xref: /dflybsd-src/sys/dev/netif/bge/if_bge.c (revision 9bb2a92deb77a8c17f5fcc2740d0e3cc0e1c6c84)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.14 2004/02/10 21:14:14 hmp Exp $
35  *
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44 
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  *
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83 
84 #include <net/if.h>
85 #include <net/if_arp.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 
90 #include <net/bpf.h>
91 
92 #include <net/if_types.h>
93 #include <net/vlan/if_vlan_var.h>
94 
95 #include <netinet/in_systm.h>
96 #include <netinet/in.h>
97 #include <netinet/ip.h>
98 
99 #include <vm/vm.h>              /* for vtophys */
100 #include <vm/pmap.h>            /* for vtophys */
101 #include <machine/clock.h>      /* for DELAY */
102 #include <machine/bus_memio.h>
103 #include <machine/bus.h>
104 #include <machine/resource.h>
105 #include <sys/bus.h>
106 #include <sys/rman.h>
107 
108 #include <dev/netif/mii_layer/mii.h>
109 #include <dev/netif/mii_layer/miivar.h>
110 #include <dev/netif/mii_layer/miidevs.h>
111 #include <dev/netif/mii_layer/brgphyreg.h>
112 
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
115 
116 #include "if_bgereg.h"
117 
118 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 /*
124  * Various supported device vendors/types and their names. Note: the
125  * spec seems to indicate that the hardware still has Alteon's vendor
126  * ID burned into it, though it will always be overriden by the vendor
127  * ID in the EEPROM. Just to be safe, we cover all possibilities.
128  */
129 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
130 
131 static struct bge_type bge_devs[] = {
132 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5700,
133 		"Broadcom BCM5700 Gigabit Ethernet" },
134 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5701,
135 		"Broadcom BCM5701 Gigabit Ethernet" },
136 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
137 		"Broadcom BCM5700 Gigabit Ethernet" },
138 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
139 		"Broadcom BCM5701 Gigabit Ethernet" },
140 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702,
141 		"Broadcom BCM5702 Gigabit Ethernet" },
142 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702X,
143 		"Broadcom BCM5702X Gigabit Ethernet" },
144 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703,
145 		"Broadcom BCM5703 Gigabit Ethernet" },
146 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703X,
147 		"Broadcom BCM5703X Gigabit Ethernet" },
148 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704C,
149 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
150 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704S,
151 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
152 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705,
153 		"Broadcom BCM5705 Gigabit Ethernet" },
154 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M,
155 		"Broadcom BCM5705M Gigabit Ethernet" },
156 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT,
157 		"Broadcom BCM5705M Gigabit Ethernet" },
158 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5782,
159 		"Broadcom BCM5782 Gigabit Ethernet" },
160 	{ SK_VENDORID, SK_DEVICEID_ALTIMA,
161 		"SysKonnect Gigabit Ethernet" },
162 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000,
163 		"Altima AC1000 Gigabit Ethernet" },
164 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002,
165 		"Altima AC1002 Gigabit Ethernet" },
166 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100,
167 		"Altima AC9100 Gigabit Ethernet" },
168 	{ 0, 0, NULL }
169 };
170 
171 static int bge_probe		(device_t);
172 static int bge_attach		(device_t);
173 static int bge_detach		(device_t);
174 static void bge_release_resources
175 				(struct bge_softc *);
176 static void bge_txeof		(struct bge_softc *);
177 static void bge_rxeof		(struct bge_softc *);
178 
179 static void bge_tick		(void *);
180 static void bge_stats_update	(struct bge_softc *);
181 static void bge_stats_update_regs
182 				(struct bge_softc *);
183 static int bge_encap		(struct bge_softc *, struct mbuf *,
184 					u_int32_t *);
185 
186 static void bge_intr		(void *);
187 static void bge_start		(struct ifnet *);
188 static int bge_ioctl		(struct ifnet *, u_long, caddr_t);
189 static void bge_init		(void *);
190 static void bge_stop		(struct bge_softc *);
191 static void bge_watchdog		(struct ifnet *);
192 static void bge_shutdown		(device_t);
193 static int bge_ifmedia_upd	(struct ifnet *);
194 static void bge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
195 
196 static u_int8_t	bge_eeprom_getbyte	(struct bge_softc *,
197 						int, u_int8_t *);
198 static int bge_read_eeprom	(struct bge_softc *, caddr_t, int, int);
199 
200 static u_int32_t bge_crc	(caddr_t);
201 static void bge_setmulti	(struct bge_softc *);
202 
203 static void bge_handle_events	(struct bge_softc *);
204 static int bge_alloc_jumbo_mem	(struct bge_softc *);
205 static void bge_free_jumbo_mem	(struct bge_softc *);
206 static void *bge_jalloc		(struct bge_softc *);
207 static void bge_jfree		(caddr_t, u_int);
208 static void bge_jref		(caddr_t, u_int);
209 static int bge_newbuf_std	(struct bge_softc *, int, struct mbuf *);
210 static int bge_newbuf_jumbo	(struct bge_softc *, int, struct mbuf *);
211 static int bge_init_rx_ring_std	(struct bge_softc *);
212 static void bge_free_rx_ring_std	(struct bge_softc *);
213 static int bge_init_rx_ring_jumbo	(struct bge_softc *);
214 static void bge_free_rx_ring_jumbo	(struct bge_softc *);
215 static void bge_free_tx_ring	(struct bge_softc *);
216 static int bge_init_tx_ring	(struct bge_softc *);
217 
218 static int bge_chipinit		(struct bge_softc *);
219 static int bge_blockinit	(struct bge_softc *);
220 
221 #ifdef notdef
222 static u_int8_t bge_vpd_readbyte (struct bge_softc *, int);
223 static void bge_vpd_read_res	(struct bge_softc *,
224                                         struct vpd_res *, int);
225 static void bge_vpd_read	(struct bge_softc *);
226 #endif
227 
228 static u_int32_t bge_readmem_ind
229 				(struct bge_softc *, int);
230 static void bge_writemem_ind	(struct bge_softc *, int, int);
231 #ifdef notdef
232 static u_int32_t bge_readreg_ind
233 				(struct bge_softc *, int);
234 #endif
235 static void bge_writereg_ind	(struct bge_softc *, int, int);
236 
237 static int bge_miibus_readreg	(device_t, int, int);
238 static int bge_miibus_writereg	(device_t, int, int, int);
239 static void bge_miibus_statchg	(device_t);
240 
241 static void bge_reset		(struct bge_softc *);
242 
243 static device_method_t bge_methods[] = {
244 	/* Device interface */
245 	DEVMETHOD(device_probe,		bge_probe),
246 	DEVMETHOD(device_attach,	bge_attach),
247 	DEVMETHOD(device_detach,	bge_detach),
248 	DEVMETHOD(device_shutdown,	bge_shutdown),
249 
250 	/* bus interface */
251 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
252 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
253 
254 	/* MII interface */
255 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
256 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
257 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
258 
259 	{ 0, 0 }
260 };
261 
262 static driver_t bge_driver = {
263 	"bge",
264 	bge_methods,
265 	sizeof(struct bge_softc)
266 };
267 
268 static devclass_t bge_devclass;
269 
270 DECLARE_DUMMY_MODULE(if_bge);
271 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
272 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
273 
274 static u_int32_t
275 bge_readmem_ind(sc, off)
276 	struct bge_softc *sc;
277 	int off;
278 {
279 	device_t dev;
280 
281 	dev = sc->bge_dev;
282 
283 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
284 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
285 }
286 
287 static void
288 bge_writemem_ind(sc, off, val)
289 	struct bge_softc *sc;
290 	int off, val;
291 {
292 	device_t dev;
293 
294 	dev = sc->bge_dev;
295 
296 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
297 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
298 
299 	return;
300 }
301 
302 #ifdef notdef
303 static u_int32_t
304 bge_readreg_ind(sc, off)
305 	struct bge_softc *sc;
306 	int off;
307 {
308 	device_t dev;
309 
310 	dev = sc->bge_dev;
311 
312 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
313 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
314 }
315 #endif
316 
317 static void
318 bge_writereg_ind(sc, off, val)
319 	struct bge_softc *sc;
320 	int off, val;
321 {
322 	device_t dev;
323 
324 	dev = sc->bge_dev;
325 
326 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
327 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
328 
329 	return;
330 }
331 
332 #ifdef notdef
333 static u_int8_t
334 bge_vpd_readbyte(sc, addr)
335 	struct bge_softc *sc;
336 	int addr;
337 {
338 	int i;
339 	device_t dev;
340 	u_int32_t val;
341 
342 	dev = sc->bge_dev;
343 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
344 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
345 		DELAY(10);
346 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
347 			break;
348 	}
349 
350 	if (i == BGE_TIMEOUT) {
351 		printf("bge%d: VPD read timed out\n", sc->bge_unit);
352 		return(0);
353 	}
354 
355 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
356 
357 	return((val >> ((addr % 4) * 8)) & 0xFF);
358 }
359 
360 static void
361 bge_vpd_read_res(sc, res, addr)
362 	struct bge_softc *sc;
363 	struct vpd_res *res;
364 	int addr;
365 {
366 	int i;
367 	u_int8_t *ptr;
368 
369 	ptr = (u_int8_t *)res;
370 	for (i = 0; i < sizeof(struct vpd_res); i++)
371 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
372 
373 	return;
374 }
375 
376 static void
377 bge_vpd_read(sc)
378 	struct bge_softc *sc;
379 {
380 	int pos = 0, i;
381 	struct vpd_res res;
382 
383 	if (sc->bge_vpd_prodname != NULL)
384 		free(sc->bge_vpd_prodname, M_DEVBUF);
385 	if (sc->bge_vpd_readonly != NULL)
386 		free(sc->bge_vpd_readonly, M_DEVBUF);
387 	sc->bge_vpd_prodname = NULL;
388 	sc->bge_vpd_readonly = NULL;
389 
390 	bge_vpd_read_res(sc, &res, pos);
391 
392 	if (res.vr_id != VPD_RES_ID) {
393 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
394 			sc->bge_unit, VPD_RES_ID, res.vr_id);
395                 return;
396         }
397 
398 	pos += sizeof(res);
399 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
400 	for (i = 0; i < res.vr_len; i++)
401 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
402 	sc->bge_vpd_prodname[i] = '\0';
403 	pos += i;
404 
405 	bge_vpd_read_res(sc, &res, pos);
406 
407 	if (res.vr_id != VPD_RES_READ) {
408 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
409 		    sc->bge_unit, VPD_RES_READ, res.vr_id);
410 		return;
411 	}
412 
413 	pos += sizeof(res);
414 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
415 	for (i = 0; i < res.vr_len + 1; i++)
416 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
417 
418 	return;
419 }
420 #endif
421 
422 /*
423  * Read a byte of data stored in the EEPROM at address 'addr.' The
424  * BCM570x supports both the traditional bitbang interface and an
425  * auto access interface for reading the EEPROM. We use the auto
426  * access method.
