   frame length.
2388  *
2389  * The performance hit is tremendous, but it beats dropping frames all
2390  * the time.
2391  */
2392 
2393 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2394 static void
2395 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2396 {
2397 	struct dc_desc		*cur_rx;
2398 	struct dc_desc		*c = NULL;
2399 	struct mbuf		*m = NULL;
2400 	unsigned char		*ptr;
2401 	int			i, total_len;
2402 	u_int32_t		rxstat = 0;
2403 
2404 	i = sc->dc_pnic_rx_bug_save;
2405 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2406 	ptr = sc->dc_pnic_rx_buf;
2407 	bzero(ptr, DC_RXLEN * 5);
2408 
2409 	/* Copy all the bytes from the bogus buffers. */
2410 	while (1) {
2411 		c = &sc->dc_ldata->dc_rx_list[i];
2412 		rxstat = c->dc_status;
2413 		m = sc->dc_cdata.dc_rx_chain[i];
2414 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2415 		ptr += DC_RXLEN;
2416 		/* If this is the last buffer, break out. */
2417 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2418 			break;
2419 		dc_newbuf(sc, i, m);
2420 		DC_INC(i, DC_RX_LIST_CNT);
2421 	}
2422 
2423 	/* Find the length of the actual receive frame. */
2424 	total_len = DC_RXBYTES(rxstat);
2425 
2426 	/* Scan backwards until we hit a non-zero byte. */
2427 	while(*ptr == 0x00)
2428 		ptr--;
2429 
2430 	/* Round off. */
2431 	if ((uintptr_t)(ptr) & 0x3)
2432 		ptr -= 1;
2433 
2434 	/* Now find the start of the frame. */
2435 	ptr -= total_len;
2436 	if (ptr < sc->dc_pnic_rx_buf)
2437 		ptr = sc->dc_pnic_rx_buf;
2438 
2439 	/*
2440 	 * Now copy the salvaged frame to the last mbuf and fake up
2441 	 * the status word to make it look like a successful
2442  	 * frame reception.
2443 	 */
2444 	dc_newbuf(sc, i, m);
2445 	bcopy(ptr, mtod(m, char *), total_len);
2446 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2447 
2448 	return;
2449 }
2450 
2451 /*
2452  * This routine searches the RX ring for dirty descriptors in the
2453  * event that the rxeof routine falls out of sync with the chip's
2454  * current descriptor pointer. This may happen sometimes as a result
2455  * of a "no RX buffer available" condition that happens when the chip
2456  * consumes all of the RX buffers before the driver has a chance to
2457  * process the RX ring. This routine may need to be called more than
2458  * once to bring the driver back in sync with the chip, however we
2459  * should still be getting RX DONE interrupts to drive the search
2460  * for new packets in the RX ring, so we should catch up eventually.
2461  */
2462 static int
2463 dc_rx_resync(struct dc_softc *sc)
2464 {
2465 	int			i, pos;
2466 	struct dc_desc		*cur_rx;
2467 
2468 	pos = sc->dc_cdata.dc_rx_prod;
2469 
2470 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2471 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2472 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2473 			break;
2474 		DC_INC(pos, DC_RX_LIST_CNT);
2475 	}
2476 
2477 	/* If the ring really is empty, then just return. */
2478 	if (i == DC_RX_LIST_CNT)
2479 		return(0);
2480 
2481 	/* We've fallen behing the chip: catch it. */
2482 	sc->dc_cdata.dc_rx_prod = pos;
2483 
2484 	return(EAGAIN);
2485 }
2486 
2487 /*
2488  * A frame has been uploaded: pass the resulting mbuf chain up to
2489  * the higher level protocols.
