xref: /dflybsd-src/sys/dev/netif/bge/if_bge.c (revision c6cf4f8f1ebc9e3fe2a8c566f08adfc86122c7bf)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.27 2005/02/14 17:45:08 joerg Exp $
35  *
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44 
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  *
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83 
84 #include <net/if.h>
85 #include <net/ifq_var.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/vlan/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 
100 #include <vm/vm.h>              /* for vtophys */
101 #include <vm/pmap.h>            /* for vtophys */
102 #include <machine/clock.h>      /* for DELAY */
103 #include <machine/bus_memio.h>
104 #include <machine/bus.h>
105 #include <machine/resource.h>
106 #include <sys/bus.h>
107 #include <sys/rman.h>
108 
109 #include <dev/netif/mii_layer/mii.h>
110 #include <dev/netif/mii_layer/miivar.h>
111 #include <dev/netif/mii_layer/miidevs.h>
112 #include <dev/netif/mii_layer/brgphyreg.h>
113 
114 #include <bus/pci/pcidevs.h>
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117 
118 #include "if_bgereg.h"
119 
120 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
121 
122 /* "controller miibus0" required.  See GENERIC if you get errors here. */
123 #include "miibus_if.h"
124 
125 /*
126  * Various supported device vendors/types and their names. Note: the
127  * spec seems to indicate that the hardware still has Alteon's vendor
128  * ID burned into it, though it will always be overriden by the vendor
129  * ID in the EEPROM. Just to be safe, we cover all possibilities.
130  */
131 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
132 
133 static struct bge_type bge_devs[] = {
134 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
135 		"Broadcom BCM5700 Gigabit Ethernet" },
136 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
137 		"Broadcom BCM5701 Gigabit Ethernet" },
138 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
139 		"Broadcom BCM5700 Gigabit Ethernet" },
140 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
141 		"Broadcom BCM5701 Gigabit Ethernet" },
142 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
143 		"Broadcom BCM5702X Gigabit Ethernet" },
144 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5702X,
145 		"Broadcom BCM5702X Gigabit Ethernet" },
146 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
147 		"Broadcom BCM5703X Gigabit Ethernet" },
148 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5703X,
149 		"Broadcom BCM5703X Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
151 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
153 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
155 		"Broadcom BCM5705 Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
157 		"Broadcom BCM5705M Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705_ALT,
159 		"Broadcom BCM5705M Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
161 		"Broadcom BCM5782 Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5788,
163 		"Broadcom BCM5788 Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
165 		"Broadcom BCM5901 Fast Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
167 		"Broadcom BCM5901A2 Fast Ethernet" },
168 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
169 		"SysKonnect Gigabit Ethernet" },
170 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
171 		"Altima AC1000 Gigabit Ethernet" },
172 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
173 		"Altima AC1002 Gigabit Ethernet" },
174 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
175 		"Altima AC9100 Gigabit Ethernet" },
176 	{ 0, 0, NULL }
177 };
178 
179 static int bge_probe		(device_t);
180 static int bge_attach		(device_t);
181 static int bge_detach		(device_t);
182 static void bge_release_resources
183 				(struct bge_softc *);
184 static void bge_txeof		(struct bge_softc *);
185 static void bge_rxeof		(struct bge_softc *);
186 
187 static void bge_tick		(void *);
188 static void bge_stats_update	(struct bge_softc *);
189 static void bge_stats_update_regs
190 				(struct bge_softc *);
191 static int bge_encap		(struct bge_softc *, struct mbuf *,
192 					u_int32_t *);
193 
194 static void bge_intr		(void *);
195 static void bge_start		(struct ifnet *);
196 static int bge_ioctl		(struct ifnet *, u_long, caddr_t,
197 					struct ucred *);
198 static void bge_init		(void *);
199 static void bge_stop		(struct bge_softc *);
200 static void bge_watchdog		(struct ifnet *);
201 static void bge_shutdown		(device_t);
202 static int bge_ifmedia_upd	(struct ifnet *);
203 static void bge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
204 
205 static u_int8_t	bge_eeprom_getbyte	(struct bge_softc *,
206 						int, u_int8_t *);
207 static int bge_read_eeprom	(struct bge_softc *, caddr_t, int, int);
208 
209 static u_int32_t bge_crc	(caddr_t);
210 static void bge_setmulti	(struct bge_softc *);
211 
212 static void bge_handle_events	(struct bge_softc *);
213 static int bge_alloc_jumbo_mem	(struct bge_softc *);
214 static void bge_free_jumbo_mem	(struct bge_softc *);
215 static void *bge_jalloc		(struct bge_softc *);
216 static void bge_jfree		(caddr_t, u_int);
217 static void bge_jref		(caddr_t, u_int);
218 static int bge_newbuf_std	(struct bge_softc *, int, struct mbuf *);
219 static int bge_newbuf_jumbo	(struct bge_softc *, int, struct mbuf *);
220 static int bge_init_rx_ring_std	(struct bge_softc *);
221 static void bge_free_rx_ring_std	(struct bge_softc *);
222 static int bge_init_rx_ring_jumbo	(struct bge_softc *);
223 static void bge_free_rx_ring_jumbo	(struct bge_softc *);
224 static void bge_free_tx_ring	(struct bge_softc *);
225 static int bge_init_tx_ring	(struct bge_softc *);
226 
227 static int bge_chipinit		(struct bge_softc *);
228 static int bge_blockinit	(struct bge_softc *);
229 
230 #ifdef notdef
231 static u_int8_t bge_vpd_readbyte (struct bge_softc *, int);
232 static void bge_vpd_read_res	(struct bge_softc *,
233                                         struct vpd_res *, int);
234 static void bge_vpd_read	(struct bge_softc *);
235 #endif
236 
237 static u_int32_t bge_readmem_ind
238 				(struct bge_softc *, int);
239 static void bge_writemem_ind	(struct bge_softc *, int, int);
240 #ifdef notdef
241 static u_int32_t bge_readreg_ind
242 				(struct bge_softc *, int);
243 #endif
244 static void bge_writereg_ind	(struct bge_softc *, int, int);
245 
246 static int bge_miibus_readreg	(device_t, int, int);
247 static int bge_miibus_writereg	(device_t, int, int, int);
248 static void bge_miibus_statchg	(device_t);
249 
250 static void bge_reset		(struct bge_softc *);
251 
252 static device_method_t bge_methods[] = {
253 	/* Device interface */
254 	DEVMETHOD(device_probe,		bge_probe),
255 	DEVMETHOD(device_attach,	bge_attach),
256 	DEVMETHOD(device_detach,	bge_detach),
257 	DEVMETHOD(device_shutdown,	bge_shutdown),
258 
259 	/* bus interface */
260 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
261 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
262 
263 	/* MII interface */
264 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
265 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
266 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
267 
268 	{ 0, 0 }
269 };
270 
271 static driver_t bge_driver = {
272 	"bge",
273 	bge_methods,
274 	sizeof(struct bge_softc)
275 };
276 
277 static devclass_t bge_devclass;
278 
279 DECLARE_DUMMY_MODULE(if_bge);
280 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
281 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
282 
283 static u_int32_t
284 bge_readmem_ind(sc, off)
285 	struct bge_softc *sc;
286 	int off;
287 {
288 	device_t dev;
289 
290 	dev = sc->bge_dev;
291 
292 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
293 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
294 }
295 
296 static void
297 bge_writemem_ind(sc, off, val)
298 	struct bge_softc *sc;
299 	int off, val;
300 {
301 	device_t dev;
302 
303 	dev = sc->bge_dev;
304 
305 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
306 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
307 
308 	return;
309 }
310 
311 #ifdef notdef
312 static u_int32_t
313 bge_readreg_ind(sc, off)
314 	struct bge_softc *sc;
315 	int off;
316 {
317 	device_t dev;
318 
319 	dev = sc->bge_dev;
320 
321 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
322 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
323 }
324 #endif
325 
326 static void
327 bge_writereg_ind(sc, off, val)
328 	struct bge_softc *sc;
329 	int off, val;
330 {
331 	device_t dev;
332 
333 	dev = sc->bge_dev;
334 
335 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
336 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
337 
338 	return;
339 }
340 
341 #ifdef notdef
342 static u_int8_t
343 bge_vpd_readbyte(sc, addr)
344 	struct bge_softc *sc;
345 	int addr;
346 {
347 	int i;
348 	device_t dev;
349 	u_int32_t val;
350 
351 	dev = sc->bge_dev;
352 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
353 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
354 		DELAY(10);
355 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
356 			break;
357 	}
358 
359 	if (i == BGE_TIMEOUT) {
360 		printf("bge%d: VPD read timed out\n", sc->bge_unit);
361 		return(0);
362 	}
363 
364 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
365 
366 	return((val >> ((addr % 4) * 8)) & 0xFF);
367 }
368 
369 static void
370 bge_vpd_read_res(sc, res, addr)
371 	struct bge_softc *sc;
372 	struct vpd_res *res;
373 	int addr;
374 {
375 	int i;
376 	u_int8_t *ptr;
377 
378 	ptr = (u_int8_t *)res;
379 	for (i = 0; i < sizeof(struct vpd_res); i++)
380 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
381 
382 	return;
383 }
384 
385 static void
386 bge_vpd_read(sc)
387 	struct bge_softc *sc;
388 {
389 	int pos = 0, i;
390 	struct vpd_res res;
391 
392 	if (sc->bge_vpd_prodname != NULL)
393 		free(sc->bge_vpd_prodname, M_DEVBUF);
394 	if (sc->bge_vpd_readonly != NULL)
395 		free(sc->bge_vpd_readonly, M_DEVBUF);
396 	sc->bge_vpd_prodname = NULL;
397 	sc->bge_vpd_readonly = NULL;
398 
399 	bge_vpd_read_res(sc, &res, pos);
400 
401 	if (res.vr_id != VPD_RES_ID) {
402 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
403 			sc->bge_unit, VPD_RES_ID, res.vr_id);
404                 return;
405         }
406 
407 	pos += sizeof(res);
408 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
409 	for (i = 0; i < res.vr_len; i++)
410 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
411 	sc->bge_vpd_prodname[i] = '\0';
412 	pos += i;
413 
414 	bge_vpd_read_res(sc, &res, pos);
415 
416 	if (res.vr_id != VPD_RES_READ) {
417 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
418 		    sc->bge_unit, VPD_RES_READ, res.vr_id);
419 		return;
420 	}
421 
422 	pos += sizeof(res);
423 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
424 	for (i = 0; i < res.vr_len + 1; i++)
425 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
426 
427 	return;
428 }
429 #endif
430 
431 /*
432  * Read a byte of data stored in the EEPROM at address 'addr.' The
433  * BCM570x supports both the traditional bitbang interface and an
434  * auto access interface for reading the EEPROM. We use the auto
435  * access method.
