xref: /dflybsd-src/sys/dev/netif/bge/if_bge.c (revision df2b0626d0e68490c23ccbb0c04218af27fafa2e)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include "opt_ifpoll.h"
74 
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89 
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92 
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108 
109 #include "pcidevs.h"
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112 
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115 
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118 
119 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
120 
121 #define	BGE_RESET_SHUTDOWN	0
122 #define	BGE_RESET_START		1
123 #define	BGE_RESET_SUSPEND	2
124 
125 static const struct bge_type {
126 	uint16_t		bge_vid;
127 	uint16_t		bge_did;
128 	char			*bge_name;
129 } bge_devs[] = {
130 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
131 		"3COM 3C996 Gigabit Ethernet" },
132 
133 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134 		"Alteon BCM5700 Gigabit Ethernet" },
135 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136 		"Alteon BCM5701 Gigabit Ethernet" },
137 
138 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
139 		"Altima AC1000 Gigabit Ethernet" },
140 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
141 		"Altima AC1002 Gigabit Ethernet" },
142 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
143 		"Altima AC9100 Gigabit Ethernet" },
144 
145 	{ PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
146 		"Apple BCM5701 Gigabit Ethernet" },
147 
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
149 		"Broadcom BCM5700 Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
151 		"Broadcom BCM5701 Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
153 		"Broadcom BCM5702 Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
155 		"Broadcom BCM5702X Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
157 		"Broadcom BCM5702 Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
159 		"Broadcom BCM5703 Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
161 		"Broadcom BCM5703X Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
163 		"Broadcom BCM5703 Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
165 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
167 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
168 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
169 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
170 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
171 		"Broadcom BCM5705 Gigabit Ethernet" },
172 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
173 		"Broadcom BCM5705F Gigabit Ethernet" },
174 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
175 		"Broadcom BCM5705K Gigabit Ethernet" },
176 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
177 		"Broadcom BCM5705M Gigabit Ethernet" },
178 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
179 		"Broadcom BCM5705M Gigabit Ethernet" },
180 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
181 		"Broadcom BCM5714C Gigabit Ethernet" },
182 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
183 		"Broadcom BCM5714S Gigabit Ethernet" },
184 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
185 		"Broadcom BCM5715 Gigabit Ethernet" },
186 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
187 		"Broadcom BCM5715S Gigabit Ethernet" },
188 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
189 		"Broadcom BCM5720 Gigabit Ethernet" },
190 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
191 		"Broadcom BCM5721 Gigabit Ethernet" },
192 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
193 		"Broadcom BCM5722 Gigabit Ethernet" },
194 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
195 		"Broadcom BCM5723 Gigabit Ethernet" },
196 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
197 		"Broadcom BCM5750 Gigabit Ethernet" },
198 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
199 		"Broadcom BCM5750M Gigabit Ethernet" },
200 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
201 		"Broadcom BCM5751 Gigabit Ethernet" },
202 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
203 		"Broadcom BCM5751F Gigabit Ethernet" },
204 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
205 		"Broadcom BCM5751M Gigabit Ethernet" },
206 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
207 		"Broadcom BCM5752 Gigabit Ethernet" },
208 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
209 		"Broadcom BCM5752M Gigabit Ethernet" },
210 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
211 		"Broadcom BCM5753 Gigabit Ethernet" },
212 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
213 		"Broadcom BCM5753F Gigabit Ethernet" },
214 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
215 		"Broadcom BCM5753M Gigabit Ethernet" },
216 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
217 		"Broadcom BCM5754 Gigabit Ethernet" },
218 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
219 		"Broadcom BCM5754M Gigabit Ethernet" },
220 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
221 		"Broadcom BCM5755 Gigabit Ethernet" },
222 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
223 		"Broadcom BCM5755M Gigabit Ethernet" },
224 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
225 		"Broadcom BCM5756 Gigabit Ethernet" },
226 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
227 		"Broadcom BCM5761 Gigabit Ethernet" },
228 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
229 		"Broadcom BCM5761E Gigabit Ethernet" },
230 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
231 		"Broadcom BCM5761S Gigabit Ethernet" },
232 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
233 		"Broadcom BCM5761SE Gigabit Ethernet" },
234 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
235 		"Broadcom BCM5764 Gigabit Ethernet" },
236 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
237 		"Broadcom BCM5780 Gigabit Ethernet" },
238 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
239 		"Broadcom BCM5780S Gigabit Ethernet" },
240 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
241 		"Broadcom BCM5781 Gigabit Ethernet" },
242 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
243 		"Broadcom BCM5782 Gigabit Ethernet" },
244 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
245 		"Broadcom BCM5784 Gigabit Ethernet" },
246 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
247 		"Broadcom BCM5785F Gigabit Ethernet" },
248 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
249 		"Broadcom BCM5785G Gigabit Ethernet" },
250 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
251 		"Broadcom BCM5786 Gigabit Ethernet" },
252 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
253 		"Broadcom BCM5787 Gigabit Ethernet" },
254 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
255 		"Broadcom BCM5787F Gigabit Ethernet" },
256 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
257 		"Broadcom BCM5787M Gigabit Ethernet" },
258 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
259 		"Broadcom BCM5788 Gigabit Ethernet" },
260 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
261 		"Broadcom BCM5789 Gigabit Ethernet" },
262 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
263 		"Broadcom BCM5901 Fast Ethernet" },
264 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
265 		"Broadcom BCM5901A2 Fast Ethernet" },
266 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
267 		"Broadcom BCM5903M Fast Ethernet" },
268 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
269 		"Broadcom BCM5906 Fast Ethernet"},
270 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
271 		"Broadcom BCM5906M Fast Ethernet"},
272 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
273 		"Broadcom BCM57760 Gigabit Ethernet"},
274 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
275 		"Broadcom BCM57780 Gigabit Ethernet"},
276 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
277 		"Broadcom BCM57788 Gigabit Ethernet"},
278 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
279 		"Broadcom BCM57790 Gigabit Ethernet"},
280 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
281 		"SysKonnect Gigabit Ethernet" },
282 
283 	{ 0, 0, NULL }
284 };
285 
286 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
287 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
288 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
289 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
290 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
291 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
292 #define BGE_IS_5788(sc)			((sc)->bge_flags & BGE_FLAG_5788)
293 
294 #define BGE_IS_CRIPPLED(sc)		\
295 	(BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
296 
297 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
298 
299 static int	bge_probe(device_t);
300 static int	bge_attach(device_t);
301 static int	bge_detach(device_t);
302 static void	bge_txeof(struct bge_softc *, uint16_t);
303 static void	bge_rxeof(struct bge_softc *, uint16_t, int);
304 
305 static void	bge_tick(void *);
306 static void	bge_stats_update(struct bge_softc *);
307 static void	bge_stats_update_regs(struct bge_softc *);
308 static struct mbuf *
309 		bge_defrag_shortdma(struct mbuf *);
310 static int	bge_encap(struct bge_softc *, struct mbuf **,
311 		    uint32_t *, int *);
312 static void	bge_xmit(struct bge_softc *, uint32_t);
313 static int	bge_setup_tso(struct bge_softc *, struct mbuf **,
314 		    uint16_t *, uint16_t *);
315 
316 #ifdef IFPOLL_ENABLE
317 static void	bge_npoll(struct ifnet *, struct ifpoll_info *);
318 static void	bge_npoll_compat(struct ifnet *, void *, int );
319 #endif
320 static void	bge_intr_crippled(void *);
321 static void	bge_intr_legacy(void *);
322 static void	bge_msi(void *);
323 static void	bge_msi_oneshot(void *);
324 static void	bge_intr(struct bge_softc *);
325 static void	bge_enable_intr(struct bge_softc *);
326 static void	bge_disable_intr(struct bge_softc *);
327 static void	bge_start(struct ifnet *, struct ifaltq_subque *);
328 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
329 static void	bge_init(void *);
330 static void	bge_stop(struct bge_softc *);
331 static void	bge_watchdog(struct ifnet *);
332 static void	bge_shutdown(device_t);
333 static int	bge_suspend(device_t);
334 static int	bge_resume(device_t);
335 static int	bge_ifmedia_upd(struct ifnet *);
336 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
337 
338 static uint8_t	bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
339 static int	bge_read_nvram(struct bge_softc *, caddr_t, int, int);
340 
341 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
342 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
343 
344 static void	bge_setmulti(struct bge_softc *);
345 static void	bge_setpromisc(struct bge_softc *);
346 static void	bge_enable_msi(struct bge_softc *sc);
347 
348 static int	bge_alloc_jumbo_mem(struct bge_softc *);
349 static void	bge_free_jumbo_mem(struct bge_softc *);
350 static struct bge_jslot
351 		*bge_jalloc(struct bge_softc *);
352 static void	bge_jfree(void *);
353 static void	bge_jref(void *);
354 static int	bge_newbuf_std(struct bge_softc *, int, int);
355 static int	bge_newbuf_jumbo(struct bge_softc *, int, int);
356 static void	bge_setup_rxdesc_std(struct bge_softc *, int);
357 static void	bge_setup_rxdesc_jumbo(struct bge_softc *, int);
358 static int	bge_init_rx_ring_std(struct bge_softc *);
359 static void	bge_free_rx_ring_std(struct bge_softc *);
360 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
361 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
362 static void	bge_free_tx_ring(struct bge_softc *);
363 static int	bge_init_tx_ring(struct bge_softc *);
364 
365 static int	bge_chipinit(struct bge_softc *);
366 static int	bge_blockinit(struct bge_softc *);
367 static void	bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
368 
369 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
370 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
371 #ifdef notdef
372 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
373 #endif
374 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
375 static void	bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
376 static void	bge_writembx(struct bge_softc *, int, int);
377 
378 static int	bge_miibus_readreg(device_t, int, int);
379 static int	bge_miibus_writereg(device_t, int, int, int);
380 static void	bge_miibus_statchg(device_t);
381 static void	bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
382 static void	bge_tbi_link_upd(struct bge_softc *, uint32_t);
383 static void	bge_copper_link_upd(struct bge_softc *, uint32_t);
384 static void	bge_autopoll_link_upd(struct bge_softc *, uint32_t);
385 static void	bge_link_poll(struct bge_softc *);
386 
387 static void	bge_reset(struct bge_softc *);
388 
389 static int	bge_dma_alloc(struct bge_softc *);
390 static void	bge_dma_free(struct bge_softc *);
391 static int	bge_dma_block_alloc(struct bge_softc *, bus_size_t,
392 				    bus_dma_tag_t *, bus_dmamap_t *,
393 				    void **, bus_addr_t *);
394 static void	bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
395 
396 static int	bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
397 static int	bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
398 static int	bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
399 static int	bge_get_eaddr(struct bge_softc *, uint8_t[]);
400 
401 static void	bge_coal_change(struct bge_softc *);
402 static int	bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
403 static int	bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
404 static int	bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
405 static int	bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
406 static int	bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
407 static int	bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
408 static int	bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
409 static int	bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
410 static int	bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
411 		    int, int, uint32_t);
412 
413 static void	bge_sig_post_reset(struct bge_softc *, int);
414 static void	bge_sig_legacy(struct bge_softc *, int);
415 static void	bge_sig_pre_reset(struct bge_softc *, int);
416 static void	bge_stop_fw(struct bge_softc *);
417 static void	bge_asf_driver_up(struct bge_softc *);
418 
419 /*
420  * Set following tunable to 1 for some IBM blade servers with the DNLK
421  * switch module. Auto negotiation is broken for those configurations.
422  */
423 static int	bge_fake_autoneg = 0;
424 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
425 
426 static int	bge_msi_enable = 1;
427 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
428 
429 static int	bge_allow_asf = 1;
430 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
431 
432 #if !defined(KTR_IF_BGE)
433 #define KTR_IF_BGE	KTR_ALL
434 #endif
435 KTR_INFO_MASTER(if_bge);
436 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
437 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
438 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
439 #define logif(name)	KTR_LOG(if_bge_ ## name)
440 
441 static device_method_t bge_methods[] = {
442 	/* Device interface */
443 	DEVMETHOD(device_probe,		bge_probe),
444 	DEVMETHOD(device_attach,	bge_attach),
445 	DEVMETHOD(device_detach,	bge_detach),
446 	DEVMETHOD(device_shutdown,	bge_shutdown),
447 	DEVMETHOD(device_suspend,	bge_suspend),
448 	DEVMETHOD(device_resume,	bge_resume),
449 
450 	/* bus interface */
451 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
452 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
453 
454 	/* MII interface */
455 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
456 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
457 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
458 
459 	DEVMETHOD_END
460 };
461 
462 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
463 static devclass_t bge_devclass;
464 
465 DECLARE_DUMMY_MODULE(if_bge);
466 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
467 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
468 
469 static uint32_t
470 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
471 {
472 	device_t dev = sc->bge_dev;
473 	uint32_t val;
474 
475 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
476 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
477 		return 0;
478 
479 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
480 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
481 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
482 	return (val);
483 }
484 
485 static void
486 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
487 {
488 	device_t dev = sc->bge_dev;
489 
490 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
491 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
492 		return;
493 
494 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
495 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
496 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
497 }
498 
499 #ifdef notdef
500 static uint32_t
501 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
502 {
503 	device_t dev = sc->bge_dev;
504 
505 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
506 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
507 }
508 #endif
509 
510 static void
511 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
512 {
513 	device_t dev = sc->bge_dev;
514 
515 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
516 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
517 }
518 
519 static void
520 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
521 {
522 	CSR_WRITE_4(sc, off, val);
523 }
524 
525 static void
526 bge_writembx(struct bge_softc *sc, int off, int val)
527 {
528 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
529 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
530 
531 	CSR_WRITE_4(sc, off, val);
532 	if (sc->bge_mbox_reorder)
533 		CSR_READ_4(sc, off);
534 }
535 
536 static uint8_t
537 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
538 {
539 	uint32_t access, byte = 0;
540 	int i;
541 
542 	/* Lock. */
543 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
544 	for (i = 0; i < 8000; i++) {
545 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
546 			break;
547 		DELAY(20);
548 	}
549 	if (i == 8000)
550 		return (1);
551 
552 	/* Enable access. */
553 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
554 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
555 
556 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
557 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
558 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
559 		DELAY(10);
560 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
561 			DELAY(10);
562 			break;
563 		}
564 	}
565 
566 	if (i == BGE_TIMEOUT * 10) {
567 		if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
568 		return (1);
569 	}
570 
571 	/* Get result. */
572 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
573 
574 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
575 
576 	/* Disable access. */
577 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
578 
579 	/* Unlock. */
580 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
581 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
582 
583 	return (0);
584 }
585 
586 /*
587  * Read a sequence of bytes from NVRAM.
588  */
589 static int
590 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
591 {
592 	int err = 0, i;
593 	uint8_t byte = 0;
594 
595 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
596 		return (1);
597 
598 	for (i = 0; i < cnt; i++) {
599 		err = bge_nvram_getbyte(sc, off + i, &byte);
600 		if (err)
601 			break;
602 		*(dest + i) = byte;
603 	}
604 
605 	return (err ? 1 : 0);
606 }
607 
608 /*
609  * Read a byte of data stored in the EEPROM at address 'addr.' The
610  * BCM570x supports both the traditional bitbang interface and an
611  * auto access interface for reading the EEPROM. We use the auto
612  * access method.
613  */
614 static uint8_t
615 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
616 {
617 	int i;
618 	uint32_t byte = 0;
619 
620 	/*
621 	 * Enable use of auto EEPROM access so we can avoid
622 	 * having to use the bitbang method.
623 	 */
624 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
625 
626 	/* Reset the EEPROM, load the clock period. */
627 	CSR_WRITE_4(sc, BGE_EE_ADDR,
628 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
629 	DELAY(20);
630 
631 	/* Issue the read EEPROM command. */
632 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
633 
634 	/* Wait for completion */
635 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
636 		DELAY(10);
637 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
638 			break;
639 	}
640 
641 	if (i == BGE_TIMEOUT) {
642 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
643 		return(1);
644 	}
645 
646 	/* Get result. */
647 	byte = CSR_READ_4(sc, BGE_EE_DATA);
648 
649         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
650 
651 	return(0);
652 }
653 
654 /*
655  * Read a sequence of bytes from the EEPROM.
656  */
657 static int
658 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
659 {
660 	size_t i;
661 	int err;
662 	uint8_t byte;
663 
664 	for (byte = 0, err = 0, i = 0; i < len; i++) {
665 		err = bge_eeprom_getbyte(sc, off + i, &byte);
666 		if (err)
667 			break;
668 		*(dest + i) = byte;
669 	}
670 
671 	return(err ? 1 : 0);
672 }
673 
674 static int
675 bge_miibus_readreg(device_t dev, int phy, int reg)
676 {
677 	struct bge_softc *sc = device_get_softc(dev);
678 	uint32_t val;
679 	int i;
680 
681 	KASSERT(phy == sc->bge_phyno,
682 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
683 
684 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
685 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
686 		CSR_WRITE_4(sc, BGE_MI_MODE,
687 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
688 		DELAY(80);
689 	}
690 
691 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
692 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
693 
694 	/* Poll for the PHY register access to complete. */
695 	for (i = 0; i < BGE_TIMEOUT; i++) {
696 		DELAY(10);
697 		val = CSR_READ_4(sc, BGE_MI_COMM);
698 		if ((val & BGE_MICOMM_BUSY) == 0) {
699 			DELAY(5);
700 			val = CSR_READ_4(sc, BGE_MI_COMM);
701 			break;
702 		}
703 	}
704 	if (i == BGE_TIMEOUT) {
705 		if_printf(&sc->arpcom.ac_if, "PHY read timed out "
706 		    "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
707 		val = 0;
708 	}
709 
710 	/* Restore the autopoll bit if necessary. */
711 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
712 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
713 		DELAY(80);
714 	}
715 
716 	if (val & BGE_MICOMM_READFAIL)
717 		return 0;
718 
719 	return (val & 0xFFFF);
720 }
721 
722 static int
723 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
724 {
725 	struct bge_softc *sc = device_get_softc(dev);
726 	int i;
727 
728 	KASSERT(phy == sc->bge_phyno,
729 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
730 
731 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
732 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
733 	       return 0;
734 
735 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
736 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
737 		CSR_WRITE_4(sc, BGE_MI_MODE,
738 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
739 		DELAY(80);
740 	}
741 
742 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
743 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
744 
745 	for (i = 0; i < BGE_TIMEOUT; i++) {
746 		DELAY(10);
747 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
748 			DELAY(5);
749 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
750 			break;
751 		}
752 	}
753 	if (i == BGE_TIMEOUT) {
754 		if_printf(&sc->arpcom.ac_if, "PHY write timed out "
755 		    "(phy %d, reg %d, val %d)\n", phy, reg, val);
756 	}
757 
758 	/* Restore the autopoll bit if necessary. */
759 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
760 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
761 		DELAY(80);
762 	}
763 
764 	return 0;
765 }
766 
767 static void
768 bge_miibus_statchg(device_t dev)
769 {
770 	struct bge_softc *sc;
771 	struct mii_data *mii;
772 	uint32_t mac_mode;
773 
774 	sc = device_get_softc(dev);
775 	if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
776 		return;
777 
778 	mii = device_get_softc(sc->bge_miibus);
779 
780 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
781 	    (IFM_ACTIVE | IFM_AVALID)) {
782 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
783 		case IFM_10_T:
784 		case IFM_100_TX:
785 			sc->bge_link = 1;
786 			break;
787 		case IFM_1000_T:
788 		case IFM_1000_SX:
789 		case IFM_2500_SX:
790 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
791 				sc->bge_link = 1;
792 			else
793 				sc->bge_link = 0;
794 			break;
795 		default:
796 			sc->bge_link = 0;
797 			break;
798 		}
799 	} else {
800 		sc->bge_link = 0;
801 	}
802 	if (sc->bge_link == 0)
803 		return;
804 
805 	/*
806 	 * APE firmware touches these registers to keep the MAC
807 	 * connected to the outside world.  Try to keep the
808 	 * accesses atomic.
