xref: /dflybsd-src/sys/dev/netif/dc/if_dc.c (revision 0402ebbc7d4b6f34d02791995169d25c4aec3b15)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.24 2005/05/05 22:57:44 swildner Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Conexant LANfinity (www.conexant.com)
50  *
51  * Datasheets for the 21143 are available at developer.intel.com.
52  * Datasheets for the clone parts can be found at their respective sites.
53  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54  * The PNIC II is essentially a Macronix 98715A chip; the only difference
55  * worth noting is that its multicast hash table is only 128 bits wide
56  * instead of 512.
57  *
58  * Written by Bill Paul <wpaul@ee.columbia.edu>
59  * Electrical Engineering Department
60  * Columbia University, New York City
61  */
62 
63 /*
64  * The Intel 21143 is the successor to the DEC 21140. It is basically
65  * the same as the 21140 but with a few new features. The 21143 supports
66  * three kinds of media attachments:
67  *
68  * o MII port, for 10Mbps and 100Mbps support and NWAY
69  *   autonegotiation provided by an external PHY.
70  * o SYM port, for symbol mode 100Mbps support.
71  * o 10baseT port.
72  * o AUI/BNC port.
73  *
74  * The 100Mbps SYM port and 10baseT port can be used together in
75  * combination with the internal NWAY support to create a 10/100
76  * autosensing configuration.
77  *
78  * Note that not all tulip workalikes are handled in this driver: we only
79  * deal with those which are relatively well behaved. The Winbond is
80  * handled separately due to its different register offsets and the
81  * special handling needed for its various bugs. The PNIC is handled
82  * here, but I'm not thrilled about it.
83  *
84  * All of the workalike chips use some form of MII transceiver support
85  * with the exception of the Macronix chips, which also have a SYM port.
86  * The ASIX AX88140A is also documented to have a SYM port, but all
87  * the cards I've seen use an MII transceiver, probably because the
88  * AX88140A doesn't support internal NWAY.
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 
100 #include <net/if.h>
101 #include <net/ifq_var.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/vlan/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <vm/vm.h>              /* for vtophys */
112 #include <vm/pmap.h>            /* for vtophys */
113 #include <machine/clock.h>      /* for DELAY */
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
123 
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define DC_USEIOSPACE
128 
129 #include "if_dcreg.h"
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 static struct dc_type dc_devs[] = {
138 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
139 		"Intel 21143 10/100BaseTX" },
140 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
141 		"Davicom DM9009 10/100BaseTX" },
142 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
143 		"Davicom DM9100 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
145 		"Davicom DM9102 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 		"Davicom DM9102A 10/100BaseTX" },
148 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
149 		"ADMtek AL981 10/100BaseTX" },
150 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
151 		"ADMtek AN985 10/100BaseTX" },
152 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
153 		"ASIX AX88140A 10/100BaseTX" },
154 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
155 		"ASIX AX88141 10/100BaseTX" },
156 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
157 		"Macronix 98713 10/100BaseTX" },
158 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
159 		"Macronix 98713A 10/100BaseTX" },
160 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
161 		"Compex RL100-TX 10/100BaseTX" },
162 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
163 		"Compex RL100-TX 10/100BaseTX" },
164 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
165 		"Macronix 98715/98715A 10/100BaseTX" },
166 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
167 		"Macronix 98715AEC-C 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
169 		"Macronix 98725 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
171 		"Macronix 98727/98732 10/100BaseTX" },
172 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
173 		"LC82C115 PNIC II 10/100BaseTX" },
174 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
175 		"82c168 PNIC 10/100BaseTX" },
176 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
177 		"82c169 PNIC 10/100BaseTX" },
178 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
179 		"Accton EN1217 10/100BaseTX" },
180 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
181 		"Accton EN2242 MiniPCI 10/100BaseTX" },
182 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
183 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
184 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
185 		"3Com OfficeConnect 10/100B" },
186 	{ 0, 0, NULL }
187 };
188 
189 static int dc_probe		(device_t);
190 static int dc_attach		(device_t);
191 static int dc_detach		(device_t);
192 static int dc_suspend		(device_t);
193 static int dc_resume		(device_t);
194 static void dc_acpi		(device_t);
195 static struct dc_type *dc_devtype	(device_t);
196 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
197 static int dc_encap		(struct dc_softc *, struct mbuf *,
198 					u_int32_t *);
199 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
200 static int dc_rx_resync		(struct dc_softc *);
201 static void dc_rxeof		(struct dc_softc *);
202 static void dc_txeof		(struct dc_softc *);
203 static void dc_tick		(void *);
204 static void dc_tx_underrun	(struct dc_softc *);
205 static void dc_intr		(void *);
206 static void dc_start		(struct ifnet *);
207 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
208 					struct ucred *);
209 static void dc_init		(void *);
210 static void dc_stop		(struct dc_softc *);
211 static void dc_watchdog		(struct ifnet *);
212 static void dc_shutdown		(device_t);
213 static int dc_ifmedia_upd	(struct ifnet *);
214 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
215 
216 static void dc_delay		(struct dc_softc *);
217 static void dc_eeprom_idle	(struct dc_softc *);
218 static void dc_eeprom_putbyte	(struct dc_softc *, int);
219 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
220 static void dc_eeprom_getword_pnic
221 				(struct dc_softc *, int, u_int16_t *);
222 static void dc_eeprom_width	(struct dc_softc *);
223 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
224 							int, int);
225 
226 static void dc_mii_writebit	(struct dc_softc *, int);
227 static int dc_mii_readbit	(struct dc_softc *);
228 static void dc_mii_sync		(struct dc_softc *);
229 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
230 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
231 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
232 static int dc_miibus_readreg	(device_t, int, int);
233 static int dc_miibus_writereg	(device_t, int, int, int);
234 static void dc_miibus_statchg	(device_t);
235 static void dc_miibus_mediainit	(device_t);
236 
237 static void dc_setcfg		(struct dc_softc *, int);
238 static u_int32_t dc_crc_le	(struct dc_softc *, c_caddr_t);
239 static u_int32_t dc_crc_be	(caddr_t);
240 static void dc_setfilt_21143	(struct dc_softc *);
241 static void dc_setfilt_asix	(struct dc_softc *);
242 static void dc_setfilt_admtek	(struct dc_softc *);
243 
244 static void dc_setfilt		(struct dc_softc *);
245 
246 static void dc_reset		(struct dc_softc *);
247 static int dc_list_rx_init	(struct dc_softc *);
248 static int dc_list_tx_init	(struct dc_softc *);
249 
250 static void dc_read_srom	(struct dc_softc *, int);
251 static void dc_parse_21143_srom	(struct dc_softc *);
252 static void dc_decode_leaf_sia	(struct dc_softc *,
253 				    struct dc_eblock_sia *);
254 static void dc_decode_leaf_mii	(struct dc_softc *,
255 				    struct dc_eblock_mii *);
256 static void dc_decode_leaf_sym	(struct dc_softc *,
257 				    struct dc_eblock_sym *);
258 static void dc_apply_fixup	(struct dc_softc *, int);
259 
260 #ifdef DC_USEIOSPACE
261 #define DC_RES			SYS_RES_IOPORT
262 #define DC_RID			DC_PCI_CFBIO
263 #else
264 #define DC_RES			SYS_RES_MEMORY
265 #define DC_RID			DC_PCI_CFBMA
266 #endif
267 
268 static device_method_t dc_methods[] = {
269 	/* Device interface */
270 	DEVMETHOD(device_probe,		dc_probe),
271 	DEVMETHOD(device_attach,	dc_attach),
272 	DEVMETHOD(device_detach,	dc_detach),
273 	DEVMETHOD(device_suspend,	dc_suspend),
274 	DEVMETHOD(device_resume,	dc_resume),
275 	DEVMETHOD(device_shutdown,	dc_shutdown),
276 
277 	/* bus interface */
278 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
279 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
280 
281 	/* MII interface */
282 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
283 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
284 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
285 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
286 
287 	{ 0, 0 }
288 };
289 
290 static driver_t dc_driver = {
291 	"dc",
292 	dc_methods,
293 	sizeof(struct dc_softc)
294 };
295 
296 static devclass_t dc_devclass;
297 
298 #ifdef __i386__
299 static int dc_quick=1;
300 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
301 	&dc_quick,0,"do not mdevget in dc driver");
302 #endif
303 
304 DECLARE_DUMMY_MODULE(if_dc);
305 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
306 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
307 
308 #define DC_SETBIT(sc, reg, x)				\
309 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
310 
311 #define DC_CLRBIT(sc, reg, x)				\
312 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
313 
314 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
315 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
316 
317 static void dc_delay(sc)
318 	struct dc_softc		*sc;
319 {
320 	int			idx;
321 
322 	for (idx = (300 / 33) + 1; idx > 0; idx--)
323 		CSR_READ_4(sc, DC_BUSCTL);
324 }
325 
326 static void dc_eeprom_width(sc)
327 	struct dc_softc		*sc;
328 {
329 	int i;
330 
331 	/* Force EEPROM to idle state. */
332 	dc_eeprom_idle(sc);
333 
334 	/* Enter EEPROM access mode. */
335 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
336 	dc_delay(sc);
337 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
338 	dc_delay(sc);
339 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
340 	dc_delay(sc);
341 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
342 	dc_delay(sc);
343 
344 	for (i = 3; i--;) {
345 		if (6 & (1 << i))
346 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
347 		else
348 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
349 		dc_delay(sc);
350 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
351 		dc_delay(sc);
352 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
353 		dc_delay(sc);
354 	}
355 
356 	for (i = 1; i <= 12; i++) {
357 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
358 		dc_delay(sc);
359 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
360 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
361 			dc_delay(sc);
362 			break;
363 		}
364 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
365 		dc_delay(sc);
366 	}
367 
368 	/* Turn off EEPROM access mode. */
369 	dc_eeprom_idle(sc);
370 
371 	if (i < 4 || i > 12)
372 		sc->dc_romwidth = 6;
373 	else
374 		sc->dc_romwidth = i;
375 
376 	/* Enter EEPROM access mode. */
377 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
378 	dc_delay(sc);
379 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
380 	dc_delay(sc);
381 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
382 	dc_delay(sc);
383 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
384 	dc_delay(sc);
385 
386 	/* Turn off EEPROM access mode. */
387 	dc_eeprom_idle(sc);
388 }
389 
390 static void dc_eeprom_idle(sc)
391 	struct dc_softc		*sc;
392 {
393 	int		i;
394 
395 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
396 	dc_delay(sc);
397 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
398 	dc_delay(sc);
399 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
400 	dc_delay(sc);
401 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
402 	dc_delay(sc);
403 
404 	for (i = 0; i < 25; i++) {
405 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
406 		dc_delay(sc);
407 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
408 		dc_delay(sc);
409 	}
410 
411 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
412 	dc_delay(sc);
413 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
414 	dc_delay(sc);
415 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
416 
417 	return;
418 }
419 
420 /*
421  * Send a read command and address to the EEPROM, check for ACK.
422  */
423 static void dc_eeprom_putbyte(sc, addr)
424 	struct dc_softc		*sc;
425 	int			addr;
426 {
427 	int		d, i;
428 
429 	d = DC_EECMD_READ >> 6;
430 	for (i = 3; i--; ) {
431 		if (d & (1 << i))
432 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
433 		else
434 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
435 		dc_delay(sc);
436 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
437 		dc_delay(sc);
438 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439 		dc_delay(sc);
440 	}
441 
442 	/*
443 	 * Feed in each bit and strobe the clock.
444 	 */
445 	for (i = sc->dc_romwidth; i--;) {
446 		if (addr & (1 << i)) {
447 			SIO_SET(DC_SIO_EE_DATAIN);
448 		} else {
449 			SIO_CLR(DC_SIO_EE_DATAIN);
450 		}
451 		dc_delay(sc);
452 		SIO_SET(DC_SIO_EE_CLK);
453 		dc_delay(sc);
454 		SIO_CLR(DC_SIO_EE_CLK);
455 		dc_delay(sc);
456 	}
457 
458 	return;
459 }
460 
461 /*
462  * Read a word of data stored in the EEPROM at address 'addr.'
463  * The PNIC 82c168/82c169 has its own non-standard way to read
464  * the EEPROM.
465  */
466 static void dc_eeprom_getword_pnic(sc, addr, dest)
467 	struct dc_softc		*sc;
468 	int			addr;
469 	u_int16_t		*dest;
470 {
471 	int		i;
472 	u_int32_t		r;
473 
474 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
475 
476 	for (i = 0; i < DC_TIMEOUT; i++) {
477 		DELAY(1);
478 		r = CSR_READ_4(sc, DC_SIO);
479 		if (!(r & DC_PN_SIOCTL_BUSY)) {
480 			*dest = (u_int16_t)(r & 0xFFFF);
481 			return;
482 		}
483 	}
484 
485 	return;
486 }
487 
488 /*
489  * Read a word of data stored in the EEPROM at address 'addr.'
