xref: /dflybsd-src/sys/dev/netif/bge/if_bge.c (revision f2ccc3cdd409facd7b596fcc3f6157e3a7029df2)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include "opt_ifpoll.h"
74 
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89 
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92 
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108 
109 #include "pcidevs.h"
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112 
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115 
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118 
119 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
120 
121 #define	BGE_RESET_SHUTDOWN	0
122 #define	BGE_RESET_START		1
123 #define	BGE_RESET_SUSPEND	2
124 
125 static const struct bge_type {
126 	uint16_t		bge_vid;
127 	uint16_t		bge_did;
128 	char			*bge_name;
129 } bge_devs[] = {
130 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
131 		"3COM 3C996 Gigabit Ethernet" },
132 
133 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134 		"Alteon BCM5700 Gigabit Ethernet" },
135 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136 		"Alteon BCM5701 Gigabit Ethernet" },
137 
138 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
139 		"Altima AC1000 Gigabit Ethernet" },
140 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
141 		"Altima AC1002 Gigabit Ethernet" },
142 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
143 		"Altima AC9100 Gigabit Ethernet" },
144 
145 	{ PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
146 		"Apple BCM5701 Gigabit Ethernet" },
147 
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
149 		"Broadcom BCM5700 Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
151 		"Broadcom BCM5701 Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
153 		"Broadcom BCM5702 Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
155 		"Broadcom BCM5702X Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
157 		"Broadcom BCM5702 Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
159 		"Broadcom BCM5703 Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
161 		"Broadcom BCM5703X Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
163 		"Broadcom BCM5703 Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
165 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
167 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
168 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
169 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
170 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
171 		"Broadcom BCM5705 Gigabit Ethernet" },
172 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
173 		"Broadcom BCM5705F Gigabit Ethernet" },
174 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
175 		"Broadcom BCM5705K Gigabit Ethernet" },
176 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
177 		"Broadcom BCM5705M Gigabit Ethernet" },
178 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
179 		"Broadcom BCM5705M Gigabit Ethernet" },
180 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
181 		"Broadcom BCM5714C Gigabit Ethernet" },
182 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
183 		"Broadcom BCM5714S Gigabit Ethernet" },
184 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
185 		"Broadcom BCM5715 Gigabit Ethernet" },
186 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
187 		"Broadcom BCM5715S Gigabit Ethernet" },
188 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
189 		"Broadcom BCM5720 Gigabit Ethernet" },
190 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
191 		"Broadcom BCM5721 Gigabit Ethernet" },
192 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
193 		"Broadcom BCM5722 Gigabit Ethernet" },
194 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
195 		"Broadcom BCM5723 Gigabit Ethernet" },
196 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
197 		"Broadcom BCM5750 Gigabit Ethernet" },
198 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
199 		"Broadcom BCM5750M Gigabit Ethernet" },
200 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
201 		"Broadcom BCM5751 Gigabit Ethernet" },
202 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
203 		"Broadcom BCM5751F Gigabit Ethernet" },
204 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
205 		"Broadcom BCM5751M Gigabit Ethernet" },
206 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
207 		"Broadcom BCM5752 Gigabit Ethernet" },
208 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
209 		"Broadcom BCM5752M Gigabit Ethernet" },
210 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
211 		"Broadcom BCM5753 Gigabit Ethernet" },
212 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
213 		"Broadcom BCM5753F Gigabit Ethernet" },
214 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
215 		"Broadcom BCM5753M Gigabit Ethernet" },
216 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
217 		"Broadcom BCM5754 Gigabit Ethernet" },
218 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
219 		"Broadcom BCM5754M Gigabit Ethernet" },
220 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
221 		"Broadcom BCM5755 Gigabit Ethernet" },
222 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
223 		"Broadcom BCM5755M Gigabit Ethernet" },
224 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
225 		"Broadcom BCM5756 Gigabit Ethernet" },
226 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
227 		"Broadcom BCM5761 Gigabit Ethernet" },
228 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
229 		"Broadcom BCM5761E Gigabit Ethernet" },
230 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
231 		"Broadcom BCM5761S Gigabit Ethernet" },
232 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
233 		"Broadcom BCM5761SE Gigabit Ethernet" },
234 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
235 		"Broadcom BCM5764 Gigabit Ethernet" },
236 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
237 		"Broadcom BCM5780 Gigabit Ethernet" },
238 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
239 		"Broadcom BCM5780S Gigabit Ethernet" },
240 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
241 		"Broadcom BCM5781 Gigabit Ethernet" },
242 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
243 		"Broadcom BCM5782 Gigabit Ethernet" },
244 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
245 		"Broadcom BCM5784 Gigabit Ethernet" },
246 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
247 		"Broadcom BCM5785F Gigabit Ethernet" },
248 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
249 		"Broadcom BCM5785G Gigabit Ethernet" },
250 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
251 		"Broadcom BCM5786 Gigabit Ethernet" },
252 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
253 		"Broadcom BCM5787 Gigabit Ethernet" },
254 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
255 		"Broadcom BCM5787F Gigabit Ethernet" },
256 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
257 		"Broadcom BCM5787M Gigabit Ethernet" },
258 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
259 		"Broadcom BCM5788 Gigabit Ethernet" },
260 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
261 		"Broadcom BCM5789 Gigabit Ethernet" },
262 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
263 		"Broadcom BCM5901 Fast Ethernet" },
264 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
265 		"Broadcom BCM5901A2 Fast Ethernet" },
266 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
267 		"Broadcom BCM5903M Fast Ethernet" },
268 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
269 		"Broadcom BCM5906 Fast Ethernet"},
270 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
271 		"Broadcom BCM5906M Fast Ethernet"},
272 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
273 		"Broadcom BCM57760 Gigabit Ethernet"},
274 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
275 		"Broadcom BCM57780 Gigabit Ethernet"},
276 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
277 		"Broadcom BCM57788 Gigabit Ethernet"},
278 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
279 		"Broadcom BCM57790 Gigabit Ethernet"},
280 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
281 		"SysKonnect Gigabit Ethernet" },
282 
283 	{ 0, 0, NULL }
284 };
285 
286 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
287 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
288 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
289 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
290 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
291 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
292 #define BGE_IS_5788(sc)			((sc)->bge_flags & BGE_FLAG_5788)
293 
294 #define BGE_IS_CRIPPLED(sc)		\
295 	(BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
296 
297 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
298 
299 static int	bge_probe(device_t);
300 static int	bge_attach(device_t);
301 static int	bge_detach(device_t);
302 static void	bge_txeof(struct bge_softc *, uint16_t);
303 static void	bge_rxeof(struct bge_softc *, uint16_t, int);
304 
305 static void	bge_tick(void *);
306 static void	bge_stats_update(struct bge_softc *);
307 static void	bge_stats_update_regs(struct bge_softc *);
308 static struct mbuf *
309 		bge_defrag_shortdma(struct mbuf *);
310 static int	bge_encap(struct bge_softc *, struct mbuf **,
311 		    uint32_t *, int *);
312 static void	bge_xmit(struct bge_softc *, uint32_t);
313 static int	bge_setup_tso(struct bge_softc *, struct mbuf **,
314 		    uint16_t *, uint16_t *);
315 
316 #ifdef IFPOLL_ENABLE
317 static void	bge_npoll(struct ifnet *, struct ifpoll_info *);
318 static void	bge_npoll_compat(struct ifnet *, void *, int );
319 #endif
320 static void	bge_intr_crippled(void *);
321 static void	bge_intr_legacy(void *);
322 static void	bge_msi(void *);
323 static void	bge_msi_oneshot(void *);
324 static void	bge_intr(struct bge_softc *);
325 static void	bge_enable_intr(struct bge_softc *);
326 static void	bge_disable_intr(struct bge_softc *);
327 static void	bge_start(struct ifnet *, struct ifaltq_subque *);
328 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
329 static void	bge_init(void *);
330 static void	bge_stop(struct bge_softc *);
331 static void	bge_watchdog(struct ifnet *);
332 static void	bge_shutdown(device_t);
333 static int	bge_suspend(device_t);
334 static int	bge_resume(device_t);
335 static int	bge_ifmedia_upd(struct ifnet *);
336 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
337 
338 static uint8_t	bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
339 static int	bge_read_nvram(struct bge_softc *, caddr_t, int, int);
340 
341 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
342 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
343 
344 static void	bge_setmulti(struct bge_softc *);
345 static void	bge_setpromisc(struct bge_softc *);
346 static void	bge_enable_msi(struct bge_softc *sc);
347 
348 static int	bge_alloc_jumbo_mem(struct bge_softc *);
349 static void	bge_free_jumbo_mem(struct bge_softc *);
350 static struct bge_jslot
351 		*bge_jalloc(struct bge_softc *);
352 static void	bge_jfree(void *);
353 static void	bge_jref(void *);
354 static int	bge_newbuf_std(struct bge_softc *, int, int);
355 static int	bge_newbuf_jumbo(struct bge_softc *, int, int);
356 static void	bge_setup_rxdesc_std(struct bge_softc *, int);
357 static void	bge_setup_rxdesc_jumbo(struct bge_softc *, int);
358 static int	bge_init_rx_ring_std(struct bge_softc *);
359 static void	bge_free_rx_ring_std(struct bge_softc *);
360 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
361 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
362 static void	bge_free_tx_ring(struct bge_softc *);
363 static int	bge_init_tx_ring(struct bge_softc *);
364 
365 static int	bge_chipinit(struct bge_softc *);
366 static int	bge_blockinit(struct bge_softc *);
367 static void	bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
368 
369 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
370 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
371 #ifdef notdef
372 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
373 #endif
374 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
375 static void	bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
376 static void	bge_writembx(struct bge_softc *, int, int);
377 
378 static int	bge_miibus_readreg(device_t, int, int);
379 static int	bge_miibus_writereg(device_t, int, int, int);
380 static void	bge_miibus_statchg(device_t);
381 static void	bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
382 static void	bge_tbi_link_upd(struct bge_softc *, uint32_t);
383 static void	bge_copper_link_upd(struct bge_softc *, uint32_t);
384 static void	bge_autopoll_link_upd(struct bge_softc *, uint32_t);
385 static void	bge_link_poll(struct bge_softc *);
386 
387 static void	bge_reset(struct bge_softc *);
388 
389 static int	bge_dma_alloc(struct bge_softc *);
390 static void	bge_dma_free(struct bge_softc *);
391 static int	bge_dma_block_alloc(struct bge_softc *, bus_size_t,
392 				    bus_dma_tag_t *, bus_dmamap_t *,
393 				    void **, bus_addr_t *);
394 static void	bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
395 
396 static int	bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
397 static int	bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
398 static int	bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
399 static int	bge_get_eaddr(struct bge_softc *, uint8_t[]);
400 
401 static void	bge_coal_change(struct bge_softc *);
402 static int	bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
403 static int	bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
404 static int	bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
405 static int	bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
406 static int	bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
407 static int	bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
408 static int	bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
409 static int	bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
410 static int	bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
411 		    int, int, uint32_t);
412 
413 static void	bge_sig_post_reset(struct bge_softc *, int);
414 static void	bge_sig_legacy(struct bge_softc *, int);
415 static void	bge_sig_pre_reset(struct bge_softc *, int);
416 static void	bge_stop_fw(struct bge_softc *);
417 static void	bge_asf_driver_up(struct bge_softc *);
418 
419 /*
420  * Set following tunable to 1 for some IBM blade servers with the DNLK
421  * switch module. Auto negotiation is broken for those configurations.
422  */
423 static int	bge_fake_autoneg = 0;
424 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
425 
426 static int	bge_msi_enable = 1;
427 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
428 
429 static int	bge_allow_asf = 1;
430 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
431 
432 #if !defined(KTR_IF_BGE)
433 #define KTR_IF_BGE	KTR_ALL
434 #endif
435 KTR_INFO_MASTER(if_bge);
436 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
437 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
438 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
439 #define logif(name)	KTR_LOG(if_bge_ ## name)
440 
441 static device_method_t bge_methods[] = {
442 	/* Device interface */
443 	DEVMETHOD(device_probe,		bge_probe),
444 	DEVMETHOD(device_attach,	bge_attach),
445 	DEVMETHOD(device_detach,	bge_detach),
446 	DEVMETHOD(device_shutdown,	bge_shutdown),
447 	DEVMETHOD(device_suspend,	bge_suspend),
448 	DEVMETHOD(device_resume,	bge_resume),
449 
450 	/* bus interface */
451 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
452 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
453 
454 	/* MII interface */
455 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
456 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
457 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
458 
459 	DEVMETHOD_END
460 };
461 
462 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
463 static devclass_t bge_devclass;
464 
465 DECLARE_DUMMY_MODULE(if_bge);
466 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
467 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
468 
469 static uint32_t
470 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
471 {
472 	device_t dev = sc->bge_dev;
473 	uint32_t val;
474 
475 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
476 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
477 		return 0;
478 
479 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
480 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
481 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
482 	return (val);
483 }
484 
485 static void
486 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
487 {
488 	device_t dev = sc->bge_dev;
489 
490 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
491 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
492 		return;
493 
494 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
495 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
496 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
497 }
498 
499 #ifdef notdef
500 static uint32_t
501 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
502 {
503 	device_t dev = sc->bge_dev;
504 
505 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
506 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
507 }
508 #endif
509 
510 static void
511 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
512 {
513 	device_t dev = sc->bge_dev;
514 
515 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
516 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
517 }
518 
519 static void
520 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
521 {
522 	CSR_WRITE_4(sc, off, val);
523 }
524 
525 static void
526 bge_writembx(struct bge_softc *sc, int off, int val)
527 {
528 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
529 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
530 
531 	CSR_WRITE_4(sc, off, val);
532 	if (sc->bge_mbox_reorder)
533 		CSR_READ_4(sc, off);
534 }
535 
536 static uint8_t
537 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
538 {
539 	uint32_t access, byte = 0;
540 	int i;
541 
542 	/* Lock. */
543 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
544 	for (i = 0; i < 8000; i++) {
545 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
546 			break;
547 		DELAY(20);
548 	}
549 	if (i == 8000)
550 		return (1);
551 
552 	/* Enable access. */
553 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
554 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
555 
556 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
557 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
558 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
559 		DELAY(10);
560 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
561 			DELAY(10);
562 			break;
563 		}
564 	}
565 
566 	if (i == BGE_TIMEOUT * 10) {
567 		if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
568 		return (1);
569 	}
570 
571 	/* Get result. */
572 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
573 
574 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
575 
576 	/* Disable access. */
577 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
578 
579 	/* Unlock. */
580 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
581 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
582 
583 	return (0);
584 }
585 
586 /*
587  * Read a sequence of bytes from NVRAM.
588  */
589 static int
590 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
591 {
592 	int err = 0, i;
593 	uint8_t byte = 0;
594 
595 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
596 		return (1);
597 
598 	for (i = 0; i < cnt; i++) {
599 		err = bge_nvram_getbyte(sc, off + i, &byte);
600 		if (err)
601 			break;
602 		*(dest + i) = byte;
603 	}
604 
605 	return (err ? 1 : 0);
606 }
607 
608 /*
609  * Read a byte of data stored in the EEPROM at address 'addr.' The
610  * BCM570x supports both the traditional bitbang interface and an
611  * auto access interface for reading the EEPROM. We use the auto
612  * access method.
613  */
614 static uint8_t
615 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
616 {
617 	int i;
618 	uint32_t byte = 0;
619 
620 	/*
621 	 * Enable use of auto EEPROM access so we can avoid
622 	 * having to use the bitbang method.
623 	 */
624 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
625 
626 	/* Reset the EEPROM, load the clock period. */
627 	CSR_WRITE_4(sc, BGE_EE_ADDR,
628 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
629 	DELAY(20);
630 
631 	/* Issue the read EEPROM command. */
632 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
633 
634 	/* Wait for completion */
635 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
636 		DELAY(10);
637 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
638 			break;
639 	}
640 
641 	if (i == BGE_TIMEOUT) {
642 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
643 		return(1);
644 	}
645 
646 	/* Get result. */
647 	byte = CSR_READ_4(sc, BGE_EE_DATA);
648 
649         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
650 
651 	return(0);
652 }
653 
654 /*
655  * Read a sequence of bytes from the EEPROM.
656  */
657 static int
658 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
659 {
660 	size_t i;
661 	int err;
662 	uint8_t byte;
663 
664 	for (byte = 0, err = 0, i = 0; i < len; i++) {
665 		err = bge_eeprom_getbyte(sc, off + i, &byte);
666 		if (err)
667 			break;
668 		*(dest + i) = byte;
669 	}
670 
671 	return(err ? 1 : 0);
672 }
673 
674 static int
675 bge_miibus_readreg(device_t dev, int phy, int reg)
676 {
677 	struct bge_softc *sc = device_get_softc(dev);
678 	uint32_t val;
679 	int i;
680 
681 	KASSERT(phy == sc->bge_phyno,
682 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
683 
684 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
685 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
686 		CSR_WRITE_4(sc, BGE_MI_MODE,
687 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
688 		DELAY(80);
689 	}
690 
691 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
692 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
693 
694 	/* Poll for the PHY register access to complete. */
695 	for (i = 0; i < BGE_TIMEOUT; i++) {
696 		DELAY(10);
697 		val = CSR_READ_4(sc, BGE_MI_COMM);
698 		if ((val & BGE_MICOMM_BUSY) == 0) {
699 			DELAY(5);
700 			val = CSR_READ_4(sc, BGE_MI_COMM);
701 			break;
702 		}
703 	}
704 	if (i == BGE_TIMEOUT) {
705 		if_printf(&sc->arpcom.ac_if, "PHY read timed out "
706 		    "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
707 		val = 0;
708 	}
709 
710 	/* Restore the autopoll bit if necessary. */
711 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
712 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
713 		DELAY(80);
714 	}
715 
716 	if (val & BGE_MICOMM_READFAIL)
717 		return 0;
718 
719 	return (val & 0xFFFF);
720 }
721 
722 static int
723 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
724 {
725 	struct bge_softc *sc = device_get_softc(dev);
726 	int i;
727 
728 	KASSERT(phy == sc->bge_phyno,
729 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
730 
731 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
732 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
733 	       return 0;
734 
735 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
736 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
737 		CSR_WRITE_4(sc, BGE_MI_MODE,
738 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
739 		DELAY(80);
740 	}
741 
742 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
743 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
744 
745 	for (i = 0; i < BGE_TIMEOUT; i++) {
746 		DELAY(10);
747 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
748 			DELAY(5);
749 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
750 			break;
751 		}
752 	}
753 	if (i == BGE_TIMEOUT) {
754 		if_printf(&sc->arpcom.ac_if, "PHY write timed out "
755 		    "(phy %d, reg %d, val %d)\n", phy, reg, val);
756 	}
757 
758 	/* Restore the autopoll bit if necessary. */
759 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
760 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
761 		DELAY(80);
762 	}
763 
764 	return 0;
765 }
766 
767 static void
768 bge_miibus_statchg(device_t dev)
769 {
770 	struct bge_softc *sc;
771 	struct mii_data *mii;
772 
773 	sc = device_get_softc(dev);
774 	if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
775 		return;
776 
777 	mii = device_get_softc(sc->bge_miibus);
778 
779 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
780 	    (IFM_ACTIVE | IFM_AVALID)) {
781 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
782 		case IFM_10_T:
783 		case IFM_100_TX:
784 			sc->bge_link = 1;
785 			break;
786 		case IFM_1000_T:
787 		case IFM_1000_SX:
788 		case IFM_2500_SX:
789 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
790 				sc->bge_link = 1;
791 			else
792 				sc->bge_link = 0;
793 			break;
794 		default:
795 			sc->bge_link = 0;
796 			break;
797 		}
798 	} else {
799 		sc->bge_link = 0;
800 	}
801 	if (sc->bge_link == 0)
802 		return;
803 
804 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
805 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
806 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
807 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
808 	} else {
809 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
810 	}
811 
812 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
813 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
814 	} else {
815 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
816 	}
817 }
818 
819 /*
820  * Memory management for jumbo frames.
