xref: /dflybsd-src/sys/dev/netif/bge/if_bge.c (revision a7227fc2267b075a342210d0f9ce841e7cf5b6ac)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include "opt_polling.h"
74 
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89 
90 #include <net/bpf.h>
91 #include <net/ethernet.h>
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_types.h>
97 #include <net/ifq_var.h>
98 #include <net/vlan/if_vlan_var.h>
99 #include <net/vlan/if_vlan_ether.h>
100 
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
103 #include <dev/netif/mii_layer/brgphyreg.h>
104 
105 #include <bus/pci/pcidevs.h>
106 #include <bus/pci/pcireg.h>
107 #include <bus/pci/pcivar.h>
108 
109 #include <dev/netif/bge/if_bgereg.h>
110 #include <dev/netif/bge/if_bgevar.h>
111 
112 /* "device miibus" required.  See GENERIC if you get errors here. */
113 #include "miibus_if.h"
114 
115 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
116 
117 static const struct bge_type {
118 	uint16_t		bge_vid;
119 	uint16_t		bge_did;
120 	char			*bge_name;
121 } bge_devs[] = {
122 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
123 		"3COM 3C996 Gigabit Ethernet" },
124 
125 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
126 		"Alteon BCM5700 Gigabit Ethernet" },
127 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
128 		"Alteon BCM5701 Gigabit Ethernet" },
129 
130 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
131 		"Altima AC1000 Gigabit Ethernet" },
132 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
133 		"Altima AC1002 Gigabit Ethernet" },
134 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
135 		"Altima AC9100 Gigabit Ethernet" },
136 
137 	{ PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
138 		"Apple BCM5701 Gigabit Ethernet" },
139 
140 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
141 		"Broadcom BCM5700 Gigabit Ethernet" },
142 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
143 		"Broadcom BCM5701 Gigabit Ethernet" },
144 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
145 		"Broadcom BCM5702 Gigabit Ethernet" },
146 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
147 		"Broadcom BCM5702X Gigabit Ethernet" },
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
149 		"Broadcom BCM5702 Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
151 		"Broadcom BCM5703 Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
153 		"Broadcom BCM5703X Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
155 		"Broadcom BCM5703 Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
157 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
159 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
161 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
163 		"Broadcom BCM5705 Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
165 		"Broadcom BCM5705F Gigabit Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
167 		"Broadcom BCM5705K Gigabit Ethernet" },
168 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
169 		"Broadcom BCM5705M Gigabit Ethernet" },
170 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
171 		"Broadcom BCM5705M Gigabit Ethernet" },
172 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
173 		"Broadcom BCM5714C Gigabit Ethernet" },
174 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
175 		"Broadcom BCM5714S Gigabit Ethernet" },
176 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
177 		"Broadcom BCM5715 Gigabit Ethernet" },
178 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
179 		"Broadcom BCM5715S Gigabit Ethernet" },
180 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
181 		"Broadcom BCM5720 Gigabit Ethernet" },
182 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
183 		"Broadcom BCM5721 Gigabit Ethernet" },
184 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
185 		"Broadcom BCM5722 Gigabit Ethernet" },
186 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
187 		"Broadcom BCM5723 Gigabit Ethernet" },
188 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
189 		"Broadcom BCM5750 Gigabit Ethernet" },
190 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
191 		"Broadcom BCM5750M Gigabit Ethernet" },
192 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
193 		"Broadcom BCM5751 Gigabit Ethernet" },
194 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
195 		"Broadcom BCM5751F Gigabit Ethernet" },
196 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
197 		"Broadcom BCM5751M Gigabit Ethernet" },
198 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
199 		"Broadcom BCM5752 Gigabit Ethernet" },
200 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
201 		"Broadcom BCM5752M Gigabit Ethernet" },
202 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
203 		"Broadcom BCM5753 Gigabit Ethernet" },
204 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
205 		"Broadcom BCM5753F Gigabit Ethernet" },
206 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
207 		"Broadcom BCM5753M Gigabit Ethernet" },
208 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
209 		"Broadcom BCM5754 Gigabit Ethernet" },
210 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
211 		"Broadcom BCM5754M Gigabit Ethernet" },
212 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
213 		"Broadcom BCM5755 Gigabit Ethernet" },
214 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
215 		"Broadcom BCM5755M Gigabit Ethernet" },
216 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
217 		"Broadcom BCM5756 Gigabit Ethernet" },
218 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
219 		"Broadcom BCM5761 Gigabit Ethernet" },
220 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
221 		"Broadcom BCM5761E Gigabit Ethernet" },
222 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
223 		"Broadcom BCM5761S Gigabit Ethernet" },
224 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
225 		"Broadcom BCM5761SE Gigabit Ethernet" },
226 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
227 		"Broadcom BCM5764 Gigabit Ethernet" },
228 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
229 		"Broadcom BCM5780 Gigabit Ethernet" },
230 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
231 		"Broadcom BCM5780S Gigabit Ethernet" },
232 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
233 		"Broadcom BCM5781 Gigabit Ethernet" },
234 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
235 		"Broadcom BCM5782 Gigabit Ethernet" },
236 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
237 		"Broadcom BCM5784 Gigabit Ethernet" },
238 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
239 		"Broadcom BCM5785F Gigabit Ethernet" },
240 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
241 		"Broadcom BCM5785G Gigabit Ethernet" },
242 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
243 		"Broadcom BCM5786 Gigabit Ethernet" },
244 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
245 		"Broadcom BCM5787 Gigabit Ethernet" },
246 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
247 		"Broadcom BCM5787F Gigabit Ethernet" },
248 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
249 		"Broadcom BCM5787M Gigabit Ethernet" },
250 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
251 		"Broadcom BCM5788 Gigabit Ethernet" },
252 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
253 		"Broadcom BCM5789 Gigabit Ethernet" },
254 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
255 		"Broadcom BCM5901 Fast Ethernet" },
256 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
257 		"Broadcom BCM5901A2 Fast Ethernet" },
258 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
259 		"Broadcom BCM5903M Fast Ethernet" },
260 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
261 		"Broadcom BCM5906 Fast Ethernet"},
262 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
263 		"Broadcom BCM5906M Fast Ethernet"},
264 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
265 		"Broadcom BCM57760 Gigabit Ethernet"},
266 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
267 		"Broadcom BCM57780 Gigabit Ethernet"},
268 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
269 		"Broadcom BCM57788 Gigabit Ethernet"},
270 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
271 		"Broadcom BCM57790 Gigabit Ethernet"},
272 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
273 		"SysKonnect Gigabit Ethernet" },
274 
275 	{ 0, 0, NULL }
276 };
277 
278 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
279 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
280 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
281 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
282 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
283 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
284 #define BGE_IS_5788(sc)			((sc)->bge_flags & BGE_FLAG_5788)
285 
286 #define BGE_IS_CRIPPLED(sc)		\
287 	(BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
288 
289 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
290 
291 static int	bge_probe(device_t);
292 static int	bge_attach(device_t);
293 static int	bge_detach(device_t);
294 static void	bge_txeof(struct bge_softc *, uint16_t);
295 static void	bge_rxeof(struct bge_softc *, uint16_t);
296 
297 static void	bge_tick(void *);
298 static void	bge_stats_update(struct bge_softc *);
299 static void	bge_stats_update_regs(struct bge_softc *);
300 static struct mbuf *
301 		bge_defrag_shortdma(struct mbuf *);
302 static int	bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
303 
304 #ifdef DEVICE_POLLING
305 static void	bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
306 #endif
307 static void	bge_intr_crippled(void *);
308 static void	bge_intr_legacy(void *);
309 static void	bge_msi(void *);
310 static void	bge_msi_oneshot(void *);
311 static void	bge_intr(struct bge_softc *);
312 static void	bge_enable_intr(struct bge_softc *);
313 static void	bge_disable_intr(struct bge_softc *);
314 static void	bge_start(struct ifnet *);
315 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
316 static void	bge_init(void *);
317 static void	bge_stop(struct bge_softc *);
318 static void	bge_watchdog(struct ifnet *);
319 static void	bge_shutdown(device_t);
320 static int	bge_suspend(device_t);
321 static int	bge_resume(device_t);
322 static int	bge_ifmedia_upd(struct ifnet *);
323 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
324 
325 static uint8_t	bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
326 static int	bge_read_nvram(struct bge_softc *, caddr_t, int, int);
327 
328 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
329 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
330 
331 static void	bge_setmulti(struct bge_softc *);
332 static void	bge_setpromisc(struct bge_softc *);
333 static void	bge_enable_msi(struct bge_softc *sc);
334 
335 static int	bge_alloc_jumbo_mem(struct bge_softc *);
336 static void	bge_free_jumbo_mem(struct bge_softc *);
337 static struct bge_jslot
338 		*bge_jalloc(struct bge_softc *);
339 static void	bge_jfree(void *);
340 static void	bge_jref(void *);
341 static int	bge_newbuf_std(struct bge_softc *, int, int);
342 static int	bge_newbuf_jumbo(struct bge_softc *, int, int);
343 static void	bge_setup_rxdesc_std(struct bge_softc *, int);
344 static void	bge_setup_rxdesc_jumbo(struct bge_softc *, int);
345 static int	bge_init_rx_ring_std(struct bge_softc *);
346 static void	bge_free_rx_ring_std(struct bge_softc *);
347 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
348 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
349 static void	bge_free_tx_ring(struct bge_softc *);
350 static int	bge_init_tx_ring(struct bge_softc *);
351 
352 static int	bge_chipinit(struct bge_softc *);
353 static int	bge_blockinit(struct bge_softc *);
354 static void	bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
355 
356 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
357 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
358 #ifdef notdef
359 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
360 #endif
361 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
362 static void	bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
363 static void	bge_writembx(struct bge_softc *, int, int);
364 
365 static int	bge_miibus_readreg(device_t, int, int);
366 static int	bge_miibus_writereg(device_t, int, int, int);
367 static void	bge_miibus_statchg(device_t);
368 static void	bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
369 static void	bge_tbi_link_upd(struct bge_softc *, uint32_t);
370 static void	bge_copper_link_upd(struct bge_softc *, uint32_t);
371 static void	bge_autopoll_link_upd(struct bge_softc *, uint32_t);
372 static void	bge_link_poll(struct bge_softc *);
373 
374 static void	bge_reset(struct bge_softc *);
375 
376 static int	bge_dma_alloc(struct bge_softc *);
377 static void	bge_dma_free(struct bge_softc *);
378 static int	bge_dma_block_alloc(struct bge_softc *, bus_size_t,
379 				    bus_dma_tag_t *, bus_dmamap_t *,
380 				    void **, bus_addr_t *);
381 static void	bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
382 
383 static int	bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
384 static int	bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
385 static int	bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
386 static int	bge_get_eaddr(struct bge_softc *, uint8_t[]);
387 
388 static void	bge_coal_change(struct bge_softc *);
389 static int	bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
390 static int	bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
391 static int	bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
392 static int	bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
393 static int	bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
394 static int	bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
395 static int	bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
396 static int	bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
397 static int	bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
398 		    int, int, uint32_t);
399 
400 /*
401  * Set following tunable to 1 for some IBM blade servers with the DNLK
402  * switch module. Auto negotiation is broken for those configurations.
403  */
404 static int	bge_fake_autoneg = 0;
405 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
406 
407 static int	bge_msi_enable = 1;
408 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
409 
410 #if !defined(KTR_IF_BGE)
411 #define KTR_IF_BGE	KTR_ALL
412 #endif
413 KTR_INFO_MASTER(if_bge);
414 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
415 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
416 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
417 #define logif(name)	KTR_LOG(if_bge_ ## name)
418 
419 static device_method_t bge_methods[] = {
420 	/* Device interface */
421 	DEVMETHOD(device_probe,		bge_probe),
422 	DEVMETHOD(device_attach,	bge_attach),
423 	DEVMETHOD(device_detach,	bge_detach),
424 	DEVMETHOD(device_shutdown,	bge_shutdown),
425 	DEVMETHOD(device_suspend,	bge_suspend),
426 	DEVMETHOD(device_resume,	bge_resume),
427 
428 	/* bus interface */
429 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
430 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
431 
432 	/* MII interface */
433 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
434 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
435 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
436 
437 	{ 0, 0 }
438 };
439 
440 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
441 static devclass_t bge_devclass;
442 
443 DECLARE_DUMMY_MODULE(if_bge);
444 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
445 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
446 
447 static uint32_t
448 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
449 {
450 	device_t dev = sc->bge_dev;
451 	uint32_t val;
452 
453 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
454 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
455 		return 0;
456 
457 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
458 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
459 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
460 	return (val);
461 }
462 
463 static void
464 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
465 {
466 	device_t dev = sc->bge_dev;
467 
468 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
469 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
470 		return;
471 
472 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
473 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
474 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
475 }
476 
477 #ifdef notdef
478 static uint32_t
479 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
480 {
481 	device_t dev = sc->bge_dev;
482 
483 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
484 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
485 }
486 #endif
487 
488 static void
489 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
490 {
491 	device_t dev = sc->bge_dev;
492 
493 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
494 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
495 }
496 
497 static void
498 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
499 {
500 	CSR_WRITE_4(sc, off, val);
501 }
502 
503 static void
504 bge_writembx(struct bge_softc *sc, int off, int val)
505 {
506 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
507 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
508 
509 	CSR_WRITE_4(sc, off, val);
510 	if (sc->bge_mbox_reorder)
511 		CSR_READ_4(sc, off);
512 }
513 
514 static uint8_t
515 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
516 {
517 	uint32_t access, byte = 0;
518 	int i;
519 
520 	/* Lock. */
521 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
522 	for (i = 0; i < 8000; i++) {
523 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
524 			break;
525 		DELAY(20);
526 	}
527 	if (i == 8000)
528 		return (1);
529 
530 	/* Enable access. */
531 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
532 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
533 
534 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
535 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
536 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
537 		DELAY(10);
538 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
539 			DELAY(10);
540 			break;
541 		}
542 	}
543 
544 	if (i == BGE_TIMEOUT * 10) {
545 		if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
546 		return (1);
547 	}
548 
549 	/* Get result. */
550 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
551 
552 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
553 
554 	/* Disable access. */
555 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
556 
557 	/* Unlock. */
558 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
559 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
560 
561 	return (0);
562 }
563 
564 /*
565  * Read a sequence of bytes from NVRAM.
566  */
567 static int
568 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
569 {
570 	int err = 0, i;
571 	uint8_t byte = 0;
572 
573 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
574 		return (1);
575 
576 	for (i = 0; i < cnt; i++) {
577 		err = bge_nvram_getbyte(sc, off + i, &byte);
578 		if (err)
579 			break;
580 		*(dest + i) = byte;
581 	}
582 
583 	return (err ? 1 : 0);
584 }
585 
586 /*
587  * Read a byte of data stored in the EEPROM at address 'addr.' The
588  * BCM570x supports both the traditional bitbang interface and an
589  * auto access interface for reading the EEPROM. We use the auto
590  * access method.
591  */
592 static uint8_t
593 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
594 {
595 	int i;
596 	uint32_t byte = 0;
597 
598 	/*
599 	 * Enable use of auto EEPROM access so we can avoid
600 	 * having to use the bitbang method.
601 	 */
602 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
603 
604 	/* Reset the EEPROM, load the clock period. */
605 	CSR_WRITE_4(sc, BGE_EE_ADDR,
606 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
607 	DELAY(20);
608 
609 	/* Issue the read EEPROM command. */
610 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
611 
612 	/* Wait for completion */
613 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
614 		DELAY(10);
615 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
616 			break;
617 	}
618 
619 	if (i == BGE_TIMEOUT) {
620 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
621 		return(1);
622 	}
623 
624 	/* Get result. */
625 	byte = CSR_READ_4(sc, BGE_EE_DATA);
626 
627         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
628 
629 	return(0);
630 }
631 
632 /*
633  * Read a sequence of bytes from the EEPROM.