490  */
491 static void dc_eeprom_getword(sc, addr, dest)
492 	struct dc_softc		*sc;
493 	int			addr;
494 	u_int16_t		*dest;
495 {
496 	int		i;
497 	u_int16_t		word = 0;
498 
499 	/* Force EEPROM to idle state. */
500 	dc_eeprom_idle(sc);
501 
502 	/* Enter EEPROM access mode. */
503 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
504 	dc_delay(sc);
505 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
506 	dc_delay(sc);
507 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
508 	dc_delay(sc);
509 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
510 	dc_delay(sc);
511 
512 	/*
513 	 * Send address of word we want to read.
514 	 */
515 	dc_eeprom_putbyte(sc, addr);
516 
517 	/*
518 	 * Start reading bits from EEPROM.
519 	 */
520 	for (i = 0x8000; i; i >>= 1) {
521 		SIO_SET(DC_SIO_EE_CLK);
522 		dc_delay(sc);
523 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
524 			word |= i;
525 		dc_delay(sc);
526 		SIO_CLR(DC_SIO_EE_CLK);
527 		dc_delay(sc);
528 	}
529 
530 	/* Turn off EEPROM access mode. */
531 	dc_eeprom_idle(sc);
532 
533 	*dest = word;
534 
535 	return;
536 }
537 
538 /*
539  * Read a sequence of words from the EEPROM.
540  */
541 static void dc_read_eeprom(sc, dest, off, cnt, swap)
542 	struct dc_softc		*sc;
543 	caddr_t			dest;
544 	int			off;
545 	int			cnt;
546 	int			swap;
547 {
548 	int			i;
549 	u_int16_t		word = 0, *ptr;
550 
551 	for (i = 0; i < cnt; i++) {
552 		if (DC_IS_PNIC(sc))
553 			dc_eeprom_getword_pnic(sc, off + i, &word);
554 		else
555 			dc_eeprom_getword(sc, off + i, &word);
556 		ptr = (u_int16_t *)(dest + (i * 2));
557 		if (swap)
558 			*ptr = ntohs(word);
559 		else
560 			*ptr = word;
561 	}
562 
563 	return;
564 }
565 
566 /*
567  * The following two routines are taken from the Macronix 98713
568  * Application Notes pp.19-21.
569  */
570 /*
571  * Write a bit to the MII bus.
572  */
573 static void dc_mii_writebit(sc, bit)
574 	struct dc_softc		*sc;
575 	int			bit;
576 {
577 	if (bit)
578 		CSR_WRITE_4(sc, DC_SIO,
579 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
580 	else
581 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
582 
583 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
584 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
585 
586 	return;
587 }
588 
589 /*
590  * Read a bit from the MII bus.
591  */
592 static int dc_mii_readbit(sc)
593 	struct dc_softc		*sc;
594 {
595 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
596 	CSR_READ_4(sc, DC_SIO);
597 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
598 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
599 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
600 		return(1);
601 
602 	return(0);
603 }
604 
605 /*
606  * Sync the PHYs by setting data bit and strobing the clock 32 times.
607  */
608 static void dc_mii_sync(sc)
609 	struct dc_softc		*sc;
610 {
611 	int		i;
612 
613 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
614 
615 	for (i = 0; i < 32; i++)
616 		dc_mii_writebit(sc, 1);
617 
618 	return;
619 }
620 
621 /*
622  * Clock a series of bits through the MII.
623  */
624 static void dc_mii_send(sc, bits, cnt)
625 	struct dc_softc		*sc;
626 	u_int32_t		bits;
627 	int			cnt;
628 {
629 	int			i;
630 
631 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
632 		dc_mii_writebit(sc, bits & i);
633 }
634 
635 /*
636  * Read an PHY register through the MII.
637  */
638 static int dc_mii_readreg(sc, frame)
639 	struct dc_softc		*sc;
640 	struct dc_mii_frame	*frame;
641 
642 {
643 	int			i, ack, s;
644 
645 	s = splimp();
646 
647 	/*
648 	 * Set up frame for RX.
649 	 */
650 	frame->mii_stdelim = DC_MII_STARTDELIM;
651 	frame->mii_opcode = DC_MII_READOP;
652 	frame->mii_turnaround = 0;
653 	frame->mii_data = 0;
654 
655 	/*
656 	 * Sync the PHYs.
657 	 */
658 	dc_mii_sync(sc);
659 
660 	/*
661 	 * Send command/address info.
662 	 */
663 	dc_mii_send(sc, frame->mii_stdelim, 2);
664 	dc_mii_send(sc, frame->mii_opcode, 2);
665 	dc_mii_send(sc, frame->mii_phyaddr, 5);
666 	dc_mii_send(sc, frame->mii_regaddr, 5);
667 
668 #ifdef notdef
669 	/* Idle bit */
670 	dc_mii_writebit(sc, 1);
671 	dc_mii_writebit(sc, 0);
672 #endif
673 
674 	/* Check for ack */
675 	ack = dc_mii_readbit(sc);
676 
677 	/*
678 	 * Now try reading data bits. If the ack failed, we still
679 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
680 	 */
681 	if (ack) {
682 		for(i = 0; i < 16; i++) {
683 			dc_mii_readbit(sc);
684 		}
685 		goto fail;
686 	}
687 
688 	for (i = 0x8000; i; i >>= 1) {
689 		if (!ack) {
690 			if (dc_mii_readbit(sc))
691 				frame->mii_data |= i;
692 		}
693 	}
694 
695 fail:
696 
697 	dc_mii_writebit(sc, 0);
698 	dc_mii_writebit(sc, 0);
699 
700 	splx(s);
701 
702 	if (ack)
703 		return(1);
704 	return(0);
705 }
706 
707 /*
708  * Write to a PHY register through the MII.
709  */
710 static int dc_mii_writereg(sc, frame)
711 	struct dc_softc		*sc;
712 	struct dc_mii_frame	*frame;
713 
714 {
715 	int			s;
716 
717 	s = splimp();
718 	/*
719 	 * Set up frame for TX.
720 	 */
721 
722 	frame->mii_stdelim = DC_MII_STARTDELIM;
723 	frame->mii_opcode = DC_MII_WRITEOP;
724 	frame->mii_turnaround = DC_MII_TURNAROUND;
725 
726 	/*
727 	 * Sync the PHYs.
728 	 */
729 	dc_mii_sync(sc);
730 
731 	dc_mii_send(sc, frame->mii_stdelim, 2);
732 	dc_mii_send(sc, frame->mii_opcode, 2);
733 	dc_mii_send(sc, frame->mii_phyaddr, 5);
734 	dc_mii_send(sc, frame->mii_regaddr, 5);
735 	dc_mii_send(sc, frame->mii_turnaround, 2);
736 	dc_mii_send(sc, frame->mii_data, 16);
737 
738 	/* Idle bit. */
739 	dc_mii_writebit(sc, 0);
740 	dc_mii_writebit(sc, 0);
741 
742 	splx(s);
743 
744 	return(0);
745 }
746 
747 static int dc_miibus_readreg(dev, phy, reg)
748 	device_t		dev;
749 	int			phy, reg;
750 {
751 	struct dc_mii_frame	frame;
752 	struct dc_softc		*sc;
753 	int			i, rval, phy_reg = 0;
754 
755 	sc = device_get_softc(dev);
756 	bzero((char *)&frame, sizeof(frame));
757 
758 	/*
759 	 * Note: both the AL981 and AN985 have internal PHYs,
760 	 * however the AL981 provides direct access to the PHY
761 	 * registers while the AN985 uses a serial MII interface.
762 	 * The AN985's MII interface is also buggy in that you
763 	 * can read from any MII address (0 to 31), but only address 1
764 	 * behaves normally. To deal with both cases, we pretend
765 	 * that the PHY is at MII address 1.
766 	 */
767 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
768 		return(0);
769 
770 	/*
771 	 * Note: the ukphy probes of the RS7112 report a PHY at
772 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
773 	 * so we only respond to correct one.
774 	 */
775 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
776 		return(0);
777 
778 	if (sc->dc_pmode != DC_PMODE_MII) {
779 		if (phy == (MII_NPHY - 1)) {
780 			switch(reg) {
781 			case MII_BMSR:
782 			/*
783 			 * Fake something to make the probe
784 			 * code think there's a PHY here.
785 			 */
786 				return(BMSR_MEDIAMASK);
787 				break;
788 			case MII_PHYIDR1:
789 				if (DC_IS_PNIC(sc))
790 					return(DC_VENDORID_LO);
791 				return(DC_VENDORID_DEC);
792 				break;
793 			case MII_PHYIDR2:
794 				if (DC_IS_PNIC(sc))
795 					return(DC_DEVICEID_82C168);
796 				return(DC_DEVICEID_21143);
797 				break;
798 			default:
799 				return(0);
800 				break;
801 			}
802 		} else
803 			return(0);
804 	}
805 
806 	if (DC_IS_PNIC(sc)) {
807 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
808 		    (phy << 23) | (reg << 18));
809 		for (i = 0; i < DC_TIMEOUT; i++) {
810 			DELAY(1);
811 			rval = CSR_READ_4(sc, DC_PN_MII);
812 			if (!(rval & DC_PN_MII_BUSY)) {
813 				rval &= 0xFFFF;
814 				return(rval == 0xFFFF ? 0 : rval);
815 			}
816 		}
817 		return(0);
818 	}
819 
820 	if (DC_IS_COMET(sc)) {
821 		switch(reg) {
822 		case MII_BMCR:
823 			phy_reg = DC_AL_BMCR;
824 			break;
825 		case MII_BMSR:
826 			phy_reg = DC_AL_BMSR;
827 			break;
828 		case MII_PHYIDR1:
829 			phy_reg = DC_AL_VENID;
830 			break;
831 		case MII_PHYIDR2:
832 			phy_reg = DC_AL_DEVID;
833 			break;
834 		case MII_ANAR:
835 			phy_reg = DC_AL_ANAR;
836 			break;
837 		case MII_ANLPAR:
838 			phy_reg = DC_AL_LPAR;
839 			break;
840 		case MII_ANER:
841 			phy_reg = DC_AL_ANER;
842 			break;
843 		default:
844 			printf("dc%d: phy_read: bad phy register %x\n",
845 			    sc->dc_unit, reg);
846 			return(0);
847 			break;
848 		}
849 
850 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
851 
852 		if (rval == 0xFFFF)
853 			return(0);
854 		return(rval);
855 	}
856 
857 	frame.mii_phyaddr = phy;
858 	frame.mii_regaddr = reg;
859 	if (sc->dc_type == DC_TYPE_98713) {
860 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
861 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
862 	}
863 	dc_mii_readreg(sc, &frame);
864 	if (sc->dc_type == DC_TYPE_98713)
865 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
866 
867 	return(frame.mii_data);
868 }
869 
870 static int dc_miibus_writereg(dev, phy, reg, data)
871 	device_t		dev;
872 	int			phy, reg, data;
873 {
874 	struct dc_softc		*sc;
875 	struct dc_mii_frame	frame;
876 	int			i, phy_reg = 0;
877 
878 	sc = device_get_softc(dev);
879 	bzero((char *)&frame, sizeof(frame));
880 
881 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
882 		return(0);
883 
884 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
885 		return(0);
886 
887 	if (DC_IS_PNIC(sc)) {
888 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
889 		    (phy << 23) | (reg << 10) | data);
890 		for (i = 0; i < DC_TIMEOUT; i++) {
891 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
892 				break;
893 		}
894 		return(0);
895 	}
896 
897 	if (DC_IS_COMET(sc)) {
898 		switch(reg) {
899 		case MII_BMCR:
900 			phy_reg = DC_AL_BMCR;
901 			break;
902 		case MII_BMSR:
903 			phy_reg = DC_AL_BMSR;
904 			break;
905 		case MII_PHYIDR1:
906 			phy_reg = DC_AL_VENID;
907 			break;
908 		case MII_PHYIDR2:
909 			phy_reg = DC_AL_DEVID;
910 			break;
911 		case MII_ANAR:
912 			phy_reg = DC_AL_ANAR;
913 			break;
914 		case MII_ANLPAR:
915 			phy_reg = DC_AL_LPAR;
916 			break;
917 		case MII_ANER:
918 			phy_reg = DC_AL_ANER;
919 			break;
920 		default:
921 			printf("dc%d: phy_write: bad phy register %x\n",
922 			    sc->dc_unit, reg);
923 			return(0);
924 			break;
925 		}
926 
927 		CSR_WRITE_4(sc, phy_reg, data);
928 		return(0);
929 	}
930 
931 	frame.mii_phyaddr = phy;
932 	frame.mii_regaddr = reg;
933 	frame.mii_data = data;
934 
935 	if (sc->dc_type == DC_TYPE_98713) {
936 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
937 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
938 	}
939 	dc_mii_writereg(sc, &frame);
940 	if (sc->dc_type == DC_TYPE_98713)
941 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
942 
943 	return(0);
944 }
945 
946 static void dc_miibus_statchg(dev)
947 	device_t		dev;
948 {
949 	struct dc_softc		*sc;
950 	struct mii_data		*mii;
951 	struct ifmedia		*ifm;
952 
953 	sc = device_get_softc(dev);
954 	if (DC_IS_ADMTEK(sc))
955 		return;
956 
957 	mii = device_get_softc(sc->dc_miibus);
958 	ifm = &mii->mii_media;
959 	if (DC_IS_DAVICOM(sc) &&
960 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
961 		dc_setcfg(sc, ifm->ifm_media);
962 		sc->dc_if_media = ifm->ifm_media;
963 	} else {
964 		dc_setcfg(sc, mii->mii_media_active);
965 		sc->dc_if_media = mii->mii_media_active;
966 	}
967 
968 	return;
969 }
970 
971 /*
972  * Special support for DM9102A cards with HomePNA PHYs. Note:
973  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
974  * to be impossible to talk to the management interface of the DM9801
975  * PHY (its MDIO pin is not connected to anything). Consequently,
976  * the driver has to just 'know' about the additional mode and deal
977  * with it itself. *sigh*
978  */
979 static void dc_miibus_mediainit(dev)
980 	device_t		dev;
981 {
982 	struct dc_softc		*sc;
983 	struct mii_data		*mii;
984 	struct ifmedia		*ifm;
985 	int			rev;
986 
987 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
988 
989 	sc = device_get_softc(dev);
990 	mii = device_get_softc(sc->dc_miibus);
991 	ifm = &mii->mii_media;
992 
993 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
994 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
995 
996 	return;
997 }
998 
999 #define DC_POLY		0xEDB88320
1000 #define DC_BITS_512	9
1001 #define DC_BITS_128	7
1002 #define DC_BITS_64	6
1003 
1004 static u_int32_t dc_crc_le(sc, addr)
1005 	struct dc_softc		*sc;
1006 	c_caddr_t		addr;
1007 {
1008 	u_int32_t		idx, bit, data, crc;
1009 
1010 	/* Compute CRC for the address value. */
1011 	crc = 0xFFFFFFFF; /* initial value */
1012 
1013 	for (idx = 0; idx < 6; idx++) {
1014 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1015 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1016 	}
1017 
1018 	/*
1019 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1020 	 * chips is only 128 bits wide.