821  */
822 static int
823 bge_alloc_jumbo_mem(struct bge_softc *sc)
824 {
825 	struct ifnet *ifp = &sc->arpcom.ac_if;
826 	struct bge_jslot *entry;
827 	uint8_t *ptr;
828 	bus_addr_t paddr;
829 	int i, error;
830 
831 	/*
832 	 * Create tag for jumbo mbufs.
833 	 * This is really a bit of a kludge. We allocate a special
834 	 * jumbo buffer pool which (thanks to the way our DMA
835 	 * memory allocation works) will consist of contiguous
836 	 * pages. This means that even though a jumbo buffer might
837 	 * be larger than a page size, we don't really need to
838 	 * map it into more than one DMA segment. However, the
839 	 * default mbuf tag will result in multi-segment mappings,
840 	 * so we have to create a special jumbo mbuf tag that
841 	 * lets us get away with mapping the jumbo buffers as
842 	 * a single segment. I think eventually the driver should
843 	 * be changed so that it uses ordinary mbufs and cluster
844 	 * buffers, i.e. jumbo frames can span multiple DMA
845 	 * descriptors. But that's a project for another day.
846 	 */
847 
848 	/*
849 	 * Create DMA stuffs for jumbo RX ring.
850 	 */
851 	error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
852 				    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
853 				    &sc->bge_cdata.bge_rx_jumbo_ring_map,
854 				    (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
855 				    &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
856 	if (error) {
857 		if_printf(ifp, "could not create jumbo RX ring\n");
858 		return error;
859 	}
860 
861 	/*
862 	 * Create DMA stuffs for jumbo buffer block.
863 	 */
864 	error = bge_dma_block_alloc(sc, BGE_JMEM,
865 				    &sc->bge_cdata.bge_jumbo_tag,
866 				    &sc->bge_cdata.bge_jumbo_map,
867 				    (void **)&sc->bge_ldata.bge_jumbo_buf,
868 				    &paddr);
869 	if (error) {
870 		if_printf(ifp, "could not create jumbo buffer\n");
871 		return error;
872 	}
873 
874 	SLIST_INIT(&sc->bge_jfree_listhead);
875 
876 	/*
877 	 * Now divide it up into 9K pieces and save the addresses
878 	 * in an array. Note that we play an evil trick here by using
879 	 * the first few bytes in the buffer to hold the the address
880 	 * of the softc structure for this interface. This is because
881 	 * bge_jfree() needs it, but it is called by the mbuf management
882 	 * code which will not pass it to us explicitly.
883 	 */
884 	for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
885 		entry = &sc->bge_cdata.bge_jslots[i];
886 		entry->bge_sc = sc;
887 		entry->bge_buf = ptr;
888 		entry->bge_paddr = paddr;
889 		entry->bge_inuse = 0;
890 		entry->bge_slot = i;
891 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
892 
893 		ptr += BGE_JLEN;
894 		paddr += BGE_JLEN;
895 	}
896 	return 0;
897 }
898 
899 static void
900 bge_free_jumbo_mem(struct bge_softc *sc)
901 {
902 	/* Destroy jumbo RX ring. */
903 	bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
904 			   sc->bge_cdata.bge_rx_jumbo_ring_map,
905 			   sc->bge_ldata.bge_rx_jumbo_ring);
906 
907 	/* Destroy jumbo buffer block. */
908 	bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
909 			   sc->bge_cdata.bge_jumbo_map,
910 			   sc->bge_ldata.bge_jumbo_buf);
911 }
912 
913 /*
914  * Allocate a jumbo buffer.
915  */
916 static struct bge_jslot *
917 bge_jalloc(struct bge_softc *sc)
918 {
919 	struct bge_jslot *entry;
920 
921 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
922 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
923 	if (entry) {
924 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
925 		entry->bge_inuse = 1;
926 	} else {
927 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
928 	}
929 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
930 	return(entry);
931 }
932 
933 /*
934  * Adjust usage count on a jumbo buffer.
935  */
936 static void
937 bge_jref(void *arg)
938 {
939 	struct bge_jslot *entry = (struct bge_jslot *)arg;
940 	struct bge_softc *sc = entry->bge_sc;
941 
942 	if (sc == NULL)
943 		panic("bge_jref: can't find softc pointer!");
944 
945 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
946 		panic("bge_jref: asked to reference buffer "
947 		    "that we don't manage!");
948 	} else if (entry->bge_inuse == 0) {
949 		panic("bge_jref: buffer already free!");
950 	} else {
951 		atomic_add_int(&entry->bge_inuse, 1);
952 	}
953 }
954 
955 /*
956  * Release a jumbo buffer.
957  */
958 static void
959 bge_jfree(void *arg)
960 {
961 	struct bge_jslot *entry = (struct bge_jslot *)arg;
962 	struct bge_softc *sc = entry->bge_sc;
963 
964 	if (sc == NULL)
965 		panic("bge_jfree: can't find softc pointer!");
966 
967 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
968 		panic("bge_jfree: asked to free buffer that we don't manage!");
969 	} else if (entry->bge_inuse == 0) {
970 		panic("bge_jfree: buffer already free!");
971 	} else {
972 		/*
973 		 * Possible MP race to 0, use the serializer.  The atomic insn
974 		 * is still needed for races against bge_jref().
975 		 */
976 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
977 		atomic_subtract_int(&entry->bge_inuse, 1);
978 		if (entry->bge_inuse == 0) {
979 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
980 					  entry, jslot_link);
981 		}
982 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
983 	}
984 }
985 
986 
987 /*
988  * Intialize a standard receive ring descriptor.
989  */
990 static int
991 bge_newbuf_std(struct bge_softc *sc, int i, int init)
992 {
993 	struct mbuf *m_new = NULL;
994 	bus_dma_segment_t seg;
995 	bus_dmamap_t map;
996 	int error, nsegs;
997 
998 	m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
999 	if (m_new == NULL)
1000 		return ENOBUFS;
1001 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1002 
1003 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1004 		m_adj(m_new, ETHER_ALIGN);
1005 
1006 	error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
1007 			sc->bge_cdata.bge_rx_tmpmap, m_new,
1008 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1009 	if (error) {
1010 		m_freem(m_new);
1011 		return error;
1012 	}
1013 
1014 	if (!init) {
1015 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1016 				sc->bge_cdata.bge_rx_std_dmamap[i],
1017 				BUS_DMASYNC_POSTREAD);
1018 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1019 			sc->bge_cdata.bge_rx_std_dmamap[i]);
1020 	}
1021 
1022 	map = sc->bge_cdata.bge_rx_tmpmap;
1023 	sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1024 	sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1025 
1026 	sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1027 	sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1028 
1029 	bge_setup_rxdesc_std(sc, i);
1030 	return 0;
1031 }
1032 
1033 static void
1034 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1035 {
1036 	struct bge_rxchain *rc;
1037 	struct bge_rx_bd *r;
1038 
1039 	rc = &sc->bge_cdata.bge_rx_std_chain[i];
1040 	r = &sc->bge_ldata.bge_rx_std_ring[i];
1041 
1042 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1043 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1044 	r->bge_len = rc->bge_mbuf->m_len;
1045 	r->bge_idx = i;
1046 	r->bge_flags = BGE_RXBDFLAG_END;
1047 }
1048 
1049 /*
1050  * Initialize a jumbo receive ring descriptor. This allocates
1051  * a jumbo buffer from the pool managed internally by the driver.
1052  */
1053 static int
1054 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1055 {
1056 	struct mbuf *m_new = NULL;
1057 	struct bge_jslot *buf;
1058 	bus_addr_t paddr;
1059 
1060 	/* Allocate the mbuf. */
1061 	MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1062 	if (m_new == NULL)
1063 		return ENOBUFS;
1064 
1065 	/* Allocate the jumbo buffer */
1066 	buf = bge_jalloc(sc);
1067 	if (buf == NULL) {
1068 		m_freem(m_new);
1069 		return ENOBUFS;
1070 	}
1071 
1072 	/* Attach the buffer to the mbuf. */
1073 	m_new->m_ext.ext_arg = buf;
1074 	m_new->m_ext.ext_buf = buf->bge_buf;
1075 	m_new->m_ext.ext_free = bge_jfree;
1076 	m_new->m_ext.ext_ref = bge_jref;
1077 	m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1078 
1079 	m_new->m_flags |= M_EXT;
1080 
1081 	m_new->m_data = m_new->m_ext.ext_buf;
1082 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1083 
1084 	paddr = buf->bge_paddr;
1085 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1086 		m_adj(m_new, ETHER_ALIGN);
1087 		paddr += ETHER_ALIGN;
1088 	}
1089 
1090 	/* Save necessary information */
1091 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1092 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1093 
1094 	/* Set up the descriptor. */
1095 	bge_setup_rxdesc_jumbo(sc, i);
1096 	return 0;
1097 }
1098 
1099 static void
1100 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1101 {
1102 	struct bge_rx_bd *r;
1103 	struct bge_rxchain *rc;
1104 
1105 	r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1106 	rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1107 
1108 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1109 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1110 	r->bge_len = rc->bge_mbuf->m_len;
1111 	r->bge_idx = i;
1112 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1113 }
1114 
1115 static int
1116 bge_init_rx_ring_std(struct bge_softc *sc)
1117 {
1118 	int i, error;
1119 
1120 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1121 		error = bge_newbuf_std(sc, i, 1);
1122 		if (error)
1123 			return error;
1124 	}
1125 
1126 	sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1127 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1128 
1129 	return(0);
1130 }
1131 
1132 static void
1133 bge_free_rx_ring_std(struct bge_softc *sc)
1134 {
1135 	int i;
1136 
1137 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1138 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1139 
1140 		if (rc->bge_mbuf != NULL) {
1141 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1142 					  sc->bge_cdata.bge_rx_std_dmamap[i]);
1143 			m_freem(rc->bge_mbuf);
1144 			rc->bge_mbuf = NULL;
1145 		}
1146 		bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1147 		    sizeof(struct bge_rx_bd));
1148 	}
1149 }
1150 
1151 static int
1152 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1153 {
1154 	struct bge_rcb *rcb;
1155 	int i, error;
1156 
1157 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1158 		error = bge_newbuf_jumbo(sc, i, 1);
1159 		if (error)
1160 			return error;
1161 	}
1162 
1163 	sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1164 
1165 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1166 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1167 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1168 
1169 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1170 
1171 	return(0);
1172 }
1173 
1174 static void
1175 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1176 {
1177 	int i;
1178 
1179 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1180 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1181 
1182 		if (rc->bge_mbuf != NULL) {
1183 			m_freem(rc->bge_mbuf);
1184 			rc->bge_mbuf = NULL;
1185 		}
1186 		bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1187 		    sizeof(struct bge_rx_bd));
1188 	}
1189 }
1190 
1191 static void
1192 bge_free_tx_ring(struct bge_softc *sc)
1193 {
1194 	int i;
1195 
1196 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1197 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1198 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1199 					  sc->bge_cdata.bge_tx_dmamap[i]);
1200 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1201 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1202 		}
1203 		bzero(&sc->bge_ldata.bge_tx_ring[i],
1204 		    sizeof(struct bge_tx_bd));
1205 	}
1206 }
1207 
1208 static int
1209 bge_init_tx_ring(struct bge_softc *sc)
1210 {
1211 	sc->bge_txcnt = 0;
1212 	sc->bge_tx_saved_considx = 0;
1213 	sc->bge_tx_prodidx = 0;
1214 
1215 	/* Initialize transmit producer index for host-memory send ring. */
1216 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1217 
1218 	/* 5700 b2 errata */
1219 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1220 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1221 
1222 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1223 	/* 5700 b2 errata */
1224 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1225 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1226 
1227 	return(0);
1228 }
1229 
1230 static void
1231 bge_setmulti(struct bge_softc *sc)
1232 {
1233 	struct ifnet *ifp;
1234 	struct ifmultiaddr *ifma;
1235 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1236 	int h, i;
1237 
1238 	ifp = &sc->arpcom.ac_if;
1239 
1240 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1241 		for (i = 0; i < 4; i++)
1242 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1243 		return;
1244 	}
1245 
1246 	/* First, zot all the existing filters. */
1247 	for (i = 0; i < 4; i++)
1248 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1249 
1250 	/* Now program new ones. */
1251 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1252 		if (ifma->ifma_addr->sa_family != AF_LINK)
1253 			continue;
1254 		h = ether_crc32_le(
1255 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1256 		    ETHER_ADDR_LEN) & 0x7f;
1257 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1258 	}
1259 
1260 	for (i = 0; i < 4; i++)
1261 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1262 }
1263 
1264 /*
1265  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1266  * self-test results.
1267  */
1268 static int
1269 bge_chipinit(struct bge_softc *sc)
1270 {
1271 	int i;
1272 	uint32_t dma_rw_ctl, mode_ctl;
1273 	uint16_t val;
1274 
1275 	/* Set endian type before we access any non-PCI registers. */
1276 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1277 	    BGE_INIT | sc->bge_pci_miscctl, 4);
1278 
1279 	/* Clear the MAC control register */
1280 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1281 
1282 	/*
1283 	 * Clear the MAC statistics block in the NIC's
1284 	 * internal memory.
1285 	 */
1286 	for (i = BGE_STATS_BLOCK;
1287 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1288 		BGE_MEMWIN_WRITE(sc, i, 0);
1289 
1290 	for (i = BGE_STATUS_BLOCK;
1291 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1292 		BGE_MEMWIN_WRITE(sc, i, 0);
1293 
1294 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1295 		/*
1296 		 * Fix data corruption caused by non-qword write with WB.
1297 		 * Fix master abort in PCI mode.
1298 		 * Fix PCI latency timer.
1299 		 */
1300 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1301 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1302 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1303 	}
1304 
1305 	/* Set up the PCI DMA control register. */
1306 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1307 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1308 		/* PCI-E bus */
1309 		/* DMA read watermark not used on PCI-E */
1310 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1311 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1312 		/* PCI-X bus */
1313 		if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1314 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1315 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1316 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1317 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1318 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1319 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1320 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1321 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1322 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1323 			uint32_t rd_wat = 0x7;
1324 			uint32_t clkctl;
1325 
1326 			clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1327 			if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1328 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1329 				dma_rw_ctl |=
1330 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1331 			} else if (clkctl == 0x6 || clkctl == 0x7) {
1332 				dma_rw_ctl |=
1333 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1334 			}
1335 			if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1336 				rd_wat = 0x4;
1337 
1338 			dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1339 			    (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1340 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1341 		} else {
1342 			dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1343 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1344 			dma_rw_ctl |= 0xf;
1345 		}
1346 	} else {
1347 		/* Conventional PCI bus */
1348 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1349 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1350 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1351 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1352 			dma_rw_ctl |= 0xf;
1353 	}
1354 
1355 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1356 	    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1357 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1358 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1359 	    sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1360 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1361 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1362 	}
1363 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1364 
1365 	/*
1366 	 * Set up general mode register.
1367 	 */
1368 	mode_ctl = BGE_DMA_SWAP_OPTIONS|
1369 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1370 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1371 
1372 	/*
1373 	 * BCM5701 B5 have a bug causing data corruption when using
1374 	 * 64-bit DMA reads, which can be terminated early and then
1375 	 * completed later as 32-bit accesses, in combination with
1376 	 * certain bridges.
1377 	 */
1378 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1379 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1380 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1381 
1382 	/*
1383 	 * Tell the firmware the driver is running
1384 	 */
1385 	if (sc->bge_asf_mode & ASF_STACKUP)
1386 		mode_ctl |= BGE_MODECTL_STACKUP;
1387 
1388 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1389 
1390 	/*
1391 	 * Disable memory write invalidate.  Apparently it is not supported
1392 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1393 	 * as these chips need it even when using MSI.
1394 	 */
1395 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1396 	    (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1397 
1398 	/* Set the timer prescaler (always 66Mhz) */
1399 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1400 
1401 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1402 		DELAY(40);	/* XXX */
1403 
1404 		/* Put PHY into ready state */
1405 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1406 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1407 		DELAY(40);
1408 	}
1409 
1410 	return(0);
1411 }
1412 
1413 static int
1414 bge_blockinit(struct bge_softc *sc)
1415 {
1416 	struct bge_rcb *rcb;
1417 	bus_size_t vrcb;
1418 	bge_hostaddr taddr;
1419 	uint32_t val;
1420 	int i, limit;
1421 
1422 	/*
1423 	 * Initialize the memory window pointer register so that
1424 	 * we can access the first 32K of internal NIC RAM. This will
1425 	 * allow us to set up the TX send ring RCBs and the RX return
1426 	 * ring RCBs, plus other things which live in NIC memory.