634  */
635 static int
636 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
637 {
638 	size_t i;
639 	int err;
640 	uint8_t byte;
641 
642 	for (byte = 0, err = 0, i = 0; i < len; i++) {
643 		err = bge_eeprom_getbyte(sc, off + i, &byte);
644 		if (err)
645 			break;
646 		*(dest + i) = byte;
647 	}
648 
649 	return(err ? 1 : 0);
650 }
651 
652 static int
653 bge_miibus_readreg(device_t dev, int phy, int reg)
654 {
655 	struct bge_softc *sc = device_get_softc(dev);
656 	uint32_t val;
657 	int i;
658 
659 	KASSERT(phy == sc->bge_phyno,
660 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
661 
662 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
663 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
664 		CSR_WRITE_4(sc, BGE_MI_MODE,
665 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
666 		DELAY(80);
667 	}
668 
669 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
670 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
671 
672 	/* Poll for the PHY register access to complete. */
673 	for (i = 0; i < BGE_TIMEOUT; i++) {
674 		DELAY(10);
675 		val = CSR_READ_4(sc, BGE_MI_COMM);
676 		if ((val & BGE_MICOMM_BUSY) == 0) {
677 			DELAY(5);
678 			val = CSR_READ_4(sc, BGE_MI_COMM);
679 			break;
680 		}
681 	}
682 	if (i == BGE_TIMEOUT) {
683 		if_printf(&sc->arpcom.ac_if, "PHY read timed out "
684 		    "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
685 		val = 0;
686 	}
687 
688 	/* Restore the autopoll bit if necessary. */
689 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
690 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
691 		DELAY(80);
692 	}
693 
694 	if (val & BGE_MICOMM_READFAIL)
695 		return 0;
696 
697 	return (val & 0xFFFF);
698 }
699 
700 static int
701 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
702 {
703 	struct bge_softc *sc = device_get_softc(dev);
704 	int i;
705 
706 	KASSERT(phy == sc->bge_phyno,
707 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
708 
709 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
710 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
711 	       return 0;
712 
713 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
714 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
715 		CSR_WRITE_4(sc, BGE_MI_MODE,
716 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
717 		DELAY(80);
718 	}
719 
720 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
721 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
722 
723 	for (i = 0; i < BGE_TIMEOUT; i++) {
724 		DELAY(10);
725 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
726 			DELAY(5);
727 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
728 			break;
729 		}
730 	}
731 	if (i == BGE_TIMEOUT) {
732 		if_printf(&sc->arpcom.ac_if, "PHY write timed out "
733 		    "(phy %d, reg %d, val %d)\n", phy, reg, val);
734 	}
735 
736 	/* Restore the autopoll bit if necessary. */
737 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
738 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
739 		DELAY(80);
740 	}
741 
742 	return 0;
743 }
744 
745 static void
746 bge_miibus_statchg(device_t dev)
747 {
748 	struct bge_softc *sc;
749 	struct mii_data *mii;
750 
751 	sc = device_get_softc(dev);
752 	mii = device_get_softc(sc->bge_miibus);
753 
754 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
755 	    (IFM_ACTIVE | IFM_AVALID)) {
756 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
757 		case IFM_10_T:
758 		case IFM_100_TX:
759 			sc->bge_link = 1;
760 			break;
761 		case IFM_1000_T:
762 		case IFM_1000_SX:
763 		case IFM_2500_SX:
764 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
765 				sc->bge_link = 1;
766 			else
767 				sc->bge_link = 0;
768 			break;
769 		default:
770 			sc->bge_link = 0;
771 			break;
772 		}
773 	} else {
774 		sc->bge_link = 0;
775 	}
776 	if (sc->bge_link == 0)
777 		return;
778 
779 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
780 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
781 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
782 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
783 	} else {
784 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
785 	}
786 
787 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
788 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
789 	} else {
790 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
791 	}
792 }
793 
794 /*
795  * Memory management for jumbo frames.
796  */
797 static int
798 bge_alloc_jumbo_mem(struct bge_softc *sc)
799 {
800 	struct ifnet *ifp = &sc->arpcom.ac_if;
801 	struct bge_jslot *entry;
802 	uint8_t *ptr;
803 	bus_addr_t paddr;
804 	int i, error;
805 
806 	/*
807 	 * Create tag for jumbo mbufs.
808 	 * This is really a bit of a kludge. We allocate a special
809 	 * jumbo buffer pool which (thanks to the way our DMA
810 	 * memory allocation works) will consist of contiguous
811 	 * pages. This means that even though a jumbo buffer might
812 	 * be larger than a page size, we don't really need to
813 	 * map it into more than one DMA segment. However, the
814 	 * default mbuf tag will result in multi-segment mappings,
815 	 * so we have to create a special jumbo mbuf tag that
816 	 * lets us get away with mapping the jumbo buffers as
817 	 * a single segment. I think eventually the driver should
818 	 * be changed so that it uses ordinary mbufs and cluster
819 	 * buffers, i.e. jumbo frames can span multiple DMA
820 	 * descriptors. But that's a project for another day.
821 	 */
822 
823 	/*
824 	 * Create DMA stuffs for jumbo RX ring.
825 	 */
826 	error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
827 				    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
828 				    &sc->bge_cdata.bge_rx_jumbo_ring_map,
829 				    (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
830 				    &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
831 	if (error) {
832 		if_printf(ifp, "could not create jumbo RX ring\n");
833 		return error;
834 	}
835 
836 	/*
837 	 * Create DMA stuffs for jumbo buffer block.
838 	 */
839 	error = bge_dma_block_alloc(sc, BGE_JMEM,
840 				    &sc->bge_cdata.bge_jumbo_tag,
841 				    &sc->bge_cdata.bge_jumbo_map,
842 				    (void **)&sc->bge_ldata.bge_jumbo_buf,
843 				    &paddr);
844 	if (error) {
845 		if_printf(ifp, "could not create jumbo buffer\n");
846 		return error;
847 	}
848 
849 	SLIST_INIT(&sc->bge_jfree_listhead);
850 
851 	/*
852 	 * Now divide it up into 9K pieces and save the addresses
853 	 * in an array. Note that we play an evil trick here by using
854 	 * the first few bytes in the buffer to hold the the address
855 	 * of the softc structure for this interface. This is because
856 	 * bge_jfree() needs it, but it is called by the mbuf management
857 	 * code which will not pass it to us explicitly.
858 	 */
859 	for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
860 		entry = &sc->bge_cdata.bge_jslots[i];
861 		entry->bge_sc = sc;
862 		entry->bge_buf = ptr;
863 		entry->bge_paddr = paddr;
864 		entry->bge_inuse = 0;
865 		entry->bge_slot = i;
866 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
867 
868 		ptr += BGE_JLEN;
869 		paddr += BGE_JLEN;
870 	}
871 	return 0;
872 }
873 
874 static void
875 bge_free_jumbo_mem(struct bge_softc *sc)
876 {
877 	/* Destroy jumbo RX ring. */
878 	bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
879 			   sc->bge_cdata.bge_rx_jumbo_ring_map,
880 			   sc->bge_ldata.bge_rx_jumbo_ring);
881 
882 	/* Destroy jumbo buffer block. */
883 	bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
884 			   sc->bge_cdata.bge_jumbo_map,
885 			   sc->bge_ldata.bge_jumbo_buf);
886 }
887 
888 /*
889  * Allocate a jumbo buffer.
890  */
891 static struct bge_jslot *
892 bge_jalloc(struct bge_softc *sc)
893 {
894 	struct bge_jslot *entry;
895 
896 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
897 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
898 	if (entry) {
899 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
900 		entry->bge_inuse = 1;
901 	} else {
902 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
903 	}
904 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
905 	return(entry);
906 }
907 
908 /*
909  * Adjust usage count on a jumbo buffer.
910  */
911 static void
912 bge_jref(void *arg)
913 {
914 	struct bge_jslot *entry = (struct bge_jslot *)arg;
915 	struct bge_softc *sc = entry->bge_sc;
916 
917 	if (sc == NULL)
918 		panic("bge_jref: can't find softc pointer!");
919 
920 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
921 		panic("bge_jref: asked to reference buffer "
922 		    "that we don't manage!");
923 	} else if (entry->bge_inuse == 0) {
924 		panic("bge_jref: buffer already free!");
925 	} else {
926 		atomic_add_int(&entry->bge_inuse, 1);
927 	}
928 }
929 
930 /*
931  * Release a jumbo buffer.
932  */
933 static void
934 bge_jfree(void *arg)
935 {
936 	struct bge_jslot *entry = (struct bge_jslot *)arg;
937 	struct bge_softc *sc = entry->bge_sc;
938 
939 	if (sc == NULL)
940 		panic("bge_jfree: can't find softc pointer!");
941 
942 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
943 		panic("bge_jfree: asked to free buffer that we don't manage!");
944 	} else if (entry->bge_inuse == 0) {
945 		panic("bge_jfree: buffer already free!");
946 	} else {
947 		/*
948 		 * Possible MP race to 0, use the serializer.  The atomic insn
949 		 * is still needed for races against bge_jref().
950 		 */
951 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
952 		atomic_subtract_int(&entry->bge_inuse, 1);
953 		if (entry->bge_inuse == 0) {
954 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
955 					  entry, jslot_link);
956 		}
957 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
958 	}
959 }
960 
961 
962 /*
963  * Intialize a standard receive ring descriptor.
964  */
965 static int
966 bge_newbuf_std(struct bge_softc *sc, int i, int init)
967 {
968 	struct mbuf *m_new = NULL;
969 	bus_dma_segment_t seg;
970 	bus_dmamap_t map;
971 	int error, nsegs;
972 
973 	m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
974 	if (m_new == NULL)
975 		return ENOBUFS;
976 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
977 
978 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
979 		m_adj(m_new, ETHER_ALIGN);
980 
981 	error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
982 			sc->bge_cdata.bge_rx_tmpmap, m_new,
983 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
984 	if (error) {
985 		m_freem(m_new);
986 		return error;
987 	}
988 
989 	if (!init) {
990 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
991 				sc->bge_cdata.bge_rx_std_dmamap[i],
992 				BUS_DMASYNC_POSTREAD);
993 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
994 			sc->bge_cdata.bge_rx_std_dmamap[i]);
995 	}
996 
997 	map = sc->bge_cdata.bge_rx_tmpmap;
998 	sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
999 	sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1000 
1001 	sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1002 	sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1003 
1004 	bge_setup_rxdesc_std(sc, i);
1005 	return 0;
1006 }
1007 
1008 static void
1009 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1010 {
1011 	struct bge_rxchain *rc;
1012 	struct bge_rx_bd *r;
1013 
1014 	rc = &sc->bge_cdata.bge_rx_std_chain[i];
1015 	r = &sc->bge_ldata.bge_rx_std_ring[i];
1016 
1017 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1018 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1019 	r->bge_len = rc->bge_mbuf->m_len;
1020 	r->bge_idx = i;
1021 	r->bge_flags = BGE_RXBDFLAG_END;
1022 }
1023 
1024 /*
1025  * Initialize a jumbo receive ring descriptor. This allocates
1026  * a jumbo buffer from the pool managed internally by the driver.
1027  */
1028 static int
1029 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1030 {
1031 	struct mbuf *m_new = NULL;
1032 	struct bge_jslot *buf;
1033 	bus_addr_t paddr;
1034 
1035 	/* Allocate the mbuf. */
1036 	MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1037 	if (m_new == NULL)
1038 		return ENOBUFS;
1039 
1040 	/* Allocate the jumbo buffer */
1041 	buf = bge_jalloc(sc);
1042 	if (buf == NULL) {
1043 		m_freem(m_new);
1044 		return ENOBUFS;
1045 	}
1046 
1047 	/* Attach the buffer to the mbuf. */
1048 	m_new->m_ext.ext_arg = buf;
1049 	m_new->m_ext.ext_buf = buf->bge_buf;
1050 	m_new->m_ext.ext_free = bge_jfree;
1051 	m_new->m_ext.ext_ref = bge_jref;
1052 	m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1053 
1054 	m_new->m_flags |= M_EXT;
1055 
1056 	m_new->m_data = m_new->m_ext.ext_buf;
1057 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1058 
1059 	paddr = buf->bge_paddr;
1060 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1061 		m_adj(m_new, ETHER_ALIGN);
1062 		paddr += ETHER_ALIGN;
1063 	}
1064 
1065 	/* Save necessary information */
1066 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1067 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1068 
1069 	/* Set up the descriptor. */
1070 	bge_setup_rxdesc_jumbo(sc, i);
1071 	return 0;
1072 }
1073 
1074 static void
1075 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1076 {
1077 	struct bge_rx_bd *r;
1078 	struct bge_rxchain *rc;
1079 
1080 	r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1081 	rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1082 
1083 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1084 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1085 	r->bge_len = rc->bge_mbuf->m_len;
1086 	r->bge_idx = i;
1087 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1088 }
1089 
1090 static int
1091 bge_init_rx_ring_std(struct bge_softc *sc)
1092 {
1093 	int i, error;
1094 
1095 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1096 		error = bge_newbuf_std(sc, i, 1);
1097 		if (error)
1098 			return error;
1099 	};
1100 
1101 	sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1102 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1103 
1104 	return(0);
1105 }
1106 
1107 static void
1108 bge_free_rx_ring_std(struct bge_softc *sc)
1109 {
1110 	int i;
1111 
1112 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1113 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1114 
1115 		if (rc->bge_mbuf != NULL) {
1116 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1117 					  sc->bge_cdata.bge_rx_std_dmamap[i]);
1118 			m_freem(rc->bge_mbuf);
1119 			rc->bge_mbuf = NULL;
1120 		}
1121 		bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1122 		    sizeof(struct bge_rx_bd));
1123 	}
1124 }
1125 
1126 static int
1127 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1128 {
1129 	struct bge_rcb *rcb;
1130 	int i, error;
1131 
1132 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1133 		error = bge_newbuf_jumbo(sc, i, 1);
1134 		if (error)
1135 			return error;
1136 	};
1137 
1138 	sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1139 
1140 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1141 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1142 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1143 
1144 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1145 
1146 	return(0);
1147 }
1148 
1149 static void
1150 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1151 {
1152 	int i;
1153 
1154 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1155 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1156 
1157 		if (rc->bge_mbuf != NULL) {
1158 			m_freem(rc->bge_mbuf);
1159 			rc->bge_mbuf = NULL;
1160 		}
1161 		bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1162 		    sizeof(struct bge_rx_bd));
1163 	}
1164 }
1165 
1166 static void
1167 bge_free_tx_ring(struct bge_softc *sc)
1168 {
1169 	int i;
1170 
1171 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1172 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1173 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1174 					  sc->bge_cdata.bge_tx_dmamap[i]);
1175 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1176 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1177 		}
1178 		bzero(&sc->bge_ldata.bge_tx_ring[i],
1179 		    sizeof(struct bge_tx_bd));
1180 	}
1181 }
1182 
1183 static int
1184 bge_init_tx_ring(struct bge_softc *sc)
1185 {
1186 	sc->bge_txcnt = 0;
1187 	sc->bge_tx_saved_considx = 0;
1188 	sc->bge_tx_prodidx = 0;
1189 
1190 	/* Initialize transmit producer index for host-memory send ring. */
1191 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1192 
1193 	/* 5700 b2 errata */
1194 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1195 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1196 
1197 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1198 	/* 5700 b2 errata */
1199 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1200 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1201 
1202 	return(0);
1203 }
1204 
1205 static void
1206 bge_setmulti(struct bge_softc *sc)
1207 {
1208 	struct ifnet *ifp;
1209 	struct ifmultiaddr *ifma;
1210 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1211 	int h, i;
1212 
1213 	ifp = &sc->arpcom.ac_if;
1214 
1215 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1216 		for (i = 0; i < 4; i++)
1217 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1218 		return;
1219 	}
1220 
1221 	/* First, zot all the existing filters. */
1222 	for (i = 0; i < 4; i++)
1223 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1224 
1225 	/* Now program new ones. */
1226 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1227 		if (ifma->ifma_addr->sa_family != AF_LINK)
1228 			continue;
1229 		h = ether_crc32_le(
1230 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1231 		    ETHER_ADDR_LEN) & 0x7f;
1232 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1233 	}
1234 
1235 	for (i = 0; i < 4; i++)
1236 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1237 }
1238 
1239 /*
1240  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1241  * self-test results.
1242  */
1243 static int
1244 bge_chipinit(struct bge_softc *sc)
1245 {
1246 	int i;
1247 	uint32_t dma_rw_ctl;
1248 	uint16_t val;
1249 
1250 	/* Set endian type before we access any non-PCI registers. */
1251 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1252 	    BGE_INIT | sc->bge_pci_miscctl, 4);
1253 
1254 	/* Clear the MAC control register */
1255 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1256 
1257 	/*
1258 	 * Clear the MAC statistics block in the NIC's
1259 	 * internal memory.
1260 	 */
1261 	for (i = BGE_STATS_BLOCK;
1262 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1263 		BGE_MEMWIN_WRITE(sc, i, 0);
1264 
1265 	for (i = BGE_STATUS_BLOCK;
1266 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1267 		BGE_MEMWIN_WRITE(sc, i, 0);
1268 
1269 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1270 		/*
1271 		 * Fix data corruption caused by non-qword write with WB.
1272 		 * Fix master abort in PCI mode.
1273 		 * Fix PCI latency timer.
1274 		 */
1275 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1276 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1277 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1278 	}
1279 
1280 	/* Set up the PCI DMA control register. */
1281 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1282 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1283 		/* PCI-E bus */
1284 		/* DMA read watermark not used on PCI-E */
1285 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1286 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1287 		/* PCI-X bus */
1288 		if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1289 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1290 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1291 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1292 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1293 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1294 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1295 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1296 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1297 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1298 			uint32_t rd_wat = 0x7;
1299 			uint32_t clkctl;
1300 
1301 			clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1302 			if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1303 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1304 				dma_rw_ctl |=
1305 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1306 			} else if (clkctl == 0x6 || clkctl == 0x7) {
1307 				dma_rw_ctl |=
1308 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1309 			}
1310 			if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1311 				rd_wat = 0x4;
1312 
1313 			dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1314 			    (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1315 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1316 		} else {
1317 			dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1318 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1319 			dma_rw_ctl |= 0xf;
1320 		}
1321 	} else {
1322 		/* Conventional PCI bus */
1323 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1324 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1325 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1326 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1327 			dma_rw_ctl |= 0xf;
1328 	}
1329 
1330 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1331 	    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1332 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1333 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1334 	    sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1335 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1336 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1337 	}
1338 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1339 
1340 	/*
1341 	 * Set up general mode register.
