xref: /dflybsd-src/sys/dev/netif/bge/if_bge.c (revision b5b0912b1891e95ccc48cad83f09239ccb7ffc16)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.38 2005/05/31 14:11:42 joerg Exp $
35  *
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44 
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  *
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83 
84 #include <net/if.h>
85 #include <net/ifq_var.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/vlan/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 
100 #include <vm/vm.h>              /* for vtophys */
101 #include <vm/pmap.h>            /* for vtophys */
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/netif/mii_layer/mii.h>
107 #include <dev/netif/mii_layer/miivar.h>
108 #include <dev/netif/mii_layer/miidevs.h>
109 #include <dev/netif/mii_layer/brgphyreg.h>
110 
111 #include <bus/pci/pcidevs.h>
112 #include <bus/pci/pcireg.h>
113 #include <bus/pci/pcivar.h>
114 
115 #include "if_bgereg.h"
116 
117 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
118 
119 /* "controller miibus0" required.  See GENERIC if you get errors here. */
120 #include "miibus_if.h"
121 
122 /*
123  * Various supported device vendors/types and their names. Note: the
124  * spec seems to indicate that the hardware still has Alteon's vendor
125  * ID burned into it, though it will always be overriden by the vendor
126  * ID in the EEPROM. Just to be safe, we cover all possibilities.
127  */
128 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
129 
130 static struct bge_type bge_devs[] = {
131 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
132 		"Broadcom BCM5700 Gigabit Ethernet" },
133 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134 		"Broadcom BCM5701 Gigabit Ethernet" },
135 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
136 		"Broadcom BCM5700 Gigabit Ethernet" },
137 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
138 		"Broadcom BCM5701 Gigabit Ethernet" },
139 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
140 		"Broadcom BCM5702X Gigabit Ethernet" },
141 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5702X,
142 		"Broadcom BCM5702X Gigabit Ethernet" },
143 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
144 		"Broadcom BCM5703X Gigabit Ethernet" },
145 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5703X,
146 		"Broadcom BCM5703X Gigabit Ethernet" },
147 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
148 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
149 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
150 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
151 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
152 		"Broadcom BCM5705 Gigabit Ethernet" },
153 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
154 		"Broadcom BCM5705M Gigabit Ethernet" },
155 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705_ALT,
156 		"Broadcom BCM5705M Gigabit Ethernet" },
157 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
158 		"Broadcom BCM5782 Gigabit Ethernet" },
159 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5788,
160 		"Broadcom BCM5788 Gigabit Ethernet" },
161 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
162 		"Broadcom BCM5901 Fast Ethernet" },
163 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
164 		"Broadcom BCM5901A2 Fast Ethernet" },
165 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
166 		"SysKonnect Gigabit Ethernet" },
167 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
168 		"Altima AC1000 Gigabit Ethernet" },
169 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
170 		"Altima AC1002 Gigabit Ethernet" },
171 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
172 		"Altima AC9100 Gigabit Ethernet" },
173 	{ 0, 0, NULL }
174 };
175 
176 static int	bge_probe(device_t);
177 static int	bge_attach(device_t);
178 static int	bge_detach(device_t);
179 static void	bge_release_resources(struct bge_softc *);
180 static void	bge_txeof(struct bge_softc *);
181 static void	bge_rxeof(struct bge_softc *);
182 
183 static void	bge_tick(void *);
184 static void	bge_stats_update(struct bge_softc *);
185 static void	bge_stats_update_regs(struct bge_softc *);
186 static int	bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
187 
188 static void	bge_intr(void *);
189 static void	bge_start(struct ifnet *);
190 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
191 static void	bge_init(void *);
192 static void	bge_stop(struct bge_softc *);
193 static void	bge_watchdog(struct ifnet *);
194 static void	bge_shutdown(device_t);
195 static int	bge_ifmedia_upd(struct ifnet *);
196 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
197 
198 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
199 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
200 
201 static void	bge_setmulti(struct bge_softc *);
202 
203 static void	bge_handle_events(struct bge_softc *);
204 static int	bge_alloc_jumbo_mem(struct bge_softc *);
205 static void	bge_free_jumbo_mem(struct bge_softc *);
206 static struct bge_jslot
207 		*bge_jalloc(struct bge_softc *);
208 static void	bge_jfree(void *);
209 static void	bge_jref(void *);
210 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
211 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
212 static int	bge_init_rx_ring_std(struct bge_softc *);
213 static void	bge_free_rx_ring_std(struct bge_softc *);
214 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
215 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
216 static void	bge_free_tx_ring(struct bge_softc *);
217 static int	bge_init_tx_ring(struct bge_softc *);
218 
219 static int	bge_chipinit(struct bge_softc *);
220 static int	bge_blockinit(struct bge_softc *);
221 
222 #ifdef notdef
223 static uint8_t	bge_vpd_readbyte(struct bge_softc *, uint32_t);
224 static void	bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
225 static void	bge_vpd_read(struct bge_softc *);
226 #endif
227 
228 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
229 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
230 #ifdef notdef
231 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
232 #endif
233 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
234 
235 static int	bge_miibus_readreg(device_t, int, int);
236 static int	bge_miibus_writereg(device_t, int, int, int);
237 static void	bge_miibus_statchg(device_t);
238 
239 static void	bge_reset(struct bge_softc *);
240 
241 static device_method_t bge_methods[] = {
242 	/* Device interface */
243 	DEVMETHOD(device_probe,		bge_probe),
244 	DEVMETHOD(device_attach,	bge_attach),
245 	DEVMETHOD(device_detach,	bge_detach),
246 	DEVMETHOD(device_shutdown,	bge_shutdown),
247 
248 	/* bus interface */
249 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
250 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
251 
252 	/* MII interface */
253 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
254 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
255 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
256 
257 	{ 0, 0 }
258 };
259 
260 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
261 static devclass_t bge_devclass;
262 
263 DECLARE_DUMMY_MODULE(if_bge);
264 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
265 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
266 
267 static uint32_t
268 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
269 {
270 	device_t dev = sc->bge_dev;
271 
272 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
273 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
274 }
275 
276 static void
277 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
278 {
279 	device_t dev = sc->bge_dev;
280 
281 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
282 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
283 }
284 
285 #ifdef notdef
286 static uint32_t
287 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
288 {
289 	device_t dev = sc->bge_dev;
290 
291 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
292 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
293 }
294 #endif
295 
296 static void
297 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
298 {
299 	device_t dev = sc->bge_dev;
300 
301 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
302 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
303 }
304 
305 #ifdef notdef
306 static uint8_t
307 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
308 {
309 	device_t dev = sc->bge_dev;
310 	uint32_t val;
311 	int i;
312 
313 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
314 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
315 		DELAY(10);
316 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
317 			break;
318 	}
319 
320 	if (i == BGE_TIMEOUT) {
321 		device_printf(sc->bge_dev, "VPD read timed out\n");
322 		return(0);
323 	}
324 
325 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
326 
327 	return((val >> ((addr % 4) * 8)) & 0xFF);
328 }
329 
330 static void
331 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
332 {
333 	size_t i;
334 	uint8_t *ptr;
335 
336 	ptr = (uint8_t *)res;
337 	for (i = 0; i < sizeof(struct vpd_res); i++)
338 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
339 
340 	return;
341 }
342 
343 static void
344 bge_vpd_read(struct bge_softc *sc)
345 {
346 	int pos = 0, i;
347 	struct vpd_res res;
348 
349 	if (sc->bge_vpd_prodname != NULL)
350 		free(sc->bge_vpd_prodname, M_DEVBUF);
351 	if (sc->bge_vpd_readonly != NULL)
352 		free(sc->bge_vpd_readonly, M_DEVBUF);
353 	sc->bge_vpd_prodname = NULL;
354 	sc->bge_vpd_readonly = NULL;
355 
356 	bge_vpd_read_res(sc, &res, pos);
357 
358 	if (res.vr_id != VPD_RES_ID) {
359 		device_printf(sc->bge_dev,
360 			      "bad VPD resource id: expected %x got %x\n",
361 			      VPD_RES_ID, res.vr_id);
362                 return;
363         }
364 
365 	pos += sizeof(res);
366 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
367 	for (i = 0; i < res.vr_len; i++)
368 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
369 	sc->bge_vpd_prodname[i] = '\0';
370 	pos += i;
371 
372 	bge_vpd_read_res(sc, &res, pos);
373 
374 	if (res.vr_id != VPD_RES_READ) {
375 		device_printf(sc->bge_dev,
376 			      "bad VPD resource id: expected %x got %x\n",
377 			      VPD_RES_READ, res.vr_id);
378 		return;
379 	}
380 
381 	pos += sizeof(res);
382 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
383 	for (i = 0; i < res.vr_len + 1; i++)
384 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
385 }
386 #endif
387 
388 /*
389  * Read a byte of data stored in the EEPROM at address 'addr.' The
390  * BCM570x supports both the traditional bitbang interface and an
391  * auto access interface for reading the EEPROM. We use the auto
392  * access method.
393  */
394 static uint8_t
395 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
396 {
397 	int i;
398 	uint32_t byte = 0;
399 
400 	/*
401 	 * Enable use of auto EEPROM access so we can avoid
402 	 * having to use the bitbang method.