1021 	 */
1022 	if (sc->dc_flags & DC_128BIT_HASH)
1023 		return (crc & ((1 << DC_BITS_128) - 1));
1024 
1025 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1026 	if (sc->dc_flags & DC_64BIT_HASH)
1027 		return (crc & ((1 << DC_BITS_64) - 1));
1028 
1029 	return (crc & ((1 << DC_BITS_512) - 1));
1030 }
1031 
1032 /*
1033  * Calculate CRC of a multicast group address, return the lower 6 bits.
1034  */
1035 static u_int32_t dc_crc_be(addr)
1036 	caddr_t			addr;
1037 {
1038 	u_int32_t		crc, carry;
1039 	int			i, j;
1040 	u_int8_t		c;
1041 
1042 	/* Compute CRC for the address value. */
1043 	crc = 0xFFFFFFFF; /* initial value */
1044 
1045 	for (i = 0; i < 6; i++) {
1046 		c = *(addr + i);
1047 		for (j = 0; j < 8; j++) {
1048 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
1049 			crc <<= 1;
1050 			c >>= 1;
1051 			if (carry)
1052 				crc = (crc ^ 0x04c11db6) | carry;
1053 		}
1054 	}
1055 
1056 	/* return the filter bit position */
1057 	return((crc >> 26) & 0x0000003F);
1058 }
1059 
1060 /*
1061  * 21143-style RX filter setup routine. Filter programming is done by
1062  * downloading a special setup frame into the TX engine. 21143, Macronix,
1063  * PNIC, PNIC II and Davicom chips are programmed this way.
1064  *
1065  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1066  * address (our node address) and a 512-bit hash filter for multicast
1067  * frames. We also sneak the broadcast address into the hash filter since
1068  * we need that too.
1069  */
1070 void dc_setfilt_21143(sc)
1071 	struct dc_softc		*sc;
1072 {
1073 	struct dc_desc		*sframe;
1074 	u_int32_t		h, *sp;
1075 	struct ifmultiaddr	*ifma;
1076 	struct ifnet		*ifp;
1077 	int			i;
1078 
1079 	ifp = &sc->arpcom.ac_if;
1080 
1081 	i = sc->dc_cdata.dc_tx_prod;
1082 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1083 	sc->dc_cdata.dc_tx_cnt++;
1084 	sframe = &sc->dc_ldata->dc_tx_list[i];
1085 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1086 	bzero((char *)sp, DC_SFRAME_LEN);
1087 
1088 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1089 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1090 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1091 
1092 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1093 
1094 	/* If we want promiscuous mode, set the allframes bit. */
1095 	if (ifp->if_flags & IFF_PROMISC)
1096 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1097 	else
1098 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1099 
1100 	if (ifp->if_flags & IFF_ALLMULTI)
1101 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1102 	else
1103 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1104 
1105 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1106 	    ifma = ifma->ifma_link.le_next) {
1107 		if (ifma->ifma_addr->sa_family != AF_LINK)
1108 			continue;
1109 		h = dc_crc_le(sc,
1110 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1111 		sp[h >> 4] |= 1 << (h & 0xF);
1112 	}
1113 
1114 	if (ifp->if_flags & IFF_BROADCAST) {
1115 		h = dc_crc_le(sc, ifp->if_broadcastaddr);
1116 		sp[h >> 4] |= 1 << (h & 0xF);
1117 	}
1118 
1119 	/* Set our MAC address */
1120 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1121 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1122 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1123 
1124 	sframe->dc_status = DC_TXSTAT_OWN;
1125 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1126 
1127 	/*
1128 	 * The PNIC takes an exceedingly long time to process its
1129 	 * setup frame; wait 10ms after posting the setup frame
1130 	 * before proceeding, just so it has time to swallow its
1131 	 * medicine.
1132 	 */
1133 	DELAY(10000);
1134 
1135 	ifp->if_timer = 5;
1136 
1137 	return;
1138 }
1139 
1140 void dc_setfilt_admtek(sc)
1141 	struct dc_softc		*sc;
1142 {
1143 	struct ifnet		*ifp;
1144 	int			h = 0;
1145 	u_int32_t		hashes[2] = { 0, 0 };
1146 	struct ifmultiaddr	*ifma;
1147 
1148 	ifp = &sc->arpcom.ac_if;
1149 
1150 	/* Init our MAC address */
1151 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1152 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1153 
1154 	/* If we want promiscuous mode, set the allframes bit. */
1155 	if (ifp->if_flags & IFF_PROMISC)
1156 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1157 	else
1158 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1159 
1160 	if (ifp->if_flags & IFF_ALLMULTI)
1161 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1162 	else
1163 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1164 
1165 	/* first, zot all the existing hash bits */
1166 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1167 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1168 
1169 	/*
1170 	 * If we're already in promisc or allmulti mode, we
1171 	 * don't have to bother programming the multicast filter.
1172 	 */
1173 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1174 		return;
1175 
1176 	/* now program new ones */
1177 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1178 	    ifma = ifma->ifma_link.le_next) {
1179 		if (ifma->ifma_addr->sa_family != AF_LINK)
1180 			continue;
1181 		if (DC_IS_CENTAUR(sc))
1182 			h = dc_crc_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1183 		else
1184 			h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1185 		if (h < 32)
1186 			hashes[0] |= (1 << h);
1187 		else
1188 			hashes[1] |= (1 << (h - 32));
1189 	}
1190 
1191 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1192 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1193 
1194 	return;
1195 }
1196 
1197 void dc_setfilt_asix(sc)
1198 	struct dc_softc		*sc;
1199 {
1200 	struct ifnet		*ifp;
1201 	int			h = 0;
1202 	u_int32_t		hashes[2] = { 0, 0 };
1203 	struct ifmultiaddr	*ifma;
1204 
1205 	ifp = &sc->arpcom.ac_if;
1206 
1207         /* Init our MAC address */
1208         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1209         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1210 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1211         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1212         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1213 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1214 
1215 	/* If we want promiscuous mode, set the allframes bit. */
1216 	if (ifp->if_flags & IFF_PROMISC)
1217 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1218 	else
1219 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1220 
1221 	if (ifp->if_flags & IFF_ALLMULTI)
1222 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1223 	else
1224 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1225 
1226 	/*
1227 	 * The ASIX chip has a special bit to enable reception
1228 	 * of broadcast frames.
1229 	 */
1230 	if (ifp->if_flags & IFF_BROADCAST)
1231 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1232 	else
1233 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1234 
1235 	/* first, zot all the existing hash bits */
1236 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1237 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1238 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1239 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1240 
1241 	/*
1242 	 * If we're already in promisc or allmulti mode, we
1243 	 * don't have to bother programming the multicast filter.
1244 	 */
1245 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1246 		return;
1247 
1248 	/* now program new ones */
1249 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1250 	    ifma = ifma->ifma_link.le_next) {
1251 		if (ifma->ifma_addr->sa_family != AF_LINK)
1252 			continue;
1253 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1254 		if (h < 32)
1255 			hashes[0] |= (1 << h);
1256 		else
1257 			hashes[1] |= (1 << (h - 32));
1258 	}
1259 
1260 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1261 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1262 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1263 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1264 
1265 	return;
1266 }
1267 
1268 static void dc_setfilt(sc)
1269 	struct dc_softc		*sc;
1270 {
1271 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1272 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1273 		dc_setfilt_21143(sc);
1274 
1275 	if (DC_IS_ASIX(sc))
1276 		dc_setfilt_asix(sc);
1277 
1278 	if (DC_IS_ADMTEK(sc))
1279 		dc_setfilt_admtek(sc);
1280 
1281 	return;
1282 }
1283 
1284 /*
1285  * In order to fiddle with the
1286  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1287  * first have to put the transmit and/or receive logic in the idle state.
1288  */
1289 static void dc_setcfg(sc, media)
1290 	struct dc_softc		*sc;
1291 	int			media;
1292 {
1293 	int			i, restart = 0;
1294 	u_int32_t		isr;
1295 
1296 	if (IFM_SUBTYPE(media) == IFM_NONE)
1297 		return;
1298 
1299 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1300 		restart = 1;
1301 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1302 
1303 		for (i = 0; i < DC_TIMEOUT; i++) {
1304 			isr = CSR_READ_4(sc, DC_ISR);
1305 			if (isr & DC_ISR_TX_IDLE ||
1306 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1307 				break;
1308 			DELAY(10);
1309 		}
1310 
1311 		if (i == DC_TIMEOUT)
1312 			printf("dc%d: failed to force tx and "
1313 				"rx to idle state\n", sc->dc_unit);
1314 	}
1315 
1316 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1317 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1318 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1319 		if (sc->dc_pmode == DC_PMODE_MII) {
1320 			int	watchdogreg;
1321 
1322 			if (DC_IS_INTEL(sc)) {
1323 			/* there's a write enable bit here that reads as 1 */
1324 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1325 				watchdogreg &= ~DC_WDOG_CTLWREN;
1326 				watchdogreg |= DC_WDOG_JABBERDIS;
1327 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1328 			} else {
1329 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1330 			}
1331 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1332 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1333 			if (sc->dc_type == DC_TYPE_98713)
1334 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1335 				    DC_NETCFG_SCRAMBLER));
1336 			if (!DC_IS_DAVICOM(sc))
1337 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1338 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1339 			if (DC_IS_INTEL(sc))
1340 				dc_apply_fixup(sc, IFM_AUTO);
1341 		} else {
1342 			if (DC_IS_PNIC(sc)) {
1343 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1344 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1345 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1346 			}
1347 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1348 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1349 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1350 			if (DC_IS_INTEL(sc))
1351 				dc_apply_fixup(sc,
1352 				    (media & IFM_GMASK) == IFM_FDX ?
1353 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1354 		}
1355 	}
1356 
1357 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1358 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1359 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1360 		if (sc->dc_pmode == DC_PMODE_MII) {
1361 			int	watchdogreg;
1362 
1363 			/* there's a write enable bit here that reads as 1 */
1364 			if (DC_IS_INTEL(sc)) {
1365 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1366 				watchdogreg &= ~DC_WDOG_CTLWREN;
1367 				watchdogreg |= DC_WDOG_JABBERDIS;
1368 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1369 			} else {
1370 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1371 			}
1372 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1373 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1374 			if (sc->dc_type == DC_TYPE_98713)
1375 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1376 			if (!DC_IS_DAVICOM(sc))
1377 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1378 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1379 			if (DC_IS_INTEL(sc))
1380 				dc_apply_fixup(sc, IFM_AUTO);
1381 		} else {
1382 			if (DC_IS_PNIC(sc)) {
1383 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1384 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1385 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1386 			}
1387 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1388 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1389 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1390 			if (DC_IS_INTEL(sc)) {
1391 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1392 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1393 				if ((media & IFM_GMASK) == IFM_FDX)
1394 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1395 				else
1396 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1397 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1398 				DC_CLRBIT(sc, DC_10BTCTRL,
1399 				    DC_TCTL_AUTONEGENBL);
1400 				dc_apply_fixup(sc,
1401 				    (media & IFM_GMASK) == IFM_FDX ?