1342 	 */
1343 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1344 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1345 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1346 
1347 	/*
1348 	 * BCM5701 B5 have a bug causing data corruption when using
1349 	 * 64-bit DMA reads, which can be terminated early and then
1350 	 * completed later as 32-bit accesses, in combination with
1351 	 * certain bridges.
1352 	 */
1353 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1354 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1355 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1356 
1357 	/*
1358 	 * Disable memory write invalidate.  Apparently it is not supported
1359 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1360 	 * as these chips need it even when using MSI.
1361 	 */
1362 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1363 	    (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1364 
1365 	/* Set the timer prescaler (always 66Mhz) */
1366 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1367 
1368 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1369 		DELAY(40);	/* XXX */
1370 
1371 		/* Put PHY into ready state */
1372 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1373 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1374 		DELAY(40);
1375 	}
1376 
1377 	return(0);
1378 }
1379 
1380 static int
1381 bge_blockinit(struct bge_softc *sc)
1382 {
1383 	struct bge_rcb *rcb;
1384 	bus_size_t vrcb;
1385 	bge_hostaddr taddr;
1386 	uint32_t val;
1387 	int i, limit;
1388 
1389 	/*
1390 	 * Initialize the memory window pointer register so that
1391 	 * we can access the first 32K of internal NIC RAM. This will
1392 	 * allow us to set up the TX send ring RCBs and the RX return
1393 	 * ring RCBs, plus other things which live in NIC memory.
1394 	 */
1395 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1396 
1397 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1398 
1399 	if (!BGE_IS_5705_PLUS(sc)) {
1400 		/* Configure mbuf memory pool */
1401 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1402 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1403 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1404 		else
1405 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1406 
1407 		/* Configure DMA resource pool */
1408 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1409 		    BGE_DMA_DESCRIPTORS);
1410 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1411 	}
1412 
1413 	/* Configure mbuf pool watermarks */
1414 	if (!BGE_IS_5705_PLUS(sc)) {
1415 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1416 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1417 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1418 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1419 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1420 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1421 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1422 	} else {
1423 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1424 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1425 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1426 	}
1427 
1428 	/* Configure DMA resource watermarks */
1429 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1430 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1431 
1432 	/* Enable buffer manager */
1433 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1434 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1435 
1436 	/* Poll for buffer manager start indication */
1437 	for (i = 0; i < BGE_TIMEOUT; i++) {
1438 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1439 			break;
1440 		DELAY(10);
1441 	}
1442 
1443 	if (i == BGE_TIMEOUT) {
1444 		if_printf(&sc->arpcom.ac_if,
1445 			  "buffer manager failed to start\n");
1446 		return(ENXIO);
1447 	}
1448 
1449 	/* Enable flow-through queues */
1450 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1451 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1452 
1453 	/* Wait until queue initialization is complete */
1454 	for (i = 0; i < BGE_TIMEOUT; i++) {
1455 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1456 			break;
1457 		DELAY(10);
1458 	}
1459 
1460 	if (i == BGE_TIMEOUT) {
1461 		if_printf(&sc->arpcom.ac_if,
1462 			  "flow-through queue init failed\n");
1463 		return(ENXIO);
1464 	}
1465 
1466 	/*
1467 	 * Summary of rings supported by the controller:
1468 	 *
1469 	 * Standard Receive Producer Ring
1470 	 * - This ring is used to feed receive buffers for "standard"
1471 	 *   sized frames (typically 1536 bytes) to the controller.
1472 	 *
1473 	 * Jumbo Receive Producer Ring
1474 	 * - This ring is used to feed receive buffers for jumbo sized
1475 	 *   frames (i.e. anything bigger than the "standard" frames)
1476 	 *   to the controller.
1477 	 *
1478 	 * Mini Receive Producer Ring
1479 	 * - This ring is used to feed receive buffers for "mini"
1480 	 *   sized frames to the controller.
1481 	 * - This feature required external memory for the controller
1482 	 *   but was never used in a production system.  Should always
1483 	 *   be disabled.
1484 	 *
1485 	 * Receive Return Ring
1486 	 * - After the controller has placed an incoming frame into a
1487 	 *   receive buffer that buffer is moved into a receive return
1488 	 *   ring.  The driver is then responsible to passing the
1489 	 *   buffer up to the stack.  Many versions of the controller
1490 	 *   support multiple RR rings.
1491 	 *
1492 	 * Send Ring
1493 	 * - This ring is used for outgoing frames.  Many versions of
1494 	 *   the controller support multiple send rings.
1495 	 */
1496 
1497 	/* Initialize the standard receive producer ring control block. */
1498 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1499 	rcb->bge_hostaddr.bge_addr_lo =
1500 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1501 	rcb->bge_hostaddr.bge_addr_hi =
1502 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1503 	if (BGE_IS_5705_PLUS(sc)) {
1504 		/*
1505 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1506 		 * Bits 15-2 : Reserved (should be 0)
1507 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1508 		 * Bit 0     : Reserved
1509 		 */
1510 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1511 	} else {
1512 		/*
1513 		 * Ring size is always XXX entries
1514 		 * Bits 31-16: Maximum RX frame size
1515 		 * Bits 15-2 : Reserved (should be 0)
1516 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1517 		 * Bit 0     : Reserved
1518 		 */
1519 		rcb->bge_maxlen_flags =
1520 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1521 	}
1522 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1523 	/* Write the standard receive producer ring control block. */
1524 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1525 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1526 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1527 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1528 	/* Reset the standard receive producer ring producer index. */
1529 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1530 
1531 	/*
1532 	 * Initialize the jumbo RX producer ring control
1533 	 * block.  We set the 'ring disabled' bit in the
1534 	 * flags field until we're actually ready to start
1535 	 * using this ring (i.e. once we set the MTU
1536 	 * high enough to require it).
1537 	 */
1538 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1539 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1540 		/* Get the jumbo receive producer ring RCB parameters. */
1541 		rcb->bge_hostaddr.bge_addr_lo =
1542 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1543 		rcb->bge_hostaddr.bge_addr_hi =
1544 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1545 		rcb->bge_maxlen_flags =
1546 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1547 		    BGE_RCB_FLAG_RING_DISABLED);
1548 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1549 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1550 		    rcb->bge_hostaddr.bge_addr_hi);
1551 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1552 		    rcb->bge_hostaddr.bge_addr_lo);
1553 		/* Program the jumbo receive producer ring RCB parameters. */
1554 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1555 		    rcb->bge_maxlen_flags);
1556 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1557 		/* Reset the jumbo receive producer ring producer index. */
1558 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1559 	}
1560 
1561 	/* Disable the mini receive producer ring RCB. */
1562 	if (BGE_IS_5700_FAMILY(sc)) {
1563 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1564 		rcb->bge_maxlen_flags =
1565 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1566 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1567 		    rcb->bge_maxlen_flags);
1568 		/* Reset the mini receive producer ring producer index. */
1569 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1570 	}
1571 
1572 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1573 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1574 	    (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1575 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1576 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1577 		CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1578 		    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1579 	}
1580 
1581 	/*
1582 	 * The BD ring replenish thresholds control how often the
1583 	 * hardware fetches new BD's from the producer rings in host
1584 	 * memory.  Setting the value too low on a busy system can
1585 	 * starve the hardware and recue the throughpout.
1586 	 *
1587 	 * Set the BD ring replentish thresholds. The recommended
1588 	 * values are 1/8th the number of descriptors allocated to
1589 	 * each ring.
1590 	 */
1591 	if (BGE_IS_5705_PLUS(sc))
1592 		val = 8;
1593 	else
1594 		val = BGE_STD_RX_RING_CNT / 8;
1595 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1596 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1597 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1598 		    BGE_JUMBO_RX_RING_CNT/8);
1599 	}
1600 
1601 	/*
1602 	 * Disable all send rings by setting the 'ring disabled' bit
1603 	 * in the flags field of all the TX send ring control blocks,
1604 	 * located in NIC memory.
1605 	 */
1606 	if (!BGE_IS_5705_PLUS(sc)) {
1607 		/* 5700 to 5704 had 16 send rings. */
1608 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1609 	} else {
1610 		limit = 1;
1611 	}
1612 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1613 	for (i = 0; i < limit; i++) {
1614 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1615 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1616 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1617 		vrcb += sizeof(struct bge_rcb);
1618 	}
1619 
1620 	/* Configure send ring RCB 0 (we use only the first ring) */
1621 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1622 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1623 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1624 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1625 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1626 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1627 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1628 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1629 
1630 	/*
1631 	 * Disable all receive return rings by setting the
1632 	 * 'ring diabled' bit in the flags field of all the receive
1633 	 * return ring control blocks, located in NIC memory.
1634 	 */
1635 	if (!BGE_IS_5705_PLUS(sc))
1636 		limit = BGE_RX_RINGS_MAX;
1637 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1638 		limit = 4;
1639 	else
1640 		limit = 1;
1641 	/* Disable all receive return rings. */
1642 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1643 	for (i = 0; i < limit; i++) {
1644 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1645 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1646 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1647 		    BGE_RCB_FLAG_RING_DISABLED);
1648 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1649 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1650 		    (i * (sizeof(uint64_t))), 0);
1651 		vrcb += sizeof(struct bge_rcb);
1652 	}
1653 
1654 	/*
1655 	 * Set up receive return ring 0.  Note that the NIC address
1656 	 * for RX return rings is 0x0.  The return rings live entirely
1657 	 * within the host, so the nicaddr field in the RCB isn't used.
1658 	 */
1659 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1660 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1661 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1662 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1663 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1664 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1665 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1666 
1667 	/* Set random backoff seed for TX */
1668 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1669 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1670 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1671 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1672 	    BGE_TX_BACKOFF_SEED_MASK);
1673 
1674 	/* Set inter-packet gap */
1675 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1676 
1677 	/*
1678 	 * Specify which ring to use for packets that don't match
1679 	 * any RX rules.
1680 	 */
1681 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1682 
1683 	/*
1684 	 * Configure number of RX lists. One interrupt distribution
1685 	 * list, sixteen active lists, one bad frames class.
1686 	 */
1687 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1688 
1689 	/* Inialize RX list placement stats mask. */
1690 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1691 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1692 
1693 	/* Disable host coalescing until we get it set up */
1694 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1695 
1696 	/* Poll to make sure it's shut down. */
1697 	for (i = 0; i < BGE_TIMEOUT; i++) {
1698 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1699 			break;
1700 		DELAY(10);
1701 	}
1702 
1703 	if (i == BGE_TIMEOUT) {
1704 		if_printf(&sc->arpcom.ac_if,
1705 			  "host coalescing engine failed to idle\n");
1706 		return(ENXIO);
1707 	}
1708 
1709 	/* Set up host coalescing defaults */
1710 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1711 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1712 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1713 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1714 	if (!BGE_IS_5705_PLUS(sc)) {
1715 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1716 		    sc->bge_rx_coal_ticks_int);
1717 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1718 		    sc->bge_tx_coal_ticks_int);
1719 	}
1720 	/*
1721 	 * NOTE:
1722 	 * The datasheet (57XX-PG105-R) says BCM5705+ do not
1723 	 * have following two registers; obviously it is wrong.
1724 	 */
1725 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1726 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1727 
1728 	/* Set up address of statistics block */
1729 	if (!BGE_IS_5705_PLUS(sc)) {
1730 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1731 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1732 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1733 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1734 
1735 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1736 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1737 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1738 	}
1739 
1740 	/* Set up address of status block */
1741 	bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1742 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1743 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1744 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1745 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1746 
1747 	/*
1748 	 * Set up status block partail update size.
1749 	 *
1750 	 * Because only single TX ring, RX produce ring and Rx return ring
1751 	 * are used, ask device to update only minimum part of status block
1752 	 * except for BCM5700 AX/BX, whose status block partial update size
1753 	 * can't be configured.
1754 	 */
1755 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1756 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1757 		/* XXX Actually reserved on BCM5700 AX/BX */
1758 		val = BGE_STATBLKSZ_FULL;
1759 	} else {
1760 		val = BGE_STATBLKSZ_32BYTE;
1761 	}
1762 #if 0
1763 	/*
1764 	 * Does not seem to have visible effect in both
1765 	 * bulk data (1472B UDP datagram) and tiny data
1766 	 * (18B UDP datagram) TX tests.
1767 	 */
1768 	if (!BGE_IS_CRIPPLED(sc))
1769 		val |= BGE_HCCMODE_CLRTICK_TX;
1770 #endif
1771 
1772 	/* Turn on host coalescing state machine */
1773 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1774 
1775 	/* Turn on RX BD completion state machine and enable attentions */
1776 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1777 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1778 
1779 	/* Turn on RX list placement state machine */
1780 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1781 
1782 	/* Turn on RX list selector state machine. */
1783 	if (!BGE_IS_5705_PLUS(sc))
1784 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1785 
1786 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1787 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1788 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1789 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1790 
1791 	if (sc->bge_flags & BGE_FLAG_TBI)
1792 		val |= BGE_PORTMODE_TBI;
1793 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1794 		val |= BGE_PORTMODE_GMII;
1795 	else
1796 		val |= BGE_PORTMODE_MII;
1797 
1798 	/* Turn on DMA, clear stats */
1799 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1800 
1801 	/* Set misc. local control, enable interrupts on attentions */
1802 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1803 
1804 #ifdef notdef
1805 	/* Assert GPIO pins for PHY reset */
1806 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1807 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1808 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1809 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1810 #endif
1811 
1812 	/* Turn on DMA completion state machine */
1813 	if (!BGE_IS_5705_PLUS(sc))
1814 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1815 
1816 	/* Turn on write DMA state machine */
1817 	val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1818 	if (BGE_IS_5755_PLUS(sc)) {
1819 		/* Enable host coalescing bug fix. */
1820 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1821 	}
1822 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1823 		/* Request larger DMA burst size to get better performance. */
1824 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
1825 	}
1826 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1827 	DELAY(40);
1828 
1829 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1830 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1831 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1832 	    sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1833 		/*
1834 		 * Enable fix for read DMA FIFO overruns.
1835 		 * The fix is to limit the number of RX BDs
1836 		 * the hardware would fetch at a fime.
1837 		 */
1838 		val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1839 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1840 		    val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1841 	}
1842 
1843 	/* Turn on read DMA state machine */
1844 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1845         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1846             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1847             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1848 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1849                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1850                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1851 	if (sc->bge_flags & BGE_FLAG_PCIE)
1852 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1853 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1854 	DELAY(40);
1855 
1856 	/* Turn on RX data completion state machine */
1857 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1858 
1859 	/* Turn on RX BD initiator state machine */
1860 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1861 
1862 	/* Turn on RX data and RX BD initiator state machine */
1863 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1864 
1865 	/* Turn on Mbuf cluster free state machine */
1866 	if (!BGE_IS_5705_PLUS(sc))
1867 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1868 
1869 	/* Turn on send BD completion state machine */
1870 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1871 
1872 	/* Turn on send data completion state machine */
1873 	val = BGE_SDCMODE_ENABLE;
1874 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1875 		val |= BGE_SDCMODE_CDELAY;
1876 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1877 
1878 	/* Turn on send data initiator state machine */
1879 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1880 
1881 	/* Turn on send BD initiator state machine */
1882 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1883 
1884 	/* Turn on send BD selector state machine */
1885 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1886 
1887 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1888 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1889 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1890 
1891 	/* ack/clear link change events */
1892 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1893 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1894 	    BGE_MACSTAT_LINK_CHANGED);
1895 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1896 
1897 	/*
1898 	 * Enable attention when the link has changed state for
1899 	 * devices that use auto polling.
1900 	 */
1901 	if (sc->bge_flags & BGE_FLAG_TBI) {
1902 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1903  	} else {
1904 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1905 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1906 			DELAY(80);
1907 		}
1908 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1909 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1910 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1911 			    BGE_EVTENB_MI_INTERRUPT);
1912 		}
1913 	}
1914 
1915 	/*
1916 	 * Clear any pending link state attention.
1917 	 * Otherwise some link state change events may be lost until attention
1918 	 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1919 	 * It's not necessary on newer BCM chips - perhaps enabling link
1920 	 * state change attentions implies clearing pending attention.
1921 	 */
1922 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1923 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1924 	    BGE_MACSTAT_LINK_CHANGED);
1925 
1926 	/* Enable link state change attentions. */
1927 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1928 
1929 	return(0);
1930 }
1931 
1932 /*
1933  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1934  * against our list and return its name if we find a match. Note
1935  * that since the Broadcom controller contains VPD support, we
1936  * can get the device name string from the controller itself instead
1937  * of the compiled-in string. This is a little slow, but it guarantees
1938  * we'll always announce the right product name.