427  */
428 static u_int8_t
429 bge_eeprom_getbyte(sc, addr, dest)
430 	struct bge_softc *sc;
431 	int addr;
432 	u_int8_t *dest;
433 {
434 	int i;
435 	u_int32_t byte = 0;
436 
437 	/*
438 	 * Enable use of auto EEPROM access so we can avoid
439 	 * having to use the bitbang method.
440 	 */
441 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
442 
443 	/* Reset the EEPROM, load the clock period. */
444 	CSR_WRITE_4(sc, BGE_EE_ADDR,
445 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
446 	DELAY(20);
447 
448 	/* Issue the read EEPROM command. */
449 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
450 
451 	/* Wait for completion */
452 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
453 		DELAY(10);
454 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
455 			break;
456 	}
457 
458 	if (i == BGE_TIMEOUT) {
459 		printf("bge%d: eeprom read timed out\n", sc->bge_unit);
460 		return(0);
461 	}
462 
463 	/* Get result. */
464 	byte = CSR_READ_4(sc, BGE_EE_DATA);
465 
466         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
467 
468 	return(0);
469 }
470 
471 /*
472  * Read a sequence of bytes from the EEPROM.
473  */
474 static int
475 bge_read_eeprom(sc, dest, off, cnt)
476 	struct bge_softc *sc;
477 	caddr_t dest;
478 	int off;
479 	int cnt;
480 {
481 	int err = 0, i;
482 	u_int8_t byte = 0;
483 
484 	for (i = 0; i < cnt; i++) {
485 		err = bge_eeprom_getbyte(sc, off + i, &byte);
486 		if (err)
487 			break;
488 		*(dest + i) = byte;
489 	}
490 
491 	return(err ? 1 : 0);
492 }
493 
494 static int
495 bge_miibus_readreg(dev, phy, reg)
496 	device_t dev;
497 	int phy, reg;
498 {
499 	struct bge_softc *sc;
500 	struct ifnet *ifp;
501 	u_int32_t val, autopoll;
502 	int i;
503 
504 	sc = device_get_softc(dev);
505 	ifp = &sc->arpcom.ac_if;
506 
507 	/*
508 	 * Broadcom's own driver always assumes the internal
509 	 * PHY is at GMII address 1. On some chips, the PHY responds
510 	 * to accesses at all addresses, which could cause us to
511 	 * bogusly attach the PHY 32 times at probe type. Always
512 	 * restricting the lookup to address 1 is simpler than
513 	 * trying to figure out which chips revisions should be
514 	 * special-cased.
515 	 */
516 	if (phy != 1)
517 		return(0);
518 
519 	/* Reading with autopolling on may trigger PCI errors */
520 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
521 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
522 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
523 		DELAY(40);
524 	}
525 
526 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
527 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
528 
529 	for (i = 0; i < BGE_TIMEOUT; i++) {
530 		val = CSR_READ_4(sc, BGE_MI_COMM);
531 		if (!(val & BGE_MICOMM_BUSY))
532 			break;
533 	}
534 
535 	if (i == BGE_TIMEOUT) {
536 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
537 		val = 0;
538 		goto done;
539 	}
540 
541 	val = CSR_READ_4(sc, BGE_MI_COMM);
542 
543 done:
544 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
545 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
546 		DELAY(40);
547 	}
548 
549 	if (val & BGE_MICOMM_READFAIL)
550 		return(0);
551 
552 	return(val & 0xFFFF);
553 }
554 
555 static int
556 bge_miibus_writereg(dev, phy, reg, val)
557 	device_t dev;
558 	int phy, reg, val;
559 {
560 	struct bge_softc *sc;
561 	u_int32_t autopoll;
562 	int i;
563 
564 	sc = device_get_softc(dev);
565 
566 	/* Reading with autopolling on may trigger PCI errors */
567 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
568 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
569 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
570 		DELAY(40);
571 	}
572 
573 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
574 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
575 
576 	for (i = 0; i < BGE_TIMEOUT; i++) {
577 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
578 			break;
579 	}
580 
581 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
582 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
583 		DELAY(40);
584 	}
585 
586 	if (i == BGE_TIMEOUT) {
587 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
588 		return(0);
589 	}
590 
591 	return(0);
592 }
593 
594 static void
595 bge_miibus_statchg(dev)
596 	device_t dev;
597 {
598 	struct bge_softc *sc;
599 	struct mii_data *mii;
600 
601 	sc = device_get_softc(dev);
602 	mii = device_get_softc(sc->bge_miibus);
603 
604 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
605 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX) {
606 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
607 	} else {
608 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
609 	}
610 
611 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
612 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
613 	} else {
614 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
615 	}
616 
617 	return;
618 }
619 
620 /*
621  * Handle events that have triggered interrupts.
622  */
623 static void
624 bge_handle_events(sc)
625 	struct bge_softc		*sc;
626 {
627 
628 	return;
629 }
630 
631 /*
632  * Memory management for jumbo frames.
633  */
634 
635 static int
636 bge_alloc_jumbo_mem(sc)
637 	struct bge_softc		*sc;
638 {
639 	caddr_t			ptr;
640 	int		i;
641 	struct bge_jpool_entry   *entry;
642 
643 	/* Grab a big chunk o' storage. */
644 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
645 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
646 
647 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
648 		printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
649 		return(ENOBUFS);
650 	}
651 
652 	SLIST_INIT(&sc->bge_jfree_listhead);
653 	SLIST_INIT(&sc->bge_jinuse_listhead);
654 
655 	/*
656 	 * Now divide it up into 9K pieces and save the addresses
657 	 * in an array. Note that we play an evil trick here by using
658 	 * the first few bytes in the buffer to hold the the address
659 	 * of the softc structure for this interface. This is because
660 	 * bge_jfree() needs it, but it is called by the mbuf management
661 	 * code which will not pass it to us explicitly.
662 	 */
663 	ptr = sc->bge_cdata.bge_jumbo_buf;
664 	for (i = 0; i < BGE_JSLOTS; i++) {
665 		u_int64_t		**aptr;
666 		aptr = (u_int64_t **)ptr;
667 		aptr[0] = (u_int64_t *)sc;
668 		ptr += sizeof(u_int64_t);
669 		sc->bge_cdata.bge_jslots[i].bge_buf = ptr;
670 		sc->bge_cdata.bge_jslots[i].bge_inuse = 0;
671 		ptr += (BGE_JLEN - sizeof(u_int64_t));
672 		entry = malloc(sizeof(struct bge_jpool_entry),
673 			       M_DEVBUF, M_NOWAIT);
674 		if (entry == NULL) {
675 			contigfree(sc->bge_cdata.bge_jumbo_buf,
676 			    BGE_JMEM, M_DEVBUF);
677 			sc->bge_cdata.bge_jumbo_buf = NULL;
678 			printf("bge%d: no memory for jumbo "
679 			    "buffer queue!\n", sc->bge_unit);
680 			return(ENOBUFS);
681 		}
682 		entry->slot = i;
683 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
684 		    entry, jpool_entries);
685 	}
686 
687 	return(0);
688 }
689 
690 static void
691 bge_free_jumbo_mem(sc)
692         struct bge_softc *sc;
693 {
694         int i;
695         struct bge_jpool_entry *entry;
696 
697 	for (i = 0; i < BGE_JSLOTS; i++) {
698 		entry = SLIST_FIRST(&sc->bge_jfree_listhead);
699 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
700 		free(entry, M_DEVBUF);
701 	}
702 
703 	contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
704 
705         return;
706 }
707 
708 /*
709  * Allocate a jumbo buffer.
710  */
711 static void *
712 bge_jalloc(sc)
713 	struct bge_softc		*sc;
714 {
715 	struct bge_jpool_entry   *entry;
716 
717 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
718 
719 	if (entry == NULL) {
720 		printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
721 		return(NULL);
722 	}
723 
724 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
725 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
726 	sc->bge_cdata.bge_jslots[entry->slot].bge_inuse = 1;
727 	return(sc->bge_cdata.bge_jslots[entry->slot].bge_buf);
728 }
729 
730 /*
731  * Adjust usage count on a jumbo buffer.
732  */
733 static void
734 bge_jref(buf, size)
735 	caddr_t			buf;
736 	u_int			size;
737 {
738 	struct bge_softc		*sc;
739 	u_int64_t		**aptr;
740 	int		i;
741 
742 	/* Extract the softc struct pointer. */
743 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
744 	sc = (struct bge_softc *)(aptr[0]);
745 
746 	if (sc == NULL)
747 		panic("bge_jref: can't find softc pointer!");
748 
749 	if (size != BGE_JUMBO_FRAMELEN)
750 		panic("bge_jref: adjusting refcount of buf of wrong size!");
751 
752 	/* calculate the slot this buffer belongs to */
753 
754 	i = ((vm_offset_t)aptr
755 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
756 
757 	if ((i < 0) || (i >= BGE_JSLOTS))
758 		panic("bge_jref: asked to reference buffer "
759 		    "that we don't manage!");
760 	else if (sc->bge_cdata.bge_jslots[i].bge_inuse == 0)
761 		panic("bge_jref: buffer already free!");
762 	else
763 		sc->bge_cdata.bge_jslots[i].bge_inuse++;
764 
765 	return;
766 }
767 
768 /*
769  * Release a jumbo buffer.
770  */
771 static void
772 bge_jfree(buf, size)
773 	caddr_t			buf;
774 	u_int			size;
775 {
776 	struct bge_softc		*sc;
777 	u_int64_t		**aptr;
778 	int		        i;
779 	struct bge_jpool_entry   *entry;
780 
781 	/* Extract the softc struct pointer. */
782 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
783 	sc = (struct bge_softc *)(aptr[0]);
784 
785 	if (sc == NULL)
786 		panic("bge_jfree: can't find softc pointer!");
787 
788 	if (size != BGE_JUMBO_FRAMELEN)
789 		panic("bge_jfree: freeing buffer of wrong size!");
790 
791 	/* calculate the slot this buffer belongs to */
792 
793 	i = ((vm_offset_t)aptr
794 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
795 
796 	if ((i < 0) || (i >= BGE_JSLOTS))
797 		panic("bge_jfree: asked to free buffer that we don't manage!");
798 	else if (sc->bge_cdata.bge_jslots[i].bge_inuse == 0)
799 		panic("bge_jfree: buffer already free!");
800 	else {
801 		sc->bge_cdata.bge_jslots[i].bge_inuse--;
802 		if(sc->bge_cdata.bge_jslots[i].bge_inuse == 0) {
803 			entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
804 			if (entry == NULL)
805 				panic("bge_jfree: buffer not in use!");
806 			entry->slot = i;
807 			SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead,
808 					  jpool_entries);
809 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
810 					  entry, jpool_entries);
811 		}
812 	}
813 
814 	return;
815 }
816 
817 
818 /*
819  * Intialize a standard receive ring descriptor.