403 	 */
404 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
405 
406 	/* Reset the EEPROM, load the clock period. */
407 	CSR_WRITE_4(sc, BGE_EE_ADDR,
408 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
409 	DELAY(20);
410 
411 	/* Issue the read EEPROM command. */
412 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
413 
414 	/* Wait for completion */
415 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
416 		DELAY(10);
417 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
418 			break;
419 	}
420 
421 	if (i == BGE_TIMEOUT) {
422 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
423 		return(0);
424 	}
425 
426 	/* Get result. */
427 	byte = CSR_READ_4(sc, BGE_EE_DATA);
428 
429         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
430 
431 	return(0);
432 }
433 
434 /*
435  * Read a sequence of bytes from the EEPROM.
436  */
437 static int
438 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
439 {
440 	size_t i;
441 	int err;
442 	uint8_t byte;
443 
444 	for (byte = 0, err = 0, i = 0; i < len; i++) {
445 		err = bge_eeprom_getbyte(sc, off + i, &byte);
446 		if (err)
447 			break;
448 		*(dest + i) = byte;
449 	}
450 
451 	return(err ? 1 : 0);
452 }
453 
454 static int
455 bge_miibus_readreg(device_t dev, int phy, int reg)
456 {
457 	struct bge_softc *sc;
458 	struct ifnet *ifp;
459 	uint32_t val, autopoll;
460 	int i;
461 
462 	sc = device_get_softc(dev);
463 	ifp = &sc->arpcom.ac_if;
464 
465 	/*
466 	 * Broadcom's own driver always assumes the internal
467 	 * PHY is at GMII address 1. On some chips, the PHY responds
468 	 * to accesses at all addresses, which could cause us to
469 	 * bogusly attach the PHY 32 times at probe type. Always
470 	 * restricting the lookup to address 1 is simpler than
471 	 * trying to figure out which chips revisions should be
472 	 * special-cased.
473 	 */
474 	if (phy != 1)
475 		return(0);
476 
477 	/* Reading with autopolling on may trigger PCI errors */
478 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
479 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
480 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
481 		DELAY(40);
482 	}
483 
484 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
485 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
486 
487 	for (i = 0; i < BGE_TIMEOUT; i++) {
488 		val = CSR_READ_4(sc, BGE_MI_COMM);
489 		if (!(val & BGE_MICOMM_BUSY))
490 			break;
491 	}
492 
493 	if (i == BGE_TIMEOUT) {
494 		if_printf(ifp, "PHY read timed out\n");
495 		val = 0;
496 		goto done;
497 	}
498 
499 	val = CSR_READ_4(sc, BGE_MI_COMM);
500 
501 done:
502 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
503 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
504 		DELAY(40);
505 	}
506 
507 	if (val & BGE_MICOMM_READFAIL)
508 		return(0);
509 
510 	return(val & 0xFFFF);
511 }
512 
513 static int
514 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
515 {
516 	struct bge_softc *sc;
517 	uint32_t autopoll;
518 	int i;
519 
520 	sc = device_get_softc(dev);
521 
522 	/* Reading with autopolling on may trigger PCI errors */
523 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
524 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
525 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
526 		DELAY(40);
527 	}
528 
529 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
530 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
531 
532 	for (i = 0; i < BGE_TIMEOUT; i++) {
533 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
534 			break;
535 	}
536 
537 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
538 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
539 		DELAY(40);
540 	}
541 
542 	if (i == BGE_TIMEOUT) {
543 		if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
544 		return(0);
545 	}
546 
547 	return(0);
548 }
549 
550 static void
551 bge_miibus_statchg(device_t dev)
552 {
553 	struct bge_softc *sc;
554 	struct mii_data *mii;
555 
556 	sc = device_get_softc(dev);
557 	mii = device_get_softc(sc->bge_miibus);
558 
559 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
560 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
561 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
562 	} else {
563 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
564 	}
565 
566 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
567 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
568 	} else {
569 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
570 	}
571 }
572 
573 /*
574  * Handle events that have triggered interrupts.
575  */
576 static void
577 bge_handle_events(struct bge_softc *sc)
578 {
579 }
580 
581 /*
582  * Memory management for jumbo frames.
583  */
584 static int
585 bge_alloc_jumbo_mem(struct bge_softc *sc)
586 {
587 	struct bge_jslot *entry;
588 	caddr_t ptr;
589 	int i;
590 
591 	/* Grab a big chunk o' storage. */
592 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
593 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
594 
595 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
596 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
597 		return(ENOBUFS);
598 	}
599 
600 	SLIST_INIT(&sc->bge_jfree_listhead);
601 
602 	/*
603 	 * Now divide it up into 9K pieces and save the addresses
604 	 * in an array. Note that we play an evil trick here by using
605 	 * the first few bytes in the buffer to hold the the address
606 	 * of the softc structure for this interface. This is because
607 	 * bge_jfree() needs it, but it is called by the mbuf management
608 	 * code which will not pass it to us explicitly.
609 	 */
610 	ptr = sc->bge_cdata.bge_jumbo_buf;
611 	for (i = 0; i < BGE_JSLOTS; i++) {
612 		entry = &sc->bge_cdata.bge_jslots[i];
613 		entry->bge_sc = sc;
614 		entry->bge_buf = ptr;
615 		entry->bge_inuse = 0;
616 		entry->bge_slot = i;
617 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
618 		ptr += BGE_JLEN;
619 	}
620 
621 	return(0);
622 }
623 
624 static void
625 bge_free_jumbo_mem(struct bge_softc *sc)
626 {
627 	contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
628 }
629 
630 /*
631  * Allocate a jumbo buffer.
632  */
633 static struct bge_jslot *
634 bge_jalloc(struct bge_softc *sc)
635 {
636 	struct bge_jslot *entry;
637 
638 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
639 
640 	if (entry == NULL) {
641 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
642 		return(NULL);
643 	}
644 
645 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
646 	entry->bge_inuse = 1;
647 	return(entry);
648 }
649 
650 /*
651  * Adjust usage count on a jumbo buffer.
652  */
653 static void
654 bge_jref(void *arg)
655 {
656 	struct bge_jslot *entry = (struct bge_jslot *)arg;
657 	struct bge_softc *sc = entry->bge_sc;
658 
659 	if (sc == NULL)
660 		panic("bge_jref: can't find softc pointer!");
661 
662 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
663 		panic("bge_jref: asked to reference buffer "
664 		    "that we don't manage!");
665 	else if (entry->bge_inuse == 0)
666 		panic("bge_jref: buffer already free!");
667 	else
668 		entry->bge_inuse++;
669 }
670 
671 /*
672  * Release a jumbo buffer.
673  */
674 static void
675 bge_jfree(void *arg)
676 {
677 	struct bge_jslot *entry = (struct bge_jslot *)arg;
678 	struct bge_softc *sc = entry->bge_sc;
679 
680 	if (sc == NULL)
681 		panic("bge_jfree: can't find softc pointer!");
682 
683 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
684 		panic("bge_jfree: asked to free buffer that we don't manage!");
685 	else if (entry->bge_inuse == 0)
686 		panic("bge_jfree: buffer already free!");
687 	else if (--entry->bge_inuse == 0)
688 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
689 }
690 
691 
692 /*
693  * Intialize a standard receive ring descriptor.
694  */
695 static int
696 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
697 {
698 	struct mbuf *m_new = NULL;
699 	struct bge_rx_bd *r;
700 
701 	if (m == NULL) {
702 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
703 		if (m_new == NULL)
704 			return (ENOBUFS);
705 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
706 	} else {
707 		m_new = m;
708 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
709 		m_new->m_data = m_new->m_ext.ext_buf;
710 	}
711 
712 	if (!sc->bge_rx_alignment_bug)
713 		m_adj(m_new, ETHER_ALIGN);
714 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
715 	r = &sc->bge_rdata->bge_rx_std_ring[i];
716 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
717 	r->bge_flags = BGE_RXBDFLAG_END;
718 	r->bge_len = m_new->m_len;
719 	r->bge_idx = i;
720 
721 	return(0);
722 }
723 
724 /*
725  * Initialize a jumbo receive ring descriptor. This allocates
726  * a jumbo buffer from the pool managed internally by the driver.
727  */
728 static int
729 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
730 {
731 	struct mbuf *m_new = NULL;
732 	struct bge_rx_bd *r;
733 
734 	if (m == NULL) {
735 		struct bge_jslot *buf;
736 
737 		/* Allocate the mbuf. */
738 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
739 		if (m_new == NULL)
740 			return(ENOBUFS);
741 
742 		/* Allocate the jumbo buffer */
743 		buf = bge_jalloc(sc);
744 		if (buf == NULL) {
745 			m_freem(m_new);
746 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
747 			    "-- packet dropped!\n");
748 			return(ENOBUFS);
749 		}
750 
751 		/* Attach the buffer to the mbuf. */
752 		m_new->m_ext.ext_arg = buf;
753 		m_new->m_ext.ext_buf = buf->bge_buf;
754 		m_new->m_ext.ext_free = bge_jfree;
755 		m_new->m_ext.ext_ref = bge_jref;
756 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
757 
758 		m_new->m_data = m_new->m_ext.ext_buf;
759 		m_new->m_flags |= M_EXT;
760 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
761 	} else {
762 		m_new = m;
763 		m_new->m_data = m_new->m_ext.ext_buf;
764 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
765 	}
766 
767 	if (!sc->bge_rx_alignment_bug)
768 		m_adj(m_new, ETHER_ALIGN);
769 	/* Set up the descriptor. */
770 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
771 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
772 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
773 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
774 	r->bge_len = m_new->m_len;
775 	r->bge_idx = i;
776 
777 	return(0);
778 }
779 
780 /*
781  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
782  * that's 1MB or memory, which is a lot. For now, we fill only the first
783  * 256 ring entries and hope that our CPU is fast enough to keep up with
784  * the NIC.
