xref: /dflybsd-src/sys/dev/netif/bge/if_bge.c (revision 6d49aa6ffaff1e5a2ff3abe70c453cc8b47adb73)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.67 2007/04/14 05:14:40 sephe Exp $
35  *
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44 
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  *
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83 #include <sys/serialize.h>
84 #include <sys/thread2.h>
85 
86 #include <net/if.h>
87 #include <net/ifq_var.h>
88 #include <net/if_arp.h>
89 #include <net/ethernet.h>
90 #include <net/if_dl.h>
91 #include <net/if_media.h>
92 
93 #include <net/bpf.h>
94 
95 #include <net/if_types.h>
96 #include <net/vlan/if_vlan_var.h>
97 
98 #include <netinet/in_systm.h>
99 #include <netinet/in.h>
100 #include <netinet/ip.h>
101 
102 #include <vm/vm.h>              /* for vtophys */
103 #include <vm/pmap.h>            /* for vtophys */
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 
107 #include <dev/netif/mii_layer/mii.h>
108 #include <dev/netif/mii_layer/miivar.h>
109 #include <dev/netif/mii_layer/miidevs.h>
110 #include <dev/netif/mii_layer/brgphyreg.h>
111 
112 #include <bus/pci/pcidevs.h>
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
115 
116 #include "if_bgereg.h"
117 
118 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 /*
124  * Various supported device vendors/types and their names. Note: the
125  * spec seems to indicate that the hardware still has Alteon's vendor
126  * ID burned into it, though it will always be overriden by the vendor
127  * ID in the EEPROM. Just to be safe, we cover all possibilities.
128  */
129 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
130 
131 static struct bge_type bge_devs[] = {
132 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
133 		"Alteon BCM5700 Gigabit Ethernet" },
134 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
135 		"Alteon BCM5701 Gigabit Ethernet" },
136 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
137 		"Broadcom BCM5700 Gigabit Ethernet" },
138 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
139 		"Broadcom BCM5701 Gigabit Ethernet" },
140 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
141 		"Broadcom BCM5702X Gigabit Ethernet" },
142 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
143 		"Broadcom BCM5702 Gigabit Ethernet" },
144 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
145 		"Broadcom BCM5703X Gigabit Ethernet" },
146 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
147 		"Broadcom BCM5703 Gigabit Ethernet" },
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
149 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
151 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
153 		"Broadcom BCM5705 Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
155 		"Broadcom BCM5705K Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
157 		"Broadcom BCM5705M Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
159 		"Broadcom BCM5705M Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
161 		"Broadcom BCM5714C Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
163 		"Broadcom BCM5721 Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
165 		"Broadcom BCM5750 Gigabit Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
167 		"Broadcom BCM5750M Gigabit Ethernet" },
168 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
169 		"Broadcom BCM5751 Gigabit Ethernet" },
170 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
171 		"Broadcom BCM5751M Gigabit Ethernet" },
172 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
173 		"Broadcom BCM5752 Gigabit Ethernet" },
174 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
175 		"Broadcom BCM5782 Gigabit Ethernet" },
176 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
177 		"Broadcom BCM5788 Gigabit Ethernet" },
178 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
179 		"Broadcom BCM5789 Gigabit Ethernet" },
180 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
181 		"Broadcom BCM5901 Fast Ethernet" },
182 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
183 		"Broadcom BCM5901A2 Fast Ethernet" },
184 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
185 		"SysKonnect Gigabit Ethernet" },
186 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
187 		"Altima AC1000 Gigabit Ethernet" },
188 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
189 		"Altima AC1002 Gigabit Ethernet" },
190 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
191 		"Altima AC9100 Gigabit Ethernet" },
192 	{ 0, 0, NULL }
193 };
194 
195 static int	bge_probe(device_t);
196 static int	bge_attach(device_t);
197 static int	bge_detach(device_t);
198 static void	bge_release_resources(struct bge_softc *);
199 static void	bge_txeof(struct bge_softc *);
200 static void	bge_rxeof(struct bge_softc *);
201 
202 static void	bge_tick(void *);
203 static void	bge_tick_serialized(void *);
204 static void	bge_stats_update(struct bge_softc *);
205 static void	bge_stats_update_regs(struct bge_softc *);
206 static int	bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207 
208 static void	bge_intr(void *);
209 static void	bge_start(struct ifnet *);
210 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
211 static void	bge_init(void *);
212 static void	bge_stop(struct bge_softc *);
213 static void	bge_watchdog(struct ifnet *);
214 static void	bge_shutdown(device_t);
215 static int	bge_suspend(device_t);
216 static int	bge_resume(device_t);
217 static int	bge_ifmedia_upd(struct ifnet *);
218 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
219 
220 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
221 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
222 
223 static void	bge_setmulti(struct bge_softc *);
224 static void	bge_setpromisc(struct bge_softc *);
225 
226 static void	bge_handle_events(struct bge_softc *);
227 static int	bge_alloc_jumbo_mem(struct bge_softc *);
228 static void	bge_free_jumbo_mem(struct bge_softc *);
229 static struct bge_jslot
230 		*bge_jalloc(struct bge_softc *);
231 static void	bge_jfree(void *);
232 static void	bge_jref(void *);
233 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
234 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int	bge_init_rx_ring_std(struct bge_softc *);
236 static void	bge_free_rx_ring_std(struct bge_softc *);
237 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void	bge_free_tx_ring(struct bge_softc *);
240 static int	bge_init_tx_ring(struct bge_softc *);
241 
242 static int	bge_chipinit(struct bge_softc *);
243 static int	bge_blockinit(struct bge_softc *);
244 
245 #ifdef notdef
246 static uint8_t	bge_vpd_readbyte(struct bge_softc *, uint32_t);
247 static void	bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
248 static void	bge_vpd_read(struct bge_softc *);
249 #endif
250 
251 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
252 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
253 #ifdef notdef
254 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
255 #endif
256 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
257 
258 static int	bge_miibus_readreg(device_t, int, int);
259 static int	bge_miibus_writereg(device_t, int, int, int);
260 static void	bge_miibus_statchg(device_t);
261 
262 static void	bge_reset(struct bge_softc *);
263 
264 /*
265  * Set following tunable to 1 for some IBM blade servers with the DNLK
266  * switch module. Auto negotiation is broken for those configurations.
267  */
268 static int	bge_fake_autoneg = 0;
269 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
270 
271 static device_method_t bge_methods[] = {
272 	/* Device interface */
273 	DEVMETHOD(device_probe,		bge_probe),
274 	DEVMETHOD(device_attach,	bge_attach),
275 	DEVMETHOD(device_detach,	bge_detach),
276 	DEVMETHOD(device_shutdown,	bge_shutdown),
277 	DEVMETHOD(device_suspend,	bge_suspend),
278 	DEVMETHOD(device_resume,	bge_resume),
279 
280 	/* bus interface */
281 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
282 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
283 
284 	/* MII interface */
285 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
286 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
287 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
288 
289 	{ 0, 0 }
290 };
291 
292 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
293 static devclass_t bge_devclass;
294 
295 DECLARE_DUMMY_MODULE(if_bge);
296 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
297 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
298 
299 static uint32_t
300 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
301 {
302 	device_t dev = sc->bge_dev;
303 
304 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
305 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
306 }
307 
308 static void
309 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
310 {
311 	device_t dev = sc->bge_dev;
312 
313 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
314 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
315 }
316 
317 #ifdef notdef
318 static uint32_t
319 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
320 {
321 	device_t dev = sc->bge_dev;
322 
323 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
324 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
325 }
326 #endif
327 
328 static void
329 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
330 {
331 	device_t dev = sc->bge_dev;
332 
333 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
334 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
335 }
336 
337 #ifdef notdef
338 static uint8_t
339 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
340 {
341 	device_t dev = sc->bge_dev;
342 	uint32_t val;
343 	int i;
344 
345 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
346 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
347 		DELAY(10);
348 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
349 			break;
350 	}
351 
352 	if (i == BGE_TIMEOUT) {
353 		device_printf(sc->bge_dev, "VPD read timed out\n");
354 		return(0);
355 	}
356 
357 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
358 
359 	return((val >> ((addr % 4) * 8)) & 0xFF);
360 }
361 
362 static void
363 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
364 {
365 	size_t i;
366 	uint8_t *ptr;
367 
368 	ptr = (uint8_t *)res;
369 	for (i = 0; i < sizeof(struct vpd_res); i++)
370 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
371 
372 	return;
373 }
374 
375 static void
376 bge_vpd_read(struct bge_softc *sc)
377 {
378 	int pos = 0, i;
379 	struct vpd_res res;
380 
381 	if (sc->bge_vpd_prodname != NULL)
382 		kfree(sc->bge_vpd_prodname, M_DEVBUF);
383 	if (sc->bge_vpd_readonly != NULL)
384 		kfree(sc->bge_vpd_readonly, M_DEVBUF);
385 	sc->bge_vpd_prodname = NULL;
386 	sc->bge_vpd_readonly = NULL;
387 
388 	bge_vpd_read_res(sc, &res, pos);
389 
390 	if (res.vr_id != VPD_RES_ID) {
391 		device_printf(sc->bge_dev,
392 			      "bad VPD resource id: expected %x got %x\n",
393 			      VPD_RES_ID, res.vr_id);
394                 return;
395         }
396 
397 	pos += sizeof(res);
398 	sc->bge_vpd_prodname = kmalloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
399 	for (i = 0; i < res.vr_len; i++)
400 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
401 	sc->bge_vpd_prodname[i] = '\0';
402 	pos += i;
403 
404 	bge_vpd_read_res(sc, &res, pos);
405 
406 	if (res.vr_id != VPD_RES_READ) {
407 		device_printf(sc->bge_dev,
408 			      "bad VPD resource id: expected %x got %x\n",
409 			      VPD_RES_READ, res.vr_id);
410 		return;
411 	}
412 
413 	pos += sizeof(res);
414 	sc->bge_vpd_readonly = kmalloc(res.vr_len, M_DEVBUF, M_INTWAIT);
415 	for (i = 0; i < res.vr_len + 1; i++)
416 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
417 }
418 #endif
419 
420 /*
421  * Read a byte of data stored in the EEPROM at address 'addr.' The
422  * BCM570x supports both the traditional bitbang interface and an
423  * auto access interface for reading the EEPROM. We use the auto
424  * access method.