1939  */
1940 static int
1941 bge_probe(device_t dev)
1942 {
1943 	const struct bge_type *t;
1944 	uint16_t product, vendor;
1945 
1946 	product = pci_get_device(dev);
1947 	vendor = pci_get_vendor(dev);
1948 
1949 	for (t = bge_devs; t->bge_name != NULL; t++) {
1950 		if (vendor == t->bge_vid && product == t->bge_did)
1951 			break;
1952 	}
1953 	if (t->bge_name == NULL)
1954 		return(ENXIO);
1955 
1956 	device_set_desc(dev, t->bge_name);
1957 	return(0);
1958 }
1959 
1960 static int
1961 bge_attach(device_t dev)
1962 {
1963 	struct ifnet *ifp;
1964 	struct bge_softc *sc;
1965 	uint32_t hwcfg = 0, misccfg;
1966 	int error = 0, rid, capmask;
1967 	uint8_t ether_addr[ETHER_ADDR_LEN];
1968 	uint16_t product, vendor;
1969 	driver_intr_t *intr_func;
1970 	uintptr_t mii_priv = 0;
1971 	u_int intr_flags;
1972 	int msi_enable;
1973 
1974 	sc = device_get_softc(dev);
1975 	sc->bge_dev = dev;
1976 	callout_init(&sc->bge_stat_timer);
1977 	lwkt_serialize_init(&sc->bge_jslot_serializer);
1978 
1979 #ifndef BURN_BRIDGES
1980 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1981 		uint32_t irq, mem;
1982 
1983 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1984 		mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1985 
1986 		device_printf(dev, "chip is in D%d power mode "
1987 		    "-- setting to D0\n", pci_get_powerstate(dev));
1988 
1989 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1990 
1991 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1992 		pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1993 	}
1994 #endif	/* !BURN_BRIDGE */
1995 
1996 	/*
1997 	 * Map control/status registers.
1998 	 */
1999 	pci_enable_busmaster(dev);
2000 
2001 	rid = BGE_PCI_BAR0;
2002 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2003 	    RF_ACTIVE);
2004 
2005 	if (sc->bge_res == NULL) {
2006 		device_printf(dev, "couldn't map memory\n");
2007 		return ENXIO;
2008 	}
2009 
2010 	sc->bge_btag = rman_get_bustag(sc->bge_res);
2011 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2012 
2013 	/* Save various chip information */
2014 	sc->bge_chipid =
2015 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2016 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2017 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2018 		/* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2019 		sc->bge_flags |= BGE_FLAG_CPMU;
2020 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2021 	}
2022 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2023 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2024 
2025 	/* Save chipset family. */
2026 	switch (sc->bge_asicrev) {
2027 	case BGE_ASICREV_BCM5755:
2028 	case BGE_ASICREV_BCM5761:
2029 	case BGE_ASICREV_BCM5784:
2030 	case BGE_ASICREV_BCM5785:
2031 	case BGE_ASICREV_BCM5787:
2032 	case BGE_ASICREV_BCM57780:
2033 	    sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2034 		BGE_FLAG_5705_PLUS;
2035 	    break;
2036 
2037 	case BGE_ASICREV_BCM5700:
2038 	case BGE_ASICREV_BCM5701:
2039 	case BGE_ASICREV_BCM5703:
2040 	case BGE_ASICREV_BCM5704:
2041 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2042 		break;
2043 
2044 	case BGE_ASICREV_BCM5714_A0:
2045 	case BGE_ASICREV_BCM5780:
2046 	case BGE_ASICREV_BCM5714:
2047 		sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2048 		/* Fall through */
2049 
2050 	case BGE_ASICREV_BCM5750:
2051 	case BGE_ASICREV_BCM5752:
2052 	case BGE_ASICREV_BCM5906:
2053 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2054 		/* Fall through */
2055 
2056 	case BGE_ASICREV_BCM5705:
2057 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2058 		break;
2059 	}
2060 
2061 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2062 		sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2063 
2064 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2065 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2066 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2067 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2068 		sc->bge_flags |= BGE_FLAG_5788;
2069 
2070 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
2071 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2072 		sc->bge_flags |= BGE_FLAG_SHORTDMA;
2073 
2074   	/*
2075 	 * Check if this is a PCI-X or PCI Express device.
2076   	 */
2077 	if (BGE_IS_5705_PLUS(sc)) {
2078 		if (pci_is_pcie(dev)) {
2079 			sc->bge_flags |= BGE_FLAG_PCIE;
2080 			sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2081 			pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2082 		}
2083 	} else {
2084 		/*
2085 		 * Check if the device is in PCI-X Mode.
2086 		 * (This bit is not valid on PCI Express controllers.)
2087 		 */
2088 		if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2089 		    BGE_PCISTATE_PCI_BUSMODE) == 0) {
2090 			sc->bge_flags |= BGE_FLAG_PCIX;
2091 			sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2092 			sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2093 			    "mbox_reorder", 0);
2094 		}
2095  	}
2096 	device_printf(dev, "CHIP ID 0x%08x; "
2097 		      "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2098 		      sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2099 		      (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2100 		      : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2101 			"PCI-E" : "PCI"));
2102 
2103 	/*
2104 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2105 	 * not actually a MAC controller bug but an issue with the embedded
2106 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2107 	 */
2108 	if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2109 	    (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2110 		sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2111 
2112 	/*
2113 	 * When using the BCM5701 in PCI-X mode, data corruption has
2114 	 * been observed in the first few bytes of some received packets.
2115 	 * Aligning the packet buffer in memory eliminates the corruption.
2116 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2117 	 * which do not support unaligned accesses, we will realign the
2118 	 * payloads by copying the received packets.
2119 	 */
2120 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2121 	    (sc->bge_flags & BGE_FLAG_PCIX))
2122 		sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2123 
2124 	if (!BGE_IS_CRIPPLED(sc)) {
2125 		if (device_getenv_int(dev, "status_tag", 1)) {
2126 			sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2127 			sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2128 			if (bootverbose)
2129 				device_printf(dev, "enable status tag\n");
2130 		}
2131 	}
2132 
2133 	/*
2134 	 * Set various PHY quirk flags.
2135 	 */
2136 	product = pci_get_device(dev);
2137 	vendor = pci_get_vendor(dev);
2138 
2139 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2140 	     sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2141 	    pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2142 		mii_priv |= BRGPHY_FLAG_NO_3LED;
2143 
2144 	capmask = MII_CAPMASK_DEFAULT;
2145 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2146 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2147 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2148 	     vendor == PCI_VENDOR_BROADCOM &&
2149 	     (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2150 	      product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2151 	      product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2152 	    (vendor == PCI_VENDOR_BROADCOM &&
2153 	     (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2154 	      product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2155 	      product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2156 	    product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2157 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2158 		/* 10/100 only */
2159 		capmask &= ~BMSR_EXTSTAT;
2160 	}
2161 
2162 	mii_priv |= BRGPHY_FLAG_WIRESPEED;
2163 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2164 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2165 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2166 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2167 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2168 		mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2169 
2170 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2171 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2172 		mii_priv |= BRGPHY_FLAG_CRC_BUG;
2173 
2174 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2175 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2176 		mii_priv |= BRGPHY_FLAG_ADC_BUG;
2177 
2178 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2179 		mii_priv |= BRGPHY_FLAG_5704_A0;
2180 
2181 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2182 		mii_priv |= BRGPHY_FLAG_5906;
2183 
2184 	if (BGE_IS_5705_PLUS(sc) &&
2185 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2186 	    /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2187 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2188 	    /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2189 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2190 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2191 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2192 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2193 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2194 			if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2195 			    product != PCI_PRODUCT_BROADCOM_BCM5756)
2196 				mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2197 			if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2198 				mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2199 		} else {
2200 			mii_priv |= BRGPHY_FLAG_BER_BUG;
2201 		}
2202 	}
2203 
2204 	/*
2205 	 * Allocate interrupt
2206 	 */
2207 	msi_enable = bge_msi_enable;
2208 	if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2209 		/* If "tagged status" is disabled, don't enable MSI */
2210 		msi_enable = 0;
2211 	} else if (msi_enable) {
2212 		msi_enable = 0; /* Disable by default */
2213 		if (BGE_IS_575X_PLUS(sc)) {
2214 			msi_enable = 1;
2215 			/* XXX we filter all 5714 chips */
2216 			if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2217 			    (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2218 			     (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2219 			      sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2220 				msi_enable = 0;
2221 			else if (BGE_IS_5755_PLUS(sc) ||
2222 			    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2223 				sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2224 		}
2225 	}
2226 	if (msi_enable) {
2227 		if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2228 			device_printf(dev, "no MSI capability\n");
2229 			msi_enable = 0;
2230 		}
2231 	}
2232 
2233 	sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2234 	    &intr_flags);
2235 
2236 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2237 	    intr_flags);
2238 	if (sc->bge_irq == NULL) {
2239 		device_printf(dev, "couldn't map interrupt\n");
2240 		error = ENXIO;
2241 		goto fail;
2242 	}
2243 
2244 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2245 		bge_enable_msi(sc);
2246 	else
2247 		sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2248 
2249 	/* Initialize if_name earlier, so if_printf could be used */
2250 	ifp = &sc->arpcom.ac_if;
2251 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2252 
2253 	/* Try to reset the chip. */
2254 	bge_reset(sc);
2255 
2256 	if (bge_chipinit(sc)) {
2257 		device_printf(dev, "chip initialization failed\n");
2258 		error = ENXIO;
2259 		goto fail;
2260 	}
2261 
2262 	/*
2263 	 * Get station address
2264 	 */
2265 	error = bge_get_eaddr(sc, ether_addr);
2266 	if (error) {
2267 		device_printf(dev, "failed to read station address\n");
2268 		goto fail;
2269 	}
2270 
2271 	/* 5705/5750 limits RX return ring to 512 entries. */
2272 	if (BGE_IS_5705_PLUS(sc))
2273 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2274 	else
2275 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2276 
2277 	error = bge_dma_alloc(sc);
2278 	if (error)
2279 		goto fail;
2280 
2281 	/* Set default tuneable values. */
2282 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2283 	sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2284 	sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2285 	sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2286 	sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2287 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2288 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2289 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2290 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2291 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2292 	} else {
2293 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2294 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2295 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2296 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2297 	}
2298 
2299 	/* Set up ifnet structure */
2300 	ifp->if_softc = sc;
2301 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2302 	ifp->if_ioctl = bge_ioctl;
2303 	ifp->if_start = bge_start;
2304 #ifdef DEVICE_POLLING
2305 	ifp->if_poll = bge_poll;
2306 #endif
2307 	ifp->if_watchdog = bge_watchdog;
2308 	ifp->if_init = bge_init;
2309 	ifp->if_mtu = ETHERMTU;
2310 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2311 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2312 	ifq_set_ready(&ifp->if_snd);
2313 
2314 	/*
2315 	 * 5700 B0 chips do not support checksumming correctly due
2316 	 * to hardware bugs.
2317 	 */
2318 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2319 		ifp->if_capabilities |= IFCAP_HWCSUM;
2320 		ifp->if_hwassist = BGE_CSUM_FEATURES;
2321 	}
2322 	ifp->if_capenable = ifp->if_capabilities;
2323 
2324 	/*
2325 	 * Figure out what sort of media we have by checking the
2326 	 * hardware config word in the first 32k of NIC internal memory,
2327 	 * or fall back to examining the EEPROM if necessary.
2328 	 * Note: on some BCM5700 cards, this value appears to be unset.
2329 	 * If that's the case, we have to rely on identifying the NIC
2330 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2331 	 * SK-9D41.
2332 	 */
2333 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2334 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2335 	} else {
2336 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2337 				    sizeof(hwcfg))) {
2338 			device_printf(dev, "failed to read EEPROM\n");
2339 			error = ENXIO;
2340 			goto fail;
2341 		}
2342 		hwcfg = ntohl(hwcfg);
2343 	}
2344 
2345 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2346 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2347 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2348 		if (BGE_IS_5714_FAMILY(sc))
2349 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2350 		else
2351 			sc->bge_flags |= BGE_FLAG_TBI;
2352 	}
2353 
2354 	/* Setup MI MODE */
2355 	if (sc->bge_flags & BGE_FLAG_CPMU)
2356 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2357 	else
2358 		sc->bge_mi_mode = BGE_MIMODE_BASE;
2359 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2360 		/* Enable auto polling for BCM570[0-5]. */
2361 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2362 	}
2363 
2364 	/* Setup link status update stuffs */
2365 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2366 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2367 		sc->bge_link_upd = bge_bcm5700_link_upd;
2368 		sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2369 	} else if (sc->bge_flags & BGE_FLAG_TBI) {
2370 		sc->bge_link_upd = bge_tbi_link_upd;
2371 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2372 	} else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2373 		sc->bge_link_upd = bge_autopoll_link_upd;
2374 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2375 	} else {
2376 		sc->bge_link_upd = bge_copper_link_upd;
2377 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2378 	}
2379 
2380 	/*
2381 	 * Broadcom's own driver always assumes the internal
2382 	 * PHY is at GMII address 1.  On some chips, the PHY responds
2383 	 * to accesses at all addresses, which could cause us to
2384 	 * bogusly attach the PHY 32 times at probe type.  Always
2385 	 * restricting the lookup to address 1 is simpler than
2386 	 * trying to figure out which chips revisions should be
2387 	 * special-cased.
2388 	 */
2389 	sc->bge_phyno = 1;
2390 
2391 	if (sc->bge_flags & BGE_FLAG_TBI) {
2392 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2393 		    bge_ifmedia_upd, bge_ifmedia_sts);
2394 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2395 		ifmedia_add(&sc->bge_ifmedia,
2396 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2397 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2398 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2399 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2400 	} else {
2401 		struct mii_probe_args mii_args;
2402 
2403 		mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2404 		mii_args.mii_probemask = 1 << sc->bge_phyno;
2405 		mii_args.mii_capmask = capmask;
2406 		mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2407 		mii_args.mii_priv = mii_priv;
2408 
2409 		error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2410 		if (error) {
2411 			device_printf(dev, "MII without any PHY!\n");
2412 			goto fail;
2413 		}
2414 	}
2415 
2416 	/*
2417 	 * Create sysctl nodes.
2418 	 */
2419 	sysctl_ctx_init(&sc->bge_sysctl_ctx);
2420 	sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2421 					      SYSCTL_STATIC_CHILDREN(_hw),
2422 					      OID_AUTO,
2423 					      device_get_nameunit(dev),
2424 					      CTLFLAG_RD, 0, "");
2425 	if (sc->bge_sysctl_tree == NULL) {
2426 		device_printf(dev, "can't add sysctl node\n");
2427 		error = ENXIO;
2428 		goto fail;
2429 	}
2430 
2431 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2432 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2433 			OID_AUTO, "rx_coal_ticks",
2434 			CTLTYPE_INT | CTLFLAG_RW,
2435 			sc, 0, bge_sysctl_rx_coal_ticks, "I",
2436 			"Receive coalescing ticks (usec).");
2437 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2438 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2439 			OID_AUTO, "tx_coal_ticks",
2440 			CTLTYPE_INT | CTLFLAG_RW,
2441 			sc, 0, bge_sysctl_tx_coal_ticks, "I",
2442 			"Transmit coalescing ticks (usec).");
2443 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2444 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2445 			OID_AUTO, "rx_coal_bds",
2446 			CTLTYPE_INT | CTLFLAG_RW,
2447 			sc, 0, bge_sysctl_rx_coal_bds, "I",
2448 			"Receive max coalesced BD count.");
2449 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2450 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2451 			OID_AUTO, "tx_coal_bds",
2452 			CTLTYPE_INT | CTLFLAG_RW,
2453 			sc, 0, bge_sysctl_tx_coal_bds, "I",
2454 			"Transmit max coalesced BD count.");
2455 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2456 		/*
2457 		 * A common design characteristic for many Broadcom
2458 		 * client controllers is that they only support a
2459 		 * single outstanding DMA read operation on the PCIe
2460 		 * bus. This means that it will take twice as long to
2461 		 * fetch a TX frame that is split into header and
2462 		 * payload buffers as it does to fetch a single,
2463 		 * contiguous TX frame (2 reads vs. 1 read). For these
2464 		 * controllers, coalescing buffers to reduce the number
2465 		 * of memory reads is effective way to get maximum
2466 		 * performance(about 940Mbps).  Without collapsing TX
2467 		 * buffers the maximum TCP bulk transfer performance
2468 		 * is about 850Mbps. However forcing coalescing mbufs
2469 		 * consumes a lot of CPU cycles, so leave it off by
2470 		 * default.
2471 		 */
2472 		SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2473 			       SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2474 			       OID_AUTO, "force_defrag", CTLFLAG_RW,
2475 			       &sc->bge_force_defrag, 0,
2476 			       "Force defragment on TX path");
2477 	}
2478 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2479 		if (!BGE_IS_5705_PLUS(sc)) {
2480 			SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2481 			    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2482 			    "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2483 			    sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2484 			    "Receive coalescing ticks "
2485 			    "during interrupt (usec).");
2486 			SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2487 			    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2488 			    "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2489 			    sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2490 			    "Transmit coalescing ticks "
2491 			    "during interrupt (usec).");
2492 		}
2493 		SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2494 		    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2495 		    "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2496 		    sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2497 		    "Receive max coalesced BD count during interrupt.");
2498 		SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2499 		    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2500 		    "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2501 		    sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2502 		    "Transmit max coalesced BD count during interrupt.");
2503 	}
2504 
2505 	/*
2506 	 * Call MI attach routine.