785  */
786 static int
787 bge_init_rx_ring_std(struct bge_softc *sc)
788 {
789 	int i;
790 
791 	for (i = 0; i < BGE_SSLOTS; i++) {
792 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
793 			return(ENOBUFS);
794 	};
795 
796 	sc->bge_std = i - 1;
797 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
798 
799 	return(0);
800 }
801 
802 static void
803 bge_free_rx_ring_std(struct bge_softc *sc)
804 {
805 	int i;
806 
807 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
808 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
809 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
810 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
811 		}
812 		bzero(&sc->bge_rdata->bge_rx_std_ring[i],
813 		    sizeof(struct bge_rx_bd));
814 	}
815 }
816 
817 static int
818 bge_init_rx_ring_jumbo(struct bge_softc *sc)
819 {
820 	int i;
821 	struct bge_rcb *rcb;
822 
823 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
824 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
825 			return(ENOBUFS);
826 	};
827 
828 	sc->bge_jumbo = i - 1;
829 
830 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
831 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
832 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
833 
834 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
835 
836 	return(0);
837 }
838 
839 static void
840 bge_free_rx_ring_jumbo(struct bge_softc *sc)
841 {
842 	int i;
843 
844 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
845 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
846 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
847 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
848 		}
849 		bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
850 		    sizeof(struct bge_rx_bd));
851 	}
852 }
853 
854 static void
855 bge_free_tx_ring(struct bge_softc *sc)
856 {
857 	int i;
858 
859 	if (sc->bge_rdata->bge_tx_ring == NULL)
860 		return;
861 
862 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
863 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
864 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
865 			sc->bge_cdata.bge_tx_chain[i] = NULL;
866 		}
867 		bzero(&sc->bge_rdata->bge_tx_ring[i],
868 		    sizeof(struct bge_tx_bd));
869 	}
870 }
871 
872 static int
873 bge_init_tx_ring(struct bge_softc *sc)
874 {
875 	sc->bge_txcnt = 0;
876 	sc->bge_tx_saved_considx = 0;
877 
878 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
879 	/* 5700 b2 errata */
880 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
881 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
882 
883 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
884 	/* 5700 b2 errata */
885 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
886 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
887 
888 	return(0);
889 }
890 
891 static void
892 bge_setmulti(struct bge_softc *sc)
893 {
894 	struct ifnet *ifp;
895 	struct ifmultiaddr *ifma;
896 	uint32_t hashes[4] = { 0, 0, 0, 0 };
897 	int h, i;
898 
899 	ifp = &sc->arpcom.ac_if;
900 
901 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
902 		for (i = 0; i < 4; i++)
903 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
904 		return;
905 	}
906 
907 	/* First, zot all the existing filters. */
908 	for (i = 0; i < 4; i++)
909 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
910 
911 	/* Now program new ones. */
912 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
913 		if (ifma->ifma_addr->sa_family != AF_LINK)
914 			continue;
915 		h = ether_crc32_le(
916 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
917 		    ETHER_ADDR_LEN) & 0x7f;
918 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
919 	}
920 
921 	for (i = 0; i < 4; i++)
922 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
923 }
924 
925 /*
926  * Do endian, PCI and DMA initialization. Also check the on-board ROM
927  * self-test results.
928  */
929 static int
930 bge_chipinit(struct bge_softc *sc)
931 {
932 	int i;
933 	uint32_t dma_rw_ctl;
934 
935 	/* Set endianness before we access any non-PCI registers. */
936 #if BYTE_ORDER == BIG_ENDIAN
937 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
938 	    BGE_BIGENDIAN_INIT, 4);
939 #else
940 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
941 	    BGE_LITTLEENDIAN_INIT, 4);
942 #endif
943 
944 	/*
945 	 * Check the 'ROM failed' bit on the RX CPU to see if
946 	 * self-tests passed.
947 	 */
948 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
949 		if_printf(&sc->arpcom.ac_if,
950 			  "RX CPU self-diagnostics failed!\n");
951 		return(ENODEV);
952 	}
953 
954 	/* Clear the MAC control register */
955 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
956 
957 	/*
958 	 * Clear the MAC statistics block in the NIC's
959 	 * internal memory.
960 	 */
961 	for (i = BGE_STATS_BLOCK;
962 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
963 		BGE_MEMWIN_WRITE(sc, i, 0);
964 
965 	for (i = BGE_STATUS_BLOCK;
966 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
967 		BGE_MEMWIN_WRITE(sc, i, 0);
968 
969 	/* Set up the PCI DMA control register. */
970 	if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
971 	    BGE_PCISTATE_PCI_BUSMODE) {
972 		/* Conventional PCI bus */
973 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
974 		    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
975 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
976 		    (0x0F);
977 	} else {
978 		/* PCI-X bus */
979 		/*
980 		 * The 5704 uses a different encoding of read/write
981 		 * watermarks.
982 		 */
983 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
984 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
985 			    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
986 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
987 		else
988 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
989 			    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
990 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
991 			    (0x0F);
992 
993 		/*
994 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
995 		 * for hardware bugs.
996 		 */
997 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
998 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
999 			uint32_t tmp;
1000 
1001 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1002 			if (tmp == 0x6 || tmp == 0x7)
1003 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1004 		}
1005 	}
1006 
1007 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1008 	    sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1009 	    sc->bge_asicrev == BGE_ASICREV_BCM5705)
1010 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1011 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1012 
1013 	/*
1014 	 * Set up general mode register.
1015 	 */
1016 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1017 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1018 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1019 	    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1020 
1021 	/*
1022 	 * Disable memory write invalidate.  Apparently it is not supported
1023 	 * properly by these devices.
1024 	 */
1025 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1026 
1027 	/* Set the timer prescaler (always 66Mhz) */
1028 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1029 
1030 	return(0);
1031 }
1032 
1033 static int
1034 bge_blockinit(struct bge_softc *sc)
1035 {
1036 	struct bge_rcb *rcb;
1037 	volatile struct bge_rcb *vrcb;
1038 	int i;
1039 
1040 	/*
1041 	 * Initialize the memory window pointer register so that
1042 	 * we can access the first 32K of internal NIC RAM. This will
1043 	 * allow us to set up the TX send ring RCBs and the RX return
1044 	 * ring RCBs, plus other things which live in NIC memory.
1045 	 */
1046 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1047 
1048 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1049 
1050 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1051 		/* Configure mbuf memory pool */
1052 		if (sc->bge_extram) {
1053 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1054 			    BGE_EXT_SSRAM);
1055 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1056 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1057 			else
1058 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1059 		} else {
1060 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1061 			    BGE_BUFFPOOL_1);
1062 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1063 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1064 			else
1065 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1066 		}
1067 
1068 		/* Configure DMA resource pool */
1069 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1070 		    BGE_DMA_DESCRIPTORS);
1071 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1072 	}
1073 
1074 	/* Configure mbuf pool watermarks */
1075 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
1076 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1077 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1078 	} else {
1079 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1080 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1081 	}
1082 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1083 
1084 	/* Configure DMA resource watermarks */
1085 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1086 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1087 
1088 	/* Enable buffer manager */
1089 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1090 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1091 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1092 
1093 		/* Poll for buffer manager start indication */
1094 		for (i = 0; i < BGE_TIMEOUT; i++) {
1095 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1096 				break;
1097 			DELAY(10);
1098 		}
1099 
1100 		if (i == BGE_TIMEOUT) {
1101 			if_printf(&sc->arpcom.ac_if,
1102 				  "buffer manager failed to start\n");
1103 			return(ENXIO);
1104 		}
1105 	}
1106 
1107 	/* Enable flow-through queues */
1108 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1109 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1110 
1111 	/* Wait until queue initialization is complete */
1112 	for (i = 0; i < BGE_TIMEOUT; i++) {
1113 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1114 			break;
1115 		DELAY(10);
1116 	}
1117 
1118 	if (i == BGE_TIMEOUT) {
1119 		if_printf(&sc->arpcom.ac_if,
1120 			  "flow-through queue init failed\n");
1121 		return(ENXIO);
1122 	}
1123 
1124 	/* Initialize the standard RX ring control block */
1125 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1126 	BGE_HOSTADDR(rcb->bge_hostaddr,
1127 	    vtophys(&sc->bge_rdata->bge_rx_std_ring));
1128 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1129 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1130 	else
1131 		rcb->bge_maxlen_flags =
1132 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1133 	if (sc->bge_extram)
1134 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1135 	else
1136 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1137 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1138 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1139 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1140 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1141 
1142 	/*
1143 	 * Initialize the jumbo RX ring control block
1144 	 * We set the 'ring disabled' bit in the flags
1145 	 * field until we're actually ready to start
1146 	 * using this ring (i.e. once we set the MTU
1147 	 * high enough to require it).