425  */
426 static uint8_t
427 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
428 {
429 	int i;
430 	uint32_t byte = 0;
431 
432 	/*
433 	 * Enable use of auto EEPROM access so we can avoid
434 	 * having to use the bitbang method.
435 	 */
436 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
437 
438 	/* Reset the EEPROM, load the clock period. */
439 	CSR_WRITE_4(sc, BGE_EE_ADDR,
440 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
441 	DELAY(20);
442 
443 	/* Issue the read EEPROM command. */
444 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
445 
446 	/* Wait for completion */
447 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
448 		DELAY(10);
449 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
450 			break;
451 	}
452 
453 	if (i == BGE_TIMEOUT) {
454 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
455 		return(1);
456 	}
457 
458 	/* Get result. */
459 	byte = CSR_READ_4(sc, BGE_EE_DATA);
460 
461         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
462 
463 	return(0);
464 }
465 
466 /*
467  * Read a sequence of bytes from the EEPROM.
468  */
469 static int
470 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
471 {
472 	size_t i;
473 	int err;
474 	uint8_t byte;
475 
476 	for (byte = 0, err = 0, i = 0; i < len; i++) {
477 		err = bge_eeprom_getbyte(sc, off + i, &byte);
478 		if (err)
479 			break;
480 		*(dest + i) = byte;
481 	}
482 
483 	return(err ? 1 : 0);
484 }
485 
486 static int
487 bge_miibus_readreg(device_t dev, int phy, int reg)
488 {
489 	struct bge_softc *sc;
490 	struct ifnet *ifp;
491 	uint32_t val, autopoll;
492 	int i;
493 
494 	sc = device_get_softc(dev);
495 	ifp = &sc->arpcom.ac_if;
496 
497 	/*
498 	 * Broadcom's own driver always assumes the internal
499 	 * PHY is at GMII address 1. On some chips, the PHY responds
500 	 * to accesses at all addresses, which could cause us to
501 	 * bogusly attach the PHY 32 times at probe type. Always
502 	 * restricting the lookup to address 1 is simpler than
503 	 * trying to figure out which chips revisions should be
504 	 * special-cased.
505 	 */
506 	if (phy != 1)
507 		return(0);
508 
509 	/* Reading with autopolling on may trigger PCI errors */
510 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
511 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
512 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
513 		DELAY(40);
514 	}
515 
516 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
517 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
518 
519 	for (i = 0; i < BGE_TIMEOUT; i++) {
520 		val = CSR_READ_4(sc, BGE_MI_COMM);
521 		if (!(val & BGE_MICOMM_BUSY))
522 			break;
523 	}
524 
525 	if (i == BGE_TIMEOUT) {
526 		if_printf(ifp, "PHY read timed out\n");
527 		val = 0;
528 		goto done;
529 	}
530 
531 	val = CSR_READ_4(sc, BGE_MI_COMM);
532 
533 done:
534 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
535 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
536 		DELAY(40);
537 	}
538 
539 	if (val & BGE_MICOMM_READFAIL)
540 		return(0);
541 
542 	return(val & 0xFFFF);
543 }
544 
545 static int
546 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
547 {
548 	struct bge_softc *sc;
549 	uint32_t autopoll;
550 	int i;
551 
552 	sc = device_get_softc(dev);
553 
554 	/* Reading with autopolling on may trigger PCI errors */
555 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
556 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
557 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
558 		DELAY(40);
559 	}
560 
561 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
562 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
563 
564 	for (i = 0; i < BGE_TIMEOUT; i++) {
565 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
566 			break;
567 	}
568 
569 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
570 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
571 		DELAY(40);
572 	}
573 
574 	if (i == BGE_TIMEOUT) {
575 		if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
576 		return(0);
577 	}
578 
579 	return(0);
580 }
581 
582 static void
583 bge_miibus_statchg(device_t dev)
584 {
585 	struct bge_softc *sc;
586 	struct mii_data *mii;
587 
588 	sc = device_get_softc(dev);
589 	mii = device_get_softc(sc->bge_miibus);
590 
591 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
592 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
593 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
594 	} else {
595 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
596 	}
597 
598 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
599 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
600 	} else {
601 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
602 	}
603 }
604 
605 /*
606  * Handle events that have triggered interrupts.
607  */
608 static void
609 bge_handle_events(struct bge_softc *sc)
610 {
611 }
612 
613 /*
614  * Memory management for jumbo frames.
615  */
616 static int
617 bge_alloc_jumbo_mem(struct bge_softc *sc)
618 {
619 	struct bge_jslot *entry;
620 	caddr_t ptr;
621 	int i;
622 
623 	/* Grab a big chunk o' storage. */
624 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
625 		M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
626 
627 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
628 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
629 		return(ENOBUFS);
630 	}
631 
632 	SLIST_INIT(&sc->bge_jfree_listhead);
633 
634 	/*
635 	 * Now divide it up into 9K pieces and save the addresses
636 	 * in an array. Note that we play an evil trick here by using
637 	 * the first few bytes in the buffer to hold the the address
638 	 * of the softc structure for this interface. This is because
639 	 * bge_jfree() needs it, but it is called by the mbuf management
640 	 * code which will not pass it to us explicitly.
641 	 */
642 	ptr = sc->bge_cdata.bge_jumbo_buf;
643 	for (i = 0; i < BGE_JSLOTS; i++) {
644 		entry = &sc->bge_cdata.bge_jslots[i];
645 		entry->bge_sc = sc;
646 		entry->bge_buf = ptr;
647 		entry->bge_inuse = 0;
648 		entry->bge_slot = i;
649 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
650 		ptr += BGE_JLEN;
651 	}
652 
653 	return(0);
654 }
655 
656 static void
657 bge_free_jumbo_mem(struct bge_softc *sc)
658 {
659 	if (sc->bge_cdata.bge_jumbo_buf)
660 		contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
661 }
662 
663 /*
664  * Allocate a jumbo buffer.
665  */
666 static struct bge_jslot *
667 bge_jalloc(struct bge_softc *sc)
668 {
669 	struct bge_jslot *entry;
670 
671 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
672 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
673 	if (entry) {
674 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
675 		entry->bge_inuse = 1;
676 	} else {
677 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
678 	}
679 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
680 	return(entry);
681 }
682 
683 /*
684  * Adjust usage count on a jumbo buffer.
685  */
686 static void
687 bge_jref(void *arg)
688 {
689 	struct bge_jslot *entry = (struct bge_jslot *)arg;
690 	struct bge_softc *sc = entry->bge_sc;
691 
692 	if (sc == NULL)
693 		panic("bge_jref: can't find softc pointer!");
694 
695 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
696 		panic("bge_jref: asked to reference buffer "
697 		    "that we don't manage!");
698 	} else if (entry->bge_inuse == 0) {
699 		panic("bge_jref: buffer already free!");
700 	} else {
701 		atomic_add_int(&entry->bge_inuse, 1);
702 	}
703 }
704 
705 /*
706  * Release a jumbo buffer.
707  */
708 static void
709 bge_jfree(void *arg)
710 {
711 	struct bge_jslot *entry = (struct bge_jslot *)arg;
712 	struct bge_softc *sc = entry->bge_sc;
713 
714 	if (sc == NULL)
715 		panic("bge_jfree: can't find softc pointer!");
716 
717 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
718 		panic("bge_jfree: asked to free buffer that we don't manage!");
719 	} else if (entry->bge_inuse == 0) {
720 		panic("bge_jfree: buffer already free!");
721 	} else {
722 		/*
723 		 * Possible MP race to 0, use the serializer.  The atomic insn
724 		 * is still needed for races against bge_jref().
725 		 */
726 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
727 		atomic_subtract_int(&entry->bge_inuse, 1);
728 		if (entry->bge_inuse == 0) {
729 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
730 					  entry, jslot_link);
731 		}
732 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
733 	}
734 }
735 
736 
737 /*
738  * Intialize a standard receive ring descriptor.
739  */
740 static int
741 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
742 {
743 	struct mbuf *m_new = NULL;
744 	struct bge_rx_bd *r;
745 
746 	if (m == NULL) {
747 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
748 		if (m_new == NULL)
749 			return (ENOBUFS);
750 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
751 	} else {
752 		m_new = m;
753 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
754 		m_new->m_data = m_new->m_ext.ext_buf;
755 	}
756 
757 	if (!sc->bge_rx_alignment_bug)
758 		m_adj(m_new, ETHER_ALIGN);
759 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
760 	r = &sc->bge_rdata->bge_rx_std_ring[i];
761 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
762 	r->bge_flags = BGE_RXBDFLAG_END;
763 	r->bge_len = m_new->m_len;
764 	r->bge_idx = i;
765 
766 	return(0);
767 }
768 
769 /*
770  * Initialize a jumbo receive ring descriptor. This allocates
771  * a jumbo buffer from the pool managed internally by the driver.
772  */
773 static int
774 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
775 {
776 	struct mbuf *m_new = NULL;
777 	struct bge_rx_bd *r;
778 
779 	if (m == NULL) {
780 		struct bge_jslot *buf;
781 
782 		/* Allocate the mbuf. */
783 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
784 		if (m_new == NULL)
785 			return(ENOBUFS);
786 
787 		/* Allocate the jumbo buffer */
788 		buf = bge_jalloc(sc);
789 		if (buf == NULL) {
790 			m_freem(m_new);
791 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
792 			    "-- packet dropped!\n");
793 			return(ENOBUFS);
794 		}
795 
796 		/* Attach the buffer to the mbuf. */
797 		m_new->m_ext.ext_arg = buf;
798 		m_new->m_ext.ext_buf = buf->bge_buf;
799 		m_new->m_ext.ext_free = bge_jfree;
800 		m_new->m_ext.ext_ref = bge_jref;
801 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
802 
803 		m_new->m_data = m_new->m_ext.ext_buf;
804 		m_new->m_flags |= M_EXT;
805 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
806 	} else {
807 		m_new = m;
808 		m_new->m_data = m_new->m_ext.ext_buf;
809 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
810 	}
811 
812 	if (!sc->bge_rx_alignment_bug)
813 		m_adj(m_new, ETHER_ALIGN);
814 	/* Set up the descriptor. */
815 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
816 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
817 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
818 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
819 	r->bge_len = m_new->m_len;
820 	r->bge_idx = i;
821 
822 	return(0);
823 }
824 
825 /*
826  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
827  * that's 1MB or memory, which is a lot. For now, we fill only the first
828  * 256 ring entries and hope that our CPU is fast enough to keep up with
829  * the NIC.