2490  */
2491 static void
2492 dc_rxeof(struct dc_softc *sc)
2493 {
2494         struct mbuf		*m;
2495         struct ifnet		*ifp;
2496 	struct dc_desc		*cur_rx;
2497 	int			i, total_len = 0;
2498 	u_int32_t		rxstat;
2499 
2500 	ifp = &sc->arpcom.ac_if;
2501 	i = sc->dc_cdata.dc_rx_prod;
2502 
2503 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2504 
2505 #ifdef DEVICE_POLLING
2506 		if (ifp->if_flags & IFF_POLLING) {
2507 			if (sc->rxcycles <= 0)
2508 				break;
2509 			sc->rxcycles--;
2510 		}
2511 #endif /* DEVICE_POLLING */
2512 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2513 		rxstat = cur_rx->dc_status;
2514 		m = sc->dc_cdata.dc_rx_chain[i];
2515 		total_len = DC_RXBYTES(rxstat);
2516 
2517 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2518 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2519 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2520 					sc->dc_pnic_rx_bug_save = i;
2521 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2522 					DC_INC(i, DC_RX_LIST_CNT);
2523 					continue;
2524 				}
2525 				dc_pnic_rx_bug_war(sc, i);
2526 				rxstat = cur_rx->dc_status;
2527 				total_len = DC_RXBYTES(rxstat);
2528 			}
2529 		}
2530 
2531 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2532 
2533 		/*
2534 		 * If an error occurs, update stats, clear the
2535 		 * status word and leave the mbuf cluster in place:
2536 		 * it should simply get re-used next time this descriptor
2537 		 * comes up in the ring.  However, don't report long
2538 		 * frames as errors since they could be vlans
2539 		 */
2540 		if ((rxstat & DC_RXSTAT_RXERR)){
2541 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2542 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2543 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2544 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2545 				ifp->if_ierrors++;
2546 				if (rxstat & DC_RXSTAT_COLLSEEN)
2547 					ifp->if_collisions++;
2548 				dc_newbuf(sc, i, m);
2549 				if (rxstat & DC_RXSTAT_CRCERR) {
2550 					DC_INC(i, DC_RX_LIST_CNT);
2551 					continue;
2552 				} else {
2553 					dc_init(sc);
2554 					return;
2555 				}
2556 			}
2557 		}
2558 
2559 		/* No errors; receive the packet. */
2560 		total_len -= ETHER_CRC_LEN;
2561 
2562 #ifdef __i386__
2563 		/*
2564 		 * On the x86 we do not have alignment problems, so try to
2565 		 * allocate a new buffer for the receive ring, and pass up
2566 		 * the one where the packet is already, saving the expensive
2567 		 * copy done in m_devget().
2568 		 * If we are on an architecture with alignment problems, or
2569 		 * if the allocation fails, then use m_devget and leave the
2570 		 * existing buffer in the receive ring.
2571 		 */
2572 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2573 			m->m_pkthdr.rcvif = ifp;
2574 			m->m_pkthdr.len = m->m_len = total_len;
2575 			DC_INC(i, DC_RX_LIST_CNT);
2576 		} else
2577 #endif
2578 		{
2579 			struct mbuf *m0;
2580 
2581 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2582 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2583 			dc_newbuf(sc, i, m);
2584 			DC_INC(i, DC_RX_LIST_CNT);
2585 			if (m0 == NULL) {
2586 				ifp->if_ierrors++;
2587 				continue;
2588 			}
2589 			m_adj(m0, ETHER_ALIGN);
2590 			m = m0;
2591 		}
2592 
2593 		ifp->if_ipackets++;
2594 		ifp->if_input(ifp, m);
2595 	}
2596 
2597 	sc->dc_cdata.dc_rx_prod = i;
2598 }
2599 
2600 /*
2601  * A frame was downloaded to the chip. It's safe for us to clean up
2602  * the list buffers.
2603  */
2604 
2605 static void
2606 dc_txeof(struct dc_softc *sc)
2607 {
2608 	struct dc_desc		*cur_tx = NULL;
2609 	struct ifnet		*ifp;
2610 	int			idx;
2611 
2612 	ifp = &sc->arpcom.ac_if;
2613 
2614 	/*
2615 	 * Go through our tx list and free mbufs for those
2616 	 * frames that have been transmitted.
2617 	 */
2618 	idx = sc->dc_cdata.dc_tx_cons;
2619 	while(idx != sc->dc_cdata.dc_tx_prod) {
2620 		u_int32_t		txstat;
2621 
2622 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2623 		txstat = cur_tx->dc_status;
2624 
2625 		if (txstat & DC_TXSTAT_OWN)
2626 			break;
2627 
2628 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2629 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2630 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2631 				/*
2632 				 * Yes, the PNIC is so brain damaged
2633 				 * that it will sometimes generate a TX
2634 				 * underrun error while DMAing the RX
2635 				 * filter setup frame. If we detect this,
2636 				 * we have to send the setup frame again,
2637 				 * or else the filter won't be programmed
2638 				 * correctly.
2639 				 */
2640 				if (DC_IS_PNIC(sc)) {
2641 					if (txstat & DC_TXSTAT_ERRSUM)
2642 						dc_setfilt(sc);
2643 				}
2644 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2645 			}
2646 			sc->dc_cdata.dc_tx_cnt--;
2647 			DC_INC(idx, DC_TX_LIST_CNT);
2648 			continue;
2649 		}
2650 
2651 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2652 			/*
2653 			 * XXX: Why does my Xircom taunt me so?
2654 			 * For some reason Conexant chips like
2655 			 * setting the CARRLOST flag even when
2656 			 * the carrier is there. In CURRENT we
2657 			 * have the same problem for Xircom
2658 			 * cards !