809 	 */
810 
811 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
812 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
813 
814 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
815 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
816 		mac_mode |= BGE_PORTMODE_GMII;
817 	else
818 		mac_mode |= BGE_PORTMODE_MII;
819 
820 	if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
821 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
822 
823 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
824 	DELAY(40);
825 }
826 
827 /*
828  * Memory management for jumbo frames.
829  */
830 static int
831 bge_alloc_jumbo_mem(struct bge_softc *sc)
832 {
833 	struct ifnet *ifp = &sc->arpcom.ac_if;
834 	struct bge_jslot *entry;
835 	uint8_t *ptr;
836 	bus_addr_t paddr;
837 	int i, error;
838 
839 	/*
840 	 * Create tag for jumbo mbufs.
841 	 * This is really a bit of a kludge. We allocate a special
842 	 * jumbo buffer pool which (thanks to the way our DMA
843 	 * memory allocation works) will consist of contiguous
844 	 * pages. This means that even though a jumbo buffer might
845 	 * be larger than a page size, we don't really need to
846 	 * map it into more than one DMA segment. However, the
847 	 * default mbuf tag will result in multi-segment mappings,
848 	 * so we have to create a special jumbo mbuf tag that
849 	 * lets us get away with mapping the jumbo buffers as
850 	 * a single segment. I think eventually the driver should
851 	 * be changed so that it uses ordinary mbufs and cluster
852 	 * buffers, i.e. jumbo frames can span multiple DMA
853 	 * descriptors. But that's a project for another day.
854 	 */
855 
856 	/*
857 	 * Create DMA stuffs for jumbo RX ring.
858 	 */
859 	error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
860 				    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
861 				    &sc->bge_cdata.bge_rx_jumbo_ring_map,
862 				    (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
863 				    &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
864 	if (error) {
865 		if_printf(ifp, "could not create jumbo RX ring\n");
866 		return error;
867 	}
868 
869 	/*
870 	 * Create DMA stuffs for jumbo buffer block.
871 	 */
872 	error = bge_dma_block_alloc(sc, BGE_JMEM,
873 				    &sc->bge_cdata.bge_jumbo_tag,
874 				    &sc->bge_cdata.bge_jumbo_map,
875 				    (void **)&sc->bge_ldata.bge_jumbo_buf,
876 				    &paddr);
877 	if (error) {
878 		if_printf(ifp, "could not create jumbo buffer\n");
879 		return error;
880 	}
881 
882 	SLIST_INIT(&sc->bge_jfree_listhead);
883 
884 	/*
885 	 * Now divide it up into 9K pieces and save the addresses
886 	 * in an array. Note that we play an evil trick here by using
887 	 * the first few bytes in the buffer to hold the the address
888 	 * of the softc structure for this interface. This is because
889 	 * bge_jfree() needs it, but it is called by the mbuf management
890 	 * code which will not pass it to us explicitly.
891 	 */
892 	for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
893 		entry = &sc->bge_cdata.bge_jslots[i];
894 		entry->bge_sc = sc;
895 		entry->bge_buf = ptr;
896 		entry->bge_paddr = paddr;
897 		entry->bge_inuse = 0;
898 		entry->bge_slot = i;
899 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
900 
901 		ptr += BGE_JLEN;
902 		paddr += BGE_JLEN;
903 	}
904 	return 0;
905 }
906 
907 static void
908 bge_free_jumbo_mem(struct bge_softc *sc)
909 {
910 	/* Destroy jumbo RX ring. */
911 	bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
912 			   sc->bge_cdata.bge_rx_jumbo_ring_map,
913 			   sc->bge_ldata.bge_rx_jumbo_ring);
914 
915 	/* Destroy jumbo buffer block. */
916 	bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
917 			   sc->bge_cdata.bge_jumbo_map,
918 			   sc->bge_ldata.bge_jumbo_buf);
919 }
920 
921 /*
922  * Allocate a jumbo buffer.
923  */
924 static struct bge_jslot *
925 bge_jalloc(struct bge_softc *sc)
926 {
927 	struct bge_jslot *entry;
928 
929 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
930 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
931 	if (entry) {
932 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
933 		entry->bge_inuse = 1;
934 	} else {
935 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
936 	}
937 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
938 	return(entry);
939 }
940 
941 /*
942  * Adjust usage count on a jumbo buffer.
943  */
944 static void
945 bge_jref(void *arg)
946 {
947 	struct bge_jslot *entry = (struct bge_jslot *)arg;
948 	struct bge_softc *sc = entry->bge_sc;
949 
950 	if (sc == NULL)
951 		panic("bge_jref: can't find softc pointer!");
952 
953 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
954 		panic("bge_jref: asked to reference buffer "
955 		    "that we don't manage!");
956 	} else if (entry->bge_inuse == 0) {
957 		panic("bge_jref: buffer already free!");
958 	} else {
959 		atomic_add_int(&entry->bge_inuse, 1);
960 	}
961 }
962 
963 /*
964  * Release a jumbo buffer.
965  */
966 static void
967 bge_jfree(void *arg)
968 {
969 	struct bge_jslot *entry = (struct bge_jslot *)arg;
970 	struct bge_softc *sc = entry->bge_sc;
971 
972 	if (sc == NULL)
973 		panic("bge_jfree: can't find softc pointer!");
974 
975 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
976 		panic("bge_jfree: asked to free buffer that we don't manage!");
977 	} else if (entry->bge_inuse == 0) {
978 		panic("bge_jfree: buffer already free!");
979 	} else {
980 		/*
981 		 * Possible MP race to 0, use the serializer.  The atomic insn
982 		 * is still needed for races against bge_jref().
983 		 */
984 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
985 		atomic_subtract_int(&entry->bge_inuse, 1);
986 		if (entry->bge_inuse == 0) {
987 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
988 					  entry, jslot_link);
989 		}
990 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
991 	}
992 }
993 
994 
995 /*
996  * Intialize a standard receive ring descriptor.
997  */
998 static int
999 bge_newbuf_std(struct bge_softc *sc, int i, int init)
1000 {
1001 	struct mbuf *m_new = NULL;
1002 	bus_dma_segment_t seg;
1003 	bus_dmamap_t map;
1004 	int error, nsegs;
1005 
1006 	m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1007 	if (m_new == NULL)
1008 		return ENOBUFS;
1009 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1010 
1011 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1012 		m_adj(m_new, ETHER_ALIGN);
1013 
1014 	error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
1015 			sc->bge_cdata.bge_rx_tmpmap, m_new,
1016 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1017 	if (error) {
1018 		m_freem(m_new);
1019 		return error;
1020 	}
1021 
1022 	if (!init) {
1023 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1024 				sc->bge_cdata.bge_rx_std_dmamap[i],
1025 				BUS_DMASYNC_POSTREAD);
1026 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1027 			sc->bge_cdata.bge_rx_std_dmamap[i]);
1028 	}
1029 
1030 	map = sc->bge_cdata.bge_rx_tmpmap;
1031 	sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1032 	sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1033 
1034 	sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1035 	sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1036 
1037 	bge_setup_rxdesc_std(sc, i);
1038 	return 0;
1039 }
1040 
1041 static void
1042 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1043 {
1044 	struct bge_rxchain *rc;
1045 	struct bge_rx_bd *r;
1046 
1047 	rc = &sc->bge_cdata.bge_rx_std_chain[i];
1048 	r = &sc->bge_ldata.bge_rx_std_ring[i];
1049 
1050 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1051 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1052 	r->bge_len = rc->bge_mbuf->m_len;
1053 	r->bge_idx = i;
1054 	r->bge_flags = BGE_RXBDFLAG_END;
1055 }
1056 
1057 /*
1058  * Initialize a jumbo receive ring descriptor. This allocates
1059  * a jumbo buffer from the pool managed internally by the driver.
1060  */
1061 static int
1062 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1063 {
1064 	struct mbuf *m_new = NULL;
1065 	struct bge_jslot *buf;
1066 	bus_addr_t paddr;
1067 
1068 	/* Allocate the mbuf. */
1069 	MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1070 	if (m_new == NULL)
1071 		return ENOBUFS;
1072 
1073 	/* Allocate the jumbo buffer */
1074 	buf = bge_jalloc(sc);
1075 	if (buf == NULL) {
1076 		m_freem(m_new);
1077 		return ENOBUFS;
1078 	}
1079 
1080 	/* Attach the buffer to the mbuf. */
1081 	m_new->m_ext.ext_arg = buf;
1082 	m_new->m_ext.ext_buf = buf->bge_buf;
1083 	m_new->m_ext.ext_free = bge_jfree;
1084 	m_new->m_ext.ext_ref = bge_jref;
1085 	m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1086 
1087 	m_new->m_flags |= M_EXT;
1088 
1089 	m_new->m_data = m_new->m_ext.ext_buf;
1090 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1091 
1092 	paddr = buf->bge_paddr;
1093 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1094 		m_adj(m_new, ETHER_ALIGN);
1095 		paddr += ETHER_ALIGN;
1096 	}
1097 
1098 	/* Save necessary information */
1099 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1100 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1101 
1102 	/* Set up the descriptor. */
1103 	bge_setup_rxdesc_jumbo(sc, i);
1104 	return 0;
1105 }
1106 
1107 static void
1108 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1109 {
1110 	struct bge_rx_bd *r;
1111 	struct bge_rxchain *rc;
1112 
1113 	r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1114 	rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1115 
1116 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1117 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1118 	r->bge_len = rc->bge_mbuf->m_len;
1119 	r->bge_idx = i;
1120 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1121 }
1122 
1123 static int
1124 bge_init_rx_ring_std(struct bge_softc *sc)
1125 {
1126 	int i, error;
1127 
1128 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1129 		error = bge_newbuf_std(sc, i, 1);
1130 		if (error)
1131 			return error;
1132 	}
1133 
1134 	sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1135 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1136 
1137 	return(0);
1138 }
1139 
1140 static void
1141 bge_free_rx_ring_std(struct bge_softc *sc)
1142 {
1143 	int i;
1144 
1145 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1146 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1147 
1148 		if (rc->bge_mbuf != NULL) {
1149 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1150 					  sc->bge_cdata.bge_rx_std_dmamap[i]);
1151 			m_freem(rc->bge_mbuf);
1152 			rc->bge_mbuf = NULL;
1153 		}
1154 		bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1155 		    sizeof(struct bge_rx_bd));
1156 	}
1157 }
1158 
1159 static int
1160 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1161 {
1162 	struct bge_rcb *rcb;
1163 	int i, error;
1164 
1165 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1166 		error = bge_newbuf_jumbo(sc, i, 1);
1167 		if (error)
1168 			return error;
1169 	}
1170 
1171 	sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1172 
1173 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1174 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1175 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1176 
1177 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1178 
1179 	return(0);
1180 }
1181 
1182 static void
1183 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1184 {
1185 	int i;
1186 
1187 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1188 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1189 
1190 		if (rc->bge_mbuf != NULL) {
1191 			m_freem(rc->bge_mbuf);
1192 			rc->bge_mbuf = NULL;
1193 		}
1194 		bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1195 		    sizeof(struct bge_rx_bd));
1196 	}
1197 }
1198 
1199 static void
1200 bge_free_tx_ring(struct bge_softc *sc)
1201 {
1202 	int i;
1203 
1204 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1205 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1206 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1207 					  sc->bge_cdata.bge_tx_dmamap[i]);
1208 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1209 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1210 		}
1211 		bzero(&sc->bge_ldata.bge_tx_ring[i],
1212 		    sizeof(struct bge_tx_bd));
1213 	}
1214 }
1215 
1216 static int
1217 bge_init_tx_ring(struct bge_softc *sc)
1218 {
1219 	sc->bge_txcnt = 0;
1220 	sc->bge_tx_saved_considx = 0;
1221 	sc->bge_tx_prodidx = 0;
1222 
1223 	/* Initialize transmit producer index for host-memory send ring. */
1224 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1225 
1226 	/* 5700 b2 errata */
1227 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1228 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1229 
1230 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1231 	/* 5700 b2 errata */
1232 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1233 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1234 
1235 	return(0);
1236 }
1237 
1238 static void
1239 bge_setmulti(struct bge_softc *sc)
1240 {
1241 	struct ifnet *ifp;
1242 	struct ifmultiaddr *ifma;
1243 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1244 	int h, i;
1245 
1246 	ifp = &sc->arpcom.ac_if;
1247 
1248 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1249 		for (i = 0; i < 4; i++)
1250 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1251 		return;
1252 	}
1253 
1254 	/* First, zot all the existing filters. */
1255 	for (i = 0; i < 4; i++)
1256 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1257 
1258 	/* Now program new ones. */
1259 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1260 		if (ifma->ifma_addr->sa_family != AF_LINK)
1261 			continue;
1262 		h = ether_crc32_le(
1263 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1264 		    ETHER_ADDR_LEN) & 0x7f;
1265 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1266 	}
1267 
1268 	for (i = 0; i < 4; i++)
1269 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1270 }
1271 
1272 /*
1273  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1274  * self-test results.
1275  */
1276 static int
1277 bge_chipinit(struct bge_softc *sc)
1278 {
1279 	int i;
1280 	uint32_t dma_rw_ctl, mode_ctl;
1281 	uint16_t val;
1282 
1283 	/* Set endian type before we access any non-PCI registers. */
1284 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1285 	    BGE_INIT | sc->bge_pci_miscctl, 4);
1286 
1287 	/* Clear the MAC control register */
1288 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1289 	DELAY(40);
1290 
1291 	/*
1292 	 * Clear the MAC statistics block in the NIC's
1293 	 * internal memory.
1294 	 */
1295 	for (i = BGE_STATS_BLOCK;
1296 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1297 		BGE_MEMWIN_WRITE(sc, i, 0);
1298 
1299 	for (i = BGE_STATUS_BLOCK;
1300 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1301 		BGE_MEMWIN_WRITE(sc, i, 0);
1302 
1303 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1304 		/*
1305 		 * Fix data corruption caused by non-qword write with WB.
1306 		 * Fix master abort in PCI mode.
1307 		 * Fix PCI latency timer.
1308 		 */
1309 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1310 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1311 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1312 	}
1313 
1314 	/* Set up the PCI DMA control register. */
1315 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1316 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1317 		/* PCI-E bus */
1318 		/* DMA read watermark not used on PCI-E */
1319 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1320 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1321 		/* PCI-X bus */
1322 		if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1323 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1324 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1325 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1326 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1327 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1328 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1329 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1330 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1331 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1332 			uint32_t rd_wat = 0x7;
1333 			uint32_t clkctl;
1334 
1335 			clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1336 			if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1337 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1338 				dma_rw_ctl |=
1339 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1340 			} else if (clkctl == 0x6 || clkctl == 0x7) {
1341 				dma_rw_ctl |=
1342 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1343 			}
1344 			if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1345 				rd_wat = 0x4;
1346 
1347 			dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1348 			    (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1349 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1350 		} else {
1351 			dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1352 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1353 			dma_rw_ctl |= 0xf;
1354 		}
1355 	} else {
1356 		/* Conventional PCI bus */
1357 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1358 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1359 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1360 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1361 			dma_rw_ctl |= 0xf;
1362 	}
1363 
1364 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1365 	    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1366 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1367 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1368 	    sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1369 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1370 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1371 	}
1372 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1373 
1374 	/*
1375 	 * Set up general mode register.
1376 	 */
1377 	mode_ctl = BGE_DMA_SWAP_OPTIONS|
1378 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1379 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1380 
1381 	/*
1382 	 * BCM5701 B5 have a bug causing data corruption when using
1383 	 * 64-bit DMA reads, which can be terminated early and then
1384 	 * completed later as 32-bit accesses, in combination with
1385 	 * certain bridges.
1386 	 */
1387 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1388 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1389 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1390 
1391 	/*
1392 	 * Tell the firmware the driver is running
1393 	 */
1394 	if (sc->bge_asf_mode & ASF_STACKUP)
1395 		mode_ctl |= BGE_MODECTL_STACKUP;
1396 
1397 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1398 
1399 	/*
1400 	 * Disable memory write invalidate.  Apparently it is not supported
1401 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1402 	 * as these chips need it even when using MSI.
1403 	 */
1404 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1405 	    (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1406 
1407 	/* Set the timer prescaler (always 66Mhz) */
1408 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1409 
1410 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1411 		DELAY(40);	/* XXX */
1412 
1413 		/* Put PHY into ready state */
1414 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1415 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1416 		DELAY(40);
1417 	}
1418 
1419 	return(0);
1420 }
1421 
1422 static int
1423 bge_blockinit(struct bge_softc *sc)
1424 {
1425 	struct bge_rcb *rcb;
1426 	bus_size_t vrcb;
1427 	bge_hostaddr taddr;
1428 	uint32_t val;
1429 	int i, limit;
1430 
1431 	/*
1432 	 * Initialize the memory window pointer register so that
1433 	 * we can access the first 32K of internal NIC RAM. This will
1434 	 * allow us to set up the TX send ring RCBs and the RX return
1435 	 * ring RCBs, plus other things which live in NIC memory.