1402 				    IFM_10_T|IFM_FDX : IFM_10_T);
1403 				DELAY(20000);
1404 			}
1405 		}
1406 	}
1407 
1408 	/*
1409 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1410 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1411 	 * on the external MII port.
1412 	 */
1413 	if (DC_IS_DAVICOM(sc)) {
1414 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1415 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1416 			sc->dc_link = 1;
1417 		} else {
1418 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1419 		}
1420 	}
1421 
1422 	if ((media & IFM_GMASK) == IFM_FDX) {
1423 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1424 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1425 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1426 	} else {
1427 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1428 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1429 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1430 	}
1431 
1432 	if (restart)
1433 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1434 
1435 	return;
1436 }
1437 
1438 static void dc_reset(sc)
1439 	struct dc_softc		*sc;
1440 {
1441 	int		i;
1442 
1443 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1444 
1445 	for (i = 0; i < DC_TIMEOUT; i++) {
1446 		DELAY(10);
1447 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1448 			break;
1449 	}
1450 
1451 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1452 		DELAY(10000);
1453 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1454 		i = 0;
1455 	}
1456 
1457 	if (i == DC_TIMEOUT)
1458 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1459 
1460 	/* Wait a little while for the chip to get its brains in order. */
1461 	DELAY(1000);
1462 
1463 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1464 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1465 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1466 
1467 	/*
1468 	 * Bring the SIA out of reset. In some cases, it looks
1469 	 * like failing to unreset the SIA soon enough gets it
1470 	 * into a state where it will never come out of reset
1471 	 * until we reset the whole chip again.
1472 	 */
1473 	if (DC_IS_INTEL(sc)) {
1474 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1475 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1476 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1477 	}
1478 
1479         return;
1480 }
1481 
1482 static struct dc_type *dc_devtype(dev)
1483 	device_t		dev;
1484 {
1485 	struct dc_type		*t;
1486 	u_int32_t		rev;
1487 
1488 	t = dc_devs;
1489 
1490 	while(t->dc_name != NULL) {
1491 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1492 		    (pci_get_device(dev) == t->dc_did)) {
1493 			/* Check the PCI revision */
1494 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1495 			if (t->dc_did == DC_DEVICEID_98713 &&
1496 			    rev >= DC_REVISION_98713A)
1497 				t++;
1498 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1499 			    rev >= DC_REVISION_98713A)
1500 				t++;
1501 			if (t->dc_did == DC_DEVICEID_987x5 &&
1502 			    rev >= DC_REVISION_98715AEC_C)
1503 				t++;
1504 			if (t->dc_did == DC_DEVICEID_987x5 &&
1505 			    rev >= DC_REVISION_98725)
1506 				t++;
1507 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1508 			    rev >= DC_REVISION_88141)
1509 				t++;
1510 			if (t->dc_did == DC_DEVICEID_82C168 &&
1511 			    rev >= DC_REVISION_82C169)
1512 				t++;
1513 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1514 			    rev >= DC_REVISION_DM9102A)
1515 				t++;
1516 			return(t);
1517 		}
1518 		t++;
1519 	}
1520 
1521 	return(NULL);
1522 }
1523 
1524 /*
1525  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1526  * IDs against our list and return a device name if we find a match.
1527  * We do a little bit of extra work to identify the exact type of
1528  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1529  * but different revision IDs. The same is true for 98715/98715A
1530  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1531  * cases, the exact chip revision affects driver behavior.
1532  */
1533 static int dc_probe(dev)
1534 	device_t		dev;
1535 {
1536 	struct dc_type		*t;
1537 
1538 	t = dc_devtype(dev);
1539 
1540 	if (t != NULL) {
1541 		device_set_desc(dev, t->dc_name);
1542 		return(0);
1543 	}
1544 
1545 	return(ENXIO);
1546 }
1547 
1548 static void dc_acpi(dev)
1549 	device_t		dev;
1550 {
1551 	u_int32_t		r, cptr;
1552 	int			unit;
1553 
1554 	unit = device_get_unit(dev);
1555 
1556 	/* Find the location of the capabilities block */
1557 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1558 
1559 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1560 	if (r == 0x01) {
1561 
1562 		r = pci_read_config(dev, cptr + 4, 4);
1563 		if (r & DC_PSTATE_D3) {
1564 			u_int32_t		iobase, membase, irq;
1565 
1566 			/* Save important PCI config data. */
1567 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1568 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1569 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1570 
1571 			/* Reset the power state. */
1572 			printf("dc%d: chip is in D%d power mode "
1573 			    "-- setting to D0\n", unit, r & DC_PSTATE_D3);
1574 			r &= 0xFFFFFFFC;
1575 			pci_write_config(dev, cptr + 4, r, 4);
1576 
1577 			/* Restore PCI config data. */
1578 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1579 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1580 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1581 		}
1582 	}
1583 	return;
1584 }
1585 
1586 static void dc_apply_fixup(sc, media)
1587 	struct dc_softc		*sc;
1588 	int			media;
1589 {
1590 	struct dc_mediainfo	*m;
1591 	u_int8_t		*p;
1592 	int			i;
1593 	u_int32_t		reg;
1594 
1595 	m = sc->dc_mi;
1596 
1597 	while (m != NULL) {
1598 		if (m->dc_media == media)
1599 			break;
1600 		m = m->dc_next;
1601 	}
1602 
1603 	if (m == NULL)
1604 		return;
1605 
1606 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1607 		reg = (p[0] | (p[1] << 8)) << 16;
1608 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1609 	}
1610 
1611 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1612 		reg = (p[0] | (p[1] << 8)) << 16;
1613 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1614 	}
1615 
1616 	return;
1617 }
1618 
1619 static void dc_decode_leaf_sia(sc, l)
1620 	struct dc_softc		*sc;
1621 	struct dc_eblock_sia	*l;
1622 {
1623 	struct dc_mediainfo	*m;
1624 
1625 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1626 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1627 		m->dc_media = IFM_10_T;
1628 
1629 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1630 		m->dc_media = IFM_10_T|IFM_FDX;
1631 
1632 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1633 		m->dc_media = IFM_10_2;
1634 
1635 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1636 		m->dc_media = IFM_10_5;
1637 
1638 	m->dc_gp_len = 2;
1639 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1640 
1641 	m->dc_next = sc->dc_mi;
1642 	sc->dc_mi = m;
1643 
1644 	sc->dc_pmode = DC_PMODE_SIA;
1645 
1646 	return;
1647 }
1648 
1649 static void dc_decode_leaf_sym(sc, l)
1650 	struct dc_softc		*sc;
1651 	struct dc_eblock_sym	*l;
1652 {
1653 	struct dc_mediainfo	*m;
1654 
1655 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1656 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1657 		m->dc_media = IFM_100_TX;
1658 
1659 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1660 		m->dc_media = IFM_100_TX|IFM_FDX;
1661 
1662 	m->dc_gp_len = 2;
1663 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1664 
1665 	m->dc_next = sc->dc_mi;
1666 	sc->dc_mi = m;
1667 
1668 	sc->dc_pmode = DC_PMODE_SYM;
1669 
1670 	return;
1671 }
1672 
1673 static void dc_decode_leaf_mii(sc, l)
1674 	struct dc_softc		*sc;
1675 	struct dc_eblock_mii	*l;
1676 {
1677 	u_int8_t		*p;
1678 	struct dc_mediainfo	*m;
1679 
1680 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1681 	/* We abuse IFM_AUTO to represent MII. */
1682 	m->dc_media = IFM_AUTO;
1683 	m->dc_gp_len = l->dc_gpr_len;
1684 
1685 	p = (u_int8_t *)l;
1686 	p += sizeof(struct dc_eblock_mii);
1687 	m->dc_gp_ptr = p;
1688 	p += 2 * l->dc_gpr_len;
1689 	m->dc_reset_len = *p;
1690 	p++;
1691 	m->dc_reset_ptr = p;
1692 
1693 	m->dc_next = sc->dc_mi;
1694 	sc->dc_mi = m;
1695 
1696 	return;
1697 }
1698 
1699 static void dc_read_srom(sc, bits)
1700 	struct dc_softc		*sc;
1701 	int			bits;
1702 {
1703 	int size;
1704 
1705 	size = 2 << bits;
1706 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1707 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1708 }
1709 
1710 static void dc_parse_21143_srom(sc)
1711 	struct dc_softc		*sc;
1712 {
1713 	struct dc_leaf_hdr	*lhdr;
1714 	struct dc_eblock_hdr	*hdr;
1715 	int			i, loff;
1716 	char			*ptr;
1717 	int			have_mii;
1718 
1719 	have_mii = 0;
1720 	loff = sc->dc_srom[27];
1721 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1722 
1723 	ptr = (char *)lhdr;
1724 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1725 	/*
1726 	 * Look if we got a MII media block.
1727 	 */
1728 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1729 		hdr = (struct dc_eblock_hdr *)ptr;
1730 		if (hdr->dc_type == DC_EBLOCK_MII)
1731 		    have_mii++;
1732 
1733 		ptr += (hdr->dc_len & 0x7F);
1734 		ptr++;
1735 	}
1736 
1737 	/*
1738 	 * Do the same thing again. Only use SIA and SYM media
1739 	 * blocks if no MII media block is available.
1740 	 */
1741 	ptr = (char *)lhdr;
1742 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1743 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1744 		hdr = (struct dc_eblock_hdr *)ptr;
1745 		switch(hdr->dc_type) {
1746 		case DC_EBLOCK_MII:
1747 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1748 			break;
1749 		case DC_EBLOCK_SIA:
1750 			if (! have_mii)
1751 				dc_decode_leaf_sia(sc,
1752 				    (struct dc_eblock_sia *)hdr);
1753 			break;
1754 		case DC_EBLOCK_SYM:
1755 			if (! have_mii)
1756 				dc_decode_leaf_sym(sc,
1757 				    (struct dc_eblock_sym *)hdr);
1758 			break;
1759 		default:
1760 			/* Don't care. Yet. */
1761 			break;
1762 		}
1763 		ptr += (hdr->dc_len & 0x7F);
1764 		ptr++;
1765 	}
1766 
1767 	return;
1768 }
1769 
1770 /*
1771  * Attach the interface. Allocate softc structures, do ifmedia
1772  * setup and ethernet/BPF attach.
1773  */
1774 static int dc_attach(dev)
1775 	device_t		dev;
1776 {
1777 	int			s, tmp = 0;
1778 	u_char			eaddr[ETHER_ADDR_LEN];
1779 	u_int32_t		command;
1780 	struct dc_softc		*sc;
1781 	struct ifnet		*ifp;
1782 	u_int32_t		revision;
1783 	int			unit, error = 0, rid, mac_offset;
1784 
1785 	s = splimp();
1786 
1787 	sc = device_get_softc(dev);
1788 	unit = device_get_unit(dev);
1789 	bzero(sc, sizeof(struct dc_softc));
1790 	callout_init(&sc->dc_stat_timer);
1791 
1792 	/*
1793 	 * Handle power management nonsense.
1794 	 */
1795 	dc_acpi(dev);
1796 
1797 	/*
1798 	 * Map control/status registers.