436  */
437 static u_int8_t
438 bge_eeprom_getbyte(sc, addr, dest)
439 	struct bge_softc *sc;
440 	int addr;
441 	u_int8_t *dest;
442 {
443 	int i;
444 	u_int32_t byte = 0;
445 
446 	/*
447 	 * Enable use of auto EEPROM access so we can avoid
448 	 * having to use the bitbang method.
449 	 */
450 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
451 
452 	/* Reset the EEPROM, load the clock period. */
453 	CSR_WRITE_4(sc, BGE_EE_ADDR,
454 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
455 	DELAY(20);
456 
457 	/* Issue the read EEPROM command. */
458 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
459 
460 	/* Wait for completion */
461 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
462 		DELAY(10);
463 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
464 			break;
465 	}
466 
467 	if (i == BGE_TIMEOUT) {
468 		printf("bge%d: eeprom read timed out\n", sc->bge_unit);
469 		return(0);
470 	}
471 
472 	/* Get result. */
473 	byte = CSR_READ_4(sc, BGE_EE_DATA);
474 
475         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
476 
477 	return(0);
478 }
479 
480 /*
481  * Read a sequence of bytes from the EEPROM.
482  */
483 static int
484 bge_read_eeprom(sc, dest, off, cnt)
485 	struct bge_softc *sc;
486 	caddr_t dest;
487 	int off;
488 	int cnt;
489 {
490 	int err = 0, i;
491 	u_int8_t byte = 0;
492 
493 	for (i = 0; i < cnt; i++) {
494 		err = bge_eeprom_getbyte(sc, off + i, &byte);
495 		if (err)
496 			break;
497 		*(dest + i) = byte;
498 	}
499 
500 	return(err ? 1 : 0);
501 }
502 
503 static int
504 bge_miibus_readreg(dev, phy, reg)
505 	device_t dev;
506 	int phy, reg;
507 {
508 	struct bge_softc *sc;
509 	struct ifnet *ifp;
510 	u_int32_t val, autopoll;
511 	int i;
512 
513 	sc = device_get_softc(dev);
514 	ifp = &sc->arpcom.ac_if;
515 
516 	/*
517 	 * Broadcom's own driver always assumes the internal
518 	 * PHY is at GMII address 1. On some chips, the PHY responds
519 	 * to accesses at all addresses, which could cause us to
520 	 * bogusly attach the PHY 32 times at probe type. Always
521 	 * restricting the lookup to address 1 is simpler than
522 	 * trying to figure out which chips revisions should be
523 	 * special-cased.
524 	 */
525 	if (phy != 1)
526 		return(0);
527 
528 	/* Reading with autopolling on may trigger PCI errors */
529 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
530 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
531 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
532 		DELAY(40);
533 	}
534 
535 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
536 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
537 
538 	for (i = 0; i < BGE_TIMEOUT; i++) {
539 		val = CSR_READ_4(sc, BGE_MI_COMM);
540 		if (!(val & BGE_MICOMM_BUSY))
541 			break;
542 	}
543 
544 	if (i == BGE_TIMEOUT) {
545 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
546 		val = 0;
547 		goto done;
548 	}
549 
550 	val = CSR_READ_4(sc, BGE_MI_COMM);
551 
552 done:
553 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
554 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
555 		DELAY(40);
556 	}
557 
558 	if (val & BGE_MICOMM_READFAIL)
559 		return(0);
560 
561 	return(val & 0xFFFF);
562 }
563 
564 static int
565 bge_miibus_writereg(dev, phy, reg, val)
566 	device_t dev;
567 	int phy, reg, val;
568 {
569 	struct bge_softc *sc;
570 	u_int32_t autopoll;
571 	int i;
572 
573 	sc = device_get_softc(dev);
574 
575 	/* Reading with autopolling on may trigger PCI errors */
576 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
577 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
578 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
579 		DELAY(40);
580 	}
581 
582 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
583 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
584 
585 	for (i = 0; i < BGE_TIMEOUT; i++) {
586 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
587 			break;
588 	}
589 
590 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
591 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
592 		DELAY(40);
593 	}
594 
595 	if (i == BGE_TIMEOUT) {
596 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
597 		return(0);
598 	}
599 
600 	return(0);
601 }
602 
603 static void
604 bge_miibus_statchg(dev)
605 	device_t dev;
606 {
607 	struct bge_softc *sc;
608 	struct mii_data *mii;
609 
610 	sc = device_get_softc(dev);
611 	mii = device_get_softc(sc->bge_miibus);
612 
613 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
614 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
615 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
616 	} else {
617 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
618 	}
619 
620 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
621 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
622 	} else {
623 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
624 	}
625 
626 	return;
627 }
628 
629 /*
630  * Handle events that have triggered interrupts.
631  */
632 static void
633 bge_handle_events(sc)
634 	struct bge_softc		*sc;
635 {
636 
637 	return;
638 }
639 
640 /*
641  * Memory management for jumbo frames.
642  */
643 
644 static int
645 bge_alloc_jumbo_mem(sc)
646 	struct bge_softc		*sc;
647 {
648 	caddr_t			ptr;
649 	int		i;
650 	struct bge_jpool_entry   *entry;
651 
652 	/* Grab a big chunk o' storage. */
653 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
654 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
655 
656 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
657 		printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
658 		return(ENOBUFS);
659 	}
660 
661 	SLIST_INIT(&sc->bge_jfree_listhead);
662 	SLIST_INIT(&sc->bge_jinuse_listhead);
663 
664 	/*
665 	 * Now divide it up into 9K pieces and save the addresses
666 	 * in an array. Note that we play an evil trick here by using
667 	 * the first few bytes in the buffer to hold the the address
668 	 * of the softc structure for this interface. This is because
669 	 * bge_jfree() needs it, but it is called by the mbuf management
670 	 * code which will not pass it to us explicitly.
671 	 */
672 	ptr = sc->bge_cdata.bge_jumbo_buf;
673 	for (i = 0; i < BGE_JSLOTS; i++) {
674 		u_int64_t		**aptr;
675 		aptr = (u_int64_t **)ptr;
676 		aptr[0] = (u_int64_t *)sc;
677 		ptr += sizeof(u_int64_t);
678 		sc->bge_cdata.bge_jslots[i].bge_buf = ptr;
679 		sc->bge_cdata.bge_jslots[i].bge_inuse = 0;
680 		ptr += (BGE_JLEN - sizeof(u_int64_t));
681 		entry = malloc(sizeof(struct bge_jpool_entry),
682 			       M_DEVBUF, M_INTWAIT);
683 		entry->slot = i;
684 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
685 		    entry, jpool_entries);
686 	}
687 
688 	return(0);
689 }
690 
691 static void
692 bge_free_jumbo_mem(sc)
693         struct bge_softc *sc;
694 {
695         int i;
696         struct bge_jpool_entry *entry;
697 
698 	for (i = 0; i < BGE_JSLOTS; i++) {
699 		entry = SLIST_FIRST(&sc->bge_jfree_listhead);
700 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
701 		free(entry, M_DEVBUF);
702 	}
703 
704 	contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
705 
706         return;
707 }
708 
709 /*
710  * Allocate a jumbo buffer.
711  */
712 static void *
713 bge_jalloc(sc)
714 	struct bge_softc		*sc;
715 {
716 	struct bge_jpool_entry   *entry;
717 
718 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
719 
720 	if (entry == NULL) {
721 		printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
722 		return(NULL);
723 	}
724 
725 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
726 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
727 	sc->bge_cdata.bge_jslots[entry->slot].bge_inuse = 1;
728 	return(sc->bge_cdata.bge_jslots[entry->slot].bge_buf);
729 }
730 
731 /*
732  * Adjust usage count on a jumbo buffer.
733  */
734 static void
735 bge_jref(buf, size)
736 	caddr_t			buf;
737 	u_int			size;
738 {
739 	struct bge_softc		*sc;
740 	u_int64_t		**aptr;
741 	int		i;
742 
743 	/* Extract the softc struct pointer. */
744 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
745 	sc = (struct bge_softc *)(aptr[0]);
746 
747 	if (sc == NULL)
748 		panic("bge_jref: can't find softc pointer!");
749 
750 	if (size != BGE_JUMBO_FRAMELEN)
751 		panic("bge_jref: adjusting refcount of buf of wrong size!");
752 
753 	/* calculate the slot this buffer belongs to */
754 
755 	i = ((vm_offset_t)aptr
756 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
757 
758 	if ((i < 0) || (i >= BGE_JSLOTS))
759 		panic("bge_jref: asked to reference buffer "
760 		    "that we don't manage!");
761 	else if (sc->bge_cdata.bge_jslots[i].bge_inuse == 0)
762 		panic("bge_jref: buffer already free!");
763 	else
764 		sc->bge_cdata.bge_jslots[i].bge_inuse++;
765 
766 	return;
767 }
768 
769 /*
770  * Release a jumbo buffer.
771  */
772 static void
773 bge_jfree(buf, size)
774 	caddr_t			buf;
775 	u_int			size;
776 {
777 	struct bge_softc		*sc;
778 	u_int64_t		**aptr;
779 	int		        i;
780 	struct bge_jpool_entry   *entry;
781 
782 	/* Extract the softc struct pointer. */
783 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
784 	sc = (struct bge_softc *)(aptr[0]);
785 
786 	if (sc == NULL)
787 		panic("bge_jfree: can't find softc pointer!");
788 
789 	if (size != BGE_JUMBO_FRAMELEN)
790 		panic("bge_jfree: freeing buffer of wrong size!");
791 
792 	/* calculate the slot this buffer belongs to */
793 
794 	i = ((vm_offset_t)aptr
795 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
796 
797 	if ((i < 0) || (i >= BGE_JSLOTS))
798 		panic("bge_jfree: asked to free buffer that we don't manage!");
799 	else if (sc->bge_cdata.bge_jslots[i].bge_inuse == 0)
800 		panic("bge_jfree: buffer already free!");
801 	else {
802 		sc->bge_cdata.bge_jslots[i].bge_inuse--;
803 		if(sc->bge_cdata.bge_jslots[i].bge_inuse == 0) {
804 			entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
805 			if (entry == NULL)
806 				panic("bge_jfree: buffer not in use!");
807 			entry->slot = i;
808 			SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead,
809 					  jpool_entries);
810 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
811 					  entry, jpool_entries);
812 		}
813 	}
814 
815 	return;
816 }
817 
818 
819 /*
820  * Intialize a standard receive ring descriptor.