1427 	 */
1428 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1429 
1430 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1431 
1432 	if (!BGE_IS_5705_PLUS(sc)) {
1433 		/* Configure mbuf memory pool */
1434 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1435 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1436 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1437 		else
1438 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1439 
1440 		/* Configure DMA resource pool */
1441 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1442 		    BGE_DMA_DESCRIPTORS);
1443 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1444 	}
1445 
1446 	/* Configure mbuf pool watermarks */
1447 	if (!BGE_IS_5705_PLUS(sc)) {
1448 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1449 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1450 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1451 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1452 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1453 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1454 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1455 	} else {
1456 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1457 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1458 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1459 	}
1460 
1461 	/* Configure DMA resource watermarks */
1462 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1463 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1464 
1465 	/* Enable buffer manager */
1466 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1467 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1468 
1469 	/* Poll for buffer manager start indication */
1470 	for (i = 0; i < BGE_TIMEOUT; i++) {
1471 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1472 			break;
1473 		DELAY(10);
1474 	}
1475 
1476 	if (i == BGE_TIMEOUT) {
1477 		if_printf(&sc->arpcom.ac_if,
1478 			  "buffer manager failed to start\n");
1479 		return(ENXIO);
1480 	}
1481 
1482 	/* Enable flow-through queues */
1483 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1484 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1485 
1486 	/* Wait until queue initialization is complete */
1487 	for (i = 0; i < BGE_TIMEOUT; i++) {
1488 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1489 			break;
1490 		DELAY(10);
1491 	}
1492 
1493 	if (i == BGE_TIMEOUT) {
1494 		if_printf(&sc->arpcom.ac_if,
1495 			  "flow-through queue init failed\n");
1496 		return(ENXIO);
1497 	}
1498 
1499 	/*
1500 	 * Summary of rings supported by the controller:
1501 	 *
1502 	 * Standard Receive Producer Ring
1503 	 * - This ring is used to feed receive buffers for "standard"
1504 	 *   sized frames (typically 1536 bytes) to the controller.
1505 	 *
1506 	 * Jumbo Receive Producer Ring
1507 	 * - This ring is used to feed receive buffers for jumbo sized
1508 	 *   frames (i.e. anything bigger than the "standard" frames)
1509 	 *   to the controller.
1510 	 *
1511 	 * Mini Receive Producer Ring
1512 	 * - This ring is used to feed receive buffers for "mini"
1513 	 *   sized frames to the controller.
1514 	 * - This feature required external memory for the controller
1515 	 *   but was never used in a production system.  Should always
1516 	 *   be disabled.
1517 	 *
1518 	 * Receive Return Ring
1519 	 * - After the controller has placed an incoming frame into a
1520 	 *   receive buffer that buffer is moved into a receive return
1521 	 *   ring.  The driver is then responsible to passing the
1522 	 *   buffer up to the stack.  Many versions of the controller
1523 	 *   support multiple RR rings.
1524 	 *
1525 	 * Send Ring
1526 	 * - This ring is used for outgoing frames.  Many versions of
1527 	 *   the controller support multiple send rings.
1528 	 */
1529 
1530 	/* Initialize the standard receive producer ring control block. */
1531 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1532 	rcb->bge_hostaddr.bge_addr_lo =
1533 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1534 	rcb->bge_hostaddr.bge_addr_hi =
1535 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1536 	if (BGE_IS_5705_PLUS(sc)) {
1537 		/*
1538 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1539 		 * Bits 15-2 : Reserved (should be 0)
1540 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1541 		 * Bit 0     : Reserved
1542 		 */
1543 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1544 	} else {
1545 		/*
1546 		 * Ring size is always XXX entries
1547 		 * Bits 31-16: Maximum RX frame size
1548 		 * Bits 15-2 : Reserved (should be 0)
1549 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1550 		 * Bit 0     : Reserved
1551 		 */
1552 		rcb->bge_maxlen_flags =
1553 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1554 	}
1555 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1556 	/* Write the standard receive producer ring control block. */
1557 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1558 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1559 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1560 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1561 	/* Reset the standard receive producer ring producer index. */
1562 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1563 
1564 	/*
1565 	 * Initialize the jumbo RX producer ring control
1566 	 * block.  We set the 'ring disabled' bit in the
1567 	 * flags field until we're actually ready to start
1568 	 * using this ring (i.e. once we set the MTU
1569 	 * high enough to require it).
1570 	 */
1571 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1572 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1573 		/* Get the jumbo receive producer ring RCB parameters. */
1574 		rcb->bge_hostaddr.bge_addr_lo =
1575 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1576 		rcb->bge_hostaddr.bge_addr_hi =
1577 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1578 		rcb->bge_maxlen_flags =
1579 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1580 		    BGE_RCB_FLAG_RING_DISABLED);
1581 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1582 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1583 		    rcb->bge_hostaddr.bge_addr_hi);
1584 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1585 		    rcb->bge_hostaddr.bge_addr_lo);
1586 		/* Program the jumbo receive producer ring RCB parameters. */
1587 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1588 		    rcb->bge_maxlen_flags);
1589 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1590 		/* Reset the jumbo receive producer ring producer index. */
1591 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1592 	}
1593 
1594 	/* Disable the mini receive producer ring RCB. */
1595 	if (BGE_IS_5700_FAMILY(sc)) {
1596 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1597 		rcb->bge_maxlen_flags =
1598 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1599 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1600 		    rcb->bge_maxlen_flags);
1601 		/* Reset the mini receive producer ring producer index. */
1602 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1603 	}
1604 
1605 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1606 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1607 	    (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1608 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1609 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1610 		CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1611 		    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1612 	}
1613 
1614 	/*
1615 	 * The BD ring replenish thresholds control how often the
1616 	 * hardware fetches new BD's from the producer rings in host
1617 	 * memory.  Setting the value too low on a busy system can
1618 	 * starve the hardware and recue the throughpout.
1619 	 *
1620 	 * Set the BD ring replentish thresholds. The recommended
1621 	 * values are 1/8th the number of descriptors allocated to
1622 	 * each ring.
1623 	 */
1624 	if (BGE_IS_5705_PLUS(sc))
1625 		val = 8;
1626 	else
1627 		val = BGE_STD_RX_RING_CNT / 8;
1628 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1629 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1630 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1631 		    BGE_JUMBO_RX_RING_CNT/8);
1632 	}
1633 
1634 	/*
1635 	 * Disable all send rings by setting the 'ring disabled' bit
1636 	 * in the flags field of all the TX send ring control blocks,
1637 	 * located in NIC memory.
1638 	 */
1639 	if (!BGE_IS_5705_PLUS(sc)) {
1640 		/* 5700 to 5704 had 16 send rings. */
1641 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1642 	} else {
1643 		limit = 1;
1644 	}
1645 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1646 	for (i = 0; i < limit; i++) {
1647 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1648 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1649 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1650 		vrcb += sizeof(struct bge_rcb);
1651 	}
1652 
1653 	/* Configure send ring RCB 0 (we use only the first ring) */
1654 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1655 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1656 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1657 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1658 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1659 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1660 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1661 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1662 
1663 	/*
1664 	 * Disable all receive return rings by setting the
1665 	 * 'ring diabled' bit in the flags field of all the receive
1666 	 * return ring control blocks, located in NIC memory.
1667 	 */
1668 	if (!BGE_IS_5705_PLUS(sc))
1669 		limit = BGE_RX_RINGS_MAX;
1670 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1671 		limit = 4;
1672 	else
1673 		limit = 1;
1674 	/* Disable all receive return rings. */
1675 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1676 	for (i = 0; i < limit; i++) {
1677 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1678 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1679 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1680 		    BGE_RCB_FLAG_RING_DISABLED);
1681 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1682 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1683 		    (i * (sizeof(uint64_t))), 0);
1684 		vrcb += sizeof(struct bge_rcb);
1685 	}
1686 
1687 	/*
1688 	 * Set up receive return ring 0.  Note that the NIC address
1689 	 * for RX return rings is 0x0.  The return rings live entirely
1690 	 * within the host, so the nicaddr field in the RCB isn't used.
1691 	 */
1692 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1693 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1694 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1695 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1696 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1697 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1698 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1699 
1700 	/* Set random backoff seed for TX */
1701 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1702 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1703 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1704 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1705 	    BGE_TX_BACKOFF_SEED_MASK);
1706 
1707 	/* Set inter-packet gap */
1708 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1709 
1710 	/*
1711 	 * Specify which ring to use for packets that don't match
1712 	 * any RX rules.
1713 	 */
1714 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1715 
1716 	/*
1717 	 * Configure number of RX lists. One interrupt distribution
1718 	 * list, sixteen active lists, one bad frames class.
1719 	 */
1720 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1721 
1722 	/* Inialize RX list placement stats mask. */
1723 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1724 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1725 
1726 	/* Disable host coalescing until we get it set up */
1727 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1728 
1729 	/* Poll to make sure it's shut down. */
1730 	for (i = 0; i < BGE_TIMEOUT; i++) {
1731 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1732 			break;
1733 		DELAY(10);
1734 	}
1735 
1736 	if (i == BGE_TIMEOUT) {
1737 		if_printf(&sc->arpcom.ac_if,
1738 			  "host coalescing engine failed to idle\n");
1739 		return(ENXIO);
1740 	}
1741 
1742 	/* Set up host coalescing defaults */
1743 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1744 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1745 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1746 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1747 	if (!BGE_IS_5705_PLUS(sc)) {
1748 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1749 		    sc->bge_rx_coal_ticks_int);
1750 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1751 		    sc->bge_tx_coal_ticks_int);
1752 	}
1753 	/*
1754 	 * NOTE:
1755 	 * The datasheet (57XX-PG105-R) says BCM5705+ do not
1756 	 * have following two registers; obviously it is wrong.
1757 	 */
1758 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1759 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1760 
1761 	/* Set up address of statistics block */
1762 	if (!BGE_IS_5705_PLUS(sc)) {
1763 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1764 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1765 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1766 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1767 
1768 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1769 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1770 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1771 	}
1772 
1773 	/* Set up address of status block */
1774 	bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1775 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1776 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1777 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1778 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1779 
1780 	/*
1781 	 * Set up status block partail update size.
1782 	 *
1783 	 * Because only single TX ring, RX produce ring and Rx return ring
1784 	 * are used, ask device to update only minimum part of status block
1785 	 * except for BCM5700 AX/BX, whose status block partial update size
1786 	 * can't be configured.
1787 	 */
1788 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1789 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1790 		/* XXX Actually reserved on BCM5700 AX/BX */
1791 		val = BGE_STATBLKSZ_FULL;
1792 	} else {
1793 		val = BGE_STATBLKSZ_32BYTE;
1794 	}
1795 #if 0
1796 	/*
1797 	 * Does not seem to have visible effect in both
1798 	 * bulk data (1472B UDP datagram) and tiny data
1799 	 * (18B UDP datagram) TX tests.
1800 	 */
1801 	if (!BGE_IS_CRIPPLED(sc))
1802 		val |= BGE_HCCMODE_CLRTICK_TX;
1803 #endif
1804 
1805 	/* Turn on host coalescing state machine */
1806 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1807 
1808 	/* Turn on RX BD completion state machine and enable attentions */
1809 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1810 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1811 
1812 	/* Turn on RX list placement state machine */
1813 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1814 
1815 	/* Turn on RX list selector state machine. */
1816 	if (!BGE_IS_5705_PLUS(sc))
1817 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1818 
1819 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1820 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1821 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1822 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1823 
1824 	if (sc->bge_flags & BGE_FLAG_TBI)
1825 		val |= BGE_PORTMODE_TBI;
1826 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1827 		val |= BGE_PORTMODE_GMII;
1828 	else
1829 		val |= BGE_PORTMODE_MII;
1830 
1831 	/* Turn on DMA, clear stats */
1832 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1833 
1834 	/* Set misc. local control, enable interrupts on attentions */
1835 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1836 
1837 #ifdef notdef
1838 	/* Assert GPIO pins for PHY reset */
1839 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1840 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1841 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1842 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1843 #endif
1844 
1845 	/* Turn on DMA completion state machine */
1846 	if (!BGE_IS_5705_PLUS(sc))
1847 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1848 
1849 	/* Turn on write DMA state machine */
1850 	val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1851 	if (BGE_IS_5755_PLUS(sc)) {
1852 		/* Enable host coalescing bug fix. */
1853 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1854 	}
1855 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1856 		/* Request larger DMA burst size to get better performance. */
1857 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
1858 	}
1859 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1860 	DELAY(40);
1861 
1862 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1863 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1864 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1865 	    sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1866 		/*
1867 		 * Enable fix for read DMA FIFO overruns.
1868 		 * The fix is to limit the number of RX BDs
1869 		 * the hardware would fetch at a fime.
1870 		 */
1871 		val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1872 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1873 		    val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1874 	}
1875 
1876 	/* Turn on read DMA state machine */
1877 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1878         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1879             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1880             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1881 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1882                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1883                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1884 	if (sc->bge_flags & BGE_FLAG_PCIE)
1885 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1886 	if (sc->bge_flags & BGE_FLAG_TSO)
1887 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1888 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1889 	DELAY(40);
1890 
1891 	/* Turn on RX data completion state machine */
1892 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1893 
1894 	/* Turn on RX BD initiator state machine */
1895 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1896 
1897 	/* Turn on RX data and RX BD initiator state machine */
1898 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1899 
1900 	/* Turn on Mbuf cluster free state machine */
1901 	if (!BGE_IS_5705_PLUS(sc))
1902 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1903 
1904 	/* Turn on send BD completion state machine */
1905 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1906 
1907 	/* Turn on send data completion state machine */
1908 	val = BGE_SDCMODE_ENABLE;
1909 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1910 		val |= BGE_SDCMODE_CDELAY;
1911 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1912 
1913 	/* Turn on send data initiator state machine */
1914 	if (sc->bge_flags & BGE_FLAG_TSO)
1915 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1916 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
1917 	else
1918 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1919 
1920 	/* Turn on send BD initiator state machine */
1921 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1922 
1923 	/* Turn on send BD selector state machine */
1924 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1925 
1926 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1927 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1928 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1929 
1930 	/* ack/clear link change events */
1931 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1932 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1933 	    BGE_MACSTAT_LINK_CHANGED);
1934 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1935 
1936 	/*
1937 	 * Enable attention when the link has changed state for
1938 	 * devices that use auto polling.
1939 	 */
1940 	if (sc->bge_flags & BGE_FLAG_TBI) {
1941 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1942  	} else {
1943 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1944 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1945 			DELAY(80);
1946 		}
1947 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1948 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1949 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1950 			    BGE_EVTENB_MI_INTERRUPT);
1951 		}
1952 	}
1953 
1954 	/*
1955 	 * Clear any pending link state attention.
1956 	 * Otherwise some link state change events may be lost until attention
1957 	 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1958 	 * It's not necessary on newer BCM chips - perhaps enabling link
1959 	 * state change attentions implies clearing pending attention.
1960 	 */
1961 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1962 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1963 	    BGE_MACSTAT_LINK_CHANGED);
1964 
1965 	/* Enable link state change attentions. */
1966 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1967 
1968 	return(0);
1969 }
1970 
1971 /*
1972  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1973  * against our list and return its name if we find a match. Note
1974  * that since the Broadcom controller contains VPD support, we
1975  * can get the device name string from the controller itself instead
1976  * of the compiled-in string. This is a little slow, but it guarantees
1977  * we'll always announce the right product name.
1978  */
1979 static int
1980 bge_probe(device_t dev)
1981 {
1982 	const struct bge_type *t;
1983 	uint16_t product, vendor;
1984 
1985 	product = pci_get_device(dev);
1986 	vendor = pci_get_vendor(dev);
1987 
1988 	for (t = bge_devs; t->bge_name != NULL; t++) {
1989 		if (vendor == t->bge_vid && product == t->bge_did)
1990 			break;
1991 	}
1992 	if (t->bge_name == NULL)
1993 		return(ENXIO);
1994 
1995 	device_set_desc(dev, t->bge_name);
1996 	return(0);
1997 }
1998 
1999 static int
2000 bge_attach(device_t dev)
2001 {
2002 	struct ifnet *ifp;
2003 	struct bge_softc *sc;
2004 	uint32_t hwcfg = 0, misccfg;
2005 	int error = 0, rid, capmask;
2006 	uint8_t ether_addr[ETHER_ADDR_LEN];
2007 	uint16_t product, vendor;
2008 	driver_intr_t *intr_func;
2009 	uintptr_t mii_priv = 0;
2010 	u_int intr_flags;
2011 	int msi_enable;
2012 
2013 	sc = device_get_softc(dev);
2014 	sc->bge_dev = dev;
2015 	callout_init_mp(&sc->bge_stat_timer);
2016 	lwkt_serialize_init(&sc->bge_jslot_serializer);
2017 
2018 	product = pci_get_device(dev);
2019 	vendor = pci_get_vendor(dev);
2020 
2021 #ifndef BURN_BRIDGES
2022 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2023 		uint32_t irq, mem;
2024 
2025 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
2026 		mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2027 
2028 		device_printf(dev, "chip is in D%d power mode "
2029 		    "-- setting to D0\n", pci_get_powerstate(dev));
2030 
2031 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2032 
2033 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
2034 		pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2035 	}
2036 #endif	/* !BURN_BRIDGE */
2037 
2038 	/*
2039 	 * Map control/status registers.
2040 	 */
2041 	pci_enable_busmaster(dev);
2042 
2043 	rid = BGE_PCI_BAR0;
2044 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2045 	    RF_ACTIVE);
2046 
2047 	if (sc->bge_res == NULL) {
2048 		device_printf(dev, "couldn't map memory\n");
2049 		return ENXIO;
2050 	}
2051 
2052 	sc->bge_btag = rman_get_bustag(sc->bge_res);
2053 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2054 
2055 	/* Save various chip information */
2056 	sc->bge_chipid =
2057 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2058 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2059 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2060 		/* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2061 		sc->bge_flags |= BGE_FLAG_CPMU;
2062 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2063 	}
2064 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2065 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2066 
2067 	/* Save chipset family. */
2068 	switch (sc->bge_asicrev) {
2069 	case BGE_ASICREV_BCM5755:
2070 	case BGE_ASICREV_BCM5761:
2071 	case BGE_ASICREV_BCM5784:
2072 	case BGE_ASICREV_BCM5785:
2073 	case BGE_ASICREV_BCM5787:
2074 	case BGE_ASICREV_BCM57780:
2075 	    sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2076 		BGE_FLAG_5705_PLUS;
2077 	    break;
2078 
2079 	case BGE_ASICREV_BCM5700:
2080 	case BGE_ASICREV_BCM5701:
2081 	case BGE_ASICREV_BCM5703:
2082 	case BGE_ASICREV_BCM5704:
2083 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2084 		break;
2085 
2086 	case BGE_ASICREV_BCM5714_A0:
2087 	case BGE_ASICREV_BCM5780:
2088 	case BGE_ASICREV_BCM5714:
2089 		sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2090 		/* Fall through */
2091 
2092 	case BGE_ASICREV_BCM5750:
2093 	case BGE_ASICREV_BCM5752:
2094 	case BGE_ASICREV_BCM5906:
2095 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2096 		/* Fall through */
2097 
2098 	case BGE_ASICREV_BCM5705:
2099 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2100 		break;
2101 	}
2102 
2103 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2104 		sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2105 
2106 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2107 		sc->bge_flags |= BGE_FLAG_APE;
2108 
2109 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2110 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2111 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2112 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2113 		sc->bge_flags |= BGE_FLAG_5788;
2114 
2115 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
2116 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2117 		sc->bge_flags |= BGE_FLAG_SHORTDMA;
2118 
2119 	/*
2120 	 * Increase STD RX ring prod index by at most 8 for BCM5750,
2121 	 * BCM5752 and BCM5755 to workaround hardware errata.