1436 	 */
1437 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1438 
1439 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1440 
1441 	if (!BGE_IS_5705_PLUS(sc)) {
1442 		/* Configure mbuf memory pool */
1443 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1444 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1445 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1446 		else
1447 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1448 
1449 		/* Configure DMA resource pool */
1450 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1451 		    BGE_DMA_DESCRIPTORS);
1452 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1453 	}
1454 
1455 	/* Configure mbuf pool watermarks */
1456 	if (!BGE_IS_5705_PLUS(sc)) {
1457 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1458 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1459 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1460 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1461 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1462 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1463 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1464 	} else {
1465 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1466 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1467 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1468 	}
1469 
1470 	/* Configure DMA resource watermarks */
1471 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1472 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1473 
1474 	/* Enable buffer manager */
1475 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1476 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1477 
1478 	/* Poll for buffer manager start indication */
1479 	for (i = 0; i < BGE_TIMEOUT; i++) {
1480 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1481 			break;
1482 		DELAY(10);
1483 	}
1484 
1485 	if (i == BGE_TIMEOUT) {
1486 		if_printf(&sc->arpcom.ac_if,
1487 			  "buffer manager failed to start\n");
1488 		return(ENXIO);
1489 	}
1490 
1491 	/* Enable flow-through queues */
1492 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1493 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1494 
1495 	/* Wait until queue initialization is complete */
1496 	for (i = 0; i < BGE_TIMEOUT; i++) {
1497 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1498 			break;
1499 		DELAY(10);
1500 	}
1501 
1502 	if (i == BGE_TIMEOUT) {
1503 		if_printf(&sc->arpcom.ac_if,
1504 			  "flow-through queue init failed\n");
1505 		return(ENXIO);
1506 	}
1507 
1508 	/*
1509 	 * Summary of rings supported by the controller:
1510 	 *
1511 	 * Standard Receive Producer Ring
1512 	 * - This ring is used to feed receive buffers for "standard"
1513 	 *   sized frames (typically 1536 bytes) to the controller.
1514 	 *
1515 	 * Jumbo Receive Producer Ring
1516 	 * - This ring is used to feed receive buffers for jumbo sized
1517 	 *   frames (i.e. anything bigger than the "standard" frames)
1518 	 *   to the controller.
1519 	 *
1520 	 * Mini Receive Producer Ring
1521 	 * - This ring is used to feed receive buffers for "mini"
1522 	 *   sized frames to the controller.
1523 	 * - This feature required external memory for the controller
1524 	 *   but was never used in a production system.  Should always
1525 	 *   be disabled.
1526 	 *
1527 	 * Receive Return Ring
1528 	 * - After the controller has placed an incoming frame into a
1529 	 *   receive buffer that buffer is moved into a receive return
1530 	 *   ring.  The driver is then responsible to passing the
1531 	 *   buffer up to the stack.  Many versions of the controller
1532 	 *   support multiple RR rings.
1533 	 *
1534 	 * Send Ring
1535 	 * - This ring is used for outgoing frames.  Many versions of
1536 	 *   the controller support multiple send rings.
1537 	 */
1538 
1539 	/* Initialize the standard receive producer ring control block. */
1540 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1541 	rcb->bge_hostaddr.bge_addr_lo =
1542 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1543 	rcb->bge_hostaddr.bge_addr_hi =
1544 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1545 	if (BGE_IS_5705_PLUS(sc)) {
1546 		/*
1547 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1548 		 * Bits 15-2 : Reserved (should be 0)
1549 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1550 		 * Bit 0     : Reserved
1551 		 */
1552 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1553 	} else {
1554 		/*
1555 		 * Ring size is always XXX entries
1556 		 * Bits 31-16: Maximum RX frame size
1557 		 * Bits 15-2 : Reserved (should be 0)
1558 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1559 		 * Bit 0     : Reserved
1560 		 */
1561 		rcb->bge_maxlen_flags =
1562 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1563 	}
1564 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1565 	/* Write the standard receive producer ring control block. */
1566 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1567 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1568 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1569 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1570 	/* Reset the standard receive producer ring producer index. */
1571 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1572 
1573 	/*
1574 	 * Initialize the jumbo RX producer ring control
1575 	 * block.  We set the 'ring disabled' bit in the
1576 	 * flags field until we're actually ready to start
1577 	 * using this ring (i.e. once we set the MTU
1578 	 * high enough to require it).
1579 	 */
1580 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1581 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1582 		/* Get the jumbo receive producer ring RCB parameters. */
1583 		rcb->bge_hostaddr.bge_addr_lo =
1584 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1585 		rcb->bge_hostaddr.bge_addr_hi =
1586 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1587 		rcb->bge_maxlen_flags =
1588 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1589 		    BGE_RCB_FLAG_RING_DISABLED);
1590 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1591 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1592 		    rcb->bge_hostaddr.bge_addr_hi);
1593 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1594 		    rcb->bge_hostaddr.bge_addr_lo);
1595 		/* Program the jumbo receive producer ring RCB parameters. */
1596 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1597 		    rcb->bge_maxlen_flags);
1598 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1599 		/* Reset the jumbo receive producer ring producer index. */
1600 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1601 	}
1602 
1603 	/* Disable the mini receive producer ring RCB. */
1604 	if (BGE_IS_5700_FAMILY(sc)) {
1605 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1606 		rcb->bge_maxlen_flags =
1607 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1608 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1609 		    rcb->bge_maxlen_flags);
1610 		/* Reset the mini receive producer ring producer index. */
1611 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1612 	}
1613 
1614 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1615 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1616 	    (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1617 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1618 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1619 		CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1620 		    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1621 	}
1622 
1623 	/*
1624 	 * The BD ring replenish thresholds control how often the
1625 	 * hardware fetches new BD's from the producer rings in host
1626 	 * memory.  Setting the value too low on a busy system can
1627 	 * starve the hardware and recue the throughpout.
1628 	 *
1629 	 * Set the BD ring replentish thresholds. The recommended
1630 	 * values are 1/8th the number of descriptors allocated to
1631 	 * each ring.
1632 	 */
1633 	if (BGE_IS_5705_PLUS(sc))
1634 		val = 8;
1635 	else
1636 		val = BGE_STD_RX_RING_CNT / 8;
1637 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1638 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1639 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1640 		    BGE_JUMBO_RX_RING_CNT/8);
1641 	}
1642 
1643 	/*
1644 	 * Disable all send rings by setting the 'ring disabled' bit
1645 	 * in the flags field of all the TX send ring control blocks,
1646 	 * located in NIC memory.
1647 	 */
1648 	if (!BGE_IS_5705_PLUS(sc)) {
1649 		/* 5700 to 5704 had 16 send rings. */
1650 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1651 	} else {
1652 		limit = 1;
1653 	}
1654 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1655 	for (i = 0; i < limit; i++) {
1656 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1657 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1658 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1659 		vrcb += sizeof(struct bge_rcb);
1660 	}
1661 
1662 	/* Configure send ring RCB 0 (we use only the first ring) */
1663 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1664 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1665 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1666 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1667 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1668 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1669 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1670 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1671 
1672 	/*
1673 	 * Disable all receive return rings by setting the
1674 	 * 'ring diabled' bit in the flags field of all the receive
1675 	 * return ring control blocks, located in NIC memory.
1676 	 */
1677 	if (!BGE_IS_5705_PLUS(sc))
1678 		limit = BGE_RX_RINGS_MAX;
1679 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1680 		limit = 4;
1681 	else
1682 		limit = 1;
1683 	/* Disable all receive return rings. */
1684 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1685 	for (i = 0; i < limit; i++) {
1686 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1687 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1688 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1689 		    BGE_RCB_FLAG_RING_DISABLED);
1690 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1691 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1692 		    (i * (sizeof(uint64_t))), 0);
1693 		vrcb += sizeof(struct bge_rcb);
1694 	}
1695 
1696 	/*
1697 	 * Set up receive return ring 0.  Note that the NIC address
1698 	 * for RX return rings is 0x0.  The return rings live entirely
1699 	 * within the host, so the nicaddr field in the RCB isn't used.
1700 	 */
1701 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1702 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1703 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1704 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1705 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1706 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1707 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1708 
1709 	/* Set random backoff seed for TX */
1710 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1711 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1712 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1713 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1714 	    BGE_TX_BACKOFF_SEED_MASK);
1715 
1716 	/* Set inter-packet gap */
1717 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1718 
1719 	/*
1720 	 * Specify which ring to use for packets that don't match
1721 	 * any RX rules.
1722 	 */
1723 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1724 
1725 	/*
1726 	 * Configure number of RX lists. One interrupt distribution
1727 	 * list, sixteen active lists, one bad frames class.
1728 	 */
1729 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1730 
1731 	/* Inialize RX list placement stats mask. */
1732 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1733 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1734 
1735 	/* Disable host coalescing until we get it set up */
1736 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1737 
1738 	/* Poll to make sure it's shut down. */
1739 	for (i = 0; i < BGE_TIMEOUT; i++) {
1740 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1741 			break;
1742 		DELAY(10);
1743 	}
1744 
1745 	if (i == BGE_TIMEOUT) {
1746 		if_printf(&sc->arpcom.ac_if,
1747 			  "host coalescing engine failed to idle\n");
1748 		return(ENXIO);
1749 	}
1750 
1751 	/* Set up host coalescing defaults */
1752 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1753 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1754 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1755 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1756 	if (!BGE_IS_5705_PLUS(sc)) {
1757 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1758 		    sc->bge_rx_coal_ticks_int);
1759 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1760 		    sc->bge_tx_coal_ticks_int);
1761 	}
1762 	/*
1763 	 * NOTE:
1764 	 * The datasheet (57XX-PG105-R) says BCM5705+ do not
1765 	 * have following two registers; obviously it is wrong.
1766 	 */
1767 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1768 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1769 
1770 	/* Set up address of statistics block */
1771 	if (!BGE_IS_5705_PLUS(sc)) {
1772 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1773 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1774 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1775 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1776 
1777 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1778 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1779 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1780 	}
1781 
1782 	/* Set up address of status block */
1783 	bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1784 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1785 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1786 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1787 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1788 
1789 	/*
1790 	 * Set up status block partail update size.
1791 	 *
1792 	 * Because only single TX ring, RX produce ring and Rx return ring
1793 	 * are used, ask device to update only minimum part of status block
1794 	 * except for BCM5700 AX/BX, whose status block partial update size
1795 	 * can't be configured.
1796 	 */
1797 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1798 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1799 		/* XXX Actually reserved on BCM5700 AX/BX */
1800 		val = BGE_STATBLKSZ_FULL;
1801 	} else {
1802 		val = BGE_STATBLKSZ_32BYTE;
1803 	}
1804 #if 0
1805 	/*
1806 	 * Does not seem to have visible effect in both
1807 	 * bulk data (1472B UDP datagram) and tiny data
1808 	 * (18B UDP datagram) TX tests.
1809 	 */
1810 	if (!BGE_IS_CRIPPLED(sc))
1811 		val |= BGE_HCCMODE_CLRTICK_TX;
1812 #endif
1813 
1814 	/* Turn on host coalescing state machine */
1815 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1816 
1817 	/* Turn on RX BD completion state machine and enable attentions */
1818 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1819 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1820 
1821 	/* Turn on RX list placement state machine */
1822 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1823 
1824 	/* Turn on RX list selector state machine. */
1825 	if (!BGE_IS_5705_PLUS(sc))
1826 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1827 
1828 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1829 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1830 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1831 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1832 
1833 	if (sc->bge_flags & BGE_FLAG_TBI)
1834 		val |= BGE_PORTMODE_TBI;
1835 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1836 		val |= BGE_PORTMODE_GMII;
1837 	else
1838 		val |= BGE_PORTMODE_MII;
1839 
1840 	/* Turn on DMA, clear stats */
1841 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1842 	DELAY(40);
1843 
1844 	/* Set misc. local control, enable interrupts on attentions */
1845 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1846 
1847 #ifdef notdef
1848 	/* Assert GPIO pins for PHY reset */
1849 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1850 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1851 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1852 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1853 #endif
1854 
1855 	/* Turn on DMA completion state machine */
1856 	if (!BGE_IS_5705_PLUS(sc))
1857 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1858 
1859 	/* Turn on write DMA state machine */
1860 	val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1861 	if (BGE_IS_5755_PLUS(sc)) {
1862 		/* Enable host coalescing bug fix. */
1863 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1864 	}
1865 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1866 		/* Request larger DMA burst size to get better performance. */
1867 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
1868 	}
1869 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1870 	DELAY(40);
1871 
1872 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1873 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1874 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1875 	    sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1876 		/*
1877 		 * Enable fix for read DMA FIFO overruns.
1878 		 * The fix is to limit the number of RX BDs
1879 		 * the hardware would fetch at a fime.
1880 		 */
1881 		val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1882 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1883 		    val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1884 	}
1885 
1886 	/* Turn on read DMA state machine */
1887 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1888         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1889             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1890             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1891 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1892                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1893                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1894 	if (sc->bge_flags & BGE_FLAG_PCIE)
1895 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1896 	if (sc->bge_flags & BGE_FLAG_TSO)
1897 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1898 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1899 	DELAY(40);
1900 
1901 	/* Turn on RX data completion state machine */
1902 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1903 
1904 	/* Turn on RX BD initiator state machine */
1905 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1906 
1907 	/* Turn on RX data and RX BD initiator state machine */
1908 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1909 
1910 	/* Turn on Mbuf cluster free state machine */
1911 	if (!BGE_IS_5705_PLUS(sc))
1912 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1913 
1914 	/* Turn on send BD completion state machine */
1915 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1916 
1917 	/* Turn on send data completion state machine */
1918 	val = BGE_SDCMODE_ENABLE;
1919 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1920 		val |= BGE_SDCMODE_CDELAY;
1921 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1922 
1923 	/* Turn on send data initiator state machine */
1924 	if (sc->bge_flags & BGE_FLAG_TSO)
1925 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1926 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
1927 	else
1928 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1929 
1930 	/* Turn on send BD initiator state machine */
1931 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1932 
1933 	/* Turn on send BD selector state machine */
1934 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1935 
1936 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1937 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1938 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1939 
1940 	/* ack/clear link change events */
1941 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1942 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1943 	    BGE_MACSTAT_LINK_CHANGED);
1944 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1945 
1946 	/*
1947 	 * Enable attention when the link has changed state for
1948 	 * devices that use auto polling.
1949 	 */
1950 	if (sc->bge_flags & BGE_FLAG_TBI) {
1951 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1952  	} else {
1953 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1954 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1955 			DELAY(80);
1956 		}
1957 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1958 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1959 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1960 			    BGE_EVTENB_MI_INTERRUPT);
1961 		}
1962 	}
1963 
1964 	/*
1965 	 * Clear any pending link state attention.
1966 	 * Otherwise some link state change events may be lost until attention
1967 	 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1968 	 * It's not necessary on newer BCM chips - perhaps enabling link
1969 	 * state change attentions implies clearing pending attention.
1970 	 */
1971 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1972 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1973 	    BGE_MACSTAT_LINK_CHANGED);
1974 
1975 	/* Enable link state change attentions. */
1976 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1977 
1978 	return(0);
1979 }
1980 
1981 /*
1982  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1983  * against our list and return its name if we find a match. Note
1984  * that since the Broadcom controller contains VPD support, we
1985  * can get the device name string from the controller itself instead
1986  * of the compiled-in string. This is a little slow, but it guarantees
1987  * we'll always announce the right product name.
1988  */
1989 static int
1990 bge_probe(device_t dev)
1991 {
1992 	const struct bge_type *t;
1993 	uint16_t product, vendor;
1994 
1995 	product = pci_get_device(dev);
1996 	vendor = pci_get_vendor(dev);
1997 
1998 	for (t = bge_devs; t->bge_name != NULL; t++) {
1999 		if (vendor == t->bge_vid && product == t->bge_did)
2000 			break;
2001 	}
2002 	if (t->bge_name == NULL)
2003 		return(ENXIO);
2004 
2005 	device_set_desc(dev, t->bge_name);
2006 	return(0);
2007 }
2008 
2009 static int
2010 bge_attach(device_t dev)
2011 {
2012 	struct ifnet *ifp;
2013 	struct bge_softc *sc;
2014 	uint32_t hwcfg = 0, misccfg;
2015 	int error = 0, rid, capmask;
2016 	uint8_t ether_addr[ETHER_ADDR_LEN];
2017 	uint16_t product, vendor;
2018 	driver_intr_t *intr_func;
2019 	uintptr_t mii_priv = 0;
2020 	u_int intr_flags;
2021 	int msi_enable;
2022 
2023 	sc = device_get_softc(dev);
2024 	sc->bge_dev = dev;
2025 	callout_init_mp(&sc->bge_stat_timer);
2026 	lwkt_serialize_init(&sc->bge_jslot_serializer);
2027 
2028 	product = pci_get_device(dev);
2029 	vendor = pci_get_vendor(dev);
2030 
2031 #ifndef BURN_BRIDGES
2032 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2033 		uint32_t irq, mem;
2034 
2035 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
2036 		mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2037 
2038 		device_printf(dev, "chip is in D%d power mode "
2039 		    "-- setting to D0\n", pci_get_powerstate(dev));
2040 
2041 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2042 
2043 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
2044 		pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2045 	}
2046 #endif	/* !BURN_BRIDGE */
2047 
2048 	/*
2049 	 * Map control/status registers.
2050 	 */
2051 	pci_enable_busmaster(dev);
2052 
2053 	rid = BGE_PCI_BAR0;
2054 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2055 	    RF_ACTIVE);
2056 
2057 	if (sc->bge_res == NULL) {
2058 		device_printf(dev, "couldn't map memory\n");
2059 		return ENXIO;
2060 	}
2061 
2062 	sc->bge_btag = rman_get_bustag(sc->bge_res);
2063 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2064 
2065 	/* Save various chip information */
2066 	sc->bge_chipid =
2067 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2068 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2069 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2070 		/* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2071 		sc->bge_flags |= BGE_FLAG_CPMU;
2072 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2073 	}
2074 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2075 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2076 
2077 	/* Save chipset family. */
2078 	switch (sc->bge_asicrev) {
2079 	case BGE_ASICREV_BCM5755:
2080 	case BGE_ASICREV_BCM5761:
2081 	case BGE_ASICREV_BCM5784:
2082 	case BGE_ASICREV_BCM5785:
2083 	case BGE_ASICREV_BCM5787:
2084 	case BGE_ASICREV_BCM57780:
2085 	    sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2086 		BGE_FLAG_5705_PLUS;
2087 	    break;
2088 
2089 	case BGE_ASICREV_BCM5700:
2090 	case BGE_ASICREV_BCM5701:
2091 	case BGE_ASICREV_BCM5703:
2092 	case BGE_ASICREV_BCM5704:
2093 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2094 		break;
2095 
2096 	case BGE_ASICREV_BCM5714_A0:
2097 	case BGE_ASICREV_BCM5780:
2098 	case BGE_ASICREV_BCM5714:
2099 		sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2100 		/* Fall through */
2101 
2102 	case BGE_ASICREV_BCM5750:
2103 	case BGE_ASICREV_BCM5752:
2104 	case BGE_ASICREV_BCM5906:
2105 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2106 		/* Fall through */
2107 
2108 	case BGE_ASICREV_BCM5705:
2109 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2110 		break;
2111 	}
2112 
2113 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2114 		sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2115 
2116 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2117 		sc->bge_flags |= BGE_FLAG_APE;
2118 
2119 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2120 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2121 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2122 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2123 		sc->bge_flags |= BGE_FLAG_5788;
2124 
2125 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
2126 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2127 		sc->bge_flags |= BGE_FLAG_SHORTDMA;
2128 
2129 	/*
2130 	 * Increase STD RX ring prod index by at most 8 for BCM5750,
2131 	 * BCM5752 and BCM5755 to workaround hardware errata.