1148 	 */
1149 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1150 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1151 		BGE_HOSTADDR(rcb->bge_hostaddr,
1152 		    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1153 		rcb->bge_maxlen_flags =
1154 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1155 		    BGE_RCB_FLAG_RING_DISABLED);
1156 		if (sc->bge_extram)
1157 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1158 		else
1159 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1160 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1161 		    rcb->bge_hostaddr.bge_addr_hi);
1162 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1163 		    rcb->bge_hostaddr.bge_addr_lo);
1164 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1165 		    rcb->bge_maxlen_flags);
1166 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1167 
1168 		/* Set up dummy disabled mini ring RCB */
1169 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1170 		rcb->bge_maxlen_flags =
1171 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1172 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1173 		    rcb->bge_maxlen_flags);
1174 	}
1175 
1176 	/*
1177 	 * Set the BD ring replentish thresholds. The recommended
1178 	 * values are 1/8th the number of descriptors allocated to
1179 	 * each ring.
1180 	 */
1181 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1182 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1183 
1184 	/*
1185 	 * Disable all unused send rings by setting the 'ring disabled'
1186 	 * bit in the flags field of all the TX send ring control blocks.
1187 	 * These are located in NIC memory.
1188 	 */
1189 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1190 	    BGE_SEND_RING_RCB);
1191 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1192 		vrcb->bge_maxlen_flags =
1193 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1194 		vrcb->bge_nicaddr = 0;
1195 		vrcb++;
1196 	}
1197 
1198 	/* Configure TX RCB 0 (we use only the first ring) */
1199 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1200 	    BGE_SEND_RING_RCB);
1201 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1202 	BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1203 	vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1204 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1205 		vrcb->bge_maxlen_flags =
1206 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1207 
1208 	/* Disable all unused RX return rings */
1209 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1210 	    BGE_RX_RETURN_RING_RCB);
1211 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1212 		vrcb->bge_hostaddr.bge_addr_hi = 0;
1213 		vrcb->bge_hostaddr.bge_addr_lo = 0;
1214 		vrcb->bge_maxlen_flags =
1215 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1216 		    BGE_RCB_FLAG_RING_DISABLED);
1217 		vrcb->bge_nicaddr = 0;
1218 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1219 		    (i * (sizeof(uint64_t))), 0);
1220 		vrcb++;
1221 	}
1222 
1223 	/* Initialize RX ring indexes */
1224 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1225 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1226 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1227 
1228 	/*
1229 	 * Set up RX return ring 0
1230 	 * Note that the NIC address for RX return rings is 0x00000000.
1231 	 * The return rings live entirely within the host, so the
1232 	 * nicaddr field in the RCB isn't used.
1233 	 */
1234 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1235 	    BGE_RX_RETURN_RING_RCB);
1236 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1237 	BGE_HOSTADDR(vrcb->bge_hostaddr,
1238 	    vtophys(&sc->bge_rdata->bge_rx_return_ring));
1239 	vrcb->bge_nicaddr = 0x00000000;
1240 	vrcb->bge_maxlen_flags =
1241 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1242 
1243 	/* Set random backoff seed for TX */
1244 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1245 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1246 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1247 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1248 	    BGE_TX_BACKOFF_SEED_MASK);
1249 
1250 	/* Set inter-packet gap */
1251 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1252 
1253 	/*
1254 	 * Specify which ring to use for packets that don't match
1255 	 * any RX rules.
1256 	 */
1257 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1258 
1259 	/*
1260 	 * Configure number of RX lists. One interrupt distribution
1261 	 * list, sixteen active lists, one bad frames class.
1262 	 */
1263 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1264 
1265 	/* Inialize RX list placement stats mask. */
1266 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1267 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1268 
1269 	/* Disable host coalescing until we get it set up */
1270 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1271 
1272 	/* Poll to make sure it's shut down. */
1273 	for (i = 0; i < BGE_TIMEOUT; i++) {
1274 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1275 			break;
1276 		DELAY(10);
1277 	}
1278 
1279 	if (i == BGE_TIMEOUT) {
1280 		if_printf(&sc->arpcom.ac_if,
1281 			  "host coalescing engine failed to idle\n");
1282 		return(ENXIO);
1283 	}
1284 
1285 	/* Set up host coalescing defaults */
1286 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1287 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1288 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1289 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1290 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1291 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1292 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1293 	}
1294 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1295 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1296 
1297 	/* Set up address of statistics block */
1298 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1299 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1300 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1301 		    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1302 
1303 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1304 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1305 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1306 	}
1307 
1308 	/* Set up address of status block */
1309 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1310 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1311 	    vtophys(&sc->bge_rdata->bge_status_block));
1312 
1313 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1314 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1315 
1316 	/* Turn on host coalescing state machine */
1317 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1318 
1319 	/* Turn on RX BD completion state machine and enable attentions */
1320 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1321 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1322 
1323 	/* Turn on RX list placement state machine */
1324 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1325 
1326 	/* Turn on RX list selector state machine. */
1327 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1328 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1329 
1330 	/* Turn on DMA, clear stats */
1331 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1332 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1333 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1334 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1335 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1336 
1337 	/* Set misc. local control, enable interrupts on attentions */
1338 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1339 
1340 #ifdef notdef
1341 	/* Assert GPIO pins for PHY reset */
1342 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1343 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1344 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1345 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1346 #endif
1347 
1348 	/* Turn on DMA completion state machine */
1349 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1350 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1351 
1352 	/* Turn on write DMA state machine */
1353 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1354 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1355 
1356 	/* Turn on read DMA state machine */
1357 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1358 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1359 
1360 	/* Turn on RX data completion state machine */
1361 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1362 
1363 	/* Turn on RX BD initiator state machine */
1364 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1365 
1366 	/* Turn on RX data and RX BD initiator state machine */
1367 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1368 
1369 	/* Turn on Mbuf cluster free state machine */
1370 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1371 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1372 
1373 	/* Turn on send BD completion state machine */
1374 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1375 
1376 	/* Turn on send data completion state machine */
1377 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1378 
1379 	/* Turn on send data initiator state machine */
1380 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1381 
1382 	/* Turn on send BD initiator state machine */
1383 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1384 
1385 	/* Turn on send BD selector state machine */
1386 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1387 
1388 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1389 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1390 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1391 
1392 	/* ack/clear link change events */
1393 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1394 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1395 	    BGE_MACSTAT_LINK_CHANGED);
1396 
1397 	/* Enable PHY auto polling (for MII/GMII only) */
1398 	if (sc->bge_tbi) {
1399 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1400  	} else {
1401 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1402 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1403 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1404 			    BGE_EVTENB_MI_INTERRUPT);
1405 	}
1406 
1407 	/* Enable link state change attentions. */
1408 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1409 
1410 	return(0);
1411 }
1412 
1413 /*
1414  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1415  * against our list and return its name if we find a match. Note
1416  * that since the Broadcom controller contains VPD support, we
1417  * can get the device name string from the controller itself instead
1418  * of the compiled-in string. This is a little slow, but it guarantees
1419  * we'll always announce the right product name.
1420  */
1421 static int
1422 bge_probe(device_t dev)
1423 {
1424 	struct bge_softc *sc;
1425 	struct bge_type *t;
1426 	char *descbuf;
1427 	uint16_t product, vendor;
1428 
1429 	product = pci_get_device(dev);
1430 	vendor = pci_get_vendor(dev);
1431 
1432 	for (t = bge_devs; t->bge_name != NULL; t++) {
1433 		if (vendor == t->bge_vid && product == t->bge_did)
1434 			break;
1435 	}
1436 
1437 	if (t->bge_name == NULL)
1438 		return(ENXIO);
1439 
1440 	sc = device_get_softc(dev);
1441 #ifdef notdef
1442 	sc->bge_dev = dev;
1443 
1444 	bge_vpd_read(sc);
1445 	device_set_desc(dev, sc->bge_vpd_prodname);
1446 #endif
1447 	descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1448 	snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1449 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1450 	device_set_desc_copy(dev, descbuf);
1451 	if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1452 		sc->bge_no_3_led = 1;
1453 	free(descbuf, M_TEMP);
1454 	return(0);
1455 }
1456 
1457 static int
1458 bge_attach(device_t dev)
1459 {
1460 	int s;
1461 	uint32_t command;
1462 	struct ifnet *ifp;
1463 	struct bge_softc *sc;
1464 	uint32_t hwcfg = 0;
1465 	uint32_t mac_addr = 0;
1466 	int error = 0, rid;
1467 	uint8_t ether_addr[ETHER_ADDR_LEN];
1468 
1469 	s = splimp();
1470 
1471 	sc = device_get_softc(dev);
1472 	sc->bge_dev = dev;
1473 	callout_init(&sc->bge_stat_timer);
1474 
1475 	/*
1476 	 * Map control/status registers.