820  */
821 static int
822 bge_newbuf_std(sc, i, m)
823 	struct bge_softc	*sc;
824 	int			i;
825 	struct mbuf		*m;
826 {
827 	struct mbuf		*m_new = NULL;
828 	struct bge_rx_bd	*r;
829 
830 	if (m == NULL) {
831 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
832 		if (m_new == NULL) {
833 			return(ENOBUFS);
834 		}
835 
836 		MCLGET(m_new, M_DONTWAIT);
837 		if (!(m_new->m_flags & M_EXT)) {
838 			m_freem(m_new);
839 			return(ENOBUFS);
840 		}
841 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
842 	} else {
843 		m_new = m;
844 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
845 		m_new->m_data = m_new->m_ext.ext_buf;
846 	}
847 
848 	if (!sc->bge_rx_alignment_bug)
849 		m_adj(m_new, ETHER_ALIGN);
850 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
851 	r = &sc->bge_rdata->bge_rx_std_ring[i];
852 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
853 	r->bge_flags = BGE_RXBDFLAG_END;
854 	r->bge_len = m_new->m_len;
855 	r->bge_idx = i;
856 
857 	return(0);
858 }
859 
860 /*
861  * Initialize a jumbo receive ring descriptor. This allocates
862  * a jumbo buffer from the pool managed internally by the driver.
863  */
864 static int
865 bge_newbuf_jumbo(sc, i, m)
866 	struct bge_softc *sc;
867 	int i;
868 	struct mbuf *m;
869 {
870 	struct mbuf *m_new = NULL;
871 	struct bge_rx_bd *r;
872 
873 	if (m == NULL) {
874 		caddr_t			*buf = NULL;
875 
876 		/* Allocate the mbuf. */
877 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
878 		if (m_new == NULL) {
879 			return(ENOBUFS);
880 		}
881 
882 		/* Allocate the jumbo buffer */
883 		buf = bge_jalloc(sc);
884 		if (buf == NULL) {
885 			m_freem(m_new);
886 			printf("bge%d: jumbo allocation failed "
887 			    "-- packet dropped!\n", sc->bge_unit);
888 			return(ENOBUFS);
889 		}
890 
891 		/* Attach the buffer to the mbuf. */
892 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
893 		m_new->m_flags |= M_EXT;
894 		m_new->m_len = m_new->m_pkthdr.len =
895 		    m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
896 		m_new->m_ext.ext_free = bge_jfree;
897 		m_new->m_ext.ext_ref = bge_jref;
898 	} else {
899 		m_new = m;
900 		m_new->m_data = m_new->m_ext.ext_buf;
901 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
902 	}
903 
904 	if (!sc->bge_rx_alignment_bug)
905 		m_adj(m_new, ETHER_ALIGN);
906 	/* Set up the descriptor. */
907 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
908 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
909 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
910 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
911 	r->bge_len = m_new->m_len;
912 	r->bge_idx = i;
913 
914 	return(0);
915 }
916 
917 /*
918  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
919  * that's 1MB or memory, which is a lot. For now, we fill only the first
920  * 256 ring entries and hope that our CPU is fast enough to keep up with
921  * the NIC.
922  */
923 static int
924 bge_init_rx_ring_std(sc)
925 	struct bge_softc *sc;
926 {
927 	int i;
928 
929 	for (i = 0; i < BGE_SSLOTS; i++) {
930 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
931 			return(ENOBUFS);
932 	};
933 
934 	sc->bge_std = i - 1;
935 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
936 
937 	return(0);
938 }
939 
940 static void
941 bge_free_rx_ring_std(sc)
942 	struct bge_softc *sc;
943 {
944 	int i;
945 
946 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
947 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
948 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
949 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
950 		}
951 		bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
952 		    sizeof(struct bge_rx_bd));
953 	}
954 
955 	return;
956 }
957 
958 static int
959 bge_init_rx_ring_jumbo(sc)
960 	struct bge_softc *sc;
961 {
962 	int i;
963 	struct bge_rcb *rcb;
964 
965 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
966 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
967 			return(ENOBUFS);
968 	};
969 
970 	sc->bge_jumbo = i - 1;
971 
972 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
973 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
974 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
975 
976 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
977 
978 	return(0);
979 }
980 
981 static void
982 bge_free_rx_ring_jumbo(sc)
983 	struct bge_softc *sc;
984 {
985 	int i;
986 
987 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
988 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
989 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
990 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
991 		}
992 		bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
993 		    sizeof(struct bge_rx_bd));
994 	}
995 
996 	return;
997 }
998 
999 static void
1000 bge_free_tx_ring(sc)
1001 	struct bge_softc *sc;
1002 {
1003 	int i;
1004 
1005 	if (sc->bge_rdata->bge_tx_ring == NULL)
1006 		return;
1007 
1008 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1009 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1010 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1011 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1012 		}
1013 		bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
1014 		    sizeof(struct bge_tx_bd));
1015 	}
1016 
1017 	return;
1018 }
1019 
1020 static int
1021 bge_init_tx_ring(sc)
1022 	struct bge_softc *sc;
1023 {
1024 	sc->bge_txcnt = 0;
1025 	sc->bge_tx_saved_considx = 0;
1026 
1027 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1028 	/* 5700 b2 errata */
1029 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1030 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1031 
1032 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1033 	/* 5700 b2 errata */
1034 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1035 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1036 
1037 	return(0);
1038 }
1039 
1040 #define BGE_POLY	0xEDB88320
1041 
1042 static u_int32_t
1043 bge_crc(addr)
1044 	caddr_t addr;
1045 {
1046 	u_int32_t idx, bit, data, crc;
1047 
1048 	/* Compute CRC for the address value. */
1049 	crc = 0xFFFFFFFF; /* initial value */
1050 
1051 	for (idx = 0; idx < 6; idx++) {
1052 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1053 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
1054 	}
1055 
1056 	return(crc & 0x7F);
1057 }
1058 
1059 static void
1060 bge_setmulti(sc)
1061 	struct bge_softc *sc;
1062 {
1063 	struct ifnet *ifp;
1064 	struct ifmultiaddr *ifma;
1065 	u_int32_t hashes[4] = { 0, 0, 0, 0 };
1066 	int h, i;
1067 
1068 	ifp = &sc->arpcom.ac_if;
1069 
1070 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1071 		for (i = 0; i < 4; i++)
1072 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1073 		return;
1074 	}
1075 
1076 	/* First, zot all the existing filters. */
1077 	for (i = 0; i < 4; i++)
1078 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1079 
1080 	/* Now program new ones. */
1081 	for (ifma = ifp->if_multiaddrs.lh_first;
1082 	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1083 		if (ifma->ifma_addr->sa_family != AF_LINK)
1084 			continue;
1085 		h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1086 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1087 	}
1088 
1089 	for (i = 0; i < 4; i++)
1090 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1091 
1092 	return;
1093 }
1094 
1095 /*
1096  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1097  * self-test results.
1098  */
1099 static int
1100 bge_chipinit(sc)
1101 	struct bge_softc *sc;
1102 {
1103 	int			i;
1104 	u_int32_t		dma_rw_ctl;
1105 
1106 	/* Set endianness before we access any non-PCI registers. */
1107 #if BYTE_ORDER == BIG_ENDIAN
1108 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1109 	    BGE_BIGENDIAN_INIT, 4);
1110 #else
1111 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1112 	    BGE_LITTLEENDIAN_INIT, 4);
1113 #endif
1114 
1115 	/*
1116 	 * Check the 'ROM failed' bit on the RX CPU to see if
1117 	 * self-tests passed.
1118 	 */
1119 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1120 		printf("bge%d: RX CPU self-diagnostics failed!\n",
1121 		    sc->bge_unit);
1122 		return(ENODEV);
1123 	}
1124 
1125 	/* Clear the MAC control register */
1126 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1127 
1128 	/*
1129 	 * Clear the MAC statistics block in the NIC's
1130 	 * internal memory.
1131 	 */
1132 	for (i = BGE_STATS_BLOCK;
1133 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1134 		BGE_MEMWIN_WRITE(sc, i, 0);
1135 
1136 	for (i = BGE_STATUS_BLOCK;
1137 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1138 		BGE_MEMWIN_WRITE(sc, i, 0);
1139 
1140 	/* Set up the PCI DMA control register. */
1141 	if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1142 	    BGE_PCISTATE_PCI_BUSMODE) {
1143 		/* Conventional PCI bus */
1144 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1145 		    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1146 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1147 		    (0x0F);
1148 	} else {
1149 		/* PCI-X bus */
1150 		/*
1151 		 * The 5704 uses a different encoding of read/write
1152 		 * watermarks.
1153 		 */
1154 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1155 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1156 			    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1157 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1158 		else
1159 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1160 			    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1161 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1162 			    (0x0F);
1163 
1164 		/*
1165 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1166 		 * for hardware bugs.
1167 		 */
1168 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1169 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1170 			u_int32_t tmp;
1171 
1172 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1173 			if (tmp == 0x6 || tmp == 0x7)
1174 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1175 		}
1176 	}
1177 
1178 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1179 	    sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1180 	    sc->bge_asicrev == BGE_ASICREV_BCM5705)
1181 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1182 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1183 
1184 	/*
1185 	 * Set up general mode register.
1186 	 */
1187 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1188 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1189 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1190 	    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1191 
1192 	/*
1193 	 * Disable memory write invalidate.  Apparently it is not supported
1194 	 * properly by these devices.
1195 	 */
1196 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1197 
1198 #ifdef __brokenalpha__
1199 	/*
1200 	 * Must insure that we do not cross an 8K (bytes) boundary
1201 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1202 	 * restriction on some ALPHA platforms with early revision
1203 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1204 	 */
1205 	PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1206 	    BGE_PCI_READ_BNDRY_1024BYTES, 4);
1207 #endif
1208 
1209 	/* Set the timer prescaler (always 66Mhz) */
1210 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1211 
1212 	return(0);
1213 }
1214 
1215 static int
1216 bge_blockinit(sc)
1217 	struct bge_softc *sc;
1218 {
1219 	struct bge_rcb *rcb;
1220 	volatile struct bge_rcb *vrcb;
1221 	int i;
1222 
1223 	/*
1224 	 * Initialize the memory window pointer register so that
1225 	 * we can access the first 32K of internal NIC RAM. This will
1226 	 * allow us to set up the TX send ring RCBs and the RX return
1227 	 * ring RCBs, plus other things which live in NIC memory.