2122 	 */
2123 	if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2124 	    sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2125 	    sc->bge_asicrev == BGE_ASICREV_BCM5755)
2126 		sc->bge_rx_wreg = 8;
2127 
2128   	/*
2129 	 * Check if this is a PCI-X or PCI Express device.
2130   	 */
2131 	if (BGE_IS_5705_PLUS(sc)) {
2132 		if (pci_is_pcie(dev)) {
2133 			sc->bge_flags |= BGE_FLAG_PCIE;
2134 			sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2135 			pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2136 		}
2137 	} else {
2138 		/*
2139 		 * Check if the device is in PCI-X Mode.
2140 		 * (This bit is not valid on PCI Express controllers.)
2141 		 */
2142 		if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2143 		    BGE_PCISTATE_PCI_BUSMODE) == 0) {
2144 			sc->bge_flags |= BGE_FLAG_PCIX;
2145 			sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2146 			sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2147 			    "mbox_reorder", 0);
2148 		}
2149  	}
2150 	device_printf(dev, "CHIP ID 0x%08x; "
2151 		      "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2152 		      sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2153 		      (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2154 		      : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2155 			"PCI-E" : "PCI"));
2156 
2157 	/*
2158 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2159 	 * not actually a MAC controller bug but an issue with the embedded
2160 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2161 	 */
2162 	if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2163 	    (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2164 		sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2165 
2166 	/*
2167 	 * When using the BCM5701 in PCI-X mode, data corruption has
2168 	 * been observed in the first few bytes of some received packets.
2169 	 * Aligning the packet buffer in memory eliminates the corruption.
2170 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2171 	 * which do not support unaligned accesses, we will realign the
2172 	 * payloads by copying the received packets.
2173 	 */
2174 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2175 	    (sc->bge_flags & BGE_FLAG_PCIX))
2176 		sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2177 
2178 	if (!BGE_IS_CRIPPLED(sc)) {
2179 		if (device_getenv_int(dev, "status_tag", 1)) {
2180 			sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2181 			sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2182 			if (bootverbose)
2183 				device_printf(dev, "enable status tag\n");
2184 		}
2185 	}
2186 
2187 	if (BGE_IS_5755_PLUS(sc)) {
2188 		/*
2189 		 * BCM5754 and BCM5787 shares the same ASIC id so
2190 		 * explicit device id check is required.
2191 		 * Due to unknown reason TSO does not work on BCM5755M.
2192 		 */
2193 		if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2194 		    product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2195 		    product != PCI_PRODUCT_BROADCOM_BCM5755M)
2196 			sc->bge_flags |= BGE_FLAG_TSO;
2197 	}
2198 
2199 	/*
2200 	 * Set various PHY quirk flags.
2201 	 */
2202 
2203 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2204 	     sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2205 	    pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2206 		mii_priv |= BRGPHY_FLAG_NO_3LED;
2207 
2208 	capmask = MII_CAPMASK_DEFAULT;
2209 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2210 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2211 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2212 	     vendor == PCI_VENDOR_BROADCOM &&
2213 	     (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2214 	      product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2215 	      product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2216 	    (vendor == PCI_VENDOR_BROADCOM &&
2217 	     (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2218 	      product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2219 	      product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2220 	    product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2221 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2222 		/* 10/100 only */
2223 		capmask &= ~BMSR_EXTSTAT;
2224 	}
2225 
2226 	mii_priv |= BRGPHY_FLAG_WIRESPEED;
2227 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2228 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2229 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2230 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2231 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2232 		mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2233 
2234 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2235 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2236 		mii_priv |= BRGPHY_FLAG_CRC_BUG;
2237 
2238 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2239 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2240 		mii_priv |= BRGPHY_FLAG_ADC_BUG;
2241 
2242 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2243 		mii_priv |= BRGPHY_FLAG_5704_A0;
2244 
2245 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2246 		mii_priv |= BRGPHY_FLAG_5906;
2247 
2248 	if (BGE_IS_5705_PLUS(sc) &&
2249 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2250 	    /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2251 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2252 	    /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2253 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2254 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2255 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2256 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2257 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2258 			if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2259 			    product != PCI_PRODUCT_BROADCOM_BCM5756)
2260 				mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2261 			if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2262 				mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2263 		} else {
2264 			mii_priv |= BRGPHY_FLAG_BER_BUG;
2265 		}
2266 	}
2267 
2268 	/*
2269 	 * Allocate interrupt
2270 	 */
2271 	msi_enable = bge_msi_enable;
2272 	if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2273 		/* If "tagged status" is disabled, don't enable MSI */
2274 		msi_enable = 0;
2275 	} else if (msi_enable) {
2276 		msi_enable = 0; /* Disable by default */
2277 		if (BGE_IS_575X_PLUS(sc)) {
2278 			msi_enable = 1;
2279 			/* XXX we filter all 5714 chips */
2280 			if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2281 			    (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2282 			     (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2283 			      sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2284 				msi_enable = 0;
2285 			else if (BGE_IS_5755_PLUS(sc) ||
2286 			    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2287 				sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2288 		}
2289 	}
2290 	if (msi_enable) {
2291 		if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2292 			device_printf(dev, "no MSI capability\n");
2293 			msi_enable = 0;
2294 		}
2295 	}
2296 
2297 	sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2298 	    &intr_flags);
2299 
2300 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2301 	    intr_flags);
2302 	if (sc->bge_irq == NULL) {
2303 		device_printf(dev, "couldn't map interrupt\n");
2304 		error = ENXIO;
2305 		goto fail;
2306 	}
2307 
2308 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2309 		bge_enable_msi(sc);
2310 	else
2311 		sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2312 
2313 	/* Initialize if_name earlier, so if_printf could be used */
2314 	ifp = &sc->arpcom.ac_if;
2315 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2316 
2317 	sc->bge_asf_mode = 0;
2318 	/* No ASF if APE present. */
2319 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
2320 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
2321 		    BGE_SRAM_DATA_SIG_MAGIC)) {
2322 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
2323 			    BGE_HWCFG_ASF) {
2324 				sc->bge_asf_mode |= ASF_ENABLE;
2325 				sc->bge_asf_mode |= ASF_STACKUP;
2326 				if (BGE_IS_575X_PLUS(sc))
2327 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2328 			}
2329 		}
2330 	}
2331 
2332 	/*
2333 	 * Try to reset the chip.
2334 	 */
2335 	bge_stop_fw(sc);
2336 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
2337 	bge_reset(sc);
2338 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
2339 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
2340 
2341 	if (bge_chipinit(sc)) {
2342 		device_printf(dev, "chip initialization failed\n");
2343 		error = ENXIO;
2344 		goto fail;
2345 	}
2346 
2347 	/*
2348 	 * Get station address
2349 	 */
2350 	error = bge_get_eaddr(sc, ether_addr);
2351 	if (error) {
2352 		device_printf(dev, "failed to read station address\n");
2353 		goto fail;
2354 	}
2355 
2356 	/* 5705/5750 limits RX return ring to 512 entries. */
2357 	if (BGE_IS_5705_PLUS(sc))
2358 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2359 	else
2360 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2361 
2362 	error = bge_dma_alloc(sc);
2363 	if (error)
2364 		goto fail;
2365 
2366 	/* Set default tuneable values. */
2367 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2368 	sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2369 	sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2370 	sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2371 	sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2372 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2373 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2374 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2375 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2376 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2377 	} else {
2378 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2379 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2380 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2381 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2382 	}
2383 	sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2384 
2385 	/* Set up TX spare and reserved descriptor count */
2386 	if (sc->bge_flags & BGE_FLAG_TSO) {
2387 		sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2388 		sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2389 	} else {
2390 		sc->bge_txspare = BGE_NSEG_SPARE;
2391 		sc->bge_txrsvd = BGE_NSEG_RSVD;
2392 	}
2393 
2394 	/* Set up ifnet structure */
2395 	ifp->if_softc = sc;
2396 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2397 	ifp->if_ioctl = bge_ioctl;
2398 	ifp->if_start = bge_start;
2399 #ifdef IFPOLL_ENABLE
2400 	ifp->if_npoll = bge_npoll;
2401 #endif
2402 	ifp->if_watchdog = bge_watchdog;
2403 	ifp->if_init = bge_init;
2404 	ifp->if_mtu = ETHERMTU;
2405 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2406 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2407 	ifq_set_ready(&ifp->if_snd);
2408 
2409 	/*
2410 	 * 5700 B0 chips do not support checksumming correctly due
2411 	 * to hardware bugs.
2412 	 */
2413 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2414 		ifp->if_capabilities |= IFCAP_HWCSUM;
2415 		ifp->if_hwassist |= BGE_CSUM_FEATURES;
2416 	}
2417 	if (sc->bge_flags & BGE_FLAG_TSO) {
2418 		ifp->if_capabilities |= IFCAP_TSO;
2419 		ifp->if_hwassist |= CSUM_TSO;
2420 	}
2421 	ifp->if_capenable = ifp->if_capabilities;
2422 
2423 	/*
2424 	 * Figure out what sort of media we have by checking the
2425 	 * hardware config word in the first 32k of NIC internal memory,
2426 	 * or fall back to examining the EEPROM if necessary.
2427 	 * Note: on some BCM5700 cards, this value appears to be unset.
2428 	 * If that's the case, we have to rely on identifying the NIC
2429 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2430 	 * SK-9D41.
2431 	 */
2432 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2433 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2434 	} else {
2435 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2436 				    sizeof(hwcfg))) {
2437 			device_printf(dev, "failed to read EEPROM\n");
2438 			error = ENXIO;
2439 			goto fail;
2440 		}
2441 		hwcfg = ntohl(hwcfg);
2442 	}
2443 
2444 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2445 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2446 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2447 		if (BGE_IS_5714_FAMILY(sc))
2448 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2449 		else
2450 			sc->bge_flags |= BGE_FLAG_TBI;
2451 	}
2452 
2453 	/* Setup MI MODE */
2454 	if (sc->bge_flags & BGE_FLAG_CPMU)
2455 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2456 	else
2457 		sc->bge_mi_mode = BGE_MIMODE_BASE;
2458 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2459 		/* Enable auto polling for BCM570[0-5]. */
2460 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2461 	}
2462 
2463 	/* Setup link status update stuffs */
2464 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2465 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2466 		sc->bge_link_upd = bge_bcm5700_link_upd;
2467 		sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2468 	} else if (sc->bge_flags & BGE_FLAG_TBI) {
2469 		sc->bge_link_upd = bge_tbi_link_upd;
2470 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2471 	} else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2472 		sc->bge_link_upd = bge_autopoll_link_upd;
2473 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2474 	} else {
2475 		sc->bge_link_upd = bge_copper_link_upd;
2476 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2477 	}
2478 
2479 	/*
2480 	 * Broadcom's own driver always assumes the internal
2481 	 * PHY is at GMII address 1.  On some chips, the PHY responds
2482 	 * to accesses at all addresses, which could cause us to
2483 	 * bogusly attach the PHY 32 times at probe type.  Always
2484 	 * restricting the lookup to address 1 is simpler than
2485 	 * trying to figure out which chips revisions should be
2486 	 * special-cased.
2487 	 */
2488 	sc->bge_phyno = 1;
2489 
2490 	if (sc->bge_flags & BGE_FLAG_TBI) {
2491 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2492 		    bge_ifmedia_upd, bge_ifmedia_sts);
2493 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2494 		ifmedia_add(&sc->bge_ifmedia,
2495 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2496 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2497 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2498 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2499 	} else {
2500 		struct mii_probe_args mii_args;
2501 		int tries;
2502 
2503 		/*
2504 		 * Do transceiver setup and tell the firmware the
2505 		 * driver is down so we can try to get access the
2506 		 * probe if ASF is running.  Retry a couple of times
2507 		 * if we get a conflict with the ASF firmware accessing
2508 		 * the PHY.
2509 		 */
2510 		tries = 0;
2511 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2512 again:
2513 		bge_asf_driver_up(sc);
2514 
2515 		mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2516 		mii_args.mii_probemask = 1 << sc->bge_phyno;
2517 		mii_args.mii_capmask = capmask;
2518 		mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2519 		mii_args.mii_priv = mii_priv;
2520 
2521 		error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2522 		if (error) {
2523 			if (tries++ < 4) {
2524 				device_printf(sc->bge_dev, "Probe MII again\n");
2525 				bge_miibus_writereg(sc->bge_dev,
2526 				    sc->bge_phyno, MII_BMCR, BMCR_RESET);
2527 				goto again;
2528 			}
2529 			device_printf(dev, "MII without any PHY!\n");
2530 			goto fail;
2531 		}
2532 
2533 		/*
2534 		 * Now tell the firmware we are going up after probing the PHY
2535 		 */
2536 		if (sc->bge_asf_mode & ASF_STACKUP)
2537 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2538 	}
2539 
2540 	/*
2541 	 * Create sysctl nodes.
2542 	 */
2543 	sysctl_ctx_init(&sc->bge_sysctl_ctx);
2544 	sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2545 					      SYSCTL_STATIC_CHILDREN(_hw),
2546 					      OID_AUTO,
2547 					      device_get_nameunit(dev),
2548 					      CTLFLAG_RD, 0, "");
2549 	if (sc->bge_sysctl_tree == NULL) {
2550 		device_printf(dev, "can't add sysctl node\n");
2551 		error = ENXIO;
2552 		goto fail;
2553 	}
2554 
2555 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2556 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2557 			OID_AUTO, "rx_coal_ticks",
2558 			CTLTYPE_INT | CTLFLAG_RW,
2559 			sc, 0, bge_sysctl_rx_coal_ticks, "I",
2560 			"Receive coalescing ticks (usec).");
2561 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2562 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2563 			OID_AUTO, "tx_coal_ticks",
2564 			CTLTYPE_INT | CTLFLAG_RW,
2565 			sc, 0, bge_sysctl_tx_coal_ticks, "I",
2566 			"Transmit coalescing ticks (usec).");
2567 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2568 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2569 			OID_AUTO, "rx_coal_bds",
2570 			CTLTYPE_INT | CTLFLAG_RW,
2571 			sc, 0, bge_sysctl_rx_coal_bds, "I",
2572 			"Receive max coalesced BD count.");
2573 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2574 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2575 			OID_AUTO, "tx_coal_bds",
2576 			CTLTYPE_INT | CTLFLAG_RW,
2577 			sc, 0, bge_sysctl_tx_coal_bds, "I",
2578 			"Transmit max coalesced BD count.");
2579 
2580 	SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2581 		       SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2582 		       OID_AUTO, "tx_wreg", CTLFLAG_RW,
2583 		       &sc->bge_tx_wreg, 0,
2584 		       "# of segments before writing to hardware register");
2585 
2586 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2587 		/*
2588 		 * A common design characteristic for many Broadcom
2589 		 * client controllers is that they only support a
2590 		 * single outstanding DMA read operation on the PCIe
2591 		 * bus. This means that it will take twice as long to
2592 		 * fetch a TX frame that is split into header and
2593 		 * payload buffers as it does to fetch a single,
2594 		 * contiguous TX frame (2 reads vs. 1 read). For these
2595 		 * controllers, coalescing buffers to reduce the number
2596 		 * of memory reads is effective way to get maximum
2597 		 * performance(about 940Mbps).  Without collapsing TX
2598 		 * buffers the maximum TCP bulk transfer performance
2599 		 * is about 850Mbps. However forcing coalescing mbufs
2600 		 * consumes a lot of CPU cycles, so leave it off by
2601 		 * default.
2602 		 */
2603 		SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2604 			       SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2605 			       OID_AUTO, "force_defrag", CTLFLAG_RW,
2606 			       &sc->bge_force_defrag, 0,
2607 			       "Force defragment on TX path");
2608 	}
2609 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2610 		if (!BGE_IS_5705_PLUS(sc)) {
2611 			SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2612 			    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2613 			    "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2614 			    sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2615 			    "Receive coalescing ticks "
2616 			    "during interrupt (usec).");
2617 			SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2618 			    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2619 			    "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2620 			    sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2621 			    "Transmit coalescing ticks "
2622 			    "during interrupt (usec).");
2623 		}
2624 		SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2625 		    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2626 		    "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2627 		    sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2628 		    "Receive max coalesced BD count during interrupt.");
2629 		SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2630 		    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2631 		    "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2632 		    sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2633 		    "Transmit max coalesced BD count during interrupt.");
2634 	}
2635 
2636 	/*
2637 	 * Call MI attach routine.