1799 	 */
1800 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1801 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1802 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1803 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1804 
1805 #ifdef DC_USEIOSPACE
1806 	if (!(command & PCIM_CMD_PORTEN)) {
1807 		printf("dc%d: failed to enable I/O ports!\n", unit);
1808 		error = ENXIO;
1809 		goto fail;
1810 	}
1811 #else
1812 	if (!(command & PCIM_CMD_MEMEN)) {
1813 		printf("dc%d: failed to enable memory mapping!\n", unit);
1814 		error = ENXIO;
1815 		goto fail;
1816 	}
1817 #endif
1818 
1819 	rid = DC_RID;
1820 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1821 	    0, ~0, 1, RF_ACTIVE);
1822 
1823 	if (sc->dc_res == NULL) {
1824 		printf("dc%d: couldn't map ports/memory\n", unit);
1825 		error = ENXIO;
1826 		goto fail;
1827 	}
1828 
1829 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1830 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1831 
1832 	/* Allocate interrupt */
1833 	rid = 0;
1834 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1835 	    RF_SHAREABLE | RF_ACTIVE);
1836 
1837 	if (sc->dc_irq == NULL) {
1838 		printf("dc%d: couldn't map interrupt\n", unit);
1839 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1840 		error = ENXIO;
1841 		goto fail;
1842 	}
1843 
1844 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1845 	    dc_intr, sc, &sc->dc_intrhand);
1846 
1847 	if (error) {
1848 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1849 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1850 		printf("dc%d: couldn't set up irq\n", unit);
1851 		goto fail;
1852 	}
1853 
1854 	/* Need this info to decide on a chip type. */
1855 	sc->dc_info = dc_devtype(dev);
1856 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1857 
1858 	/* Get the eeprom width, but PNIC has diff eeprom */
1859 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1860 		dc_eeprom_width(sc);
1861 
1862 	switch(sc->dc_info->dc_did) {
1863 	case DC_DEVICEID_21143:
1864 		sc->dc_type = DC_TYPE_21143;
1865 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1866 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1867 		/* Save EEPROM contents so we can parse them later. */
1868 		dc_read_srom(sc, sc->dc_romwidth);
1869 		break;
1870 	case DC_DEVICEID_DM9009:
1871 	case DC_DEVICEID_DM9100:
1872 	case DC_DEVICEID_DM9102:
1873 		sc->dc_type = DC_TYPE_DM9102;
1874 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1875 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1876 		sc->dc_pmode = DC_PMODE_MII;
1877 		/* Increase the latency timer value. */
1878 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1879 		command &= 0xFFFF00FF;
1880 		command |= 0x00008000;
1881 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1882 		break;
1883 	case DC_DEVICEID_AL981:
1884 		sc->dc_type = DC_TYPE_AL981;
1885 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1886 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1887 		sc->dc_pmode = DC_PMODE_MII;
1888 		dc_read_srom(sc, sc->dc_romwidth);
1889 		break;
1890 	case DC_DEVICEID_AN985:
1891 	case DC_DEVICEID_EN2242:
1892 	case DC_DEVICEID_3CSOHOB:
1893 		sc->dc_type = DC_TYPE_AN985;
1894 		sc->dc_flags |= DC_64BIT_HASH;
1895 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1896 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1897 		sc->dc_pmode = DC_PMODE_MII;
1898 		dc_read_srom(sc, sc->dc_romwidth);
1899 		break;
1900 	case DC_DEVICEID_98713:
1901 	case DC_DEVICEID_98713_CP:
1902 		if (revision < DC_REVISION_98713A) {
1903 			sc->dc_type = DC_TYPE_98713;
1904 		}
1905 		if (revision >= DC_REVISION_98713A) {
1906 			sc->dc_type = DC_TYPE_98713A;
1907 			sc->dc_flags |= DC_21143_NWAY;
1908 		}
1909 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1910 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1911 		break;
1912 	case DC_DEVICEID_987x5:
1913 	case DC_DEVICEID_EN1217:
1914 		/*
1915 		 * Macronix MX98715AEC-C/D/E parts have only a
1916 		 * 128-bit hash table. We need to deal with these
1917 		 * in the same manner as the PNIC II so that we
1918 		 * get the right number of bits out of the
1919 		 * CRC routine.
1920 		 */
1921 		if (revision >= DC_REVISION_98715AEC_C &&
1922 		    revision < DC_REVISION_98725)
1923 			sc->dc_flags |= DC_128BIT_HASH;
1924 		sc->dc_type = DC_TYPE_987x5;
1925 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1926 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1927 		break;
1928 	case DC_DEVICEID_98727:
1929 		sc->dc_type = DC_TYPE_987x5;
1930 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1931 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1932 		break;
1933 	case DC_DEVICEID_82C115:
1934 		sc->dc_type = DC_TYPE_PNICII;
1935 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1936 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1937 		break;
1938 	case DC_DEVICEID_82C168:
1939 		sc->dc_type = DC_TYPE_PNIC;
1940 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1941 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1942 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1943 		if (revision < DC_REVISION_82C169)
1944 			sc->dc_pmode = DC_PMODE_SYM;
1945 		break;
1946 	case DC_DEVICEID_AX88140A:
1947 		sc->dc_type = DC_TYPE_ASIX;
1948 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1949 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1950 		sc->dc_pmode = DC_PMODE_MII;
1951 		break;
1952 	case DC_DEVICEID_RS7112:
1953 		sc->dc_type = DC_TYPE_CONEXANT;
1954 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1955 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1956 		sc->dc_pmode = DC_PMODE_MII;
1957 		dc_read_srom(sc, sc->dc_romwidth);
1958 		break;
1959 	default:
1960 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1961 		    sc->dc_info->dc_did);
1962 		break;
1963 	}
1964 
1965 	/* Save the cache line size. */
1966 	if (DC_IS_DAVICOM(sc))
1967 		sc->dc_cachesize = 0;
1968 	else
1969 		sc->dc_cachesize = pci_read_config(dev,
1970 		    DC_PCI_CFLT, 4) & 0xFF;
1971 
1972 	/* Reset the adapter. */
1973 	dc_reset(sc);
1974 
1975 	/* Take 21143 out of snooze mode */
1976 	if (DC_IS_INTEL(sc)) {
1977 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1978 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1979 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1980 	}
1981 
1982 	/*
1983 	 * Try to learn something about the supported media.
1984 	 * We know that ASIX and ADMtek and Davicom devices
1985 	 * will *always* be using MII media, so that's a no-brainer.
1986 	 * The tricky ones are the Macronix/PNIC II and the
1987 	 * Intel 21143.
1988 	 */
1989 	if (DC_IS_INTEL(sc))
1990 		dc_parse_21143_srom(sc);
1991 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1992 		if (sc->dc_type == DC_TYPE_98713)
1993 			sc->dc_pmode = DC_PMODE_MII;
1994 		else
1995 			sc->dc_pmode = DC_PMODE_SYM;
1996 	} else if (!sc->dc_pmode)
1997 		sc->dc_pmode = DC_PMODE_MII;
1998 
1999 	/*
2000 	 * Get station address from the EEPROM.
2001 	 */
2002 	switch(sc->dc_type) {
2003 	case DC_TYPE_98713:
2004 	case DC_TYPE_98713A:
2005 	case DC_TYPE_987x5:
2006 	case DC_TYPE_PNICII:
2007 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2008 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2009 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2010 		break;
2011 	case DC_TYPE_PNIC:
2012 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2013 		break;
2014 	case DC_TYPE_DM9102:
2015 	case DC_TYPE_21143:
2016 	case DC_TYPE_ASIX:
2017 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2018 		break;
2019 	case DC_TYPE_AL981:
2020 	case DC_TYPE_AN985:
2021 		bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr,
2022 		    ETHER_ADDR_LEN);
2023 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
2024 		break;
2025 	case DC_TYPE_CONEXANT:
2026 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2027 		break;
2028 	default:
2029 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2030 		break;
2031 	}
2032 
2033 	sc->dc_unit = unit;
2034 
2035 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2036 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2037 
2038 	if (sc->dc_ldata == NULL) {
2039 		printf("dc%d: no memory for list buffers!\n", unit);
2040 		if (sc->dc_pnic_rx_buf != NULL)
2041 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2042 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2043 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2044 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2045 		error = ENXIO;
2046 		goto fail;
2047 	}
2048 
2049 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2050 
2051 	ifp = &sc->arpcom.ac_if;
2052 	ifp->if_softc = sc;
2053 	if_initname(ifp, "dc", unit);
2054 	ifp->if_mtu = ETHERMTU;
2055 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2056 	ifp->if_ioctl = dc_ioctl;
2057 	ifp->if_start = dc_start;
2058 	ifp->if_watchdog = dc_watchdog;
2059 	ifp->if_init = dc_init;
2060 	ifp->if_baudrate = 10000000;
2061 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2062 	ifq_set_ready(&ifp->if_snd);
2063 
2064 	/*
2065 	 * Do MII setup. If this is a 21143, check for a PHY on the
2066 	 * MII bus after applying any necessary fixups to twiddle the
2067 	 * GPIO bits. If we don't end up finding a PHY, restore the
2068 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2069 	 * driver instead.
2070 	 */
2071 	if (DC_IS_INTEL(sc)) {
2072 		dc_apply_fixup(sc, IFM_AUTO);
2073 		tmp = sc->dc_pmode;
2074 		sc->dc_pmode = DC_PMODE_MII;
2075 	}
2076 
2077 	error = mii_phy_probe(dev, &sc->dc_miibus,
2078 	    dc_ifmedia_upd, dc_ifmedia_sts);
2079 
2080 	if (error && DC_IS_INTEL(sc)) {
2081 		sc->dc_pmode = tmp;
2082 		if (sc->dc_pmode != DC_PMODE_SIA)
2083 			sc->dc_pmode = DC_PMODE_SYM;
2084 		sc->dc_flags |= DC_21143_NWAY;
2085 		mii_phy_probe(dev, &sc->dc_miibus,
2086 		    dc_ifmedia_upd, dc_ifmedia_sts);
2087 		/*
2088 		 * For non-MII cards, we need to have the 21143
2089 		 * drive the LEDs. Except there are some systems
2090 		 * like the NEC VersaPro NoteBook PC which have no
2091 		 * LEDs, and twiddling these bits has adverse effects
2092 		 * on them. (I.e. you suddenly can't get a link.)
2093 		 */
2094 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2095 			sc->dc_flags |= DC_TULIP_LEDS;
2096 		error = 0;
2097 	}
2098 
2099 	if (error) {
2100 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2101 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data),
2102 		    M_DEVBUF);
2103 		if (sc->dc_pnic_rx_buf != NULL)
2104 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2105 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2106 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2107 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2108 		error = ENXIO;
2109 		goto fail;
2110 	}
2111 
2112 	/*
2113 	 * Call MI attach routine.
2114 	 */
2115 	ether_ifattach(ifp, eaddr);
2116 
2117 	if (DC_IS_ADMTEK(sc)) {
2118 		/*
2119 		 * Set automatic TX underrun recovery for the ADMtek chips
2120 		 */
2121 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2122 	}
2123 
2124 	/*
2125 	 * Tell the upper layer(s) we support long frames.
2126 	 */
2127 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2128 
2129 fail:
2130 	splx(s);
2131 
2132 	return(error);
2133 }
2134 
2135 static int dc_detach(dev)
2136 	device_t		dev;
2137 {
2138 	struct dc_softc		*sc;
2139 	struct ifnet		*ifp;
2140 	int			s;
2141 	struct dc_mediainfo	*m;
2142 
2143 	s = splimp();
2144 
2145 	sc = device_get_softc(dev);
2146 	ifp = &sc->arpcom.ac_if;
2147 
2148 	dc_stop(sc);
2149 	ether_ifdetach(ifp);
2150 
2151 	bus_generic_detach(dev);
2152 	device_delete_child(dev, sc->dc_miibus);
2153 
2154 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2155 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2156 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2157 
2158 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2159 	if (sc->dc_pnic_rx_buf != NULL)
2160 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2161 
2162 	while(sc->dc_mi != NULL) {
2163 		m = sc->dc_mi->dc_next;
2164 		free(sc->dc_mi, M_DEVBUF);
2165 		sc->dc_mi = m;
2166 	}
2167 	free(sc->dc_srom, M_DEVBUF);
2168 
2169 	splx(s);
2170 
2171 	return(0);
2172 }
2173 
2174 /*
2175  * Initialize the transmit descriptors.
2176  */
2177 static int dc_list_tx_init(sc)
2178 	struct dc_softc		*sc;
2179 {
2180 	struct dc_chain_data	*cd;
2181 	struct dc_list_data	*ld;
2182 	int			i;
2183 
2184 	cd = &sc->dc_cdata;
2185 	ld = sc->dc_ldata;
2186 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2187 		if (i == (DC_TX_LIST_CNT - 1)) {
2188 			ld->dc_tx_list[i].dc_next =
2189 			    vtophys(&ld->dc_tx_list[0]);
2190 		} else {
2191 			ld->dc_tx_list[i].dc_next =
2192 			    vtophys(&ld->dc_tx_list[i + 1]);
2193 		}
2194 		cd->dc_tx_chain[i] = NULL;
2195 		ld->dc_tx_list[i].dc_data = 0;
2196 		ld->dc_tx_list[i].dc_ctl = 0;
2197 	}
2198 
2199 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2200 
2201 	return(0);
2202 }
2203 
2204 
2205 /*
2206  * Initialize the RX descriptors and allocate mbufs for them. Note that
2207  * we arrange the descriptors in a closed ring, so that the last descriptor
2208  * points back to the first.
2209  */
2210 static int dc_list_rx_init(sc)
2211 	struct dc_softc		*sc;
2212 {
2213 	struct dc_chain_data	*cd;
2214 	struct dc_list_data	*ld;
2215 	int			i;
2216 
2217 	cd = &sc->dc_cdata;
2218 	ld = sc->dc_ldata;
2219 
2220 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2221 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2222 			return(ENOBUFS);
2223 		if (i == (DC_RX_LIST_CNT - 1)) {
2224 			ld->dc_rx_list[i].dc_next =
2225 			    vtophys(&ld->dc_rx_list[0]);
2226 		} else {
2227 			ld->dc_rx_list[i].dc_next =
2228 			    vtophys(&ld->dc_rx_list[i + 1]);
2229 		}
2230 	}
2231 
2232 	cd->dc_rx_prod = 0;
2233 
2234 	return(0);
2235 }
2236 
2237 /*
2238  * Initialize an RX descriptor and attach an MBUF cluster.