830  */
831 static int
832 bge_init_rx_ring_std(struct bge_softc *sc)
833 {
834 	int i;
835 
836 	for (i = 0; i < BGE_SSLOTS; i++) {
837 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
838 			return(ENOBUFS);
839 	};
840 
841 	sc->bge_std = i - 1;
842 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
843 
844 	return(0);
845 }
846 
847 static void
848 bge_free_rx_ring_std(struct bge_softc *sc)
849 {
850 	int i;
851 
852 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
853 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
854 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
855 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
856 		}
857 		bzero(&sc->bge_rdata->bge_rx_std_ring[i],
858 		    sizeof(struct bge_rx_bd));
859 	}
860 }
861 
862 static int
863 bge_init_rx_ring_jumbo(struct bge_softc *sc)
864 {
865 	int i;
866 	struct bge_rcb *rcb;
867 
868 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
869 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
870 			return(ENOBUFS);
871 	};
872 
873 	sc->bge_jumbo = i - 1;
874 
875 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
876 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
877 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
878 
879 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
880 
881 	return(0);
882 }
883 
884 static void
885 bge_free_rx_ring_jumbo(struct bge_softc *sc)
886 {
887 	int i;
888 
889 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
890 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
891 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
892 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
893 		}
894 		bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
895 		    sizeof(struct bge_rx_bd));
896 	}
897 }
898 
899 static void
900 bge_free_tx_ring(struct bge_softc *sc)
901 {
902 	int i;
903 
904 	if (sc->bge_rdata->bge_tx_ring == NULL)
905 		return;
906 
907 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
908 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
909 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
910 			sc->bge_cdata.bge_tx_chain[i] = NULL;
911 		}
912 		bzero(&sc->bge_rdata->bge_tx_ring[i],
913 		    sizeof(struct bge_tx_bd));
914 	}
915 }
916 
917 static int
918 bge_init_tx_ring(struct bge_softc *sc)
919 {
920 	sc->bge_txcnt = 0;
921 	sc->bge_tx_saved_considx = 0;
922 	sc->bge_tx_prodidx = 0;
923 
924 	/* Initialize transmit producer index for host-memory send ring. */
925 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
926 
927 	/* 5700 b2 errata */
928 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
929 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
930 
931 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
932 	/* 5700 b2 errata */
933 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
934 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
935 
936 	return(0);
937 }
938 
939 static void
940 bge_setmulti(struct bge_softc *sc)
941 {
942 	struct ifnet *ifp;
943 	struct ifmultiaddr *ifma;
944 	uint32_t hashes[4] = { 0, 0, 0, 0 };
945 	int h, i;
946 
947 	ifp = &sc->arpcom.ac_if;
948 
949 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
950 		for (i = 0; i < 4; i++)
951 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
952 		return;
953 	}
954 
955 	/* First, zot all the existing filters. */
956 	for (i = 0; i < 4; i++)
957 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
958 
959 	/* Now program new ones. */
960 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
961 		if (ifma->ifma_addr->sa_family != AF_LINK)
962 			continue;
963 		h = ether_crc32_le(
964 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
965 		    ETHER_ADDR_LEN) & 0x7f;
966 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
967 	}
968 
969 	for (i = 0; i < 4; i++)
970 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
971 }
972 
973 /*
974  * Do endian, PCI and DMA initialization. Also check the on-board ROM
975  * self-test results.
976  */
977 static int
978 bge_chipinit(struct bge_softc *sc)
979 {
980 	int i;
981 	uint32_t dma_rw_ctl;
982 
983 	/* Set endianness before we access any non-PCI registers. */
984 #if BYTE_ORDER == BIG_ENDIAN
985 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
986 	    BGE_BIGENDIAN_INIT, 4);
987 #else
988 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
989 	    BGE_LITTLEENDIAN_INIT, 4);
990 #endif
991 
992 	/*
993 	 * Check the 'ROM failed' bit on the RX CPU to see if
994 	 * self-tests passed.
995 	 */
996 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
997 		if_printf(&sc->arpcom.ac_if,
998 			  "RX CPU self-diagnostics failed!\n");
999 		return(ENODEV);
1000 	}
1001 
1002 	/* Clear the MAC control register */
1003 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1004 
1005 	/*
1006 	 * Clear the MAC statistics block in the NIC's
1007 	 * internal memory.
1008 	 */
1009 	for (i = BGE_STATS_BLOCK;
1010 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1011 		BGE_MEMWIN_WRITE(sc, i, 0);
1012 
1013 	for (i = BGE_STATUS_BLOCK;
1014 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1015 		BGE_MEMWIN_WRITE(sc, i, 0);
1016 
1017 	/* Set up the PCI DMA control register. */
1018 	if (sc->bge_pcie) {
1019 		/* PCI Express */
1020 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1021 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1022 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1023 	} else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1024 		   BGE_PCISTATE_PCI_BUSMODE) {
1025 		/* Conventional PCI bus */
1026 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1027 		    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1028 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1029 		    (0x0F);
1030 	} else {
1031 		/* PCI-X bus */
1032 		/*
1033 		 * The 5704 uses a different encoding of read/write
1034 		 * watermarks.
1035 		 */
1036 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1037 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1038 			    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1039 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1040 		else
1041 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1042 			    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1043 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1044 			    (0x0F);
1045 
1046 		/*
1047 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1048 		 * for hardware bugs.
1049 		 */
1050 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1051 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1052 			uint32_t tmp;
1053 
1054 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1055 			if (tmp == 0x6 || tmp == 0x7)
1056 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1057 		}
1058 	}
1059 
1060 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1061 	    sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1062 	    sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1063 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1064 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1065 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1066 
1067 	/*
1068 	 * Set up general mode register.
1069 	 */
1070 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1071 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1072 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1073 	    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1074 
1075 	/*
1076 	 * Disable memory write invalidate.  Apparently it is not supported
1077 	 * properly by these devices.
1078 	 */
1079 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1080 
1081 	/* Set the timer prescaler (always 66Mhz) */
1082 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1083 
1084 	return(0);
1085 }
1086 
1087 static int
1088 bge_blockinit(struct bge_softc *sc)
1089 {
1090 	struct bge_rcb *rcb;
1091 	volatile struct bge_rcb *vrcb;
1092 	int i;
1093 
1094 	/*
1095 	 * Initialize the memory window pointer register so that
1096 	 * we can access the first 32K of internal NIC RAM. This will
1097 	 * allow us to set up the TX send ring RCBs and the RX return
1098 	 * ring RCBs, plus other things which live in NIC memory.
1099 	 */
1100 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1101 
1102 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1103 
1104 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1105 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1106 		/* Configure mbuf memory pool */
1107 		if (sc->bge_extram) {
1108 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1109 			    BGE_EXT_SSRAM);
1110 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1111 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1112 			else
1113 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1114 		} else {
1115 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1116 			    BGE_BUFFPOOL_1);
1117 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1118 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1119 			else
1120 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1121 		}
1122 
1123 		/* Configure DMA resource pool */
1124 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1125 		    BGE_DMA_DESCRIPTORS);
1126 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1127 	}
1128 
1129 	/* Configure mbuf pool watermarks */
1130 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1131 	    sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1132 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1133 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1134 	} else {
1135 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1136 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1137 	}
1138 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1139 
1140 	/* Configure DMA resource watermarks */
1141 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1142 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1143 
1144 	/* Enable buffer manager */
1145 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1146 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1147 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1148 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1149 
1150 		/* Poll for buffer manager start indication */
1151 		for (i = 0; i < BGE_TIMEOUT; i++) {
1152 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1153 				break;
1154 			DELAY(10);
1155 		}
1156 
1157 		if (i == BGE_TIMEOUT) {
1158 			if_printf(&sc->arpcom.ac_if,
1159 				  "buffer manager failed to start\n");
1160 			return(ENXIO);
1161 		}
1162 	}
1163 
1164 	/* Enable flow-through queues */
1165 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1166 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1167 
1168 	/* Wait until queue initialization is complete */
1169 	for (i = 0; i < BGE_TIMEOUT; i++) {
1170 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1171 			break;
1172 		DELAY(10);
1173 	}
1174 
1175 	if (i == BGE_TIMEOUT) {
1176 		if_printf(&sc->arpcom.ac_if,
1177 			  "flow-through queue init failed\n");
1178 		return(ENXIO);
1179 	}
1180 
1181 	/* Initialize the standard RX ring control block */
1182 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1183 	BGE_HOSTADDR(rcb->bge_hostaddr,
1184 	    vtophys(&sc->bge_rdata->bge_rx_std_ring));
1185 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1186 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1187 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1188 	else
1189 		rcb->bge_maxlen_flags =
1190 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1191 	if (sc->bge_extram)
1192 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1193 	else
1194 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1195 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1196 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1197 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1198 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1199 
1200 	/*
1201 	 * Initialize the jumbo RX ring control block
1202 	 * We set the 'ring disabled' bit in the flags
1203 	 * field until we're actually ready to start
1204 	 * using this ring (i.e. once we set the MTU
1205 	 * high enough to require it).
1206 	 */
1207 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1208 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1209 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1210 		BGE_HOSTADDR(rcb->bge_hostaddr,
1211 		    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1212 		rcb->bge_maxlen_flags =
1213 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1214 		    BGE_RCB_FLAG_RING_DISABLED);
1215 		if (sc->bge_extram)
1216 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1217 		else
1218 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1219 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1220 		    rcb->bge_hostaddr.bge_addr_hi);
1221 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1222 		    rcb->bge_hostaddr.bge_addr_lo);
1223 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1224 		    rcb->bge_maxlen_flags);
1225 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1226 
1227 		/* Set up dummy disabled mini ring RCB */
1228 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1229 		rcb->bge_maxlen_flags =
1230 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1231 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1232 		    rcb->bge_maxlen_flags);
1233 	}
1234 
1235 	/*
1236 	 * Set the BD ring replentish thresholds. The recommended
1237 	 * values are 1/8th the number of descriptors allocated to
1238 	 * each ring.