821  */
822 static int
823 bge_newbuf_std(sc, i, m)
824 	struct bge_softc	*sc;
825 	int			i;
826 	struct mbuf		*m;
827 {
828 	struct mbuf		*m_new = NULL;
829 	struct bge_rx_bd	*r;
830 
831 	if (m == NULL) {
832 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
833 		if (m_new == NULL) {
834 			return(ENOBUFS);
835 		}
836 
837 		MCLGET(m_new, MB_DONTWAIT);
838 		if (!(m_new->m_flags & M_EXT)) {
839 			m_freem(m_new);
840 			return(ENOBUFS);
841 		}
842 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
843 	} else {
844 		m_new = m;
845 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
846 		m_new->m_data = m_new->m_ext.ext_buf;
847 	}
848 
849 	if (!sc->bge_rx_alignment_bug)
850 		m_adj(m_new, ETHER_ALIGN);
851 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
852 	r = &sc->bge_rdata->bge_rx_std_ring[i];
853 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
854 	r->bge_flags = BGE_RXBDFLAG_END;
855 	r->bge_len = m_new->m_len;
856 	r->bge_idx = i;
857 
858 	return(0);
859 }
860 
861 /*
862  * Initialize a jumbo receive ring descriptor. This allocates
863  * a jumbo buffer from the pool managed internally by the driver.
864  */
865 static int
866 bge_newbuf_jumbo(sc, i, m)
867 	struct bge_softc *sc;
868 	int i;
869 	struct mbuf *m;
870 {
871 	struct mbuf *m_new = NULL;
872 	struct bge_rx_bd *r;
873 
874 	if (m == NULL) {
875 		caddr_t			*buf = NULL;
876 
877 		/* Allocate the mbuf. */
878 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
879 		if (m_new == NULL) {
880 			return(ENOBUFS);
881 		}
882 
883 		/* Allocate the jumbo buffer */
884 		buf = bge_jalloc(sc);
885 		if (buf == NULL) {
886 			m_freem(m_new);
887 			printf("bge%d: jumbo allocation failed "
888 			    "-- packet dropped!\n", sc->bge_unit);
889 			return(ENOBUFS);
890 		}
891 
892 		/* Attach the buffer to the mbuf. */
893 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
894 		m_new->m_flags |= M_EXT | M_EXT_OLD;
895 		m_new->m_len = m_new->m_pkthdr.len =
896 		    m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
897 		m_new->m_ext.ext_nfree.old = bge_jfree;
898 		m_new->m_ext.ext_nref.old = bge_jref;
899 	} else {
900 		m_new = m;
901 		m_new->m_data = m_new->m_ext.ext_buf;
902 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
903 	}
904 
905 	if (!sc->bge_rx_alignment_bug)
906 		m_adj(m_new, ETHER_ALIGN);
907 	/* Set up the descriptor. */
908 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
909 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
910 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
911 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
912 	r->bge_len = m_new->m_len;
913 	r->bge_idx = i;
914 
915 	return(0);
916 }
917 
918 /*
919  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
920  * that's 1MB or memory, which is a lot. For now, we fill only the first
921  * 256 ring entries and hope that our CPU is fast enough to keep up with
922  * the NIC.
923  */
924 static int
925 bge_init_rx_ring_std(sc)
926 	struct bge_softc *sc;
927 {
928 	int i;
929 
930 	for (i = 0; i < BGE_SSLOTS; i++) {
931 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
932 			return(ENOBUFS);
933 	};
934 
935 	sc->bge_std = i - 1;
936 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
937 
938 	return(0);
939 }
940 
941 static void
942 bge_free_rx_ring_std(sc)
943 	struct bge_softc *sc;
944 {
945 	int i;
946 
947 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
948 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
949 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
950 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
951 		}
952 		bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
953 		    sizeof(struct bge_rx_bd));
954 	}
955 
956 	return;
957 }
958 
959 static int
960 bge_init_rx_ring_jumbo(sc)
961 	struct bge_softc *sc;
962 {
963 	int i;
964 	struct bge_rcb *rcb;
965 
966 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
967 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
968 			return(ENOBUFS);
969 	};
970 
971 	sc->bge_jumbo = i - 1;
972 
973 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
974 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
975 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
976 
977 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
978 
979 	return(0);
980 }
981 
982 static void
983 bge_free_rx_ring_jumbo(sc)
984 	struct bge_softc *sc;
985 {
986 	int i;
987 
988 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
989 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
990 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
991 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
992 		}
993 		bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
994 		    sizeof(struct bge_rx_bd));
995 	}
996 
997 	return;
998 }
999 
1000 static void
1001 bge_free_tx_ring(sc)
1002 	struct bge_softc *sc;
1003 {
1004 	int i;
1005 
1006 	if (sc->bge_rdata->bge_tx_ring == NULL)
1007 		return;
1008 
1009 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1010 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1011 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1012 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1013 		}
1014 		bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
1015 		    sizeof(struct bge_tx_bd));
1016 	}
1017 
1018 	return;
1019 }
1020 
1021 static int
1022 bge_init_tx_ring(sc)
1023 	struct bge_softc *sc;
1024 {
1025 	sc->bge_txcnt = 0;
1026 	sc->bge_tx_saved_considx = 0;
1027 
1028 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1029 	/* 5700 b2 errata */
1030 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1031 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1032 
1033 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1034 	/* 5700 b2 errata */
1035 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1036 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1037 
1038 	return(0);
1039 }
1040 
1041 #define BGE_POLY	0xEDB88320
1042 
1043 static u_int32_t
1044 bge_crc(addr)
1045 	caddr_t addr;
1046 {
1047 	u_int32_t idx, bit, data, crc;
1048 
1049 	/* Compute CRC for the address value. */
1050 	crc = 0xFFFFFFFF; /* initial value */
1051 
1052 	for (idx = 0; idx < 6; idx++) {
1053 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1054 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
1055 	}
1056 
1057 	return(crc & 0x7F);
1058 }
1059 
1060 static void
1061 bge_setmulti(sc)
1062 	struct bge_softc *sc;
1063 {
1064 	struct ifnet *ifp;
1065 	struct ifmultiaddr *ifma;
1066 	u_int32_t hashes[4] = { 0, 0, 0, 0 };
1067 	int h, i;
1068 
1069 	ifp = &sc->arpcom.ac_if;
1070 
1071 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1072 		for (i = 0; i < 4; i++)
1073 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1074 		return;
1075 	}
1076 
1077 	/* First, zot all the existing filters. */
1078 	for (i = 0; i < 4; i++)
1079 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1080 
1081 	/* Now program new ones. */
1082 	for (ifma = ifp->if_multiaddrs.lh_first;
1083 	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1084 		if (ifma->ifma_addr->sa_family != AF_LINK)
1085 			continue;
1086 		h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1087 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1088 	}
1089 
1090 	for (i = 0; i < 4; i++)
1091 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1092 
1093 	return;
1094 }
1095 
1096 /*
1097  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1098  * self-test results.
1099  */
1100 static int
1101 bge_chipinit(sc)
1102 	struct bge_softc *sc;
1103 {
1104 	int			i;
1105 	u_int32_t		dma_rw_ctl;
1106 
1107 	/* Set endianness before we access any non-PCI registers. */
1108 #if BYTE_ORDER == BIG_ENDIAN
1109 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1110 	    BGE_BIGENDIAN_INIT, 4);
1111 #else
1112 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1113 	    BGE_LITTLEENDIAN_INIT, 4);
1114 #endif
1115 
1116 	/*
1117 	 * Check the 'ROM failed' bit on the RX CPU to see if
1118 	 * self-tests passed.
1119 	 */
1120 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1121 		printf("bge%d: RX CPU self-diagnostics failed!\n",
1122 		    sc->bge_unit);
1123 		return(ENODEV);
1124 	}
1125 
1126 	/* Clear the MAC control register */
1127 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1128 
1129 	/*
1130 	 * Clear the MAC statistics block in the NIC's
1131 	 * internal memory.
1132 	 */
1133 	for (i = BGE_STATS_BLOCK;
1134 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1135 		BGE_MEMWIN_WRITE(sc, i, 0);
1136 
1137 	for (i = BGE_STATUS_BLOCK;
1138 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1139 		BGE_MEMWIN_WRITE(sc, i, 0);
1140 
1141 	/* Set up the PCI DMA control register. */
1142 	if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1143 	    BGE_PCISTATE_PCI_BUSMODE) {
1144 		/* Conventional PCI bus */
1145 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1146 		    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1147 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1148 		    (0x0F);
1149 	} else {
1150 		/* PCI-X bus */
1151 		/*
1152 		 * The 5704 uses a different encoding of read/write
1153 		 * watermarks.
1154 		 */
1155 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1156 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1157 			    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1158 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1159 		else
1160 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1161 			    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1162 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1163 			    (0x0F);
1164 
1165 		/*
1166 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1167 		 * for hardware bugs.
1168 		 */
1169 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1170 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1171 			u_int32_t tmp;
1172 
1173 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1174 			if (tmp == 0x6 || tmp == 0x7)
1175 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1176 		}
1177 	}
1178 
1179 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1180 	    sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1181 	    sc->bge_asicrev == BGE_ASICREV_BCM5705)
1182 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1183 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1184 
1185 	/*
1186 	 * Set up general mode register.
1187 	 */
1188 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1189 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1190 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1191 	    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1192 
1193 	/*
1194 	 * Disable memory write invalidate.  Apparently it is not supported
1195 	 * properly by these devices.
1196 	 */
1197 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1198 
1199 #ifdef __brokenalpha__
1200 	/*
1201 	 * Must insure that we do not cross an 8K (bytes) boundary
1202 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1203 	 * restriction on some ALPHA platforms with early revision
1204 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1205 	 */
1206 	PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1207 	    BGE_PCI_READ_BNDRY_1024BYTES, 4);
1208 #endif
1209 
1210 	/* Set the timer prescaler (always 66Mhz) */
1211 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1212 
1213 	return(0);
1214 }
1215 
1216 static int
1217 bge_blockinit(sc)
1218 	struct bge_softc *sc;
1219 {
1220 	struct bge_rcb *rcb;
1221 	volatile struct bge_rcb *vrcb;
1222 	int i;
1223 
1224 	/*
1225 	 * Initialize the memory window pointer register so that
1226 	 * we can access the first 32K of internal NIC RAM. This will
1227 	 * allow us to set up the TX send ring RCBs and the RX return
1228 	 * ring RCBs, plus other things which live in NIC memory.