1477 	 */
1478 	pci_enable_busmaster(dev);
1479 	pci_enable_io(dev, SYS_RES_MEMORY);
1480 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1481 
1482 	if (!(command & PCIM_CMD_MEMEN)) {
1483 		device_printf(dev, "failed to enable memory mapping!\n");
1484 		error = ENXIO;
1485 		goto fail;
1486 	}
1487 
1488 	rid = BGE_PCI_BAR0;
1489 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1490 	    RF_ACTIVE);
1491 
1492 	if (sc->bge_res == NULL) {
1493 		device_printf(dev, "couldn't map memory\n");
1494 		error = ENXIO;
1495 		goto fail;
1496 	}
1497 
1498 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1499 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1500 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1501 
1502 	/* Allocate interrupt */
1503 	rid = 0;
1504 
1505 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1506 	    RF_SHAREABLE | RF_ACTIVE);
1507 
1508 	if (sc->bge_irq == NULL) {
1509 		device_printf(dev, "couldn't map interrupt\n");
1510 		error = ENXIO;
1511 		goto fail;
1512 	}
1513 
1514 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1515 			       bge_intr, sc, &sc->bge_intrhand, NULL);
1516 
1517 	if (error) {
1518 		bge_release_resources(sc);
1519 		device_printf(dev, "couldn't set up irq\n");
1520 		goto fail;
1521 	}
1522 
1523 	ifp = &sc->arpcom.ac_if;
1524 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1525 
1526 	/* Try to reset the chip. */
1527 	bge_reset(sc);
1528 
1529 	if (bge_chipinit(sc)) {
1530 		device_printf(dev, "chip initialization failed\n");
1531 		bge_release_resources(sc);
1532 		error = ENXIO;
1533 		goto fail;
1534 	}
1535 
1536 	/*
1537 	 * Get station address from the EEPROM.
1538 	 */
1539 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1540 	if ((mac_addr >> 16) == 0x484b) {
1541 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
1542 		ether_addr[1] = (uint8_t)mac_addr;
1543 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1544 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
1545 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
1546 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
1547 		ether_addr[5] = (uint8_t)mac_addr;
1548 	} else if (bge_read_eeprom(sc, ether_addr,
1549 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1550 		device_printf(dev, "failed to read station address\n");
1551 		bge_release_resources(sc);
1552 		error = ENXIO;
1553 		goto fail;
1554 	}
1555 
1556 	/* Allocate the general information block and ring buffers. */
1557 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1558 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1559 
1560 	if (sc->bge_rdata == NULL) {
1561 		bge_release_resources(sc);
1562 		error = ENXIO;
1563 		device_printf(dev, "no memory for list buffers!\n");
1564 		goto fail;
1565 	}
1566 
1567 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1568 
1569 	/* Save ASIC rev. */
1570 
1571 	sc->bge_chipid =
1572 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1573 	    BGE_PCIMISCCTL_ASICREV;
1574 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1575 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1576 
1577 	/*
1578 	 * Try to allocate memory for jumbo buffers.
1579 	 * The 5705 does not appear to support jumbo frames.
1580 	 */
1581 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1582 		if (bge_alloc_jumbo_mem(sc)) {
1583 			device_printf(dev, "jumbo buffer allocation failed\n");
1584 			bge_release_resources(sc);
1585 			error = ENXIO;
1586 			goto fail;
1587 		}
1588 	}
1589 
1590 	/* Set default tuneable values. */
1591 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1592 	sc->bge_rx_coal_ticks = 150;
1593 	sc->bge_tx_coal_ticks = 150;
1594 	sc->bge_rx_max_coal_bds = 64;
1595 	sc->bge_tx_max_coal_bds = 128;
1596 
1597 	/* 5705 limits RX return ring to 512 entries. */
1598 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1599 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1600 	else
1601 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1602 
1603 	/* Set up ifnet structure */
1604 	ifp->if_softc = sc;
1605 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1606 	ifp->if_ioctl = bge_ioctl;
1607 	ifp->if_start = bge_start;
1608 	ifp->if_watchdog = bge_watchdog;
1609 	ifp->if_init = bge_init;
1610 	ifp->if_mtu = ETHERMTU;
1611 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1612 	ifq_set_ready(&ifp->if_snd);
1613 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1614 	ifp->if_capabilities = IFCAP_HWCSUM;
1615 	ifp->if_capenable = ifp->if_capabilities;
1616 
1617 	/*
1618 	 * Figure out what sort of media we have by checking the
1619 	 * hardware config word in the first 32k of NIC internal memory,
1620 	 * or fall back to examining the EEPROM if necessary.
1621 	 * Note: on some BCM5700 cards, this value appears to be unset.
1622 	 * If that's the case, we have to rely on identifying the NIC
1623 	 * by its PCI subsystem ID, as we do below for the SysKonnect
1624 	 * SK-9D41.
1625 	 */
1626 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1627 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1628 	else {
1629 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
1630 				BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1631 		hwcfg = ntohl(hwcfg);
1632 	}
1633 
1634 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1635 		sc->bge_tbi = 1;
1636 
1637 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1638 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1639 		sc->bge_tbi = 1;
1640 
1641 	if (sc->bge_tbi) {
1642 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1643 		    bge_ifmedia_upd, bge_ifmedia_sts);
1644 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1645 		ifmedia_add(&sc->bge_ifmedia,
1646 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1647 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1648 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1649 	} else {
1650 		/*
1651 		 * Do transceiver setup.
1652 		 */
1653 		if (mii_phy_probe(dev, &sc->bge_miibus,
1654 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1655 			device_printf(dev, "MII without any PHY!\n");
1656 			bge_release_resources(sc);
1657 			bge_free_jumbo_mem(sc);
1658 			error = ENXIO;
1659 			goto fail;
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * When using the BCM5701 in PCI-X mode, data corruption has
1665 	 * been observed in the first few bytes of some received packets.
1666 	 * Aligning the packet buffer in memory eliminates the corruption.
1667 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1668 	 * which do not support unaligned accesses, we will realign the
1669 	 * payloads by copying the received packets.
1670 	 */
1671 	switch (sc->bge_chipid) {
1672 	case BGE_CHIPID_BCM5701_A0:
1673 	case BGE_CHIPID_BCM5701_B0:
1674 	case BGE_CHIPID_BCM5701_B2:
1675 	case BGE_CHIPID_BCM5701_B5:
1676 		/* If in PCI-X mode, work around the alignment bug. */
1677 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1678 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1679 		    BGE_PCISTATE_PCI_BUSSPEED)
1680 			sc->bge_rx_alignment_bug = 1;
1681 		break;
1682 	}
1683 
1684 	/*
1685 	 * Call MI attach routine.
1686 	 */
1687 	ether_ifattach(ifp, ether_addr);
1688 
1689 fail:
1690 	splx(s);
1691 
1692 	return(error);
1693 }
1694 
1695 static int
1696 bge_detach(device_t dev)
1697 {
1698 	struct bge_softc *sc;
1699 	struct ifnet *ifp;
1700 	int s;
1701 
1702 	s = splimp();
1703 
1704 	sc = device_get_softc(dev);
1705 	ifp = &sc->arpcom.ac_if;
1706 
1707 	ether_ifdetach(ifp);
1708 	bge_stop(sc);
1709 	bge_reset(sc);
1710 
1711 	if (sc->bge_tbi) {
1712 		ifmedia_removeall(&sc->bge_ifmedia);
1713 	} else {
1714 		bus_generic_detach(dev);
1715 		device_delete_child(dev, sc->bge_miibus);
1716 	}
1717 
1718 	bge_release_resources(sc);
1719 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1720 		bge_free_jumbo_mem(sc);
1721 
1722 	splx(s);
1723 
1724 	return(0);
1725 }
1726 
1727 static void
1728 bge_release_resources(struct bge_softc *sc)
1729 {
1730         device_t dev;
1731 
1732         dev = sc->bge_dev;
1733 
1734 	if (sc->bge_vpd_prodname != NULL)
1735 		free(sc->bge_vpd_prodname, M_DEVBUF);
1736 
1737 	if (sc->bge_vpd_readonly != NULL)
1738 		free(sc->bge_vpd_readonly, M_DEVBUF);
1739 
1740         if (sc->bge_intrhand != NULL)
1741                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1742 
1743         if (sc->bge_irq != NULL)
1744 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1745 
1746         if (sc->bge_res != NULL)
1747 		bus_release_resource(dev, SYS_RES_MEMORY,
1748 		    BGE_PCI_BAR0, sc->bge_res);
1749 
1750         if (sc->bge_rdata != NULL)
1751 		contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1752 			   M_DEVBUF);
1753 
1754         return;
1755 }
1756 
1757 static void
1758 bge_reset(struct bge_softc *sc)
1759 {
1760 	device_t dev;
1761 	uint32_t cachesize, command, pcistate;
1762 	int i, val = 0;
1763 
1764 	dev = sc->bge_dev;
1765 
1766 	/* Save some important PCI state. */
1767 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1768 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1769 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1770 
1771 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1772 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1773 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1774 
1775 	/* Issue global reset */
1776 	bge_writereg_ind(sc, BGE_MISC_CFG,
1777 			 BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1));
1778 
1779 	DELAY(1000);
1780 
1781 	/* Reset some of the PCI state that got zapped by reset */
1782 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1783 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1784 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1785 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1786 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1787 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1788 
1789 	/*
1790 	 * Prevent PXE restart: write a magic number to the
1791 	 * general communications memory at 0xB50.
1792 	 */
1793 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1794 	/*
1795 	 * Poll the value location we just wrote until
1796 	 * we see the 1's complement of the magic number.
1797 	 * This indicates that the firmware initialization
1798 	 * is complete.