1228 	 */
1229 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1230 
1231 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1232 
1233 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1234 		/* Configure mbuf memory pool */
1235 		if (sc->bge_extram) {
1236 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1237 			    BGE_EXT_SSRAM);
1238 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1239 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1240 			else
1241 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1242 		} else {
1243 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1244 			    BGE_BUFFPOOL_1);
1245 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1246 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1247 			else
1248 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1249 		}
1250 
1251 		/* Configure DMA resource pool */
1252 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1253 		    BGE_DMA_DESCRIPTORS);
1254 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1255 	}
1256 
1257 	/* Configure mbuf pool watermarks */
1258 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
1259 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1260 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1261 	} else {
1262 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1263 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1264 	}
1265 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1266 
1267 	/* Configure DMA resource watermarks */
1268 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1269 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1270 
1271 	/* Enable buffer manager */
1272 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1273 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1274 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1275 
1276 		/* Poll for buffer manager start indication */
1277 		for (i = 0; i < BGE_TIMEOUT; i++) {
1278 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1279 				break;
1280 			DELAY(10);
1281 		}
1282 
1283 		if (i == BGE_TIMEOUT) {
1284 			printf("bge%d: buffer manager failed to start\n",
1285 			    sc->bge_unit);
1286 			return(ENXIO);
1287 		}
1288 	}
1289 
1290 	/* Enable flow-through queues */
1291 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1292 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1293 
1294 	/* Wait until queue initialization is complete */
1295 	for (i = 0; i < BGE_TIMEOUT; i++) {
1296 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1297 			break;
1298 		DELAY(10);
1299 	}
1300 
1301 	if (i == BGE_TIMEOUT) {
1302 		printf("bge%d: flow-through queue init failed\n",
1303 		    sc->bge_unit);
1304 		return(ENXIO);
1305 	}
1306 
1307 	/* Initialize the standard RX ring control block */
1308 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1309 	BGE_HOSTADDR(rcb->bge_hostaddr,
1310 	    vtophys(&sc->bge_rdata->bge_rx_std_ring));
1311 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1312 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1313 	else
1314 		rcb->bge_maxlen_flags =
1315 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1316 	if (sc->bge_extram)
1317 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1318 	else
1319 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1320 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1321 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1322 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1323 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1324 
1325 	/*
1326 	 * Initialize the jumbo RX ring control block
1327 	 * We set the 'ring disabled' bit in the flags
1328 	 * field until we're actually ready to start
1329 	 * using this ring (i.e. once we set the MTU
1330 	 * high enough to require it).
1331 	 */
1332 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1333 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1334 		BGE_HOSTADDR(rcb->bge_hostaddr,
1335 		    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1336 		rcb->bge_maxlen_flags =
1337 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1338 		    BGE_RCB_FLAG_RING_DISABLED);
1339 		if (sc->bge_extram)
1340 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1341 		else
1342 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1343 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1344 		    rcb->bge_hostaddr.bge_addr_hi);
1345 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1346 		    rcb->bge_hostaddr.bge_addr_lo);
1347 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1348 		    rcb->bge_maxlen_flags);
1349 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1350 
1351 		/* Set up dummy disabled mini ring RCB */
1352 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1353 		rcb->bge_maxlen_flags =
1354 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1355 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1356 		    rcb->bge_maxlen_flags);
1357 	}
1358 
1359 	/*
1360 	 * Set the BD ring replentish thresholds. The recommended
1361 	 * values are 1/8th the number of descriptors allocated to
1362 	 * each ring.
1363 	 */
1364 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1365 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1366 
1367 	/*
1368 	 * Disable all unused send rings by setting the 'ring disabled'
1369 	 * bit in the flags field of all the TX send ring control blocks.
1370 	 * These are located in NIC memory.
1371 	 */
1372 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1373 	    BGE_SEND_RING_RCB);
1374 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1375 		vrcb->bge_maxlen_flags =
1376 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1377 		vrcb->bge_nicaddr = 0;
1378 		vrcb++;
1379 	}
1380 
1381 	/* Configure TX RCB 0 (we use only the first ring) */
1382 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1383 	    BGE_SEND_RING_RCB);
1384 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1385 	BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1386 	vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1387 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1388 		vrcb->bge_maxlen_flags =
1389 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1390 
1391 	/* Disable all unused RX return rings */
1392 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1393 	    BGE_RX_RETURN_RING_RCB);
1394 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1395 		vrcb->bge_hostaddr.bge_addr_hi = 0;
1396 		vrcb->bge_hostaddr.bge_addr_lo = 0;
1397 		vrcb->bge_maxlen_flags =
1398 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1399 		    BGE_RCB_FLAG_RING_DISABLED);
1400 		vrcb->bge_nicaddr = 0;
1401 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1402 		    (i * (sizeof(u_int64_t))), 0);
1403 		vrcb++;
1404 	}
1405 
1406 	/* Initialize RX ring indexes */
1407 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1408 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1409 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1410 
1411 	/*
1412 	 * Set up RX return ring 0
1413 	 * Note that the NIC address for RX return rings is 0x00000000.
1414 	 * The return rings live entirely within the host, so the
1415 	 * nicaddr field in the RCB isn't used.
1416 	 */
1417 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1418 	    BGE_RX_RETURN_RING_RCB);
1419 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1420 	BGE_HOSTADDR(vrcb->bge_hostaddr,
1421 	    vtophys(&sc->bge_rdata->bge_rx_return_ring));
1422 	vrcb->bge_nicaddr = 0x00000000;
1423 	vrcb->bge_maxlen_flags =
1424 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1425 
1426 	/* Set random backoff seed for TX */
1427 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1428 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1429 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1430 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1431 	    BGE_TX_BACKOFF_SEED_MASK);
1432 
1433 	/* Set inter-packet gap */
1434 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1435 
1436 	/*
1437 	 * Specify which ring to use for packets that don't match
1438 	 * any RX rules.
1439 	 */
1440 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1441 
1442 	/*
1443 	 * Configure number of RX lists. One interrupt distribution
1444 	 * list, sixteen active lists, one bad frames class.
1445 	 */
1446 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1447 
1448 	/* Inialize RX list placement stats mask. */
1449 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1450 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1451 
1452 	/* Disable host coalescing until we get it set up */
1453 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1454 
1455 	/* Poll to make sure it's shut down. */
1456 	for (i = 0; i < BGE_TIMEOUT; i++) {
1457 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1458 			break;
1459 		DELAY(10);
1460 	}
1461 
1462 	if (i == BGE_TIMEOUT) {
1463 		printf("bge%d: host coalescing engine failed to idle\n",
1464 		    sc->bge_unit);
1465 		return(ENXIO);
1466 	}
1467 
1468 	/* Set up host coalescing defaults */
1469 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1470 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1471 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1472 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1473 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1474 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1475 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1476 	}
1477 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1478 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1479 
1480 	/* Set up address of statistics block */
1481 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1482 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1483 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1484 		    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1485 
1486 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1487 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1488 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1489 	}
1490 
1491 	/* Set up address of status block */
1492 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1493 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1494 	    vtophys(&sc->bge_rdata->bge_status_block));
1495 
1496 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1497 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1498 
1499 	/* Turn on host coalescing state machine */
1500 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1501 
1502 	/* Turn on RX BD completion state machine and enable attentions */
1503 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1504 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1505 
1506 	/* Turn on RX list placement state machine */
1507 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1508 
1509 	/* Turn on RX list selector state machine. */
1510 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1511 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1512 
1513 	/* Turn on DMA, clear stats */
1514 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1515 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1516 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1517 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1518 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1519 
1520 	/* Set misc. local control, enable interrupts on attentions */
1521 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1522 
1523 #ifdef notdef
1524 	/* Assert GPIO pins for PHY reset */
1525 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1526 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1527 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1528 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1529 #endif
1530 
1531 	/* Turn on DMA completion state machine */
1532 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1533 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1534 
1535 	/* Turn on write DMA state machine */
1536 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1537 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1538 
1539 	/* Turn on read DMA state machine */
1540 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1541 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1542 
1543 	/* Turn on RX data completion state machine */
1544 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1545 
1546 	/* Turn on RX BD initiator state machine */
1547 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1548 
1549 	/* Turn on RX data and RX BD initiator state machine */
1550 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1551 
1552 	/* Turn on Mbuf cluster free state machine */
1553 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1554 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1555 
1556 	/* Turn on send BD completion state machine */
1557 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1558 
1559 	/* Turn on send data completion state machine */
1560 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1561 
1562 	/* Turn on send data initiator state machine */
1563 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1564 
1565 	/* Turn on send BD initiator state machine */
1566 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1567 
1568 	/* Turn on send BD selector state machine */
1569 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1570 
1571 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1572 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1573 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1574 
1575 	/* ack/clear link change events */
1576 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1577 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1578 	    BGE_MACSTAT_LINK_CHANGED);
1579 
1580 	/* Enable PHY auto polling (for MII/GMII only) */
1581 	if (sc->bge_tbi) {
1582 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1583  	} else {
1584 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1585 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1586 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1587 			    BGE_EVTENB_MI_INTERRUPT);
1588 	}
1589 
1590 	/* Enable link state change attentions. */
1591 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1592 
1593 	return(0);
1594 }
1595 
1596 /*
1597  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1598  * against our list and return its name if we find a match. Note
1599  * that since the Broadcom controller contains VPD support, we
1600  * can get the device name string from the controller itself instead
1601  * of the compiled-in string. This is a little slow, but it guarantees
1602  * we'll always announce the right product name.