2507 	 */
2508 	ether_ifattach(ifp, ether_addr, NULL);
2509 
2510 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2511 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2512 			intr_func = bge_msi_oneshot;
2513 			if (bootverbose)
2514 				device_printf(dev, "oneshot MSI\n");
2515 		} else {
2516 			intr_func = bge_msi;
2517 		}
2518 	} else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2519 		intr_func = bge_intr_legacy;
2520 	} else {
2521 		intr_func = bge_intr_crippled;
2522 	}
2523 	error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2524 	    &sc->bge_intrhand, ifp->if_serializer);
2525 	if (error) {
2526 		ether_ifdetach(ifp);
2527 		device_printf(dev, "couldn't set up irq\n");
2528 		goto fail;
2529 	}
2530 
2531 	ifp->if_cpuid = rman_get_cpuid(sc->bge_irq);
2532 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2533 
2534 	return(0);
2535 fail:
2536 	bge_detach(dev);
2537 	return(error);
2538 }
2539 
2540 static int
2541 bge_detach(device_t dev)
2542 {
2543 	struct bge_softc *sc = device_get_softc(dev);
2544 
2545 	if (device_is_attached(dev)) {
2546 		struct ifnet *ifp = &sc->arpcom.ac_if;
2547 
2548 		lwkt_serialize_enter(ifp->if_serializer);
2549 		bge_stop(sc);
2550 		bge_reset(sc);
2551 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2552 		lwkt_serialize_exit(ifp->if_serializer);
2553 
2554 		ether_ifdetach(ifp);
2555 	}
2556 
2557 	if (sc->bge_flags & BGE_FLAG_TBI)
2558 		ifmedia_removeall(&sc->bge_ifmedia);
2559 	if (sc->bge_miibus)
2560 		device_delete_child(dev, sc->bge_miibus);
2561 	bus_generic_detach(dev);
2562 
2563 	if (sc->bge_irq != NULL) {
2564 		bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2565 		    sc->bge_irq);
2566 	}
2567 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2568 		pci_release_msi(dev);
2569 
2570 	if (sc->bge_res != NULL) {
2571 		bus_release_resource(dev, SYS_RES_MEMORY,
2572 		    BGE_PCI_BAR0, sc->bge_res);
2573 	}
2574 
2575 	if (sc->bge_sysctl_tree != NULL)
2576 		sysctl_ctx_free(&sc->bge_sysctl_ctx);
2577 
2578 	bge_dma_free(sc);
2579 
2580 	return 0;
2581 }
2582 
2583 static void
2584 bge_reset(struct bge_softc *sc)
2585 {
2586 	device_t dev;
2587 	uint32_t cachesize, command, pcistate, reset;
2588 	void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2589 	int i, val = 0;
2590 
2591 	dev = sc->bge_dev;
2592 
2593 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2594 	    sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2595 		if (sc->bge_flags & BGE_FLAG_PCIE)
2596 			write_op = bge_writemem_direct;
2597 		else
2598 			write_op = bge_writemem_ind;
2599 	} else {
2600 		write_op = bge_writereg_ind;
2601 	}
2602 
2603 	/* Save some important PCI state. */
2604 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2605 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
2606 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2607 
2608 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2609 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2610 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2611 	    sc->bge_pci_miscctl, 4);
2612 
2613 	/* Disable fastboot on controllers that support it. */
2614 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2615 	    BGE_IS_5755_PLUS(sc)) {
2616 		if (bootverbose)
2617 			if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2618 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2619 	}
2620 
2621 	/*
2622 	 * Write the magic number to SRAM at offset 0xB50.
2623 	 * When firmware finishes its initialization it will
2624 	 * write ~BGE_MAGIC_NUMBER to the same location.
2625 	 */
2626 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2627 
2628 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2629 
2630 	/* XXX: Broadcom Linux driver. */
2631 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2632 		/* Force PCI-E 1.0a mode */
2633 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2634 		    CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2635 		    (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2636 		     BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2637 			CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2638 			    BGE_PCIE_PHY_TSTCTL_PSCRAM);
2639 		}
2640 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2641 			/* Prevent PCIE link training during global reset */
2642 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2643 			reset |= (1<<29);
2644 		}
2645 	}
2646 
2647 	/*
2648 	 * Set GPHY Power Down Override to leave GPHY
2649 	 * powered up in D0 uninitialized.
2650 	 */
2651 	if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2652 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2653 
2654 	/* Issue global reset */
2655 	write_op(sc, BGE_MISC_CFG, reset);
2656 
2657 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2658 		uint32_t status, ctrl;
2659 
2660 		status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2661 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2662 		    status | BGE_VCPU_STATUS_DRV_RESET);
2663 		ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2664 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2665 		    ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2666 	}
2667 
2668 	DELAY(1000);
2669 
2670 	/* XXX: Broadcom Linux driver. */
2671 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2672 		uint16_t devctl;
2673 
2674 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2675 			uint32_t v;
2676 
2677 			DELAY(500000); /* wait for link training to complete */
2678 			v = pci_read_config(dev, 0xc4, 4);
2679 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
2680 		}
2681 
2682 		devctl = pci_read_config(dev,
2683 		    sc->bge_pciecap + PCIER_DEVCTRL, 2);
2684 
2685 		/* Disable no snoop and disable relaxed ordering. */
2686 		devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2687 
2688 		/* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2689 		if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2690 			devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2691 			devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2692 		}
2693 
2694 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2695 		    devctl, 2);
2696 
2697 		/* Clear error status. */
2698 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2699 		    PCIEM_DEVSTS_CORR_ERR |
2700 		    PCIEM_DEVSTS_NFATAL_ERR |
2701 		    PCIEM_DEVSTS_FATAL_ERR |
2702 		    PCIEM_DEVSTS_UNSUPP_REQ, 2);
2703 	}
2704 
2705 	/* Reset some of the PCI state that got zapped by reset */
2706 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2707 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2708 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2709 	    sc->bge_pci_miscctl, 4);
2710 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2711 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2712 	write_op(sc, BGE_MISC_CFG, (65 << 1));
2713 
2714 	/*
2715 	 * Disable PCI-X relaxed ordering to ensure status block update
2716 	 * comes first then packet buffer DMA. Otherwise driver may
2717 	 * read stale status block.
2718 	 */
2719 	if (sc->bge_flags & BGE_FLAG_PCIX) {
2720 		uint16_t devctl;
2721 
2722 		devctl = pci_read_config(dev,
2723 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
2724 		devctl &= ~PCIXM_COMMAND_ERO;
2725 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2726 			devctl &= ~PCIXM_COMMAND_MAX_READ;
2727 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2728 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2729 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2730 			    PCIXM_COMMAND_MAX_READ);
2731 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2732 		}
2733 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2734 		    devctl, 2);
2735 	}
2736 
2737 	/*
2738 	 * Enable memory arbiter and re-enable MSI if necessary.
2739 	 */
2740 	if (BGE_IS_5714_FAMILY(sc)) {
2741 		uint32_t val;
2742 
2743 		if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2744 			/*
2745 			 * Resetting BCM5714 family will clear MSI
2746 			 * enable bit; restore it after resetting.
2747 			 */
2748 			PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2749 			    PCIM_MSICTRL_MSI_ENABLE, 2);
2750 			BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2751 		}
2752 		val = CSR_READ_4(sc, BGE_MARB_MODE);
2753 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2754 	} else {
2755 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2756 	}
2757 
2758 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2759 		for (i = 0; i < BGE_TIMEOUT; i++) {
2760 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2761 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2762 				break;
2763 			DELAY(100);
2764 		}
2765 		if (i == BGE_TIMEOUT) {
2766 			if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2767 			return;
2768 		}
2769 	} else {
2770 		/*
2771 		 * Poll until we see the 1's complement of the magic number.
2772 		 * This indicates that the firmware initialization
2773 		 * is complete.
2774 		 */
2775 		for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2776 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2777 			if (val == ~BGE_MAGIC_NUMBER)
2778 				break;
2779 			DELAY(10);
2780 		}
2781 		if (i == BGE_FIRMWARE_TIMEOUT) {
2782 			if_printf(&sc->arpcom.ac_if, "firmware handshake "
2783 				  "timed out, found 0x%08x\n", val);
2784 		}
2785 	}
2786 
2787 	/*
2788 	 * XXX Wait for the value of the PCISTATE register to
2789 	 * return to its original pre-reset state. This is a
2790 	 * fairly good indicator of reset completion. If we don't
2791 	 * wait for the reset to fully complete, trying to read
2792 	 * from the device's non-PCI registers may yield garbage
2793 	 * results.
2794 	 */
2795 	for (i = 0; i < BGE_TIMEOUT; i++) {
2796 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2797 			break;
2798 		DELAY(10);
2799 	}
2800 
2801 	/* Fix up byte swapping */
2802 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2803 	    BGE_MODECTL_BYTESWAP_DATA);
2804 
2805 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2806 
2807 	/*
2808 	 * The 5704 in TBI mode apparently needs some special
2809 	 * adjustment to insure the SERDES drive level is set
2810 	 * to 1.2V.
2811 	 */
2812 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2813 	    (sc->bge_flags & BGE_FLAG_TBI)) {
2814 		uint32_t serdescfg;
2815 
2816 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2817 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
2818 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2819 	}
2820 
2821 	/* XXX: Broadcom Linux driver. */
2822 	if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2823 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2824 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2825 		uint32_t v;
2826 
2827 		/* Enable Data FIFO protection. */
2828 		v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2829 		CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2830 	}
2831 
2832 	DELAY(10000);
2833 }
2834 
2835 /*
2836  * Frame reception handling. This is called if there's a frame
2837  * on the receive return list.
2838  *
2839  * Note: we have to be able to handle two possibilities here:
2840  * 1) the frame is from the jumbo recieve ring
2841  * 2) the frame is from the standard receive ring
2842  */
2843 
2844 static void
2845 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod)
2846 {
2847 	struct ifnet *ifp;
2848 	int stdcnt = 0, jumbocnt = 0;
2849 
2850 	ifp = &sc->arpcom.ac_if;
2851 
2852 	while (sc->bge_rx_saved_considx != rx_prod) {
2853 		struct bge_rx_bd	*cur_rx;
2854 		uint32_t		rxidx;
2855 		struct mbuf		*m = NULL;
2856 		uint16_t		vlan_tag = 0;
2857 		int			have_tag = 0;
2858 
2859 		cur_rx =
2860 	    &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2861 
2862 		rxidx = cur_rx->bge_idx;
2863 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2864 		logif(rx_pkt);
2865 
2866 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2867 			have_tag = 1;
2868 			vlan_tag = cur_rx->bge_vlan_tag;
2869 		}
2870 
2871 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2872 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2873 			jumbocnt++;
2874 
2875 			if (rxidx != sc->bge_jumbo) {
2876 				ifp->if_ierrors++;
2877 				if_printf(ifp, "sw jumbo index(%d) "
2878 				    "and hw jumbo index(%d) mismatch, drop!\n",
2879 				    sc->bge_jumbo, rxidx);
2880 				bge_setup_rxdesc_jumbo(sc, rxidx);
2881 				continue;
2882 			}
2883 
2884 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2885 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2886 				ifp->if_ierrors++;
2887 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2888 				continue;
2889 			}
2890 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2891 				ifp->if_ierrors++;
2892 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2893 				continue;
2894 			}
2895 		} else {
2896 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2897 			stdcnt++;
2898 
2899 			if (rxidx != sc->bge_std) {
2900 				ifp->if_ierrors++;
2901 				if_printf(ifp, "sw std index(%d) "
2902 				    "and hw std index(%d) mismatch, drop!\n",
2903 				    sc->bge_std, rxidx);
2904 				bge_setup_rxdesc_std(sc, rxidx);
2905 				continue;
2906 			}
2907 
2908 			m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2909 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2910 				ifp->if_ierrors++;
2911 				bge_setup_rxdesc_std(sc, sc->bge_std);
2912 				continue;
2913 			}
2914 			if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2915 				ifp->if_ierrors++;
2916 				bge_setup_rxdesc_std(sc, sc->bge_std);
2917 				continue;
2918 			}
2919 		}
2920 
2921 		ifp->if_ipackets++;
2922 #if !defined(__i386__) && !defined(__x86_64__)
2923 		/*
2924 		 * The x86 allows unaligned accesses, but for other
2925 		 * platforms we must make sure the payload is aligned.
2926 		 */
2927 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2928 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2929 			    cur_rx->bge_len);
2930 			m->m_data += ETHER_ALIGN;
2931 		}
2932 #endif
2933 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2934 		m->m_pkthdr.rcvif = ifp;
2935 
2936 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2937 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2938 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2939 				if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2940 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2941 			}
2942 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2943 			    m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
2944 				m->m_pkthdr.csum_data =
2945 					cur_rx->bge_tcp_udp_csum;
2946 				m->m_pkthdr.csum_flags |=
2947 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2948 			}
2949 		}
2950 
2951 		/*
2952 		 * If we received a packet with a vlan tag, pass it
2953 		 * to vlan_input() instead of ether_input().
2954 		 */
2955 		if (have_tag) {
2956 			m->m_flags |= M_VLANTAG;
2957 			m->m_pkthdr.ether_vlantag = vlan_tag;
2958 			have_tag = vlan_tag = 0;
2959 		}
2960 		ifp->if_input(ifp, m);
2961 	}
2962 
2963 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2964 	if (stdcnt)
2965 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2966 	if (jumbocnt)
2967 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2968 }
2969 
2970 static void
2971 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
2972 {
2973 	struct bge_tx_bd *cur_tx = NULL;
2974 	struct ifnet *ifp;
2975 
2976 	ifp = &sc->arpcom.ac_if;
2977 
2978 	/*
2979 	 * Go through our tx ring and free mbufs for those
2980 	 * frames that have been sent.
2981 	 */
2982 	while (sc->bge_tx_saved_considx != tx_cons) {
2983 		uint32_t idx = 0;
2984 
2985 		idx = sc->bge_tx_saved_considx;
2986 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2987 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2988 			ifp->if_opackets++;
2989 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2990 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
2991 			    sc->bge_cdata.bge_tx_dmamap[idx]);
2992 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2993 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2994 		}
2995 		sc->bge_txcnt--;
2996 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2997 		logif(tx_pkt);
2998 	}
2999 
3000 	if (cur_tx != NULL &&
3001 	    (BGE_TX_RING_CNT - sc->bge_txcnt) >=
3002 	    (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
3003 		ifp->if_flags &= ~IFF_OACTIVE;
3004 
3005 	if (sc->bge_txcnt == 0)
3006 		ifp->if_timer = 0;
3007 
3008 	if (!ifq_is_empty(&ifp->if_snd))
3009 		if_devstart(ifp);
3010 }
3011 
3012 #ifdef DEVICE_POLLING
3013 
3014 static void
3015 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3016 {
3017 	struct bge_softc *sc = ifp->if_softc;
3018 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3019 	uint16_t rx_prod, tx_cons;
3020 
3021 	switch(cmd) {
3022 	case POLL_REGISTER:
3023 		bge_disable_intr(sc);
3024 		break;
3025 	case POLL_DEREGISTER:
3026 		bge_enable_intr(sc);
3027 		break;
3028 	case POLL_AND_CHECK_STATUS:
3029 		/*
3030 		 * Process link state changes.
3031 		 */
3032 		bge_link_poll(sc);
3033 		/* Fall through */
3034 	case POLL_ONLY:
3035 		if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3036 			sc->bge_status_tag = sblk->bge_status_tag;
3037 			/*
3038 			 * Use a load fence to ensure that status_tag
3039 			 * is saved  before rx_prod and tx_cons.
3040 			 */
3041 			cpu_lfence();
3042 		}
3043 		rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3044 		tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3045 		if (ifp->if_flags & IFF_RUNNING) {
3046 			rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3047 			if (sc->bge_rx_saved_considx != rx_prod)
3048 				bge_rxeof(sc, rx_prod);
3049 
3050 			tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3051 			if (sc->bge_tx_saved_considx != tx_cons)
3052 				bge_txeof(sc, tx_cons);
3053 		}
3054 		break;
3055 	}
3056 }
3057 
3058 #endif
3059 
3060 static void
3061 bge_intr_crippled(void *xsc)
3062 {
3063 	struct bge_softc *sc = xsc;
3064 	struct ifnet *ifp = &sc->arpcom.ac_if;
3065 
3066 	logif(intr);
3067 
3068  	/*
3069 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3070 	 * disable interrupts by writing nonzero like we used to, since with
3071 	 * our current organization this just gives complications and
3072 	 * pessimizations for re-enabling interrupts.  We used to have races
3073 	 * instead of the necessary complications.  Disabling interrupts
3074 	 * would just reduce the chance of a status update while we are
3075 	 * running (by switching to the interrupt-mode coalescence
3076 	 * parameters), but this chance is already very low so it is more
3077 	 * efficient to get another interrupt than prevent it.
3078 	 *
3079 	 * We do the ack first to ensure another interrupt if there is a
3080 	 * status update after the ack.  We don't check for the status
3081 	 * changing later because it is more efficient to get another
3082 	 * interrupt than prevent it, not quite as above (not checking is
3083 	 * a smaller optimization than not toggling the interrupt enable,
3084 	 * since checking doesn't involve PCI accesses and toggling require
3085 	 * the status check).  So toggling would probably be a pessimization
3086 	 * even with MSI.  It would only be needed for using a task queue.