1229 	 */
1230 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1231 
1232 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1233 
1234 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1235 		/* Configure mbuf memory pool */
1236 		if (sc->bge_extram) {
1237 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1238 			    BGE_EXT_SSRAM);
1239 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1240 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1241 			else
1242 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1243 		} else {
1244 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1245 			    BGE_BUFFPOOL_1);
1246 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1247 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1248 			else
1249 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1250 		}
1251 
1252 		/* Configure DMA resource pool */
1253 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1254 		    BGE_DMA_DESCRIPTORS);
1255 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1256 	}
1257 
1258 	/* Configure mbuf pool watermarks */
1259 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
1260 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1261 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1262 	} else {
1263 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1264 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1265 	}
1266 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1267 
1268 	/* Configure DMA resource watermarks */
1269 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1270 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1271 
1272 	/* Enable buffer manager */
1273 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1274 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1275 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1276 
1277 		/* Poll for buffer manager start indication */
1278 		for (i = 0; i < BGE_TIMEOUT; i++) {
1279 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1280 				break;
1281 			DELAY(10);
1282 		}
1283 
1284 		if (i == BGE_TIMEOUT) {
1285 			printf("bge%d: buffer manager failed to start\n",
1286 			    sc->bge_unit);
1287 			return(ENXIO);
1288 		}
1289 	}
1290 
1291 	/* Enable flow-through queues */
1292 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1293 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1294 
1295 	/* Wait until queue initialization is complete */
1296 	for (i = 0; i < BGE_TIMEOUT; i++) {
1297 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1298 			break;
1299 		DELAY(10);
1300 	}
1301 
1302 	if (i == BGE_TIMEOUT) {
1303 		printf("bge%d: flow-through queue init failed\n",
1304 		    sc->bge_unit);
1305 		return(ENXIO);
1306 	}
1307 
1308 	/* Initialize the standard RX ring control block */
1309 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1310 	BGE_HOSTADDR(rcb->bge_hostaddr,
1311 	    vtophys(&sc->bge_rdata->bge_rx_std_ring));
1312 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1313 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1314 	else
1315 		rcb->bge_maxlen_flags =
1316 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1317 	if (sc->bge_extram)
1318 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1319 	else
1320 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1321 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1322 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1323 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1324 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1325 
1326 	/*
1327 	 * Initialize the jumbo RX ring control block
1328 	 * We set the 'ring disabled' bit in the flags
1329 	 * field until we're actually ready to start
1330 	 * using this ring (i.e. once we set the MTU
1331 	 * high enough to require it).
1332 	 */
1333 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1334 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1335 		BGE_HOSTADDR(rcb->bge_hostaddr,
1336 		    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1337 		rcb->bge_maxlen_flags =
1338 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1339 		    BGE_RCB_FLAG_RING_DISABLED);
1340 		if (sc->bge_extram)
1341 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1342 		else
1343 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1344 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1345 		    rcb->bge_hostaddr.bge_addr_hi);
1346 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1347 		    rcb->bge_hostaddr.bge_addr_lo);
1348 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1349 		    rcb->bge_maxlen_flags);
1350 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1351 
1352 		/* Set up dummy disabled mini ring RCB */
1353 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1354 		rcb->bge_maxlen_flags =
1355 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1356 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1357 		    rcb->bge_maxlen_flags);
1358 	}
1359 
1360 	/*
1361 	 * Set the BD ring replentish thresholds. The recommended
1362 	 * values are 1/8th the number of descriptors allocated to
1363 	 * each ring.
1364 	 */
1365 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1366 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1367 
1368 	/*
1369 	 * Disable all unused send rings by setting the 'ring disabled'
1370 	 * bit in the flags field of all the TX send ring control blocks.
1371 	 * These are located in NIC memory.
1372 	 */
1373 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1374 	    BGE_SEND_RING_RCB);
1375 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1376 		vrcb->bge_maxlen_flags =
1377 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1378 		vrcb->bge_nicaddr = 0;
1379 		vrcb++;
1380 	}
1381 
1382 	/* Configure TX RCB 0 (we use only the first ring) */
1383 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1384 	    BGE_SEND_RING_RCB);
1385 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1386 	BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1387 	vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1388 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1389 		vrcb->bge_maxlen_flags =
1390 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1391 
1392 	/* Disable all unused RX return rings */
1393 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1394 	    BGE_RX_RETURN_RING_RCB);
1395 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1396 		vrcb->bge_hostaddr.bge_addr_hi = 0;
1397 		vrcb->bge_hostaddr.bge_addr_lo = 0;
1398 		vrcb->bge_maxlen_flags =
1399 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1400 		    BGE_RCB_FLAG_RING_DISABLED);
1401 		vrcb->bge_nicaddr = 0;
1402 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1403 		    (i * (sizeof(u_int64_t))), 0);
1404 		vrcb++;
1405 	}
1406 
1407 	/* Initialize RX ring indexes */
1408 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1409 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1410 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1411 
1412 	/*
1413 	 * Set up RX return ring 0
1414 	 * Note that the NIC address for RX return rings is 0x00000000.
1415 	 * The return rings live entirely within the host, so the
1416 	 * nicaddr field in the RCB isn't used.
1417 	 */
1418 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1419 	    BGE_RX_RETURN_RING_RCB);
1420 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1421 	BGE_HOSTADDR(vrcb->bge_hostaddr,
1422 	    vtophys(&sc->bge_rdata->bge_rx_return_ring));
1423 	vrcb->bge_nicaddr = 0x00000000;
1424 	vrcb->bge_maxlen_flags =
1425 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1426 
1427 	/* Set random backoff seed for TX */
1428 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1429 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1430 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1431 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1432 	    BGE_TX_BACKOFF_SEED_MASK);
1433 
1434 	/* Set inter-packet gap */
1435 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1436 
1437 	/*
1438 	 * Specify which ring to use for packets that don't match
1439 	 * any RX rules.
1440 	 */
1441 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1442 
1443 	/*
1444 	 * Configure number of RX lists. One interrupt distribution
1445 	 * list, sixteen active lists, one bad frames class.
1446 	 */
1447 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1448 
1449 	/* Inialize RX list placement stats mask. */
1450 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1451 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1452 
1453 	/* Disable host coalescing until we get it set up */
1454 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1455 
1456 	/* Poll to make sure it's shut down. */
1457 	for (i = 0; i < BGE_TIMEOUT; i++) {
1458 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1459 			break;
1460 		DELAY(10);
1461 	}
1462 
1463 	if (i == BGE_TIMEOUT) {
1464 		printf("bge%d: host coalescing engine failed to idle\n",
1465 		    sc->bge_unit);
1466 		return(ENXIO);
1467 	}
1468 
1469 	/* Set up host coalescing defaults */
1470 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1471 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1472 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1473 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1474 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1475 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1476 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1477 	}
1478 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1479 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1480 
1481 	/* Set up address of statistics block */
1482 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1483 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1484 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1485 		    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1486 
1487 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1488 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1489 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1490 	}
1491 
1492 	/* Set up address of status block */
1493 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1494 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1495 	    vtophys(&sc->bge_rdata->bge_status_block));
1496 
1497 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1498 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1499 
1500 	/* Turn on host coalescing state machine */
1501 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1502 
1503 	/* Turn on RX BD completion state machine and enable attentions */
1504 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1505 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1506 
1507 	/* Turn on RX list placement state machine */
1508 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1509 
1510 	/* Turn on RX list selector state machine. */
1511 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1512 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1513 
1514 	/* Turn on DMA, clear stats */
1515 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1516 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1517 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1518 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1519 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1520 
1521 	/* Set misc. local control, enable interrupts on attentions */
1522 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1523 
1524 #ifdef notdef
1525 	/* Assert GPIO pins for PHY reset */
1526 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1527 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1528 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1529 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1530 #endif
1531 
1532 	/* Turn on DMA completion state machine */
1533 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1534 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1535 
1536 	/* Turn on write DMA state machine */
1537 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1538 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1539 
1540 	/* Turn on read DMA state machine */
1541 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1542 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1543 
1544 	/* Turn on RX data completion state machine */
1545 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1546 
1547 	/* Turn on RX BD initiator state machine */
1548 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1549 
1550 	/* Turn on RX data and RX BD initiator state machine */
1551 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1552 
1553 	/* Turn on Mbuf cluster free state machine */
1554 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1555 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1556 
1557 	/* Turn on send BD completion state machine */
1558 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1559 
1560 	/* Turn on send data completion state machine */
1561 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1562 
1563 	/* Turn on send data initiator state machine */
1564 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1565 
1566 	/* Turn on send BD initiator state machine */
1567 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1568 
1569 	/* Turn on send BD selector state machine */
1570 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1571 
1572 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1573 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1574 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1575 
1576 	/* ack/clear link change events */
1577 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1578 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1579 	    BGE_MACSTAT_LINK_CHANGED);
1580 
1581 	/* Enable PHY auto polling (for MII/GMII only) */
1582 	if (sc->bge_tbi) {
1583 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1584  	} else {
1585 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1586 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1587 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1588 			    BGE_EVTENB_MI_INTERRUPT);
1589 	}
1590 
1591 	/* Enable link state change attentions. */
1592 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1593 
1594 	return(0);
1595 }
1596 
1597 /*
1598  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1599  * against our list and return its name if we find a match. Note
1600  * that since the Broadcom controller contains VPD support, we
1601  * can get the device name string from the controller itself instead
1602  * of the compiled-in string. This is a little slow, but it guarantees
1603  * we'll always announce the right product name.