2638 	 */
2639 	ether_ifattach(ifp, ether_addr, NULL);
2640 
2641 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2642 
2643 #ifdef IFPOLL_ENABLE
2644 	/* Polling setup */
2645 	ifpoll_compat_setup(&sc->bge_npoll,
2646 	    &sc->bge_sysctl_ctx, sc->bge_sysctl_tree, device_get_unit(dev),
2647 	    ifp->if_serializer);
2648 #endif
2649 
2650 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2651 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2652 			intr_func = bge_msi_oneshot;
2653 			if (bootverbose)
2654 				device_printf(dev, "oneshot MSI\n");
2655 		} else {
2656 			intr_func = bge_msi;
2657 		}
2658 	} else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2659 		intr_func = bge_intr_legacy;
2660 	} else {
2661 		intr_func = bge_intr_crippled;
2662 	}
2663 	error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2664 	    &sc->bge_intrhand, ifp->if_serializer);
2665 	if (error) {
2666 		ether_ifdetach(ifp);
2667 		device_printf(dev, "couldn't set up irq\n");
2668 		goto fail;
2669 	}
2670 
2671 	return(0);
2672 fail:
2673 	bge_detach(dev);
2674 	return(error);
2675 }
2676 
2677 static int
2678 bge_detach(device_t dev)
2679 {
2680 	struct bge_softc *sc = device_get_softc(dev);
2681 
2682 	if (device_is_attached(dev)) {
2683 		struct ifnet *ifp = &sc->arpcom.ac_if;
2684 
2685 		lwkt_serialize_enter(ifp->if_serializer);
2686 		bge_stop(sc);
2687 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2688 		lwkt_serialize_exit(ifp->if_serializer);
2689 
2690 		ether_ifdetach(ifp);
2691 	}
2692 
2693 	if (sc->bge_flags & BGE_FLAG_TBI)
2694 		ifmedia_removeall(&sc->bge_ifmedia);
2695 	if (sc->bge_miibus)
2696 		device_delete_child(dev, sc->bge_miibus);
2697 	bus_generic_detach(dev);
2698 
2699 	if (sc->bge_irq != NULL) {
2700 		bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2701 		    sc->bge_irq);
2702 	}
2703 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2704 		pci_release_msi(dev);
2705 
2706 	if (sc->bge_res != NULL) {
2707 		bus_release_resource(dev, SYS_RES_MEMORY,
2708 		    BGE_PCI_BAR0, sc->bge_res);
2709 	}
2710 
2711 	if (sc->bge_sysctl_tree != NULL)
2712 		sysctl_ctx_free(&sc->bge_sysctl_ctx);
2713 
2714 	bge_dma_free(sc);
2715 
2716 	return 0;
2717 }
2718 
2719 static void
2720 bge_reset(struct bge_softc *sc)
2721 {
2722 	device_t dev;
2723 	uint32_t cachesize, command, pcistate, reset;
2724 	void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2725 	int i, val = 0;
2726 
2727 	dev = sc->bge_dev;
2728 
2729 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2730 	    sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2731 		if (sc->bge_flags & BGE_FLAG_PCIE)
2732 			write_op = bge_writemem_direct;
2733 		else
2734 			write_op = bge_writemem_ind;
2735 	} else {
2736 		write_op = bge_writereg_ind;
2737 	}
2738 
2739 	/* Save some important PCI state. */
2740 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2741 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
2742 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2743 
2744 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2745 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2746 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2747 	    sc->bge_pci_miscctl, 4);
2748 
2749 	/* Disable fastboot on controllers that support it. */
2750 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2751 	    BGE_IS_5755_PLUS(sc)) {
2752 		if (bootverbose)
2753 			if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2754 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2755 	}
2756 
2757 	/*
2758 	 * Write the magic number to SRAM at offset 0xB50.
2759 	 * When firmware finishes its initialization it will
2760 	 * write ~BGE_MAGIC_NUMBER to the same location.
2761 	 */
2762 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2763 
2764 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2765 
2766 	/* XXX: Broadcom Linux driver. */
2767 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2768 		/* Force PCI-E 1.0a mode */
2769 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2770 		    CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2771 		    (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2772 		     BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2773 			CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2774 			    BGE_PCIE_PHY_TSTCTL_PSCRAM);
2775 		}
2776 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2777 			/* Prevent PCIE link training during global reset */
2778 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2779 			reset |= (1<<29);
2780 		}
2781 	}
2782 
2783 	/*
2784 	 * Set GPHY Power Down Override to leave GPHY
2785 	 * powered up in D0 uninitialized.
2786 	 */
2787 	if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2788 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2789 
2790 	/* Issue global reset */
2791 	write_op(sc, BGE_MISC_CFG, reset);
2792 
2793 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2794 		uint32_t status, ctrl;
2795 
2796 		status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2797 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2798 		    status | BGE_VCPU_STATUS_DRV_RESET);
2799 		ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2800 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2801 		    ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2802 	}
2803 
2804 	DELAY(1000);
2805 
2806 	/* XXX: Broadcom Linux driver. */
2807 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2808 		uint16_t devctl;
2809 
2810 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2811 			uint32_t v;
2812 
2813 			DELAY(500000); /* wait for link training to complete */
2814 			v = pci_read_config(dev, 0xc4, 4);
2815 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
2816 		}
2817 
2818 		devctl = pci_read_config(dev,
2819 		    sc->bge_pciecap + PCIER_DEVCTRL, 2);
2820 
2821 		/* Disable no snoop and disable relaxed ordering. */
2822 		devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2823 
2824 		/* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2825 		if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2826 			devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2827 			devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2828 		}
2829 
2830 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2831 		    devctl, 2);
2832 
2833 		/* Clear error status. */
2834 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2835 		    PCIEM_DEVSTS_CORR_ERR |
2836 		    PCIEM_DEVSTS_NFATAL_ERR |
2837 		    PCIEM_DEVSTS_FATAL_ERR |
2838 		    PCIEM_DEVSTS_UNSUPP_REQ, 2);
2839 	}
2840 
2841 	/* Reset some of the PCI state that got zapped by reset */
2842 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2843 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2844 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2845 	    sc->bge_pci_miscctl, 4);
2846 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2847 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2848 	write_op(sc, BGE_MISC_CFG, (65 << 1));
2849 
2850 	/*
2851 	 * Disable PCI-X relaxed ordering to ensure status block update
2852 	 * comes first then packet buffer DMA. Otherwise driver may
2853 	 * read stale status block.
2854 	 */
2855 	if (sc->bge_flags & BGE_FLAG_PCIX) {
2856 		uint16_t devctl;
2857 
2858 		devctl = pci_read_config(dev,
2859 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
2860 		devctl &= ~PCIXM_COMMAND_ERO;
2861 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2862 			devctl &= ~PCIXM_COMMAND_MAX_READ;
2863 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2864 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2865 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2866 			    PCIXM_COMMAND_MAX_READ);
2867 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2868 		}
2869 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2870 		    devctl, 2);
2871 	}
2872 
2873 	/*
2874 	 * Enable memory arbiter and re-enable MSI if necessary.
2875 	 */
2876 	if (BGE_IS_5714_FAMILY(sc)) {
2877 		uint32_t val;
2878 
2879 		if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2880 			/*
2881 			 * Resetting BCM5714 family will clear MSI
2882 			 * enable bit; restore it after resetting.
2883 			 */
2884 			PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2885 			    PCIM_MSICTRL_MSI_ENABLE, 2);
2886 			BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2887 		}
2888 		val = CSR_READ_4(sc, BGE_MARB_MODE);
2889 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2890 	} else {
2891 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2892 	}
2893 
2894 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2895 		for (i = 0; i < BGE_TIMEOUT; i++) {
2896 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2897 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2898 				break;
2899 			DELAY(100);
2900 		}
2901 		if (i == BGE_TIMEOUT) {
2902 			if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2903 			return;
2904 		}
2905 	} else {
2906 		/*
2907 		 * Poll until we see the 1's complement of the magic number.
2908 		 * This indicates that the firmware initialization
2909 		 * is complete.
2910 		 */
2911 		for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2912 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2913 			if (val == ~BGE_MAGIC_NUMBER)
2914 				break;
2915 			DELAY(10);
2916 		}
2917 		if (i == BGE_FIRMWARE_TIMEOUT) {
2918 			if_printf(&sc->arpcom.ac_if, "firmware handshake "
2919 				  "timed out, found 0x%08x\n", val);
2920 		}
2921 	}
2922 
2923 	/*
2924 	 * XXX Wait for the value of the PCISTATE register to
2925 	 * return to its original pre-reset state. This is a
2926 	 * fairly good indicator of reset completion. If we don't
2927 	 * wait for the reset to fully complete, trying to read
2928 	 * from the device's non-PCI registers may yield garbage
2929 	 * results.
2930 	 */
2931 	for (i = 0; i < BGE_TIMEOUT; i++) {
2932 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2933 			break;
2934 		DELAY(10);
2935 	}
2936 
2937 	/* Fix up byte swapping */
2938 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2939 	    BGE_MODECTL_BYTESWAP_DATA);
2940 
2941 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2942 
2943 	/*
2944 	 * The 5704 in TBI mode apparently needs some special
2945 	 * adjustment to insure the SERDES drive level is set
2946 	 * to 1.2V.
2947 	 */
2948 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2949 	    (sc->bge_flags & BGE_FLAG_TBI)) {
2950 		uint32_t serdescfg;
2951 
2952 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2953 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
2954 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2955 	}
2956 
2957 	/* XXX: Broadcom Linux driver. */
2958 	if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2959 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2960 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2961 		uint32_t v;
2962 
2963 		/* Enable Data FIFO protection. */
2964 		v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2965 		CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2966 	}
2967 
2968 	DELAY(10000);
2969 }
2970 
2971 /*
2972  * Frame reception handling. This is called if there's a frame
2973  * on the receive return list.
2974  *
2975  * Note: we have to be able to handle two possibilities here:
2976  * 1) the frame is from the jumbo recieve ring
2977  * 2) the frame is from the standard receive ring
2978  */
2979 
2980 static void
2981 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
2982 {
2983 	struct ifnet *ifp;
2984 	int stdcnt = 0, jumbocnt = 0;
2985 
2986 	ifp = &sc->arpcom.ac_if;
2987 
2988 	while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
2989 		struct bge_rx_bd	*cur_rx;
2990 		uint32_t		rxidx;
2991 		struct mbuf		*m = NULL;
2992 		uint16_t		vlan_tag = 0;
2993 		int			have_tag = 0;
2994 
2995 		--count;
2996 
2997 		cur_rx =
2998 	    &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2999 
3000 		rxidx = cur_rx->bge_idx;
3001 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3002 		logif(rx_pkt);
3003 
3004 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3005 			have_tag = 1;
3006 			vlan_tag = cur_rx->bge_vlan_tag;
3007 		}
3008 
3009 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3010 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3011 			jumbocnt++;
3012 
3013 			if (rxidx != sc->bge_jumbo) {
3014 				IFNET_STAT_INC(ifp, ierrors, 1);
3015 				if_printf(ifp, "sw jumbo index(%d) "
3016 				    "and hw jumbo index(%d) mismatch, drop!\n",
3017 				    sc->bge_jumbo, rxidx);
3018 				bge_setup_rxdesc_jumbo(sc, rxidx);
3019 				continue;
3020 			}
3021 
3022 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
3023 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3024 				IFNET_STAT_INC(ifp, ierrors, 1);
3025 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3026 				continue;
3027 			}
3028 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
3029 				IFNET_STAT_INC(ifp, ierrors, 1);
3030 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3031 				continue;
3032 			}
3033 		} else {
3034 			int discard = 0;
3035 
3036 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3037 			stdcnt++;
3038 
3039 			if (rxidx != sc->bge_std) {
3040 				IFNET_STAT_INC(ifp, ierrors, 1);
3041 				if_printf(ifp, "sw std index(%d) "
3042 				    "and hw std index(%d) mismatch, drop!\n",
3043 				    sc->bge_std, rxidx);
3044 				bge_setup_rxdesc_std(sc, rxidx);
3045 				discard = 1;
3046 				goto refresh_rx;
3047 			}
3048 
3049 			m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
3050 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3051 				IFNET_STAT_INC(ifp, ierrors, 1);
3052 				bge_setup_rxdesc_std(sc, sc->bge_std);
3053 				discard = 1;
3054 				goto refresh_rx;
3055 			}
3056 			if (bge_newbuf_std(sc, sc->bge_std, 0)) {
3057 				IFNET_STAT_INC(ifp, ierrors, 1);
3058 				bge_setup_rxdesc_std(sc, sc->bge_std);
3059 				discard = 1;
3060 			}
3061 refresh_rx:
3062 			if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
3063 				bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
3064 				    sc->bge_std);
3065 				stdcnt = 0;
3066 			}
3067 			if (discard)
3068 				continue;
3069 		}
3070 
3071 		IFNET_STAT_INC(ifp, ipackets, 1);
3072 #if !defined(__i386__) && !defined(__x86_64__)
3073 		/*
3074 		 * The x86 allows unaligned accesses, but for other
3075 		 * platforms we must make sure the payload is aligned.
3076 		 */
3077 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3078 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3079 			    cur_rx->bge_len);
3080 			m->m_data += ETHER_ALIGN;
3081 		}
3082 #endif
3083 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3084 		m->m_pkthdr.rcvif = ifp;
3085 
3086 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3087 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3088 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3089 				if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3090 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3091 			}
3092 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3093 			    m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3094 				m->m_pkthdr.csum_data =
3095 					cur_rx->bge_tcp_udp_csum;
3096 				m->m_pkthdr.csum_flags |=
3097 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3098 			}
3099 		}
3100 
3101 		/*
3102 		 * If we received a packet with a vlan tag, pass it
3103 		 * to vlan_input() instead of ether_input().
3104 		 */
3105 		if (have_tag) {
3106 			m->m_flags |= M_VLANTAG;
3107 			m->m_pkthdr.ether_vlantag = vlan_tag;
3108 		}
3109 		ifp->if_input(ifp, m);
3110 	}
3111 
3112 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3113 	if (stdcnt)
3114 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3115 	if (jumbocnt)
3116 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3117 }
3118 
3119 static void
3120 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3121 {
3122 	struct ifnet *ifp;
3123 
3124 	ifp = &sc->arpcom.ac_if;
3125 
3126 	/*
3127 	 * Go through our tx ring and free mbufs for those
3128 	 * frames that have been sent.
3129 	 */
3130 	while (sc->bge_tx_saved_considx != tx_cons) {
3131 		uint32_t idx = 0;
3132 
3133 		idx = sc->bge_tx_saved_considx;
3134 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3135 			IFNET_STAT_INC(ifp, opackets, 1);
3136 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3137 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3138 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3139 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3140 		}
3141 		sc->bge_txcnt--;
3142 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3143 		logif(tx_pkt);
3144 	}
3145 
3146 	if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3147 	    (sc->bge_txrsvd + sc->bge_txspare))
3148 		ifq_clr_oactive(&ifp->if_snd);
3149 
3150 	if (sc->bge_txcnt == 0)
3151 		ifp->if_timer = 0;
3152 
3153 	if (!ifq_is_empty(&ifp->if_snd))
3154 		if_devstart(ifp);
3155 }
3156 
3157 #ifdef IFPOLL_ENABLE
3158 
3159 static void
3160 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3161 {
3162 	struct bge_softc *sc = ifp->if_softc;
3163 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3164 	uint16_t rx_prod, tx_cons;
3165 
3166 	ASSERT_SERIALIZED(ifp->if_serializer);
3167 
3168 	if (sc->bge_npoll.ifpc_stcount-- == 0) {
3169 		sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3170 		/*
3171 		 * Process link state changes.
3172 		 */
3173 		bge_link_poll(sc);
3174 	}
3175 
3176 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3177 		sc->bge_status_tag = sblk->bge_status_tag;
3178 		/*
3179 		 * Use a load fence to ensure that status_tag
3180 		 * is saved  before rx_prod and tx_cons.
3181 		 */
3182 		cpu_lfence();
3183 	}
3184 
3185 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3186 	if (sc->bge_rx_saved_considx != rx_prod)
3187 		bge_rxeof(sc, rx_prod, cycles);
3188 
3189 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3190 	if (sc->bge_tx_saved_considx != tx_cons)
3191 		bge_txeof(sc, tx_cons);
3192 
3193 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3194 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3195 
3196 	if (sc->bge_coal_chg)
3197 		bge_coal_change(sc);
3198 }
3199 
3200 static void
3201 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3202 {
3203 	struct bge_softc *sc = ifp->if_softc;
3204 
3205 	ASSERT_SERIALIZED(ifp->if_serializer);
3206 
3207 	if (info != NULL) {
3208 		int cpuid = sc->bge_npoll.ifpc_cpuid;
3209 
3210 		info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3211 		info->ifpi_rx[cpuid].arg = NULL;
3212 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3213 
3214 		if (ifp->if_flags & IFF_RUNNING)
3215 			bge_disable_intr(sc);
3216 		ifq_set_cpuid(&ifp->if_snd, cpuid);
3217 	} else {
3218 		if (ifp->if_flags & IFF_RUNNING)
3219 			bge_enable_intr(sc);
3220 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3221 	}
3222 }
3223 
3224 #endif	/* IFPOLL_ENABLE */
3225 
3226 static void
3227 bge_intr_crippled(void *xsc)
3228 {
3229 	struct bge_softc *sc = xsc;
3230 	struct ifnet *ifp = &sc->arpcom.ac_if;
3231 
3232 	logif(intr);
3233 
3234  	/*
3235 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3236 	 * disable interrupts by writing nonzero like we used to, since with
3237 	 * our current organization this just gives complications and
3238 	 * pessimizations for re-enabling interrupts.  We used to have races
3239 	 * instead of the necessary complications.  Disabling interrupts
3240 	 * would just reduce the chance of a status update while we are
3241 	 * running (by switching to the interrupt-mode coalescence
3242 	 * parameters), but this chance is already very low so it is more
3243 	 * efficient to get another interrupt than prevent it.
3244 	 *
3245 	 * We do the ack first to ensure another interrupt if there is a
3246 	 * status update after the ack.  We don't check for the status
3247 	 * changing later because it is more efficient to get another
3248 	 * interrupt than prevent it, not quite as above (not checking is
3249 	 * a smaller optimization than not toggling the interrupt enable,
3250 	 * since checking doesn't involve PCI accesses and toggling require
3251 	 * the status check).  So toggling would probably be a pessimization
3252 	 * even with MSI.  It would only be needed for using a task queue.
3253 	 */
3254 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3255 
3256 	/*
3257 	 * Process link state changes.
3258 	 */
3259 	bge_link_poll(sc);
3260 
3261 	if (ifp->if_flags & IFF_RUNNING) {
3262 		struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3263 		uint16_t rx_prod, tx_cons;
3264 
3265 		rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3266 		if (sc->bge_rx_saved_considx != rx_prod)
3267 			bge_rxeof(sc, rx_prod, -1);
3268 
3269 		tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3270 		if (sc->bge_tx_saved_considx != tx_cons)
3271 			bge_txeof(sc, tx_cons);
3272 	}
3273 
3274 	if (sc->bge_coal_chg)
3275 		bge_coal_change(sc);
3276 }
3277 
3278 static void
3279 bge_intr_legacy(void *xsc)
3280 {
3281 	struct bge_softc *sc = xsc;
3282 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3283 
3284 	if (sc->bge_status_tag == sblk->bge_status_tag) {
3285 		uint32_t val;
3286 
3287 		val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3288 		if (val & BGE_PCISTAT_INTR_NOTACT)
3289 			return;
3290 	}
3291 
3292 	/*
3293 	 * NOTE:
3294 	 * Interrupt will have to be disabled if tagged status
3295 	 * is used, else interrupt will always be asserted on
3296 	 * certain chips (at least on BCM5750 AX/BX).
3297 	 */
3298 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3299 
3300 	bge_intr(sc);
3301 }
3302 
3303 static void
3304 bge_msi(void *xsc)
3305 {
3306 	struct bge_softc *sc = xsc;
3307 
3308 	/* Disable interrupt first */
3309 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3310 	bge_intr(sc);
3311 }
3312 
3313 static void
3314 bge_msi_oneshot(void *xsc)
3315 {
3316 	bge_intr(xsc);
3317 }
3318 
3319 static void
3320 bge_intr(struct bge_softc *sc)
3321 {
3322 	struct ifnet *ifp = &sc->arpcom.ac_if;
3323 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3324 	uint16_t rx_prod, tx_cons;
3325 	uint32_t status;
3326 
3327 	sc->bge_status_tag = sblk->bge_status_tag;
3328 	/*
3329 	 * Use a load fence to ensure that status_tag is saved
3330 	 * before rx_prod, tx_cons and status.