1239 	 */
1240 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1241 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1242 
1243 	/*
1244 	 * Disable all unused send rings by setting the 'ring disabled'
1245 	 * bit in the flags field of all the TX send ring control blocks.
1246 	 * These are located in NIC memory.
1247 	 */
1248 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1249 	    BGE_SEND_RING_RCB);
1250 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1251 		vrcb->bge_maxlen_flags =
1252 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1253 		vrcb->bge_nicaddr = 0;
1254 		vrcb++;
1255 	}
1256 
1257 	/* Configure TX RCB 0 (we use only the first ring) */
1258 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1259 	    BGE_SEND_RING_RCB);
1260 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1261 	BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1262 	vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1263 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1264 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1265 		vrcb->bge_maxlen_flags =
1266 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1267 
1268 	/* Disable all unused RX return rings */
1269 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1270 	    BGE_RX_RETURN_RING_RCB);
1271 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1272 		vrcb->bge_hostaddr.bge_addr_hi = 0;
1273 		vrcb->bge_hostaddr.bge_addr_lo = 0;
1274 		vrcb->bge_maxlen_flags =
1275 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1276 		    BGE_RCB_FLAG_RING_DISABLED);
1277 		vrcb->bge_nicaddr = 0;
1278 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1279 		    (i * (sizeof(uint64_t))), 0);
1280 		vrcb++;
1281 	}
1282 
1283 	/* Initialize RX ring indexes */
1284 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1285 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1286 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1287 
1288 	/*
1289 	 * Set up RX return ring 0
1290 	 * Note that the NIC address for RX return rings is 0x00000000.
1291 	 * The return rings live entirely within the host, so the
1292 	 * nicaddr field in the RCB isn't used.
1293 	 */
1294 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1295 	    BGE_RX_RETURN_RING_RCB);
1296 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1297 	BGE_HOSTADDR(vrcb->bge_hostaddr,
1298 	    vtophys(&sc->bge_rdata->bge_rx_return_ring));
1299 	vrcb->bge_nicaddr = 0x00000000;
1300 	vrcb->bge_maxlen_flags =
1301 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1302 
1303 	/* Set random backoff seed for TX */
1304 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1305 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1306 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1307 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1308 	    BGE_TX_BACKOFF_SEED_MASK);
1309 
1310 	/* Set inter-packet gap */
1311 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1312 
1313 	/*
1314 	 * Specify which ring to use for packets that don't match
1315 	 * any RX rules.
1316 	 */
1317 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1318 
1319 	/*
1320 	 * Configure number of RX lists. One interrupt distribution
1321 	 * list, sixteen active lists, one bad frames class.
1322 	 */
1323 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1324 
1325 	/* Inialize RX list placement stats mask. */
1326 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1327 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1328 
1329 	/* Disable host coalescing until we get it set up */
1330 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1331 
1332 	/* Poll to make sure it's shut down. */
1333 	for (i = 0; i < BGE_TIMEOUT; i++) {
1334 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1335 			break;
1336 		DELAY(10);
1337 	}
1338 
1339 	if (i == BGE_TIMEOUT) {
1340 		if_printf(&sc->arpcom.ac_if,
1341 			  "host coalescing engine failed to idle\n");
1342 		return(ENXIO);
1343 	}
1344 
1345 	/* Set up host coalescing defaults */
1346 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1347 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1348 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1349 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1350 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1351 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1352 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1353 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1354 	}
1355 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1356 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1357 
1358 	/* Set up address of statistics block */
1359 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1360 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1361 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1362 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1363 		    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1364 
1365 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1366 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1367 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1368 	}
1369 
1370 	/* Set up address of status block */
1371 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1372 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1373 	    vtophys(&sc->bge_rdata->bge_status_block));
1374 
1375 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1376 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1377 
1378 	/* Turn on host coalescing state machine */
1379 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1380 
1381 	/* Turn on RX BD completion state machine and enable attentions */
1382 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1383 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1384 
1385 	/* Turn on RX list placement state machine */
1386 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1387 
1388 	/* Turn on RX list selector state machine. */
1389 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1390 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1391 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1392 
1393 	/* Turn on DMA, clear stats */
1394 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1395 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1396 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1397 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1398 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1399 
1400 	/* Set misc. local control, enable interrupts on attentions */
1401 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1402 
1403 #ifdef notdef
1404 	/* Assert GPIO pins for PHY reset */
1405 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1406 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1407 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1408 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1409 #endif
1410 
1411 	/* Turn on DMA completion state machine */
1412 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1413 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1414 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1415 
1416 	/* Turn on write DMA state machine */
1417 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1418 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1419 
1420 	/* Turn on read DMA state machine */
1421 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1422 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1423 
1424 	/* Turn on RX data completion state machine */
1425 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1426 
1427 	/* Turn on RX BD initiator state machine */
1428 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1429 
1430 	/* Turn on RX data and RX BD initiator state machine */
1431 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1432 
1433 	/* Turn on Mbuf cluster free state machine */
1434 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1435 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1436 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1437 
1438 	/* Turn on send BD completion state machine */
1439 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1440 
1441 	/* Turn on send data completion state machine */
1442 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1443 
1444 	/* Turn on send data initiator state machine */
1445 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1446 
1447 	/* Turn on send BD initiator state machine */
1448 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1449 
1450 	/* Turn on send BD selector state machine */
1451 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1452 
1453 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1454 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1455 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1456 
1457 	/* ack/clear link change events */
1458 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1459 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1460 	    BGE_MACSTAT_LINK_CHANGED);
1461 
1462 	/* Enable PHY auto polling (for MII/GMII only) */
1463 	if (sc->bge_tbi) {
1464 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1465  	} else {
1466 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1467 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1468 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1469 			    BGE_EVTENB_MI_INTERRUPT);
1470 	}
1471 
1472 	/* Enable link state change attentions. */
1473 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1474 
1475 	return(0);
1476 }
1477 
1478 /*
1479  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1480  * against our list and return its name if we find a match. Note
1481  * that since the Broadcom controller contains VPD support, we
1482  * can get the device name string from the controller itself instead
1483  * of the compiled-in string. This is a little slow, but it guarantees
1484  * we'll always announce the right product name.
1485  */
1486 static int
1487 bge_probe(device_t dev)
1488 {
1489 	struct bge_softc *sc;
1490 	struct bge_type *t;
1491 	char *descbuf;
1492 	uint16_t product, vendor;
1493 
1494 	product = pci_get_device(dev);
1495 	vendor = pci_get_vendor(dev);
1496 
1497 	for (t = bge_devs; t->bge_name != NULL; t++) {
1498 		if (vendor == t->bge_vid && product == t->bge_did)
1499 			break;
1500 	}
1501 
1502 	if (t->bge_name == NULL)
1503 		return(ENXIO);
1504 
1505 	sc = device_get_softc(dev);
1506 #ifdef notdef
1507 	sc->bge_dev = dev;
1508 
1509 	bge_vpd_read(sc);
1510 	device_set_desc(dev, sc->bge_vpd_prodname);
1511 #endif
1512 	descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1513 	ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1514 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1515 	device_set_desc_copy(dev, descbuf);
1516 	if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1517 		sc->bge_no_3_led = 1;
1518 	kfree(descbuf, M_TEMP);
1519 	return(0);
1520 }
1521 
1522 static int
1523 bge_attach(device_t dev)
1524 {
1525 	struct ifnet *ifp;
1526 	struct bge_softc *sc;
1527 	uint32_t hwcfg = 0;
1528 	uint32_t mac_addr = 0;
1529 	int error = 0, rid;
1530 	uint8_t ether_addr[ETHER_ADDR_LEN];
1531 
1532 	sc = device_get_softc(dev);
1533 	sc->bge_dev = dev;
1534 	callout_init(&sc->bge_stat_timer);
1535 	lwkt_serialize_init(&sc->bge_jslot_serializer);
1536 
1537 	/*
1538 	 * Map control/status registers.
1539 	 */
1540 	pci_enable_busmaster(dev);
1541 
1542 	rid = BGE_PCI_BAR0;
1543 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1544 	    RF_ACTIVE);
1545 
1546 	if (sc->bge_res == NULL) {
1547 		device_printf(dev, "couldn't map memory\n");
1548 		error = ENXIO;
1549 		return(error);
1550 	}
1551 
1552 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1553 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1554 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1555 
1556 	/* Allocate interrupt */
1557 	rid = 0;
1558 
1559 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1560 	    RF_SHAREABLE | RF_ACTIVE);
1561 
1562 	if (sc->bge_irq == NULL) {
1563 		device_printf(dev, "couldn't map interrupt\n");
1564 		error = ENXIO;
1565 		goto fail;
1566 	}
1567 
1568 	/* Save ASIC rev. */
1569 	sc->bge_chipid =
1570 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1571 	    BGE_PCIMISCCTL_ASICREV;
1572 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1573 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1574 
1575 	/*
1576 	 * Treat the 5714 and the 5752 like the 5750 until we have more info
1577 	 * on this chip.
1578 	 */
1579 	if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
1580 	    sc->bge_asicrev == BGE_ASICREV_BCM5752)
1581 		sc->bge_asicrev = BGE_ASICREV_BCM5750;
1582 
1583 	/*
1584 	 * XXX: Broadcom Linux driver.  Not in specs or eratta.
1585 	 * PCI-Express?
1586 	 */
1587 	if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1588 		uint32_t v;
1589 
1590 		v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
1591 		if (((v >> 8) & 0xff) == BGE_PCIE_MSI_CAPID) {
1592 			v = pci_read_config(dev, BGE_PCIE_MSI_CAPID, 4);
1593 			if ((v & 0xff) == BGE_PCIE_MSI_CAPID_VAL)
1594 				sc->bge_pcie = 1;
1595 		}
1596 	}
1597 
1598 	ifp = &sc->arpcom.ac_if;
1599 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1600 
1601 	/* Try to reset the chip. */
1602 	bge_reset(sc);
1603 
1604 	if (bge_chipinit(sc)) {
1605 		device_printf(dev, "chip initialization failed\n");
1606 		error = ENXIO;
1607 		goto fail;
1608 	}
1609 
1610 	/*
1611 	 * Get station address from the EEPROM.