1603  */
1604 static int
1605 bge_probe(dev)
1606 	device_t dev;
1607 {
1608 	struct bge_type *t;
1609 	struct bge_softc *sc;
1610 	char *descbuf;
1611 
1612 	t = bge_devs;
1613 
1614 	sc = device_get_softc(dev);
1615 	bzero(sc, sizeof(struct bge_softc));
1616 	sc->bge_unit = device_get_unit(dev);
1617 	sc->bge_dev = dev;
1618 
1619 	while(t->bge_name != NULL) {
1620 		if ((pci_get_vendor(dev) == t->bge_vid) &&
1621 		    (pci_get_device(dev) == t->bge_did)) {
1622 #ifdef notdef
1623 			bge_vpd_read(sc);
1624 			device_set_desc(dev, sc->bge_vpd_prodname);
1625 #endif
1626 			descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
1627 			if (descbuf == NULL)
1628 				return(ENOMEM);
1629 			snprintf(descbuf, BGE_DEVDESC_MAX,
1630 			    "%s, ASIC rev. %#04x", t->bge_name,
1631 			    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1632 			device_set_desc_copy(dev, descbuf);
1633 			if (pci_get_subvendor(dev) == DELL_VENDORID)
1634 				sc->bge_no_3_led = 1;
1635 			free(descbuf, M_TEMP);
1636 			return(0);
1637 		}
1638 		t++;
1639 	}
1640 
1641 	return(ENXIO);
1642 }
1643 
1644 static int
1645 bge_attach(dev)
1646 	device_t dev;
1647 {
1648 	int s;
1649 	u_int32_t command;
1650 	struct ifnet *ifp;
1651 	struct bge_softc *sc;
1652 	u_int32_t hwcfg = 0;
1653 	u_int32_t mac_addr = 0;
1654 	int unit, error = 0, rid;
1655 
1656 	s = splimp();
1657 
1658 	sc = device_get_softc(dev);
1659 	unit = device_get_unit(dev);
1660 	sc->bge_dev = dev;
1661 	sc->bge_unit = unit;
1662 
1663 	/*
1664 	 * Map control/status registers.
1665 	 */
1666 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1667 	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1668 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1669 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1670 
1671 	if (!(command & PCIM_CMD_MEMEN)) {
1672 		printf("bge%d: failed to enable memory mapping!\n", unit);
1673 		error = ENXIO;
1674 		goto fail;
1675 	}
1676 
1677 	rid = BGE_PCI_BAR0;
1678 	sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1679 	    0, ~0, 1, RF_ACTIVE);
1680 
1681 	if (sc->bge_res == NULL) {
1682 		printf ("bge%d: couldn't map memory\n", unit);
1683 		error = ENXIO;
1684 		goto fail;
1685 	}
1686 
1687 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1688 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1689 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1690 
1691 	/*
1692 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1693 	 * broken and returns a physical address instead of a kernel
1694 	 * virtual address. Consequently, we need to do a little
1695 	 * extra mangling of the vhandle on the alpha. This should
1696 	 * eventually be fixed! The whole idea here is to get rid
1697 	 * of platform dependencies.
1698 	 */
1699 #ifdef __alpha__
1700 	if (pci_cvt_to_bwx(sc->bge_vhandle))
1701 		sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle);
1702 	else
1703 		sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle);
1704 	sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle);
1705 #endif
1706 
1707 	/* Allocate interrupt */
1708 	rid = 0;
1709 
1710 	sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1711 	    RF_SHAREABLE | RF_ACTIVE);
1712 
1713 	if (sc->bge_irq == NULL) {
1714 		printf("bge%d: couldn't map interrupt\n", unit);
1715 		error = ENXIO;
1716 		goto fail;
1717 	}
1718 
1719 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1720 	   bge_intr, sc, &sc->bge_intrhand);
1721 
1722 	if (error) {
1723 		bge_release_resources(sc);
1724 		printf("bge%d: couldn't set up irq\n", unit);
1725 		goto fail;
1726 	}
1727 
1728 	sc->bge_unit = unit;
1729 
1730 	/* Try to reset the chip. */
1731 	bge_reset(sc);
1732 
1733 	if (bge_chipinit(sc)) {
1734 		printf("bge%d: chip initialization failed\n", sc->bge_unit);
1735 		bge_release_resources(sc);
1736 		error = ENXIO;
1737 		goto fail;
1738 	}
1739 
1740 	/*
1741 	 * Get station address from the EEPROM.
1742 	 */
1743 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1744 	if ((mac_addr >> 16) == 0x484b) {
1745 		sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8);
1746 		sc->arpcom.ac_enaddr[1] = (u_char)mac_addr;
1747 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1748 		sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24);
1749 		sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16);
1750 		sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8);
1751 		sc->arpcom.ac_enaddr[5] = (u_char)mac_addr;
1752 	} else if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1753 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1754 		printf("bge%d: failed to read station address\n", unit);
1755 		bge_release_resources(sc);
1756 		error = ENXIO;
1757 		goto fail;
1758 	}
1759 
1760 	/*
1761 	 * A Broadcom chip was detected. Inform the world.
1762 	 */
1763 	printf("bge%d: Ethernet address: %6D\n", unit,
1764 	    sc->arpcom.ac_enaddr, ":");
1765 
1766 	/* Allocate the general information block and ring buffers. */
1767 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1768 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1769 
1770 	if (sc->bge_rdata == NULL) {
1771 		bge_release_resources(sc);
1772 		error = ENXIO;
1773 		printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1774 		goto fail;
1775 	}
1776 
1777 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1778 
1779 	/* Save ASIC rev. */
1780 
1781 	sc->bge_chipid =
1782 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1783 	    BGE_PCIMISCCTL_ASICREV;
1784 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1785 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1786 
1787 	/*
1788 	 * Try to allocate memory for jumbo buffers.
1789 	 * The 5705 does not appear to support jumbo frames.
1790 	 */
1791 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1792 		if (bge_alloc_jumbo_mem(sc)) {
1793 			printf("bge%d: jumbo buffer allocation "
1794 			    "failed\n", sc->bge_unit);
1795 			bge_release_resources(sc);
1796 			error = ENXIO;
1797 			goto fail;
1798 		}
1799 	}
1800 
1801 	/* Set default tuneable values. */
1802 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1803 	sc->bge_rx_coal_ticks = 150;
1804 	sc->bge_tx_coal_ticks = 150;
1805 	sc->bge_rx_max_coal_bds = 64;
1806 	sc->bge_tx_max_coal_bds = 128;
1807 
1808 	/* 5705 limits RX return ring to 512 entries. */
1809 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1810 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1811 	else
1812 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1813 
1814 	/* Set up ifnet structure */
1815 	ifp = &sc->arpcom.ac_if;
1816 	ifp->if_softc = sc;
1817 	if_initname(ifp, "bge", sc->bge_unit);
1818 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1819 	ifp->if_ioctl = bge_ioctl;
1820 	ifp->if_output = ether_output;
1821 	ifp->if_start = bge_start;
1822 	ifp->if_watchdog = bge_watchdog;
1823 	ifp->if_init = bge_init;
1824 	ifp->if_mtu = ETHERMTU;
1825 	ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
1826 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1827 	ifp->if_capabilities = IFCAP_HWCSUM;
1828 	ifp->if_capenable = ifp->if_capabilities;
1829 
1830 	/*
1831 	 * Figure out what sort of media we have by checking the
1832 	 * hardware config word in the first 32k of NIC internal memory,
1833 	 * or fall back to examining the EEPROM if necessary.
1834 	 * Note: on some BCM5700 cards, this value appears to be unset.
1835 	 * If that's the case, we have to rely on identifying the NIC
1836 	 * by its PCI subsystem ID, as we do below for the SysKonnect
1837 	 * SK-9D41.
1838 	 */
1839 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1840 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1841 	else {
1842 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
1843 				BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1844 		hwcfg = ntohl(hwcfg);
1845 	}
1846 
1847 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1848 		sc->bge_tbi = 1;
1849 
1850 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1851 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
1852 		sc->bge_tbi = 1;
1853 
1854 	if (sc->bge_tbi) {
1855 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1856 		    bge_ifmedia_upd, bge_ifmedia_sts);
1857 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1858 		ifmedia_add(&sc->bge_ifmedia,
1859 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1860 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1861 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1862 	} else {
1863 		/*
1864 		 * Do transceiver setup.
1865 		 */
1866 		if (mii_phy_probe(dev, &sc->bge_miibus,
1867 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1868 			printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1869 			bge_release_resources(sc);
1870 			bge_free_jumbo_mem(sc);
1871 			error = ENXIO;
1872 			goto fail;
1873 		}
1874 	}
1875 
1876 	/*
1877 	 * When using the BCM5701 in PCI-X mode, data corruption has
1878 	 * been observed in the first few bytes of some received packets.
1879 	 * Aligning the packet buffer in memory eliminates the corruption.
1880 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1881 	 * which do not support unaligned accesses, we will realign the
1882 	 * payloads by copying the received packets.
1883 	 */
1884 	switch (sc->bge_chipid) {
1885 	case BGE_CHIPID_BCM5701_A0:
1886 	case BGE_CHIPID_BCM5701_B0:
1887 	case BGE_CHIPID_BCM5701_B2:
1888 	case BGE_CHIPID_BCM5701_B5:
1889 		/* If in PCI-X mode, work around the alignment bug. */
1890 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1891 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1892 		    BGE_PCISTATE_PCI_BUSSPEED)
1893 			sc->bge_rx_alignment_bug = 1;
1894 		break;
1895 	}
1896 
1897 	/*
1898 	 * Call MI attach routine.
1899 	 */
1900 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1901 	callout_handle_init(&sc->bge_stat_ch);
1902 
1903 fail:
1904 	splx(s);
1905 
1906 	return(error);
1907 }
1908 
1909 static int
1910 bge_detach(dev)
1911 	device_t dev;
1912 {
1913 	struct bge_softc *sc;
1914 	struct ifnet *ifp;
1915 	int s;
1916 
1917 	s = splimp();
1918 
1919 	sc = device_get_softc(dev);
1920 	ifp = &sc->arpcom.ac_if;
1921 
1922 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1923 	bge_stop(sc);
1924 	bge_reset(sc);
1925 
1926 	if (sc->bge_tbi) {
1927 		ifmedia_removeall(&sc->bge_ifmedia);
1928 	} else {
1929 		bus_generic_detach(dev);
1930 		device_delete_child(dev, sc->bge_miibus);
1931 	}
1932 
1933 	bge_release_resources(sc);
1934 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1935 		bge_free_jumbo_mem(sc);
1936 
1937 	splx(s);
1938 
1939 	return(0);
1940 }
1941 
1942 static void
1943 bge_release_resources(sc)
1944 	struct bge_softc *sc;
1945 {
1946         device_t dev;
1947 
1948         dev = sc->bge_dev;
1949 
1950 	if (sc->bge_vpd_prodname != NULL)
1951 		free(sc->bge_vpd_prodname, M_DEVBUF);
1952 
1953 	if (sc->bge_vpd_readonly != NULL)
1954 		free(sc->bge_vpd_readonly, M_DEVBUF);
1955 
1956         if (sc->bge_intrhand != NULL)
1957                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1958 
1959         if (sc->bge_irq != NULL)
1960 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1961 
1962         if (sc->bge_res != NULL)
1963 		bus_release_resource(dev, SYS_RES_MEMORY,
1964 		    BGE_PCI_BAR0, sc->bge_res);
1965 
1966         if (sc->bge_rdata != NULL)
1967 		contigfree(sc->bge_rdata,
1968 		    sizeof(struct bge_ring_data), M_DEVBUF);
1969 
1970         return;
1971 }
1972 
1973 static void
1974 bge_reset(sc)
1975 	struct bge_softc *sc;
1976 {
1977 	device_t dev;
1978 	u_int32_t cachesize, command, pcistate;
1979 	int i, val = 0;
1980 
1981 	dev = sc->bge_dev;
1982 
1983 	/* Save some important PCI state. */
1984 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1985 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1986 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1987 
1988 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1989 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1990 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1991 
1992 	/* Issue global reset */
1993 	bge_writereg_ind(sc, BGE_MISC_CFG,
1994 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1995 
1996 	DELAY(1000);
1997 
1998 	/* Reset some of the PCI state that got zapped by reset */
1999 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2000 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2001 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2002 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2003 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2004 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2005 
2006 	/*
2007 	 * Prevent PXE restart: write a magic number to the
2008 	 * general communications memory at 0xB50.