2239  */
2240 static int dc_newbuf(sc, i, m)
2241 	struct dc_softc		*sc;
2242 	int			i;
2243 	struct mbuf		*m;
2244 {
2245 	struct mbuf		*m_new = NULL;
2246 	struct dc_desc		*c;
2247 
2248 	c = &sc->dc_ldata->dc_rx_list[i];
2249 
2250 	if (m == NULL) {
2251 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
2252 		if (m_new == NULL)
2253 			return(ENOBUFS);
2254 
2255 		MCLGET(m_new, MB_DONTWAIT);
2256 		if (!(m_new->m_flags & M_EXT)) {
2257 			m_freem(m_new);
2258 			return(ENOBUFS);
2259 		}
2260 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2261 	} else {
2262 		m_new = m;
2263 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2264 		m_new->m_data = m_new->m_ext.ext_buf;
2265 	}
2266 
2267 	m_adj(m_new, sizeof(u_int64_t));
2268 
2269 	/*
2270 	 * If this is a PNIC chip, zero the buffer. This is part
2271 	 * of the workaround for the receive bug in the 82c168 and
2272 	 * 82c169 chips.
2273 	 */
2274 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2275 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2276 
2277 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2278 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2279 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2280 	c->dc_status = DC_RXSTAT_OWN;
2281 
2282 	return(0);
2283 }
2284 
2285 /*
2286  * Grrrrr.
2287  * The PNIC chip has a terrible bug in it that manifests itself during
2288  * periods of heavy activity. The exact mode of failure if difficult to
2289  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2290  * will happen on slow machines. The bug is that sometimes instead of
2291  * uploading one complete frame during reception, it uploads what looks
2292  * like the entire contents of its FIFO memory. The frame we want is at
2293  * the end of the whole mess, but we never know exactly how much data has
2294  * been uploaded, so salvaging the frame is hard.
2295  *
2296  * There is only one way to do it reliably, and it's disgusting.
2297  * Here's what we know:
2298  *
2299  * - We know there will always be somewhere between one and three extra
2300  *   descriptors uploaded.
2301  *
2302  * - We know the desired received frame will always be at the end of the
2303  *   total data upload.
2304  *
2305  * - We know the size of the desired received frame because it will be
2306  *   provided in the length field of the status word in the last descriptor.
2307  *
2308  * Here's what we do:
2309  *
2310  * - When we allocate buffers for the receive ring, we bzero() them.
2311  *   This means that we know that the buffer contents should be all
2312  *   zeros, except for data uploaded by the chip.
2313  *
2314  * - We also force the PNIC chip to upload frames that include the
2315  *   ethernet CRC at the end.
2316  *
2317  * - We gather all of the bogus frame data into a single buffer.
2318  *
2319  * - We then position a pointer at the end of this buffer and scan
2320  *   backwards until we encounter the first non-zero byte of data.
2321  *   This is the end of the received frame. We know we will encounter
2322  *   some data at the end of the frame because the CRC will always be
2323  *   there, so even if the sender transmits a packet of all zeros,
2324  *   we won't be fooled.
2325  *
2326  * - We know the size of the actual received frame, so we subtract
2327  *   that value from the current pointer location. This brings us
2328  *   to the start of the actual received packet.
2329  *
2330  * - We copy this into an mbuf and pass it on, along with the actual
2331  *   frame length.
2332  *
2333  * The performance hit is tremendous, but it beats dropping frames all
2334  * the time.
2335  */
2336 
2337 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2338 static void dc_pnic_rx_bug_war(sc, idx)
2339 	struct dc_softc		*sc;
2340 	int			idx;
2341 {
2342 	struct dc_desc		*cur_rx;
2343 	struct dc_desc		*c = NULL;
2344 	struct mbuf		*m = NULL;
2345 	unsigned char		*ptr;
2346 	int			i, total_len;
2347 	u_int32_t		rxstat = 0;
2348 
2349 	i = sc->dc_pnic_rx_bug_save;
2350 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2351 	ptr = sc->dc_pnic_rx_buf;
2352 	bzero(ptr, DC_RXLEN * 5);
2353 
2354 	/* Copy all the bytes from the bogus buffers. */
2355 	while (1) {
2356 		c = &sc->dc_ldata->dc_rx_list[i];
2357 		rxstat = c->dc_status;
2358 		m = sc->dc_cdata.dc_rx_chain[i];
2359 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2360 		ptr += DC_RXLEN;
2361 		/* If this is the last buffer, break out. */
2362 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2363 			break;
2364 		dc_newbuf(sc, i, m);
2365 		DC_INC(i, DC_RX_LIST_CNT);
2366 	}
2367 
2368 	/* Find the length of the actual receive frame. */
2369 	total_len = DC_RXBYTES(rxstat);
2370 
2371 	/* Scan backwards until we hit a non-zero byte. */
2372 	while(*ptr == 0x00)
2373 		ptr--;
2374 
2375 	/* Round off. */
2376 	if ((uintptr_t)(ptr) & 0x3)
2377 		ptr -= 1;
2378 
2379 	/* Now find the start of the frame. */
2380 	ptr -= total_len;
2381 	if (ptr < sc->dc_pnic_rx_buf)
2382 		ptr = sc->dc_pnic_rx_buf;
2383 
2384 	/*
2385 	 * Now copy the salvaged frame to the last mbuf and fake up
2386 	 * the status word to make it look like a successful
2387  	 * frame reception.
2388 	 */
2389 	dc_newbuf(sc, i, m);
2390 	bcopy(ptr, mtod(m, char *), total_len);
2391 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2392 
2393 	return;
2394 }
2395 
2396 /*
2397  * This routine searches the RX ring for dirty descriptors in the
2398  * event that the rxeof routine falls out of sync with the chip's
2399  * current descriptor pointer. This may happen sometimes as a result
2400  * of a "no RX buffer available" condition that happens when the chip
2401  * consumes all of the RX buffers before the driver has a chance to
2402  * process the RX ring. This routine may need to be called more than
2403  * once to bring the driver back in sync with the chip, however we
2404  * should still be getting RX DONE interrupts to drive the search
2405  * for new packets in the RX ring, so we should catch up eventually.
2406  */
2407 static int dc_rx_resync(sc)
2408 	struct dc_softc		*sc;
2409 {
2410 	int			i, pos;
2411 	struct dc_desc		*cur_rx;
2412 
2413 	pos = sc->dc_cdata.dc_rx_prod;
2414 
2415 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2416 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2417 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2418 			break;
2419 		DC_INC(pos, DC_RX_LIST_CNT);
2420 	}
2421 
2422 	/* If the ring really is empty, then just return. */
2423 	if (i == DC_RX_LIST_CNT)
2424 		return(0);
2425 
2426 	/* We've fallen behing the chip: catch it. */
2427 	sc->dc_cdata.dc_rx_prod = pos;
2428 
2429 	return(EAGAIN);
2430 }
2431 
2432 /*
2433  * A frame has been uploaded: pass the resulting mbuf chain up to
2434  * the higher level protocols.
2435  */
2436 static void dc_rxeof(sc)
2437 	struct dc_softc		*sc;
2438 {
2439         struct mbuf		*m;
2440         struct ifnet		*ifp;
2441 	struct dc_desc		*cur_rx;
2442 	int			i, total_len = 0;
2443 	u_int32_t		rxstat;
2444 
2445 	ifp = &sc->arpcom.ac_if;
2446 	i = sc->dc_cdata.dc_rx_prod;
2447 
2448 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2449 
2450 #ifdef DEVICE_POLLING
2451 		if (ifp->if_flags & IFF_POLLING) {
2452 			if (sc->rxcycles <= 0)
2453 				break;
2454 			sc->rxcycles--;
2455 		}
2456 #endif /* DEVICE_POLLING */
2457 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2458 		rxstat = cur_rx->dc_status;
2459 		m = sc->dc_cdata.dc_rx_chain[i];
2460 		total_len = DC_RXBYTES(rxstat);
2461 
2462 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2463 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2464 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2465 					sc->dc_pnic_rx_bug_save = i;
2466 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2467 					DC_INC(i, DC_RX_LIST_CNT);
2468 					continue;
2469 				}
2470 				dc_pnic_rx_bug_war(sc, i);
2471 				rxstat = cur_rx->dc_status;
2472 				total_len = DC_RXBYTES(rxstat);
2473 			}
2474 		}
2475 
2476 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2477 
2478 		/*
2479 		 * If an error occurs, update stats, clear the
2480 		 * status word and leave the mbuf cluster in place:
2481 		 * it should simply get re-used next time this descriptor
2482 		 * comes up in the ring.  However, don't report long
2483 		 * frames as errors since they could be vlans
2484 		 */
2485 		if ((rxstat & DC_RXSTAT_RXERR)){
2486 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2487 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2488 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2489 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2490 				ifp->if_ierrors++;
2491 				if (rxstat & DC_RXSTAT_COLLSEEN)
2492 					ifp->if_collisions++;
2493 				dc_newbuf(sc, i, m);
2494 				if (rxstat & DC_RXSTAT_CRCERR) {
2495 					DC_INC(i, DC_RX_LIST_CNT);
2496 					continue;
2497 				} else {
2498 					dc_init(sc);
2499 					return;
2500 				}
2501 			}
2502 		}
2503 
2504 		/* No errors; receive the packet. */
2505 		total_len -= ETHER_CRC_LEN;
2506 
2507 #ifdef __i386__
2508 		/*
2509 		 * On the x86 we do not have alignment problems, so try to
2510 		 * allocate a new buffer for the receive ring, and pass up
2511 		 * the one where the packet is already, saving the expensive
2512 		 * copy done in m_devget().
2513 		 * If we are on an architecture with alignment problems, or
2514 		 * if the allocation fails, then use m_devget and leave the
2515 		 * existing buffer in the receive ring.
2516 		 */
2517 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2518 			m->m_pkthdr.rcvif = ifp;
2519 			m->m_pkthdr.len = m->m_len = total_len;
2520 			DC_INC(i, DC_RX_LIST_CNT);
2521 		} else
2522 #endif
2523 		{
2524 			struct mbuf *m0;
2525 
2526 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2527 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2528 			dc_newbuf(sc, i, m);
2529 			DC_INC(i, DC_RX_LIST_CNT);
2530 			if (m0 == NULL) {
2531 				ifp->if_ierrors++;
2532 				continue;
2533 			}
2534 			m_adj(m0, ETHER_ALIGN);
2535 			m = m0;
2536 		}
2537 
2538 		ifp->if_ipackets++;
2539 		(*ifp->if_input)(ifp, m);
2540 	}
2541 
2542 	sc->dc_cdata.dc_rx_prod = i;
2543 }
2544 
2545 /*
2546  * A frame was downloaded to the chip. It's safe for us to clean up
2547  * the list buffers.
2548  */
2549 
2550 static void
2551 dc_txeof(sc)
2552 	struct dc_softc		*sc;
2553 {
2554 	struct dc_desc		*cur_tx = NULL;
2555 	struct ifnet		*ifp;
2556 	int			idx;
2557 
2558 	ifp = &sc->arpcom.ac_if;
2559 
2560 	/*
2561 	 * Go through our tx list and free mbufs for those
2562 	 * frames that have been transmitted.
2563 	 */
2564 	idx = sc->dc_cdata.dc_tx_cons;
2565 	while(idx != sc->dc_cdata.dc_tx_prod) {
2566 		u_int32_t		txstat;
2567 
2568 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2569 		txstat = cur_tx->dc_status;
2570 
2571 		if (txstat & DC_TXSTAT_OWN)
2572 			break;
2573 
2574 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2575 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2576 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2577 				/*
2578 				 * Yes, the PNIC is so brain damaged
2579 				 * that it will sometimes generate a TX
2580 				 * underrun error while DMAing the RX
2581 				 * filter setup frame. If we detect this,
2582 				 * we have to send the setup frame again,
2583 				 * or else the filter won't be programmed
2584 				 * correctly.
2585 				 */
2586 				if (DC_IS_PNIC(sc)) {
2587 					if (txstat & DC_TXSTAT_ERRSUM)
2588 						dc_setfilt(sc);
2589 				}
2590 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2591 			}
2592 			sc->dc_cdata.dc_tx_cnt--;
2593 			DC_INC(idx, DC_TX_LIST_CNT);
2594 			continue;
2595 		}
2596 
2597 		if (DC_IS_CONEXANT(sc)) {
2598 			/*
2599 			 * For some reason Conexant chips like
2600 			 * setting the CARRLOST flag even when
2601 			 * the carrier is there. In CURRENT we
2602 			 * have the same problem for Xircom
2603 			 * cards !