1799 	 */
1800 	for (i = 0; i < BGE_TIMEOUT; i++) {
1801 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1802 		if (val == ~BGE_MAGIC_NUMBER)
1803 			break;
1804 		DELAY(10);
1805 	}
1806 
1807 	if (i == BGE_TIMEOUT) {
1808 		if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1809 		return;
1810 	}
1811 
1812 	/*
1813 	 * XXX Wait for the value of the PCISTATE register to
1814 	 * return to its original pre-reset state. This is a
1815 	 * fairly good indicator of reset completion. If we don't
1816 	 * wait for the reset to fully complete, trying to read
1817 	 * from the device's non-PCI registers may yield garbage
1818 	 * results.
1819 	 */
1820 	for (i = 0; i < BGE_TIMEOUT; i++) {
1821 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1822 			break;
1823 		DELAY(10);
1824 	}
1825 
1826 	/* Enable memory arbiter. */
1827 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1828 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1829 
1830 	/* Fix up byte swapping */
1831 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1832 	    BGE_MODECTL_BYTESWAP_DATA);
1833 
1834 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1835 
1836 	DELAY(10000);
1837 
1838 	return;
1839 }
1840 
1841 /*
1842  * Frame reception handling. This is called if there's a frame
1843  * on the receive return list.
1844  *
1845  * Note: we have to be able to handle two possibilities here:
1846  * 1) the frame is from the jumbo recieve ring
1847  * 2) the frame is from the standard receive ring
1848  */
1849 
1850 static void
1851 bge_rxeof(struct bge_softc *sc)
1852 {
1853 	struct ifnet *ifp;
1854 	int stdcnt = 0, jumbocnt = 0;
1855 
1856 	ifp = &sc->arpcom.ac_if;
1857 
1858 	while(sc->bge_rx_saved_considx !=
1859 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1860 		struct bge_rx_bd	*cur_rx;
1861 		uint32_t		rxidx;
1862 		struct mbuf		*m = NULL;
1863 		uint16_t		vlan_tag = 0;
1864 		int			have_tag = 0;
1865 
1866 		cur_rx =
1867 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1868 
1869 		rxidx = cur_rx->bge_idx;
1870 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1871 
1872 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1873 			have_tag = 1;
1874 			vlan_tag = cur_rx->bge_vlan_tag;
1875 		}
1876 
1877 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1878 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1879 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1880 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1881 			jumbocnt++;
1882 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1883 				ifp->if_ierrors++;
1884 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1885 				continue;
1886 			}
1887 			if (bge_newbuf_jumbo(sc,
1888 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1889 				ifp->if_ierrors++;
1890 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1891 				continue;
1892 			}
1893 		} else {
1894 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1895 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1896 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1897 			stdcnt++;
1898 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1899 				ifp->if_ierrors++;
1900 				bge_newbuf_std(sc, sc->bge_std, m);
1901 				continue;
1902 			}
1903 			if (bge_newbuf_std(sc, sc->bge_std,
1904 			    NULL) == ENOBUFS) {
1905 				ifp->if_ierrors++;
1906 				bge_newbuf_std(sc, sc->bge_std, m);
1907 				continue;
1908 			}
1909 		}
1910 
1911 		ifp->if_ipackets++;
1912 #ifndef __i386__
1913 		/*
1914 		 * The i386 allows unaligned accesses, but for other
1915 		 * platforms we must make sure the payload is aligned.
1916 		 */
1917 		if (sc->bge_rx_alignment_bug) {
1918 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1919 			    cur_rx->bge_len);
1920 			m->m_data += ETHER_ALIGN;
1921 		}
1922 #endif
1923 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
1924 		m->m_pkthdr.rcvif = ifp;
1925 
1926 #if 0 /* currently broken for some packets, possibly related to TCP options */
1927 		if (ifp->if_hwassist) {
1928 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1929 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
1930 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1931 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
1932 				m->m_pkthdr.csum_data =
1933 				    cur_rx->bge_tcp_udp_csum;
1934 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1935 			}
1936 		}
1937 #endif
1938 
1939 		/*
1940 		 * If we received a packet with a vlan tag, pass it
1941 		 * to vlan_input() instead of ether_input().
1942 		 */
1943 		if (have_tag) {
1944 			VLAN_INPUT_TAG(m, vlan_tag);
1945 			have_tag = vlan_tag = 0;
1946 			continue;
1947 		}
1948 
1949 		(*ifp->if_input)(ifp, m);
1950 	}
1951 
1952 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
1953 	if (stdcnt)
1954 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1955 	if (jumbocnt)
1956 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1957 }
1958 
1959 static void
1960 bge_txeof(struct bge_softc *sc)
1961 {
1962 	struct bge_tx_bd *cur_tx = NULL;
1963 	struct ifnet *ifp;
1964 
1965 	ifp = &sc->arpcom.ac_if;
1966 
1967 	/*
1968 	 * Go through our tx ring and free mbufs for those
1969 	 * frames that have been sent.
1970 	 */
1971 	while (sc->bge_tx_saved_considx !=
1972 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
1973 		uint32_t		idx = 0;
1974 
1975 		idx = sc->bge_tx_saved_considx;
1976 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
1977 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
1978 			ifp->if_opackets++;
1979 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
1980 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
1981 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
1982 		}
1983 		sc->bge_txcnt--;
1984 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
1985 		ifp->if_timer = 0;
1986 	}
1987 
1988 	if (cur_tx != NULL)
1989 		ifp->if_flags &= ~IFF_OACTIVE;
1990 }
1991 
1992 static void
1993 bge_intr(void *xsc)
1994 {
1995 	struct bge_softc *sc = xsc;
1996 	struct ifnet *ifp = &sc->arpcom.ac_if;
1997 	uint32_t status;
1998 
1999 #ifdef notdef
2000 	/* Avoid this for now -- checking this register is expensive. */
2001 	/* Make sure this is really our interrupt. */
2002 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2003 		return;
2004 #endif
2005 	/* Ack interrupt and stop others from occuring. */
2006 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2007 
2008 	/*
2009 	 * Process link state changes.
2010 	 * Grrr. The link status word in the status block does
2011 	 * not work correctly on the BCM5700 rev AX and BX chips,
2012 	 * according to all available information. Hence, we have
2013 	 * to enable MII interrupts in order to properly obtain
2014 	 * async link changes. Unfortunately, this also means that
2015 	 * we have to read the MAC status register to detect link
2016 	 * changes, thereby adding an additional register access to
2017 	 * the interrupt handler.
2018 	 */
2019 
2020 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2021 		status = CSR_READ_4(sc, BGE_MAC_STS);
2022 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2023 			sc->bge_link = 0;
2024 			callout_stop(&sc->bge_stat_timer);
2025 			bge_tick(sc);
2026 			/* Clear the interrupt */
2027 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2028 			    BGE_EVTENB_MI_INTERRUPT);
2029 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2030 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2031 			    BRGPHY_INTRS);
2032 		}
2033 	} else {
2034 		if ((sc->bge_rdata->bge_status_block.bge_status &
2035 		    BGE_STATFLAG_UPDATED) &&
2036 		    (sc->bge_rdata->bge_status_block.bge_status &
2037 		    BGE_STATFLAG_LINKSTATE_CHANGED)) {
2038 			sc->bge_rdata->bge_status_block.bge_status &=
2039 				~(BGE_STATFLAG_UPDATED|
2040 				BGE_STATFLAG_LINKSTATE_CHANGED);
2041 			/*
2042 			 * Sometimes PCS encoding errors are detected in
2043 			 * TBI mode (on fiber NICs), and for some reason
2044 			 * the chip will signal them as link changes.
2045 			 * If we get a link change event, but the 'PCS
2046 			 * encoding error' bit in the MAC status register
2047 			 * is set, don't bother doing a link check.
2048 			 * This avoids spurious "gigabit link up" messages
2049 			 * that sometimes appear on fiber NICs during
2050 			 * periods of heavy traffic. (There should be no
2051 			 * effect on copper NICs.)