1612 	 */
1613 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1614 	if ((mac_addr >> 16) == 0x484b) {
1615 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
1616 		ether_addr[1] = (uint8_t)mac_addr;
1617 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1618 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
1619 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
1620 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
1621 		ether_addr[5] = (uint8_t)mac_addr;
1622 	} else if (bge_read_eeprom(sc, ether_addr,
1623 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1624 		device_printf(dev, "failed to read station address\n");
1625 		error = ENXIO;
1626 		goto fail;
1627 	}
1628 
1629 	/* Allocate the general information block and ring buffers. */
1630 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1631 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1632 
1633 	if (sc->bge_rdata == NULL) {
1634 		error = ENXIO;
1635 		device_printf(dev, "no memory for list buffers!\n");
1636 		goto fail;
1637 	}
1638 
1639 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1640 
1641 	/*
1642 	 * Try to allocate memory for jumbo buffers.
1643 	 * The 5705/5750 does not appear to support jumbo frames.
1644 	 */
1645 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1646 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1647 		if (bge_alloc_jumbo_mem(sc)) {
1648 			device_printf(dev, "jumbo buffer allocation failed\n");
1649 			error = ENXIO;
1650 			goto fail;
1651 		}
1652 	}
1653 
1654 	/* Set default tuneable values. */
1655 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1656 	sc->bge_rx_coal_ticks = 150;
1657 	sc->bge_tx_coal_ticks = 150;
1658 	sc->bge_rx_max_coal_bds = 64;
1659 	sc->bge_tx_max_coal_bds = 128;
1660 
1661 	/* 5705/5750 limits RX return ring to 512 entries. */
1662 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1663 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1664 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1665 	else
1666 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1667 
1668 	/* Set up ifnet structure */
1669 	ifp->if_softc = sc;
1670 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1671 	ifp->if_ioctl = bge_ioctl;
1672 	ifp->if_start = bge_start;
1673 	ifp->if_watchdog = bge_watchdog;
1674 	ifp->if_init = bge_init;
1675 	ifp->if_mtu = ETHERMTU;
1676 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1677 	ifq_set_ready(&ifp->if_snd);
1678 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1679 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
1680 	    IFCAP_VLAN_MTU;
1681 	ifp->if_capenable = ifp->if_capabilities;
1682 
1683 	/*
1684 	 * Figure out what sort of media we have by checking the
1685 	 * hardware config word in the first 32k of NIC internal memory,
1686 	 * or fall back to examining the EEPROM if necessary.
1687 	 * Note: on some BCM5700 cards, this value appears to be unset.
1688 	 * If that's the case, we have to rely on identifying the NIC
1689 	 * by its PCI subsystem ID, as we do below for the SysKonnect
1690 	 * SK-9D41.
1691 	 */
1692 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1693 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1694 	else {
1695 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1696 				    sizeof(hwcfg))) {
1697 			device_printf(dev, "failed to read EEPROM\n");
1698 			error = ENXIO;
1699 			goto fail;
1700 		}
1701 		hwcfg = ntohl(hwcfg);
1702 	}
1703 
1704 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1705 		sc->bge_tbi = 1;
1706 
1707 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1708 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1709 		sc->bge_tbi = 1;
1710 
1711 	if (sc->bge_tbi) {
1712 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1713 		    bge_ifmedia_upd, bge_ifmedia_sts);
1714 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1715 		ifmedia_add(&sc->bge_ifmedia,
1716 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1717 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1718 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1719 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1720 	} else {
1721 		/*
1722 		 * Do transceiver setup.
1723 		 */
1724 		if (mii_phy_probe(dev, &sc->bge_miibus,
1725 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1726 			device_printf(dev, "MII without any PHY!\n");
1727 			error = ENXIO;
1728 			goto fail;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * When using the BCM5701 in PCI-X mode, data corruption has
1734 	 * been observed in the first few bytes of some received packets.
1735 	 * Aligning the packet buffer in memory eliminates the corruption.
1736 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1737 	 * which do not support unaligned accesses, we will realign the
1738 	 * payloads by copying the received packets.
1739 	 */
1740 	switch (sc->bge_chipid) {
1741 	case BGE_CHIPID_BCM5701_A0:
1742 	case BGE_CHIPID_BCM5701_B0:
1743 	case BGE_CHIPID_BCM5701_B2:
1744 	case BGE_CHIPID_BCM5701_B5:
1745 		/* If in PCI-X mode, work around the alignment bug. */
1746 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1747 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1748 		    BGE_PCISTATE_PCI_BUSSPEED)
1749 			sc->bge_rx_alignment_bug = 1;
1750 		break;
1751 	}
1752 
1753 	/*
1754 	 * Call MI attach routine.
1755 	 */
1756 	ether_ifattach(ifp, ether_addr, NULL);
1757 
1758 	error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1759 			       bge_intr, sc, &sc->bge_intrhand,
1760 			       ifp->if_serializer);
1761 	if (error) {
1762 		ether_ifdetach(ifp);
1763 		device_printf(dev, "couldn't set up irq\n");
1764 		goto fail;
1765 	}
1766 	return(0);
1767 fail:
1768 	bge_detach(dev);
1769 	return(error);
1770 }
1771 
1772 static int
1773 bge_detach(device_t dev)
1774 {
1775 	struct bge_softc *sc = device_get_softc(dev);
1776 	struct ifnet *ifp = &sc->arpcom.ac_if;
1777 
1778 	if (device_is_attached(dev)) {
1779 		lwkt_serialize_enter(ifp->if_serializer);
1780 		bge_stop(sc);
1781 		bge_reset(sc);
1782 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1783 		lwkt_serialize_exit(ifp->if_serializer);
1784 
1785 		ether_ifdetach(ifp);
1786 	}
1787 	if (sc->bge_tbi)
1788 		ifmedia_removeall(&sc->bge_ifmedia);
1789 	if (sc->bge_miibus)
1790 		device_delete_child(dev, sc->bge_miibus);
1791 	bus_generic_detach(dev);
1792 
1793 	bge_release_resources(sc);
1794 
1795 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1796 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1797 		bge_free_jumbo_mem(sc);
1798 
1799 	return(0);
1800 }
1801 
1802 static void
1803 bge_release_resources(struct bge_softc *sc)
1804 {
1805         device_t dev;
1806 
1807         dev = sc->bge_dev;
1808 
1809 	if (sc->bge_vpd_prodname != NULL)
1810 		kfree(sc->bge_vpd_prodname, M_DEVBUF);
1811 
1812 	if (sc->bge_vpd_readonly != NULL)
1813 		kfree(sc->bge_vpd_readonly, M_DEVBUF);
1814 
1815         if (sc->bge_irq != NULL)
1816 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1817 
1818         if (sc->bge_res != NULL)
1819 		bus_release_resource(dev, SYS_RES_MEMORY,
1820 		    BGE_PCI_BAR0, sc->bge_res);
1821 
1822         if (sc->bge_rdata != NULL)
1823 		contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1824 			   M_DEVBUF);
1825 
1826         return;
1827 }
1828 
1829 static void
1830 bge_reset(struct bge_softc *sc)
1831 {
1832 	device_t dev;
1833 	uint32_t cachesize, command, pcistate, reset;
1834 	int i, val = 0;
1835 
1836 	dev = sc->bge_dev;
1837 
1838 	/* Save some important PCI state. */
1839 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1840 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1841 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1842 
1843 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1844 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1845 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1846 
1847 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1848 
1849 	/* XXX: Broadcom Linux driver. */
1850 	if (sc->bge_pcie) {
1851 		if (CSR_READ_4(sc, 0x7e2c) == 0x60)	/* PCIE 1.0 */
1852 			CSR_WRITE_4(sc, 0x7e2c, 0x20);
1853 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1854 			/* Prevent PCIE link training during global reset */
1855 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1856 			reset |= (1<<29);
1857 		}
1858 	}
1859 
1860 	/* Issue global reset */
1861 	bge_writereg_ind(sc, BGE_MISC_CFG, reset);
1862 
1863 	DELAY(1000);
1864 
1865 	/* XXX: Broadcom Linux driver. */
1866 	if (sc->bge_pcie) {
1867 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1868 			uint32_t v;
1869 
1870 			DELAY(500000); /* wait for link training to complete */
1871 			v = pci_read_config(dev, 0xc4, 4);
1872 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
1873 		}
1874 		/* Set PCIE max payload size and clear error status. */
1875 		pci_write_config(dev, 0xd8, 0xf5000, 4);
1876 	}
1877 
1878 	/* Reset some of the PCI state that got zapped by reset */
1879 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1880 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1881 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1882 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1883 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1884 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1885 
1886 	/* Enable memory arbiter. */
1887 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1888 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1889 
1890 	/*
1891 	 * Prevent PXE restart: write a magic number to the
1892 	 * general communications memory at 0xB50.
1893 	 */
1894 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1895 	/*
1896 	 * Poll the value location we just wrote until
1897 	 * we see the 1's complement of the magic number.
1898 	 * This indicates that the firmware initialization
1899 	 * is complete.
1900 	 */
1901 	for (i = 0; i < BGE_TIMEOUT; i++) {
1902 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1903 		if (val == ~BGE_MAGIC_NUMBER)
1904 			break;
1905 		DELAY(10);
1906 	}
1907 
1908 	if (i == BGE_TIMEOUT) {
1909 		if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1910 		return;
1911 	}
1912 
1913 	/*
1914 	 * XXX Wait for the value of the PCISTATE register to
1915 	 * return to its original pre-reset state. This is a
1916 	 * fairly good indicator of reset completion. If we don't
1917 	 * wait for the reset to fully complete, trying to read
1918 	 * from the device's non-PCI registers may yield garbage
1919 	 * results.
1920 	 */
1921 	for (i = 0; i < BGE_TIMEOUT; i++) {
1922 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1923 			break;
1924 		DELAY(10);
1925 	}
1926 
1927 	/* Fix up byte swapping */
1928 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1929 	    BGE_MODECTL_BYTESWAP_DATA);
1930 
1931 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1932 
1933 	/*
1934 	 * The 5704 in TBI mode apparently needs some special
1935 	 * adjustment to insure the SERDES drive level is set
1936 	 * to 1.2V.