1604  */
1605 static int
1606 bge_probe(dev)
1607 	device_t dev;
1608 {
1609 	struct bge_type *t;
1610 	struct bge_softc *sc;
1611 	char *descbuf;
1612 
1613 	t = bge_devs;
1614 
1615 	sc = device_get_softc(dev);
1616 	bzero(sc, sizeof(struct bge_softc));
1617 	sc->bge_unit = device_get_unit(dev);
1618 	sc->bge_dev = dev;
1619 
1620 	while(t->bge_name != NULL) {
1621 		if ((pci_get_vendor(dev) == t->bge_vid) &&
1622 		    (pci_get_device(dev) == t->bge_did)) {
1623 #ifdef notdef
1624 			bge_vpd_read(sc);
1625 			device_set_desc(dev, sc->bge_vpd_prodname);
1626 #endif
1627 			descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_INTWAIT);
1628 			snprintf(descbuf, BGE_DEVDESC_MAX,
1629 			    "%s, ASIC rev. %#04x", t->bge_name,
1630 			    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1631 			device_set_desc_copy(dev, descbuf);
1632 			if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1633 				sc->bge_no_3_led = 1;
1634 			free(descbuf, M_TEMP);
1635 			return(0);
1636 		}
1637 		t++;
1638 	}
1639 
1640 	return(ENXIO);
1641 }
1642 
1643 static int
1644 bge_attach(dev)
1645 	device_t dev;
1646 {
1647 	int s;
1648 	u_int32_t command;
1649 	struct ifnet *ifp;
1650 	struct bge_softc *sc;
1651 	u_int32_t hwcfg = 0;
1652 	u_int32_t mac_addr = 0;
1653 	int unit, error = 0, rid;
1654 	uint8_t ether_addr[ETHER_ADDR_LEN];
1655 
1656 	s = splimp();
1657 
1658 	sc = device_get_softc(dev);
1659 	unit = device_get_unit(dev);
1660 	sc->bge_dev = dev;
1661 	sc->bge_unit = unit;
1662 	callout_init(&sc->bge_stat_timer);
1663 
1664 	/*
1665 	 * Map control/status registers.
1666 	 */
1667 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1668 	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1669 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1670 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1671 
1672 	if (!(command & PCIM_CMD_MEMEN)) {
1673 		printf("bge%d: failed to enable memory mapping!\n", unit);
1674 		error = ENXIO;
1675 		goto fail;
1676 	}
1677 
1678 	rid = BGE_PCI_BAR0;
1679 	sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1680 	    0, ~0, 1, RF_ACTIVE);
1681 
1682 	if (sc->bge_res == NULL) {
1683 		printf ("bge%d: couldn't map memory\n", unit);
1684 		error = ENXIO;
1685 		goto fail;
1686 	}
1687 
1688 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1689 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1690 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1691 
1692 	/*
1693 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1694 	 * broken and returns a physical address instead of a kernel
1695 	 * virtual address. Consequently, we need to do a little
1696 	 * extra mangling of the vhandle on the alpha. This should
1697 	 * eventually be fixed! The whole idea here is to get rid
1698 	 * of platform dependencies.
1699 	 */
1700 #ifdef __alpha__
1701 	if (pci_cvt_to_bwx(sc->bge_vhandle))
1702 		sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle);
1703 	else
1704 		sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle);
1705 	sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle);
1706 #endif
1707 
1708 	/* Allocate interrupt */
1709 	rid = 0;
1710 
1711 	sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1712 	    RF_SHAREABLE | RF_ACTIVE);
1713 
1714 	if (sc->bge_irq == NULL) {
1715 		printf("bge%d: couldn't map interrupt\n", unit);
1716 		error = ENXIO;
1717 		goto fail;
1718 	}
1719 
1720 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1721 	   bge_intr, sc, &sc->bge_intrhand);
1722 
1723 	if (error) {
1724 		bge_release_resources(sc);
1725 		printf("bge%d: couldn't set up irq\n", unit);
1726 		goto fail;
1727 	}
1728 
1729 	sc->bge_unit = unit;
1730 
1731 	/* Try to reset the chip. */
1732 	bge_reset(sc);
1733 
1734 	if (bge_chipinit(sc)) {
1735 		printf("bge%d: chip initialization failed\n", sc->bge_unit);
1736 		bge_release_resources(sc);
1737 		error = ENXIO;
1738 		goto fail;
1739 	}
1740 
1741 	/*
1742 	 * Get station address from the EEPROM.
1743 	 */
1744 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1745 	if ((mac_addr >> 16) == 0x484b) {
1746 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
1747 		ether_addr[1] = (uint8_t)mac_addr;
1748 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1749 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
1750 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
1751 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
1752 		ether_addr[5] = (uint8_t)mac_addr;
1753 	} else if (bge_read_eeprom(sc, ether_addr,
1754 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1755 		printf("bge%d: failed to read station address\n", unit);
1756 		bge_release_resources(sc);
1757 		error = ENXIO;
1758 		goto fail;
1759 	}
1760 
1761 	/* Allocate the general information block and ring buffers. */
1762 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1763 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1764 
1765 	if (sc->bge_rdata == NULL) {
1766 		bge_release_resources(sc);
1767 		error = ENXIO;
1768 		printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1769 		goto fail;
1770 	}
1771 
1772 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1773 
1774 	/* Save ASIC rev. */
1775 
1776 	sc->bge_chipid =
1777 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1778 	    BGE_PCIMISCCTL_ASICREV;
1779 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1780 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1781 
1782 	/*
1783 	 * Try to allocate memory for jumbo buffers.
1784 	 * The 5705 does not appear to support jumbo frames.
1785 	 */
1786 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1787 		if (bge_alloc_jumbo_mem(sc)) {
1788 			printf("bge%d: jumbo buffer allocation "
1789 			    "failed\n", sc->bge_unit);
1790 			bge_release_resources(sc);
1791 			error = ENXIO;
1792 			goto fail;
1793 		}
1794 	}
1795 
1796 	/* Set default tuneable values. */
1797 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1798 	sc->bge_rx_coal_ticks = 150;
1799 	sc->bge_tx_coal_ticks = 150;
1800 	sc->bge_rx_max_coal_bds = 64;
1801 	sc->bge_tx_max_coal_bds = 128;
1802 
1803 	/* 5705 limits RX return ring to 512 entries. */
1804 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1805 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1806 	else
1807 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1808 
1809 	/* Set up ifnet structure */
1810 	ifp = &sc->arpcom.ac_if;
1811 	ifp->if_softc = sc;
1812 	if_initname(ifp, "bge", sc->bge_unit);
1813 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1814 	ifp->if_ioctl = bge_ioctl;
1815 	ifp->if_start = bge_start;
1816 	ifp->if_watchdog = bge_watchdog;
1817 	ifp->if_init = bge_init;
1818 	ifp->if_mtu = ETHERMTU;
1819 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1820 	ifq_set_ready(&ifp->if_snd);
1821 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1822 	ifp->if_capabilities = IFCAP_HWCSUM;
1823 	ifp->if_capenable = ifp->if_capabilities;
1824 
1825 	/*
1826 	 * Figure out what sort of media we have by checking the
1827 	 * hardware config word in the first 32k of NIC internal memory,
1828 	 * or fall back to examining the EEPROM if necessary.
1829 	 * Note: on some BCM5700 cards, this value appears to be unset.
1830 	 * If that's the case, we have to rely on identifying the NIC
1831 	 * by its PCI subsystem ID, as we do below for the SysKonnect
1832 	 * SK-9D41.
1833 	 */
1834 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1835 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1836 	else {
1837 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
1838 				BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1839 		hwcfg = ntohl(hwcfg);
1840 	}
1841 
1842 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1843 		sc->bge_tbi = 1;
1844 
1845 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1846 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
1847 	     PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1848 		sc->bge_tbi = 1;
1849 
1850 	if (sc->bge_tbi) {
1851 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1852 		    bge_ifmedia_upd, bge_ifmedia_sts);
1853 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1854 		ifmedia_add(&sc->bge_ifmedia,
1855 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1856 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1857 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1858 	} else {
1859 		/*
1860 		 * Do transceiver setup.
1861 		 */
1862 		if (mii_phy_probe(dev, &sc->bge_miibus,
1863 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1864 			printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1865 			bge_release_resources(sc);
1866 			bge_free_jumbo_mem(sc);
1867 			error = ENXIO;
1868 			goto fail;
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * When using the BCM5701 in PCI-X mode, data corruption has
1874 	 * been observed in the first few bytes of some received packets.
1875 	 * Aligning the packet buffer in memory eliminates the corruption.
1876 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1877 	 * which do not support unaligned accesses, we will realign the
1878 	 * payloads by copying the received packets.
1879 	 */
1880 	switch (sc->bge_chipid) {
1881 	case BGE_CHIPID_BCM5701_A0:
1882 	case BGE_CHIPID_BCM5701_B0:
1883 	case BGE_CHIPID_BCM5701_B2:
1884 	case BGE_CHIPID_BCM5701_B5:
1885 		/* If in PCI-X mode, work around the alignment bug. */
1886 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1887 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1888 		    BGE_PCISTATE_PCI_BUSSPEED)
1889 			sc->bge_rx_alignment_bug = 1;
1890 		break;
1891 	}
1892 
1893 	/*
1894 	 * Call MI attach routine.
1895 	 */
1896 	ether_ifattach(ifp, ether_addr);
1897 
1898 fail:
1899 	splx(s);
1900 
1901 	return(error);
1902 }
1903 
1904 static int
1905 bge_detach(dev)
1906 	device_t dev;
1907 {
1908 	struct bge_softc *sc;
1909 	struct ifnet *ifp;
1910 	int s;
1911 
1912 	s = splimp();
1913 
1914 	sc = device_get_softc(dev);
1915 	ifp = &sc->arpcom.ac_if;
1916 
1917 	ether_ifdetach(ifp);
1918 	bge_stop(sc);
1919 	bge_reset(sc);
1920 
1921 	if (sc->bge_tbi) {
1922 		ifmedia_removeall(&sc->bge_ifmedia);
1923 	} else {
1924 		bus_generic_detach(dev);
1925 		device_delete_child(dev, sc->bge_miibus);
1926 	}
1927 
1928 	bge_release_resources(sc);
1929 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1930 		bge_free_jumbo_mem(sc);
1931 
1932 	splx(s);
1933 
1934 	return(0);
1935 }
1936 
1937 static void
1938 bge_release_resources(sc)
1939 	struct bge_softc *sc;
1940 {
1941         device_t dev;
1942 
1943         dev = sc->bge_dev;
1944 
1945 	if (sc->bge_vpd_prodname != NULL)
1946 		free(sc->bge_vpd_prodname, M_DEVBUF);
1947 
1948 	if (sc->bge_vpd_readonly != NULL)
1949 		free(sc->bge_vpd_readonly, M_DEVBUF);
1950 
1951         if (sc->bge_intrhand != NULL)
1952                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1953 
1954         if (sc->bge_irq != NULL)
1955 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1956 
1957         if (sc->bge_res != NULL)
1958 		bus_release_resource(dev, SYS_RES_MEMORY,
1959 		    BGE_PCI_BAR0, sc->bge_res);
1960 
1961         if (sc->bge_rdata != NULL)
1962 		contigfree(sc->bge_rdata,
1963 		    sizeof(struct bge_ring_data), M_DEVBUF);
1964 
1965         return;
1966 }
1967 
1968 static void
1969 bge_reset(sc)
1970 	struct bge_softc *sc;
1971 {
1972 	device_t dev;
1973 	u_int32_t cachesize, command, pcistate;
1974 	int i, val = 0;
1975 
1976 	dev = sc->bge_dev;
1977 
1978 	/* Save some important PCI state. */
1979 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1980 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1981 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1982 
1983 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1984 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1985 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1986 
1987 	/* Issue global reset */
1988 	bge_writereg_ind(sc, BGE_MISC_CFG,
1989 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1990 
1991 	DELAY(1000);
1992 
1993 	/* Reset some of the PCI state that got zapped by reset */
1994 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1995 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1996 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1997 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1998 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1999 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2000 
2001 	/*
2002 	 * Prevent PXE restart: write a magic number to the
2003 	 * general communications memory at 0xB50.