2052 			 */
2053 			status = CSR_READ_4(sc, BGE_MAC_STS);
2054 			if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR|
2055 			    BGE_MACSTAT_MI_COMPLETE))) {
2056 				sc->bge_link = 0;
2057 				callout_stop(&sc->bge_stat_timer);
2058 				bge_tick(sc);
2059 			}
2060 			sc->bge_link = 0;
2061 			callout_stop(&sc->bge_stat_timer);
2062 			bge_tick(sc);
2063 			/* Clear the interrupt */
2064 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2065 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2066 			    BGE_MACSTAT_LINK_CHANGED);
2067 
2068 			/* Force flush the status block cached by PCI bridge */
2069 			CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2070 		}
2071 	}
2072 
2073 	if (ifp->if_flags & IFF_RUNNING) {
2074 		/* Check RX return ring producer/consumer */
2075 		bge_rxeof(sc);
2076 
2077 		/* Check TX ring producer/consumer */
2078 		bge_txeof(sc);
2079 	}
2080 
2081 	bge_handle_events(sc);
2082 
2083 	/* Re-enable interrupts. */
2084 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2085 
2086 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2087 		(*ifp->if_start)(ifp);
2088 }
2089 
2090 static void
2091 bge_tick(void *xsc)
2092 {
2093 	struct bge_softc *sc = xsc;
2094 	struct ifnet *ifp = &sc->arpcom.ac_if;
2095 	struct mii_data *mii = NULL;
2096 	struct ifmedia *ifm = NULL;
2097 	int s;
2098 
2099 	s = splimp();
2100 
2101 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
2102 		bge_stats_update_regs(sc);
2103 	else
2104 		bge_stats_update(sc);
2105 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2106 	if (sc->bge_link) {
2107 		splx(s);
2108 		return;
2109 	}
2110 
2111 	if (sc->bge_tbi) {
2112 		ifm = &sc->bge_ifmedia;
2113 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2114 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2115 			sc->bge_link++;
2116 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2117 			if_printf(ifp, "gigabit link up\n");
2118 			if (!ifq_is_empty(&ifp->if_snd))
2119 				(*ifp->if_start)(ifp);
2120 		}
2121 		splx(s);
2122 		return;
2123 	}
2124 
2125 	mii = device_get_softc(sc->bge_miibus);
2126 	mii_tick(mii);
2127 
2128 	if (!sc->bge_link) {
2129 		mii_pollstat(mii);
2130 		if (mii->mii_media_status & IFM_ACTIVE &&
2131 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2132 			sc->bge_link++;
2133 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2134 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2135 				if_printf(ifp, "gigabit link up\n");
2136 			if (!ifq_is_empty(&ifp->if_snd))
2137 				(*ifp->if_start)(ifp);
2138 		}
2139 	}
2140 
2141 	splx(s);
2142 }
2143 
2144 static void
2145 bge_stats_update_regs(struct bge_softc *sc)
2146 {
2147 	struct ifnet *ifp = &sc->arpcom.ac_if;
2148 	struct bge_mac_stats_regs stats;
2149 	uint32_t *s;
2150 	int i;
2151 
2152 	s = (uint32_t *)&stats;
2153 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2154 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
2155 		s++;
2156 	}
2157 
2158 	ifp->if_collisions +=
2159 	   (stats.dot3StatsSingleCollisionFrames +
2160 	   stats.dot3StatsMultipleCollisionFrames +
2161 	   stats.dot3StatsExcessiveCollisions +
2162 	   stats.dot3StatsLateCollisions) -
2163 	   ifp->if_collisions;
2164 }
2165 
2166 static void
2167 bge_stats_update(struct bge_softc *sc)
2168 {
2169 	struct ifnet *ifp = &sc->arpcom.ac_if;
2170 	struct bge_stats *stats;
2171 
2172 	stats = (struct bge_stats *)(sc->bge_vhandle +
2173 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2174 
2175 	ifp->if_collisions +=
2176 	   (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2177 	   stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2178 	   stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2179 	   stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2180 	   ifp->if_collisions;
2181 
2182 #ifdef notdef
2183 	ifp->if_collisions +=
2184 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2185 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2186 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2187 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2188 	   ifp->if_collisions;
2189 #endif
2190 }
2191 
2192 /*
2193  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2194  * pointers to descriptors.
2195  */
2196 static int
2197 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2198 {
2199 	struct bge_tx_bd *f = NULL;
2200 	struct mbuf *m;
2201 	uint32_t frag, cur, cnt = 0;
2202 	uint16_t csum_flags = 0;
2203 	struct ifvlan *ifv = NULL;
2204 
2205 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2206 	    m_head->m_pkthdr.rcvif != NULL &&
2207 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2208 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2209 
2210 	m = m_head;
2211 	cur = frag = *txidx;
2212 
2213 	if (m_head->m_pkthdr.csum_flags) {
2214 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2215 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2216 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2217 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2218 		if (m_head->m_flags & M_LASTFRAG)
2219 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2220 		else if (m_head->m_flags & M_FRAG)
2221 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2222 	}
2223 	/*
2224  	 * Start packing the mbufs in this chain into
2225 	 * the fragment pointers. Stop when we run out
2226  	 * of fragments or hit the end of the mbuf chain.
2227 	 */
2228 	for (m = m_head; m != NULL; m = m->m_next) {
2229 		if (m->m_len != 0) {
2230 			f = &sc->bge_rdata->bge_tx_ring[frag];
2231 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2232 				break;
2233 			BGE_HOSTADDR(f->bge_addr,
2234 			    vtophys(mtod(m, vm_offset_t)));
2235 			f->bge_len = m->m_len;
2236 			f->bge_flags = csum_flags;
2237 			if (ifv != NULL) {
2238 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2239 				f->bge_vlan_tag = ifv->ifv_tag;
2240 			} else {
2241 				f->bge_vlan_tag = 0;
2242 			}
2243 			/*
2244 			 * Sanity check: avoid coming within 16 descriptors
2245 			 * of the end of the ring.
2246 			 */
2247 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2248 				return(ENOBUFS);
2249 			cur = frag;
2250 			BGE_INC(frag, BGE_TX_RING_CNT);
2251 			cnt++;
2252 		}
2253 	}
2254 
2255 	if (m != NULL)
2256 		return(ENOBUFS);
2257 
2258 	if (frag == sc->bge_tx_saved_considx)
2259 		return(ENOBUFS);
2260 
2261 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2262 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2263 	sc->bge_txcnt += cnt;
2264 
2265 	*txidx = frag;
2266 
2267 	return(0);
2268 }
2269 
2270 /*
2271  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2272  * to the mbuf data regions directly in the transmit descriptors.
2273  */
2274 static void
2275 bge_start(struct ifnet *ifp)
2276 {
2277 	struct bge_softc *sc;
2278 	struct mbuf *m_head = NULL;
2279 	uint32_t prodidx = 0;
2280 
2281 	sc = ifp->if_softc;
2282 
2283 	if (!sc->bge_link)
2284 		return;
2285 
2286 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2287 
2288 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2289 		m_head = ifq_poll(&ifp->if_snd);
2290 		if (m_head == NULL)
2291 			break;
2292 
2293 		/*
2294 		 * XXX
2295 		 * safety overkill.  If this is a fragmented packet chain
2296 		 * with delayed TCP/UDP checksums, then only encapsulate
2297 		 * it if we have enough descriptors to handle the entire
2298 		 * chain at once.
2299 		 * (paranoia -- may not actually be needed)
2300 		 */
2301 		if (m_head->m_flags & M_FIRSTFRAG &&
2302 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2303 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2304 			    m_head->m_pkthdr.csum_data + 16) {
2305 				ifp->if_flags |= IFF_OACTIVE;
2306 				break;
2307 			}
2308 		}
2309 
2310 		/*
2311 		 * Pack the data into the transmit ring. If we
2312 		 * don't have room, set the OACTIVE flag and wait
2313 		 * for the NIC to drain the ring.
2314 		 */
2315 		if (bge_encap(sc, m_head, &prodidx)) {
2316 			ifp->if_flags |= IFF_OACTIVE;
2317 			break;
2318 		}
2319 		m_head = ifq_dequeue(&ifp->if_snd);
2320 
2321 		BPF_MTAP(ifp, m_head);
2322 	}
2323 
2324 	/* Transmit */
2325 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2326 	/* 5700 b2 errata */
2327 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2328 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2329 
2330 	/*
2331 	 * Set a timeout in case the chip goes out to lunch.
2332 	 */
2333 	ifp->if_timer = 5;
2334 }
2335 
2336 static void
2337 bge_init(void *xsc)
2338 {
2339 	struct bge_softc *sc = xsc;
2340 	struct ifnet *ifp = &sc->arpcom.ac_if;
2341 	uint16_t *m;
2342         int s;
2343 
2344 	s = splimp();
2345 
2346 	if (ifp->if_flags & IFF_RUNNING) {
2347 		splx(s);
2348 		return;
2349 	}
2350 
2351 	/* Cancel pending I/O and flush buffers. */
2352 	bge_stop(sc);
2353 	bge_reset(sc);
2354 	bge_chipinit(sc);
2355 
2356 	/*
2357 	 * Init the various state machines, ring
2358 	 * control blocks and firmware.
2359 	 */
2360 	if (bge_blockinit(sc)) {
2361 		if_printf(ifp, "initialization failure\n");
2362 		splx(s);
2363 		return;
2364 	}
2365 
2366 	/* Specify MTU. */
2367 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2368 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2369 
2370 	/* Load our MAC address. */
2371 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2372 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2373 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2374 
2375 	/* Enable or disable promiscuous mode as needed. */
2376 	if (ifp->if_flags & IFF_PROMISC) {
2377 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2378 	} else {
2379 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2380 	}
2381 
2382 	/* Program multicast filter. */
2383 	bge_setmulti(sc);
2384 
2385 	/* Init RX ring. */
2386 	bge_init_rx_ring_std(sc);
2387 
2388 	/*
2389 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2390 	 * memory to insure that the chip has in fact read the first
2391 	 * entry of the ring.
2392 	 */
2393 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2394 		uint32_t		v, i;
2395 		for (i = 0; i < 10; i++) {
2396 			DELAY(20);
2397 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2398 			if (v == (MCLBYTES - ETHER_ALIGN))
2399 				break;
2400 		}
2401 		if (i == 10)
2402 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2403 	}
2404 
2405 	/* Init jumbo RX ring. */
2406 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2407 		bge_init_rx_ring_jumbo(sc);
2408 
2409 	/* Init our RX return ring index */
2410 	sc->bge_rx_saved_considx = 0;
2411 
2412 	/* Init TX ring. */
2413 	bge_init_tx_ring(sc);
2414 
2415 	/* Turn on transmitter */
2416 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2417 
2418 	/* Turn on receiver */
2419 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2420 
2421 	/* Tell firmware we're alive. */
2422 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2423 
2424 	/* Enable host interrupts. */
2425 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2426 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2427 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2428 
2429 	bge_ifmedia_upd(ifp);
2430 
2431 	ifp->if_flags |= IFF_RUNNING;
2432 	ifp->if_flags &= ~IFF_OACTIVE;
2433 
2434 	splx(s);
2435 
2436 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2437 }
2438 
2439 /*
2440  * Set media options.