1937 	 */
1938 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) {
1939 		uint32_t serdescfg;
1940 
1941 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
1942 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
1943 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
1944 	}
1945 
1946 	/* XXX: Broadcom Linux driver. */
1947 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1948 		uint32_t v;
1949 
1950 		v = CSR_READ_4(sc, 0x7c00);
1951 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
1952 	}
1953 
1954 	DELAY(10000);
1955 }
1956 
1957 /*
1958  * Frame reception handling. This is called if there's a frame
1959  * on the receive return list.
1960  *
1961  * Note: we have to be able to handle two possibilities here:
1962  * 1) the frame is from the jumbo recieve ring
1963  * 2) the frame is from the standard receive ring
1964  */
1965 
1966 static void
1967 bge_rxeof(struct bge_softc *sc)
1968 {
1969 	struct ifnet *ifp;
1970 	int stdcnt = 0, jumbocnt = 0;
1971 
1972 	if (sc->bge_rx_saved_considx ==
1973 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx)
1974 		return;
1975 
1976 	ifp = &sc->arpcom.ac_if;
1977 
1978 	while(sc->bge_rx_saved_considx !=
1979 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1980 		struct bge_rx_bd	*cur_rx;
1981 		uint32_t		rxidx;
1982 		struct mbuf		*m = NULL;
1983 		uint16_t		vlan_tag = 0;
1984 		int			have_tag = 0;
1985 
1986 		cur_rx =
1987 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1988 
1989 		rxidx = cur_rx->bge_idx;
1990 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1991 
1992 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1993 			have_tag = 1;
1994 			vlan_tag = cur_rx->bge_vlan_tag;
1995 		}
1996 
1997 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1998 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1999 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2000 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2001 			jumbocnt++;
2002 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2003 				ifp->if_ierrors++;
2004 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2005 				continue;
2006 			}
2007 			if (bge_newbuf_jumbo(sc,
2008 			    sc->bge_jumbo, NULL) == ENOBUFS) {
2009 				ifp->if_ierrors++;
2010 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2011 				continue;
2012 			}
2013 		} else {
2014 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2015 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2016 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2017 			stdcnt++;
2018 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2019 				ifp->if_ierrors++;
2020 				bge_newbuf_std(sc, sc->bge_std, m);
2021 				continue;
2022 			}
2023 			if (bge_newbuf_std(sc, sc->bge_std,
2024 			    NULL) == ENOBUFS) {
2025 				ifp->if_ierrors++;
2026 				bge_newbuf_std(sc, sc->bge_std, m);
2027 				continue;
2028 			}
2029 		}
2030 
2031 		ifp->if_ipackets++;
2032 #ifndef __i386__
2033 		/*
2034 		 * The i386 allows unaligned accesses, but for other
2035 		 * platforms we must make sure the payload is aligned.
2036 		 */
2037 		if (sc->bge_rx_alignment_bug) {
2038 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2039 			    cur_rx->bge_len);
2040 			m->m_data += ETHER_ALIGN;
2041 		}
2042 #endif
2043 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2044 		m->m_pkthdr.rcvif = ifp;
2045 
2046 #if 0 /* currently broken for some packets, possibly related to TCP options */
2047 		if (ifp->if_hwassist) {
2048 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2049 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2050 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2051 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2052 				m->m_pkthdr.csum_data =
2053 				    cur_rx->bge_tcp_udp_csum;
2054 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2055 			}
2056 		}
2057 #endif
2058 
2059 		/*
2060 		 * If we received a packet with a vlan tag, pass it
2061 		 * to vlan_input() instead of ether_input().
2062 		 */
2063 		if (have_tag) {
2064 			VLAN_INPUT_TAG(m, vlan_tag);
2065 			have_tag = vlan_tag = 0;
2066 		} else {
2067 			ifp->if_input(ifp, m);
2068 		}
2069 	}
2070 
2071 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2072 	if (stdcnt)
2073 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2074 	if (jumbocnt)
2075 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2076 }
2077 
2078 static void
2079 bge_txeof(struct bge_softc *sc)
2080 {
2081 	struct bge_tx_bd *cur_tx = NULL;
2082 	struct ifnet *ifp;
2083 
2084 	if (sc->bge_tx_saved_considx ==
2085 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx)
2086 		return;
2087 
2088 	ifp = &sc->arpcom.ac_if;
2089 
2090 	/*
2091 	 * Go through our tx ring and free mbufs for those
2092 	 * frames that have been sent.
2093 	 */
2094 	while (sc->bge_tx_saved_considx !=
2095 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2096 		uint32_t		idx = 0;
2097 
2098 		idx = sc->bge_tx_saved_considx;
2099 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2100 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2101 			ifp->if_opackets++;
2102 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2103 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2104 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2105 		}
2106 		sc->bge_txcnt--;
2107 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2108 		ifp->if_timer = 0;
2109 	}
2110 
2111 	if (cur_tx != NULL)
2112 		ifp->if_flags &= ~IFF_OACTIVE;
2113 }
2114 
2115 static void
2116 bge_intr(void *xsc)
2117 {
2118 	struct bge_softc *sc = xsc;
2119 	struct ifnet *ifp = &sc->arpcom.ac_if;
2120  	uint32_t status, statusword, mimode;
2121 
2122 	/* XXX */
2123 	statusword = loadandclear(&sc->bge_rdata->bge_status_block.bge_status);
2124 
2125 #ifdef notdef
2126 	/* Avoid this for now -- checking this register is expensive. */
2127 	/* Make sure this is really our interrupt. */
2128 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2129 		return;
2130 #endif
2131 	/* Ack interrupt and stop others from occuring. */
2132 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2133 
2134 	/*
2135 	 * Process link state changes.
2136 	 * Grrr. The link status word in the status block does
2137 	 * not work correctly on the BCM5700 rev AX and BX chips,
2138 	 * according to all available information. Hence, we have
2139 	 * to enable MII interrupts in order to properly obtain
2140 	 * async link changes. Unfortunately, this also means that
2141 	 * we have to read the MAC status register to detect link
2142 	 * changes, thereby adding an additional register access to
2143 	 * the interrupt handler.
2144 	 */
2145 
2146 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2147 		status = CSR_READ_4(sc, BGE_MAC_STS);
2148 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2149 			sc->bge_link = 0;
2150 			callout_stop(&sc->bge_stat_timer);
2151 			bge_tick_serialized(sc);
2152 			/* Clear the interrupt */
2153 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2154 			    BGE_EVTENB_MI_INTERRUPT);
2155 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2156 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2157 			    BRGPHY_INTRS);
2158 		}
2159 	} else {
2160 		if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
2161 			/*
2162 			 * Sometimes PCS encoding errors are detected in
2163 			 * TBI mode (on fiber NICs), and for some reason
2164 			 * the chip will signal them as link changes.
2165 			 * If we get a link change event, but the 'PCS
2166 			 * encoding error' bit in the MAC status register
2167 			 * is set, don't bother doing a link check.
2168 			 * This avoids spurious "gigabit link up" messages
2169 			 * that sometimes appear on fiber NICs during
2170 			 * periods of heavy traffic. (There should be no
2171 			 * effect on copper NICs.)
2172 			 *
2173 			 * If we do have a copper NIC (bge_tbi == 0) then
2174 			 * check that the AUTOPOLL bit is set before
2175 			 * processing the event as a real link change.
2176 			 * Turning AUTOPOLL on and off in the MII read/write
2177 			 * functions will often trigger a link status
2178 			 * interrupt for no reason.
2179 			 */
2180 			status = CSR_READ_4(sc, BGE_MAC_STS);
2181 			mimode = CSR_READ_4(sc, BGE_MI_MODE);
2182 			if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR |
2183 					BGE_MACSTAT_MI_COMPLETE)) &&
2184 			    (!sc->bge_tbi && (mimode & BGE_MIMODE_AUTOPOLL))) {
2185 				sc->bge_link = 0;
2186 				callout_stop(&sc->bge_stat_timer);
2187 				bge_tick_serialized(sc);
2188 			}
2189 			sc->bge_link = 0;
2190 			callout_stop(&sc->bge_stat_timer);
2191 			bge_tick_serialized(sc);
2192 			/* Clear the interrupt */
2193 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2194 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2195 			    BGE_MACSTAT_LINK_CHANGED);
2196 
2197 			/* Force flush the status block cached by PCI bridge */
2198 			CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2199 		}
2200 	}
2201 
2202 	if (ifp->if_flags & IFF_RUNNING) {
2203 		/* Check RX return ring producer/consumer */
2204 		bge_rxeof(sc);
2205 
2206 		/* Check TX ring producer/consumer */
2207 		bge_txeof(sc);
2208 	}
2209 
2210 	bge_handle_events(sc);
2211 
2212 	/* Re-enable interrupts. */
2213 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2214 
2215 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2216 		(*ifp->if_start)(ifp);
2217 }
2218 
2219 static void
2220 bge_tick(void *xsc)
2221 {
2222 	struct bge_softc *sc = xsc;
2223 	struct ifnet *ifp = &sc->arpcom.ac_if;
2224 
2225 	lwkt_serialize_enter(ifp->if_serializer);
2226 	bge_tick_serialized(xsc);
2227 	lwkt_serialize_exit(ifp->if_serializer);
2228 }
2229 
2230 static void
2231 bge_tick_serialized(void *xsc)
2232 {
2233 	struct bge_softc *sc = xsc;
2234 	struct ifnet *ifp = &sc->arpcom.ac_if;
2235 	struct mii_data *mii = NULL;
2236 	struct ifmedia *ifm = NULL;
2237 
2238 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2239 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
2240 		bge_stats_update_regs(sc);
2241 	else
2242 		bge_stats_update(sc);
2243 
2244 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2245 
2246 	if (sc->bge_link) {
2247 		return;
2248 	}
2249 
2250 	if (sc->bge_tbi) {
2251 		ifm = &sc->bge_ifmedia;
2252 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2253 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2254 			sc->bge_link++;
2255 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2256 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2257 					   BGE_MACMODE_TBI_SEND_CFGS);
2258 			}
2259 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2260 			if_printf(ifp, "gigabit link up\n");
2261 			if (!ifq_is_empty(&ifp->if_snd))
2262 				(*ifp->if_start)(ifp);
2263 		}
2264 		return;
2265 	}
2266 
2267 	mii = device_get_softc(sc->bge_miibus);
2268 	mii_tick(mii);
2269 
2270 	if (!sc->bge_link) {
2271 		mii_pollstat(mii);
2272 		if (mii->mii_media_status & IFM_ACTIVE &&
2273 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2274 			sc->bge_link++;
2275 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2276 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2277 				if_printf(ifp, "gigabit link up\n");
2278 			if (!ifq_is_empty(&ifp->if_snd))
2279 				(*ifp->if_start)(ifp);
2280 		}
2281 	}
2282 }
2283 
2284 static void
2285 bge_stats_update_regs(struct bge_softc *sc)
2286 {
2287 	struct ifnet *ifp = &sc->arpcom.ac_if;
2288 	struct bge_mac_stats_regs stats;
2289 	uint32_t *s;
2290 	int i;
2291 
2292 	s = (uint32_t *)&stats;
2293 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2294 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
2295 		s++;
2296 	}
2297 
2298 	ifp->if_collisions +=
2299 	   (stats.dot3StatsSingleCollisionFrames +
2300 	   stats.dot3StatsMultipleCollisionFrames +
2301 	   stats.dot3StatsExcessiveCollisions +
2302 	   stats.dot3StatsLateCollisions) -
2303 	   ifp->if_collisions;
2304 }
2305 
2306 static void
2307 bge_stats_update(struct bge_softc *sc)
2308 {
2309 	struct ifnet *ifp = &sc->arpcom.ac_if;
2310 	struct bge_stats *stats;
2311 
2312 	stats = (struct bge_stats *)(sc->bge_vhandle +
2313 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2314 
2315 	ifp->if_collisions +=
2316 	   (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2317 	   stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2318 	   stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2319 	   stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2320 	   ifp->if_collisions;
2321 
2322 #ifdef notdef
2323 	ifp->if_collisions +=
2324 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2325 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2326 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2327 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2328 	   ifp->if_collisions;
2329 #endif
2330 }
2331 
2332 /*
2333  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2334  * pointers to descriptors.