2659 			 */
2660 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2661 			    sc->dc_pmode == DC_PMODE_MII &&
2662 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2663 			    DC_TXSTAT_NOCARRIER)))
2664 				txstat &= ~DC_TXSTAT_ERRSUM;
2665 		} else {
2666 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2667 			    sc->dc_pmode == DC_PMODE_MII &&
2668 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2669 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2670 				txstat &= ~DC_TXSTAT_ERRSUM;
2671 		}
2672 
2673 		if (txstat & DC_TXSTAT_ERRSUM) {
2674 			ifp->if_oerrors++;
2675 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2676 				ifp->if_collisions++;
2677 			if (txstat & DC_TXSTAT_LATECOLL)
2678 				ifp->if_collisions++;
2679 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2680 				dc_init(sc);
2681 				return;
2682 			}
2683 		}
2684 
2685 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2686 
2687 		ifp->if_opackets++;
2688 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2689 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2690 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2691 		}
2692 
2693 		sc->dc_cdata.dc_tx_cnt--;
2694 		DC_INC(idx, DC_TX_LIST_CNT);
2695 	}
2696 
2697 	if (idx != sc->dc_cdata.dc_tx_cons) {
2698 	    	/* some buffers have been freed */
2699 		sc->dc_cdata.dc_tx_cons = idx;
2700 		ifp->if_flags &= ~IFF_OACTIVE;
2701 	}
2702 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2703 
2704 	return;
2705 }
2706 
2707 static void
2708 dc_tick(void *xsc)
2709 {
2710 	struct dc_softc *sc = xsc;
2711 	struct ifnet *ifp = &sc->arpcom.ac_if;
2712 	struct mii_data *mii;
2713 	u_int32_t r;
2714 
2715 	lwkt_serialize_enter(ifp->if_serializer);
2716 
2717 	mii = device_get_softc(sc->dc_miibus);
2718 
2719 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2720 		if (sc->dc_flags & DC_21143_NWAY) {
2721 			r = CSR_READ_4(sc, DC_10BTSTAT);
2722 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2723 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2724 				sc->dc_link = 0;
2725 				mii_mediachg(mii);
2726 			}
2727 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2728 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2729 				sc->dc_link = 0;
2730 				mii_mediachg(mii);
2731 			}
2732 			if (sc->dc_link == 0)
2733 				mii_tick(mii);
2734 		} else {
2735 			r = CSR_READ_4(sc, DC_ISR);
2736 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2737 			    sc->dc_cdata.dc_tx_cnt == 0) {
2738 				mii_tick(mii);
2739 				if (!(mii->mii_media_status & IFM_ACTIVE))
2740 					sc->dc_link = 0;
2741 			}
2742 		}
2743 	} else {
2744 		mii_tick(mii);
2745 	}
2746 
2747 	/*
2748 	 * When the init routine completes, we expect to be able to send
2749 	 * packets right away, and in fact the network code will send a
2750 	 * gratuitous ARP the moment the init routine marks the interface
2751 	 * as running. However, even though the MAC may have been initialized,
2752 	 * there may be a delay of a few seconds before the PHY completes
2753 	 * autonegotiation and the link is brought up. Any transmissions
2754 	 * made during that delay will be lost. Dealing with this is tricky:
2755 	 * we can't just pause in the init routine while waiting for the
2756 	 * PHY to come ready since that would bring the whole system to
2757 	 * a screeching halt for several seconds.
2758 	 *
2759 	 * What we do here is prevent the TX start routine from sending
2760 	 * any packets until a link has been established. After the
2761 	 * interface has been initialized, the tick routine will poll
2762 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2763 	 * that time, packets will stay in the send queue, and once the
2764 	 * link comes up, they will be flushed out to the wire.
2765 	 */
2766 	if (!sc->dc_link) {
2767 		mii_pollstat(mii);
2768 		if (mii->mii_media_status & IFM_ACTIVE &&
2769 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2770 			sc->dc_link++;
2771 			if (!ifq_is_empty(&ifp->if_snd))
2772 				dc_start(ifp);
2773 		}
2774 	}
2775 
2776 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2777 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2778 	else
2779 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2780 
2781 	lwkt_serialize_exit(ifp->if_serializer);
2782 }
2783 
2784 /*
2785  * A transmit underrun has occurred.  Back off the transmit threshold,
2786  * or switch to store and forward mode if we have to.
2787  */
2788 static void
2789 dc_tx_underrun(struct dc_softc *sc)
2790 {
2791 	u_int32_t		isr;
2792 	int			i;
2793 
2794 	if (DC_IS_DAVICOM(sc))
2795 		dc_init(sc);
2796 
2797 	if (DC_IS_INTEL(sc)) {
2798 		/*
2799 		 * The real 21143 requires that the transmitter be idle
2800 		 * in order to change the transmit threshold or store
2801 		 * and forward state.