2132 	 */
2133 	if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2134 	    sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2135 	    sc->bge_asicrev == BGE_ASICREV_BCM5755)
2136 		sc->bge_rx_wreg = 8;
2137 
2138   	/*
2139 	 * Check if this is a PCI-X or PCI Express device.
2140   	 */
2141 	if (BGE_IS_5705_PLUS(sc)) {
2142 		if (pci_is_pcie(dev)) {
2143 			sc->bge_flags |= BGE_FLAG_PCIE;
2144 			sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2145 			pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2146 		}
2147 	} else {
2148 		/*
2149 		 * Check if the device is in PCI-X Mode.
2150 		 * (This bit is not valid on PCI Express controllers.)
2151 		 */
2152 		if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2153 		    BGE_PCISTATE_PCI_BUSMODE) == 0) {
2154 			sc->bge_flags |= BGE_FLAG_PCIX;
2155 			sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2156 			sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2157 			    "mbox_reorder", 0);
2158 		}
2159  	}
2160 	device_printf(dev, "CHIP ID 0x%08x; "
2161 		      "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2162 		      sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2163 		      (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2164 		      : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2165 			"PCI-E" : "PCI"));
2166 
2167 	/*
2168 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2169 	 * not actually a MAC controller bug but an issue with the embedded
2170 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2171 	 */
2172 	if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2173 	    (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2174 		sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2175 
2176 	/*
2177 	 * When using the BCM5701 in PCI-X mode, data corruption has
2178 	 * been observed in the first few bytes of some received packets.
2179 	 * Aligning the packet buffer in memory eliminates the corruption.
2180 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2181 	 * which do not support unaligned accesses, we will realign the
2182 	 * payloads by copying the received packets.
2183 	 */
2184 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2185 	    (sc->bge_flags & BGE_FLAG_PCIX))
2186 		sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2187 
2188 	if (!BGE_IS_CRIPPLED(sc)) {
2189 		if (device_getenv_int(dev, "status_tag", 1)) {
2190 			sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2191 			sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2192 			if (bootverbose)
2193 				device_printf(dev, "enable status tag\n");
2194 		}
2195 	}
2196 
2197 	if (BGE_IS_5755_PLUS(sc)) {
2198 		/*
2199 		 * BCM5754 and BCM5787 shares the same ASIC id so
2200 		 * explicit device id check is required.
2201 		 * Due to unknown reason TSO does not work on BCM5755M.
2202 		 */
2203 		if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2204 		    product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2205 		    product != PCI_PRODUCT_BROADCOM_BCM5755M)
2206 			sc->bge_flags |= BGE_FLAG_TSO;
2207 	}
2208 
2209 	/*
2210 	 * Set various PHY quirk flags.
2211 	 */
2212 
2213 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2214 	     sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2215 	    pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2216 		mii_priv |= BRGPHY_FLAG_NO_3LED;
2217 
2218 	capmask = MII_CAPMASK_DEFAULT;
2219 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2220 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2221 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2222 	     vendor == PCI_VENDOR_BROADCOM &&
2223 	     (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2224 	      product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2225 	      product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2226 	    (vendor == PCI_VENDOR_BROADCOM &&
2227 	     (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2228 	      product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2229 	      product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2230 	    product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2231 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2232 		/* 10/100 only */
2233 		capmask &= ~BMSR_EXTSTAT;
2234 	}
2235 
2236 	mii_priv |= BRGPHY_FLAG_WIRESPEED;
2237 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2238 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2239 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2240 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2241 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2242 		mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2243 
2244 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2245 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2246 		mii_priv |= BRGPHY_FLAG_CRC_BUG;
2247 
2248 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2249 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2250 		mii_priv |= BRGPHY_FLAG_ADC_BUG;
2251 
2252 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2253 		mii_priv |= BRGPHY_FLAG_5704_A0;
2254 
2255 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2256 		mii_priv |= BRGPHY_FLAG_5906;
2257 
2258 	if (BGE_IS_5705_PLUS(sc) &&
2259 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2260 	    /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2261 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2262 	    /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2263 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2264 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2265 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2266 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2267 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2268 			if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2269 			    product != PCI_PRODUCT_BROADCOM_BCM5756)
2270 				mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2271 			if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2272 				mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2273 		} else {
2274 			mii_priv |= BRGPHY_FLAG_BER_BUG;
2275 		}
2276 	}
2277 
2278 	/*
2279 	 * Allocate interrupt
2280 	 */
2281 	msi_enable = bge_msi_enable;
2282 	if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2283 		/* If "tagged status" is disabled, don't enable MSI */
2284 		msi_enable = 0;
2285 	} else if (msi_enable) {
2286 		msi_enable = 0; /* Disable by default */
2287 		if (BGE_IS_575X_PLUS(sc)) {
2288 			msi_enable = 1;
2289 			/* XXX we filter all 5714 chips */
2290 			if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2291 			    (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2292 			     (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2293 			      sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2294 				msi_enable = 0;
2295 			else if (BGE_IS_5755_PLUS(sc) ||
2296 			    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2297 				sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2298 		}
2299 	}
2300 	if (msi_enable) {
2301 		if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2302 			device_printf(dev, "no MSI capability\n");
2303 			msi_enable = 0;
2304 		}
2305 	}
2306 
2307 	sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2308 	    &intr_flags);
2309 
2310 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2311 	    intr_flags);
2312 	if (sc->bge_irq == NULL) {
2313 		device_printf(dev, "couldn't map interrupt\n");
2314 		error = ENXIO;
2315 		goto fail;
2316 	}
2317 
2318 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2319 		bge_enable_msi(sc);
2320 	else
2321 		sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2322 
2323 	/* Initialize if_name earlier, so if_printf could be used */
2324 	ifp = &sc->arpcom.ac_if;
2325 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2326 
2327 	sc->bge_asf_mode = 0;
2328 	/* No ASF if APE present. */
2329 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
2330 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
2331 		    BGE_SRAM_DATA_SIG_MAGIC)) {
2332 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
2333 			    BGE_HWCFG_ASF) {
2334 				sc->bge_asf_mode |= ASF_ENABLE;
2335 				sc->bge_asf_mode |= ASF_STACKUP;
2336 				if (BGE_IS_575X_PLUS(sc))
2337 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2338 			}
2339 		}
2340 	}
2341 
2342 	/*
2343 	 * Try to reset the chip.
2344 	 */
2345 	bge_stop_fw(sc);
2346 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
2347 	bge_reset(sc);
2348 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
2349 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
2350 
2351 	if (bge_chipinit(sc)) {
2352 		device_printf(dev, "chip initialization failed\n");
2353 		error = ENXIO;
2354 		goto fail;
2355 	}
2356 
2357 	/*
2358 	 * Get station address
2359 	 */
2360 	error = bge_get_eaddr(sc, ether_addr);
2361 	if (error) {
2362 		device_printf(dev, "failed to read station address\n");
2363 		goto fail;
2364 	}
2365 
2366 	/* 5705/5750 limits RX return ring to 512 entries. */
2367 	if (BGE_IS_5705_PLUS(sc))
2368 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2369 	else
2370 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2371 
2372 	error = bge_dma_alloc(sc);
2373 	if (error)
2374 		goto fail;
2375 
2376 	/* Set default tuneable values. */
2377 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2378 	sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2379 	sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2380 	sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2381 	sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2382 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2383 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2384 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2385 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2386 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2387 	} else {
2388 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2389 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2390 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2391 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2392 	}
2393 	sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2394 
2395 	/* Set up TX spare and reserved descriptor count */
2396 	if (sc->bge_flags & BGE_FLAG_TSO) {
2397 		sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2398 		sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2399 	} else {
2400 		sc->bge_txspare = BGE_NSEG_SPARE;
2401 		sc->bge_txrsvd = BGE_NSEG_RSVD;
2402 	}
2403 
2404 	/* Set up ifnet structure */
2405 	ifp->if_softc = sc;
2406 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2407 	ifp->if_ioctl = bge_ioctl;
2408 	ifp->if_start = bge_start;
2409 #ifdef IFPOLL_ENABLE
2410 	ifp->if_npoll = bge_npoll;
2411 #endif
2412 	ifp->if_watchdog = bge_watchdog;
2413 	ifp->if_init = bge_init;
2414 	ifp->if_mtu = ETHERMTU;
2415 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2416 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2417 	ifq_set_ready(&ifp->if_snd);
2418 
2419 	/*
2420 	 * 5700 B0 chips do not support checksumming correctly due
2421 	 * to hardware bugs.
2422 	 */
2423 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2424 		ifp->if_capabilities |= IFCAP_HWCSUM;
2425 		ifp->if_hwassist |= BGE_CSUM_FEATURES;
2426 	}
2427 	if (sc->bge_flags & BGE_FLAG_TSO) {
2428 		ifp->if_capabilities |= IFCAP_TSO;
2429 		ifp->if_hwassist |= CSUM_TSO;
2430 	}
2431 	ifp->if_capenable = ifp->if_capabilities;
2432 
2433 	/*
2434 	 * Figure out what sort of media we have by checking the
2435 	 * hardware config word in the first 32k of NIC internal memory,
2436 	 * or fall back to examining the EEPROM if necessary.
2437 	 * Note: on some BCM5700 cards, this value appears to be unset.
2438 	 * If that's the case, we have to rely on identifying the NIC
2439 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2440 	 * SK-9D41.
2441 	 */
2442 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2443 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2444 	} else {
2445 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2446 				    sizeof(hwcfg))) {
2447 			device_printf(dev, "failed to read EEPROM\n");
2448 			error = ENXIO;
2449 			goto fail;
2450 		}
2451 		hwcfg = ntohl(hwcfg);
2452 	}
2453 
2454 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2455 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2456 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2457 		if (BGE_IS_5714_FAMILY(sc))
2458 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2459 		else
2460 			sc->bge_flags |= BGE_FLAG_TBI;
2461 	}
2462 
2463 	/* Setup MI MODE */
2464 	if (sc->bge_flags & BGE_FLAG_CPMU)
2465 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2466 	else
2467 		sc->bge_mi_mode = BGE_MIMODE_BASE;
2468 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2469 		/* Enable auto polling for BCM570[0-5]. */
2470 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2471 	}
2472 
2473 	/* Setup link status update stuffs */
2474 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2475 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2476 		sc->bge_link_upd = bge_bcm5700_link_upd;
2477 		sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2478 	} else if (sc->bge_flags & BGE_FLAG_TBI) {
2479 		sc->bge_link_upd = bge_tbi_link_upd;
2480 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2481 	} else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2482 		sc->bge_link_upd = bge_autopoll_link_upd;
2483 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2484 	} else {
2485 		sc->bge_link_upd = bge_copper_link_upd;
2486 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2487 	}
2488 
2489 	/*
2490 	 * Broadcom's own driver always assumes the internal
2491 	 * PHY is at GMII address 1.  On some chips, the PHY responds
2492 	 * to accesses at all addresses, which could cause us to
2493 	 * bogusly attach the PHY 32 times at probe type.  Always
2494 	 * restricting the lookup to address 1 is simpler than
2495 	 * trying to figure out which chips revisions should be
2496 	 * special-cased.
2497 	 */
2498 	sc->bge_phyno = 1;
2499 
2500 	if (sc->bge_flags & BGE_FLAG_TBI) {
2501 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2502 		    bge_ifmedia_upd, bge_ifmedia_sts);
2503 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2504 		ifmedia_add(&sc->bge_ifmedia,
2505 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2506 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2507 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2508 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2509 	} else {
2510 		struct mii_probe_args mii_args;
2511 		int tries;
2512 
2513 		/*
2514 		 * Do transceiver setup and tell the firmware the
2515 		 * driver is down so we can try to get access the
2516 		 * probe if ASF is running.  Retry a couple of times
2517 		 * if we get a conflict with the ASF firmware accessing
2518 		 * the PHY.
2519 		 */
2520 		tries = 0;
2521 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2522 again:
2523 		bge_asf_driver_up(sc);
2524 
2525 		mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2526 		mii_args.mii_probemask = 1 << sc->bge_phyno;
2527 		mii_args.mii_capmask = capmask;
2528 		mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2529 		mii_args.mii_priv = mii_priv;
2530 
2531 		error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2532 		if (error) {
2533 			if (tries++ < 4) {
2534 				device_printf(sc->bge_dev, "Probe MII again\n");
2535 				bge_miibus_writereg(sc->bge_dev,
2536 				    sc->bge_phyno, MII_BMCR, BMCR_RESET);
2537 				goto again;
2538 			}
2539 			device_printf(dev, "MII without any PHY!\n");
2540 			goto fail;
2541 		}
2542 
2543 		/*
2544 		 * Now tell the firmware we are going up after probing the PHY
2545 		 */
2546 		if (sc->bge_asf_mode & ASF_STACKUP)
2547 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2548 	}
2549 
2550 	/*
2551 	 * Create sysctl nodes.
2552 	 */
2553 	sysctl_ctx_init(&sc->bge_sysctl_ctx);
2554 	sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2555 					      SYSCTL_STATIC_CHILDREN(_hw),
2556 					      OID_AUTO,
2557 					      device_get_nameunit(dev),
2558 					      CTLFLAG_RD, 0, "");
2559 	if (sc->bge_sysctl_tree == NULL) {
2560 		device_printf(dev, "can't add sysctl node\n");
2561 		error = ENXIO;
2562 		goto fail;
2563 	}
2564 
2565 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2566 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2567 			OID_AUTO, "rx_coal_ticks",
2568 			CTLTYPE_INT | CTLFLAG_RW,
2569 			sc, 0, bge_sysctl_rx_coal_ticks, "I",
2570 			"Receive coalescing ticks (usec).");
2571 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2572 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2573 			OID_AUTO, "tx_coal_ticks",
2574 			CTLTYPE_INT | CTLFLAG_RW,
2575 			sc, 0, bge_sysctl_tx_coal_ticks, "I",
2576 			"Transmit coalescing ticks (usec).");
2577 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2578 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2579 			OID_AUTO, "rx_coal_bds",
2580 			CTLTYPE_INT | CTLFLAG_RW,
2581 			sc, 0, bge_sysctl_rx_coal_bds, "I",
2582 			"Receive max coalesced BD count.");
2583 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2584 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2585 			OID_AUTO, "tx_coal_bds",
2586 			CTLTYPE_INT | CTLFLAG_RW,
2587 			sc, 0, bge_sysctl_tx_coal_bds, "I",
2588 			"Transmit max coalesced BD count.");
2589 
2590 	SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2591 		       SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2592 		       OID_AUTO, "tx_wreg", CTLFLAG_RW,
2593 		       &sc->bge_tx_wreg, 0,
2594 		       "# of segments before writing to hardware register");
2595 
2596 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2597 		/*
2598 		 * A common design characteristic for many Broadcom
2599 		 * client controllers is that they only support a
2600 		 * single outstanding DMA read operation on the PCIe
2601 		 * bus. This means that it will take twice as long to
2602 		 * fetch a TX frame that is split into header and
2603 		 * payload buffers as it does to fetch a single,
2604 		 * contiguous TX frame (2 reads vs. 1 read). For these
2605 		 * controllers, coalescing buffers to reduce the number
2606 		 * of memory reads is effective way to get maximum
2607 		 * performance(about 940Mbps).  Without collapsing TX
2608 		 * buffers the maximum TCP bulk transfer performance
2609 		 * is about 850Mbps. However forcing coalescing mbufs
2610 		 * consumes a lot of CPU cycles, so leave it off by
2611 		 * default.
2612 		 */
2613 		SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2614 			       SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2615 			       OID_AUTO, "force_defrag", CTLFLAG_RW,
2616 			       &sc->bge_force_defrag, 0,
2617 			       "Force defragment on TX path");
2618 	}
2619 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2620 		if (!BGE_IS_5705_PLUS(sc)) {
2621 			SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2622 			    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2623 			    "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2624 			    sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2625 			    "Receive coalescing ticks "
2626 			    "during interrupt (usec).");
2627 			SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2628 			    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2629 			    "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2630 			    sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2631 			    "Transmit coalescing ticks "
2632 			    "during interrupt (usec).");
2633 		}
2634 		SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2635 		    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2636 		    "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2637 		    sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2638 		    "Receive max coalesced BD count during interrupt.");
2639 		SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2640 		    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2641 		    "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2642 		    sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2643 		    "Transmit max coalesced BD count during interrupt.");
2644 	}
2645 
2646 	/*
2647 	 * Call MI attach routine.