2009 	 */
2010 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2011 	/*
2012 	 * Poll the value location we just wrote until
2013 	 * we see the 1's complement of the magic number.
2014 	 * This indicates that the firmware initialization
2015 	 * is complete.
2016 	 */
2017 	for (i = 0; i < BGE_TIMEOUT; i++) {
2018 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2019 		if (val == ~BGE_MAGIC_NUMBER)
2020 			break;
2021 		DELAY(10);
2022 	}
2023 
2024 	if (i == BGE_TIMEOUT) {
2025 		printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
2026 		return;
2027 	}
2028 
2029 	/*
2030 	 * XXX Wait for the value of the PCISTATE register to
2031 	 * return to its original pre-reset state. This is a
2032 	 * fairly good indicator of reset completion. If we don't
2033 	 * wait for the reset to fully complete, trying to read
2034 	 * from the device's non-PCI registers may yield garbage
2035 	 * results.
2036 	 */
2037 	for (i = 0; i < BGE_TIMEOUT; i++) {
2038 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2039 			break;
2040 		DELAY(10);
2041 	}
2042 
2043 	/* Enable memory arbiter. */
2044 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2045 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2046 
2047 	/* Fix up byte swapping */
2048 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
2049 	    BGE_MODECTL_BYTESWAP_DATA);
2050 
2051 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2052 
2053 	DELAY(10000);
2054 
2055 	return;
2056 }
2057 
2058 /*
2059  * Frame reception handling. This is called if there's a frame
2060  * on the receive return list.
2061  *
2062  * Note: we have to be able to handle two possibilities here:
2063  * 1) the frame is from the jumbo recieve ring
2064  * 2) the frame is from the standard receive ring
2065  */
2066 
2067 static void
2068 bge_rxeof(sc)
2069 	struct bge_softc *sc;
2070 {
2071 	struct ifnet *ifp;
2072 	int stdcnt = 0, jumbocnt = 0;
2073 
2074 	ifp = &sc->arpcom.ac_if;
2075 
2076 	while(sc->bge_rx_saved_considx !=
2077 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2078 		struct bge_rx_bd	*cur_rx;
2079 		u_int32_t		rxidx;
2080 		struct ether_header	*eh;
2081 		struct mbuf		*m = NULL;
2082 		u_int16_t		vlan_tag = 0;
2083 		int			have_tag = 0;
2084 
2085 		cur_rx =
2086 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
2087 
2088 		rxidx = cur_rx->bge_idx;
2089 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2090 
2091 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2092 			have_tag = 1;
2093 			vlan_tag = cur_rx->bge_vlan_tag;
2094 		}
2095 
2096 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2097 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2098 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2099 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2100 			jumbocnt++;
2101 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2102 				ifp->if_ierrors++;
2103 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2104 				continue;
2105 			}
2106 			if (bge_newbuf_jumbo(sc,
2107 			    sc->bge_jumbo, NULL) == ENOBUFS) {
2108 				ifp->if_ierrors++;
2109 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2110 				continue;
2111 			}
2112 		} else {
2113 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2114 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2115 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2116 			stdcnt++;
2117 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2118 				ifp->if_ierrors++;
2119 				bge_newbuf_std(sc, sc->bge_std, m);
2120 				continue;
2121 			}
2122 			if (bge_newbuf_std(sc, sc->bge_std,
2123 			    NULL) == ENOBUFS) {
2124 				ifp->if_ierrors++;
2125 				bge_newbuf_std(sc, sc->bge_std, m);
2126 				continue;
2127 			}
2128 		}
2129 
2130 		ifp->if_ipackets++;
2131 #ifndef __i386__
2132 		/*
2133 		 * The i386 allows unaligned accesses, but for other
2134 		 * platforms we must make sure the payload is aligned.
2135 		 */
2136 		if (sc->bge_rx_alignment_bug) {
2137 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2138 			    cur_rx->bge_len);
2139 			m->m_data += ETHER_ALIGN;
2140 		}
2141 #endif
2142 		eh = mtod(m, struct ether_header *);
2143 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2144 		m->m_pkthdr.rcvif = ifp;
2145 
2146 		/* Remove header from mbuf and pass it on. */
2147 		m_adj(m, sizeof(struct ether_header));
2148 
2149 #if 0 /* currently broken for some packets, possibly related to TCP options */
2150 		if (ifp->if_hwassist) {
2151 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2152 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2153 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2154 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2155 				m->m_pkthdr.csum_data =
2156 				    cur_rx->bge_tcp_udp_csum;
2157 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2158 			}
2159 		}
2160 #endif
2161 
2162 		/*
2163 		 * If we received a packet with a vlan tag, pass it
2164 		 * to vlan_input() instead of ether_input().
2165 		 */
2166 		if (have_tag) {
2167 			VLAN_INPUT_TAG(eh, m, vlan_tag);
2168 			have_tag = vlan_tag = 0;
2169 			continue;
2170 		}
2171 
2172 		ether_input(ifp, eh, m);
2173 	}
2174 
2175 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2176 	if (stdcnt)
2177 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2178 	if (jumbocnt)
2179 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2180 
2181 	return;
2182 }
2183 
2184 static void
2185 bge_txeof(sc)
2186 	struct bge_softc *sc;
2187 {
2188 	struct bge_tx_bd *cur_tx = NULL;
2189 	struct ifnet *ifp;
2190 
2191 	ifp = &sc->arpcom.ac_if;
2192 
2193 	/*
2194 	 * Go through our tx ring and free mbufs for those
2195 	 * frames that have been sent.
2196 	 */
2197 	while (sc->bge_tx_saved_considx !=
2198 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2199 		u_int32_t		idx = 0;
2200 
2201 		idx = sc->bge_tx_saved_considx;
2202 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2203 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2204 			ifp->if_opackets++;
2205 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2206 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2207 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2208 		}
2209 		sc->bge_txcnt--;
2210 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2211 		ifp->if_timer = 0;
2212 	}
2213 
2214 	if (cur_tx != NULL)
2215 		ifp->if_flags &= ~IFF_OACTIVE;
2216 
2217 	return;
2218 }
2219 
2220 static void
2221 bge_intr(xsc)
2222 	void *xsc;
2223 {
2224 	struct bge_softc *sc;
2225 	struct ifnet *ifp;
2226 	u_int32_t status;
2227 
2228 	sc = xsc;
2229 	ifp = &sc->arpcom.ac_if;
2230 
2231 #ifdef notdef
2232 	/* Avoid this for now -- checking this register is expensive. */
2233 	/* Make sure this is really our interrupt. */
2234 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2235 		return;
2236 #endif
2237 	/* Ack interrupt and stop others from occuring. */
2238 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2239 
2240 	/*
2241 	 * Process link state changes.
2242 	 * Grrr. The link status word in the status block does
2243 	 * not work correctly on the BCM5700 rev AX and BX chips,
2244 	 * according to all available information.  Hence, we have
2245 	 * to enable MII interrupts in order to properly obtain
2246 	 * async link changes.  Unfortunately, this also means that
2247 	 * we have to read the MAC status register to detect link
2248 	 * changes, thereby adding an additional register access to
2249 	 * the interrupt handler.
2250 	 */
2251 
2252 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2253 		status = CSR_READ_4(sc, BGE_MAC_STS);
2254 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2255 			sc->bge_link = 0;
2256 			untimeout(bge_tick, sc, sc->bge_stat_ch);
2257 			bge_tick(sc);
2258 			/* Clear the interrupt */
2259 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2260 			    BGE_EVTENB_MI_INTERRUPT);
2261 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2262 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2263 			    BRGPHY_INTRS);
2264 		}
2265 	} else {
2266 		if ((sc->bge_rdata->bge_status_block.bge_status &
2267 		    BGE_STATFLAG_UPDATED) &&
2268 		    (sc->bge_rdata->bge_status_block.bge_status &
2269 		    BGE_STATFLAG_LINKSTATE_CHANGED)) {
2270 			sc->bge_rdata->bge_status_block.bge_status &=
2271 				~(BGE_STATFLAG_UPDATED|
2272 				BGE_STATFLAG_LINKSTATE_CHANGED);
2273 			/*
2274 			 * Sometime PCS encoding errors are detected in
2275 			 * TBI mode (on fiber NICs), and for some reason
2276 			 * the chip will signal them as link changes.
2277 			 * If we get a link change event, but the 'PCS
2278 			 * encoding error' bit in the MAC status register
2279 			 * is set, don't bother doing a link check.
2280 			 * This avoids spurious "gigabit link up" messages
2281 			 * that sometimes appear on fiber NIC's during
2282 			 * periods of heavy traffic. (There should be no
2283 			 * effect on copper NICs.)