2802 		 */
2803 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2804 
2805 		for (i = 0; i < DC_TIMEOUT; i++) {
2806 			isr = CSR_READ_4(sc, DC_ISR);
2807 			if (isr & DC_ISR_TX_IDLE)
2808 				break;
2809 			DELAY(10);
2810 		}
2811 		if (i == DC_TIMEOUT) {
2812 			if_printf(&sc->arpcom.ac_if,
2813 				  "failed to force tx to idle state\n");
2814 			dc_init(sc);
2815 		}
2816 	}
2817 
2818 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2819 	sc->dc_txthresh += DC_TXTHRESH_INC;
2820 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2821 		printf("using store and forward mode\n");
2822 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2823 	} else {
2824 		printf("increasing TX threshold\n");
2825 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2826 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2827 	}
2828 
2829 	if (DC_IS_INTEL(sc))
2830 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2831 
2832 	return;
2833 }
2834 
2835 #ifdef DEVICE_POLLING
2836 
2837 static void
2838 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2839 {
2840 	struct	dc_softc *sc = ifp->if_softc;
2841 	u_int32_t status;
2842 
2843 	switch(cmd) {
2844 	case POLL_REGISTER:
2845 		/* Disable interrupts */
2846 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2847 		break;
2848 	case POLL_DEREGISTER:
2849 		/* Re-enable interrupts. */
2850 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2851 		break;
2852 	case POLL_ONLY:
2853 		sc->rxcycles = count;
2854 		dc_rxeof(sc);
2855 		dc_txeof(sc);
2856 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2857 			dc_start(ifp);
2858 		break;
2859 	case POLL_AND_CHECK_STATUS:
2860 		sc->rxcycles = count;
2861 		dc_rxeof(sc);
2862 		dc_txeof(sc);
2863 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2864 			dc_start(ifp);
2865 		status = CSR_READ_4(sc, DC_ISR);
2866 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2867 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2868 			DC_ISR_BUS_ERR);
2869 		if (!status)
2870 			break;
2871 		/* ack what we have */
2872 		CSR_WRITE_4(sc, DC_ISR, status);
2873 
2874 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2875 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2876 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2877 
2878 			if (dc_rx_resync(sc))
2879 				dc_rxeof(sc);
2880 		}
2881 		/* restart transmit unit if necessary */
2882 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2883 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2884 
2885 		if (status & DC_ISR_TX_UNDERRUN)
2886 			dc_tx_underrun(sc);
2887 
2888 		if (status & DC_ISR_BUS_ERR) {
2889 			if_printf(ifp, "dc_poll: bus error\n");
2890 			dc_reset(sc);
2891 			dc_init(sc);
2892 		}
2893 		break;
2894 	}
2895 }
2896 #endif /* DEVICE_POLLING */
2897 
2898 static void
2899 dc_intr(void *arg)
2900 {
2901 	struct dc_softc		*sc;
2902 	struct ifnet		*ifp;
2903 	u_int32_t		status;
2904 
2905 	sc = arg;
2906 
2907 	if (sc->suspended) {
2908 		return;
2909 	}
2910 
2911 	ifp = &sc->arpcom.ac_if;
2912 
2913 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2914 		return ;
2915 
2916 	/* Suppress unwanted interrupts */
2917 	if (!(ifp->if_flags & IFF_UP)) {
2918 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2919 			dc_stop(sc);
2920 		return;
2921 	}
2922 
2923 	/* Disable interrupts. */
2924 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2925 
2926 	while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
2927 	      status != 0xFFFFFFFF) {
2928 
2929 		CSR_WRITE_4(sc, DC_ISR, status);
2930 
2931 		if (status & DC_ISR_RX_OK) {
2932 			int		curpkts;
2933 			curpkts = ifp->if_ipackets;
2934 			dc_rxeof(sc);
2935 			if (curpkts == ifp->if_ipackets) {
2936 				while(dc_rx_resync(sc))
2937 					dc_rxeof(sc);
2938 			}
2939 		}
2940 
2941 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2942 			dc_txeof(sc);
2943 
2944 		if (status & DC_ISR_TX_IDLE) {
2945 			dc_txeof(sc);
2946 			if (sc->dc_cdata.dc_tx_cnt) {
2947 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2948 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2949 			}
2950 		}
2951 
2952 		if (status & DC_ISR_TX_UNDERRUN)
2953 			dc_tx_underrun(sc);
2954 
2955 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2956 		    || (status & DC_ISR_RX_NOBUF)) {
2957 			int		curpkts;
2958 			curpkts = ifp->if_ipackets;
2959 			dc_rxeof(sc);
2960 			if (curpkts == ifp->if_ipackets) {
2961 				while(dc_rx_resync(sc))
2962 					dc_rxeof(sc);
2963 			}
2964 		}
2965 
2966 		if (status & DC_ISR_BUS_ERR) {
2967 			dc_reset(sc);
2968 			dc_init(sc);
2969 		}
2970 	}
2971 
2972 	/* Re-enable interrupts. */
2973 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2974 
2975 	if (!ifq_is_empty(&ifp->if_snd))
2976 		dc_start(ifp);
2977 
2978 	return;
2979 }
2980 
2981 /*
2982  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2983  * pointers to the fragment pointers.