3331 	 */
3332 	cpu_lfence();
3333 
3334 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3335 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3336 	status = sblk->bge_status;
3337 
3338 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3339 		bge_link_poll(sc);
3340 
3341 	if (ifp->if_flags & IFF_RUNNING) {
3342 		if (sc->bge_rx_saved_considx != rx_prod)
3343 			bge_rxeof(sc, rx_prod, -1);
3344 
3345 		if (sc->bge_tx_saved_considx != tx_cons)
3346 			bge_txeof(sc, tx_cons);
3347 	}
3348 
3349 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3350 
3351 	if (sc->bge_coal_chg)
3352 		bge_coal_change(sc);
3353 }
3354 
3355 static void
3356 bge_tick(void *xsc)
3357 {
3358 	struct bge_softc *sc = xsc;
3359 	struct ifnet *ifp = &sc->arpcom.ac_if;
3360 
3361 	lwkt_serialize_enter(ifp->if_serializer);
3362 
3363 	if (BGE_IS_5705_PLUS(sc))
3364 		bge_stats_update_regs(sc);
3365 	else
3366 		bge_stats_update(sc);
3367 
3368 	if (sc->bge_flags & BGE_FLAG_TBI) {
3369 		/*
3370 		 * Since in TBI mode auto-polling can't be used we should poll
3371 		 * link status manually. Here we register pending link event
3372 		 * and trigger interrupt.
3373 		 */
3374 		sc->bge_link_evt++;
3375 		if (BGE_IS_CRIPPLED(sc))
3376 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3377 		else
3378 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3379 	} else if (!sc->bge_link) {
3380 		mii_tick(device_get_softc(sc->bge_miibus));
3381 	}
3382 
3383 	bge_asf_driver_up(sc);
3384 
3385 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3386 
3387 	lwkt_serialize_exit(ifp->if_serializer);
3388 }
3389 
3390 static void
3391 bge_stats_update_regs(struct bge_softc *sc)
3392 {
3393 	struct ifnet *ifp = &sc->arpcom.ac_if;
3394 	struct bge_mac_stats_regs stats;
3395 	uint32_t *s;
3396 	int i;
3397 
3398 	s = (uint32_t *)&stats;
3399 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3400 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
3401 		s++;
3402 	}
3403 
3404 	IFNET_STAT_SET(ifp, collisions,
3405 	   (stats.dot3StatsSingleCollisionFrames +
3406 	   stats.dot3StatsMultipleCollisionFrames +
3407 	   stats.dot3StatsExcessiveCollisions +
3408 	   stats.dot3StatsLateCollisions));
3409 }
3410 
3411 static void
3412 bge_stats_update(struct bge_softc *sc)
3413 {
3414 	struct ifnet *ifp = &sc->arpcom.ac_if;
3415 	bus_size_t stats;
3416 
3417 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3418 
3419 #define READ_STAT(sc, stats, stat)	\
3420 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3421 
3422 	IFNET_STAT_SET(ifp, collisions,
3423 	   (READ_STAT(sc, stats,
3424 		txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3425 	    READ_STAT(sc, stats,
3426 		txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3427 	    READ_STAT(sc, stats,
3428 		txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3429 	    READ_STAT(sc, stats,
3430 		txstats.dot3StatsLateCollisions.bge_addr_lo)));
3431 
3432 #undef READ_STAT
3433 
3434 #ifdef notdef
3435 	IFNET_STAT_SET(ifp, collisions,
3436 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3437 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3438 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3439 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3440 #endif
3441 }
3442 
3443 /*
3444  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3445  * pointers to descriptors.
3446  */
3447 static int
3448 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3449     int *segs_used)
3450 {
3451 	struct bge_tx_bd *d = NULL, *last_d;
3452 	uint16_t csum_flags = 0, mss = 0;
3453 	bus_dma_segment_t segs[BGE_NSEG_NEW];
3454 	bus_dmamap_t map;
3455 	int error, maxsegs, nsegs, idx, i;
3456 	struct mbuf *m_head = *m_head0, *m_new;
3457 
3458 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3459 		error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3460 		if (error)
3461 			return ENOBUFS;
3462 		m_head = *m_head0;
3463 	} else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3464 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3465 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3466 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3467 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3468 		if (m_head->m_flags & M_LASTFRAG)
3469 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3470 		else if (m_head->m_flags & M_FRAG)
3471 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3472 	}
3473 
3474 	idx = *txidx;
3475 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3476 
3477 	maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3478 	KASSERT(maxsegs >= sc->bge_txspare,
3479 		("not enough segments %d", maxsegs));
3480 
3481 	if (maxsegs > BGE_NSEG_NEW)
3482 		maxsegs = BGE_NSEG_NEW;
3483 
3484 	/*
3485 	 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3486 	 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3487 	 * but when such padded frames employ the bge IP/TCP checksum
3488 	 * offload, the hardware checksum assist gives incorrect results
3489 	 * (possibly from incorporating its own padding into the UDP/TCP
3490 	 * checksum; who knows).  If we pad such runts with zeros, the
3491 	 * onboard checksum comes out correct.
3492 	 */
3493 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3494 	    m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3495 		error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3496 		if (error)
3497 			goto back;
3498 	}
3499 
3500 	if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3501 		m_new = bge_defrag_shortdma(m_head);
3502 		if (m_new == NULL) {
3503 			error = ENOBUFS;
3504 			goto back;
3505 		}
3506 		*m_head0 = m_head = m_new;
3507 	}
3508 	if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3509 	    sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3510 	    m_head->m_next != NULL) {
3511 		/*
3512 		 * Forcefully defragment mbuf chain to overcome hardware
3513 		 * limitation which only support a single outstanding
3514 		 * DMA read operation.  If it fails, keep moving on using
3515 		 * the original mbuf chain.
3516 		 */
3517 		m_new = m_defrag(m_head, MB_DONTWAIT);
3518 		if (m_new != NULL)
3519 			*m_head0 = m_head = m_new;
3520 	}
3521 
3522 	error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3523 			m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3524 	if (error)
3525 		goto back;
3526 	*segs_used += nsegs;
3527 
3528 	m_head = *m_head0;
3529 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3530 
3531 	for (i = 0; ; i++) {
3532 		d = &sc->bge_ldata.bge_tx_ring[idx];
3533 
3534 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3535 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3536 		d->bge_len = segs[i].ds_len;
3537 		d->bge_flags = csum_flags;
3538 		d->bge_mss = mss;
3539 
3540 		if (i == nsegs - 1)
3541 			break;
3542 		BGE_INC(idx, BGE_TX_RING_CNT);
3543 	}
3544 	last_d = d;
3545 
3546 	/* Set vlan tag to the first segment of the packet. */
3547 	d = &sc->bge_ldata.bge_tx_ring[*txidx];
3548 	if (m_head->m_flags & M_VLANTAG) {
3549 		d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3550 		d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3551 	} else {
3552 		d->bge_vlan_tag = 0;
3553 	}
3554 
3555 	/* Mark the last segment as end of packet... */
3556 	last_d->bge_flags |= BGE_TXBDFLAG_END;
3557 
3558 	/*
3559 	 * Insure that the map for this transmission is placed at
3560 	 * the array index of the last descriptor in this chain.
3561 	 */
3562 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3563 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
3564 	sc->bge_cdata.bge_tx_chain[idx] = m_head;
3565 	sc->bge_txcnt += nsegs;
3566 
3567 	BGE_INC(idx, BGE_TX_RING_CNT);
3568 	*txidx = idx;
3569 back:
3570 	if (error) {
3571 		m_freem(*m_head0);
3572 		*m_head0 = NULL;
3573 	}
3574 	return error;
3575 }
3576 
3577 static void
3578 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3579 {
3580 	/* Transmit */
3581 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3582 	/* 5700 b2 errata */
3583 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3584 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3585 }
3586 
3587 /*
3588  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3589  * to the mbuf data regions directly in the transmit descriptors.
3590  */
3591 static void
3592 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3593 {
3594 	struct bge_softc *sc = ifp->if_softc;
3595 	struct mbuf *m_head = NULL;
3596 	uint32_t prodidx;
3597 	int nsegs = 0;
3598 
3599 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3600 
3601 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3602 		return;
3603 
3604 	prodidx = sc->bge_tx_prodidx;
3605 
3606 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3607 		m_head = ifq_dequeue(&ifp->if_snd);
3608 		if (m_head == NULL)
3609 			break;
3610 
3611 		/*
3612 		 * XXX
3613 		 * The code inside the if() block is never reached since we
3614 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3615 		 * requests to checksum TCP/UDP in a fragmented packet.
3616 		 *
3617 		 * XXX
3618 		 * safety overkill.  If this is a fragmented packet chain
3619 		 * with delayed TCP/UDP checksums, then only encapsulate
3620 		 * it if we have enough descriptors to handle the entire
3621 		 * chain at once.
3622 		 * (paranoia -- may not actually be needed)
3623 		 */
3624 		if ((m_head->m_flags & M_FIRSTFRAG) &&
3625 		    (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3626 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3627 			    m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3628 				ifq_set_oactive(&ifp->if_snd);
3629 				ifq_prepend(&ifp->if_snd, m_head);
3630 				break;
3631 			}
3632 		}
3633 
3634 		/*
3635 		 * Sanity check: avoid coming within bge_txrsvd
3636 		 * descriptors of the end of the ring.  Also make
3637 		 * sure there are bge_txspare descriptors for
3638 		 * jumbo buffers' defragmentation.
3639 		 */
3640 		if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3641 		    (sc->bge_txrsvd + sc->bge_txspare)) {
3642 			ifq_set_oactive(&ifp->if_snd);
3643 			ifq_prepend(&ifp->if_snd, m_head);
3644 			break;
3645 		}
3646 
3647 		/*
3648 		 * Pack the data into the transmit ring. If we
3649 		 * don't have room, set the OACTIVE flag and wait
3650 		 * for the NIC to drain the ring.
3651 		 */
3652 		if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3653 			ifq_set_oactive(&ifp->if_snd);
3654 			IFNET_STAT_INC(ifp, oerrors, 1);
3655 			break;
3656 		}
3657 
3658 		if (nsegs >= sc->bge_tx_wreg) {
3659 			bge_xmit(sc, prodidx);
3660 			nsegs = 0;
3661 		}
3662 
3663 		ETHER_BPF_MTAP(ifp, m_head);
3664 
3665 		/*
3666 		 * Set a timeout in case the chip goes out to lunch.
3667 		 */
3668 		ifp->if_timer = 5;
3669 	}
3670 
3671 	if (nsegs > 0)
3672 		bge_xmit(sc, prodidx);
3673 	sc->bge_tx_prodidx = prodidx;
3674 }
3675 
3676 static void
3677 bge_init(void *xsc)
3678 {
3679 	struct bge_softc *sc = xsc;
3680 	struct ifnet *ifp = &sc->arpcom.ac_if;
3681 	uint16_t *m;
3682 	uint32_t mode;
3683 
3684 	ASSERT_SERIALIZED(ifp->if_serializer);
3685 
3686 	/* Cancel pending I/O and flush buffers. */
3687 	bge_stop(sc);
3688 
3689 	bge_stop_fw(sc);
3690 	bge_sig_pre_reset(sc, BGE_RESET_START);
3691 	bge_reset(sc);
3692 	bge_sig_legacy(sc, BGE_RESET_START);
3693 	bge_sig_post_reset(sc, BGE_RESET_START);
3694 
3695 	bge_chipinit(sc);
3696 
3697 	/*
3698 	 * Init the various state machines, ring
3699 	 * control blocks and firmware.
3700 	 */
3701 	if (bge_blockinit(sc)) {
3702 		if_printf(ifp, "initialization failure\n");
3703 		bge_stop(sc);
3704 		return;
3705 	}
3706 
3707 	/* Specify MTU. */
3708 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3709 	    ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3710 
3711 	/* Load our MAC address. */
3712 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3713 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3714 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3715 
3716 	/* Enable or disable promiscuous mode as needed. */
3717 	bge_setpromisc(sc);
3718 
3719 	/* Program multicast filter. */
3720 	bge_setmulti(sc);
3721 
3722 	/* Init RX ring. */
3723 	if (bge_init_rx_ring_std(sc)) {
3724 		if_printf(ifp, "RX ring initialization failed\n");
3725 		bge_stop(sc);
3726 		return;
3727 	}
3728 
3729 	/*
3730 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3731 	 * memory to insure that the chip has in fact read the first
3732 	 * entry of the ring.
3733 	 */
3734 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3735 		uint32_t		v, i;
3736 		for (i = 0; i < 10; i++) {
3737 			DELAY(20);
3738 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3739 			if (v == (MCLBYTES - ETHER_ALIGN))
3740 				break;
3741 		}
3742 		if (i == 10)
3743 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3744 	}
3745 
3746 	/* Init jumbo RX ring. */
3747 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3748 		if (bge_init_rx_ring_jumbo(sc)) {
3749 			if_printf(ifp, "Jumbo RX ring initialization failed\n");
3750 			bge_stop(sc);
3751 			return;
3752 		}
3753 	}
3754 
3755 	/* Init our RX return ring index */
3756 	sc->bge_rx_saved_considx = 0;
3757 
3758 	/* Init TX ring. */
3759 	bge_init_tx_ring(sc);
3760 
3761 	/* Enable TX MAC state machine lockup fix. */
3762 	mode = CSR_READ_4(sc, BGE_TX_MODE);
3763 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3764 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3765 	/* Turn on transmitter */
3766 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3767 
3768 	/* Turn on receiver */
3769 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3770 
3771 	/*
3772 	 * Set the number of good frames to receive after RX MBUF
3773 	 * Low Watermark has been reached.  After the RX MAC receives
3774 	 * this number of frames, it will drop subsequent incoming
3775 	 * frames until the MBUF High Watermark is reached.
3776 	 */
3777 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3778 
3779 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3780 		if (bootverbose) {
3781 			if_printf(ifp, "MSI_MODE: %#x\n",
3782 			    CSR_READ_4(sc, BGE_MSI_MODE));
3783 		}
3784 
3785 		/*
3786 		 * XXX
3787 		 * Linux driver turns it on for all chips supporting MSI?!
3788 		 */
3789 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3790 			/*
3791 			 * XXX
3792 			 * According to 5722-PG101-R,
3793 			 * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3794 			 * BCM5906.
3795 			 */
3796 			BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3797 			    BGE_PCIE_TRANSACT_ONESHOT_MSI);
3798 		}
3799 	}
3800 
3801 	/* Tell firmware we're alive. */
3802 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3803 
3804 	/* Enable host interrupts if polling(4) is not enabled. */
3805 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3806 #ifdef IFPOLL_ENABLE
3807 	if (ifp->if_flags & IFF_NPOLLING)
3808 		bge_disable_intr(sc);
3809 	else
3810 #endif
3811 	bge_enable_intr(sc);
3812 
3813 	ifp->if_flags |= IFF_RUNNING;
3814 	ifq_clr_oactive(&ifp->if_snd);
3815 
3816 	bge_ifmedia_upd(ifp);
3817 
3818 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3819 }
3820 
3821 /*
3822  * Set media options.
3823  */
3824 static int
3825 bge_ifmedia_upd(struct ifnet *ifp)
3826 {
3827 	struct bge_softc *sc = ifp->if_softc;
3828 
3829 	/* If this is a 1000baseX NIC, enable the TBI port. */
3830 	if (sc->bge_flags & BGE_FLAG_TBI) {
3831 		struct ifmedia *ifm = &sc->bge_ifmedia;
3832 
3833 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3834 			return(EINVAL);
3835 
3836 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3837 		case IFM_AUTO:
3838 			/*
3839 			 * The BCM5704 ASIC appears to have a special
3840 			 * mechanism for programming the autoneg
3841 			 * advertisement registers in TBI mode.
3842 			 */
3843 			if (!bge_fake_autoneg &&
3844 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3845 				uint32_t sgdig;
3846 
3847 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3848 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3849 				sgdig |= BGE_SGDIGCFG_AUTO |
3850 					 BGE_SGDIGCFG_PAUSE_CAP |
3851 					 BGE_SGDIGCFG_ASYM_PAUSE;
3852 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3853 					    sgdig | BGE_SGDIGCFG_SEND);
3854 				DELAY(5);
3855 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3856 			}
3857 			break;
3858 		case IFM_1000_SX:
3859 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3860 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3861 				    BGE_MACMODE_HALF_DUPLEX);
3862 			} else {
3863 				BGE_SETBIT(sc, BGE_MAC_MODE,
3864 				    BGE_MACMODE_HALF_DUPLEX);
3865 			}
3866 			break;
3867 		default:
3868 			return(EINVAL);
3869 		}
3870 	} else {
3871 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3872 
3873 		sc->bge_link_evt++;
3874 		sc->bge_link = 0;
3875 		if (mii->mii_instance) {
3876 			struct mii_softc *miisc;
3877 
3878 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3879 				mii_phy_reset(miisc);
3880 		}
3881 		mii_mediachg(mii);
3882 
3883 		/*
3884 		 * Force an interrupt so that we will call bge_link_upd
3885 		 * if needed and clear any pending link state attention.
3886 		 * Without this we are not getting any further interrupts
3887 		 * for link state changes and thus will not UP the link and
3888 		 * not be able to send in bge_start.  The only way to get
3889 		 * things working was to receive a packet and get an RX
3890 		 * intr.
3891 		 *
3892 		 * bge_tick should help for fiber cards and we might not
3893 		 * need to do this here if BGE_FLAG_TBI is set but as
3894 		 * we poll for fiber anyway it should not harm.
3895 		 */
3896 		if (BGE_IS_CRIPPLED(sc))
3897 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3898 		else
3899 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3900 	}
3901 	return(0);
3902 }
3903 
3904 /*
3905  * Report current media status.