2004 	 */
2005 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2006 	/*
2007 	 * Poll the value location we just wrote until
2008 	 * we see the 1's complement of the magic number.
2009 	 * This indicates that the firmware initialization
2010 	 * is complete.
2011 	 */
2012 	for (i = 0; i < BGE_TIMEOUT; i++) {
2013 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2014 		if (val == ~BGE_MAGIC_NUMBER)
2015 			break;
2016 		DELAY(10);
2017 	}
2018 
2019 	if (i == BGE_TIMEOUT) {
2020 		printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
2021 		return;
2022 	}
2023 
2024 	/*
2025 	 * XXX Wait for the value of the PCISTATE register to
2026 	 * return to its original pre-reset state. This is a
2027 	 * fairly good indicator of reset completion. If we don't
2028 	 * wait for the reset to fully complete, trying to read
2029 	 * from the device's non-PCI registers may yield garbage
2030 	 * results.
2031 	 */
2032 	for (i = 0; i < BGE_TIMEOUT; i++) {
2033 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2034 			break;
2035 		DELAY(10);
2036 	}
2037 
2038 	/* Enable memory arbiter. */
2039 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2040 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2041 
2042 	/* Fix up byte swapping */
2043 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
2044 	    BGE_MODECTL_BYTESWAP_DATA);
2045 
2046 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2047 
2048 	DELAY(10000);
2049 
2050 	return;
2051 }
2052 
2053 /*
2054  * Frame reception handling. This is called if there's a frame
2055  * on the receive return list.
2056  *
2057  * Note: we have to be able to handle two possibilities here:
2058  * 1) the frame is from the jumbo recieve ring
2059  * 2) the frame is from the standard receive ring
2060  */
2061 
2062 static void
2063 bge_rxeof(sc)
2064 	struct bge_softc *sc;
2065 {
2066 	struct ifnet *ifp;
2067 	int stdcnt = 0, jumbocnt = 0;
2068 
2069 	ifp = &sc->arpcom.ac_if;
2070 
2071 	while(sc->bge_rx_saved_considx !=
2072 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2073 		struct bge_rx_bd	*cur_rx;
2074 		u_int32_t		rxidx;
2075 		struct mbuf		*m = NULL;
2076 		u_int16_t		vlan_tag = 0;
2077 		int			have_tag = 0;
2078 
2079 		cur_rx =
2080 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
2081 
2082 		rxidx = cur_rx->bge_idx;
2083 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2084 
2085 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2086 			have_tag = 1;
2087 			vlan_tag = cur_rx->bge_vlan_tag;
2088 		}
2089 
2090 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2091 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2092 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2093 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2094 			jumbocnt++;
2095 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2096 				ifp->if_ierrors++;
2097 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2098 				continue;
2099 			}
2100 			if (bge_newbuf_jumbo(sc,
2101 			    sc->bge_jumbo, NULL) == ENOBUFS) {
2102 				ifp->if_ierrors++;
2103 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2104 				continue;
2105 			}
2106 		} else {
2107 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2108 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2109 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2110 			stdcnt++;
2111 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2112 				ifp->if_ierrors++;
2113 				bge_newbuf_std(sc, sc->bge_std, m);
2114 				continue;
2115 			}
2116 			if (bge_newbuf_std(sc, sc->bge_std,
2117 			    NULL) == ENOBUFS) {
2118 				ifp->if_ierrors++;
2119 				bge_newbuf_std(sc, sc->bge_std, m);
2120 				continue;
2121 			}
2122 		}
2123 
2124 		ifp->if_ipackets++;
2125 #ifndef __i386__
2126 		/*
2127 		 * The i386 allows unaligned accesses, but for other
2128 		 * platforms we must make sure the payload is aligned.
2129 		 */
2130 		if (sc->bge_rx_alignment_bug) {
2131 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2132 			    cur_rx->bge_len);
2133 			m->m_data += ETHER_ALIGN;
2134 		}
2135 #endif
2136 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2137 		m->m_pkthdr.rcvif = ifp;
2138 
2139 #if 0 /* currently broken for some packets, possibly related to TCP options */
2140 		if (ifp->if_hwassist) {
2141 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2142 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2143 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2144 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2145 				m->m_pkthdr.csum_data =
2146 				    cur_rx->bge_tcp_udp_csum;
2147 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2148 			}
2149 		}
2150 #endif
2151 
2152 		/*
2153 		 * If we received a packet with a vlan tag, pass it
2154 		 * to vlan_input() instead of ether_input().
2155 		 */
2156 		if (have_tag) {
2157 			VLAN_INPUT_TAG(m, vlan_tag);
2158 			have_tag = vlan_tag = 0;
2159 			continue;
2160 		}
2161 
2162 		(*ifp->if_input)(ifp, m);
2163 	}
2164 
2165 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2166 	if (stdcnt)
2167 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2168 	if (jumbocnt)
2169 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2170 
2171 	return;
2172 }
2173 
2174 static void
2175 bge_txeof(sc)
2176 	struct bge_softc *sc;
2177 {
2178 	struct bge_tx_bd *cur_tx = NULL;
2179 	struct ifnet *ifp;
2180 
2181 	ifp = &sc->arpcom.ac_if;
2182 
2183 	/*
2184 	 * Go through our tx ring and free mbufs for those
2185 	 * frames that have been sent.
2186 	 */
2187 	while (sc->bge_tx_saved_considx !=
2188 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2189 		u_int32_t		idx = 0;
2190 
2191 		idx = sc->bge_tx_saved_considx;
2192 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2193 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2194 			ifp->if_opackets++;
2195 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2196 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2197 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2198 		}
2199 		sc->bge_txcnt--;
2200 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2201 		ifp->if_timer = 0;
2202 	}
2203 
2204 	if (cur_tx != NULL)
2205 		ifp->if_flags &= ~IFF_OACTIVE;
2206 
2207 	return;
2208 }
2209 
2210 static void
2211 bge_intr(xsc)
2212 	void *xsc;
2213 {
2214 	struct bge_softc *sc;
2215 	struct ifnet *ifp;
2216 	u_int32_t status;
2217 
2218 	sc = xsc;
2219 	ifp = &sc->arpcom.ac_if;
2220 
2221 #ifdef notdef
2222 	/* Avoid this for now -- checking this register is expensive. */
2223 	/* Make sure this is really our interrupt. */
2224 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2225 		return;
2226 #endif
2227 	/* Ack interrupt and stop others from occuring. */
2228 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2229 
2230 	/*
2231 	 * Process link state changes.
2232 	 * Grrr. The link status word in the status block does
2233 	 * not work correctly on the BCM5700 rev AX and BX chips,
2234 	 * according to all available information. Hence, we have
2235 	 * to enable MII interrupts in order to properly obtain
2236 	 * async link changes. Unfortunately, this also means that
2237 	 * we have to read the MAC status register to detect link
2238 	 * changes, thereby adding an additional register access to
2239 	 * the interrupt handler.
2240 	 */
2241 
2242 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2243 		status = CSR_READ_4(sc, BGE_MAC_STS);
2244 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2245 			sc->bge_link = 0;
2246 			callout_stop(&sc->bge_stat_timer);
2247 			bge_tick(sc);
2248 			/* Clear the interrupt */
2249 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2250 			    BGE_EVTENB_MI_INTERRUPT);
2251 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2252 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2253 			    BRGPHY_INTRS);
2254 		}
2255 	} else {
2256 		if ((sc->bge_rdata->bge_status_block.bge_status &
2257 		    BGE_STATFLAG_UPDATED) &&
2258 		    (sc->bge_rdata->bge_status_block.bge_status &
2259 		    BGE_STATFLAG_LINKSTATE_CHANGED)) {
2260 			sc->bge_rdata->bge_status_block.bge_status &=
2261 				~(BGE_STATFLAG_UPDATED|
2262 				BGE_STATFLAG_LINKSTATE_CHANGED);
2263 			/*
2264 			 * Sometimes PCS encoding errors are detected in
2265 			 * TBI mode (on fiber NICs), and for some reason
2266 			 * the chip will signal them as link changes.
2267 			 * If we get a link change event, but the 'PCS
2268 			 * encoding error' bit in the MAC status register
2269 			 * is set, don't bother doing a link check.
2270 			 * This avoids spurious "gigabit link up" messages
2271 			 * that sometimes appear on fiber NICs during
2272 			 * periods of heavy traffic. (There should be no
2273 			 * effect on copper NICs.)