2984  */
2985 static int
2986 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2987 {
2988 	struct dc_desc		*f = NULL;
2989 	struct mbuf		*m;
2990 	int			frag, cur, cnt = 0;
2991 
2992 	/*
2993  	 * Start packing the mbufs in this chain into
2994 	 * the fragment pointers. Stop when we run out
2995  	 * of fragments or hit the end of the mbuf chain.
2996 	 */
2997 	m = m_head;
2998 	cur = frag = *txidx;
2999 
3000 	for (m = m_head; m != NULL; m = m->m_next) {
3001 		if (m->m_len != 0) {
3002 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
3003 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
3004 				    frag == (DC_TX_LIST_CNT - 1))
3005 					return(ENOBUFS);
3006 			}
3007 			if ((DC_TX_LIST_CNT -
3008 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
3009 				return(ENOBUFS);
3010 
3011 			f = &sc->dc_ldata->dc_tx_list[frag];
3012 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
3013 			if (cnt == 0) {
3014 				f->dc_status = 0;
3015 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3016 			} else
3017 				f->dc_status = DC_TXSTAT_OWN;
3018 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3019 			cur = frag;
3020 			DC_INC(frag, DC_TX_LIST_CNT);
3021 			cnt++;
3022 		}
3023 	}
3024 
3025 	if (m != NULL)
3026 		return(ENOBUFS);
3027 
3028 	sc->dc_cdata.dc_tx_cnt += cnt;
3029 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3030 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3031 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3032 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3033 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3034 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3035 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3036 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3037 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3038 	*txidx = frag;
3039 
3040 	return(0);
3041 }
3042 
3043 /*
3044  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3045  * to the mbuf data regions directly in the transmit lists. We also save a
3046  * copy of the pointers since the transmit list fragment pointers are
3047  * physical addresses.
3048  */
3049 
3050 static void
3051 dc_start(struct ifnet *ifp)
3052 {
3053 	struct dc_softc	*sc;
3054 	struct mbuf *m_head;
3055 	struct mbuf *m_defragged;
3056 	int idx, need_trans;
3057 
3058 	sc = ifp->if_softc;
3059 
3060 	if (!sc->dc_link)
3061 		return;
3062 
3063 	if (ifp->if_flags & IFF_OACTIVE)
3064 		return;
3065 
3066 	idx = sc->dc_cdata.dc_tx_prod;
3067 
3068 	need_trans = 0;
3069 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3070 		m_defragged = NULL;
3071 		m_head = ifq_poll(&ifp->if_snd);
3072 		if (m_head == NULL)
3073 			break;
3074 
3075 		if (sc->dc_flags & DC_TX_COALESCE &&
3076 		    (m_head->m_next != NULL ||
3077 			sc->dc_flags & DC_TX_ALIGN)){
3078 			/*
3079 			 * Check first if coalescing allows us to queue
3080 			 * the packet. We don't want to loose it if
3081 			 * the TX queue is full.
3082 			 */
3083 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3084 			    idx != sc->dc_cdata.dc_tx_prod &&
3085 			    idx == (DC_TX_LIST_CNT - 1)) {
3086 				ifp->if_flags |= IFF_OACTIVE;
3087 				break;
3088 			}
3089 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3090 				ifp->if_flags |= IFF_OACTIVE;
3091 				break;
3092 			}
3093 
3094 			/* only coalesce if have >1 mbufs */
3095 			m_defragged = m_defrag_nofree(m_head, MB_DONTWAIT);
3096 			if (m_defragged == NULL) {
3097 				ifp->if_flags |= IFF_OACTIVE;
3098 				break;
3099 			}
3100 		}
3101 
3102 		if (dc_encap(sc, (m_defragged ? m_defragged : m_head), &idx)) {
3103 			if (m_defragged) {
3104 				/*
3105 				 * Throw away the original packet if the
3106 				 * defragged packet could not be encapsulated,
3107 				 * as well as the defragged packet.