3906  */
3907 static void
3908 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3909 {
3910 	struct bge_softc *sc = ifp->if_softc;
3911 
3912 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3913 		return;
3914 
3915 	if (sc->bge_flags & BGE_FLAG_TBI) {
3916 		ifmr->ifm_status = IFM_AVALID;
3917 		ifmr->ifm_active = IFM_ETHER;
3918 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3919 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3920 			ifmr->ifm_status |= IFM_ACTIVE;
3921 		} else {
3922 			ifmr->ifm_active |= IFM_NONE;
3923 			return;
3924 		}
3925 
3926 		ifmr->ifm_active |= IFM_1000_SX;
3927 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3928 			ifmr->ifm_active |= IFM_HDX;
3929 		else
3930 			ifmr->ifm_active |= IFM_FDX;
3931 	} else {
3932 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3933 
3934 		mii_pollstat(mii);
3935 		ifmr->ifm_active = mii->mii_media_active;
3936 		ifmr->ifm_status = mii->mii_media_status;
3937 	}
3938 }
3939 
3940 static int
3941 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3942 {
3943 	struct bge_softc *sc = ifp->if_softc;
3944 	struct ifreq *ifr = (struct ifreq *)data;
3945 	int mask, error = 0;
3946 
3947 	ASSERT_SERIALIZED(ifp->if_serializer);
3948 
3949 	switch (command) {
3950 	case SIOCSIFMTU:
3951 		if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3952 		    (BGE_IS_JUMBO_CAPABLE(sc) &&
3953 		     ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3954 			error = EINVAL;
3955 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
3956 			ifp->if_mtu = ifr->ifr_mtu;
3957 			if (ifp->if_flags & IFF_RUNNING)
3958 				bge_init(sc);
3959 		}
3960 		break;
3961 	case SIOCSIFFLAGS:
3962 		if (ifp->if_flags & IFF_UP) {
3963 			if (ifp->if_flags & IFF_RUNNING) {
3964 				mask = ifp->if_flags ^ sc->bge_if_flags;
3965 
3966 				/*
3967 				 * If only the state of the PROMISC flag
3968 				 * changed, then just use the 'set promisc
3969 				 * mode' command instead of reinitializing
3970 				 * the entire NIC. Doing a full re-init
3971 				 * means reloading the firmware and waiting
3972 				 * for it to start up, which may take a
3973 				 * second or two.  Similarly for ALLMULTI.
3974 				 */
3975 				if (mask & IFF_PROMISC)
3976 					bge_setpromisc(sc);
3977 				if (mask & IFF_ALLMULTI)
3978 					bge_setmulti(sc);
3979 			} else {
3980 				bge_init(sc);
3981 			}
3982 		} else if (ifp->if_flags & IFF_RUNNING) {
3983 			bge_stop(sc);
3984 		}
3985 		sc->bge_if_flags = ifp->if_flags;
3986 		break;
3987 	case SIOCADDMULTI:
3988 	case SIOCDELMULTI:
3989 		if (ifp->if_flags & IFF_RUNNING)
3990 			bge_setmulti(sc);
3991 		break;
3992 	case SIOCSIFMEDIA:
3993 	case SIOCGIFMEDIA:
3994 		if (sc->bge_flags & BGE_FLAG_TBI) {
3995 			error = ifmedia_ioctl(ifp, ifr,
3996 			    &sc->bge_ifmedia, command);
3997 		} else {
3998 			struct mii_data *mii;
3999 
4000 			mii = device_get_softc(sc->bge_miibus);
4001 			error = ifmedia_ioctl(ifp, ifr,
4002 					      &mii->mii_media, command);
4003 		}
4004 		break;
4005         case SIOCSIFCAP:
4006 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4007 		if (mask & IFCAP_HWCSUM) {
4008 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
4009 			if (ifp->if_capenable & IFCAP_TXCSUM)
4010 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4011 			else
4012 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4013 		}
4014 		if (mask & IFCAP_TSO) {
4015 			ifp->if_capenable ^= IFCAP_TSO;
4016 			if (ifp->if_capenable & IFCAP_TSO)
4017 				ifp->if_hwassist |= CSUM_TSO;
4018 			else
4019 				ifp->if_hwassist &= ~CSUM_TSO;
4020 		}
4021 		break;
4022 	default:
4023 		error = ether_ioctl(ifp, command, data);
4024 		break;
4025 	}
4026 	return error;
4027 }
4028 
4029 static void
4030 bge_watchdog(struct ifnet *ifp)
4031 {
4032 	struct bge_softc *sc = ifp->if_softc;
4033 
4034 	if_printf(ifp, "watchdog timeout -- resetting\n");
4035 
4036 	bge_init(sc);
4037 
4038 	IFNET_STAT_INC(ifp, oerrors, 1);
4039 
4040 	if (!ifq_is_empty(&ifp->if_snd))
4041 		if_devstart(ifp);
4042 }
4043 
4044 /*
4045  * Stop the adapter and free any mbufs allocated to the
4046  * RX and TX lists.
4047  */
4048 static void
4049 bge_stop(struct bge_softc *sc)
4050 {
4051 	struct ifnet *ifp = &sc->arpcom.ac_if;
4052 
4053 	ASSERT_SERIALIZED(ifp->if_serializer);
4054 
4055 	callout_stop(&sc->bge_stat_timer);
4056 
4057 	/* Disable host interrupts. */
4058 	bge_disable_intr(sc);
4059 
4060 	/*
4061 	 * Tell firmware we're shutting down.
4062 	 */
4063 	bge_stop_fw(sc);
4064 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
4065 
4066 	/*
4067 	 * Disable all of the receiver blocks
4068 	 */
4069 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4070 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4071 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4072 	if (BGE_IS_5700_FAMILY(sc))
4073 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4074 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4075 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4076 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4077 
4078 	/*
4079 	 * Disable all of the transmit blocks
4080 	 */
4081 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4082 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4083 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4084 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4085 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4086 	if (BGE_IS_5700_FAMILY(sc))
4087 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4088 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4089 
4090 	/*
4091 	 * Shut down all of the memory managers and related
4092 	 * state machines.
4093 	 */
4094 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4095 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4096 	if (BGE_IS_5700_FAMILY(sc))
4097 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4098 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4099 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4100 	if (!BGE_IS_5705_PLUS(sc)) {
4101 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4102 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4103 	}
4104 
4105 	bge_reset(sc);
4106 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
4107 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
4108 
4109 	/*
4110 	 * Keep the ASF firmware running if up.
4111 	 */
4112 	if (sc->bge_asf_mode & ASF_STACKUP)
4113 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4114 	else
4115 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4116 
4117 	/* Free the RX lists. */
4118 	bge_free_rx_ring_std(sc);
4119 
4120 	/* Free jumbo RX list. */
4121 	if (BGE_IS_JUMBO_CAPABLE(sc))
4122 		bge_free_rx_ring_jumbo(sc);
4123 
4124 	/* Free TX buffers. */
4125 	bge_free_tx_ring(sc);
4126 
4127 	sc->bge_status_tag = 0;
4128 	sc->bge_link = 0;
4129 	sc->bge_coal_chg = 0;
4130 
4131 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4132 
4133 	ifp->if_flags &= ~IFF_RUNNING;
4134 	ifq_clr_oactive(&ifp->if_snd);
4135 	ifp->if_timer = 0;
4136 }
4137 
4138 /*
4139  * Stop all chip I/O so that the kernel's probe routines don't
4140  * get confused by errant DMAs when rebooting.
4141  */
4142 static void
4143 bge_shutdown(device_t dev)
4144 {
4145 	struct bge_softc *sc = device_get_softc(dev);
4146 	struct ifnet *ifp = &sc->arpcom.ac_if;
4147 
4148 	lwkt_serialize_enter(ifp->if_serializer);
4149 	bge_stop(sc);
4150 	lwkt_serialize_exit(ifp->if_serializer);
4151 }
4152 
4153 static int
4154 bge_suspend(device_t dev)
4155 {
4156 	struct bge_softc *sc = device_get_softc(dev);
4157 	struct ifnet *ifp = &sc->arpcom.ac_if;
4158 
4159 	lwkt_serialize_enter(ifp->if_serializer);
4160 	bge_stop(sc);
4161 	lwkt_serialize_exit(ifp->if_serializer);
4162 
4163 	return 0;
4164 }
4165 
4166 static int
4167 bge_resume(device_t dev)
4168 {
4169 	struct bge_softc *sc = device_get_softc(dev);
4170 	struct ifnet *ifp = &sc->arpcom.ac_if;
4171 
4172 	lwkt_serialize_enter(ifp->if_serializer);
4173 
4174 	if (ifp->if_flags & IFF_UP) {
4175 		bge_init(sc);
4176 
4177 		if (!ifq_is_empty(&ifp->if_snd))
4178 			if_devstart(ifp);
4179 	}
4180 
4181 	lwkt_serialize_exit(ifp->if_serializer);
4182 
4183 	return 0;
4184 }
4185 
4186 static void
4187 bge_setpromisc(struct bge_softc *sc)
4188 {
4189 	struct ifnet *ifp = &sc->arpcom.ac_if;
4190 
4191 	if (ifp->if_flags & IFF_PROMISC)
4192 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4193 	else
4194 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4195 }
4196 
4197 static void
4198 bge_dma_free(struct bge_softc *sc)
4199 {
4200 	int i;
4201 
4202 	/* Destroy RX mbuf DMA stuffs. */
4203 	if (sc->bge_cdata.bge_rx_mtag != NULL) {
4204 		for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4205 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4206 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
4207 		}
4208 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4209 				   sc->bge_cdata.bge_rx_tmpmap);
4210 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4211 	}
4212 
4213 	/* Destroy TX mbuf DMA stuffs. */
4214 	if (sc->bge_cdata.bge_tx_mtag != NULL) {
4215 		for (i = 0; i < BGE_TX_RING_CNT; i++) {
4216 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4217 			    sc->bge_cdata.bge_tx_dmamap[i]);
4218 		}
4219 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4220 	}
4221 
4222 	/* Destroy standard RX ring */
4223 	bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4224 			   sc->bge_cdata.bge_rx_std_ring_map,
4225 			   sc->bge_ldata.bge_rx_std_ring);
4226 
4227 	if (BGE_IS_JUMBO_CAPABLE(sc))
4228 		bge_free_jumbo_mem(sc);
4229 
4230 	/* Destroy RX return ring */
4231 	bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4232 			   sc->bge_cdata.bge_rx_return_ring_map,
4233 			   sc->bge_ldata.bge_rx_return_ring);
4234 
4235 	/* Destroy TX ring */
4236 	bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4237 			   sc->bge_cdata.bge_tx_ring_map,
4238 			   sc->bge_ldata.bge_tx_ring);
4239 
4240 	/* Destroy status block */
4241 	bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4242 			   sc->bge_cdata.bge_status_map,
4243 			   sc->bge_ldata.bge_status_block);
4244 
4245 	/* Destroy statistics block */
4246 	bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4247 			   sc->bge_cdata.bge_stats_map,
4248 			   sc->bge_ldata.bge_stats);
4249 
4250 	/* Destroy the parent tag */
4251 	if (sc->bge_cdata.bge_parent_tag != NULL)
4252 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4253 }
4254 
4255 static int
4256 bge_dma_alloc(struct bge_softc *sc)
4257 {
4258 	struct ifnet *ifp = &sc->arpcom.ac_if;
4259 	int i, error;
4260 	bus_addr_t lowaddr;
4261 	bus_size_t txmaxsz;
4262 
4263 	lowaddr = BUS_SPACE_MAXADDR;
4264 	if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4265 		lowaddr = BGE_DMA_MAXADDR_40BIT;
4266 
4267 	/*
4268 	 * Allocate the parent bus DMA tag appropriate for PCI.
4269 	 *
4270 	 * All of the NetExtreme/NetLink controllers have 4GB boundary
4271 	 * DMA bug.
4272 	 * Whenever an address crosses a multiple of the 4GB boundary
4273 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4274 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4275 	 * state machine will lockup and cause the device to hang.
4276 	 */
4277 	error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4278 				   lowaddr, BUS_SPACE_MAXADDR,
4279 				   NULL, NULL,
4280 				   BUS_SPACE_MAXSIZE_32BIT, 0,
4281 				   BUS_SPACE_MAXSIZE_32BIT,
4282 				   0, &sc->bge_cdata.bge_parent_tag);
4283 	if (error) {
4284 		if_printf(ifp, "could not allocate parent dma tag\n");
4285 		return error;
4286 	}
4287 
4288 	/*
4289 	 * Create DMA tag and maps for RX mbufs.
4290 	 */
4291 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4292 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4293 				   NULL, NULL, MCLBYTES, 1, MCLBYTES,
4294 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4295 				   &sc->bge_cdata.bge_rx_mtag);
4296 	if (error) {
4297 		if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4298 		return error;
4299 	}
4300 
4301 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4302 				  BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4303 	if (error) {
4304 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4305 		sc->bge_cdata.bge_rx_mtag = NULL;
4306 		return error;
4307 	}
4308 
4309 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4310 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4311 					  BUS_DMA_WAITOK,
4312 					  &sc->bge_cdata.bge_rx_std_dmamap[i]);
4313 		if (error) {
4314 			int j;
4315 
4316 			for (j = 0; j < i; ++j) {
4317 				bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4318 					sc->bge_cdata.bge_rx_std_dmamap[j]);
4319 			}
4320 			bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4321 			sc->bge_cdata.bge_rx_mtag = NULL;
4322 
4323 			if_printf(ifp, "could not create DMA map for RX\n");
4324 			return error;
4325 		}
4326 	}
4327 
4328 	/*
4329 	 * Create DMA tag and maps for TX mbufs.
4330 	 */
4331 	if (sc->bge_flags & BGE_FLAG_TSO)
4332 		txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4333 	else
4334 		txmaxsz = BGE_JUMBO_FRAMELEN;
4335 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4336 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4337 				   NULL, NULL,
4338 				   txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4339 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4340 				   BUS_DMA_ONEBPAGE,
4341 				   &sc->bge_cdata.bge_tx_mtag);
4342 	if (error) {
4343 		if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4344 		return error;
4345 	}
4346 
4347 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
4348 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4349 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4350 					  &sc->bge_cdata.bge_tx_dmamap[i]);
4351 		if (error) {
4352 			int j;
4353 
4354 			for (j = 0; j < i; ++j) {
4355 				bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4356 					sc->bge_cdata.bge_tx_dmamap[j]);
4357 			}
4358 			bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4359 			sc->bge_cdata.bge_tx_mtag = NULL;
4360 
4361 			if_printf(ifp, "could not create DMA map for TX\n");
4362 			return error;
4363 		}
4364 	}
4365 
4366 	/*
4367 	 * Create DMA stuffs for standard RX ring.
4368 	 */
4369 	error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4370 				    &sc->bge_cdata.bge_rx_std_ring_tag,
4371 				    &sc->bge_cdata.bge_rx_std_ring_map,
4372 				    (void *)&sc->bge_ldata.bge_rx_std_ring,
4373 				    &sc->bge_ldata.bge_rx_std_ring_paddr);
4374 	if (error) {
4375 		if_printf(ifp, "could not create std RX ring\n");
4376 		return error;
4377 	}
4378 
4379 	/*
4380 	 * Create jumbo buffer pool.
4381 	 */
4382 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
4383 		error = bge_alloc_jumbo_mem(sc);
4384 		if (error) {
4385 			if_printf(ifp, "could not create jumbo buffer pool\n");
4386 			return error;
4387 		}
4388 	}
4389 
4390 	/*
4391 	 * Create DMA stuffs for RX return ring.
4392 	 */
4393 	error = bge_dma_block_alloc(sc,
4394 	    BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4395 	    &sc->bge_cdata.bge_rx_return_ring_tag,
4396 	    &sc->bge_cdata.bge_rx_return_ring_map,
4397 	    (void *)&sc->bge_ldata.bge_rx_return_ring,
4398 	    &sc->bge_ldata.bge_rx_return_ring_paddr);
4399 	if (error) {
4400 		if_printf(ifp, "could not create RX ret ring\n");
4401 		return error;
4402 	}
4403 
4404 	/*
4405 	 * Create DMA stuffs for TX ring.
4406 	 */
4407 	error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4408 				    &sc->bge_cdata.bge_tx_ring_tag,
4409 				    &sc->bge_cdata.bge_tx_ring_map,
4410 				    (void *)&sc->bge_ldata.bge_tx_ring,
4411 				    &sc->bge_ldata.bge_tx_ring_paddr);
4412 	if (error) {
4413 		if_printf(ifp, "could not create TX ring\n");
4414 		return error;
4415 	}
4416 
4417 	/*
4418 	 * Create DMA stuffs for status block.
4419 	 */
4420 	error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4421 				    &sc->bge_cdata.bge_status_tag,
4422 				    &sc->bge_cdata.bge_status_map,
4423 				    (void *)&sc->bge_ldata.bge_status_block,
4424 				    &sc->bge_ldata.bge_status_block_paddr);
4425 	if (error) {
4426 		if_printf(ifp, "could not create status block\n");
4427 		return error;
4428 	}
4429 
4430 	/*
4431 	 * Create DMA stuffs for statistics block.
4432 	 */
4433 	error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4434 				    &sc->bge_cdata.bge_stats_tag,
4435 				    &sc->bge_cdata.bge_stats_map,
4436 				    (void *)&sc->bge_ldata.bge_stats,
4437 				    &sc->bge_ldata.bge_stats_paddr);
4438 	if (error) {
4439 		if_printf(ifp, "could not create stats block\n");
4440 		return error;
4441 	}
4442 	return 0;
4443 }
4444 
4445 static int
4446 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4447 		    bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4448 {
4449 	bus_dmamem_t dmem;
4450 	int error;
4451 
4452 	error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4453 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4454 				    size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4455 	if (error)
4456 		return error;
4457 
4458 	*tag = dmem.dmem_tag;
4459 	*map = dmem.dmem_map;
4460 	*addr = dmem.dmem_addr;
4461 	*paddr = dmem.dmem_busaddr;
4462 
4463 	return 0;
4464 }
4465 
4466 static void
4467 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4468 {
4469 	if (tag != NULL) {
4470 		bus_dmamap_unload(tag, map);
4471 		bus_dmamem_free(tag, addr, map);
4472 		bus_dma_tag_destroy(tag);
4473 	}
4474 }
4475 
4476 /*
4477  * Grrr. The link status word in the status block does
4478  * not work correctly on the BCM5700 rev AX and BX chips,
4479  * according to all available information. Hence, we have
4480  * to enable MII interrupts in order to properly obtain
4481  * async link changes. Unfortunately, this also means that
4482  * we have to read the MAC status register to detect link
4483  * changes, thereby adding an additional register access to
4484  * the interrupt handler.