2274 			 */
2275 			status = CSR_READ_4(sc, BGE_MAC_STS);
2276 			if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR|
2277 			    BGE_MACSTAT_MI_COMPLETE))) {
2278 				sc->bge_link = 0;
2279 				callout_stop(&sc->bge_stat_timer);
2280 				bge_tick(sc);
2281 			}
2282 			sc->bge_link = 0;
2283 			callout_stop(&sc->bge_stat_timer);
2284 			bge_tick(sc);
2285 			/* Clear the interrupt */
2286 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2287 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2288 			    BGE_MACSTAT_LINK_CHANGED);
2289 
2290 			/* Force flush the status block cached by PCI bridge */
2291 			CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2292 		}
2293 	}
2294 
2295 	if (ifp->if_flags & IFF_RUNNING) {
2296 		/* Check RX return ring producer/consumer */
2297 		bge_rxeof(sc);
2298 
2299 		/* Check TX ring producer/consumer */
2300 		bge_txeof(sc);
2301 	}
2302 
2303 	bge_handle_events(sc);
2304 
2305 	/* Re-enable interrupts. */
2306 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2307 
2308 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2309 		bge_start(ifp);
2310 
2311 	return;
2312 }
2313 
2314 static void
2315 bge_tick(xsc)
2316 	void *xsc;
2317 {
2318 	struct bge_softc *sc;
2319 	struct mii_data *mii = NULL;
2320 	struct ifmedia *ifm = NULL;
2321 	struct ifnet *ifp;
2322 	int s;
2323 
2324 	sc = xsc;
2325 	ifp = &sc->arpcom.ac_if;
2326 
2327 	s = splimp();
2328 
2329 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
2330 		bge_stats_update_regs(sc);
2331 	else
2332 		bge_stats_update(sc);
2333 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2334 	if (sc->bge_link) {
2335 		splx(s);
2336 		return;
2337 	}
2338 
2339 	if (sc->bge_tbi) {
2340 		ifm = &sc->bge_ifmedia;
2341 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2342 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2343 			sc->bge_link++;
2344 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2345 			printf("bge%d: gigabit link up\n", sc->bge_unit);
2346 			if (!ifq_is_empty(&ifp->if_snd))
2347 				bge_start(ifp);
2348 		}
2349 		splx(s);
2350 		return;
2351 	}
2352 
2353 	mii = device_get_softc(sc->bge_miibus);
2354 	mii_tick(mii);
2355 
2356 	if (!sc->bge_link) {
2357 		mii_pollstat(mii);
2358 		if (mii->mii_media_status & IFM_ACTIVE &&
2359 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2360 			sc->bge_link++;
2361 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2362 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2363 				printf("bge%d: gigabit link up\n",
2364 				   sc->bge_unit);
2365 			if (!ifq_is_empty(&ifp->if_snd))
2366 				bge_start(ifp);
2367 		}
2368 	}
2369 
2370 	splx(s);
2371 
2372 	return;
2373 }
2374 
2375 static void
2376 bge_stats_update_regs(sc)
2377 	struct bge_softc *sc;
2378 {
2379 	struct ifnet *ifp;
2380 	struct bge_mac_stats_regs stats;
2381 	u_int32_t *s;
2382 	int i;
2383 
2384 	ifp = &sc->arpcom.ac_if;
2385 
2386 	s = (u_int32_t *)&stats;
2387 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2388 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
2389 		s++;
2390 	}
2391 
2392 	ifp->if_collisions +=
2393 	   (stats.dot3StatsSingleCollisionFrames +
2394 	   stats.dot3StatsMultipleCollisionFrames +
2395 	   stats.dot3StatsExcessiveCollisions +
2396 	   stats.dot3StatsLateCollisions) -
2397 	   ifp->if_collisions;
2398 
2399 	return;
2400 }
2401 
2402 static void
2403 bge_stats_update(sc)
2404 	struct bge_softc *sc;
2405 {
2406 	struct ifnet *ifp;
2407 	struct bge_stats *stats;
2408 
2409 	ifp = &sc->arpcom.ac_if;
2410 
2411 	stats = (struct bge_stats *)(sc->bge_vhandle +
2412 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2413 
2414 	ifp->if_collisions +=
2415 	   (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2416 	   stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2417 	   stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2418 	   stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2419 	   ifp->if_collisions;
2420 
2421 #ifdef notdef
2422 	ifp->if_collisions +=
2423 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2424 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2425 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2426 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2427 	   ifp->if_collisions;
2428 #endif
2429 
2430 	return;
2431 }
2432 
2433 /*
2434  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2435  * pointers to descriptors.
2436  */
2437 static int
2438 bge_encap(sc, m_head, txidx)
2439 	struct bge_softc *sc;
2440 	struct mbuf *m_head;
2441 	u_int32_t *txidx;
2442 {
2443 	struct bge_tx_bd	*f = NULL;
2444 	struct mbuf		*m;
2445 	u_int32_t		frag, cur, cnt = 0;
2446 	u_int16_t		csum_flags = 0;
2447 	struct ifvlan		*ifv = NULL;
2448 
2449 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2450 	    m_head->m_pkthdr.rcvif != NULL &&
2451 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2452 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2453 
2454 	m = m_head;
2455 	cur = frag = *txidx;
2456 
2457 	if (m_head->m_pkthdr.csum_flags) {
2458 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2459 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2460 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2461 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2462 		if (m_head->m_flags & M_LASTFRAG)
2463 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2464 		else if (m_head->m_flags & M_FRAG)
2465 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2466 	}
2467 	/*
2468  	 * Start packing the mbufs in this chain into
2469 	 * the fragment pointers. Stop when we run out
2470  	 * of fragments or hit the end of the mbuf chain.
2471 	 */
2472 	for (m = m_head; m != NULL; m = m->m_next) {
2473 		if (m->m_len != 0) {
2474 			f = &sc->bge_rdata->bge_tx_ring[frag];
2475 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2476 				break;
2477 			BGE_HOSTADDR(f->bge_addr,
2478 			    vtophys(mtod(m, vm_offset_t)));
2479 			f->bge_len = m->m_len;
2480 			f->bge_flags = csum_flags;
2481 			if (ifv != NULL) {
2482 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2483 				f->bge_vlan_tag = ifv->ifv_tag;
2484 			} else {
2485 				f->bge_vlan_tag = 0;
2486 			}
2487 			/*
2488 			 * Sanity check: avoid coming within 16 descriptors
2489 			 * of the end of the ring.
2490 			 */
2491 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2492 				return(ENOBUFS);
2493 			cur = frag;
2494 			BGE_INC(frag, BGE_TX_RING_CNT);
2495 			cnt++;
2496 		}
2497 	}
2498 
2499 	if (m != NULL)
2500 		return(ENOBUFS);
2501 
2502 	if (frag == sc->bge_tx_saved_considx)
2503 		return(ENOBUFS);
2504 
2505 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2506 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2507 	sc->bge_txcnt += cnt;
2508 
2509 	*txidx = frag;
2510 
2511 	return(0);
2512 }
2513 
2514 /*
2515  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2516  * to the mbuf data regions directly in the transmit descriptors.
2517  */
2518 static void
2519 bge_start(ifp)
2520 	struct ifnet *ifp;
2521 {
2522 	struct bge_softc *sc;
2523 	struct mbuf *m_head = NULL;
2524 	u_int32_t prodidx = 0;
2525 
2526 	sc = ifp->if_softc;
2527 
2528 	if (!sc->bge_link)
2529 		return;
2530 
2531 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2532 
2533 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2534 		m_head = ifq_poll(&ifp->if_snd);
2535 		if (m_head == NULL)
2536 			break;
2537 
2538 		/*
2539 		 * XXX
2540 		 * safety overkill.  If this is a fragmented packet chain
2541 		 * with delayed TCP/UDP checksums, then only encapsulate
2542 		 * it if we have enough descriptors to handle the entire
2543 		 * chain at once.
2544 		 * (paranoia -- may not actually be needed)
2545 		 */
2546 		if (m_head->m_flags & M_FIRSTFRAG &&
2547 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2548 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2549 			    m_head->m_pkthdr.csum_data + 16) {
2550 				ifp->if_flags |= IFF_OACTIVE;
2551 				break;
2552 			}
2553 		}
2554 
2555 		/*
2556 		 * Pack the data into the transmit ring. If we
2557 		 * don't have room, set the OACTIVE flag and wait
2558 		 * for the NIC to drain the ring.
2559 		 */
2560 		if (bge_encap(sc, m_head, &prodidx)) {
2561 			ifp->if_flags |= IFF_OACTIVE;
2562 			break;
2563 		}
2564 		m_head = ifq_dequeue(&ifp->if_snd);
2565 
2566 		BPF_MTAP(ifp, m_head);
2567 	}
2568 
2569 	/* Transmit */
2570 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2571 	/* 5700 b2 errata */
2572 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2573 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2574 
2575 	/*
2576 	 * Set a timeout in case the chip goes out to lunch.
2577 	 */
2578 	ifp->if_timer = 5;
2579 
2580 	return;
2581 }
2582 
2583 static void
2584 bge_init(xsc)
2585 	void *xsc;
2586 {
2587 	struct bge_softc *sc = xsc;
2588 	struct ifnet *ifp;
2589 	u_int16_t *m;
2590         int s;
2591 
2592 	s = splimp();
2593 
2594 	ifp = &sc->arpcom.ac_if;
2595 
2596 	if (ifp->if_flags & IFF_RUNNING) {
2597 		splx(s);
2598 		return;
2599 	}
2600 
2601 	/* Cancel pending I/O and flush buffers. */
2602 	bge_stop(sc);
2603 	bge_reset(sc);
2604 	bge_chipinit(sc);
2605 
2606 	/*
2607 	 * Init the various state machines, ring
2608 	 * control blocks and firmware.
2609 	 */
2610 	if (bge_blockinit(sc)) {
2611 		printf("bge%d: initialization failure\n", sc->bge_unit);
2612 		splx(s);
2613 		return;
2614 	}
2615 
2616 	ifp = &sc->arpcom.ac_if;
2617 
2618 	/* Specify MTU. */
2619 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2620 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2621 
2622 	/* Load our MAC address. */
2623 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2624 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2625 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2626 
2627 	/* Enable or disable promiscuous mode as needed. */
2628 	if (ifp->if_flags & IFF_PROMISC) {
2629 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2630 	} else {
2631 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2632 	}
2633 
2634 	/* Program multicast filter. */
2635 	bge_setmulti(sc);
2636 
2637 	/* Init RX ring. */
2638 	bge_init_rx_ring_std(sc);
2639 
2640 	/*
2641 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2642 	 * memory to insure that the chip has in fact read the first
2643 	 * entry of the ring.