2648 	 */
2649 	ether_ifattach(ifp, ether_addr, NULL);
2650 
2651 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2652 
2653 #ifdef IFPOLL_ENABLE
2654 	/* Polling setup */
2655 	ifpoll_compat_setup(&sc->bge_npoll,
2656 	    &sc->bge_sysctl_ctx, sc->bge_sysctl_tree, device_get_unit(dev),
2657 	    ifp->if_serializer);
2658 #endif
2659 
2660 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2661 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2662 			intr_func = bge_msi_oneshot;
2663 			if (bootverbose)
2664 				device_printf(dev, "oneshot MSI\n");
2665 		} else {
2666 			intr_func = bge_msi;
2667 		}
2668 	} else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2669 		intr_func = bge_intr_legacy;
2670 	} else {
2671 		intr_func = bge_intr_crippled;
2672 	}
2673 	error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2674 	    &sc->bge_intrhand, ifp->if_serializer);
2675 	if (error) {
2676 		ether_ifdetach(ifp);
2677 		device_printf(dev, "couldn't set up irq\n");
2678 		goto fail;
2679 	}
2680 
2681 	return(0);
2682 fail:
2683 	bge_detach(dev);
2684 	return(error);
2685 }
2686 
2687 static int
2688 bge_detach(device_t dev)
2689 {
2690 	struct bge_softc *sc = device_get_softc(dev);
2691 
2692 	if (device_is_attached(dev)) {
2693 		struct ifnet *ifp = &sc->arpcom.ac_if;
2694 
2695 		lwkt_serialize_enter(ifp->if_serializer);
2696 		bge_stop(sc);
2697 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2698 		lwkt_serialize_exit(ifp->if_serializer);
2699 
2700 		ether_ifdetach(ifp);
2701 	}
2702 
2703 	if (sc->bge_flags & BGE_FLAG_TBI)
2704 		ifmedia_removeall(&sc->bge_ifmedia);
2705 	if (sc->bge_miibus)
2706 		device_delete_child(dev, sc->bge_miibus);
2707 	bus_generic_detach(dev);
2708 
2709 	if (sc->bge_irq != NULL) {
2710 		bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2711 		    sc->bge_irq);
2712 	}
2713 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2714 		pci_release_msi(dev);
2715 
2716 	if (sc->bge_res != NULL) {
2717 		bus_release_resource(dev, SYS_RES_MEMORY,
2718 		    BGE_PCI_BAR0, sc->bge_res);
2719 	}
2720 
2721 	if (sc->bge_sysctl_tree != NULL)
2722 		sysctl_ctx_free(&sc->bge_sysctl_ctx);
2723 
2724 	bge_dma_free(sc);
2725 
2726 	return 0;
2727 }
2728 
2729 static void
2730 bge_reset(struct bge_softc *sc)
2731 {
2732 	device_t dev;
2733 	uint32_t cachesize, command, pcistate, reset;
2734 	void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2735 	int i, val = 0;
2736 
2737 	dev = sc->bge_dev;
2738 
2739 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2740 	    sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2741 		if (sc->bge_flags & BGE_FLAG_PCIE)
2742 			write_op = bge_writemem_direct;
2743 		else
2744 			write_op = bge_writemem_ind;
2745 	} else {
2746 		write_op = bge_writereg_ind;
2747 	}
2748 
2749 	/* Save some important PCI state. */
2750 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2751 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
2752 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2753 
2754 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2755 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2756 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2757 	    sc->bge_pci_miscctl, 4);
2758 
2759 	/* Disable fastboot on controllers that support it. */
2760 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2761 	    BGE_IS_5755_PLUS(sc)) {
2762 		if (bootverbose)
2763 			if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2764 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2765 	}
2766 
2767 	/*
2768 	 * Write the magic number to SRAM at offset 0xB50.
2769 	 * When firmware finishes its initialization it will
2770 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2771 	 */
2772 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2773 
2774 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2775 
2776 	/* XXX: Broadcom Linux driver. */
2777 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2778 		/* Force PCI-E 1.0a mode */
2779 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2780 		    CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2781 		    (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2782 		     BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2783 			CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2784 			    BGE_PCIE_PHY_TSTCTL_PSCRAM);
2785 		}
2786 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2787 			/* Prevent PCIE link training during global reset */
2788 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2789 			reset |= (1<<29);
2790 		}
2791 	}
2792 
2793 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2794 		uint32_t status, ctrl;
2795 
2796 		status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2797 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2798 		    status | BGE_VCPU_STATUS_DRV_RESET);
2799 		ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2800 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2801 		    ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2802 	}
2803 
2804 	/*
2805 	 * Set GPHY Power Down Override to leave GPHY
2806 	 * powered up in D0 uninitialized.
2807 	 */
2808 	if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2809 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2810 
2811 	/* Issue global reset */
2812 	write_op(sc, BGE_MISC_CFG, reset);
2813 
2814 	DELAY(1000);
2815 
2816 	/* XXX: Broadcom Linux driver. */
2817 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2818 		uint16_t devctl;
2819 
2820 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2821 			uint32_t v;
2822 
2823 			DELAY(500000); /* wait for link training to complete */
2824 			v = pci_read_config(dev, 0xc4, 4);
2825 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
2826 		}
2827 
2828 		devctl = pci_read_config(dev,
2829 		    sc->bge_pciecap + PCIER_DEVCTRL, 2);
2830 
2831 		/* Disable no snoop and disable relaxed ordering. */
2832 		devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2833 
2834 		/* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2835 		if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2836 			devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2837 			devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2838 		}
2839 
2840 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2841 		    devctl, 2);
2842 
2843 		/* Clear error status. */
2844 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2845 		    PCIEM_DEVSTS_CORR_ERR |
2846 		    PCIEM_DEVSTS_NFATAL_ERR |
2847 		    PCIEM_DEVSTS_FATAL_ERR |
2848 		    PCIEM_DEVSTS_UNSUPP_REQ, 2);
2849 	}
2850 
2851 	/* Reset some of the PCI state that got zapped by reset */
2852 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2853 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2854 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2855 	    sc->bge_pci_miscctl, 4);
2856 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2857 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2858 	write_op(sc, BGE_MISC_CFG, (65 << 1));
2859 
2860 	/*
2861 	 * Disable PCI-X relaxed ordering to ensure status block update
2862 	 * comes first then packet buffer DMA. Otherwise driver may
2863 	 * read stale status block.
2864 	 */
2865 	if (sc->bge_flags & BGE_FLAG_PCIX) {
2866 		uint16_t devctl;
2867 
2868 		devctl = pci_read_config(dev,
2869 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
2870 		devctl &= ~PCIXM_COMMAND_ERO;
2871 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2872 			devctl &= ~PCIXM_COMMAND_MAX_READ;
2873 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2874 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2875 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2876 			    PCIXM_COMMAND_MAX_READ);
2877 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2878 		}
2879 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2880 		    devctl, 2);
2881 	}
2882 
2883 	/*
2884 	 * Enable memory arbiter and re-enable MSI if necessary.
2885 	 */
2886 	if (BGE_IS_5714_FAMILY(sc)) {
2887 		uint32_t val;
2888 
2889 		if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2890 			/*
2891 			 * Resetting BCM5714 family will clear MSI
2892 			 * enable bit; restore it after resetting.
2893 			 */
2894 			PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2895 			    PCIM_MSICTRL_MSI_ENABLE, 2);
2896 			BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2897 		}
2898 		val = CSR_READ_4(sc, BGE_MARB_MODE);
2899 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2900 	} else {
2901 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2902 	}
2903 
2904 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2905 		for (i = 0; i < BGE_TIMEOUT; i++) {
2906 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2907 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2908 				break;
2909 			DELAY(100);
2910 		}
2911 		if (i == BGE_TIMEOUT) {
2912 			if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2913 			return;
2914 		}
2915 	} else {
2916 		/*
2917 		 * Poll until we see the 1's complement of the magic number.
2918 		 * This indicates that the firmware initialization
2919 		 * is complete.
2920 		 */
2921 		for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2922 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2923 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
2924 				break;
2925 			DELAY(10);
2926 		}
2927 		if (i == BGE_FIRMWARE_TIMEOUT) {
2928 			if_printf(&sc->arpcom.ac_if, "firmware handshake "
2929 				  "timed out, found 0x%08x\n", val);
2930 		}
2931 	}
2932 
2933 	/*
2934 	 * XXX Wait for the value of the PCISTATE register to
2935 	 * return to its original pre-reset state. This is a
2936 	 * fairly good indicator of reset completion. If we don't
2937 	 * wait for the reset to fully complete, trying to read
2938 	 * from the device's non-PCI registers may yield garbage
2939 	 * results.
2940 	 */
2941 	for (i = 0; i < BGE_TIMEOUT; i++) {
2942 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2943 			break;
2944 		DELAY(10);
2945 	}
2946 
2947 	/* Fix up byte swapping */
2948 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2949 	    BGE_MODECTL_BYTESWAP_DATA);
2950 
2951 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2952 	DELAY(40);
2953 
2954 	/*
2955 	 * The 5704 in TBI mode apparently needs some special
2956 	 * adjustment to insure the SERDES drive level is set
2957 	 * to 1.2V.
2958 	 */
2959 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2960 	    (sc->bge_flags & BGE_FLAG_TBI)) {
2961 		uint32_t serdescfg;
2962 
2963 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2964 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
2965 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2966 	}
2967 
2968 	/* XXX: Broadcom Linux driver. */
2969 	if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2970 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2971 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2972 		uint32_t v;
2973 
2974 		/* Enable Data FIFO protection. */
2975 		v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2976 		CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2977 	}
2978 
2979 	DELAY(10000);
2980 }
2981 
2982 /*
2983  * Frame reception handling. This is called if there's a frame
2984  * on the receive return list.
2985  *
2986  * Note: we have to be able to handle two possibilities here:
2987  * 1) the frame is from the jumbo recieve ring
2988  * 2) the frame is from the standard receive ring
2989  */
2990 
2991 static void
2992 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
2993 {
2994 	struct ifnet *ifp;
2995 	int stdcnt = 0, jumbocnt = 0;
2996 
2997 	ifp = &sc->arpcom.ac_if;
2998 
2999 	while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
3000 		struct bge_rx_bd	*cur_rx;
3001 		uint32_t		rxidx;
3002 		struct mbuf		*m = NULL;
3003 		uint16_t		vlan_tag = 0;
3004 		int			have_tag = 0;
3005 
3006 		--count;
3007 
3008 		cur_rx =
3009 	    &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3010 
3011 		rxidx = cur_rx->bge_idx;
3012 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3013 		logif(rx_pkt);
3014 
3015 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3016 			have_tag = 1;
3017 			vlan_tag = cur_rx->bge_vlan_tag;
3018 		}
3019 
3020 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3021 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3022 			jumbocnt++;
3023 
3024 			if (rxidx != sc->bge_jumbo) {
3025 				IFNET_STAT_INC(ifp, ierrors, 1);
3026 				if_printf(ifp, "sw jumbo index(%d) "
3027 				    "and hw jumbo index(%d) mismatch, drop!\n",
3028 				    sc->bge_jumbo, rxidx);
3029 				bge_setup_rxdesc_jumbo(sc, rxidx);
3030 				continue;
3031 			}
3032 
3033 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
3034 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3035 				IFNET_STAT_INC(ifp, ierrors, 1);
3036 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3037 				continue;
3038 			}
3039 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
3040 				IFNET_STAT_INC(ifp, ierrors, 1);
3041 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3042 				continue;
3043 			}
3044 		} else {
3045 			int discard = 0;
3046 
3047 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3048 			stdcnt++;
3049 
3050 			if (rxidx != sc->bge_std) {
3051 				IFNET_STAT_INC(ifp, ierrors, 1);
3052 				if_printf(ifp, "sw std index(%d) "
3053 				    "and hw std index(%d) mismatch, drop!\n",
3054 				    sc->bge_std, rxidx);
3055 				bge_setup_rxdesc_std(sc, rxidx);
3056 				discard = 1;
3057 				goto refresh_rx;
3058 			}
3059 
3060 			m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
3061 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3062 				IFNET_STAT_INC(ifp, ierrors, 1);
3063 				bge_setup_rxdesc_std(sc, sc->bge_std);
3064 				discard = 1;
3065 				goto refresh_rx;
3066 			}
3067 			if (bge_newbuf_std(sc, sc->bge_std, 0)) {
3068 				IFNET_STAT_INC(ifp, ierrors, 1);
3069 				bge_setup_rxdesc_std(sc, sc->bge_std);
3070 				discard = 1;
3071 			}
3072 refresh_rx:
3073 			if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
3074 				bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
3075 				    sc->bge_std);
3076 				stdcnt = 0;
3077 			}
3078 			if (discard)
3079 				continue;
3080 		}
3081 
3082 		IFNET_STAT_INC(ifp, ipackets, 1);
3083 #if !defined(__i386__) && !defined(__x86_64__)
3084 		/*
3085 		 * The x86 allows unaligned accesses, but for other
3086 		 * platforms we must make sure the payload is aligned.
3087 		 */
3088 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3089 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3090 			    cur_rx->bge_len);
3091 			m->m_data += ETHER_ALIGN;
3092 		}
3093 #endif
3094 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3095 		m->m_pkthdr.rcvif = ifp;
3096 
3097 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3098 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3099 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3100 				if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3101 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3102 			}
3103 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3104 			    m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3105 				m->m_pkthdr.csum_data =
3106 					cur_rx->bge_tcp_udp_csum;
3107 				m->m_pkthdr.csum_flags |=
3108 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3109 			}
3110 		}
3111 
3112 		/*
3113 		 * If we received a packet with a vlan tag, pass it
3114 		 * to vlan_input() instead of ether_input().
3115 		 */
3116 		if (have_tag) {
3117 			m->m_flags |= M_VLANTAG;
3118 			m->m_pkthdr.ether_vlantag = vlan_tag;
3119 		}
3120 		ifp->if_input(ifp, m);
3121 	}
3122 
3123 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3124 	if (stdcnt)
3125 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3126 	if (jumbocnt)
3127 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3128 }
3129 
3130 static void
3131 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3132 {
3133 	struct ifnet *ifp;
3134 
3135 	ifp = &sc->arpcom.ac_if;
3136 
3137 	/*
3138 	 * Go through our tx ring and free mbufs for those
3139 	 * frames that have been sent.
3140 	 */
3141 	while (sc->bge_tx_saved_considx != tx_cons) {
3142 		uint32_t idx = 0;
3143 
3144 		idx = sc->bge_tx_saved_considx;
3145 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3146 			IFNET_STAT_INC(ifp, opackets, 1);
3147 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3148 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3149 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3150 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3151 		}
3152 		sc->bge_txcnt--;
3153 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3154 		logif(tx_pkt);
3155 	}
3156 
3157 	if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3158 	    (sc->bge_txrsvd + sc->bge_txspare))
3159 		ifq_clr_oactive(&ifp->if_snd);
3160 
3161 	if (sc->bge_txcnt == 0)
3162 		ifp->if_timer = 0;
3163 
3164 	if (!ifq_is_empty(&ifp->if_snd))
3165 		if_devstart(ifp);
3166 }
3167 
3168 #ifdef IFPOLL_ENABLE
3169 
3170 static void
3171 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3172 {
3173 	struct bge_softc *sc = ifp->if_softc;
3174 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3175 	uint16_t rx_prod, tx_cons;
3176 
3177 	ASSERT_SERIALIZED(ifp->if_serializer);
3178 
3179 	if (sc->bge_npoll.ifpc_stcount-- == 0) {
3180 		sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3181 		/*
3182 		 * Process link state changes.
3183 		 */
3184 		bge_link_poll(sc);
3185 	}
3186 
3187 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3188 		sc->bge_status_tag = sblk->bge_status_tag;
3189 		/*
3190 		 * Use a load fence to ensure that status_tag
3191 		 * is saved  before rx_prod and tx_cons.
3192 		 */
3193 		cpu_lfence();
3194 	}
3195 
3196 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3197 	if (sc->bge_rx_saved_considx != rx_prod)
3198 		bge_rxeof(sc, rx_prod, cycles);
3199 
3200 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3201 	if (sc->bge_tx_saved_considx != tx_cons)
3202 		bge_txeof(sc, tx_cons);
3203 
3204 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3205 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3206 
3207 	if (sc->bge_coal_chg)
3208 		bge_coal_change(sc);
3209 }
3210 
3211 static void
3212 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3213 {
3214 	struct bge_softc *sc = ifp->if_softc;
3215 
3216 	ASSERT_SERIALIZED(ifp->if_serializer);
3217 
3218 	if (info != NULL) {
3219 		int cpuid = sc->bge_npoll.ifpc_cpuid;
3220 
3221 		info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3222 		info->ifpi_rx[cpuid].arg = NULL;
3223 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3224 
3225 		if (ifp->if_flags & IFF_RUNNING)
3226 			bge_disable_intr(sc);
3227 		ifq_set_cpuid(&ifp->if_snd, cpuid);
3228 	} else {
3229 		if (ifp->if_flags & IFF_RUNNING)
3230 			bge_enable_intr(sc);
3231 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3232 	}
3233 }
3234 
3235 #endif	/* IFPOLL_ENABLE */
3236 
3237 static void
3238 bge_intr_crippled(void *xsc)
3239 {
3240 	struct bge_softc *sc = xsc;
3241 	struct ifnet *ifp = &sc->arpcom.ac_if;
3242 
3243 	logif(intr);
3244 
3245  	/*
3246 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3247 	 * disable interrupts by writing nonzero like we used to, since with
3248 	 * our current organization this just gives complications and
3249 	 * pessimizations for re-enabling interrupts.  We used to have races
3250 	 * instead of the necessary complications.  Disabling interrupts
3251 	 * would just reduce the chance of a status update while we are
3252 	 * running (by switching to the interrupt-mode coalescence
3253 	 * parameters), but this chance is already very low so it is more
3254 	 * efficient to get another interrupt than prevent it.
3255 	 *
3256 	 * We do the ack first to ensure another interrupt if there is a
3257 	 * status update after the ack.  We don't check for the status
3258 	 * changing later because it is more efficient to get another
3259 	 * interrupt than prevent it, not quite as above (not checking is
3260 	 * a smaller optimization than not toggling the interrupt enable,
3261 	 * since checking doesn't involve PCI accesses and toggling require
3262 	 * the status check).  So toggling would probably be a pessimization
3263 	 * even with MSI.  It would only be needed for using a task queue.
3264 	 */
3265 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3266 
3267 	/*
3268 	 * Process link state changes.
3269 	 */
3270 	bge_link_poll(sc);
3271 
3272 	if (ifp->if_flags & IFF_RUNNING) {
3273 		struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3274 		uint16_t rx_prod, tx_cons;
3275 
3276 		rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3277 		if (sc->bge_rx_saved_considx != rx_prod)
3278 			bge_rxeof(sc, rx_prod, -1);
3279 
3280 		tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3281 		if (sc->bge_tx_saved_considx != tx_cons)
3282 			bge_txeof(sc, tx_cons);
3283 	}
3284 
3285 	if (sc->bge_coal_chg)
3286 		bge_coal_change(sc);
3287 }
3288 
3289 static void
3290 bge_intr_legacy(void *xsc)
3291 {
3292 	struct bge_softc *sc = xsc;
3293 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3294 
3295 	if (sc->bge_status_tag == sblk->bge_status_tag) {
3296 		uint32_t val;
3297 
3298 		val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3299 		if (val & BGE_PCISTAT_INTR_NOTACT)
3300 			return;
3301 	}
3302 
3303 	/*
3304 	 * NOTE:
3305 	 * Interrupt will have to be disabled if tagged status
3306 	 * is used, else interrupt will always be asserted on
3307 	 * certain chips (at least on BCM5750 AX/BX).
3308 	 */
3309 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3310 
3311 	bge_intr(sc);
3312 }
3313 
3314 static void
3315 bge_msi(void *xsc)
3316 {
3317 	struct bge_softc *sc = xsc;
3318 
3319 	/* Disable interrupt first */
3320 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3321 	bge_intr(sc);
3322 }
3323 
3324 static void
3325 bge_msi_oneshot(void *xsc)
3326 {
3327 	bge_intr(xsc);
3328 }
3329 
3330 static void
3331 bge_intr(struct bge_softc *sc)
3332 {
3333 	struct ifnet *ifp = &sc->arpcom.ac_if;
3334 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3335 	uint16_t rx_prod, tx_cons;
3336 	uint32_t status;
3337 
3338 	sc->bge_status_tag = sblk->bge_status_tag;
3339 	/*
3340 	 * Use a load fence to ensure that status_tag is saved
3341 	 * before rx_prod, tx_cons and status.