3087 	 */
3088 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3089 
3090 	/*
3091 	 * Process link state changes.
3092 	 */
3093 	bge_link_poll(sc);
3094 
3095 	if (ifp->if_flags & IFF_RUNNING) {
3096 		struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3097 		uint16_t rx_prod, tx_cons;
3098 
3099 		rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3100 		if (sc->bge_rx_saved_considx != rx_prod)
3101 			bge_rxeof(sc, rx_prod);
3102 
3103 		tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3104 		if (sc->bge_tx_saved_considx != tx_cons)
3105 			bge_txeof(sc, tx_cons);
3106 	}
3107 
3108 	if (sc->bge_coal_chg)
3109 		bge_coal_change(sc);
3110 }
3111 
3112 static void
3113 bge_intr_legacy(void *xsc)
3114 {
3115 	struct bge_softc *sc = xsc;
3116 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3117 
3118 	if (sc->bge_status_tag == sblk->bge_status_tag) {
3119 		uint32_t val;
3120 
3121 		val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3122 		if (val & BGE_PCISTAT_INTR_NOTACT)
3123 			return;
3124 	}
3125 
3126 	/*
3127 	 * NOTE:
3128 	 * Interrupt will have to be disabled if tagged status
3129 	 * is used, else interrupt will always be asserted on
3130 	 * certain chips (at least on BCM5750 AX/BX).
3131 	 */
3132 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3133 
3134 	bge_intr(sc);
3135 }
3136 
3137 static void
3138 bge_msi(void *xsc)
3139 {
3140 	struct bge_softc *sc = xsc;
3141 
3142 	/* Disable interrupt first */
3143 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3144 	bge_intr(sc);
3145 }
3146 
3147 static void
3148 bge_msi_oneshot(void *xsc)
3149 {
3150 	bge_intr(xsc);
3151 }
3152 
3153 static void
3154 bge_intr(struct bge_softc *sc)
3155 {
3156 	struct ifnet *ifp = &sc->arpcom.ac_if;
3157 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3158 	uint16_t rx_prod, tx_cons;
3159 	uint32_t status;
3160 
3161 	sc->bge_status_tag = sblk->bge_status_tag;
3162 	/*
3163 	 * Use a load fence to ensure that status_tag is saved
3164 	 * before rx_prod, tx_cons and status.
3165 	 */
3166 	cpu_lfence();
3167 
3168 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3169 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3170 	status = sblk->bge_status;
3171 
3172 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3173 		bge_link_poll(sc);
3174 
3175 	if (ifp->if_flags & IFF_RUNNING) {
3176 		if (sc->bge_rx_saved_considx != rx_prod)
3177 			bge_rxeof(sc, rx_prod);
3178 
3179 		if (sc->bge_tx_saved_considx != tx_cons)
3180 			bge_txeof(sc, tx_cons);
3181 	}
3182 
3183 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3184 
3185 	if (sc->bge_coal_chg)
3186 		bge_coal_change(sc);
3187 }
3188 
3189 static void
3190 bge_tick(void *xsc)
3191 {
3192 	struct bge_softc *sc = xsc;
3193 	struct ifnet *ifp = &sc->arpcom.ac_if;
3194 
3195 	lwkt_serialize_enter(ifp->if_serializer);
3196 
3197 	if (BGE_IS_5705_PLUS(sc))
3198 		bge_stats_update_regs(sc);
3199 	else
3200 		bge_stats_update(sc);
3201 
3202 	if (sc->bge_flags & BGE_FLAG_TBI) {
3203 		/*
3204 		 * Since in TBI mode auto-polling can't be used we should poll
3205 		 * link status manually. Here we register pending link event
3206 		 * and trigger interrupt.
3207 		 */
3208 		sc->bge_link_evt++;
3209 		if (BGE_IS_CRIPPLED(sc))
3210 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3211 		else
3212 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3213 	} else if (!sc->bge_link) {
3214 		mii_tick(device_get_softc(sc->bge_miibus));
3215 	}
3216 
3217 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3218 
3219 	lwkt_serialize_exit(ifp->if_serializer);
3220 }
3221 
3222 static void
3223 bge_stats_update_regs(struct bge_softc *sc)
3224 {
3225 	struct ifnet *ifp = &sc->arpcom.ac_if;
3226 	struct bge_mac_stats_regs stats;
3227 	uint32_t *s;
3228 	int i;
3229 
3230 	s = (uint32_t *)&stats;
3231 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3232 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
3233 		s++;
3234 	}
3235 
3236 	ifp->if_collisions +=
3237 	   (stats.dot3StatsSingleCollisionFrames +
3238 	   stats.dot3StatsMultipleCollisionFrames +
3239 	   stats.dot3StatsExcessiveCollisions +
3240 	   stats.dot3StatsLateCollisions) -
3241 	   ifp->if_collisions;
3242 }
3243 
3244 static void
3245 bge_stats_update(struct bge_softc *sc)
3246 {
3247 	struct ifnet *ifp = &sc->arpcom.ac_if;
3248 	bus_size_t stats;
3249 
3250 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3251 
3252 #define READ_STAT(sc, stats, stat)	\
3253 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3254 
3255 	ifp->if_collisions +=
3256 	   (READ_STAT(sc, stats,
3257 		txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3258 	    READ_STAT(sc, stats,
3259 		txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3260 	    READ_STAT(sc, stats,
3261 		txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3262 	    READ_STAT(sc, stats,
3263 		txstats.dot3StatsLateCollisions.bge_addr_lo)) -
3264 	   ifp->if_collisions;
3265 
3266 #undef READ_STAT
3267 
3268 #ifdef notdef
3269 	ifp->if_collisions +=
3270 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3271 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3272 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3273 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3274 	   ifp->if_collisions;
3275 #endif
3276 }
3277 
3278 /*
3279  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3280  * pointers to descriptors.
3281  */
3282 static int
3283 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
3284 {
3285 	struct bge_tx_bd *d = NULL;
3286 	uint16_t csum_flags = 0;
3287 	bus_dma_segment_t segs[BGE_NSEG_NEW];
3288 	bus_dmamap_t map;
3289 	int error, maxsegs, nsegs, idx, i;
3290 	struct mbuf *m_head = *m_head0, *m_new;
3291 
3292 	if (m_head->m_pkthdr.csum_flags) {
3293 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3294 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3295 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3296 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3297 		if (m_head->m_flags & M_LASTFRAG)
3298 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3299 		else if (m_head->m_flags & M_FRAG)
3300 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3301 	}
3302 
3303 	idx = *txidx;
3304 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3305 
3306 	maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
3307 	KASSERT(maxsegs >= BGE_NSEG_SPARE,
3308 		("not enough segments %d", maxsegs));
3309 
3310 	if (maxsegs > BGE_NSEG_NEW)
3311 		maxsegs = BGE_NSEG_NEW;
3312 
3313 	/*
3314 	 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3315 	 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3316 	 * but when such padded frames employ the bge IP/TCP checksum
3317 	 * offload, the hardware checksum assist gives incorrect results
3318 	 * (possibly from incorporating its own padding into the UDP/TCP
3319 	 * checksum; who knows).  If we pad such runts with zeros, the
3320 	 * onboard checksum comes out correct.
3321 	 */
3322 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3323 	    m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3324 		error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3325 		if (error)
3326 			goto back;
3327 	}
3328 
3329 	if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3330 		m_new = bge_defrag_shortdma(m_head);
3331 		if (m_new == NULL) {
3332 			error = ENOBUFS;
3333 			goto back;
3334 		}
3335 		*m_head0 = m_head = m_new;
3336 	}
3337 	if (sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3338 	    m_head->m_next != NULL) {
3339 		/*
3340 		 * Forcefully defragment mbuf chain to overcome hardware
3341 		 * limitation which only support a single outstanding
3342 		 * DMA read operation.  If it fails, keep moving on using
3343 		 * the original mbuf chain.
3344 		 */
3345 		m_new = m_defrag(m_head, MB_DONTWAIT);
3346 		if (m_new != NULL)
3347 			*m_head0 = m_head = m_new;
3348 	}
3349 
3350 	error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3351 			m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3352 	if (error)
3353 		goto back;
3354 
3355 	m_head = *m_head0;
3356 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3357 
3358 	for (i = 0; ; i++) {
3359 		d = &sc->bge_ldata.bge_tx_ring[idx];
3360 
3361 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3362 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3363 		d->bge_len = segs[i].ds_len;
3364 		d->bge_flags = csum_flags;
3365 
3366 		if (i == nsegs - 1)
3367 			break;
3368 		BGE_INC(idx, BGE_TX_RING_CNT);
3369 	}
3370 	/* Mark the last segment as end of packet... */
3371 	d->bge_flags |= BGE_TXBDFLAG_END;
3372 
3373 	/* Set vlan tag to the first segment of the packet. */
3374 	d = &sc->bge_ldata.bge_tx_ring[*txidx];
3375 	if (m_head->m_flags & M_VLANTAG) {
3376 		d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3377 		d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3378 	} else {
3379 		d->bge_vlan_tag = 0;
3380 	}
3381 
3382 	/*
3383 	 * Insure that the map for this transmission is placed at
3384 	 * the array index of the last descriptor in this chain.
3385 	 */
3386 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3387 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
3388 	sc->bge_cdata.bge_tx_chain[idx] = m_head;
3389 	sc->bge_txcnt += nsegs;
3390 
3391 	BGE_INC(idx, BGE_TX_RING_CNT);
3392 	*txidx = idx;
3393 back:
3394 	if (error) {
3395 		m_freem(*m_head0);
3396 		*m_head0 = NULL;
3397 	}
3398 	return error;
3399 }
3400 
3401 /*
3402  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3403  * to the mbuf data regions directly in the transmit descriptors.
3404  */
3405 static void
3406 bge_start(struct ifnet *ifp)
3407 {
3408 	struct bge_softc *sc = ifp->if_softc;
3409 	struct mbuf *m_head = NULL;
3410 	uint32_t prodidx;
3411 	int need_trans;
3412 
3413 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3414 		return;
3415 
3416 	prodidx = sc->bge_tx_prodidx;
3417 
3418 	need_trans = 0;
3419 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3420 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
3421 		if (m_head == NULL)
3422 			break;
3423 
3424 		/*
3425 		 * XXX
3426 		 * The code inside the if() block is never reached since we
3427 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3428 		 * requests to checksum TCP/UDP in a fragmented packet.
3429 		 *
3430 		 * XXX
3431 		 * safety overkill.  If this is a fragmented packet chain
3432 		 * with delayed TCP/UDP checksums, then only encapsulate
3433 		 * it if we have enough descriptors to handle the entire
3434 		 * chain at once.
3435 		 * (paranoia -- may not actually be needed)
3436 		 */
3437 		if ((m_head->m_flags & M_FIRSTFRAG) &&
3438 		    (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3439 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3440 			    m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
3441 				ifp->if_flags |= IFF_OACTIVE;
3442 				ifq_prepend(&ifp->if_snd, m_head);
3443 				break;
3444 			}
3445 		}
3446 
3447 		/*
3448 		 * Sanity check: avoid coming within BGE_NSEG_RSVD
3449 		 * descriptors of the end of the ring.  Also make
3450 		 * sure there are BGE_NSEG_SPARE descriptors for
3451 		 * jumbo buffers' defragmentation.
3452 		 */
3453 		if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3454 		    (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
3455 			ifp->if_flags |= IFF_OACTIVE;
3456 			ifq_prepend(&ifp->if_snd, m_head);
3457 			break;
3458 		}
3459 
3460 		/*
3461 		 * Pack the data into the transmit ring. If we
3462 		 * don't have room, set the OACTIVE flag and wait
3463 		 * for the NIC to drain the ring.
3464 		 */
3465 		if (bge_encap(sc, &m_head, &prodidx)) {
3466 			ifp->if_flags |= IFF_OACTIVE;
3467 			ifp->if_oerrors++;
3468 			break;
3469 		}
3470 		need_trans = 1;
3471 
3472 		ETHER_BPF_MTAP(ifp, m_head);
3473 	}
3474 
3475 	if (!need_trans)
3476 		return;
3477 
3478 	/* Transmit */
3479 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3480 	/* 5700 b2 errata */
3481 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3482 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3483 
3484 	sc->bge_tx_prodidx = prodidx;
3485 
3486 	/*
3487 	 * Set a timeout in case the chip goes out to lunch.
3488 	 */
3489 	ifp->if_timer = 5;
3490 }
3491 
3492 static void
3493 bge_init(void *xsc)
3494 {
3495 	struct bge_softc *sc = xsc;
3496 	struct ifnet *ifp = &sc->arpcom.ac_if;
3497 	uint16_t *m;
3498 	uint32_t mode;
3499 
3500 	ASSERT_SERIALIZED(ifp->if_serializer);
3501 
3502 	/* Cancel pending I/O and flush buffers. */
3503 	bge_stop(sc);
3504 	bge_reset(sc);
3505 	bge_chipinit(sc);
3506 
3507 	/*
3508 	 * Init the various state machines, ring
3509 	 * control blocks and firmware.
3510 	 */
3511 	if (bge_blockinit(sc)) {
3512 		if_printf(ifp, "initialization failure\n");
3513 		bge_stop(sc);
3514 		return;
3515 	}
3516 
3517 	/* Specify MTU. */
3518 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3519 	    ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3520 
3521 	/* Load our MAC address. */
3522 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3523 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3524 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3525 
3526 	/* Enable or disable promiscuous mode as needed. */
3527 	bge_setpromisc(sc);
3528 
3529 	/* Program multicast filter. */
3530 	bge_setmulti(sc);
3531 
3532 	/* Init RX ring. */
3533 	if (bge_init_rx_ring_std(sc)) {
3534 		if_printf(ifp, "RX ring initialization failed\n");
3535 		bge_stop(sc);
3536 		return;
3537 	}
3538 
3539 	/*
3540 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3541 	 * memory to insure that the chip has in fact read the first
3542 	 * entry of the ring.
3543 	 */
3544 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3545 		uint32_t		v, i;
3546 		for (i = 0; i < 10; i++) {
3547 			DELAY(20);
3548 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3549 			if (v == (MCLBYTES - ETHER_ALIGN))
3550 				break;
3551 		}
3552 		if (i == 10)
3553 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3554 	}
3555 
3556 	/* Init jumbo RX ring. */
3557 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3558 		if (bge_init_rx_ring_jumbo(sc)) {
3559 			if_printf(ifp, "Jumbo RX ring initialization failed\n");
3560 			bge_stop(sc);
3561 			return;
3562 		}
3563 	}
3564 
3565 	/* Init our RX return ring index */
3566 	sc->bge_rx_saved_considx = 0;
3567 
3568 	/* Init TX ring. */
3569 	bge_init_tx_ring(sc);
3570 
3571 	/* Enable TX MAC state machine lockup fix. */
3572 	mode = CSR_READ_4(sc, BGE_TX_MODE);
3573 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3574 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3575 	/* Turn on transmitter */
3576 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3577 
3578 	/* Turn on receiver */
3579 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3580 
3581 	/*
3582 	 * Set the number of good frames to receive after RX MBUF
3583 	 * Low Watermark has been reached.  After the RX MAC receives
3584 	 * this number of frames, it will drop subsequent incoming
3585 	 * frames until the MBUF High Watermark is reached.
3586 	 */
3587 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3588 
3589 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3590 		if (bootverbose) {
3591 			if_printf(ifp, "MSI_MODE: %#x\n",
3592 			    CSR_READ_4(sc, BGE_MSI_MODE));
3593 		}
3594 
3595 		/*
3596 		 * XXX
3597 		 * Linux driver turns it on for all chips supporting MSI?!
3598 		 */
3599 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3600 			/*
3601 			 * XXX
3602 			 * According to 5722-PG101-R,
3603 			 * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3604 			 * BCM5906.
3605 			 */
3606 			BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3607 			    BGE_PCIE_TRANSACT_ONESHOT_MSI);
3608 		}
3609 	}
3610 
3611 	/* Tell firmware we're alive. */
3612 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3613 
3614 	/* Enable host interrupts if polling(4) is not enabled. */
3615 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3616 #ifdef DEVICE_POLLING
3617 	if (ifp->if_flags & IFF_POLLING)
3618 		bge_disable_intr(sc);
3619 	else
3620 #endif
3621 	bge_enable_intr(sc);
3622 
3623 	bge_ifmedia_upd(ifp);
3624 
3625 	ifp->if_flags |= IFF_RUNNING;
3626 	ifp->if_flags &= ~IFF_OACTIVE;
3627 
3628 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3629 }
3630 
3631 /*
3632  * Set media options.
3633  */
3634 static int
3635 bge_ifmedia_upd(struct ifnet *ifp)
3636 {
3637 	struct bge_softc *sc = ifp->if_softc;
3638 
3639 	/* If this is a 1000baseX NIC, enable the TBI port. */
3640 	if (sc->bge_flags & BGE_FLAG_TBI) {
3641 		struct ifmedia *ifm = &sc->bge_ifmedia;
3642 
3643 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3644 			return(EINVAL);
3645 
3646 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3647 		case IFM_AUTO:
3648 			/*
3649 			 * The BCM5704 ASIC appears to have a special
3650 			 * mechanism for programming the autoneg
3651 			 * advertisement registers in TBI mode.