3108 				 */
3109 				ifq_dequeue(&ifp->if_snd, m_head);
3110 				m_freem(m_head);
3111 				m_freem(m_defragged);
3112 			}
3113 			ifp->if_flags |= IFF_OACTIVE;
3114 			break;
3115 		}
3116 
3117 		ifq_dequeue(&ifp->if_snd, m_head);
3118 
3119 		need_trans = 1;
3120 
3121 		/*
3122 		 * If there's a BPF listener, bounce a copy of this frame
3123 		 * to him.
3124 		 */
3125 		BPF_MTAP(ifp, (m_defragged ? m_defragged : m_head));
3126 
3127 		/*
3128 		 * If we defragged the packet, m_head is not the one we
3129 		 * encapsulated so we can throw it away.
3130 		 */
3131 		if (m_defragged)
3132 			m_freem(m_head);
3133 
3134 		if (sc->dc_flags & DC_TX_ONE) {
3135 			ifp->if_flags |= IFF_OACTIVE;
3136 			break;
3137 		}
3138 	}
3139 
3140 	if (!need_trans)
3141 		return;
3142 
3143 	/* Transmit */
3144 	sc->dc_cdata.dc_tx_prod = idx;
3145 	if (!(sc->dc_flags & DC_TX_POLL))
3146 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3147 
3148 	/*
3149 	 * Set a timeout in case the chip goes out to lunch.
3150 	 */
3151 	ifp->if_timer = 5;
3152 }
3153 
3154 static void
3155 dc_init(void *xsc)
3156 {
3157 	struct dc_softc		*sc = xsc;
3158 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3159 	struct mii_data		*mii;
3160 
3161 	mii = device_get_softc(sc->dc_miibus);
3162 
3163 	/*
3164 	 * Cancel pending I/O and free all RX/TX buffers.
3165 	 */
3166 	dc_stop(sc);
3167 	dc_reset(sc);
3168 
3169 	/*
3170 	 * Set cache alignment and burst length.
3171 	 */
3172 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3173 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3174 	else
3175 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3176 	/*
3177 	 * Evenly share the bus between receive and transmit process.
3178 	 */
3179 	if (DC_IS_INTEL(sc))
3180 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3181 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3182 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3183 	} else {
3184 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3185 	}
3186 	if (sc->dc_flags & DC_TX_POLL)
3187 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3188 	switch(sc->dc_cachesize) {
3189 	case 32:
3190 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3191 		break;
3192 	case 16:
3193 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3194 		break;
3195 	case 8:
3196 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3197 		break;
3198 	case 0:
3199 	default:
3200 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3201 		break;
3202 	}
3203 
3204 	if (sc->dc_flags & DC_TX_STORENFWD)
3205 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3206 	else {
3207 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3208 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3209 		} else {
3210 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3211 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3212 		}
3213 	}
3214 
3215 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3216 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3217 
3218 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3219 		/*
3220 		 * The app notes for the 98713 and 98715A say that
3221 		 * in order to have the chips operate properly, a magic
3222 		 * number must be written to CSR16. Macronix does not
3223 		 * document the meaning of these bits so there's no way
3224 		 * to know exactly what they do. The 98713 has a magic
3225 		 * number all its own; the rest all use a different one.
3226 		 */
3227 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3228 		if (sc->dc_type == DC_TYPE_98713)
3229 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3230 		else
3231 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3232 	}
3233 
3234 	if (DC_IS_XIRCOM(sc)) {
3235 		/*
3236 		 * Setup General Purpose Port mode and data so the tulip
3237 		 * can talk to the MII.
3238 		 */
3239 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3240 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3241 		DELAY(10);
3242 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3243 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3244 		DELAY(10);
3245  	}
3246 
3247 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3248 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3249 
3250 	/* Init circular RX list. */
3251 	if (dc_list_rx_init(sc) == ENOBUFS) {
3252 		if_printf(ifp, "initialization failed: no "
3253 			  "memory for rx buffers\n");
3254 		dc_stop(sc);
3255 		return;
3256 	}
3257 
3258 	/*
3259 	 * Init tx descriptors.
3260 	 */
3261 	dc_list_tx_init(sc);
3262 
3263 	/*
3264 	 * Load the address of the RX list.
3265 	 */
3266 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3267 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3268 
3269 	/*
3270 	 * Enable interrupts.
3271 	 */
3272 #ifdef DEVICE_POLLING
3273 	/*
3274 	 * ... but only if we are not polling, and make sure they are off in
3275 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3276 	 * after a reset.