2604 			 */
2605 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2606 			    sc->dc_pmode == DC_PMODE_MII &&
2607 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2608 			    DC_TXSTAT_NOCARRIER)))
2609 				txstat &= ~DC_TXSTAT_ERRSUM;
2610 		} else {
2611 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2612 			    sc->dc_pmode == DC_PMODE_MII &&
2613 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2614 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2615 				txstat &= ~DC_TXSTAT_ERRSUM;
2616 		}
2617 
2618 		if (txstat & DC_TXSTAT_ERRSUM) {
2619 			ifp->if_oerrors++;
2620 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2621 				ifp->if_collisions++;
2622 			if (txstat & DC_TXSTAT_LATECOLL)
2623 				ifp->if_collisions++;
2624 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2625 				dc_init(sc);
2626 				return;
2627 			}
2628 		}
2629 
2630 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2631 
2632 		ifp->if_opackets++;
2633 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2634 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2635 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2636 		}
2637 
2638 		sc->dc_cdata.dc_tx_cnt--;
2639 		DC_INC(idx, DC_TX_LIST_CNT);
2640 	}
2641 
2642 	if (idx != sc->dc_cdata.dc_tx_cons) {
2643 	    	/* some buffers have been freed */
2644 		sc->dc_cdata.dc_tx_cons = idx;
2645 		ifp->if_flags &= ~IFF_OACTIVE;
2646 	}
2647 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2648 
2649 	return;
2650 }
2651 
2652 static void dc_tick(xsc)
2653 	void			*xsc;
2654 {
2655 	struct dc_softc		*sc;
2656 	struct mii_data		*mii;
2657 	struct ifnet		*ifp;
2658 	int			s;
2659 	u_int32_t		r;
2660 
2661 	s = splimp();
2662 
2663 	sc = xsc;
2664 	ifp = &sc->arpcom.ac_if;
2665 	mii = device_get_softc(sc->dc_miibus);
2666 
2667 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2668 		if (sc->dc_flags & DC_21143_NWAY) {
2669 			r = CSR_READ_4(sc, DC_10BTSTAT);
2670 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2671 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2672 				sc->dc_link = 0;
2673 				mii_mediachg(mii);
2674 			}
2675 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2676 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2677 				sc->dc_link = 0;
2678 				mii_mediachg(mii);
2679 			}
2680 			if (sc->dc_link == 0)
2681 				mii_tick(mii);
2682 		} else {
2683 			r = CSR_READ_4(sc, DC_ISR);
2684 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2685 			    sc->dc_cdata.dc_tx_cnt == 0)
2686 				mii_tick(mii);
2687 				if (!(mii->mii_media_status & IFM_ACTIVE))
2688 					sc->dc_link = 0;
2689 		}
2690 	} else
2691 		mii_tick(mii);
2692 
2693 	/*
2694 	 * When the init routine completes, we expect to be able to send
2695 	 * packets right away, and in fact the network code will send a
2696 	 * gratuitous ARP the moment the init routine marks the interface
2697 	 * as running. However, even though the MAC may have been initialized,
2698 	 * there may be a delay of a few seconds before the PHY completes
2699 	 * autonegotiation and the link is brought up. Any transmissions
2700 	 * made during that delay will be lost. Dealing with this is tricky:
2701 	 * we can't just pause in the init routine while waiting for the
2702 	 * PHY to come ready since that would bring the whole system to
2703 	 * a screeching halt for several seconds.
2704 	 *
2705 	 * What we do here is prevent the TX start routine from sending
2706 	 * any packets until a link has been established. After the
2707 	 * interface has been initialized, the tick routine will poll
2708 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2709 	 * that time, packets will stay in the send queue, and once the
2710 	 * link comes up, they will be flushed out to the wire.
2711 	 */
2712 	if (!sc->dc_link) {
2713 		mii_pollstat(mii);
2714 		if (mii->mii_media_status & IFM_ACTIVE &&
2715 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2716 			sc->dc_link++;
2717 			if (!ifq_is_empty(&ifp->if_snd))
2718 				dc_start(ifp);
2719 		}
2720 	}
2721 
2722 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2723 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2724 	else
2725 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2726 
2727 	splx(s);
2728 
2729 	return;
2730 }
2731 
2732 /*
2733  * A transmit underrun has occurred.  Back off the transmit threshold,
2734  * or switch to store and forward mode if we have to.
2735  */
2736 static void dc_tx_underrun(sc)
2737 	struct dc_softc		*sc;
2738 {
2739 	u_int32_t		isr;
2740 	int			i;
2741 
2742 	if (DC_IS_DAVICOM(sc))
2743 		dc_init(sc);
2744 
2745 	if (DC_IS_INTEL(sc)) {
2746 		/*
2747 		 * The real 21143 requires that the transmitter be idle
2748 		 * in order to change the transmit threshold or store
2749 		 * and forward state.
2750 		 */
2751 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2752 
2753 		for (i = 0; i < DC_TIMEOUT; i++) {
2754 			isr = CSR_READ_4(sc, DC_ISR);
2755 			if (isr & DC_ISR_TX_IDLE)
2756 				break;
2757 			DELAY(10);
2758 		}
2759 		if (i == DC_TIMEOUT) {
2760 			printf("dc%d: failed to force tx to idle state\n",
2761 			    sc->dc_unit);
2762 			dc_init(sc);
2763 		}
2764 	}
2765 
2766 	printf("dc%d: TX underrun -- ", sc->dc_unit);
2767 	sc->dc_txthresh += DC_TXTHRESH_INC;
2768 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2769 		printf("using store and forward mode\n");
2770 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2771 	} else {
2772 		printf("increasing TX threshold\n");
2773 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2774 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2775 	}
2776 
2777 	if (DC_IS_INTEL(sc))
2778 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2779 
2780 	return;
2781 }
2782 
2783 #ifdef DEVICE_POLLING
2784 static poll_handler_t dc_poll;
2785 
2786 static void
2787 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2788 {
2789 	struct	dc_softc *sc = ifp->if_softc;
2790 
2791 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
2792 		/* Re-enable interrupts. */
2793 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2794 		return;
2795 	}
2796 	sc->rxcycles = count;
2797 	dc_rxeof(sc);
2798 	dc_txeof(sc);
2799 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2800 		dc_start(ifp);
2801 
2802 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2803 		u_int32_t          status;
2804 
2805 		status = CSR_READ_4(sc, DC_ISR);
2806 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2807 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2808 			DC_ISR_BUS_ERR);
2809 		if (!status)
2810 			return ;
2811 		/* ack what we have */
2812 		CSR_WRITE_4(sc, DC_ISR, status);
2813 
2814 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2815 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2816 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2817 
2818 			if (dc_rx_resync(sc))
2819 				dc_rxeof(sc);
2820 		}
2821 		/* restart transmit unit if necessary */
2822 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2823 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2824 
2825 		if (status & DC_ISR_TX_UNDERRUN)
2826 			dc_tx_underrun(sc);
2827 
2828 		if (status & DC_ISR_BUS_ERR) {
2829 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
2830 			dc_reset(sc);
2831 			dc_init(sc);
2832 		}
2833 	}
2834 }
2835 #endif /* DEVICE_POLLING */
2836 
2837 static void dc_intr(arg)
2838 	void			*arg;
2839 {
2840 	struct dc_softc		*sc;
2841 	struct ifnet		*ifp;
2842 	u_int32_t		status;
2843 
2844 	sc = arg;
2845 
2846 	if (sc->suspended) {
2847 		return;
2848 	}
2849 
2850 	ifp = &sc->arpcom.ac_if;
2851 
2852 #ifdef DEVICE_POLLING
2853 	if (ifp->if_flags & IFF_POLLING)
2854 		return;
2855 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
2856 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2857 		return;
2858 	}
2859 #endif /* DEVICE_POLLING */
2860 
2861 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2862 		return ;
2863 
2864 	/* Suppress unwanted interrupts */
2865 	if (!(ifp->if_flags & IFF_UP)) {
2866 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2867 			dc_stop(sc);
2868 		return;
2869 	}
2870 
2871 	/* Disable interrupts. */
2872 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2873 
2874 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2875 
2876 		CSR_WRITE_4(sc, DC_ISR, status);
2877 
2878 		if (status & DC_ISR_RX_OK) {
2879 			int		curpkts;
2880 			curpkts = ifp->if_ipackets;
2881 			dc_rxeof(sc);
2882 			if (curpkts == ifp->if_ipackets) {
2883 				while(dc_rx_resync(sc))
2884 					dc_rxeof(sc);
2885 			}
2886 		}
2887 
2888 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2889 			dc_txeof(sc);
2890 
2891 		if (status & DC_ISR_TX_IDLE) {
2892 			dc_txeof(sc);
2893 			if (sc->dc_cdata.dc_tx_cnt) {
2894 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2895 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2896 			}
2897 		}
2898 
2899 		if (status & DC_ISR_TX_UNDERRUN)
2900 			dc_tx_underrun(sc);
2901 
2902 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2903 		    || (status & DC_ISR_RX_NOBUF)) {
2904 			int		curpkts;
2905 			curpkts = ifp->if_ipackets;
2906 			dc_rxeof(sc);
2907 			if (curpkts == ifp->if_ipackets) {
2908 				while(dc_rx_resync(sc))
2909 					dc_rxeof(sc);
2910 			}
2911 		}
2912 
2913 		if (status & DC_ISR_BUS_ERR) {
2914 			dc_reset(sc);
2915 			dc_init(sc);
2916 		}
2917 	}
2918 
2919 	/* Re-enable interrupts. */
2920 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2921 
2922 	if (!ifq_is_empty(&ifp->if_snd))
2923 		dc_start(ifp);
2924 
2925 	return;
2926 }
2927 
2928 /*
2929  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2930  * pointers to the fragment pointers.
2931  */
2932 static int dc_encap(sc, m_head, txidx)
2933 	struct dc_softc		*sc;
2934 	struct mbuf		*m_head;
2935 	u_int32_t		*txidx;
2936 {
2937 	struct dc_desc		*f = NULL;
2938 	struct mbuf		*m;
2939 	int			frag, cur, cnt = 0;
2940 
2941 	/*
2942  	 * Start packing the mbufs in this chain into
2943 	 * the fragment pointers. Stop when we run out
2944  	 * of fragments or hit the end of the mbuf chain.
2945 	 */
2946 	m = m_head;
2947 	cur = frag = *txidx;
2948 
2949 	for (m = m_head; m != NULL; m = m->m_next) {
2950 		if (m->m_len != 0) {
2951 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2952 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2953 				    frag == (DC_TX_LIST_CNT - 1))
2954 					return(ENOBUFS);
2955 			}
2956 			if ((DC_TX_LIST_CNT -
2957 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2958 				return(ENOBUFS);
2959 
2960 			f = &sc->dc_ldata->dc_tx_list[frag];
2961 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2962 			if (cnt == 0) {
2963 				f->dc_status = 0;
2964 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2965 			} else
2966 				f->dc_status = DC_TXSTAT_OWN;
2967 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2968 			cur = frag;
2969 			DC_INC(frag, DC_TX_LIST_CNT);
2970 			cnt++;
2971 		}
2972 	}
2973 
2974 	if (m != NULL)
2975 		return(ENOBUFS);
2976 
2977 	sc->dc_cdata.dc_tx_cnt += cnt;
2978 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2979 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2980 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2981 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2982 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2983 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2984 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2985 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2986 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2987 	*txidx = frag;
2988 
2989 	return(0);
2990 }
2991 
2992 /*
2993  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2994  * to the mbuf data regions directly in the transmit lists. We also save a
2995  * copy of the pointers since the transmit list fragment pointers are
2996  * physical addresses.
2997  */
2998 
2999 static void dc_start(ifp)
3000 	struct ifnet		*ifp;
3001 {
3002 	struct dc_softc		*sc;
3003 	struct mbuf *m_head = NULL, *m_new;
3004 	int did_defrag, idx;
3005 
3006 	sc = ifp->if_softc;
3007 
3008 	if (!sc->dc_link)
3009 		return;
3010 
3011 	if (ifp->if_flags & IFF_OACTIVE)
3012 		return;
3013 
3014 	idx = sc->dc_cdata.dc_tx_prod;
3015 
3016 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3017 		did_defrag = 0;
3018 		m_head = ifq_poll(&ifp->if_snd);
3019 		if (m_head == NULL)
3020 			break;
3021 
3022 		if (sc->dc_flags & DC_TX_COALESCE &&
3023 		    m_head->m_next != NULL) {
3024 			/*
3025 			 * Check first if coalescing allows us to queue
3026 			 * the packet. We don't want to loose it if
3027 			 * the TX queue is full.
3028 			 */
3029 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3030 			    idx != sc->dc_cdata.dc_tx_prod &&
3031 			    idx == (DC_TX_LIST_CNT - 1)) {
3032 				ifp->if_flags |= IFF_OACTIVE;
3033 				break;
3034 			}
3035 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3036 				ifp->if_flags |= IFF_OACTIVE;
3037 				break;
3038 			}
3039 
3040 			/* only coalesce if have >1 mbufs */
3041 			m_new = m_defrag_nofree(m_head, MB_DONTWAIT);
3042 			if (m_new == NULL) {
3043 				ifp->if_flags |= IFF_OACTIVE;
3044 				break;
3045 			}
3046 			m_freem(m_head);
3047 			m_head = m_new;
3048 			did_defrag = 1;
3049 		}
3050 
3051 		if (dc_encap(sc, m_head, &idx)) {
3052 			if (did_defrag) {
3053 				m_freem(m_head);
3054 				m_new = ifq_dequeue(&ifp->if_snd);
3055 				m_freem(m_new);
3056 			}
3057 			ifp->if_flags |= IFF_OACTIVE;
3058 			break;
3059 		}
3060 
3061 		m_new = ifq_dequeue(&ifp->if_snd);
3062 		if (did_defrag)
3063 			m_freem(m_new);
3064 
3065 		/*
3066 		 * If there's a BPF listener, bounce a copy of this frame
3067 		 * to him.