3652 			 */
3653 			if (!bge_fake_autoneg &&
3654 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3655 				uint32_t sgdig;
3656 
3657 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3658 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3659 				sgdig |= BGE_SGDIGCFG_AUTO |
3660 					 BGE_SGDIGCFG_PAUSE_CAP |
3661 					 BGE_SGDIGCFG_ASYM_PAUSE;
3662 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3663 					    sgdig | BGE_SGDIGCFG_SEND);
3664 				DELAY(5);
3665 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3666 			}
3667 			break;
3668 		case IFM_1000_SX:
3669 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3670 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3671 				    BGE_MACMODE_HALF_DUPLEX);
3672 			} else {
3673 				BGE_SETBIT(sc, BGE_MAC_MODE,
3674 				    BGE_MACMODE_HALF_DUPLEX);
3675 			}
3676 			break;
3677 		default:
3678 			return(EINVAL);
3679 		}
3680 	} else {
3681 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3682 
3683 		sc->bge_link_evt++;
3684 		sc->bge_link = 0;
3685 		if (mii->mii_instance) {
3686 			struct mii_softc *miisc;
3687 
3688 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3689 				mii_phy_reset(miisc);
3690 		}
3691 		mii_mediachg(mii);
3692 
3693 		/*
3694 		 * Force an interrupt so that we will call bge_link_upd
3695 		 * if needed and clear any pending link state attention.
3696 		 * Without this we are not getting any further interrupts
3697 		 * for link state changes and thus will not UP the link and
3698 		 * not be able to send in bge_start.  The only way to get
3699 		 * things working was to receive a packet and get an RX
3700 		 * intr.
3701 		 *
3702 		 * bge_tick should help for fiber cards and we might not
3703 		 * need to do this here if BGE_FLAG_TBI is set but as
3704 		 * we poll for fiber anyway it should not harm.
3705 		 */
3706 		if (BGE_IS_CRIPPLED(sc))
3707 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3708 		else
3709 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3710 	}
3711 	return(0);
3712 }
3713 
3714 /*
3715  * Report current media status.
3716  */
3717 static void
3718 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3719 {
3720 	struct bge_softc *sc = ifp->if_softc;
3721 
3722 	if (sc->bge_flags & BGE_FLAG_TBI) {
3723 		ifmr->ifm_status = IFM_AVALID;
3724 		ifmr->ifm_active = IFM_ETHER;
3725 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3726 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3727 			ifmr->ifm_status |= IFM_ACTIVE;
3728 		} else {
3729 			ifmr->ifm_active |= IFM_NONE;
3730 			return;
3731 		}
3732 
3733 		ifmr->ifm_active |= IFM_1000_SX;
3734 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3735 			ifmr->ifm_active |= IFM_HDX;
3736 		else
3737 			ifmr->ifm_active |= IFM_FDX;
3738 	} else {
3739 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3740 
3741 		mii_pollstat(mii);
3742 		ifmr->ifm_active = mii->mii_media_active;
3743 		ifmr->ifm_status = mii->mii_media_status;
3744 	}
3745 }
3746 
3747 static int
3748 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3749 {
3750 	struct bge_softc *sc = ifp->if_softc;
3751 	struct ifreq *ifr = (struct ifreq *)data;
3752 	int mask, error = 0;
3753 
3754 	ASSERT_SERIALIZED(ifp->if_serializer);
3755 
3756 	switch (command) {
3757 	case SIOCSIFMTU:
3758 		if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3759 		    (BGE_IS_JUMBO_CAPABLE(sc) &&
3760 		     ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3761 			error = EINVAL;
3762 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
3763 			ifp->if_mtu = ifr->ifr_mtu;
3764 			if (ifp->if_flags & IFF_RUNNING)
3765 				bge_init(sc);
3766 		}
3767 		break;
3768 	case SIOCSIFFLAGS:
3769 		if (ifp->if_flags & IFF_UP) {
3770 			if (ifp->if_flags & IFF_RUNNING) {
3771 				mask = ifp->if_flags ^ sc->bge_if_flags;
3772 
3773 				/*
3774 				 * If only the state of the PROMISC flag
3775 				 * changed, then just use the 'set promisc
3776 				 * mode' command instead of reinitializing
3777 				 * the entire NIC. Doing a full re-init
3778 				 * means reloading the firmware and waiting
3779 				 * for it to start up, which may take a
3780 				 * second or two.  Similarly for ALLMULTI.
3781 				 */
3782 				if (mask & IFF_PROMISC)
3783 					bge_setpromisc(sc);
3784 				if (mask & IFF_ALLMULTI)
3785 					bge_setmulti(sc);
3786 			} else {
3787 				bge_init(sc);
3788 			}
3789 		} else if (ifp->if_flags & IFF_RUNNING) {
3790 			bge_stop(sc);
3791 		}
3792 		sc->bge_if_flags = ifp->if_flags;
3793 		break;
3794 	case SIOCADDMULTI:
3795 	case SIOCDELMULTI:
3796 		if (ifp->if_flags & IFF_RUNNING)
3797 			bge_setmulti(sc);
3798 		break;
3799 	case SIOCSIFMEDIA:
3800 	case SIOCGIFMEDIA:
3801 		if (sc->bge_flags & BGE_FLAG_TBI) {
3802 			error = ifmedia_ioctl(ifp, ifr,
3803 			    &sc->bge_ifmedia, command);
3804 		} else {
3805 			struct mii_data *mii;
3806 
3807 			mii = device_get_softc(sc->bge_miibus);
3808 			error = ifmedia_ioctl(ifp, ifr,
3809 					      &mii->mii_media, command);
3810 		}
3811 		break;
3812         case SIOCSIFCAP:
3813 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3814 		if (mask & IFCAP_HWCSUM) {
3815 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3816 			if (IFCAP_HWCSUM & ifp->if_capenable)
3817 				ifp->if_hwassist = BGE_CSUM_FEATURES;
3818 			else
3819 				ifp->if_hwassist = 0;
3820 		}
3821 		break;
3822 	default:
3823 		error = ether_ioctl(ifp, command, data);
3824 		break;
3825 	}
3826 	return error;
3827 }
3828 
3829 static void
3830 bge_watchdog(struct ifnet *ifp)
3831 {
3832 	struct bge_softc *sc = ifp->if_softc;
3833 
3834 	if_printf(ifp, "watchdog timeout -- resetting\n");
3835 
3836 	bge_init(sc);
3837 
3838 	ifp->if_oerrors++;
3839 
3840 	if (!ifq_is_empty(&ifp->if_snd))
3841 		if_devstart(ifp);
3842 }
3843 
3844 /*
3845  * Stop the adapter and free any mbufs allocated to the
3846  * RX and TX lists.
3847  */
3848 static void
3849 bge_stop(struct bge_softc *sc)
3850 {
3851 	struct ifnet *ifp = &sc->arpcom.ac_if;
3852 
3853 	ASSERT_SERIALIZED(ifp->if_serializer);
3854 
3855 	callout_stop(&sc->bge_stat_timer);
3856 
3857 	/*
3858 	 * Disable all of the receiver blocks
3859 	 */
3860 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3861 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3862 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3863 	if (BGE_IS_5700_FAMILY(sc))
3864 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3865 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3866 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3867 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3868 
3869 	/*
3870 	 * Disable all of the transmit blocks
3871 	 */
3872 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3873 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3874 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3875 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3876 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3877 	if (BGE_IS_5700_FAMILY(sc))
3878 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3879 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3880 
3881 	/*
3882 	 * Shut down all of the memory managers and related
3883 	 * state machines.
3884 	 */
3885 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3886 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3887 	if (BGE_IS_5700_FAMILY(sc))
3888 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3889 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3890 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3891 	if (!BGE_IS_5705_PLUS(sc)) {
3892 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3893 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3894 	}
3895 
3896 	/* Disable host interrupts. */
3897 	bge_disable_intr(sc);
3898 
3899 	/*
3900 	 * Tell firmware we're shutting down.
3901 	 */
3902 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3903 
3904 	/* Free the RX lists. */
3905 	bge_free_rx_ring_std(sc);
3906 
3907 	/* Free jumbo RX list. */
3908 	if (BGE_IS_JUMBO_CAPABLE(sc))
3909 		bge_free_rx_ring_jumbo(sc);
3910 
3911 	/* Free TX buffers. */
3912 	bge_free_tx_ring(sc);
3913 
3914 	sc->bge_status_tag = 0;
3915 	sc->bge_link = 0;
3916 	sc->bge_coal_chg = 0;
3917 
3918 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3919 
3920 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3921 	ifp->if_timer = 0;
3922 }
3923 
3924 /*
3925  * Stop all chip I/O so that the kernel's probe routines don't
3926  * get confused by errant DMAs when rebooting.
3927  */
3928 static void
3929 bge_shutdown(device_t dev)
3930 {
3931 	struct bge_softc *sc = device_get_softc(dev);
3932 	struct ifnet *ifp = &sc->arpcom.ac_if;
3933 
3934 	lwkt_serialize_enter(ifp->if_serializer);
3935 	bge_stop(sc);
3936 	bge_reset(sc);
3937 	lwkt_serialize_exit(ifp->if_serializer);
3938 }
3939 
3940 static int
3941 bge_suspend(device_t dev)
3942 {
3943 	struct bge_softc *sc = device_get_softc(dev);
3944 	struct ifnet *ifp = &sc->arpcom.ac_if;
3945 
3946 	lwkt_serialize_enter(ifp->if_serializer);
3947 	bge_stop(sc);
3948 	lwkt_serialize_exit(ifp->if_serializer);
3949 
3950 	return 0;
3951 }
3952 
3953 static int
3954 bge_resume(device_t dev)
3955 {
3956 	struct bge_softc *sc = device_get_softc(dev);
3957 	struct ifnet *ifp = &sc->arpcom.ac_if;
3958 
3959 	lwkt_serialize_enter(ifp->if_serializer);
3960 
3961 	if (ifp->if_flags & IFF_UP) {
3962 		bge_init(sc);
3963 
3964 		if (!ifq_is_empty(&ifp->if_snd))
3965 			if_devstart(ifp);
3966 	}
3967 
3968 	lwkt_serialize_exit(ifp->if_serializer);
3969 
3970 	return 0;
3971 }
3972 
3973 static void
3974 bge_setpromisc(struct bge_softc *sc)
3975 {
3976 	struct ifnet *ifp = &sc->arpcom.ac_if;
3977 
3978 	if (ifp->if_flags & IFF_PROMISC)
3979 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3980 	else
3981 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3982 }
3983 
3984 static void
3985 bge_dma_free(struct bge_softc *sc)
3986 {
3987 	int i;
3988 
3989 	/* Destroy RX mbuf DMA stuffs. */
3990 	if (sc->bge_cdata.bge_rx_mtag != NULL) {
3991 		for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3992 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3993 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
3994 		}
3995 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3996 				   sc->bge_cdata.bge_rx_tmpmap);
3997 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3998 	}
3999 
4000 	/* Destroy TX mbuf DMA stuffs. */
4001 	if (sc->bge_cdata.bge_tx_mtag != NULL) {
4002 		for (i = 0; i < BGE_TX_RING_CNT; i++) {
4003 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4004 			    sc->bge_cdata.bge_tx_dmamap[i]);
4005 		}
4006 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4007 	}
4008 
4009 	/* Destroy standard RX ring */
4010 	bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4011 			   sc->bge_cdata.bge_rx_std_ring_map,
4012 			   sc->bge_ldata.bge_rx_std_ring);
4013 
4014 	if (BGE_IS_JUMBO_CAPABLE(sc))
4015 		bge_free_jumbo_mem(sc);
4016 
4017 	/* Destroy RX return ring */
4018 	bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4019 			   sc->bge_cdata.bge_rx_return_ring_map,
4020 			   sc->bge_ldata.bge_rx_return_ring);
4021 
4022 	/* Destroy TX ring */
4023 	bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4024 			   sc->bge_cdata.bge_tx_ring_map,
4025 			   sc->bge_ldata.bge_tx_ring);
4026 
4027 	/* Destroy status block */
4028 	bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4029 			   sc->bge_cdata.bge_status_map,
4030 			   sc->bge_ldata.bge_status_block);
4031 
4032 	/* Destroy statistics block */
4033 	bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4034 			   sc->bge_cdata.bge_stats_map,
4035 			   sc->bge_ldata.bge_stats);
4036 
4037 	/* Destroy the parent tag */
4038 	if (sc->bge_cdata.bge_parent_tag != NULL)
4039 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4040 }
4041 
4042 static int
4043 bge_dma_alloc(struct bge_softc *sc)
4044 {
4045 	struct ifnet *ifp = &sc->arpcom.ac_if;
4046 	int i, error;
4047 	bus_addr_t lowaddr;
4048 
4049 	lowaddr = BUS_SPACE_MAXADDR;
4050 	if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4051 		lowaddr = BGE_DMA_MAXADDR_40BIT;
4052 
4053 	/*
4054 	 * Allocate the parent bus DMA tag appropriate for PCI.
4055 	 *
4056 	 * All of the NetExtreme/NetLink controllers have 4GB boundary
4057 	 * DMA bug.
4058 	 * Whenever an address crosses a multiple of the 4GB boundary
4059 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4060 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4061 	 * state machine will lockup and cause the device to hang.
4062 	 */
4063 	error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4064 				   lowaddr, BUS_SPACE_MAXADDR,
4065 				   NULL, NULL,
4066 				   BUS_SPACE_MAXSIZE_32BIT, 0,
4067 				   BUS_SPACE_MAXSIZE_32BIT,
4068 				   0, &sc->bge_cdata.bge_parent_tag);
4069 	if (error) {
4070 		if_printf(ifp, "could not allocate parent dma tag\n");
4071 		return error;
4072 	}
4073 
4074 	/*
4075 	 * Create DMA tag and maps for RX mbufs.
4076 	 */
4077 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4078 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4079 				   NULL, NULL, MCLBYTES, 1, MCLBYTES,
4080 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4081 				   &sc->bge_cdata.bge_rx_mtag);
4082 	if (error) {
4083 		if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4084 		return error;
4085 	}
4086 
4087 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4088 				  BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4089 	if (error) {
4090 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4091 		sc->bge_cdata.bge_rx_mtag = NULL;
4092 		return error;
4093 	}
4094 
4095 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4096 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4097 					  BUS_DMA_WAITOK,
4098 					  &sc->bge_cdata.bge_rx_std_dmamap[i]);
4099 		if (error) {
4100 			int j;
4101 
4102 			for (j = 0; j < i; ++j) {
4103 				bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4104 					sc->bge_cdata.bge_rx_std_dmamap[j]);
4105 			}
4106 			bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4107 			sc->bge_cdata.bge_rx_mtag = NULL;
4108 
4109 			if_printf(ifp, "could not create DMA map for RX\n");
4110 			return error;
4111 		}
4112 	}
4113 
4114 	/*
4115 	 * Create DMA tag and maps for TX mbufs.
4116 	 */
4117 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4118 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4119 				   NULL, NULL,
4120 				   BGE_JUMBO_FRAMELEN, BGE_NSEG_NEW, MCLBYTES,
4121 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4122 				   BUS_DMA_ONEBPAGE,
4123 				   &sc->bge_cdata.bge_tx_mtag);
4124 	if (error) {
4125 		if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4126 		return error;
4127 	}
4128 
4129 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
4130 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4131 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4132 					  &sc->bge_cdata.bge_tx_dmamap[i]);
4133 		if (error) {
4134 			int j;
4135 
4136 			for (j = 0; j < i; ++j) {
4137 				bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4138 					sc->bge_cdata.bge_tx_dmamap[j]);
4139 			}
4140 			bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4141 			sc->bge_cdata.bge_tx_mtag = NULL;
4142 
4143 			if_printf(ifp, "could not create DMA map for TX\n");
4144 			return error;
4145 		}
4146 	}
4147 
4148 	/*
4149 	 * Create DMA stuffs for standard RX ring.
4150 	 */
4151 	error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4152 				    &sc->bge_cdata.bge_rx_std_ring_tag,
4153 				    &sc->bge_cdata.bge_rx_std_ring_map,
4154 				    (void *)&sc->bge_ldata.bge_rx_std_ring,
4155 				    &sc->bge_ldata.bge_rx_std_ring_paddr);
4156 	if (error) {
4157 		if_printf(ifp, "could not create std RX ring\n");
4158 		return error;
4159 	}
4160 
4161 	/*
4162 	 * Create jumbo buffer pool.
4163 	 */
4164 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
4165 		error = bge_alloc_jumbo_mem(sc);
4166 		if (error) {
4167 			if_printf(ifp, "could not create jumbo buffer pool\n");
4168 			return error;
4169 		}
4170 	}
4171 
4172 	/*
4173 	 * Create DMA stuffs for RX return ring.
4174 	 */
4175 	error = bge_dma_block_alloc(sc,
4176 	    BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4177 	    &sc->bge_cdata.bge_rx_return_ring_tag,
4178 	    &sc->bge_cdata.bge_rx_return_ring_map,
4179 	    (void *)&sc->bge_ldata.bge_rx_return_ring,
4180 	    &sc->bge_ldata.bge_rx_return_ring_paddr);
4181 	if (error) {
4182 		if_printf(ifp, "could not create RX ret ring\n");
4183 		return error;
4184 	}
4185 
4186 	/*
4187 	 * Create DMA stuffs for TX ring.