3342 	 */
3343 	cpu_lfence();
3344 
3345 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3346 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3347 	status = sblk->bge_status;
3348 
3349 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3350 		bge_link_poll(sc);
3351 
3352 	if (ifp->if_flags & IFF_RUNNING) {
3353 		if (sc->bge_rx_saved_considx != rx_prod)
3354 			bge_rxeof(sc, rx_prod, -1);
3355 
3356 		if (sc->bge_tx_saved_considx != tx_cons)
3357 			bge_txeof(sc, tx_cons);
3358 	}
3359 
3360 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3361 
3362 	if (sc->bge_coal_chg)
3363 		bge_coal_change(sc);
3364 }
3365 
3366 static void
3367 bge_tick(void *xsc)
3368 {
3369 	struct bge_softc *sc = xsc;
3370 	struct ifnet *ifp = &sc->arpcom.ac_if;
3371 
3372 	lwkt_serialize_enter(ifp->if_serializer);
3373 
3374 	if (BGE_IS_5705_PLUS(sc))
3375 		bge_stats_update_regs(sc);
3376 	else
3377 		bge_stats_update(sc);
3378 
3379 	if (sc->bge_flags & BGE_FLAG_TBI) {
3380 		/*
3381 		 * Since in TBI mode auto-polling can't be used we should poll
3382 		 * link status manually. Here we register pending link event
3383 		 * and trigger interrupt.
3384 		 */
3385 		sc->bge_link_evt++;
3386 		if (BGE_IS_CRIPPLED(sc))
3387 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3388 		else
3389 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3390 	} else if (!sc->bge_link) {
3391 		mii_tick(device_get_softc(sc->bge_miibus));
3392 	}
3393 
3394 	bge_asf_driver_up(sc);
3395 
3396 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3397 
3398 	lwkt_serialize_exit(ifp->if_serializer);
3399 }
3400 
3401 static void
3402 bge_stats_update_regs(struct bge_softc *sc)
3403 {
3404 	struct ifnet *ifp = &sc->arpcom.ac_if;
3405 	struct bge_mac_stats_regs stats;
3406 	uint32_t *s;
3407 	int i;
3408 
3409 	s = (uint32_t *)&stats;
3410 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3411 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
3412 		s++;
3413 	}
3414 
3415 	IFNET_STAT_SET(ifp, collisions,
3416 	   (stats.dot3StatsSingleCollisionFrames +
3417 	   stats.dot3StatsMultipleCollisionFrames +
3418 	   stats.dot3StatsExcessiveCollisions +
3419 	   stats.dot3StatsLateCollisions));
3420 }
3421 
3422 static void
3423 bge_stats_update(struct bge_softc *sc)
3424 {
3425 	struct ifnet *ifp = &sc->arpcom.ac_if;
3426 	bus_size_t stats;
3427 
3428 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3429 
3430 #define READ_STAT(sc, stats, stat)	\
3431 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3432 
3433 	IFNET_STAT_SET(ifp, collisions,
3434 	   (READ_STAT(sc, stats,
3435 		txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3436 	    READ_STAT(sc, stats,
3437 		txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3438 	    READ_STAT(sc, stats,
3439 		txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3440 	    READ_STAT(sc, stats,
3441 		txstats.dot3StatsLateCollisions.bge_addr_lo)));
3442 
3443 #undef READ_STAT
3444 
3445 #ifdef notdef
3446 	IFNET_STAT_SET(ifp, collisions,
3447 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3448 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3449 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3450 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3451 #endif
3452 }
3453 
3454 /*
3455  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3456  * pointers to descriptors.
3457  */
3458 static int
3459 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3460     int *segs_used)
3461 {
3462 	struct bge_tx_bd *d = NULL, *last_d;
3463 	uint16_t csum_flags = 0, mss = 0;
3464 	bus_dma_segment_t segs[BGE_NSEG_NEW];
3465 	bus_dmamap_t map;
3466 	int error, maxsegs, nsegs, idx, i;
3467 	struct mbuf *m_head = *m_head0, *m_new;
3468 
3469 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3470 		error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3471 		if (error)
3472 			return ENOBUFS;
3473 		m_head = *m_head0;
3474 	} else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3475 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3476 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3477 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3478 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3479 		if (m_head->m_flags & M_LASTFRAG)
3480 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3481 		else if (m_head->m_flags & M_FRAG)
3482 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3483 	}
3484 
3485 	idx = *txidx;
3486 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3487 
3488 	maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3489 	KASSERT(maxsegs >= sc->bge_txspare,
3490 		("not enough segments %d", maxsegs));
3491 
3492 	if (maxsegs > BGE_NSEG_NEW)
3493 		maxsegs = BGE_NSEG_NEW;
3494 
3495 	/*
3496 	 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3497 	 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3498 	 * but when such padded frames employ the bge IP/TCP checksum
3499 	 * offload, the hardware checksum assist gives incorrect results
3500 	 * (possibly from incorporating its own padding into the UDP/TCP
3501 	 * checksum; who knows).  If we pad such runts with zeros, the
3502 	 * onboard checksum comes out correct.
3503 	 */
3504 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3505 	    m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3506 		error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3507 		if (error)
3508 			goto back;
3509 	}
3510 
3511 	if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3512 		m_new = bge_defrag_shortdma(m_head);
3513 		if (m_new == NULL) {
3514 			error = ENOBUFS;
3515 			goto back;
3516 		}
3517 		*m_head0 = m_head = m_new;
3518 	}
3519 	if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3520 	    sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3521 	    m_head->m_next != NULL) {
3522 		/*
3523 		 * Forcefully defragment mbuf chain to overcome hardware
3524 		 * limitation which only support a single outstanding
3525 		 * DMA read operation.  If it fails, keep moving on using
3526 		 * the original mbuf chain.
3527 		 */
3528 		m_new = m_defrag(m_head, MB_DONTWAIT);
3529 		if (m_new != NULL)
3530 			*m_head0 = m_head = m_new;
3531 	}
3532 
3533 	error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3534 			m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3535 	if (error)
3536 		goto back;
3537 	*segs_used += nsegs;
3538 
3539 	m_head = *m_head0;
3540 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3541 
3542 	for (i = 0; ; i++) {
3543 		d = &sc->bge_ldata.bge_tx_ring[idx];
3544 
3545 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3546 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3547 		d->bge_len = segs[i].ds_len;
3548 		d->bge_flags = csum_flags;
3549 		d->bge_mss = mss;
3550 
3551 		if (i == nsegs - 1)
3552 			break;
3553 		BGE_INC(idx, BGE_TX_RING_CNT);
3554 	}
3555 	last_d = d;
3556 
3557 	/* Set vlan tag to the first segment of the packet. */
3558 	d = &sc->bge_ldata.bge_tx_ring[*txidx];
3559 	if (m_head->m_flags & M_VLANTAG) {
3560 		d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3561 		d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3562 	} else {
3563 		d->bge_vlan_tag = 0;
3564 	}
3565 
3566 	/* Mark the last segment as end of packet... */
3567 	last_d->bge_flags |= BGE_TXBDFLAG_END;
3568 
3569 	/*
3570 	 * Insure that the map for this transmission is placed at
3571 	 * the array index of the last descriptor in this chain.
3572 	 */
3573 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3574 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
3575 	sc->bge_cdata.bge_tx_chain[idx] = m_head;
3576 	sc->bge_txcnt += nsegs;
3577 
3578 	BGE_INC(idx, BGE_TX_RING_CNT);
3579 	*txidx = idx;
3580 back:
3581 	if (error) {
3582 		m_freem(*m_head0);
3583 		*m_head0 = NULL;
3584 	}
3585 	return error;
3586 }
3587 
3588 static void
3589 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3590 {
3591 	/* Transmit */
3592 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3593 	/* 5700 b2 errata */
3594 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3595 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3596 }
3597 
3598 /*
3599  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3600  * to the mbuf data regions directly in the transmit descriptors.
3601  */
3602 static void
3603 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3604 {
3605 	struct bge_softc *sc = ifp->if_softc;
3606 	struct mbuf *m_head = NULL;
3607 	uint32_t prodidx;
3608 	int nsegs = 0;
3609 
3610 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3611 
3612 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3613 		return;
3614 
3615 	prodidx = sc->bge_tx_prodidx;
3616 
3617 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3618 		m_head = ifq_dequeue(&ifp->if_snd);
3619 		if (m_head == NULL)
3620 			break;
3621 
3622 		/*
3623 		 * XXX
3624 		 * The code inside the if() block is never reached since we
3625 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3626 		 * requests to checksum TCP/UDP in a fragmented packet.
3627 		 *
3628 		 * XXX
3629 		 * safety overkill.  If this is a fragmented packet chain
3630 		 * with delayed TCP/UDP checksums, then only encapsulate
3631 		 * it if we have enough descriptors to handle the entire
3632 		 * chain at once.
3633 		 * (paranoia -- may not actually be needed)
3634 		 */
3635 		if ((m_head->m_flags & M_FIRSTFRAG) &&
3636 		    (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3637 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3638 			    m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3639 				ifq_set_oactive(&ifp->if_snd);
3640 				ifq_prepend(&ifp->if_snd, m_head);
3641 				break;
3642 			}
3643 		}
3644 
3645 		/*
3646 		 * Sanity check: avoid coming within bge_txrsvd
3647 		 * descriptors of the end of the ring.  Also make
3648 		 * sure there are bge_txspare descriptors for
3649 		 * jumbo buffers' defragmentation.
3650 		 */
3651 		if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3652 		    (sc->bge_txrsvd + sc->bge_txspare)) {
3653 			ifq_set_oactive(&ifp->if_snd);
3654 			ifq_prepend(&ifp->if_snd, m_head);
3655 			break;
3656 		}
3657 
3658 		/*
3659 		 * Pack the data into the transmit ring. If we
3660 		 * don't have room, set the OACTIVE flag and wait
3661 		 * for the NIC to drain the ring.
3662 		 */
3663 		if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3664 			ifq_set_oactive(&ifp->if_snd);
3665 			IFNET_STAT_INC(ifp, oerrors, 1);
3666 			break;
3667 		}
3668 
3669 		if (nsegs >= sc->bge_tx_wreg) {
3670 			bge_xmit(sc, prodidx);
3671 			nsegs = 0;
3672 		}
3673 
3674 		ETHER_BPF_MTAP(ifp, m_head);
3675 
3676 		/*
3677 		 * Set a timeout in case the chip goes out to lunch.
3678 		 */
3679 		ifp->if_timer = 5;
3680 	}
3681 
3682 	if (nsegs > 0)
3683 		bge_xmit(sc, prodidx);
3684 	sc->bge_tx_prodidx = prodidx;
3685 }
3686 
3687 static void
3688 bge_init(void *xsc)
3689 {
3690 	struct bge_softc *sc = xsc;
3691 	struct ifnet *ifp = &sc->arpcom.ac_if;
3692 	uint16_t *m;
3693 	uint32_t mode;
3694 
3695 	ASSERT_SERIALIZED(ifp->if_serializer);
3696 
3697 	/* Cancel pending I/O and flush buffers. */
3698 	bge_stop(sc);
3699 
3700 	bge_stop_fw(sc);
3701 	bge_sig_pre_reset(sc, BGE_RESET_START);
3702 	bge_reset(sc);
3703 	bge_sig_legacy(sc, BGE_RESET_START);
3704 	bge_sig_post_reset(sc, BGE_RESET_START);
3705 
3706 	bge_chipinit(sc);
3707 
3708 	/*
3709 	 * Init the various state machines, ring
3710 	 * control blocks and firmware.
3711 	 */
3712 	if (bge_blockinit(sc)) {
3713 		if_printf(ifp, "initialization failure\n");
3714 		bge_stop(sc);
3715 		return;
3716 	}
3717 
3718 	/* Specify MTU. */
3719 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3720 	    ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3721 
3722 	/* Load our MAC address. */
3723 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3724 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3725 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3726 
3727 	/* Enable or disable promiscuous mode as needed. */
3728 	bge_setpromisc(sc);
3729 
3730 	/* Program multicast filter. */
3731 	bge_setmulti(sc);
3732 
3733 	/* Init RX ring. */
3734 	if (bge_init_rx_ring_std(sc)) {
3735 		if_printf(ifp, "RX ring initialization failed\n");
3736 		bge_stop(sc);
3737 		return;
3738 	}
3739 
3740 	/*
3741 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3742 	 * memory to insure that the chip has in fact read the first
3743 	 * entry of the ring.
3744 	 */
3745 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3746 		uint32_t		v, i;
3747 		for (i = 0; i < 10; i++) {
3748 			DELAY(20);
3749 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3750 			if (v == (MCLBYTES - ETHER_ALIGN))
3751 				break;
3752 		}
3753 		if (i == 10)
3754 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3755 	}
3756 
3757 	/* Init jumbo RX ring. */
3758 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3759 		if (bge_init_rx_ring_jumbo(sc)) {
3760 			if_printf(ifp, "Jumbo RX ring initialization failed\n");
3761 			bge_stop(sc);
3762 			return;
3763 		}
3764 	}
3765 
3766 	/* Init our RX return ring index */
3767 	sc->bge_rx_saved_considx = 0;
3768 
3769 	/* Init TX ring. */
3770 	bge_init_tx_ring(sc);
3771 
3772 	/* Enable TX MAC state machine lockup fix. */
3773 	mode = CSR_READ_4(sc, BGE_TX_MODE);
3774 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3775 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3776 	/* Turn on transmitter */
3777 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3778 	DELAY(100);
3779 
3780 	/* Turn on receiver */
3781 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3782 	DELAY(10);
3783 
3784 	/*
3785 	 * Set the number of good frames to receive after RX MBUF
3786 	 * Low Watermark has been reached.  After the RX MAC receives
3787 	 * this number of frames, it will drop subsequent incoming
3788 	 * frames until the MBUF High Watermark is reached.
3789 	 */
3790 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3791 
3792 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3793 		if (bootverbose) {
3794 			if_printf(ifp, "MSI_MODE: %#x\n",
3795 			    CSR_READ_4(sc, BGE_MSI_MODE));
3796 		}
3797 
3798 		/*
3799 		 * XXX
3800 		 * Linux driver turns it on for all chips supporting MSI?!
3801 		 */
3802 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3803 			/*
3804 			 * XXX
3805 			 * According to 5722-PG101-R,
3806 			 * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3807 			 * BCM5906.
3808 			 */
3809 			BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3810 			    BGE_PCIE_TRANSACT_ONESHOT_MSI);
3811 		}
3812 	}
3813 
3814 	/* Tell firmware we're alive. */
3815 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3816 
3817 	/* Enable host interrupts if polling(4) is not enabled. */
3818 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3819 #ifdef IFPOLL_ENABLE
3820 	if (ifp->if_flags & IFF_NPOLLING)
3821 		bge_disable_intr(sc);
3822 	else
3823 #endif
3824 	bge_enable_intr(sc);
3825 
3826 	ifp->if_flags |= IFF_RUNNING;
3827 	ifq_clr_oactive(&ifp->if_snd);
3828 
3829 	bge_ifmedia_upd(ifp);
3830 
3831 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3832 }
3833 
3834 /*
3835  * Set media options.
3836  */
3837 static int
3838 bge_ifmedia_upd(struct ifnet *ifp)
3839 {
3840 	struct bge_softc *sc = ifp->if_softc;
3841 
3842 	/* If this is a 1000baseX NIC, enable the TBI port. */
3843 	if (sc->bge_flags & BGE_FLAG_TBI) {
3844 		struct ifmedia *ifm = &sc->bge_ifmedia;
3845 
3846 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3847 			return(EINVAL);
3848 
3849 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3850 		case IFM_AUTO:
3851 			/*
3852 			 * The BCM5704 ASIC appears to have a special
3853 			 * mechanism for programming the autoneg
3854 			 * advertisement registers in TBI mode.
3855 			 */
3856 			if (!bge_fake_autoneg &&
3857 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3858 				uint32_t sgdig;
3859 
3860 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3861 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3862 				sgdig |= BGE_SGDIGCFG_AUTO |
3863 					 BGE_SGDIGCFG_PAUSE_CAP |
3864 					 BGE_SGDIGCFG_ASYM_PAUSE;
3865 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3866 					    sgdig | BGE_SGDIGCFG_SEND);
3867 				DELAY(5);
3868 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3869 			}
3870 			break;
3871 		case IFM_1000_SX:
3872 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3873 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3874 				    BGE_MACMODE_HALF_DUPLEX);
3875 			} else {
3876 				BGE_SETBIT(sc, BGE_MAC_MODE,
3877 				    BGE_MACMODE_HALF_DUPLEX);
3878 			}
3879 			DELAY(40);
3880 			break;
3881 		default:
3882 			return(EINVAL);
3883 		}
3884 	} else {
3885 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3886 
3887 		sc->bge_link_evt++;
3888 		sc->bge_link = 0;
3889 		if (mii->mii_instance) {
3890 			struct mii_softc *miisc;
3891 
3892 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3893 				mii_phy_reset(miisc);
3894 		}
3895 		mii_mediachg(mii);
3896 
3897 		/*
3898 		 * Force an interrupt so that we will call bge_link_upd
3899 		 * if needed and clear any pending link state attention.
3900 		 * Without this we are not getting any further interrupts
3901 		 * for link state changes and thus will not UP the link and
3902 		 * not be able to send in bge_start.  The only way to get
3903 		 * things working was to receive a packet and get an RX
3904 		 * intr.
3905 		 *
3906 		 * bge_tick should help for fiber cards and we might not
3907 		 * need to do this here if BGE_FLAG_TBI is set but as
3908 		 * we poll for fiber anyway it should not harm.
3909 		 */
3910 		if (BGE_IS_CRIPPLED(sc))
3911 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3912 		else
3913 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3914 	}
3915 	return(0);
3916 }
3917 
3918 /*
3919  * Report current media status.