3068 		 */
3069 		BPF_MTAP(ifp, m_head);
3070 
3071 		if (sc->dc_flags & DC_TX_ONE) {
3072 			ifp->if_flags |= IFF_OACTIVE;
3073 			break;
3074 		}
3075 	}
3076 
3077 	/* Transmit */
3078 	sc->dc_cdata.dc_tx_prod = idx;
3079 	if (!(sc->dc_flags & DC_TX_POLL))
3080 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3081 
3082 	/*
3083 	 * Set a timeout in case the chip goes out to lunch.
3084 	 */
3085 	ifp->if_timer = 5;
3086 
3087 	return;
3088 }
3089 
3090 static void dc_init(xsc)
3091 	void			*xsc;
3092 {
3093 	struct dc_softc		*sc = xsc;
3094 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3095 	struct mii_data		*mii;
3096 	int			s;
3097 
3098 	s = splimp();
3099 
3100 	mii = device_get_softc(sc->dc_miibus);
3101 
3102 	/*
3103 	 * Cancel pending I/O and free all RX/TX buffers.
3104 	 */
3105 	dc_stop(sc);
3106 	dc_reset(sc);
3107 
3108 	/*
3109 	 * Set cache alignment and burst length.
3110 	 */
3111 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3112 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3113 	else
3114 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3115 	/*
3116 	 * Evenly share the bus between receive and transmit process.
3117 	 */
3118 	if (DC_IS_INTEL(sc))
3119 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3120 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3121 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3122 	} else {
3123 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3124 	}
3125 	if (sc->dc_flags & DC_TX_POLL)
3126 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3127 	switch(sc->dc_cachesize) {
3128 	case 32:
3129 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3130 		break;
3131 	case 16:
3132 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3133 		break;
3134 	case 8:
3135 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3136 		break;
3137 	case 0:
3138 	default:
3139 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3140 		break;
3141 	}
3142 
3143 	if (sc->dc_flags & DC_TX_STORENFWD)
3144 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3145 	else {
3146 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3147 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3148 		} else {
3149 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3150 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3151 		}
3152 	}
3153 
3154 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3155 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3156 
3157 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3158 		/*
3159 		 * The app notes for the 98713 and 98715A say that
3160 		 * in order to have the chips operate properly, a magic
3161 		 * number must be written to CSR16. Macronix does not
3162 		 * document the meaning of these bits so there's no way
3163 		 * to know exactly what they do. The 98713 has a magic
3164 		 * number all its own; the rest all use a different one.
3165 		 */
3166 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3167 		if (sc->dc_type == DC_TYPE_98713)
3168 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3169 		else
3170 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3171 	}
3172 
3173 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3174 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3175 
3176 	/* Init circular RX list. */
3177 	if (dc_list_rx_init(sc) == ENOBUFS) {
3178 		printf("dc%d: initialization failed: no "
3179 		    "memory for rx buffers\n", sc->dc_unit);
3180 		dc_stop(sc);
3181 		(void)splx(s);
3182 		return;
3183 	}
3184 
3185 	/*
3186 	 * Init tx descriptors.
3187 	 */
3188 	dc_list_tx_init(sc);
3189 
3190 	/*
3191 	 * Load the address of the RX list.
3192 	 */
3193 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3194 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3195 
3196 	/*
3197 	 * Enable interrupts.
3198 	 */
3199 #ifdef DEVICE_POLLING
3200 	/*
3201 	 * ... but only if we are not polling, and make sure they are off in
3202 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3203 	 * after a reset.
3204 	 */
3205 	if (ifp->if_flags & IFF_POLLING)
3206 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3207 	else
3208 #endif
3209 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3210 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3211 
3212 	/* Enable transmitter. */
3213 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3214 
3215 	/*
3216 	 * If this is an Intel 21143 and we're not using the
3217 	 * MII port, program the LED control pins so we get
3218 	 * link and activity indications.
3219 	 */
3220 	if (sc->dc_flags & DC_TULIP_LEDS) {
3221 		CSR_WRITE_4(sc, DC_WATCHDOG,
3222 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3223 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3224 	}
3225 
3226 	/*
3227 	 * Load the RX/multicast filter. We do this sort of late
3228 	 * because the filter programming scheme on the 21143 and
3229 	 * some clones requires DMAing a setup frame via the TX
3230 	 * engine, and we need the transmitter enabled for that.
3231 	 */
3232 	dc_setfilt(sc);
3233 
3234 	/* Enable receiver. */
3235 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3236 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3237 
3238 	mii_mediachg(mii);
3239 	dc_setcfg(sc, sc->dc_if_media);
3240 
3241 	ifp->if_flags |= IFF_RUNNING;
3242 	ifp->if_flags &= ~IFF_OACTIVE;
3243 
3244 	(void)splx(s);
3245 
3246 	/* Don't start the ticker if this is a homePNA link. */
3247 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3248 		sc->dc_link = 1;
3249 	else {
3250 		if (sc->dc_flags & DC_21143_NWAY)
3251 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3252 		else
3253 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3254 	}
3255 
3256 	return;
3257 }
3258 
3259 /*
3260  * Set media options.
3261  */
3262 static int dc_ifmedia_upd(ifp)
3263 	struct ifnet		*ifp;
3264 {
3265 	struct dc_softc		*sc;
3266 	struct mii_data		*mii;
3267 	struct ifmedia		*ifm;
3268 
3269 	sc = ifp->if_softc;
3270 	mii = device_get_softc(sc->dc_miibus);
3271 	mii_mediachg(mii);
3272 	ifm = &mii->mii_media;
3273 
3274 	if (DC_IS_DAVICOM(sc) &&
3275 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3276 		dc_setcfg(sc, ifm->ifm_media);
3277 	else
3278 		sc->dc_link = 0;
3279 
3280 	return(0);
3281 }
3282 
3283 /*
3284  * Report current media status.
3285  */
3286 static void dc_ifmedia_sts(ifp, ifmr)
3287 	struct ifnet		*ifp;
3288 	struct ifmediareq	*ifmr;
3289 {
3290 	struct dc_softc		*sc;
3291 	struct mii_data		*mii;
3292 	struct ifmedia		*ifm;
3293 
3294 	sc = ifp->if_softc;
3295 	mii = device_get_softc(sc->dc_miibus);
3296 	mii_pollstat(mii);
3297 	ifm = &mii->mii_media;
3298 	if (DC_IS_DAVICOM(sc)) {
3299 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3300 			ifmr->ifm_active = ifm->ifm_media;
3301 			ifmr->ifm_status = 0;
3302 			return;
3303 		}
3304 	}
3305 	ifmr->ifm_active = mii->mii_media_active;
3306 	ifmr->ifm_status = mii->mii_media_status;
3307 
3308 	return;
3309 }
3310 
3311 static int dc_ioctl(ifp, command, data, cr)
3312 	struct ifnet		*ifp;
3313 	u_long			command;
3314 	caddr_t			data;
3315 	struct ucred		*cr;
3316 {
3317 	struct dc_softc		*sc = ifp->if_softc;
3318 	struct ifreq		*ifr = (struct ifreq *) data;
3319 	struct mii_data		*mii;
3320 	int			s, error = 0;
3321 
3322 	s = splimp();
3323 
3324 	switch(command) {
3325 	case SIOCSIFADDR:
3326 	case SIOCGIFADDR:
3327 	case SIOCSIFMTU:
3328 		error = ether_ioctl(ifp, command, data);
3329 		break;
3330 	case SIOCSIFFLAGS:
3331 		if (ifp->if_flags & IFF_UP) {
3332 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3333 				(IFF_PROMISC | IFF_ALLMULTI);
3334 			if (ifp->if_flags & IFF_RUNNING) {
3335 				if (need_setfilt)
3336 					dc_setfilt(sc);
3337 			} else {
3338 				sc->dc_txthresh = 0;
3339 				dc_init(sc);
3340 			}
3341 		} else {
3342 			if (ifp->if_flags & IFF_RUNNING)
3343 				dc_stop(sc);
3344 		}
3345 		sc->dc_if_flags = ifp->if_flags;
3346 		error = 0;
3347 		break;
3348 	case SIOCADDMULTI:
3349 	case SIOCDELMULTI:
3350 		dc_setfilt(sc);
3351 		error = 0;
3352 		break;
3353 	case SIOCGIFMEDIA:
3354 	case SIOCSIFMEDIA:
3355 		mii = device_get_softc(sc->dc_miibus);
3356 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3357 		break;
3358 	default:
3359 		error = EINVAL;
3360 		break;
3361 	}
3362 
3363 	(void)splx(s);
3364 
3365 	return(error);
3366 }
3367 
3368 static void dc_watchdog(ifp)
3369 	struct ifnet		*ifp;
3370 {
3371 	struct dc_softc		*sc;
3372 
3373 	sc = ifp->if_softc;
3374 
3375 	ifp->if_oerrors++;
3376 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3377 
3378 	dc_stop(sc);
3379 	dc_reset(sc);
3380 	dc_init(sc);
3381 
3382 	if (!ifq_is_empty(&ifp->if_snd))
3383 		dc_start(ifp);
3384 
3385 	return;
3386 }
3387 
3388 /*
3389  * Stop the adapter and free any mbufs allocated to the
3390  * RX and TX lists.
3391  */
3392 static void dc_stop(sc)
3393 	struct dc_softc		*sc;
3394 {
3395 	int		i;
3396 	struct ifnet		*ifp;
3397 
3398 	ifp = &sc->arpcom.ac_if;
3399 	ifp->if_timer = 0;
3400 
3401 	callout_stop(&sc->dc_stat_timer);
3402 
3403 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3404 #ifdef DEVICE_POLLING
3405 	ether_poll_deregister(ifp);
3406 #endif
3407 
3408 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3409 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3410 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3411 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3412 	sc->dc_link = 0;
3413 
3414 	/*
3415 	 * Free data in the RX lists.
3416 	 */
3417 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3418 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3419 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3420 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3421 		}
3422 	}
3423 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3424 		sizeof(sc->dc_ldata->dc_rx_list));
3425 
3426 	/*
3427 	 * Free the TX list buffers.
3428 	 */
3429 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3430 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3431 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3432 			    DC_TXCTL_SETUP) ||
3433 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3434 			    DC_TXCTL_LASTFRAG)) {
3435 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3436 				continue;
3437 			}
3438 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3439 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3440 		}
3441 	}
3442 
3443 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3444 		sizeof(sc->dc_ldata->dc_tx_list));
3445 
3446 	return;
3447 }
3448 
3449 /*
3450  * Stop all chip I/O so that the kernel's probe routines don't
3451  * get confused by errant DMAs when rebooting.
3452  */
3453 static void dc_shutdown(dev)
3454 	device_t		dev;
3455 {
3456 	struct dc_softc		*sc;
3457 
3458 	sc = device_get_softc(dev);
3459 
3460 	dc_stop(sc);
3461 
3462 	return;
3463 }
3464 
3465 /*
3466  * Device suspend routine.  Stop the interface and save some PCI
3467  * settings in case the BIOS doesn't restore them properly on
3468  * resume.
3469  */
3470 static int dc_suspend(dev)
3471 	device_t		dev;
3472 {
3473 	int		i;
3474 	int			s;
3475 	struct dc_softc		*sc;
3476 
3477 	s = splimp();
3478 
3479 	sc = device_get_softc(dev);
3480 
3481 	dc_stop(sc);
3482 
3483 	for (i = 0; i < 5; i++)
3484 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3485 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3486 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3487 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3488 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3489 
3490 	sc->suspended = 1;
3491 
3492 	splx(s);
3493 	return (0);
3494 }
3495 
3496 /*
3497  * Device resume routine.  Restore some PCI settings in case the BIOS
3498  * doesn't, re-enable busmastering, and restart the interface if
3499  * appropriate.
3500  */
3501 static int dc_resume(dev)
3502 	device_t		dev;
3503 {
3504 	int		i;
3505 	int			s;
3506 	struct dc_softc		*sc;
3507 	struct ifnet		*ifp;
3508 
3509 	s = splimp();
3510 
3511 	sc = device_get_softc(dev);
3512 	ifp = &sc->arpcom.ac_if;
3513 
3514 	dc_acpi(dev);
3515 
3516 	/* better way to do this? */
3517 	for (i = 0; i < 5; i++)
3518 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3519 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3520 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3521 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3522 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3523 
3524 	/* reenable busmastering */
3525 	pci_enable_busmaster(dev);
3526 	pci_enable_io(dev, DC_RES);
3527 
3528         /* reinitialize interface if necessary */
3529         if (ifp->if_flags & IFF_UP)
3530                 dc_init(sc);
3531 
3532 	sc->suspended = 0;
3533 
3534 	splx(s);
3535 	return (0);
3536 }
3537