2644 	 */
2645 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2646 		u_int32_t		v, i;
2647 		for (i = 0; i < 10; i++) {
2648 			DELAY(20);
2649 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2650 			if (v == (MCLBYTES - ETHER_ALIGN))
2651 				break;
2652 		}
2653 		if (i == 10)
2654 			printf ("bge%d: 5705 A0 chip failed to load RX ring\n",
2655 			    sc->bge_unit);
2656 	}
2657 
2658 	/* Init jumbo RX ring. */
2659 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2660 		bge_init_rx_ring_jumbo(sc);
2661 
2662 	/* Init our RX return ring index */
2663 	sc->bge_rx_saved_considx = 0;
2664 
2665 	/* Init TX ring. */
2666 	bge_init_tx_ring(sc);
2667 
2668 	/* Turn on transmitter */
2669 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2670 
2671 	/* Turn on receiver */
2672 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2673 
2674 	/* Tell firmware we're alive. */
2675 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2676 
2677 	/* Enable host interrupts. */
2678 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2679 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2680 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2681 
2682 	bge_ifmedia_upd(ifp);
2683 
2684 	ifp->if_flags |= IFF_RUNNING;
2685 	ifp->if_flags &= ~IFF_OACTIVE;
2686 
2687 	splx(s);
2688 
2689 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2690 }
2691 
2692 /*
2693  * Set media options.
2694  */
2695 static int
2696 bge_ifmedia_upd(ifp)
2697 	struct ifnet *ifp;
2698 {
2699 	struct bge_softc *sc;
2700 	struct mii_data *mii;
2701 	struct ifmedia *ifm;
2702 
2703 	sc = ifp->if_softc;
2704 	ifm = &sc->bge_ifmedia;
2705 
2706 	/* If this is a 1000baseX NIC, enable the TBI port. */
2707 	if (sc->bge_tbi) {
2708 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2709 			return(EINVAL);
2710 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2711 		case IFM_AUTO:
2712 			break;
2713 		case IFM_1000_SX:
2714 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2715 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2716 				    BGE_MACMODE_HALF_DUPLEX);
2717 			} else {
2718 				BGE_SETBIT(sc, BGE_MAC_MODE,
2719 				    BGE_MACMODE_HALF_DUPLEX);
2720 			}
2721 			break;
2722 		default:
2723 			return(EINVAL);
2724 		}
2725 		return(0);
2726 	}
2727 
2728 	mii = device_get_softc(sc->bge_miibus);
2729 	sc->bge_link = 0;
2730 	if (mii->mii_instance) {
2731 		struct mii_softc *miisc;
2732 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2733 		    miisc = LIST_NEXT(miisc, mii_list))
2734 			mii_phy_reset(miisc);
2735 	}
2736 	mii_mediachg(mii);
2737 
2738 	return(0);
2739 }
2740 
2741 /*
2742  * Report current media status.
2743  */
2744 static void
2745 bge_ifmedia_sts(ifp, ifmr)
2746 	struct ifnet *ifp;
2747 	struct ifmediareq *ifmr;
2748 {
2749 	struct bge_softc *sc;
2750 	struct mii_data *mii;
2751 
2752 	sc = ifp->if_softc;
2753 
2754 	if (sc->bge_tbi) {
2755 		ifmr->ifm_status = IFM_AVALID;
2756 		ifmr->ifm_active = IFM_ETHER;
2757 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2758 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2759 			ifmr->ifm_status |= IFM_ACTIVE;
2760 		ifmr->ifm_active |= IFM_1000_SX;
2761 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2762 			ifmr->ifm_active |= IFM_HDX;
2763 		else
2764 			ifmr->ifm_active |= IFM_FDX;
2765 		return;
2766 	}
2767 
2768 	mii = device_get_softc(sc->bge_miibus);
2769 	mii_pollstat(mii);
2770 	ifmr->ifm_active = mii->mii_media_active;
2771 	ifmr->ifm_status = mii->mii_media_status;
2772 
2773 	return;
2774 }
2775 
2776 static int
2777 bge_ioctl(ifp, command, data, cr)
2778 	struct ifnet *ifp;
2779 	u_long command;
2780 	caddr_t data;
2781 	struct ucred *cr;
2782 {
2783 	struct bge_softc *sc = ifp->if_softc;
2784 	struct ifreq *ifr = (struct ifreq *) data;
2785 	int s, mask, error = 0;
2786 	struct mii_data *mii;
2787 
2788 	s = splimp();
2789 
2790 	switch(command) {
2791 	case SIOCSIFADDR:
2792 	case SIOCGIFADDR:
2793 		error = ether_ioctl(ifp, command, data);
2794 		break;
2795 	case SIOCSIFMTU:
2796 		/* Disallow jumbo frames on 5705. */
2797 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2798 		    ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2799 			error = EINVAL;
2800 		else {
2801 			ifp->if_mtu = ifr->ifr_mtu;
2802 			ifp->if_flags &= ~IFF_RUNNING;
2803 			bge_init(sc);
2804 		}
2805 		break;
2806 	case SIOCSIFFLAGS:
2807 		if (ifp->if_flags & IFF_UP) {
2808 			/*
2809 			 * If only the state of the PROMISC flag changed,
2810 			 * then just use the 'set promisc mode' command
2811 			 * instead of reinitializing the entire NIC. Doing
2812 			 * a full re-init means reloading the firmware and
2813 			 * waiting for it to start up, which may take a
2814 			 * second or two.
2815 			 */
2816 			if (ifp->if_flags & IFF_RUNNING &&
2817 			    ifp->if_flags & IFF_PROMISC &&
2818 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2819 				BGE_SETBIT(sc, BGE_RX_MODE,
2820 				    BGE_RXMODE_RX_PROMISC);
2821 			} else if (ifp->if_flags & IFF_RUNNING &&
2822 			    !(ifp->if_flags & IFF_PROMISC) &&
2823 			    sc->bge_if_flags & IFF_PROMISC) {
2824 				BGE_CLRBIT(sc, BGE_RX_MODE,
2825 				    BGE_RXMODE_RX_PROMISC);
2826 			} else
2827 				bge_init(sc);
2828 		} else {
2829 			if (ifp->if_flags & IFF_RUNNING) {
2830 				bge_stop(sc);
2831 			}
2832 		}
2833 		sc->bge_if_flags = ifp->if_flags;
2834 		error = 0;
2835 		break;
2836 	case SIOCADDMULTI:
2837 	case SIOCDELMULTI:
2838 		if (ifp->if_flags & IFF_RUNNING) {
2839 			bge_setmulti(sc);
2840 			error = 0;
2841 		}
2842 		break;
2843 	case SIOCSIFMEDIA:
2844 	case SIOCGIFMEDIA:
2845 		if (sc->bge_tbi) {
2846 			error = ifmedia_ioctl(ifp, ifr,
2847 			    &sc->bge_ifmedia, command);
2848 		} else {
2849 			mii = device_get_softc(sc->bge_miibus);
2850 			error = ifmedia_ioctl(ifp, ifr,
2851 			    &mii->mii_media, command);
2852 		}
2853 		break;
2854         case SIOCSIFCAP:
2855 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2856 		if (mask & IFCAP_HWCSUM) {
2857 			if (IFCAP_HWCSUM & ifp->if_capenable)
2858 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2859 			else
2860 				ifp->if_capenable |= IFCAP_HWCSUM;
2861 		}
2862 		error = 0;
2863 		break;
2864 	default:
2865 		error = EINVAL;
2866 		break;
2867 	}
2868 
2869 	(void)splx(s);
2870 
2871 	return(error);
2872 }
2873 
2874 static void
2875 bge_watchdog(ifp)
2876 	struct ifnet *ifp;
2877 {
2878 	struct bge_softc *sc;
2879 
2880 	sc = ifp->if_softc;
2881 
2882 	printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2883 
2884 	ifp->if_flags &= ~IFF_RUNNING;
2885 	bge_init(sc);
2886 
2887 	ifp->if_oerrors++;
2888 
2889 	return;
2890 }
2891 
2892 /*
2893  * Stop the adapter and free any mbufs allocated to the
2894  * RX and TX lists.
2895  */
2896 static void
2897 bge_stop(sc)
2898 	struct bge_softc *sc;
2899 {
2900 	struct ifnet *ifp;
2901 	struct ifmedia_entry *ifm;
2902 	struct mii_data *mii = NULL;
2903 	int mtmp, itmp;
2904 
2905 	ifp = &sc->arpcom.ac_if;
2906 
2907 	if (!sc->bge_tbi)
2908 		mii = device_get_softc(sc->bge_miibus);
2909 
2910 	callout_stop(&sc->bge_stat_timer);
2911 
2912 	/*
2913 	 * Disable all of the receiver blocks
2914 	 */
2915 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2916 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2917 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2918 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2919 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2920 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2921 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2922 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2923 
2924 	/*
2925 	 * Disable all of the transmit blocks
2926 	 */
2927 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2928 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2929 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2930 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2931 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2932 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2933 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2934 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2935 
2936 	/*
2937 	 * Shut down all of the memory managers and related
2938 	 * state machines.
2939 	 */
2940 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2941 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2942 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2943 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2944 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2945 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2946 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
2947 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2948 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2949 	}
2950 
2951 	/* Disable host interrupts. */
2952 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2953 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2954 
2955 	/*
2956 	 * Tell firmware we're shutting down.
2957 	 */
2958 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2959 
2960 	/* Free the RX lists. */
2961 	bge_free_rx_ring_std(sc);
2962 
2963 	/* Free jumbo RX list. */
2964 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2965 		bge_free_rx_ring_jumbo(sc);
2966 
2967 	/* Free TX buffers. */
2968 	bge_free_tx_ring(sc);
2969 
2970 	/*
2971 	 * Isolate/power down the PHY, but leave the media selection
2972 	 * unchanged so that things will be put back to normal when
2973 	 * we bring the interface back up.
2974 	 */
2975 	if (!sc->bge_tbi) {
2976 		itmp = ifp->if_flags;
2977 		ifp->if_flags |= IFF_UP;
2978 		ifm = mii->mii_media.ifm_cur;
2979 		mtmp = ifm->ifm_media;
2980 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2981 		mii_mediachg(mii);
2982 		ifm->ifm_media = mtmp;
2983 		ifp->if_flags = itmp;
2984 	}
2985 
2986 	sc->bge_link = 0;
2987 
2988 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2989 
2990 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2991 
2992 	return;
2993 }
2994 
2995 /*
2996  * Stop all chip I/O so that the kernel's probe routines don't
2997  * get confused by errant DMAs when rebooting.
2998  */
2999 static void
3000 bge_shutdown(dev)
3001 	device_t dev;
3002 {
3003 	struct bge_softc *sc;
3004 
3005 	sc = device_get_softc(dev);
3006 
3007 	bge_stop(sc);
3008 	bge_reset(sc);
3009 
3010 	return;
3011 }
3012