2284 			 */
2285 			status = CSR_READ_4(sc, BGE_MAC_STS);
2286 			if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR|
2287 			    BGE_MACSTAT_MI_COMPLETE))) {
2288 				sc->bge_link = 0;
2289 				untimeout(bge_tick, sc, sc->bge_stat_ch);
2290 				bge_tick(sc);
2291 			}
2292 			sc->bge_link = 0;
2293 			untimeout(bge_tick, sc, sc->bge_stat_ch);
2294 			bge_tick(sc);
2295 			/* Clear the interrupt */
2296 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2297 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2298 			    BGE_MACSTAT_LINK_CHANGED);
2299 
2300 			/* Force flush the status block cached by PCI bridge */
2301 			CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2302 		}
2303 	}
2304 
2305 	if (ifp->if_flags & IFF_RUNNING) {
2306 		/* Check RX return ring producer/consumer */
2307 		bge_rxeof(sc);
2308 
2309 		/* Check TX ring producer/consumer */
2310 		bge_txeof(sc);
2311 	}
2312 
2313 	bge_handle_events(sc);
2314 
2315 	/* Re-enable interrupts. */
2316 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2317 
2318 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2319 		bge_start(ifp);
2320 
2321 	return;
2322 }
2323 
2324 static void
2325 bge_tick(xsc)
2326 	void *xsc;
2327 {
2328 	struct bge_softc *sc;
2329 	struct mii_data *mii = NULL;
2330 	struct ifmedia *ifm = NULL;
2331 	struct ifnet *ifp;
2332 	int s;
2333 
2334 	sc = xsc;
2335 	ifp = &sc->arpcom.ac_if;
2336 
2337 	s = splimp();
2338 
2339 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
2340 		bge_stats_update_regs(sc);
2341 	else
2342 		bge_stats_update(sc);
2343 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2344 	if (sc->bge_link) {
2345 		splx(s);
2346 		return;
2347 	}
2348 
2349 	if (sc->bge_tbi) {
2350 		ifm = &sc->bge_ifmedia;
2351 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2352 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2353 			sc->bge_link++;
2354 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2355 			printf("bge%d: gigabit link up\n", sc->bge_unit);
2356 			if (ifp->if_snd.ifq_head != NULL)
2357 				bge_start(ifp);
2358 		}
2359 		splx(s);
2360 		return;
2361 	}
2362 
2363 	mii = device_get_softc(sc->bge_miibus);
2364 	mii_tick(mii);
2365 
2366 	if (!sc->bge_link) {
2367 		mii_pollstat(mii);
2368 		if (mii->mii_media_status & IFM_ACTIVE &&
2369 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2370 			sc->bge_link++;
2371 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
2372 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2373 				printf("bge%d: gigabit link up\n",
2374 				   sc->bge_unit);
2375 			if (ifp->if_snd.ifq_head != NULL)
2376 				bge_start(ifp);
2377 		}
2378 	}
2379 
2380 	splx(s);
2381 
2382 	return;
2383 }
2384 
2385 static void
2386 bge_stats_update_regs(sc)
2387 	struct bge_softc *sc;
2388 {
2389 	struct ifnet *ifp;
2390 	struct bge_mac_stats_regs stats;
2391 	u_int32_t *s;
2392 	int i;
2393 
2394 	ifp = &sc->arpcom.ac_if;
2395 
2396 	s = (u_int32_t *)&stats;
2397 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2398 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
2399 		s++;
2400 	}
2401 
2402 	ifp->if_collisions +=
2403 	   (stats.dot3StatsSingleCollisionFrames +
2404 	   stats.dot3StatsMultipleCollisionFrames +
2405 	   stats.dot3StatsExcessiveCollisions +
2406 	   stats.dot3StatsLateCollisions) -
2407 	   ifp->if_collisions;
2408 
2409 	return;
2410 }
2411 
2412 static void
2413 bge_stats_update(sc)
2414 	struct bge_softc *sc;
2415 {
2416 	struct ifnet *ifp;
2417 	struct bge_stats *stats;
2418 
2419 	ifp = &sc->arpcom.ac_if;
2420 
2421 	stats = (struct bge_stats *)(sc->bge_vhandle +
2422 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2423 
2424 	ifp->if_collisions +=
2425 	   (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2426 	   stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2427 	   stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2428 	   stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2429 	   ifp->if_collisions;
2430 
2431 #ifdef notdef
2432 	ifp->if_collisions +=
2433 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2434 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2435 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2436 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2437 	   ifp->if_collisions;
2438 #endif
2439 
2440 	return;
2441 }
2442 
2443 /*
2444  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2445  * pointers to descriptors.
2446  */
2447 static int
2448 bge_encap(sc, m_head, txidx)
2449 	struct bge_softc *sc;
2450 	struct mbuf *m_head;
2451 	u_int32_t *txidx;
2452 {
2453 	struct bge_tx_bd	*f = NULL;
2454 	struct mbuf		*m;
2455 	u_int32_t		frag, cur, cnt = 0;
2456 	u_int16_t		csum_flags = 0;
2457 	struct ifvlan		*ifv = NULL;
2458 
2459 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2460 	    m_head->m_pkthdr.rcvif != NULL &&
2461 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2462 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2463 
2464 	m = m_head;
2465 	cur = frag = *txidx;
2466 
2467 	if (m_head->m_pkthdr.csum_flags) {
2468 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2469 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2470 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2471 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2472 		if (m_head->m_flags & M_LASTFRAG)
2473 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2474 		else if (m_head->m_flags & M_FRAG)
2475 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2476 	}
2477 	/*
2478  	 * Start packing the mbufs in this chain into
2479 	 * the fragment pointers. Stop when we run out
2480  	 * of fragments or hit the end of the mbuf chain.
2481 	 */
2482 	for (m = m_head; m != NULL; m = m->m_next) {
2483 		if (m->m_len != 0) {
2484 			f = &sc->bge_rdata->bge_tx_ring[frag];
2485 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2486 				break;
2487 			BGE_HOSTADDR(f->bge_addr,
2488 			    vtophys(mtod(m, vm_offset_t)));
2489 			f->bge_len = m->m_len;
2490 			f->bge_flags = csum_flags;
2491 			if (ifv != NULL) {
2492 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2493 				f->bge_vlan_tag = ifv->ifv_tag;
2494 			} else {
2495 				f->bge_vlan_tag = 0;
2496 			}
2497 			/*
2498 			 * Sanity check: avoid coming within 16 descriptors
2499 			 * of the end of the ring.
2500 			 */
2501 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2502 				return(ENOBUFS);
2503 			cur = frag;
2504 			BGE_INC(frag, BGE_TX_RING_CNT);
2505 			cnt++;
2506 		}
2507 	}
2508 
2509 	if (m != NULL)
2510 		return(ENOBUFS);
2511 
2512 	if (frag == sc->bge_tx_saved_considx)
2513 		return(ENOBUFS);
2514 
2515 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2516 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2517 	sc->bge_txcnt += cnt;
2518 
2519 	*txidx = frag;
2520 
2521 	return(0);
2522 }
2523 
2524 /*
2525  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2526  * to the mbuf data regions directly in the transmit descriptors.
2527  */
2528 static void
2529 bge_start(ifp)
2530 	struct ifnet *ifp;
2531 {
2532 	struct bge_softc *sc;
2533 	struct mbuf *m_head = NULL;
2534 	u_int32_t prodidx = 0;
2535 
2536 	sc = ifp->if_softc;
2537 
2538 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2539 		return;
2540 
2541 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2542 
2543 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2544 		IF_DEQUEUE(&ifp->if_snd, m_head);
2545 		if (m_head == NULL)
2546 			break;
2547 
2548 		/*
2549 		 * XXX
2550 		 * safety overkill.  If this is a fragmented packet chain
2551 		 * with delayed TCP/UDP checksums, then only encapsulate
2552 		 * it if we have enough descriptors to handle the entire
2553 		 * chain at once.
2554 		 * (paranoia -- may not actually be needed)
2555 		 */
2556 		if (m_head->m_flags & M_FIRSTFRAG &&
2557 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2558 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2559 			    m_head->m_pkthdr.csum_data + 16) {
2560 				IF_PREPEND(&ifp->if_snd, m_head);
2561 				ifp->if_flags |= IFF_OACTIVE;
2562 				break;
2563 			}
2564 		}
2565 
2566 		/*
2567 		 * Pack the data into the transmit ring. If we
2568 		 * don't have room, set the OACTIVE flag and wait
2569 		 * for the NIC to drain the ring.
2570 		 */
2571 		if (bge_encap(sc, m_head, &prodidx)) {
2572 			IF_PREPEND(&ifp->if_snd, m_head);
2573 			ifp->if_flags |= IFF_OACTIVE;
2574 			break;
2575 		}
2576 
2577 		/*
2578 		 * If there's a BPF listener, bounce a copy of this frame
2579 		 * to him.
2580 		 */
2581 		if (ifp->if_bpf)
2582 			bpf_mtap(ifp, m_head);
2583 	}
2584 
2585 	/* Transmit */
2586 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2587 	/* 5700 b2 errata */
2588 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2589 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2590 
2591 	/*
2592 	 * Set a timeout in case the chip goes out to lunch.
2593 	 */
2594 	ifp->if_timer = 5;
2595 
2596 	return;
2597 }
2598 
2599 static void
2600 bge_init(xsc)
2601 	void *xsc;
2602 {
2603 	struct bge_softc *sc = xsc;
2604 	struct ifnet *ifp;
2605 	u_int16_t *m;
2606         int s;
2607 
2608 	s = splimp();
2609 
2610 	ifp = &sc->arpcom.ac_if;
2611 
2612 	if (ifp->if_flags & IFF_RUNNING) {
2613 		splx(s);
2614 		return;
2615 	}
2616 
2617 	/* Cancel pending I/O and flush buffers. */
2618 	bge_stop(sc);
2619 	bge_reset(sc);
2620 	bge_chipinit(sc);
2621 
2622 	/*
2623 	 * Init the various state machines, ring
2624 	 * control blocks and firmware.
2625 	 */
2626 	if (bge_blockinit(sc)) {
2627 		printf("bge%d: initialization failure\n", sc->bge_unit);
2628 		splx(s);
2629 		return;
2630 	}
2631 
2632 	ifp = &sc->arpcom.ac_if;
2633 
2634 	/* Specify MTU. */
2635 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2636 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2637 
2638 	/* Load our MAC address. */
2639 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2640 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2641 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2642 
2643 	/* Enable or disable promiscuous mode as needed. */
2644 	if (ifp->if_flags & IFF_PROMISC) {
2645 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2646 	} else {
2647 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2648 	}
2649 
2650 	/* Program multicast filter. */
2651 	bge_setmulti(sc);
2652 
2653 	/* Init RX ring. */
2654 	bge_init_rx_ring_std(sc);
2655 
2656 	/*
2657 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2658 	 * memory to insure that the chip has in fact read the first
2659 	 * entry of the ring.