2335  */
2336 static int
2337 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2338 {
2339 	struct bge_tx_bd *f = NULL;
2340 	struct mbuf *m;
2341 	uint32_t frag, cur, cnt = 0;
2342 	uint16_t csum_flags = 0;
2343 	struct ifvlan *ifv = NULL;
2344 
2345 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2346 	    m_head->m_pkthdr.rcvif != NULL &&
2347 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2348 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2349 
2350 	m = m_head;
2351 	cur = frag = *txidx;
2352 
2353 	if (m_head->m_pkthdr.csum_flags) {
2354 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2355 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2356 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2357 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2358 		if (m_head->m_flags & M_LASTFRAG)
2359 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2360 		else if (m_head->m_flags & M_FRAG)
2361 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2362 	}
2363 	/*
2364  	 * Start packing the mbufs in this chain into
2365 	 * the fragment pointers. Stop when we run out
2366  	 * of fragments or hit the end of the mbuf chain.
2367 	 */
2368 	for (m = m_head; m != NULL; m = m->m_next) {
2369 		if (m->m_len != 0) {
2370 			f = &sc->bge_rdata->bge_tx_ring[frag];
2371 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2372 				break;
2373 			BGE_HOSTADDR(f->bge_addr,
2374 			    vtophys(mtod(m, vm_offset_t)));
2375 			f->bge_len = m->m_len;
2376 			f->bge_flags = csum_flags;
2377 			if (ifv != NULL) {
2378 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2379 				f->bge_vlan_tag = ifv->ifv_tag;
2380 			} else {
2381 				f->bge_vlan_tag = 0;
2382 			}
2383 			/*
2384 			 * Sanity check: avoid coming within 16 descriptors
2385 			 * of the end of the ring.
2386 			 */
2387 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2388 				return(ENOBUFS);
2389 			cur = frag;
2390 			BGE_INC(frag, BGE_TX_RING_CNT);
2391 			cnt++;
2392 		}
2393 	}
2394 
2395 	if (m != NULL)
2396 		return(ENOBUFS);
2397 
2398 	if (frag == sc->bge_tx_saved_considx)
2399 		return(ENOBUFS);
2400 
2401 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2402 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2403 	sc->bge_txcnt += cnt;
2404 
2405 	*txidx = frag;
2406 
2407 	return(0);
2408 }
2409 
2410 /*
2411  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2412  * to the mbuf data regions directly in the transmit descriptors.
2413  */
2414 static void
2415 bge_start(struct ifnet *ifp)
2416 {
2417 	struct bge_softc *sc;
2418 	struct mbuf *m_head = NULL;
2419 	uint32_t prodidx = 0;
2420 	int need_trans;
2421 
2422 	sc = ifp->if_softc;
2423 
2424 	if (!sc->bge_link)
2425 		return;
2426 
2427 	prodidx = sc->bge_tx_prodidx;
2428 
2429 	need_trans = 0;
2430 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2431 		m_head = ifq_poll(&ifp->if_snd);
2432 		if (m_head == NULL)
2433 			break;
2434 
2435 		/*
2436 		 * XXX
2437 		 * safety overkill.  If this is a fragmented packet chain
2438 		 * with delayed TCP/UDP checksums, then only encapsulate
2439 		 * it if we have enough descriptors to handle the entire
2440 		 * chain at once.
2441 		 * (paranoia -- may not actually be needed)
2442 		 */
2443 		if (m_head->m_flags & M_FIRSTFRAG &&
2444 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2445 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2446 			    m_head->m_pkthdr.csum_data + 16) {
2447 				ifp->if_flags |= IFF_OACTIVE;
2448 				break;
2449 			}
2450 		}
2451 
2452 		/*
2453 		 * Pack the data into the transmit ring. If we
2454 		 * don't have room, set the OACTIVE flag and wait
2455 		 * for the NIC to drain the ring.
2456 		 */
2457 		if (bge_encap(sc, m_head, &prodidx)) {
2458 			ifp->if_flags |= IFF_OACTIVE;
2459 			break;
2460 		}
2461 		ifq_dequeue(&ifp->if_snd, m_head);
2462 		need_trans = 1;
2463 
2464 		BPF_MTAP(ifp, m_head);
2465 	}
2466 
2467 	if (!need_trans)
2468 		return;
2469 
2470 	/* Transmit */
2471 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2472 	/* 5700 b2 errata */
2473 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2474 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2475 
2476 	sc->bge_tx_prodidx = prodidx;
2477 
2478 	/*
2479 	 * Set a timeout in case the chip goes out to lunch.
2480 	 */
2481 	ifp->if_timer = 5;
2482 }
2483 
2484 static void
2485 bge_init(void *xsc)
2486 {
2487 	struct bge_softc *sc = xsc;
2488 	struct ifnet *ifp = &sc->arpcom.ac_if;
2489 	uint16_t *m;
2490 
2491 	ASSERT_SERIALIZED(ifp->if_serializer);
2492 
2493 	if (ifp->if_flags & IFF_RUNNING)
2494 		return;
2495 
2496 	/* Cancel pending I/O and flush buffers. */
2497 	bge_stop(sc);
2498 	bge_reset(sc);
2499 	bge_chipinit(sc);
2500 
2501 	/*
2502 	 * Init the various state machines, ring
2503 	 * control blocks and firmware.
2504 	 */
2505 	if (bge_blockinit(sc)) {
2506 		if_printf(ifp, "initialization failure\n");
2507 		return;
2508 	}
2509 
2510 	/* Specify MTU. */
2511 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2512 	    ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2513 
2514 	/* Load our MAC address. */
2515 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2516 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2517 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2518 
2519 	/* Enable or disable promiscuous mode as needed. */
2520 	bge_setpromisc(sc);
2521 
2522 	/* Program multicast filter. */
2523 	bge_setmulti(sc);
2524 
2525 	/* Init RX ring. */
2526 	bge_init_rx_ring_std(sc);
2527 
2528 	/*
2529 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2530 	 * memory to insure that the chip has in fact read the first
2531 	 * entry of the ring.
2532 	 */
2533 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2534 		uint32_t		v, i;
2535 		for (i = 0; i < 10; i++) {
2536 			DELAY(20);
2537 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2538 			if (v == (MCLBYTES - ETHER_ALIGN))
2539 				break;
2540 		}
2541 		if (i == 10)
2542 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2543 	}
2544 
2545 	/* Init jumbo RX ring. */
2546 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2547 		bge_init_rx_ring_jumbo(sc);
2548 
2549 	/* Init our RX return ring index */
2550 	sc->bge_rx_saved_considx = 0;
2551 
2552 	/* Init TX ring. */
2553 	bge_init_tx_ring(sc);
2554 
2555 	/* Turn on transmitter */
2556 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2557 
2558 	/* Turn on receiver */
2559 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2560 
2561 	/* Tell firmware we're alive. */
2562 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2563 
2564 	/* Enable host interrupts. */
2565 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2566 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2567 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2568 
2569 	bge_ifmedia_upd(ifp);
2570 
2571 	ifp->if_flags |= IFF_RUNNING;
2572 	ifp->if_flags &= ~IFF_OACTIVE;
2573 
2574 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2575 }
2576 
2577 /*
2578  * Set media options.
2579  */
2580 static int
2581 bge_ifmedia_upd(struct ifnet *ifp)
2582 {
2583 	struct bge_softc *sc = ifp->if_softc;
2584 	struct ifmedia *ifm = &sc->bge_ifmedia;
2585 	struct mii_data *mii;
2586 
2587 	/* If this is a 1000baseX NIC, enable the TBI port. */
2588 	if (sc->bge_tbi) {
2589 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2590 			return(EINVAL);
2591 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2592 		case IFM_AUTO:
2593 			/*
2594 			 * The BCM5704 ASIC appears to have a special
2595 			 * mechanism for programming the autoneg
2596 			 * advertisement registers in TBI mode.