3277 	 */
3278 	if (ifp->if_flags & IFF_POLLING)
3279 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3280 	else
3281 #endif
3282 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3283 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3284 
3285 	/* Enable transmitter. */
3286 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3287 
3288 	/*
3289 	 * If this is an Intel 21143 and we're not using the
3290 	 * MII port, program the LED control pins so we get
3291 	 * link and activity indications.
3292 	 */
3293 	if (sc->dc_flags & DC_TULIP_LEDS) {
3294 		CSR_WRITE_4(sc, DC_WATCHDOG,
3295 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3296 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3297 	}
3298 
3299 	/*
3300 	 * Load the RX/multicast filter. We do this sort of late
3301 	 * because the filter programming scheme on the 21143 and
3302 	 * some clones requires DMAing a setup frame via the TX
3303 	 * engine, and we need the transmitter enabled for that.
3304 	 */
3305 	dc_setfilt(sc);
3306 
3307 	/* Enable receiver. */
3308 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3309 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3310 
3311 	mii_mediachg(mii);
3312 	dc_setcfg(sc, sc->dc_if_media);
3313 
3314 	ifp->if_flags |= IFF_RUNNING;
3315 	ifp->if_flags &= ~IFF_OACTIVE;
3316 
3317 	/* Don't start the ticker if this is a homePNA link. */
3318 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3319 		sc->dc_link = 1;
3320 	else {
3321 		if (sc->dc_flags & DC_21143_NWAY)
3322 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3323 		else
3324 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3325 	}
3326 
3327 	return;
3328 }
3329 
3330 /*
3331  * Set media options.
3332  */
3333 static int
3334 dc_ifmedia_upd(struct ifnet *ifp)
3335 {
3336 	struct dc_softc		*sc;
3337 	struct mii_data		*mii;
3338 	struct ifmedia		*ifm;
3339 
3340 	sc = ifp->if_softc;
3341 	mii = device_get_softc(sc->dc_miibus);
3342 	mii_mediachg(mii);
3343 	ifm = &mii->mii_media;
3344 
3345 	if (DC_IS_DAVICOM(sc) &&
3346 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3347 		dc_setcfg(sc, ifm->ifm_media);
3348 	else
3349 		sc->dc_link = 0;
3350 
3351 	return(0);
3352 }
3353 
3354 /*
3355  * Report current media status.
3356  */
3357 static void
3358 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3359 {
3360 	struct dc_softc		*sc;
3361 	struct mii_data		*mii;
3362 	struct ifmedia		*ifm;
3363 
3364 	sc = ifp->if_softc;
3365 	mii = device_get_softc(sc->dc_miibus);
3366 	mii_pollstat(mii);
3367 	ifm = &mii->mii_media;
3368 	if (DC_IS_DAVICOM(sc)) {
3369 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3370 			ifmr->ifm_active = ifm->ifm_media;
3371 			ifmr->ifm_status = 0;
3372 			return;
3373 		}
3374 	}
3375 	ifmr->ifm_active = mii->mii_media_active;
3376 	ifmr->ifm_status = mii->mii_media_status;
3377 
3378 	return;
3379 }
3380 
3381 static int
3382 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3383 {
3384 	struct dc_softc		*sc = ifp->if_softc;
3385 	struct ifreq		*ifr = (struct ifreq *) data;
3386 	struct mii_data		*mii;
3387 	int			error = 0;
3388 
3389 	switch(command) {
3390 	case SIOCSIFFLAGS:
3391 		if (ifp->if_flags & IFF_UP) {
3392 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3393 				(IFF_PROMISC | IFF_ALLMULTI);
3394 			if (ifp->if_flags & IFF_RUNNING) {
3395 				if (need_setfilt)
3396 					dc_setfilt(sc);
3397 			} else {
3398 				sc->dc_txthresh = 0;
3399 				dc_init(sc);
3400 			}
3401 		} else {
3402 			if (ifp->if_flags & IFF_RUNNING)
3403 				dc_stop(sc);
3404 		}
3405 		sc->dc_if_flags = ifp->if_flags;
3406 		error = 0;
3407 		break;
3408 	case SIOCADDMULTI:
3409 	case SIOCDELMULTI:
3410 		dc_setfilt(sc);
3411 		error = 0;
3412 		break;
3413 	case SIOCGIFMEDIA:
3414 	case SIOCSIFMEDIA:
3415 		mii = device_get_softc(sc->dc_miibus);
3416 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3417 		break;
3418 	default:
3419 		error = ether_ioctl(ifp, command, data);
3420 		break;
3421 	}
3422 
3423 	return(error);
3424 }
3425 
3426 static void
3427 dc_watchdog(struct ifnet *ifp)
3428 {
3429 	struct dc_softc		*sc;
3430 
3431 	sc = ifp->if_softc;
3432 
3433 	ifp->if_oerrors++;
3434 	if_printf(ifp, "watchdog timeout\n");
3435 
3436 	dc_stop(sc);
3437 	dc_reset(sc);
3438 	dc_init(sc);
3439 
3440 	if (!ifq_is_empty(&ifp->if_snd))
3441 		dc_start(ifp);
3442 
3443 	return;
3444 }
3445 
3446 /*
3447  * Stop the adapter and free any mbufs allocated to the
3448  * RX and TX lists.