3920  */
3921 static void
3922 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3923 {
3924 	struct bge_softc *sc = ifp->if_softc;
3925 
3926 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3927 		return;
3928 
3929 	if (sc->bge_flags & BGE_FLAG_TBI) {
3930 		ifmr->ifm_status = IFM_AVALID;
3931 		ifmr->ifm_active = IFM_ETHER;
3932 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3933 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3934 			ifmr->ifm_status |= IFM_ACTIVE;
3935 		} else {
3936 			ifmr->ifm_active |= IFM_NONE;
3937 			return;
3938 		}
3939 
3940 		ifmr->ifm_active |= IFM_1000_SX;
3941 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3942 			ifmr->ifm_active |= IFM_HDX;
3943 		else
3944 			ifmr->ifm_active |= IFM_FDX;
3945 	} else {
3946 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3947 
3948 		mii_pollstat(mii);
3949 		ifmr->ifm_active = mii->mii_media_active;
3950 		ifmr->ifm_status = mii->mii_media_status;
3951 	}
3952 }
3953 
3954 static int
3955 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3956 {
3957 	struct bge_softc *sc = ifp->if_softc;
3958 	struct ifreq *ifr = (struct ifreq *)data;
3959 	int mask, error = 0;
3960 
3961 	ASSERT_SERIALIZED(ifp->if_serializer);
3962 
3963 	switch (command) {
3964 	case SIOCSIFMTU:
3965 		if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3966 		    (BGE_IS_JUMBO_CAPABLE(sc) &&
3967 		     ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3968 			error = EINVAL;
3969 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
3970 			ifp->if_mtu = ifr->ifr_mtu;
3971 			if (ifp->if_flags & IFF_RUNNING)
3972 				bge_init(sc);
3973 		}
3974 		break;
3975 	case SIOCSIFFLAGS:
3976 		if (ifp->if_flags & IFF_UP) {
3977 			if (ifp->if_flags & IFF_RUNNING) {
3978 				mask = ifp->if_flags ^ sc->bge_if_flags;
3979 
3980 				/*
3981 				 * If only the state of the PROMISC flag
3982 				 * changed, then just use the 'set promisc
3983 				 * mode' command instead of reinitializing
3984 				 * the entire NIC. Doing a full re-init
3985 				 * means reloading the firmware and waiting
3986 				 * for it to start up, which may take a
3987 				 * second or two.  Similarly for ALLMULTI.
3988 				 */
3989 				if (mask & IFF_PROMISC)
3990 					bge_setpromisc(sc);
3991 				if (mask & IFF_ALLMULTI)
3992 					bge_setmulti(sc);
3993 			} else {
3994 				bge_init(sc);
3995 			}
3996 		} else if (ifp->if_flags & IFF_RUNNING) {
3997 			bge_stop(sc);
3998 		}
3999 		sc->bge_if_flags = ifp->if_flags;
4000 		break;
4001 	case SIOCADDMULTI:
4002 	case SIOCDELMULTI:
4003 		if (ifp->if_flags & IFF_RUNNING)
4004 			bge_setmulti(sc);
4005 		break;
4006 	case SIOCSIFMEDIA:
4007 	case SIOCGIFMEDIA:
4008 		if (sc->bge_flags & BGE_FLAG_TBI) {
4009 			error = ifmedia_ioctl(ifp, ifr,
4010 			    &sc->bge_ifmedia, command);
4011 		} else {
4012 			struct mii_data *mii;
4013 
4014 			mii = device_get_softc(sc->bge_miibus);
4015 			error = ifmedia_ioctl(ifp, ifr,
4016 					      &mii->mii_media, command);
4017 		}
4018 		break;
4019         case SIOCSIFCAP:
4020 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4021 		if (mask & IFCAP_HWCSUM) {
4022 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
4023 			if (ifp->if_capenable & IFCAP_TXCSUM)
4024 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4025 			else
4026 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4027 		}
4028 		if (mask & IFCAP_TSO) {
4029 			ifp->if_capenable ^= IFCAP_TSO;
4030 			if (ifp->if_capenable & IFCAP_TSO)
4031 				ifp->if_hwassist |= CSUM_TSO;
4032 			else
4033 				ifp->if_hwassist &= ~CSUM_TSO;
4034 		}
4035 		break;
4036 	default:
4037 		error = ether_ioctl(ifp, command, data);
4038 		break;
4039 	}
4040 	return error;
4041 }
4042 
4043 static void
4044 bge_watchdog(struct ifnet *ifp)
4045 {
4046 	struct bge_softc *sc = ifp->if_softc;
4047 
4048 	if_printf(ifp, "watchdog timeout -- resetting\n");
4049 
4050 	bge_init(sc);
4051 
4052 	IFNET_STAT_INC(ifp, oerrors, 1);
4053 
4054 	if (!ifq_is_empty(&ifp->if_snd))
4055 		if_devstart(ifp);
4056 }
4057 
4058 /*
4059  * Stop the adapter and free any mbufs allocated to the
4060  * RX and TX lists.
4061  */
4062 static void
4063 bge_stop(struct bge_softc *sc)
4064 {
4065 	struct ifnet *ifp = &sc->arpcom.ac_if;
4066 
4067 	ASSERT_SERIALIZED(ifp->if_serializer);
4068 
4069 	callout_stop(&sc->bge_stat_timer);
4070 
4071 	/* Disable host interrupts. */
4072 	bge_disable_intr(sc);
4073 
4074 	/*
4075 	 * Tell firmware we're shutting down.
4076 	 */
4077 	bge_stop_fw(sc);
4078 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
4079 
4080 	/*
4081 	 * Disable all of the receiver blocks
4082 	 */
4083 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4084 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4085 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4086 	if (BGE_IS_5700_FAMILY(sc))
4087 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4088 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4089 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4090 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4091 
4092 	/*
4093 	 * Disable all of the transmit blocks
4094 	 */
4095 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4096 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4097 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4098 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4099 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4100 	if (BGE_IS_5700_FAMILY(sc))
4101 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4102 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4103 
4104 	/*
4105 	 * Shut down all of the memory managers and related
4106 	 * state machines.
4107 	 */
4108 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4109 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4110 	if (BGE_IS_5700_FAMILY(sc))
4111 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4112 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4113 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4114 	if (!BGE_IS_5705_PLUS(sc)) {
4115 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4116 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4117 	}
4118 
4119 	bge_reset(sc);
4120 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
4121 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
4122 
4123 	/*
4124 	 * Keep the ASF firmware running if up.
4125 	 */
4126 	if (sc->bge_asf_mode & ASF_STACKUP)
4127 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4128 	else
4129 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4130 
4131 	/* Free the RX lists. */
4132 	bge_free_rx_ring_std(sc);
4133 
4134 	/* Free jumbo RX list. */
4135 	if (BGE_IS_JUMBO_CAPABLE(sc))
4136 		bge_free_rx_ring_jumbo(sc);
4137 
4138 	/* Free TX buffers. */
4139 	bge_free_tx_ring(sc);
4140 
4141 	sc->bge_status_tag = 0;
4142 	sc->bge_link = 0;
4143 	sc->bge_coal_chg = 0;
4144 
4145 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4146 
4147 	ifp->if_flags &= ~IFF_RUNNING;
4148 	ifq_clr_oactive(&ifp->if_snd);
4149 	ifp->if_timer = 0;
4150 }
4151 
4152 /*
4153  * Stop all chip I/O so that the kernel's probe routines don't
4154  * get confused by errant DMAs when rebooting.
4155  */
4156 static void
4157 bge_shutdown(device_t dev)
4158 {
4159 	struct bge_softc *sc = device_get_softc(dev);
4160 	struct ifnet *ifp = &sc->arpcom.ac_if;
4161 
4162 	lwkt_serialize_enter(ifp->if_serializer);
4163 	bge_stop(sc);
4164 	lwkt_serialize_exit(ifp->if_serializer);
4165 }
4166 
4167 static int
4168 bge_suspend(device_t dev)
4169 {
4170 	struct bge_softc *sc = device_get_softc(dev);
4171 	struct ifnet *ifp = &sc->arpcom.ac_if;
4172 
4173 	lwkt_serialize_enter(ifp->if_serializer);
4174 	bge_stop(sc);
4175 	lwkt_serialize_exit(ifp->if_serializer);
4176 
4177 	return 0;
4178 }
4179 
4180 static int
4181 bge_resume(device_t dev)
4182 {
4183 	struct bge_softc *sc = device_get_softc(dev);
4184 	struct ifnet *ifp = &sc->arpcom.ac_if;
4185 
4186 	lwkt_serialize_enter(ifp->if_serializer);
4187 
4188 	if (ifp->if_flags & IFF_UP) {
4189 		bge_init(sc);
4190 
4191 		if (!ifq_is_empty(&ifp->if_snd))
4192 			if_devstart(ifp);
4193 	}
4194 
4195 	lwkt_serialize_exit(ifp->if_serializer);
4196 
4197 	return 0;
4198 }
4199 
4200 static void
4201 bge_setpromisc(struct bge_softc *sc)
4202 {
4203 	struct ifnet *ifp = &sc->arpcom.ac_if;
4204 
4205 	if (ifp->if_flags & IFF_PROMISC)
4206 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4207 	else
4208 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4209 }
4210 
4211 static void
4212 bge_dma_free(struct bge_softc *sc)
4213 {
4214 	int i;
4215 
4216 	/* Destroy RX mbuf DMA stuffs. */
4217 	if (sc->bge_cdata.bge_rx_mtag != NULL) {
4218 		for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4219 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4220 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
4221 		}
4222 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4223 				   sc->bge_cdata.bge_rx_tmpmap);
4224 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4225 	}
4226 
4227 	/* Destroy TX mbuf DMA stuffs. */
4228 	if (sc->bge_cdata.bge_tx_mtag != NULL) {
4229 		for (i = 0; i < BGE_TX_RING_CNT; i++) {
4230 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4231 			    sc->bge_cdata.bge_tx_dmamap[i]);
4232 		}
4233 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4234 	}
4235 
4236 	/* Destroy standard RX ring */
4237 	bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4238 			   sc->bge_cdata.bge_rx_std_ring_map,
4239 			   sc->bge_ldata.bge_rx_std_ring);
4240 
4241 	if (BGE_IS_JUMBO_CAPABLE(sc))
4242 		bge_free_jumbo_mem(sc);
4243 
4244 	/* Destroy RX return ring */
4245 	bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4246 			   sc->bge_cdata.bge_rx_return_ring_map,
4247 			   sc->bge_ldata.bge_rx_return_ring);
4248 
4249 	/* Destroy TX ring */
4250 	bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4251 			   sc->bge_cdata.bge_tx_ring_map,
4252 			   sc->bge_ldata.bge_tx_ring);
4253 
4254 	/* Destroy status block */
4255 	bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4256 			   sc->bge_cdata.bge_status_map,
4257 			   sc->bge_ldata.bge_status_block);
4258 
4259 	/* Destroy statistics block */
4260 	bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4261 			   sc->bge_cdata.bge_stats_map,
4262 			   sc->bge_ldata.bge_stats);
4263 
4264 	/* Destroy the parent tag */
4265 	if (sc->bge_cdata.bge_parent_tag != NULL)
4266 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4267 }
4268 
4269 static int
4270 bge_dma_alloc(struct bge_softc *sc)
4271 {
4272 	struct ifnet *ifp = &sc->arpcom.ac_if;
4273 	int i, error;
4274 	bus_addr_t lowaddr;
4275 	bus_size_t txmaxsz;
4276 
4277 	lowaddr = BUS_SPACE_MAXADDR;
4278 	if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4279 		lowaddr = BGE_DMA_MAXADDR_40BIT;
4280 
4281 	/*
4282 	 * Allocate the parent bus DMA tag appropriate for PCI.
4283 	 *
4284 	 * All of the NetExtreme/NetLink controllers have 4GB boundary
4285 	 * DMA bug.
4286 	 * Whenever an address crosses a multiple of the 4GB boundary
4287 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4288 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4289 	 * state machine will lockup and cause the device to hang.
4290 	 */
4291 	error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4292 				   lowaddr, BUS_SPACE_MAXADDR,
4293 				   NULL, NULL,
4294 				   BUS_SPACE_MAXSIZE_32BIT, 0,
4295 				   BUS_SPACE_MAXSIZE_32BIT,
4296 				   0, &sc->bge_cdata.bge_parent_tag);
4297 	if (error) {
4298 		if_printf(ifp, "could not allocate parent dma tag\n");
4299 		return error;
4300 	}
4301 
4302 	/*
4303 	 * Create DMA tag and maps for RX mbufs.
4304 	 */
4305 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4306 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4307 				   NULL, NULL, MCLBYTES, 1, MCLBYTES,
4308 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4309 				   &sc->bge_cdata.bge_rx_mtag);
4310 	if (error) {
4311 		if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4312 		return error;
4313 	}
4314 
4315 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4316 				  BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4317 	if (error) {
4318 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4319 		sc->bge_cdata.bge_rx_mtag = NULL;
4320 		return error;
4321 	}
4322 
4323 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4324 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4325 					  BUS_DMA_WAITOK,
4326 					  &sc->bge_cdata.bge_rx_std_dmamap[i]);
4327 		if (error) {
4328 			int j;
4329 
4330 			for (j = 0; j < i; ++j) {
4331 				bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4332 					sc->bge_cdata.bge_rx_std_dmamap[j]);
4333 			}
4334 			bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4335 			sc->bge_cdata.bge_rx_mtag = NULL;
4336 
4337 			if_printf(ifp, "could not create DMA map for RX\n");
4338 			return error;
4339 		}
4340 	}
4341 
4342 	/*
4343 	 * Create DMA tag and maps for TX mbufs.
4344 	 */
4345 	if (sc->bge_flags & BGE_FLAG_TSO)
4346 		txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4347 	else
4348 		txmaxsz = BGE_JUMBO_FRAMELEN;
4349 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4350 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4351 				   NULL, NULL,
4352 				   txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4353 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4354 				   BUS_DMA_ONEBPAGE,
4355 				   &sc->bge_cdata.bge_tx_mtag);
4356 	if (error) {
4357 		if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4358 		return error;
4359 	}
4360 
4361 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
4362 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4363 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4364 					  &sc->bge_cdata.bge_tx_dmamap[i]);
4365 		if (error) {
4366 			int j;
4367 
4368 			for (j = 0; j < i; ++j) {
4369 				bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4370 					sc->bge_cdata.bge_tx_dmamap[j]);
4371 			}
4372 			bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4373 			sc->bge_cdata.bge_tx_mtag = NULL;
4374 
4375 			if_printf(ifp, "could not create DMA map for TX\n");
4376 			return error;
4377 		}
4378 	}
4379 
4380 	/*
4381 	 * Create DMA stuffs for standard RX ring.
4382 	 */
4383 	error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4384 				    &sc->bge_cdata.bge_rx_std_ring_tag,
4385 				    &sc->bge_cdata.bge_rx_std_ring_map,
4386 				    (void *)&sc->bge_ldata.bge_rx_std_ring,
4387 				    &sc->bge_ldata.bge_rx_std_ring_paddr);
4388 	if (error) {
4389 		if_printf(ifp, "could not create std RX ring\n");
4390 		return error;
4391 	}
4392 
4393 	/*
4394 	 * Create jumbo buffer pool.
4395 	 */
4396 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
4397 		error = bge_alloc_jumbo_mem(sc);
4398 		if (error) {
4399 			if_printf(ifp, "could not create jumbo buffer pool\n");
4400 			return error;
4401 		}
4402 	}
4403 
4404 	/*
4405 	 * Create DMA stuffs for RX return ring.
4406 	 */
4407 	error = bge_dma_block_alloc(sc,
4408 	    BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4409 	    &sc->bge_cdata.bge_rx_return_ring_tag,
4410 	    &sc->bge_cdata.bge_rx_return_ring_map,
4411 	    (void *)&sc->bge_ldata.bge_rx_return_ring,
4412 	    &sc->bge_ldata.bge_rx_return_ring_paddr);
4413 	if (error) {
4414 		if_printf(ifp, "could not create RX ret ring\n");
4415 		return error;
4416 	}
4417 
4418 	/*
4419 	 * Create DMA stuffs for TX ring.
4420 	 */
4421 	error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4422 				    &sc->bge_cdata.bge_tx_ring_tag,
4423 				    &sc->bge_cdata.bge_tx_ring_map,
4424 				    (void *)&sc->bge_ldata.bge_tx_ring,
4425 				    &sc->bge_ldata.bge_tx_ring_paddr);
4426 	if (error) {
4427 		if_printf(ifp, "could not create TX ring\n");
4428 		return error;
4429 	}
4430 
4431 	/*
4432 	 * Create DMA stuffs for status block.
4433 	 */
4434 	error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4435 				    &sc->bge_cdata.bge_status_tag,
4436 				    &sc->bge_cdata.bge_status_map,
4437 				    (void *)&sc->bge_ldata.bge_status_block,
4438 				    &sc->bge_ldata.bge_status_block_paddr);
4439 	if (error) {
4440 		if_printf(ifp, "could not create status block\n");
4441 		return error;
4442 	}
4443 
4444 	/*
4445 	 * Create DMA stuffs for statistics block.
4446 	 */
4447 	error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4448 				    &sc->bge_cdata.bge_stats_tag,
4449 				    &sc->bge_cdata.bge_stats_map,
4450 				    (void *)&sc->bge_ldata.bge_stats,
4451 				    &sc->bge_ldata.bge_stats_paddr);
4452 	if (error) {
4453 		if_printf(ifp, "could not create stats block\n");
4454 		return error;
4455 	}
4456 	return 0;
4457 }
4458 
4459 static int
4460 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4461 		    bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4462 {
4463 	bus_dmamem_t dmem;
4464 	int error;
4465 
4466 	error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4467 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4468 				    size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4469 	if (error)
4470 		return error;
4471 
4472 	*tag = dmem.dmem_tag;
4473 	*map = dmem.dmem_map;
4474 	*addr = dmem.dmem_addr;
4475 	*paddr = dmem.dmem_busaddr;
4476 
4477 	return 0;
4478 }
4479 
4480 static void
4481 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4482 {
4483 	if (tag != NULL) {
4484 		bus_dmamap_unload(tag, map);
4485 		bus_dmamem_free(tag, addr, map);
4486 		bus_dma_tag_destroy(tag);
4487 	}
4488 }
4489 
4490 /*
4491  * Grrr. The link status word in the status block does
4492  * not work correctly on the BCM5700 rev AX and BX chips,
4493  * according to all available information. Hence, we have
4494  * to enable MII interrupts in order to properly obtain
4495  * async link changes. Unfortunately, this also means that
4496  * we have to read the MAC status register to detect link
4497  * changes, thereby adding an additional register access to
4498  * the interrupt handler.