4485  *
4486  * XXX: perhaps link state detection procedure used for
4487  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4488  */
4489 static void
4490 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4491 {
4492 	struct ifnet *ifp = &sc->arpcom.ac_if;
4493 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4494 
4495 	mii_pollstat(mii);
4496 
4497 	if (!sc->bge_link &&
4498 	    (mii->mii_media_status & IFM_ACTIVE) &&
4499 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4500 		sc->bge_link++;
4501 		if (bootverbose)
4502 			if_printf(ifp, "link UP\n");
4503 	} else if (sc->bge_link &&
4504 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4505 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4506 		sc->bge_link = 0;
4507 		if (bootverbose)
4508 			if_printf(ifp, "link DOWN\n");
4509 	}
4510 
4511 	/* Clear the interrupt. */
4512 	CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4513 	bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4514 	bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4515 }
4516 
4517 static void
4518 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4519 {
4520 	struct ifnet *ifp = &sc->arpcom.ac_if;
4521 
4522 #define PCS_ENCODE_ERR	(BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4523 
4524 	/*
4525 	 * Sometimes PCS encoding errors are detected in
4526 	 * TBI mode (on fiber NICs), and for some reason
4527 	 * the chip will signal them as link changes.
4528 	 * If we get a link change event, but the 'PCS
4529 	 * encoding error' bit in the MAC status register
4530 	 * is set, don't bother doing a link check.
4531 	 * This avoids spurious "gigabit link up" messages
4532 	 * that sometimes appear on fiber NICs during
4533 	 * periods of heavy traffic.
4534 	 */
4535 	if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4536 		if (!sc->bge_link) {
4537 			sc->bge_link++;
4538 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4539 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4540 				    BGE_MACMODE_TBI_SEND_CFGS);
4541 			}
4542 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4543 
4544 			if (bootverbose)
4545 				if_printf(ifp, "link UP\n");
4546 
4547 			ifp->if_link_state = LINK_STATE_UP;
4548 			if_link_state_change(ifp);
4549 		}
4550 	} else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4551 		if (sc->bge_link) {
4552 			sc->bge_link = 0;
4553 
4554 			if (bootverbose)
4555 				if_printf(ifp, "link DOWN\n");
4556 
4557 			ifp->if_link_state = LINK_STATE_DOWN;
4558 			if_link_state_change(ifp);
4559 		}
4560 	}
4561 
4562 #undef PCS_ENCODE_ERR
4563 
4564 	/* Clear the attention. */
4565 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4566 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4567 	    BGE_MACSTAT_LINK_CHANGED);
4568 }
4569 
4570 static void
4571 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4572 {
4573 	struct ifnet *ifp = &sc->arpcom.ac_if;
4574 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4575 
4576 	mii_pollstat(mii);
4577 	bge_miibus_statchg(sc->bge_dev);
4578 
4579 	if (bootverbose) {
4580 		if (sc->bge_link)
4581 			if_printf(ifp, "link UP\n");
4582 		else
4583 			if_printf(ifp, "link DOWN\n");
4584 	}
4585 
4586 	/* Clear the attention. */
4587 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4588 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4589 	    BGE_MACSTAT_LINK_CHANGED);
4590 }
4591 
4592 static void
4593 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4594 {
4595 	struct ifnet *ifp = &sc->arpcom.ac_if;
4596 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4597 
4598 	mii_pollstat(mii);
4599 
4600 	if (!sc->bge_link &&
4601 	    (mii->mii_media_status & IFM_ACTIVE) &&
4602 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4603 		sc->bge_link++;
4604 		if (bootverbose)
4605 			if_printf(ifp, "link UP\n");
4606 	} else if (sc->bge_link &&
4607 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4608 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4609 		sc->bge_link = 0;
4610 		if (bootverbose)
4611 			if_printf(ifp, "link DOWN\n");
4612 	}
4613 
4614 	/* Clear the attention. */
4615 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4616 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4617 	    BGE_MACSTAT_LINK_CHANGED);
4618 }
4619 
4620 static int
4621 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4622 {
4623 	struct bge_softc *sc = arg1;
4624 
4625 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4626 	    &sc->bge_rx_coal_ticks,
4627 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4628 	    BGE_RX_COAL_TICKS_CHG);
4629 }
4630 
4631 static int
4632 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4633 {
4634 	struct bge_softc *sc = arg1;
4635 
4636 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4637 	    &sc->bge_tx_coal_ticks,
4638 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4639 	    BGE_TX_COAL_TICKS_CHG);
4640 }
4641 
4642 static int
4643 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4644 {
4645 	struct bge_softc *sc = arg1;
4646 
4647 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4648 	    &sc->bge_rx_coal_bds,
4649 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4650 	    BGE_RX_COAL_BDS_CHG);
4651 }
4652 
4653 static int
4654 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4655 {
4656 	struct bge_softc *sc = arg1;
4657 
4658 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4659 	    &sc->bge_tx_coal_bds,
4660 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4661 	    BGE_TX_COAL_BDS_CHG);
4662 }
4663 
4664 static int
4665 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4666 {
4667 	struct bge_softc *sc = arg1;
4668 
4669 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4670 	    &sc->bge_rx_coal_ticks_int,
4671 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4672 	    BGE_RX_COAL_TICKS_INT_CHG);
4673 }
4674 
4675 static int
4676 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4677 {
4678 	struct bge_softc *sc = arg1;
4679 
4680 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4681 	    &sc->bge_tx_coal_ticks_int,
4682 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4683 	    BGE_TX_COAL_TICKS_INT_CHG);
4684 }
4685 
4686 static int
4687 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4688 {
4689 	struct bge_softc *sc = arg1;
4690 
4691 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4692 	    &sc->bge_rx_coal_bds_int,
4693 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4694 	    BGE_RX_COAL_BDS_INT_CHG);
4695 }
4696 
4697 static int
4698 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4699 {
4700 	struct bge_softc *sc = arg1;
4701 
4702 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4703 	    &sc->bge_tx_coal_bds_int,
4704 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4705 	    BGE_TX_COAL_BDS_INT_CHG);
4706 }
4707 
4708 static int
4709 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4710     int coal_min, int coal_max, uint32_t coal_chg_mask)
4711 {
4712 	struct bge_softc *sc = arg1;
4713 	struct ifnet *ifp = &sc->arpcom.ac_if;
4714 	int error = 0, v;
4715 
4716 	lwkt_serialize_enter(ifp->if_serializer);
4717 
4718 	v = *coal;
4719 	error = sysctl_handle_int(oidp, &v, 0, req);
4720 	if (!error && req->newptr != NULL) {
4721 		if (v < coal_min || v > coal_max) {
4722 			error = EINVAL;
4723 		} else {
4724 			*coal = v;
4725 			sc->bge_coal_chg |= coal_chg_mask;
4726 		}
4727 	}
4728 
4729 	lwkt_serialize_exit(ifp->if_serializer);
4730 	return error;
4731 }
4732 
4733 static void
4734 bge_coal_change(struct bge_softc *sc)
4735 {
4736 	struct ifnet *ifp = &sc->arpcom.ac_if;
4737 
4738 	ASSERT_SERIALIZED(ifp->if_serializer);
4739 
4740 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4741 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4742 			    sc->bge_rx_coal_ticks);
4743 		DELAY(10);
4744 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4745 
4746 		if (bootverbose) {
4747 			if_printf(ifp, "rx_coal_ticks -> %u\n",
4748 				  sc->bge_rx_coal_ticks);
4749 		}
4750 	}
4751 
4752 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4753 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4754 			    sc->bge_tx_coal_ticks);
4755 		DELAY(10);
4756 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4757 
4758 		if (bootverbose) {
4759 			if_printf(ifp, "tx_coal_ticks -> %u\n",
4760 				  sc->bge_tx_coal_ticks);
4761 		}
4762 	}
4763 
4764 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4765 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4766 			    sc->bge_rx_coal_bds);
4767 		DELAY(10);
4768 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4769 
4770 		if (bootverbose) {
4771 			if_printf(ifp, "rx_coal_bds -> %u\n",
4772 				  sc->bge_rx_coal_bds);
4773 		}
4774 	}
4775 
4776 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4777 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4778 			    sc->bge_tx_coal_bds);
4779 		DELAY(10);
4780 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4781 
4782 		if (bootverbose) {
4783 			if_printf(ifp, "tx_max_coal_bds -> %u\n",
4784 				  sc->bge_tx_coal_bds);
4785 		}
4786 	}
4787 
4788 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4789 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4790 		    sc->bge_rx_coal_ticks_int);
4791 		DELAY(10);
4792 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4793 
4794 		if (bootverbose) {
4795 			if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4796 			    sc->bge_rx_coal_ticks_int);
4797 		}
4798 	}
4799 
4800 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4801 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4802 		    sc->bge_tx_coal_ticks_int);
4803 		DELAY(10);
4804 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4805 
4806 		if (bootverbose) {
4807 			if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4808 			    sc->bge_tx_coal_ticks_int);
4809 		}
4810 	}
4811 
4812 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4813 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4814 		    sc->bge_rx_coal_bds_int);
4815 		DELAY(10);
4816 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4817 
4818 		if (bootverbose) {
4819 			if_printf(ifp, "rx_coal_bds_int -> %u\n",
4820 			    sc->bge_rx_coal_bds_int);
4821 		}
4822 	}
4823 
4824 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4825 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4826 		    sc->bge_tx_coal_bds_int);
4827 		DELAY(10);
4828 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4829 
4830 		if (bootverbose) {
4831 			if_printf(ifp, "tx_coal_bds_int -> %u\n",
4832 			    sc->bge_tx_coal_bds_int);
4833 		}
4834 	}
4835 
4836 	sc->bge_coal_chg = 0;
4837 }
4838 
4839 static void
4840 bge_enable_intr(struct bge_softc *sc)
4841 {
4842 	struct ifnet *ifp = &sc->arpcom.ac_if;
4843 
4844 	lwkt_serialize_handler_enable(ifp->if_serializer);
4845 
4846 	/*
4847 	 * Enable interrupt.
4848 	 */
4849 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4850 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4851 		/* XXX Linux driver */
4852 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4853 	}
4854 
4855 	/*
4856 	 * Unmask the interrupt when we stop polling.
4857 	 */
4858 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4859 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4860 
4861 	/*
4862 	 * Trigger another interrupt, since above writing
4863 	 * to interrupt mailbox0 may acknowledge pending
4864 	 * interrupt.
4865 	 */
4866 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4867 }
4868 
4869 static void
4870 bge_disable_intr(struct bge_softc *sc)
4871 {
4872 	struct ifnet *ifp = &sc->arpcom.ac_if;
4873 
4874 	/*
4875 	 * Mask the interrupt when we start polling.
4876 	 */
4877 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4878 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4879 
4880 	/*
4881 	 * Acknowledge possible asserted interrupt.
4882 	 */
4883 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4884 
4885 	sc->bge_npoll.ifpc_stcount = 0;
4886 
4887 	lwkt_serialize_handler_disable(ifp->if_serializer);
4888 }
4889 
4890 static int
4891 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4892 {
4893 	uint32_t mac_addr;
4894 	int ret = 1;
4895 
4896 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4897 	if ((mac_addr >> 16) == 0x484b) {
4898 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4899 		ether_addr[1] = (uint8_t)mac_addr;
4900 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4901 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4902 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4903 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4904 		ether_addr[5] = (uint8_t)mac_addr;
4905 		ret = 0;
4906 	}
4907 	return ret;
4908 }
4909 
4910 static int
4911 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4912 {
4913 	int mac_offset = BGE_EE_MAC_OFFSET;
4914 
4915 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4916 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4917 
4918 	return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4919 }
4920 
4921 static int
4922 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4923 {
4924 	if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4925 		return 1;
4926 
4927 	return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4928 			       ETHER_ADDR_LEN);
4929 }
4930 
4931 static int
4932 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4933 {
4934 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4935 		/* NOTE: Order is critical */
4936 		bge_get_eaddr_mem,
4937 		bge_get_eaddr_nvram,
4938 		bge_get_eaddr_eeprom,
4939 		NULL
4940 	};
4941 	const bge_eaddr_fcn_t *func;
4942 
4943 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4944 		if ((*func)(sc, eaddr) == 0)
4945 			break;
4946 	}
4947 	return (*func == NULL ? ENXIO : 0);
4948 }
4949 
4950 /*
4951  * NOTE: 'm' is not freed upon failure
4952  */
4953 struct mbuf *
4954 bge_defrag_shortdma(struct mbuf *m)
4955 {
4956 	struct mbuf *n;
4957 	int found;
4958 
4959 	/*
4960 	 * If device receive two back-to-back send BDs with less than
4961 	 * or equal to 8 total bytes then the device may hang.  The two
4962 	 * back-to-back send BDs must in the same frame for this failure
4963 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4964 	 * send BDs are there.  If this is the case, allocate new mbuf
4965 	 * and copy the frame to workaround the silicon bug.
4966 	 */
4967 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4968 		if (n->m_len < 8) {
4969 			found++;
4970 			if (found > 1)
4971 				break;
4972 			continue;
4973 		}
4974 		found = 0;
4975 	}
4976 
4977 	if (found > 1)
4978 		n = m_defrag(m, MB_DONTWAIT);
4979 	else
4980 		n = m;
4981 	return n;
4982 }
4983 
4984 static void
4985 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4986 {
4987 	int i;
4988 
4989 	BGE_CLRBIT(sc, reg, bit);
4990 	for (i = 0; i < BGE_TIMEOUT; i++) {
4991 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4992 			return;
4993 		DELAY(100);
4994 	}
4995 }
4996 
4997 static void
4998 bge_link_poll(struct bge_softc *sc)
4999 {
5000 	uint32_t status;
5001 
5002 	status = CSR_READ_4(sc, BGE_MAC_STS);
5003 	if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
5004 		sc->bge_link_evt = 0;
5005 		sc->bge_link_upd(sc, status);
5006 	}
5007 }
5008 
5009 static void
5010 bge_enable_msi(struct bge_softc *sc)
5011 {
5012 	uint32_t msi_mode;
5013 
5014 	msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5015 	msi_mode |= BGE_MSIMODE_ENABLE;
5016 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
5017 		/*
5018 		 * According to all of the datasheets that are publicly
5019 		 * available, bit 5 of the MSI_MODE is defined to be
5020 		 * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
5021 		 * which "oneshot MSI" is enabled.  However, it is always
5022 		 * safe to clear it here.
5023 		 */
5024 		msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5025 	}
5026 	CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5027 }
5028 
5029 static int
5030 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
5031     uint16_t *mss0, uint16_t *flags0)
5032 {
5033 	struct mbuf *m;
5034 	struct ip *ip;
5035 	struct tcphdr *th;
5036 	int thoff, iphlen, hoff, hlen;
5037 	uint16_t flags, mss;
5038 
5039 	m = *mp;
5040 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5041 
5042 	hoff = m->m_pkthdr.csum_lhlen;
5043 	iphlen = m->m_pkthdr.csum_iphlen;
5044 	thoff = m->m_pkthdr.csum_thlen;
5045 
5046 	KASSERT(hoff > 0, ("invalid ether header len"));
5047 	KASSERT(iphlen > 0, ("invalid ip header len"));
5048 	KASSERT(thoff > 0, ("invalid tcp header len"));
5049 
5050 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5051 		m = m_pullup(m, hoff + iphlen + thoff);
5052 		if (m == NULL) {
5053 			*mp = NULL;
5054 			return ENOBUFS;
5055 		}
5056 		*mp = m;
5057 	}
5058 	ip = mtodoff(m, struct ip *, hoff);
5059 	th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5060 
5061 	mss = m->m_pkthdr.tso_segsz;
5062 	flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5063 
5064 	ip->ip_len = htons(mss + iphlen + thoff);
5065 	th->th_sum = 0;
5066 
5067 	hlen = (iphlen + thoff) >> 2;
5068 	mss |= (hlen << 11);
5069 
5070 	*mss0 = mss;
5071 	*flags0 = flags;
5072 
5073 	return 0;
5074 }
5075 
5076 static void
5077 bge_stop_fw(struct bge_softc *sc)
5078 {
5079 	int i;
5080 
5081 	if (sc->bge_asf_mode) {
5082 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
5083 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5084 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
5085 
5086 		for (i = 0; i < 100; i++ ) {
5087 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
5088 			    BGE_RX_CPU_DRV_EVENT))
5089 				break;
5090 			DELAY(10);
5091 		}
5092 	}
5093 }
5094 
5095 static void
5096 bge_sig_pre_reset(struct bge_softc *sc, int type)
5097 {
5098 	/*
5099 	 * Some chips don't like this so only do this if ASF is enabled
5100 	 */
5101 	if (sc->bge_asf_mode)
5102 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
5103 
5104 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5105 		switch (type) {
5106 		case BGE_RESET_START:
5107 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5108 			    BGE_FW_DRV_STATE_START);
5109 			break;
5110 		case BGE_RESET_SHUTDOWN:
5111 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5112 			    BGE_FW_DRV_STATE_UNLOAD);
5113 			break;
5114 		case BGE_RESET_SUSPEND:
5115 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5116 			    BGE_FW_DRV_STATE_SUSPEND);
5117 			break;
5118 		}
5119 	}
5120 
5121 #ifdef notyet
5122 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
5123 		bge_ape_driver_state_change(sc, type);
5124 #endif
5125 }
5126 
5127 static void
5128 bge_sig_legacy(struct bge_softc *sc, int type)
5129 {
5130 	if (sc->bge_asf_mode) {
5131 		switch (type) {
5132 		case BGE_RESET_START:
5133 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5134 			    BGE_FW_DRV_STATE_START);
5135 			break;
5136 		case BGE_RESET_SHUTDOWN:
5137 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5138 			    BGE_FW_DRV_STATE_UNLOAD);
5139 			break;
5140 		}
5141 	}
5142 }
5143 
5144 static void
5145 bge_sig_post_reset(struct bge_softc *sc, int type)
5146 {
5147 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5148 		switch (type) {
5149 		case BGE_RESET_START:
5150 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5151 			    BGE_FW_DRV_STATE_START_DONE);
5152 			/* START DONE */
5153 			break;
5154 		case BGE_RESET_SHUTDOWN:
5155 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5156 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
5157 			break;
5158 		}
5159 	}
5160 #ifdef notyet
5161 	if (type == BGE_RESET_SHUTDOWN)
5162 		bge_ape_driver_state_change(sc, type);
5163 #endif
5164 }
5165 
5166 static void
5167 bge_asf_driver_up(struct bge_softc *sc)
5168 {
5169 	if (sc->bge_asf_mode & ASF_STACKUP) {
5170 		/* Send ASF heartbeat aprox. every 2s */
5171 		if (sc->bge_asf_count)
5172 			sc->bge_asf_count --;
5173 		else {
5174 			sc->bge_asf_count = 2;
5175 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
5176 			    BGE_FW_CMD_DRV_ALIVE);
5177 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
5178 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
5179 			    BGE_FW_HB_TIMEOUT_SEC);
5180 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5181 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
5182 			    BGE_RX_CPU_DRV_EVENT);
5183 		}
5184 	}
5185 }
5186