2597 			 */
2598 			if (!bge_fake_autoneg &&
2599 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2600 				uint32_t sgdig;
2601 
2602 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2603 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2604 				sgdig |= BGE_SGDIGCFG_AUTO |
2605 					 BGE_SGDIGCFG_PAUSE_CAP |
2606 					 BGE_SGDIGCFG_ASYM_PAUSE;
2607 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2608 					    sgdig | BGE_SGDIGCFG_SEND);
2609 				DELAY(5);
2610 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2611 			}
2612 			break;
2613 		case IFM_1000_SX:
2614 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2615 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2616 				    BGE_MACMODE_HALF_DUPLEX);
2617 			} else {
2618 				BGE_SETBIT(sc, BGE_MAC_MODE,
2619 				    BGE_MACMODE_HALF_DUPLEX);
2620 			}
2621 			break;
2622 		default:
2623 			return(EINVAL);
2624 		}
2625 		return(0);
2626 	}
2627 
2628 	mii = device_get_softc(sc->bge_miibus);
2629 	sc->bge_link = 0;
2630 	if (mii->mii_instance) {
2631 		struct mii_softc *miisc;
2632 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2633 			mii_phy_reset(miisc);
2634 	}
2635 	mii_mediachg(mii);
2636 
2637 	return(0);
2638 }
2639 
2640 /*
2641  * Report current media status.
2642  */
2643 static void
2644 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2645 {
2646 	struct bge_softc *sc = ifp->if_softc;
2647 	struct mii_data *mii;
2648 
2649 	if (sc->bge_tbi) {
2650 		ifmr->ifm_status = IFM_AVALID;
2651 		ifmr->ifm_active = IFM_ETHER;
2652 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2653 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2654 			ifmr->ifm_status |= IFM_ACTIVE;
2655 		ifmr->ifm_active |= IFM_1000_SX;
2656 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2657 			ifmr->ifm_active |= IFM_HDX;
2658 		else
2659 			ifmr->ifm_active |= IFM_FDX;
2660 		return;
2661 	}
2662 
2663 	mii = device_get_softc(sc->bge_miibus);
2664 	mii_pollstat(mii);
2665 	ifmr->ifm_active = mii->mii_media_active;
2666 	ifmr->ifm_status = mii->mii_media_status;
2667 }
2668 
2669 static int
2670 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2671 {
2672 	struct bge_softc *sc = ifp->if_softc;
2673 	struct ifreq *ifr = (struct ifreq *) data;
2674 	int mask, error = 0;
2675 	struct mii_data *mii;
2676 
2677 	ASSERT_SERIALIZED(ifp->if_serializer);
2678 
2679 	switch(command) {
2680 	case SIOCSIFMTU:
2681 		/* Disallow jumbo frames on 5705/5750. */
2682 		if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2683 		      sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
2684 		     ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2685 			error = EINVAL;
2686 		else {
2687 			ifp->if_mtu = ifr->ifr_mtu;
2688 			ifp->if_flags &= ~IFF_RUNNING;
2689 			bge_init(sc);
2690 		}
2691 		break;
2692 	case SIOCSIFFLAGS:
2693 		if (ifp->if_flags & IFF_UP) {
2694 			if (ifp->if_flags & IFF_RUNNING) {
2695 				int flags = ifp->if_flags & sc->bge_if_flags;
2696 
2697 				/*
2698 				 * If only the state of the PROMISC flag
2699 				 * changed, then just use the 'set promisc
2700 				 * mode' command instead of reinitializing
2701 				 * the entire NIC. Doing a full re-init
2702 				 * means reloading the firmware and waiting
2703 				 * for it to start up, which may take a
2704 				 * second or two.  Similarly for ALLMULTI.
2705 				 */
2706 				if (flags & IFF_PROMISC)
2707 					bge_setpromisc(sc);
2708 				if (flags & IFF_ALLMULTI)
2709 					bge_setmulti(sc);
2710 			} else {
2711 				bge_init(sc);
2712 			}
2713 		} else {
2714 			if (ifp->if_flags & IFF_RUNNING)
2715 				bge_stop(sc);
2716 		}
2717 		sc->bge_if_flags = ifp->if_flags;
2718 		error = 0;
2719 		break;
2720 	case SIOCADDMULTI:
2721 	case SIOCDELMULTI:
2722 		if (ifp->if_flags & IFF_RUNNING) {
2723 			bge_setmulti(sc);
2724 			error = 0;
2725 		}
2726 		break;
2727 	case SIOCSIFMEDIA:
2728 	case SIOCGIFMEDIA:
2729 		if (sc->bge_tbi) {
2730 			error = ifmedia_ioctl(ifp, ifr,
2731 			    &sc->bge_ifmedia, command);
2732 		} else {
2733 			mii = device_get_softc(sc->bge_miibus);
2734 			error = ifmedia_ioctl(ifp, ifr,
2735 			    &mii->mii_media, command);
2736 		}
2737 		break;
2738         case SIOCSIFCAP:
2739 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2740 		if (mask & IFCAP_HWCSUM) {
2741 			if (IFCAP_HWCSUM & ifp->if_capenable)
2742 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2743 			else
2744 				ifp->if_capenable |= IFCAP_HWCSUM;
2745 		}
2746 		error = 0;
2747 		break;
2748 	default:
2749 		error = ether_ioctl(ifp, command, data);
2750 		break;
2751 	}
2752 	return(error);
2753 }
2754 
2755 static void
2756 bge_watchdog(struct ifnet *ifp)
2757 {
2758 	struct bge_softc *sc = ifp->if_softc;
2759 
2760 	if_printf(ifp, "watchdog timeout -- resetting\n");
2761 
2762 	ifp->if_flags &= ~IFF_RUNNING;
2763 	bge_init(sc);
2764 
2765 	ifp->if_oerrors++;
2766 
2767 	if (!ifq_is_empty(&ifp->if_snd))
2768 		ifp->if_start(ifp);
2769 }
2770 
2771 /*
2772  * Stop the adapter and free any mbufs allocated to the
2773  * RX and TX lists.
2774  */
2775 static void
2776 bge_stop(struct bge_softc *sc)
2777 {
2778 	struct ifnet *ifp = &sc->arpcom.ac_if;
2779 	struct ifmedia_entry *ifm;
2780 	struct mii_data *mii = NULL;
2781 	int mtmp, itmp;
2782 
2783 	ASSERT_SERIALIZED(ifp->if_serializer);
2784 
2785 	if (!sc->bge_tbi)
2786 		mii = device_get_softc(sc->bge_miibus);
2787 
2788 	callout_stop(&sc->bge_stat_timer);
2789 
2790 	/*
2791 	 * Disable all of the receiver blocks
2792 	 */
2793 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2794 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2795 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2796 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2797 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2798 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2799 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2800 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2801 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2802 
2803 	/*
2804 	 * Disable all of the transmit blocks
2805 	 */
2806 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2807 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2808 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2809 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2810 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2811 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2812 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2813 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2814 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2815 
2816 	/*
2817 	 * Shut down all of the memory managers and related
2818 	 * state machines.
2819 	 */
2820 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2821 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2822 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2823 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2824 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2825 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2826 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2827 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2828 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
2829 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2830 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2831 	}
2832 
2833 	/* Disable host interrupts. */
2834 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2835 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2836 
2837 	/*
2838 	 * Tell firmware we're shutting down.
2839 	 */
2840 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2841 
2842 	/* Free the RX lists. */
2843 	bge_free_rx_ring_std(sc);
2844 
2845 	/* Free jumbo RX list. */
2846 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2847 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2848 		bge_free_rx_ring_jumbo(sc);
2849 
2850 	/* Free TX buffers. */
2851 	bge_free_tx_ring(sc);
2852 
2853 	/*
2854 	 * Isolate/power down the PHY, but leave the media selection
2855 	 * unchanged so that things will be put back to normal when
2856 	 * we bring the interface back up.
2857 	 */
2858 	if (!sc->bge_tbi) {
2859 		itmp = ifp->if_flags;
2860 		ifp->if_flags |= IFF_UP;
2861 		ifm = mii->mii_media.ifm_cur;
2862 		mtmp = ifm->ifm_media;
2863 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2864 		mii_mediachg(mii);
2865 		ifm->ifm_media = mtmp;
2866 		ifp->if_flags = itmp;
2867 	}
2868 
2869 	sc->bge_link = 0;
2870 
2871 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2872 
2873 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2874 }
2875 
2876 /*
2877  * Stop all chip I/O so that the kernel's probe routines don't
2878  * get confused by errant DMAs when rebooting.
2879  */
2880 static void
2881 bge_shutdown(device_t dev)
2882 {
2883 	struct bge_softc *sc = device_get_softc(dev);
2884 	struct ifnet *ifp = &sc->arpcom.ac_if;
2885 
2886 	lwkt_serialize_enter(ifp->if_serializer);
2887 	bge_stop(sc);
2888 	bge_reset(sc);
2889 	lwkt_serialize_exit(ifp->if_serializer);
2890 }
2891 
2892 static int
2893 bge_suspend(device_t dev)
2894 {
2895 	struct bge_softc *sc = device_get_softc(dev);
2896 	struct ifnet *ifp = &sc->arpcom.ac_if;
2897 
2898 	lwkt_serialize_enter(ifp->if_serializer);
2899 	bge_stop(sc);
2900 	lwkt_serialize_exit(ifp->if_serializer);
2901 
2902 	return 0;
2903 }
2904 
2905 static int
2906 bge_resume(device_t dev)
2907 {
2908 	struct bge_softc *sc = device_get_softc(dev);
2909 	struct ifnet *ifp = &sc->arpcom.ac_if;
2910 
2911 	lwkt_serialize_enter(ifp->if_serializer);
2912 
2913 	if (ifp->if_flags & IFF_UP) {
2914 		bge_init(sc);
2915 
2916 		if (ifp->if_flags & IFF_RUNNING)
2917 			ifp->if_start(ifp);
2918 	}
2919 
2920 	lwkt_serialize_exit(ifp->if_serializer);
2921 
2922 	return 0;
2923 }
2924 
2925 static void
2926 bge_setpromisc(struct bge_softc *sc)
2927 {
2928 	struct ifnet *ifp = &sc->arpcom.ac_if;
2929 
2930 	if (ifp->if_flags & IFF_PROMISC)
2931 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2932 	else
2933 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2934 }
2935