4499  *
4500  * XXX: perhaps link state detection procedure used for
4501  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4502  */
4503 static void
4504 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4505 {
4506 	struct ifnet *ifp = &sc->arpcom.ac_if;
4507 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4508 
4509 	mii_pollstat(mii);
4510 
4511 	if (!sc->bge_link &&
4512 	    (mii->mii_media_status & IFM_ACTIVE) &&
4513 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4514 		sc->bge_link++;
4515 		if (bootverbose)
4516 			if_printf(ifp, "link UP\n");
4517 	} else if (sc->bge_link &&
4518 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4519 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4520 		sc->bge_link = 0;
4521 		if (bootverbose)
4522 			if_printf(ifp, "link DOWN\n");
4523 	}
4524 
4525 	/* Clear the interrupt. */
4526 	CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4527 	bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4528 	bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4529 }
4530 
4531 static void
4532 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4533 {
4534 	struct ifnet *ifp = &sc->arpcom.ac_if;
4535 
4536 #define PCS_ENCODE_ERR	(BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4537 
4538 	/*
4539 	 * Sometimes PCS encoding errors are detected in
4540 	 * TBI mode (on fiber NICs), and for some reason
4541 	 * the chip will signal them as link changes.
4542 	 * If we get a link change event, but the 'PCS
4543 	 * encoding error' bit in the MAC status register
4544 	 * is set, don't bother doing a link check.
4545 	 * This avoids spurious "gigabit link up" messages
4546 	 * that sometimes appear on fiber NICs during
4547 	 * periods of heavy traffic.
4548 	 */
4549 	if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4550 		if (!sc->bge_link) {
4551 			sc->bge_link++;
4552 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4553 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4554 				    BGE_MACMODE_TBI_SEND_CFGS);
4555 				DELAY(40);
4556 			}
4557 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4558 
4559 			if (bootverbose)
4560 				if_printf(ifp, "link UP\n");
4561 
4562 			ifp->if_link_state = LINK_STATE_UP;
4563 			if_link_state_change(ifp);
4564 		}
4565 	} else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4566 		if (sc->bge_link) {
4567 			sc->bge_link = 0;
4568 
4569 			if (bootverbose)
4570 				if_printf(ifp, "link DOWN\n");
4571 
4572 			ifp->if_link_state = LINK_STATE_DOWN;
4573 			if_link_state_change(ifp);
4574 		}
4575 	}
4576 
4577 #undef PCS_ENCODE_ERR
4578 
4579 	/* Clear the attention. */
4580 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4581 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4582 	    BGE_MACSTAT_LINK_CHANGED);
4583 }
4584 
4585 static void
4586 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4587 {
4588 	struct ifnet *ifp = &sc->arpcom.ac_if;
4589 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4590 
4591 	mii_pollstat(mii);
4592 	bge_miibus_statchg(sc->bge_dev);
4593 
4594 	if (bootverbose) {
4595 		if (sc->bge_link)
4596 			if_printf(ifp, "link UP\n");
4597 		else
4598 			if_printf(ifp, "link DOWN\n");
4599 	}
4600 
4601 	/* Clear the attention. */
4602 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4603 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4604 	    BGE_MACSTAT_LINK_CHANGED);
4605 }
4606 
4607 static void
4608 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4609 {
4610 	struct ifnet *ifp = &sc->arpcom.ac_if;
4611 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4612 
4613 	mii_pollstat(mii);
4614 
4615 	if (!sc->bge_link &&
4616 	    (mii->mii_media_status & IFM_ACTIVE) &&
4617 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4618 		sc->bge_link++;
4619 		if (bootverbose)
4620 			if_printf(ifp, "link UP\n");
4621 	} else if (sc->bge_link &&
4622 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4623 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4624 		sc->bge_link = 0;
4625 		if (bootverbose)
4626 			if_printf(ifp, "link DOWN\n");
4627 	}
4628 
4629 	/* Clear the attention. */
4630 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4631 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4632 	    BGE_MACSTAT_LINK_CHANGED);
4633 }
4634 
4635 static int
4636 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4637 {
4638 	struct bge_softc *sc = arg1;
4639 
4640 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4641 	    &sc->bge_rx_coal_ticks,
4642 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4643 	    BGE_RX_COAL_TICKS_CHG);
4644 }
4645 
4646 static int
4647 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4648 {
4649 	struct bge_softc *sc = arg1;
4650 
4651 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4652 	    &sc->bge_tx_coal_ticks,
4653 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4654 	    BGE_TX_COAL_TICKS_CHG);
4655 }
4656 
4657 static int
4658 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4659 {
4660 	struct bge_softc *sc = arg1;
4661 
4662 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4663 	    &sc->bge_rx_coal_bds,
4664 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4665 	    BGE_RX_COAL_BDS_CHG);
4666 }
4667 
4668 static int
4669 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4670 {
4671 	struct bge_softc *sc = arg1;
4672 
4673 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4674 	    &sc->bge_tx_coal_bds,
4675 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4676 	    BGE_TX_COAL_BDS_CHG);
4677 }
4678 
4679 static int
4680 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4681 {
4682 	struct bge_softc *sc = arg1;
4683 
4684 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4685 	    &sc->bge_rx_coal_ticks_int,
4686 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4687 	    BGE_RX_COAL_TICKS_INT_CHG);
4688 }
4689 
4690 static int
4691 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4692 {
4693 	struct bge_softc *sc = arg1;
4694 
4695 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4696 	    &sc->bge_tx_coal_ticks_int,
4697 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4698 	    BGE_TX_COAL_TICKS_INT_CHG);
4699 }
4700 
4701 static int
4702 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4703 {
4704 	struct bge_softc *sc = arg1;
4705 
4706 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4707 	    &sc->bge_rx_coal_bds_int,
4708 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4709 	    BGE_RX_COAL_BDS_INT_CHG);
4710 }
4711 
4712 static int
4713 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4714 {
4715 	struct bge_softc *sc = arg1;
4716 
4717 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4718 	    &sc->bge_tx_coal_bds_int,
4719 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4720 	    BGE_TX_COAL_BDS_INT_CHG);
4721 }
4722 
4723 static int
4724 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4725     int coal_min, int coal_max, uint32_t coal_chg_mask)
4726 {
4727 	struct bge_softc *sc = arg1;
4728 	struct ifnet *ifp = &sc->arpcom.ac_if;
4729 	int error = 0, v;
4730 
4731 	lwkt_serialize_enter(ifp->if_serializer);
4732 
4733 	v = *coal;
4734 	error = sysctl_handle_int(oidp, &v, 0, req);
4735 	if (!error && req->newptr != NULL) {
4736 		if (v < coal_min || v > coal_max) {
4737 			error = EINVAL;
4738 		} else {
4739 			*coal = v;
4740 			sc->bge_coal_chg |= coal_chg_mask;
4741 		}
4742 	}
4743 
4744 	lwkt_serialize_exit(ifp->if_serializer);
4745 	return error;
4746 }
4747 
4748 static void
4749 bge_coal_change(struct bge_softc *sc)
4750 {
4751 	struct ifnet *ifp = &sc->arpcom.ac_if;
4752 
4753 	ASSERT_SERIALIZED(ifp->if_serializer);
4754 
4755 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4756 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4757 			    sc->bge_rx_coal_ticks);
4758 		DELAY(10);
4759 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4760 
4761 		if (bootverbose) {
4762 			if_printf(ifp, "rx_coal_ticks -> %u\n",
4763 				  sc->bge_rx_coal_ticks);
4764 		}
4765 	}
4766 
4767 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4768 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4769 			    sc->bge_tx_coal_ticks);
4770 		DELAY(10);
4771 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4772 
4773 		if (bootverbose) {
4774 			if_printf(ifp, "tx_coal_ticks -> %u\n",
4775 				  sc->bge_tx_coal_ticks);
4776 		}
4777 	}
4778 
4779 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4780 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4781 			    sc->bge_rx_coal_bds);
4782 		DELAY(10);
4783 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4784 
4785 		if (bootverbose) {
4786 			if_printf(ifp, "rx_coal_bds -> %u\n",
4787 				  sc->bge_rx_coal_bds);
4788 		}
4789 	}
4790 
4791 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4792 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4793 			    sc->bge_tx_coal_bds);
4794 		DELAY(10);
4795 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4796 
4797 		if (bootverbose) {
4798 			if_printf(ifp, "tx_max_coal_bds -> %u\n",
4799 				  sc->bge_tx_coal_bds);
4800 		}
4801 	}
4802 
4803 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4804 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4805 		    sc->bge_rx_coal_ticks_int);
4806 		DELAY(10);
4807 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4808 
4809 		if (bootverbose) {
4810 			if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4811 			    sc->bge_rx_coal_ticks_int);
4812 		}
4813 	}
4814 
4815 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4816 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4817 		    sc->bge_tx_coal_ticks_int);
4818 		DELAY(10);
4819 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4820 
4821 		if (bootverbose) {
4822 			if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4823 			    sc->bge_tx_coal_ticks_int);
4824 		}
4825 	}
4826 
4827 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4828 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4829 		    sc->bge_rx_coal_bds_int);
4830 		DELAY(10);
4831 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4832 
4833 		if (bootverbose) {
4834 			if_printf(ifp, "rx_coal_bds_int -> %u\n",
4835 			    sc->bge_rx_coal_bds_int);
4836 		}
4837 	}
4838 
4839 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4840 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4841 		    sc->bge_tx_coal_bds_int);
4842 		DELAY(10);
4843 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4844 
4845 		if (bootverbose) {
4846 			if_printf(ifp, "tx_coal_bds_int -> %u\n",
4847 			    sc->bge_tx_coal_bds_int);
4848 		}
4849 	}
4850 
4851 	sc->bge_coal_chg = 0;
4852 }
4853 
4854 static void
4855 bge_enable_intr(struct bge_softc *sc)
4856 {
4857 	struct ifnet *ifp = &sc->arpcom.ac_if;
4858 
4859 	lwkt_serialize_handler_enable(ifp->if_serializer);
4860 
4861 	/*
4862 	 * Enable interrupt.
4863 	 */
4864 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4865 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4866 		/* XXX Linux driver */
4867 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4868 	}
4869 
4870 	/*
4871 	 * Unmask the interrupt when we stop polling.
4872 	 */
4873 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4874 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4875 
4876 	/*
4877 	 * Trigger another interrupt, since above writing
4878 	 * to interrupt mailbox0 may acknowledge pending
4879 	 * interrupt.
4880 	 */
4881 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4882 }
4883 
4884 static void
4885 bge_disable_intr(struct bge_softc *sc)
4886 {
4887 	struct ifnet *ifp = &sc->arpcom.ac_if;
4888 
4889 	/*
4890 	 * Mask the interrupt when we start polling.
4891 	 */
4892 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4893 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4894 
4895 	/*
4896 	 * Acknowledge possible asserted interrupt.
4897 	 */
4898 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4899 
4900 	sc->bge_npoll.ifpc_stcount = 0;
4901 
4902 	lwkt_serialize_handler_disable(ifp->if_serializer);
4903 }
4904 
4905 static int
4906 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4907 {
4908 	uint32_t mac_addr;
4909 	int ret = 1;
4910 
4911 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4912 	if ((mac_addr >> 16) == 0x484b) {
4913 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4914 		ether_addr[1] = (uint8_t)mac_addr;
4915 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4916 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4917 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4918 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4919 		ether_addr[5] = (uint8_t)mac_addr;
4920 		ret = 0;
4921 	}
4922 	return ret;
4923 }
4924 
4925 static int
4926 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4927 {
4928 	int mac_offset = BGE_EE_MAC_OFFSET;
4929 
4930 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4931 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4932 
4933 	return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4934 }
4935 
4936 static int
4937 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4938 {
4939 	if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4940 		return 1;
4941 
4942 	return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4943 			       ETHER_ADDR_LEN);
4944 }
4945 
4946 static int
4947 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4948 {
4949 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4950 		/* NOTE: Order is critical */
4951 		bge_get_eaddr_mem,
4952 		bge_get_eaddr_nvram,
4953 		bge_get_eaddr_eeprom,
4954 		NULL
4955 	};
4956 	const bge_eaddr_fcn_t *func;
4957 
4958 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4959 		if ((*func)(sc, eaddr) == 0)
4960 			break;
4961 	}
4962 	return (*func == NULL ? ENXIO : 0);
4963 }
4964 
4965 /*
4966  * NOTE: 'm' is not freed upon failure
4967  */
4968 struct mbuf *
4969 bge_defrag_shortdma(struct mbuf *m)
4970 {
4971 	struct mbuf *n;
4972 	int found;
4973 
4974 	/*
4975 	 * If device receive two back-to-back send BDs with less than
4976 	 * or equal to 8 total bytes then the device may hang.  The two
4977 	 * back-to-back send BDs must in the same frame for this failure
4978 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4979 	 * send BDs are there.  If this is the case, allocate new mbuf
4980 	 * and copy the frame to workaround the silicon bug.
4981 	 */
4982 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4983 		if (n->m_len < 8) {
4984 			found++;
4985 			if (found > 1)
4986 				break;
4987 			continue;
4988 		}
4989 		found = 0;
4990 	}
4991 
4992 	if (found > 1)
4993 		n = m_defrag(m, MB_DONTWAIT);
4994 	else
4995 		n = m;
4996 	return n;
4997 }
4998 
4999 static void
5000 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5001 {
5002 	int i;
5003 
5004 	BGE_CLRBIT(sc, reg, bit);
5005 	for (i = 0; i < BGE_TIMEOUT; i++) {
5006 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5007 			return;
5008 		DELAY(100);
5009 	}
5010 }
5011 
5012 static void
5013 bge_link_poll(struct bge_softc *sc)
5014 {
5015 	uint32_t status;
5016 
5017 	status = CSR_READ_4(sc, BGE_MAC_STS);
5018 	if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
5019 		sc->bge_link_evt = 0;
5020 		sc->bge_link_upd(sc, status);
5021 	}
5022 }
5023 
5024 static void
5025 bge_enable_msi(struct bge_softc *sc)
5026 {
5027 	uint32_t msi_mode;
5028 
5029 	msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5030 	msi_mode |= BGE_MSIMODE_ENABLE;
5031 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
5032 		/*
5033 		 * According to all of the datasheets that are publicly
5034 		 * available, bit 5 of the MSI_MODE is defined to be
5035 		 * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
5036 		 * which "oneshot MSI" is enabled.  However, it is always
5037 		 * safe to clear it here.
5038 		 */
5039 		msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5040 	}
5041 	CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5042 }
5043 
5044 static int
5045 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
5046     uint16_t *mss0, uint16_t *flags0)
5047 {
5048 	struct mbuf *m;
5049 	struct ip *ip;
5050 	struct tcphdr *th;
5051 	int thoff, iphlen, hoff, hlen;
5052 	uint16_t flags, mss;
5053 
5054 	m = *mp;
5055 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5056 
5057 	hoff = m->m_pkthdr.csum_lhlen;
5058 	iphlen = m->m_pkthdr.csum_iphlen;
5059 	thoff = m->m_pkthdr.csum_thlen;
5060 
5061 	KASSERT(hoff > 0, ("invalid ether header len"));
5062 	KASSERT(iphlen > 0, ("invalid ip header len"));
5063 	KASSERT(thoff > 0, ("invalid tcp header len"));
5064 
5065 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5066 		m = m_pullup(m, hoff + iphlen + thoff);
5067 		if (m == NULL) {
5068 			*mp = NULL;
5069 			return ENOBUFS;
5070 		}
5071 		*mp = m;
5072 	}
5073 	ip = mtodoff(m, struct ip *, hoff);
5074 	th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5075 
5076 	mss = m->m_pkthdr.tso_segsz;
5077 	flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5078 
5079 	ip->ip_len = htons(mss + iphlen + thoff);
5080 	th->th_sum = 0;
5081 
5082 	hlen = (iphlen + thoff) >> 2;
5083 	mss |= (hlen << 11);
5084 
5085 	*mss0 = mss;
5086 	*flags0 = flags;
5087 
5088 	return 0;
5089 }
5090 
5091 static void
5092 bge_stop_fw(struct bge_softc *sc)
5093 {
5094 	int i;
5095 
5096 	if (sc->bge_asf_mode) {
5097 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
5098 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5099 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
5100 
5101 		for (i = 0; i < 100; i++ ) {
5102 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
5103 			    BGE_RX_CPU_DRV_EVENT))
5104 				break;
5105 			DELAY(10);
5106 		}
5107 	}
5108 }
5109 
5110 static void
5111 bge_sig_pre_reset(struct bge_softc *sc, int type)
5112 {
5113 	/*
5114 	 * Some chips don't like this so only do this if ASF is enabled
5115 	 */
5116 	if (sc->bge_asf_mode)
5117 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
5118 
5119 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5120 		switch (type) {
5121 		case BGE_RESET_START:
5122 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5123 			    BGE_FW_DRV_STATE_START);
5124 			break;
5125 		case BGE_RESET_SHUTDOWN:
5126 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5127 			    BGE_FW_DRV_STATE_UNLOAD);
5128 			break;
5129 		case BGE_RESET_SUSPEND:
5130 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5131 			    BGE_FW_DRV_STATE_SUSPEND);
5132 			break;
5133 		}
5134 	}
5135 
5136 #ifdef notyet
5137 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
5138 		bge_ape_driver_state_change(sc, type);
5139 #endif
5140 }
5141 
5142 static void
5143 bge_sig_legacy(struct bge_softc *sc, int type)
5144 {
5145 	if (sc->bge_asf_mode) {
5146 		switch (type) {
5147 		case BGE_RESET_START:
5148 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5149 			    BGE_FW_DRV_STATE_START);
5150 			break;
5151 		case BGE_RESET_SHUTDOWN:
5152 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5153 			    BGE_FW_DRV_STATE_UNLOAD);
5154 			break;
5155 		}
5156 	}
5157 }
5158 
5159 static void
5160 bge_sig_post_reset(struct bge_softc *sc, int type)
5161 {
5162 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5163 		switch (type) {
5164 		case BGE_RESET_START:
5165 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5166 			    BGE_FW_DRV_STATE_START_DONE);
5167 			/* START DONE */
5168 			break;
5169 		case BGE_RESET_SHUTDOWN:
5170 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5171 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
5172 			break;
5173 		}
5174 	}
5175 #ifdef notyet
5176 	if (type == BGE_RESET_SHUTDOWN)
5177 		bge_ape_driver_state_change(sc, type);
5178 #endif
5179 }
5180 
5181 static void
5182 bge_asf_driver_up(struct bge_softc *sc)
5183 {
5184 	if (sc->bge_asf_mode & ASF_STACKUP) {
5185 		/* Send ASF heartbeat aprox. every 2s */
5186 		if (sc->bge_asf_count)
5187 			sc->bge_asf_count --;
5188 		else {
5189 			sc->bge_asf_count = 2;
5190 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
5191 			    BGE_FW_CMD_DRV_ALIVE);
5192 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
5193 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
5194 			    BGE_FW_HB_TIMEOUT_SEC);
5195 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5196 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
5197 			    BGE_RX_CPU_DRV_EVENT);
5198 		}
5199 	}
5200 }
5201