3449  */
3450 static void
3451 dc_stop(struct dc_softc *sc)
3452 {
3453 	int		i;
3454 	struct ifnet		*ifp;
3455 
3456 	ifp = &sc->arpcom.ac_if;
3457 	ifp->if_timer = 0;
3458 
3459 	callout_stop(&sc->dc_stat_timer);
3460 
3461 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3462 
3463 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3464 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3465 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3466 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3467 	sc->dc_link = 0;
3468 
3469 	/*
3470 	 * Free data in the RX lists.
3471 	 */
3472 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3473 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3474 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3475 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3476 		}
3477 	}
3478 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3479 		sizeof(sc->dc_ldata->dc_rx_list));
3480 
3481 	/*
3482 	 * Free the TX list buffers.
3483 	 */
3484 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3485 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3486 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3487 			    DC_TXCTL_SETUP) ||
3488 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3489 			    DC_TXCTL_LASTFRAG)) {
3490 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3491 				continue;
3492 			}
3493 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3494 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3495 		}
3496 	}
3497 
3498 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3499 		sizeof(sc->dc_ldata->dc_tx_list));
3500 
3501 	return;
3502 }
3503 
3504 /*
3505  * Stop all chip I/O so that the kernel's probe routines don't
3506  * get confused by errant DMAs when rebooting.
3507  */
3508 static void
3509 dc_shutdown(device_t dev)
3510 {
3511 	struct dc_softc	*sc;
3512 	struct ifnet *ifp;
3513 
3514 	sc = device_get_softc(dev);
3515 	ifp = &sc->arpcom.ac_if;
3516 	lwkt_serialize_enter(ifp->if_serializer);
3517 
3518 	dc_stop(sc);
3519 
3520 	lwkt_serialize_exit(ifp->if_serializer);
3521 }
3522 
3523 /*
3524  * Device suspend routine.  Stop the interface and save some PCI
3525  * settings in case the BIOS doesn't restore them properly on
3526  * resume.
3527  */
3528 static int
3529 dc_suspend(device_t dev)
3530 {
3531 	struct dc_softc	*sc = device_get_softc(dev);
3532 	struct ifnet *ifp = &sc->arpcom.ac_if;
3533 	int i;
3534 	lwkt_serialize_enter(ifp->if_serializer);
3535 
3536 	dc_stop(sc);
3537 	for (i = 0; i < 5; i++)
3538 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3539 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3540 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3541 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3542 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3543 
3544 	sc->suspended = 1;
3545 
3546 	lwkt_serialize_exit(ifp->if_serializer);
3547 	return (0);
3548 }
3549 
3550 /*
3551  * Device resume routine.  Restore some PCI settings in case the BIOS
3552  * doesn't, re-enable busmastering, and restart the interface if
3553  * appropriate.
3554  */
3555 static int
3556 dc_resume(device_t dev)
3557 {
3558 	struct dc_softc *sc = device_get_softc(dev);
3559 	struct ifnet *ifp = &sc->arpcom.ac_if;
3560 	int i;
3561 
3562 	lwkt_serialize_enter(ifp->if_serializer);
3563 	dc_acpi(dev);
3564 
3565 	/* better way to do this? */
3566 	for (i = 0; i < 5; i++)
3567 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3568 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3569 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3570 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3571 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3572 
3573 	/* reenable busmastering */
3574 	pci_enable_busmaster(dev);
3575 	pci_enable_io(dev, DC_RES);
3576 
3577         /* reinitialize interface if necessary */
3578         if (ifp->if_flags & IFF_UP)
3579                 dc_init(sc);
3580 
3581 	sc->suspended = 0;
3582 	lwkt_serialize_exit(ifp->if_serializer);
3583 
3584 	return (0);
3585 }
3586 
3587 static uint32_t
3588 dc_mchash_xircom(struct dc_softc *sc, const uint8_t *addr)
3589 {
3590 	uint32_t crc;
3591 
3592 	/* Compute CRC for the address value. */
3593 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
3594 
3595 	if ((crc & 0x180) == 0x180)
3596 		return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
3597 	else
3598 		return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 + (12 << 4));
3599 }
3600