4188 	 */
4189 	error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4190 				    &sc->bge_cdata.bge_tx_ring_tag,
4191 				    &sc->bge_cdata.bge_tx_ring_map,
4192 				    (void *)&sc->bge_ldata.bge_tx_ring,
4193 				    &sc->bge_ldata.bge_tx_ring_paddr);
4194 	if (error) {
4195 		if_printf(ifp, "could not create TX ring\n");
4196 		return error;
4197 	}
4198 
4199 	/*
4200 	 * Create DMA stuffs for status block.
4201 	 */
4202 	error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4203 				    &sc->bge_cdata.bge_status_tag,
4204 				    &sc->bge_cdata.bge_status_map,
4205 				    (void *)&sc->bge_ldata.bge_status_block,
4206 				    &sc->bge_ldata.bge_status_block_paddr);
4207 	if (error) {
4208 		if_printf(ifp, "could not create status block\n");
4209 		return error;
4210 	}
4211 
4212 	/*
4213 	 * Create DMA stuffs for statistics block.
4214 	 */
4215 	error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4216 				    &sc->bge_cdata.bge_stats_tag,
4217 				    &sc->bge_cdata.bge_stats_map,
4218 				    (void *)&sc->bge_ldata.bge_stats,
4219 				    &sc->bge_ldata.bge_stats_paddr);
4220 	if (error) {
4221 		if_printf(ifp, "could not create stats block\n");
4222 		return error;
4223 	}
4224 	return 0;
4225 }
4226 
4227 static int
4228 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4229 		    bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4230 {
4231 	bus_dmamem_t dmem;
4232 	int error;
4233 
4234 	error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4235 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4236 				    size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4237 	if (error)
4238 		return error;
4239 
4240 	*tag = dmem.dmem_tag;
4241 	*map = dmem.dmem_map;
4242 	*addr = dmem.dmem_addr;
4243 	*paddr = dmem.dmem_busaddr;
4244 
4245 	return 0;
4246 }
4247 
4248 static void
4249 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4250 {
4251 	if (tag != NULL) {
4252 		bus_dmamap_unload(tag, map);
4253 		bus_dmamem_free(tag, addr, map);
4254 		bus_dma_tag_destroy(tag);
4255 	}
4256 }
4257 
4258 /*
4259  * Grrr. The link status word in the status block does
4260  * not work correctly on the BCM5700 rev AX and BX chips,
4261  * according to all available information. Hence, we have
4262  * to enable MII interrupts in order to properly obtain
4263  * async link changes. Unfortunately, this also means that
4264  * we have to read the MAC status register to detect link
4265  * changes, thereby adding an additional register access to
4266  * the interrupt handler.
4267  *
4268  * XXX: perhaps link state detection procedure used for
4269  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4270  */
4271 static void
4272 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4273 {
4274 	struct ifnet *ifp = &sc->arpcom.ac_if;
4275 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4276 
4277 	mii_pollstat(mii);
4278 
4279 	if (!sc->bge_link &&
4280 	    (mii->mii_media_status & IFM_ACTIVE) &&
4281 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4282 		sc->bge_link++;
4283 		if (bootverbose)
4284 			if_printf(ifp, "link UP\n");
4285 	} else if (sc->bge_link &&
4286 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4287 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4288 		sc->bge_link = 0;
4289 		if (bootverbose)
4290 			if_printf(ifp, "link DOWN\n");
4291 	}
4292 
4293 	/* Clear the interrupt. */
4294 	CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4295 	bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4296 	bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4297 }
4298 
4299 static void
4300 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4301 {
4302 	struct ifnet *ifp = &sc->arpcom.ac_if;
4303 
4304 #define PCS_ENCODE_ERR	(BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4305 
4306 	/*
4307 	 * Sometimes PCS encoding errors are detected in
4308 	 * TBI mode (on fiber NICs), and for some reason
4309 	 * the chip will signal them as link changes.
4310 	 * If we get a link change event, but the 'PCS
4311 	 * encoding error' bit in the MAC status register
4312 	 * is set, don't bother doing a link check.
4313 	 * This avoids spurious "gigabit link up" messages
4314 	 * that sometimes appear on fiber NICs during
4315 	 * periods of heavy traffic.
4316 	 */
4317 	if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4318 		if (!sc->bge_link) {
4319 			sc->bge_link++;
4320 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4321 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4322 				    BGE_MACMODE_TBI_SEND_CFGS);
4323 			}
4324 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4325 
4326 			if (bootverbose)
4327 				if_printf(ifp, "link UP\n");
4328 
4329 			ifp->if_link_state = LINK_STATE_UP;
4330 			if_link_state_change(ifp);
4331 		}
4332 	} else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4333 		if (sc->bge_link) {
4334 			sc->bge_link = 0;
4335 
4336 			if (bootverbose)
4337 				if_printf(ifp, "link DOWN\n");
4338 
4339 			ifp->if_link_state = LINK_STATE_DOWN;
4340 			if_link_state_change(ifp);
4341 		}
4342 	}
4343 
4344 #undef PCS_ENCODE_ERR
4345 
4346 	/* Clear the attention. */
4347 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4348 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4349 	    BGE_MACSTAT_LINK_CHANGED);
4350 }
4351 
4352 static void
4353 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4354 {
4355 	struct ifnet *ifp = &sc->arpcom.ac_if;
4356 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4357 
4358 	mii_pollstat(mii);
4359 	bge_miibus_statchg(sc->bge_dev);
4360 
4361 	if (bootverbose) {
4362 		if (sc->bge_link)
4363 			if_printf(ifp, "link UP\n");
4364 		else
4365 			if_printf(ifp, "link DOWN\n");
4366 	}
4367 
4368 	/* Clear the attention. */
4369 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4370 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4371 	    BGE_MACSTAT_LINK_CHANGED);
4372 }
4373 
4374 static void
4375 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4376 {
4377 	struct ifnet *ifp = &sc->arpcom.ac_if;
4378 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4379 
4380 	mii_pollstat(mii);
4381 
4382 	if (!sc->bge_link &&
4383 	    (mii->mii_media_status & IFM_ACTIVE) &&
4384 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4385 		sc->bge_link++;
4386 		if (bootverbose)
4387 			if_printf(ifp, "link UP\n");
4388 	} else if (sc->bge_link &&
4389 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4390 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4391 		sc->bge_link = 0;
4392 		if (bootverbose)
4393 			if_printf(ifp, "link DOWN\n");
4394 	}
4395 
4396 	/* Clear the attention. */
4397 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4398 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4399 	    BGE_MACSTAT_LINK_CHANGED);
4400 }
4401 
4402 static int
4403 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4404 {
4405 	struct bge_softc *sc = arg1;
4406 
4407 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4408 	    &sc->bge_rx_coal_ticks,
4409 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4410 	    BGE_RX_COAL_TICKS_CHG);
4411 }
4412 
4413 static int
4414 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4415 {
4416 	struct bge_softc *sc = arg1;
4417 
4418 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4419 	    &sc->bge_tx_coal_ticks,
4420 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4421 	    BGE_TX_COAL_TICKS_CHG);
4422 }
4423 
4424 static int
4425 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4426 {
4427 	struct bge_softc *sc = arg1;
4428 
4429 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4430 	    &sc->bge_rx_coal_bds,
4431 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4432 	    BGE_RX_COAL_BDS_CHG);
4433 }
4434 
4435 static int
4436 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4437 {
4438 	struct bge_softc *sc = arg1;
4439 
4440 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4441 	    &sc->bge_tx_coal_bds,
4442 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4443 	    BGE_TX_COAL_BDS_CHG);
4444 }
4445 
4446 static int
4447 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4448 {
4449 	struct bge_softc *sc = arg1;
4450 
4451 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4452 	    &sc->bge_rx_coal_ticks_int,
4453 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4454 	    BGE_RX_COAL_TICKS_INT_CHG);
4455 }
4456 
4457 static int
4458 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4459 {
4460 	struct bge_softc *sc = arg1;
4461 
4462 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4463 	    &sc->bge_tx_coal_ticks_int,
4464 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4465 	    BGE_TX_COAL_TICKS_INT_CHG);
4466 }
4467 
4468 static int
4469 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4470 {
4471 	struct bge_softc *sc = arg1;
4472 
4473 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4474 	    &sc->bge_rx_coal_bds_int,
4475 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4476 	    BGE_RX_COAL_BDS_INT_CHG);
4477 }
4478 
4479 static int
4480 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4481 {
4482 	struct bge_softc *sc = arg1;
4483 
4484 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4485 	    &sc->bge_tx_coal_bds_int,
4486 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4487 	    BGE_TX_COAL_BDS_INT_CHG);
4488 }
4489 
4490 static int
4491 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4492     int coal_min, int coal_max, uint32_t coal_chg_mask)
4493 {
4494 	struct bge_softc *sc = arg1;
4495 	struct ifnet *ifp = &sc->arpcom.ac_if;
4496 	int error = 0, v;
4497 
4498 	lwkt_serialize_enter(ifp->if_serializer);
4499 
4500 	v = *coal;
4501 	error = sysctl_handle_int(oidp, &v, 0, req);
4502 	if (!error && req->newptr != NULL) {
4503 		if (v < coal_min || v > coal_max) {
4504 			error = EINVAL;
4505 		} else {
4506 			*coal = v;
4507 			sc->bge_coal_chg |= coal_chg_mask;
4508 		}
4509 	}
4510 
4511 	lwkt_serialize_exit(ifp->if_serializer);
4512 	return error;
4513 }
4514 
4515 static void
4516 bge_coal_change(struct bge_softc *sc)
4517 {
4518 	struct ifnet *ifp = &sc->arpcom.ac_if;
4519 	uint32_t val;
4520 
4521 	ASSERT_SERIALIZED(ifp->if_serializer);
4522 
4523 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4524 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4525 			    sc->bge_rx_coal_ticks);
4526 		DELAY(10);
4527 		val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4528 
4529 		if (bootverbose) {
4530 			if_printf(ifp, "rx_coal_ticks -> %u\n",
4531 				  sc->bge_rx_coal_ticks);
4532 		}
4533 	}
4534 
4535 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4536 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4537 			    sc->bge_tx_coal_ticks);
4538 		DELAY(10);
4539 		val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4540 
4541 		if (bootverbose) {
4542 			if_printf(ifp, "tx_coal_ticks -> %u\n",
4543 				  sc->bge_tx_coal_ticks);
4544 		}
4545 	}
4546 
4547 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4548 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4549 			    sc->bge_rx_coal_bds);
4550 		DELAY(10);
4551 		val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4552 
4553 		if (bootverbose) {
4554 			if_printf(ifp, "rx_coal_bds -> %u\n",
4555 				  sc->bge_rx_coal_bds);
4556 		}
4557 	}
4558 
4559 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4560 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4561 			    sc->bge_tx_coal_bds);
4562 		DELAY(10);
4563 		val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4564 
4565 		if (bootverbose) {
4566 			if_printf(ifp, "tx_max_coal_bds -> %u\n",
4567 				  sc->bge_tx_coal_bds);
4568 		}
4569 	}
4570 
4571 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4572 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4573 		    sc->bge_rx_coal_ticks_int);
4574 		DELAY(10);
4575 		val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4576 
4577 		if (bootverbose) {
4578 			if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4579 			    sc->bge_rx_coal_ticks_int);
4580 		}
4581 	}
4582 
4583 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4584 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4585 		    sc->bge_tx_coal_ticks_int);
4586 		DELAY(10);
4587 		val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4588 
4589 		if (bootverbose) {
4590 			if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4591 			    sc->bge_tx_coal_ticks_int);
4592 		}
4593 	}
4594 
4595 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4596 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4597 		    sc->bge_rx_coal_bds_int);
4598 		DELAY(10);
4599 		val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4600 
4601 		if (bootverbose) {
4602 			if_printf(ifp, "rx_coal_bds_int -> %u\n",
4603 			    sc->bge_rx_coal_bds_int);
4604 		}
4605 	}
4606 
4607 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4608 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4609 		    sc->bge_tx_coal_bds_int);
4610 		DELAY(10);
4611 		val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4612 
4613 		if (bootverbose) {
4614 			if_printf(ifp, "tx_coal_bds_int -> %u\n",
4615 			    sc->bge_tx_coal_bds_int);
4616 		}
4617 	}
4618 
4619 	sc->bge_coal_chg = 0;
4620 }
4621 
4622 static void
4623 bge_enable_intr(struct bge_softc *sc)
4624 {
4625 	struct ifnet *ifp = &sc->arpcom.ac_if;
4626 
4627 	lwkt_serialize_handler_enable(ifp->if_serializer);
4628 
4629 	/*
4630 	 * Enable interrupt.
4631 	 */
4632 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4633 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4634 		/* XXX Linux driver */
4635 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4636 	}
4637 
4638 	/*
4639 	 * Unmask the interrupt when we stop polling.
4640 	 */
4641 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4642 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4643 
4644 	/*
4645 	 * Trigger another interrupt, since above writing
4646 	 * to interrupt mailbox0 may acknowledge pending
4647 	 * interrupt.
4648 	 */
4649 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4650 }
4651 
4652 static void
4653 bge_disable_intr(struct bge_softc *sc)
4654 {
4655 	struct ifnet *ifp = &sc->arpcom.ac_if;
4656 
4657 	/*
4658 	 * Mask the interrupt when we start polling.
4659 	 */
4660 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4661 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4662 
4663 	/*
4664 	 * Acknowledge possible asserted interrupt.
4665 	 */
4666 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4667 
4668 	lwkt_serialize_handler_disable(ifp->if_serializer);
4669 }
4670 
4671 static int
4672 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4673 {
4674 	uint32_t mac_addr;
4675 	int ret = 1;
4676 
4677 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4678 	if ((mac_addr >> 16) == 0x484b) {
4679 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4680 		ether_addr[1] = (uint8_t)mac_addr;
4681 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4682 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4683 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4684 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4685 		ether_addr[5] = (uint8_t)mac_addr;
4686 		ret = 0;
4687 	}
4688 	return ret;
4689 }
4690 
4691 static int
4692 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4693 {
4694 	int mac_offset = BGE_EE_MAC_OFFSET;
4695 
4696 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4697 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4698 
4699 	return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4700 }
4701 
4702 static int
4703 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4704 {
4705 	if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4706 		return 1;
4707 
4708 	return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4709 			       ETHER_ADDR_LEN);
4710 }
4711 
4712 static int
4713 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4714 {
4715 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4716 		/* NOTE: Order is critical */
4717 		bge_get_eaddr_mem,
4718 		bge_get_eaddr_nvram,
4719 		bge_get_eaddr_eeprom,
4720 		NULL
4721 	};
4722 	const bge_eaddr_fcn_t *func;
4723 
4724 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4725 		if ((*func)(sc, eaddr) == 0)
4726 			break;
4727 	}
4728 	return (*func == NULL ? ENXIO : 0);
4729 }
4730 
4731 /*
4732  * NOTE: 'm' is not freed upon failure
4733  */
4734 struct mbuf *
4735 bge_defrag_shortdma(struct mbuf *m)
4736 {
4737 	struct mbuf *n;
4738 	int found;
4739 
4740 	/*
4741 	 * If device receive two back-to-back send BDs with less than
4742 	 * or equal to 8 total bytes then the device may hang.  The two
4743 	 * back-to-back send BDs must in the same frame for this failure
4744 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4745 	 * send BDs are there.  If this is the case, allocate new mbuf
4746 	 * and copy the frame to workaround the silicon bug.
4747 	 */
4748 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4749 		if (n->m_len < 8) {
4750 			found++;
4751 			if (found > 1)
4752 				break;
4753 			continue;
4754 		}
4755 		found = 0;
4756 	}
4757 
4758 	if (found > 1)
4759 		n = m_defrag(m, MB_DONTWAIT);
4760 	else
4761 		n = m;
4762 	return n;
4763 }
4764 
4765 static void
4766 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4767 {
4768 	int i;
4769 
4770 	BGE_CLRBIT(sc, reg, bit);
4771 	for (i = 0; i < BGE_TIMEOUT; i++) {
4772 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4773 			return;
4774 		DELAY(100);
4775 	}
4776 }
4777 
4778 static void
4779 bge_link_poll(struct bge_softc *sc)
4780 {
4781 	uint32_t status;
4782 
4783 	status = CSR_READ_4(sc, BGE_MAC_STS);
4784 	if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
4785 		sc->bge_link_evt = 0;
4786 		sc->bge_link_upd(sc, status);
4787 	}
4788 }
4789 
4790 static void
4791 bge_enable_msi(struct bge_softc *sc)
4792 {
4793 	uint32_t msi_mode;
4794 
4795 	msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
4796 	msi_mode |= BGE_MSIMODE_ENABLE;
4797 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4798 		/*
4799 		 * According to all of the datasheets that are publicly
4800 		 * available, bit 5 of the MSI_MODE is defined to be
4801 		 * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
4802 		 * which "oneshot MSI" is enabled.  However, it is always
4803 		 * safe to clear it here.
4804 		 */
4805 		msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
4806 	}
4807 	CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
4808 }
4809