2441  */
2442 static int
2443 bge_ifmedia_upd(struct ifnet *ifp)
2444 {
2445 	struct bge_softc *sc = ifp->if_softc;
2446 	struct ifmedia *ifm = &sc->bge_ifmedia;
2447 	struct mii_data *mii;
2448 
2449 	/* If this is a 1000baseX NIC, enable the TBI port. */
2450 	if (sc->bge_tbi) {
2451 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2452 			return(EINVAL);
2453 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2454 		case IFM_AUTO:
2455 			break;
2456 		case IFM_1000_SX:
2457 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2458 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2459 				    BGE_MACMODE_HALF_DUPLEX);
2460 			} else {
2461 				BGE_SETBIT(sc, BGE_MAC_MODE,
2462 				    BGE_MACMODE_HALF_DUPLEX);
2463 			}
2464 			break;
2465 		default:
2466 			return(EINVAL);
2467 		}
2468 		return(0);
2469 	}
2470 
2471 	mii = device_get_softc(sc->bge_miibus);
2472 	sc->bge_link = 0;
2473 	if (mii->mii_instance) {
2474 		struct mii_softc *miisc;
2475 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2476 		    miisc = LIST_NEXT(miisc, mii_list))
2477 			mii_phy_reset(miisc);
2478 	}
2479 	mii_mediachg(mii);
2480 
2481 	return(0);
2482 }
2483 
2484 /*
2485  * Report current media status.
2486  */
2487 static void
2488 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2489 {
2490 	struct bge_softc *sc = ifp->if_softc;
2491 	struct mii_data *mii;
2492 
2493 	if (sc->bge_tbi) {
2494 		ifmr->ifm_status = IFM_AVALID;
2495 		ifmr->ifm_active = IFM_ETHER;
2496 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2497 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2498 			ifmr->ifm_status |= IFM_ACTIVE;
2499 		ifmr->ifm_active |= IFM_1000_SX;
2500 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2501 			ifmr->ifm_active |= IFM_HDX;
2502 		else
2503 			ifmr->ifm_active |= IFM_FDX;
2504 		return;
2505 	}
2506 
2507 	mii = device_get_softc(sc->bge_miibus);
2508 	mii_pollstat(mii);
2509 	ifmr->ifm_active = mii->mii_media_active;
2510 	ifmr->ifm_status = mii->mii_media_status;
2511 }
2512 
2513 static int
2514 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2515 {
2516 	struct bge_softc *sc = ifp->if_softc;
2517 	struct ifreq *ifr = (struct ifreq *) data;
2518 	int s, mask, error = 0;
2519 	struct mii_data *mii;
2520 
2521 	s = splimp();
2522 
2523 	switch(command) {
2524 	case SIOCSIFMTU:
2525 		/* Disallow jumbo frames on 5705. */
2526 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2527 		    ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2528 			error = EINVAL;
2529 		else {
2530 			ifp->if_mtu = ifr->ifr_mtu;
2531 			ifp->if_flags &= ~IFF_RUNNING;
2532 			bge_init(sc);
2533 		}
2534 		break;
2535 	case SIOCSIFFLAGS:
2536 		if (ifp->if_flags & IFF_UP) {
2537 			/*
2538 			 * If only the state of the PROMISC flag changed,
2539 			 * then just use the 'set promisc mode' command
2540 			 * instead of reinitializing the entire NIC. Doing
2541 			 * a full re-init means reloading the firmware and
2542 			 * waiting for it to start up, which may take a
2543 			 * second or two.
2544 			 */
2545 			if (ifp->if_flags & IFF_RUNNING &&
2546 			    ifp->if_flags & IFF_PROMISC &&
2547 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2548 				BGE_SETBIT(sc, BGE_RX_MODE,
2549 				    BGE_RXMODE_RX_PROMISC);
2550 			} else if (ifp->if_flags & IFF_RUNNING &&
2551 			    !(ifp->if_flags & IFF_PROMISC) &&
2552 			    sc->bge_if_flags & IFF_PROMISC) {
2553 				BGE_CLRBIT(sc, BGE_RX_MODE,
2554 				    BGE_RXMODE_RX_PROMISC);
2555 			} else
2556 				bge_init(sc);
2557 		} else {
2558 			if (ifp->if_flags & IFF_RUNNING) {
2559 				bge_stop(sc);
2560 			}
2561 		}
2562 		sc->bge_if_flags = ifp->if_flags;
2563 		error = 0;
2564 		break;
2565 	case SIOCADDMULTI:
2566 	case SIOCDELMULTI:
2567 		if (ifp->if_flags & IFF_RUNNING) {
2568 			bge_setmulti(sc);
2569 			error = 0;
2570 		}
2571 		break;
2572 	case SIOCSIFMEDIA:
2573 	case SIOCGIFMEDIA:
2574 		if (sc->bge_tbi) {
2575 			error = ifmedia_ioctl(ifp, ifr,
2576 			    &sc->bge_ifmedia, command);
2577 		} else {
2578 			mii = device_get_softc(sc->bge_miibus);
2579 			error = ifmedia_ioctl(ifp, ifr,
2580 			    &mii->mii_media, command);
2581 		}
2582 		break;
2583         case SIOCSIFCAP:
2584 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2585 		if (mask & IFCAP_HWCSUM) {
2586 			if (IFCAP_HWCSUM & ifp->if_capenable)
2587 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2588 			else
2589 				ifp->if_capenable |= IFCAP_HWCSUM;
2590 		}
2591 		error = 0;
2592 		break;
2593 	default:
2594 		error = ether_ioctl(ifp, command, data);
2595 		break;
2596 	}
2597 
2598 	splx(s);
2599 
2600 	return(error);
2601 }
2602 
2603 static void
2604 bge_watchdog(struct ifnet *ifp)
2605 {
2606 	struct bge_softc *sc = ifp->if_softc;
2607 
2608 	if_printf(ifp, "watchdog timeout -- resetting\n");
2609 
2610 	ifp->if_flags &= ~IFF_RUNNING;
2611 	bge_init(sc);
2612 
2613 	ifp->if_oerrors++;
2614 }
2615 
2616 /*
2617  * Stop the adapter and free any mbufs allocated to the
2618  * RX and TX lists.
2619  */
2620 static void
2621 bge_stop(struct bge_softc *sc)
2622 {
2623 	struct ifnet *ifp = &sc->arpcom.ac_if;
2624 	struct ifmedia_entry *ifm;
2625 	struct mii_data *mii = NULL;
2626 	int mtmp, itmp;
2627 
2628 	if (!sc->bge_tbi)
2629 		mii = device_get_softc(sc->bge_miibus);
2630 
2631 	callout_stop(&sc->bge_stat_timer);
2632 
2633 	/*
2634 	 * Disable all of the receiver blocks
2635 	 */
2636 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2637 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2638 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2639 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2640 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2641 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2642 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2643 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2644 
2645 	/*
2646 	 * Disable all of the transmit blocks
2647 	 */
2648 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2649 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2650 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2651 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2652 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2653 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2654 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2655 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2656 
2657 	/*
2658 	 * Shut down all of the memory managers and related
2659 	 * state machines.
2660 	 */
2661 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2662 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2663 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2664 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2665 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2666 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2667 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
2668 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2669 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2670 	}
2671 
2672 	/* Disable host interrupts. */
2673 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2674 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2675 
2676 	/*
2677 	 * Tell firmware we're shutting down.
2678 	 */
2679 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2680 
2681 	/* Free the RX lists. */
2682 	bge_free_rx_ring_std(sc);
2683 
2684 	/* Free jumbo RX list. */
2685 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2686 		bge_free_rx_ring_jumbo(sc);
2687 
2688 	/* Free TX buffers. */
2689 	bge_free_tx_ring(sc);
2690 
2691 	/*
2692 	 * Isolate/power down the PHY, but leave the media selection
2693 	 * unchanged so that things will be put back to normal when
2694 	 * we bring the interface back up.
2695 	 */
2696 	if (!sc->bge_tbi) {
2697 		itmp = ifp->if_flags;
2698 		ifp->if_flags |= IFF_UP;
2699 		ifm = mii->mii_media.ifm_cur;
2700 		mtmp = ifm->ifm_media;
2701 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2702 		mii_mediachg(mii);
2703 		ifm->ifm_media = mtmp;
2704 		ifp->if_flags = itmp;
2705 	}
2706 
2707 	sc->bge_link = 0;
2708 
2709 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2710 
2711 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2712 }
2713 
2714 /*
2715  * Stop all chip I/O so that the kernel's probe routines don't
2716  * get confused by errant DMAs when rebooting.
2717  */
2718 static void
2719 bge_shutdown(device_t dev)
2720 {
2721 	struct bge_softc *sc = device_get_softc(dev);
2722 
2723 	bge_stop(sc);
2724 	bge_reset(sc);
2725 }
2726