2660 	 */
2661 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2662 		u_int32_t		v, i;
2663 		for (i = 0; i < 10; i++) {
2664 			DELAY(20);
2665 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2666 			if (v == (MCLBYTES - ETHER_ALIGN))
2667 				break;
2668 		}
2669 		if (i == 10)
2670 			printf ("bge%d: 5705 A0 chip failed to load RX ring\n",
2671 			    sc->bge_unit);
2672 	}
2673 
2674 	/* Init jumbo RX ring. */
2675 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2676 		bge_init_rx_ring_jumbo(sc);
2677 
2678 	/* Init our RX return ring index */
2679 	sc->bge_rx_saved_considx = 0;
2680 
2681 	/* Init TX ring. */
2682 	bge_init_tx_ring(sc);
2683 
2684 	/* Turn on transmitter */
2685 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2686 
2687 	/* Turn on receiver */
2688 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2689 
2690 	/* Tell firmware we're alive. */
2691 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2692 
2693 	/* Enable host interrupts. */
2694 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2695 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2696 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2697 
2698 	bge_ifmedia_upd(ifp);
2699 
2700 	ifp->if_flags |= IFF_RUNNING;
2701 	ifp->if_flags &= ~IFF_OACTIVE;
2702 
2703 	splx(s);
2704 
2705 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2706 
2707 	return;
2708 }
2709 
2710 /*
2711  * Set media options.
2712  */
2713 static int
2714 bge_ifmedia_upd(ifp)
2715 	struct ifnet *ifp;
2716 {
2717 	struct bge_softc *sc;
2718 	struct mii_data *mii;
2719 	struct ifmedia *ifm;
2720 
2721 	sc = ifp->if_softc;
2722 	ifm = &sc->bge_ifmedia;
2723 
2724 	/* If this is a 1000baseX NIC, enable the TBI port. */
2725 	if (sc->bge_tbi) {
2726 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2727 			return(EINVAL);
2728 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2729 		case IFM_AUTO:
2730 			break;
2731 		case IFM_1000_SX:
2732 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2733 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2734 				    BGE_MACMODE_HALF_DUPLEX);
2735 			} else {
2736 				BGE_SETBIT(sc, BGE_MAC_MODE,
2737 				    BGE_MACMODE_HALF_DUPLEX);
2738 			}
2739 			break;
2740 		default:
2741 			return(EINVAL);
2742 		}
2743 		return(0);
2744 	}
2745 
2746 	mii = device_get_softc(sc->bge_miibus);
2747 	sc->bge_link = 0;
2748 	if (mii->mii_instance) {
2749 		struct mii_softc *miisc;
2750 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2751 		    miisc = LIST_NEXT(miisc, mii_list))
2752 			mii_phy_reset(miisc);
2753 	}
2754 	mii_mediachg(mii);
2755 
2756 	return(0);
2757 }
2758 
2759 /*
2760  * Report current media status.
2761  */
2762 static void
2763 bge_ifmedia_sts(ifp, ifmr)
2764 	struct ifnet *ifp;
2765 	struct ifmediareq *ifmr;
2766 {
2767 	struct bge_softc *sc;
2768 	struct mii_data *mii;
2769 
2770 	sc = ifp->if_softc;
2771 
2772 	if (sc->bge_tbi) {
2773 		ifmr->ifm_status = IFM_AVALID;
2774 		ifmr->ifm_active = IFM_ETHER;
2775 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2776 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2777 			ifmr->ifm_status |= IFM_ACTIVE;
2778 		ifmr->ifm_active |= IFM_1000_SX;
2779 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2780 			ifmr->ifm_active |= IFM_HDX;
2781 		else
2782 			ifmr->ifm_active |= IFM_FDX;
2783 		return;
2784 	}
2785 
2786 	mii = device_get_softc(sc->bge_miibus);
2787 	mii_pollstat(mii);
2788 	ifmr->ifm_active = mii->mii_media_active;
2789 	ifmr->ifm_status = mii->mii_media_status;
2790 
2791 	return;
2792 }
2793 
2794 static int
2795 bge_ioctl(ifp, command, data)
2796 	struct ifnet *ifp;
2797 	u_long command;
2798 	caddr_t data;
2799 {
2800 	struct bge_softc *sc = ifp->if_softc;
2801 	struct ifreq *ifr = (struct ifreq *) data;
2802 	int s, mask, error = 0;
2803 	struct mii_data *mii;
2804 
2805 	s = splimp();
2806 
2807 	switch(command) {
2808 	case SIOCSIFADDR:
2809 	case SIOCGIFADDR:
2810 		error = ether_ioctl(ifp, command, data);
2811 		break;
2812 	case SIOCSIFMTU:
2813 		/* Disallow jumbo frames on 5705. */
2814 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2815 		    ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2816 			error = EINVAL;
2817 		else {
2818 			ifp->if_mtu = ifr->ifr_mtu;
2819 			ifp->if_flags &= ~IFF_RUNNING;
2820 			bge_init(sc);
2821 		}
2822 		break;
2823 	case SIOCSIFFLAGS:
2824 		if (ifp->if_flags & IFF_UP) {
2825 			/*
2826 			 * If only the state of the PROMISC flag changed,
2827 			 * then just use the 'set promisc mode' command
2828 			 * instead of reinitializing the entire NIC. Doing
2829 			 * a full re-init means reloading the firmware and
2830 			 * waiting for it to start up, which may take a
2831 			 * second or two.
2832 			 */
2833 			if (ifp->if_flags & IFF_RUNNING &&
2834 			    ifp->if_flags & IFF_PROMISC &&
2835 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2836 				BGE_SETBIT(sc, BGE_RX_MODE,
2837 				    BGE_RXMODE_RX_PROMISC);
2838 			} else if (ifp->if_flags & IFF_RUNNING &&
2839 			    !(ifp->if_flags & IFF_PROMISC) &&
2840 			    sc->bge_if_flags & IFF_PROMISC) {
2841 				BGE_CLRBIT(sc, BGE_RX_MODE,
2842 				    BGE_RXMODE_RX_PROMISC);
2843 			} else
2844 				bge_init(sc);
2845 		} else {
2846 			if (ifp->if_flags & IFF_RUNNING) {
2847 				bge_stop(sc);
2848 			}
2849 		}
2850 		sc->bge_if_flags = ifp->if_flags;
2851 		error = 0;
2852 		break;
2853 	case SIOCADDMULTI:
2854 	case SIOCDELMULTI:
2855 		if (ifp->if_flags & IFF_RUNNING) {
2856 			bge_setmulti(sc);
2857 			error = 0;
2858 		}
2859 		break;
2860 	case SIOCSIFMEDIA:
2861 	case SIOCGIFMEDIA:
2862 		if (sc->bge_tbi) {
2863 			error = ifmedia_ioctl(ifp, ifr,
2864 			    &sc->bge_ifmedia, command);
2865 		} else {
2866 			mii = device_get_softc(sc->bge_miibus);
2867 			error = ifmedia_ioctl(ifp, ifr,
2868 			    &mii->mii_media, command);
2869 		}
2870 		break;
2871         case SIOCSIFCAP:
2872 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2873 		if (mask & IFCAP_HWCSUM) {
2874 			if (IFCAP_HWCSUM & ifp->if_capenable)
2875 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2876 			else
2877 				ifp->if_capenable |= IFCAP_HWCSUM;
2878 		}
2879 		error = 0;
2880 		break;
2881 	default:
2882 		error = EINVAL;
2883 		break;
2884 	}
2885 
2886 	(void)splx(s);
2887 
2888 	return(error);
2889 }
2890 
2891 static void
2892 bge_watchdog(ifp)
2893 	struct ifnet *ifp;
2894 {
2895 	struct bge_softc *sc;
2896 
2897 	sc = ifp->if_softc;
2898 
2899 	printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2900 
2901 	ifp->if_flags &= ~IFF_RUNNING;
2902 	bge_init(sc);
2903 
2904 	ifp->if_oerrors++;
2905 
2906 	return;
2907 }
2908 
2909 /*
2910  * Stop the adapter and free any mbufs allocated to the
2911  * RX and TX lists.
2912  */
2913 static void
2914 bge_stop(sc)
2915 	struct bge_softc *sc;
2916 {
2917 	struct ifnet *ifp;
2918 	struct ifmedia_entry *ifm;
2919 	struct mii_data *mii = NULL;
2920 	int mtmp, itmp;
2921 
2922 	ifp = &sc->arpcom.ac_if;
2923 
2924 	if (!sc->bge_tbi)
2925 		mii = device_get_softc(sc->bge_miibus);
2926 
2927 	untimeout(bge_tick, sc, sc->bge_stat_ch);
2928 
2929 	/*
2930 	 * Disable all of the receiver blocks
2931 	 */
2932 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2933 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2934 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2935 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2936 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2937 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2938 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2939 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2940 
2941 	/*
2942 	 * Disable all of the transmit blocks
2943 	 */
2944 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2945 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2946 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2947 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2948 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2949 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2950 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2951 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2952 
2953 	/*
2954 	 * Shut down all of the memory managers and related
2955 	 * state machines.
2956 	 */
2957 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2958 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2959 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2960 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2961 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2962 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2963 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
2964 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2965 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2966 	}
2967 
2968 	/* Disable host interrupts. */
2969 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2970 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2971 
2972 	/*
2973 	 * Tell firmware we're shutting down.
2974 	 */
2975 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2976 
2977 	/* Free the RX lists. */
2978 	bge_free_rx_ring_std(sc);
2979 
2980 	/* Free jumbo RX list. */
2981 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2982 		bge_free_rx_ring_jumbo(sc);
2983 
2984 	/* Free TX buffers. */
2985 	bge_free_tx_ring(sc);
2986 
2987 	/*
2988 	 * Isolate/power down the PHY, but leave the media selection
2989 	 * unchanged so that things will be put back to normal when
2990 	 * we bring the interface back up.
2991 	 */
2992 	if (!sc->bge_tbi) {
2993 		itmp = ifp->if_flags;
2994 		ifp->if_flags |= IFF_UP;
2995 		ifm = mii->mii_media.ifm_cur;
2996 		mtmp = ifm->ifm_media;
2997 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2998 		mii_mediachg(mii);
2999 		ifm->ifm_media = mtmp;
3000 		ifp->if_flags = itmp;
3001 	}
3002 
3003 	sc->bge_link = 0;
3004 
3005 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3006 
3007 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3008 
3009 	return;
3010 }
3011 
3012 /*
3013  * Stop all chip I/O so that the kernel's probe routines don't
3014  * get confused by errant DMAs when rebooting.
3015  */
3016 static void
3017 bge_shutdown(dev)
3018 	device_t dev;
3019 {
3020 	struct bge_softc *sc;
3021 
3022 	sc = device_get_softc(dev);
3023 
3024 	bge_stop(sc);
3025 	bge_reset(sc);
3026 
3027 	return;
3028 }
3029